

CIVIL ENGINEERING STUDIES
Illinois Center for Transportation Series No. 18-012

UILU-ENG-2018-2012
ISSN: 0197-9191

OPPORTUNISTIC TRAFFIC SENSING
USING EXISTING VIDEO SOURCES

(PHASE II)
FINAL REPORT

Prepared By

Jakob Eriksson
Yanzi Jin

University of Illinois at Chicago

Research Report No. FHWA-ICT-18-010

A report of the findings of

ICT PROJECT R27-169
Opportunistic Traffic Sensing Using Existing Video Sources

(Phase II)

Illinois Center for Transportation

August 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161952996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECHNICAL REPORT DOCUMENTATION PAGE
1. Report No.
 FHWA-ICT-18-010

2. Government Accession No.
N/A

3. Recipient’s Catalog No.
N/A

4. Title and Subtitle
Opportunistic Traffic Sensing Using Existing Video Sources (Phase II) Final Report

5. Report Date
August 2018
6. Performing Organization Code
N/A

7. Author(s)
Jakob Eriksson and Yanzi Jin

8. Performing Organization Report No.
ICT-18-012
UILU0ENG-2018-2012

9. Performing Organization Name and Address
Illinois Center for Transportation
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
205 North Mathews Avenue, MC-250
Urbana, IL 61801

10. Work Unit No.
N/A
11. Contract or Grant No.
R27-169

12. Sponsoring Agency Name and Address
Illinois Department of Transportation
Bureau of Research
126 East Ash Street
Springfield, IL 62704

13. Type of Report and Period Covered
Final Report
February 16, 2017 – August 15, 2018
14. Sponsoring Agency Code
FHWA

15. Supplementary Notes
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract
The objective of this project was to produce accurate vehicle counts and turn counts from opportunistically acquired video
sources such as surveillance, red light, and other traffic cameras, using computer vision techniques. The project scope included
algorithm design, software development, and a web portal for practitioner use.

17. Key Words
vehicle count, turn count, video, computer vision

18. Distribution Statement
No restrictions. This document is available through the
National Technical Information Service, Springfield, VA
22161.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
18 pp

22. Price
N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

i

ACKNOWLEDGMENT, DISCLAIMER, MANUFACTURERS’ NAMES
This publication is based on the results of ICT-R27-169, Opportunistic Traffic Sensing Using Existing
Video Sources. ICT-R27-169 was conducted in cooperation with the Illinois Center for Transportation;
the Illinois Department of Transportation; and the U.S. Department of Transportation, Federal
Highway Administration.

Members of the Technical Review panel were the following:

• William Morgan (IDOT)

• Jenni LeSeure, IDOT

• Mike Miller, IDOT

• Vince Durante, IDOT

• Abraham Emmanuel, Chicago DOT

The contents of this report reflect the view of the author(s), who is (are) responsible for the facts and
the accuracy of the data presented herein. The contents do not necessarily reflect the official views
or policies of the Illinois Center for Transportation, the Illinois Department of Transportation, or the
Federal Highway Administration. This report does not constitute a standard, specification, or
regulation.

Trademark or manufacturers’ names appear in this report only because they are considered essential
to the object of this document and do not constitute an endorsement of product by the Federal
Highway Administration, the Illinois Department of Transportation, or the Illinois Center for
Transportation.

ii

EXECUTIVE SUMMARY
The objective of this project was to investigate new and existing computer vision algorithms for the
purpose of producing vehicle counts and turn counts from opportunistically acquired, existing video
sources. Included in the scope was also the development of software capable of performing such
task, and a web portal providing an interface to this software, to be made available to practitioners.

This report addresses the second phase of the project, which focused on several refinements to the
algorithms used, in order to improve accuracy as well as robustness to adverse environmental and
lighting conditions. This phase also introduced a web portal interface for using the system remotely.

Analyzing opportunistically collected video presents several interesting challenges to videos recorded
for the purpose of traffic analysis. Opportunistic video comes in a variety of formats and qualities.
The perspective offered by the video is often not ideal, including substantial occlusion from obstacles,
or vantage points located between vehicles due to a low angle of observation.
This type of videos can be collected under any condition including severe changes of seasons,
weather, and lighting. Finally, opportunistic video is available in virtually unlimited quantity, which
means that processing needs to be efficient in order to take advantage of this resource.

The resulting video analysis system operates in three main phases. First is the scene-learning phase,
which analyzes the scene of a camera from a ``topic’’ perspective. Here, individual short video
sequences (snippets) are compared against other snippets, using a technique called topic modeling.
This technique was adapted for use in computer vision from the field of text mining. Topic modeling
produces a set of movement patterns that frequently occur in a given scene, such as “driving east”, or
“turning right onto the northbound street.” The output from this phase is a set of such movements,
with information about vehicle size, centerline, and entry/exit points. Ideally, scene learning is
applied to a video captured during typical benign conditions.

Tracking, which is the second phase, identifies and follows (tracks) individual cars as they traverse the
scene. Tracking takes video and scene-learning information as input and produces a set of
“trajectories”, which in turn are a series of bounding boxes (one per video frame). A trajectory is used
to describe the movement of an observed object throughout a scene. Tracking uses prior knowledge
about the scene to decide which objects to track and which objects to recover from temporary loss of
tracking.

The final phase, counting, compares the trajectories produced by tracking, against counting
templates, which are either hand-drawn by the user, or automatically produced by the scene-learning
phase. In both cases, the templates are reviewed and named by the user in order to produce human-
legible statistics. The final vehicle counts are produced in spreadsheet format.

iii

TABLE OF CONTENTS

CHAPTER 1: SCENE LEARNING .. 1

1.1 TOPIC MODEL ...1

1.1.1 Video Representation………………………………………………………………………………………………..1

1.1.2 Hierarchical Dirichlet Process (HDP)..1

1.2 CENTERLINE EXTRACTION ...3

1.2.1 Ridge Extraction……3

1.2.2 Ridge Clustering……4

1.3 ENTRY-EXIT AREA ...4

CHAPTER 2: OBJECT TRACKING ... 5

2.1 PRELIMINARIES ..5

2.1.1 Background Subtraction…………………………………………………………………………………………….5

2.1.2 Object Detection……………………………………………………………………………………………………….6

2.1.3 Optical Flow……7

2.1.4 Object Entry and Exit…………………………………………………………………………………………………7

2.2 PROPOSED METHOD...8

2.2.1 Model Definition……………………………………………………………………………………………………….8

2.2.2 Measurement Acquisition……………………………………………………………………………………….10

2.2.3 Model Update……10

2.2.4 Tracker Initialization and Termination…………………………………………………………………….11

2.3 DATASET .. 12

2.4 INTEGRATION WITH TOPIC MODEL ... 12

2.4.1 Topic Match for a Frame………………………………………………………………………………………….13

CHAPTER 3: VEHICLE COUNTING .. 15

3.1 ALGORITHM ... 15

3.2 INTEGRATION WITH TOPIC MODEL ... 16

3.3 USER INTERFACE ... 16

REFERENCES .. 18

1

CHAPTER 1: SCENE LEARNING
To improve overall tracking and counting accuracy, the research team introduced a scene-learning
component. Scene learning analyzes video independent of object tracking, to learn about typical
movements within the scene from long-term statistics. Scene learning provides two advantages. First,
with a stationary camera, the scene contains many long-term features that cannot be inferred in the
short term; such as the expected size, speed, and movements of vehicles in the scene. Since these do
not change significantly over time, scene learning can be performed during benign conditions, and
the inferred knowledge can be used under all conditions. Second, in contrast with computing
expected/average trajectories based on tracking results, the scene-learning approach is independent
of the tracker’s performance. Thus, tracking errors do not cause scene-learning errors. The underlying
technique used for scene learning is called a topic model.

1.1 TOPIC MODEL
Scene learning is becoming a hot topic due to its wide range of applications, such as traffic analysis,
visual query, and anomaly detection. It provides a higher-level summary without knowing the
individuals in the scene. There are some well-studied methods that could be used for motion pattern
learning, such as trajectory clustering. However, it requires good tracking results, which is not
available for most surveillance videos. Alternatively, instead of clustering trajectories, there has been
work on clustering optical flow tracklets or optical flow vectors, where the clusters are frequent
motions in a video. These works, such as (Wang et al. 2009), often use nonparametric Bayesian
methods such as the topic model for clustering and they usually work well on finding the motion
topics. This approach was adopted in this project with further post processing for the vehicle
tracking/counting framework.

1.1.1 Video Representation
The videos were split the into short clips, each of them was about 90 frames (∼ 3 sec). Each frame
was split into 10 × 10 pixel grids. The optical flow between consecutive frames on each grid was
computed and then quantized into twelve directions. Unlike previous methods, twelve directions
were used in order to cover more than just horizontal and vertical movements. Although this can
result in a much larger vocabulary, the learned motions make more sense for the future applications.
Make an analogy with to document clustering, a video is a corpus containing many documents (video
clips) and the quantized optical flow vectors correspond to words in the documents. For example, for
a video of size 320 × 240 in pixel, there will be a vocabulary dictionary size of 32 × 24 × 12.
Counting the frequency of each vector in a video clip provides a bag-of-words feature for the
document. Note that the bag-of-words representation treats each word independently.

1.1.2 Hierarchical Dirichlet Process (HDP)
In most clustering methods, the number of clusters should be provided, and the results may vary
according to the number of clusters. Since this is inaccurate for complex videos and requires human
input, the Hierarchical Dirichlet Process (HDP) was used, which is a non-parametric clustering method
that required no specification of cluster numbers, commonly used for document clustering. It is a

2

generalization of Dirichlet Process (DP). In this model, the visual words are groups of observations,
each exhibiting a mixed proportion of shared mixture components. The mixture components are
learned in this model, also called “topics”.

An HDP is a two-level DP with shared parameters. Each group 𝑗𝑗 is associated with a draw from a
shared DP whose base distribution is also a draw from the top-level DP.

𝐺𝐺0 ∼ 𝐷𝐷𝐷𝐷(𝛾𝛾,𝐻𝐻)

𝐺𝐺𝑗𝑗 | 𝐺𝐺0~𝐷𝐷𝐷𝐷(𝛼𝛼0,𝐺𝐺0), for each 𝑗𝑗,

Here 𝑗𝑗 is the group index. At the top-level, the distribution 𝐺𝐺0 is drawn from a DP with concentration
parameter 𝛾𝛾 and base distribution 𝐻𝐻. The base distribution 𝐻𝐻 is a symmetric Dirichlet over the
vocabulary simplex. Since the numbers drawn from a Dirichlet distribution sum up to 1, they are
usually used as the parameter of a multinomial distribution. Each atom is a distribution over the
vocabulary, the atoms 𝝓𝝓 = (𝜙𝜙𝑘𝑘)𝑘𝑘=1∞ are drawn independently 𝜙𝜙𝑘𝑘~𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(𝜂𝜂). Simply speaking,
𝐺𝐺0 is a discrete distribution over the atoms 𝝓𝝓. At the bottom level, 𝐺𝐺0 is used as the base distribution
to draw each group distribution 𝐺𝐺𝑗𝑗. By such hierarchical definition, the atoms are shared among 𝐺𝐺𝑗𝑗,
which makes sense that different documents may belong to the same topic.

In this setting, a group is a visual document and the 𝐷𝐷th word is drawn from 𝑗𝑗th document 𝑥𝑥𝑖𝑖𝑗𝑗 as
follows,

𝜃𝜃𝑗𝑗𝑖𝑖~𝐺𝐺𝑗𝑗 , 𝑥𝑥𝑖𝑖𝑗𝑗~𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝐷𝐷(𝜃𝜃𝑗𝑗𝑖𝑖).

Here 𝜃𝜃𝑗𝑗𝑖𝑖 is the topic assignment of 𝑥𝑥𝑖𝑖𝑗𝑗, which is associated with a multinomial distribution 𝜙𝜙𝜃𝜃𝑗𝑗𝑗𝑗. One
could potentially have an infinite number of atoms. However, only a finite number of atoms/topics
will be learned. After Gibbs sampling, there is a multinomial distribution for each topic over the
vocabulary where each word in a document has a topic assignment. Figure 1 visualizes those topics
learned by HDP. The color indicates the direction shown in the color wheel on the right and the
lightness indicates the value of the multinomial at the corresponding cell. The Figures show that HDP
does a good job in summarizing the motions in the video, even without knowing any moving objects
in the scene. For more details on Gibbs sampling, please see (Teh et al. 2012).

Figure 1: Motion topics learned by HDP, the color indicates direction, lightness indicates
multinomial parameter value for the word entry.

3

1.2 CENTERLINE EXTRACTION

1.2.1 Ridge Extraction
The ridge climbing method was adopted for this section (Zhao and Wang 2013). Just by looking at the
topics in Figure 1, one could roughly infer how the vehicles move in the video. The idea of this
method is to start from a high-density point, follow the shape and direction indicated by the visual
word, and get a complete ridge of the motion. Due to the different views of the videos, some topics
may expand to a wide area, which does not always get a perfect centerline right in the center of the
high-density area. Instead, this method was improved by getting multiple ridge lines and then shrink
them into a more confident centerline.

Let 𝜙𝜙 be a multinomial distribution of a topic learned by HDP. Each grid 𝐷𝐷 on the frame has values
corresponding to 𝐷𝐷 directions 𝜽𝜽 = {𝜃𝜃1,𝜃𝜃2, . . . , 𝜃𝜃𝐷𝐷}, written as (𝜙𝜙𝑖𝑖

𝜃𝜃1 ,𝜙𝜙𝑖𝑖
𝜃𝜃2 , . . . ,𝜙𝜙𝑖𝑖

𝜃𝜃𝐷𝐷). In this particular
case, 𝐷𝐷 = 12. Since the pixels are not likely to move on the opposite directions in a short clip, a
reduced distribution on 𝐷𝐷/2 directions with the sign to indicate direction, was considered. For each
direction 𝑑𝑑,

𝜑𝜑𝑖𝑖
𝜃𝜃𝑑𝑑 = �

𝜙𝜙𝑖𝑖
𝜃𝜃𝑑𝑑 𝜙𝜙𝑖𝑖

𝜃𝜃𝑑𝑑 ≥ 𝜙𝜙𝑖𝑖
𝜃𝜃−𝑑𝑑

−𝜙𝜙𝑖𝑖
𝜃𝜃−𝑑𝑑 𝜙𝜙𝑖𝑖

𝜃𝜃𝑑𝑑 < 𝜙𝜙𝑖𝑖
𝜃𝜃−𝑑𝑑

,

where 𝜙𝜙𝑖𝑖
𝜃𝜃−𝑑𝑑 indicates the value of 𝜙𝜙 in grid 𝐷𝐷 on the opposite direction of 𝜃𝜃𝑑𝑑. For the simplicity of

notation, we define 𝜑𝜑𝑖𝑖 = ∑ �𝜙𝜙𝑖𝑖
𝜃𝜃𝑑𝑑�𝐷𝐷/2

𝑑𝑑=1 .

The ridge climbing process was started from a cell 𝐷𝐷 at (𝑥𝑥,𝑦𝑦), where we follow the forward direction
and go to the next point (𝑥𝑥′, 𝑦𝑦′), the procedure repeats as described in the following equation until it
converges.

∆𝜃𝜃𝑑𝑑= 𝜈𝜈𝜃𝜃𝑑𝑑 + 𝑎𝑎 ∙ 𝑚𝑚𝜃𝜃𝑑𝑑

𝑥𝑥′ = 𝑥𝑥 + ∑ ∆𝜃𝜃𝑑𝑑 ∙ cos 𝜃𝜃𝑑𝑑
𝐷𝐷
2
𝑑𝑑=1

𝑦𝑦′ = 𝑦𝑦 + ∑ ∆𝜃𝜃𝑑𝑑 ∙ sin𝜃𝜃𝑑𝑑
𝐷𝐷
2
𝑑𝑑=1

To compute ∆𝜃𝜃𝑑𝑑, a small neighborhood was chosen with a size of 𝑛𝑛 around (𝑥𝑥,𝑦𝑦) and the following
values were computed:

𝜈𝜈𝜃𝜃𝑑𝑑 =
∑ 𝜑𝜑𝑖𝑖

𝜃𝜃𝑑𝑑𝑛𝑛
𝑖𝑖=1
∑ 𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝑚𝑚𝜃𝜃𝑑𝑑 =
∑ 𝜑𝜑𝑖𝑖 ∙ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑛𝑛
𝑖𝑖=1

∑ 𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝜈𝜈𝜃𝜃𝑑𝑑 determines the step size along the main direction, 𝑚𝑚𝜃𝜃𝑑𝑑 restricts the next step within the high-
density area. To look for the source point, the sign of 𝜈𝜈𝜃𝜃𝑑𝑑 was flipped when computing (𝑥𝑥′,𝑦𝑦′).

4

Instead of starting from the cell with global maximal density, we start with many cells with local
maximal density 𝜑𝜑 in its neighborhood. The left image in Figure 2 shows the ridges extracted by the
above procedure, they roughly cover the high-density area. Adjusting the neighborhood size may
result in getting ridges with different densities. Using a finer quantization of flow words of 12
directions made it possible to trace the ridges in arbitrary directions.

1.2.2 Ridge Clustering
Next, the Adaptive Multi-Kernel-based Shrinkage (AMKS) method was applied to the extracted ridges,
which is originally proposed for trajectory clustering in (Xu et al. 2015). Roughly speaking, it is a
clustering method in a certain direction. In this case, it was specific to the travelled direction of the
ridges. In every iteration, each ridge was moving toward the centerline. Ideally, after convergence, all
the ridges will have moved to the centerline. Then the overlapped line was extracted as the final
centerline. Before doing the clustering, the overlapped ridges were filtered to reduce the computation
overhead. The middle image in Figure 2 gives an example, where the dot at the right end indicates the
sink.

1.3 ENTRY-EXIT AREA
As proven later in Chapter 2, trackers need proper initialization and termination in real-world
applications. However, automatic entry/exit point learning is rarely addressed in the current
literature. There has been some work using the Mixture of Gaussian (MOG) methods to cluster start
and end point of trajectories. However, this method is sensitive to noise and it is hard to get clean
trajectories without human pruning. On the other hand, the ridges extracted from the ridge climbing
method are more reliable. Continued with the above procedure, the source/sink point was fit into a
single Gaussian as the entry/exit area, as illustrated by the green and red ellipses in the right image in
Figure 2. Note that the ellipses do not indicate the size of the entry/exit area, but the area of
source/sink points of most ridges. The density of extracted ridges gives a nice interpretation of the
area and it is unlikely for vehicles to go beyond the topic area. Therefore, it may be used as
preliminary evidence for initialization.

Figure 2: Ridges (left), centerline (middle) and entry exit (right) extracted by our algorithm.

5

CHAPTER 2: OBJECT TRACKING
Vehicle tracking has important applications in traffic engineering. However, current tracking
algorithms all require initialization as input, leading to semi-automatic tracking systems. To avoid
manual input, these trackers rely on background subtraction and/or object detectors for initialization.
Here, the primary challenge is robustness to variations in illumination condition, viewpoint, and video
quality. The background subtraction model could fail with illumination change, while detectors are
not appropriate for detecting a vehicle in the distance, or in a grainy low-resolution video.
Additionally, the low throughput of most trackers prevents widely deployed surveillance applications.
As pointed out by the VOT 2016 challenge report, none of the top-ranked trackers run in real-time
for even a single object.

A fully automatic algorithm was proposed for vehicle tracking that runs faster than real-time. With a
sensor fusion approach, the research team combined background segmentation, object detection,
and optical flow into a single, robust vehicle tracking system via Kalman filtering. Initialization uses
the same three sources to automatically identify moving objects in the scene. Finally, when an object
exits the scene, its movements are analyzed to filter out unlikely object trajectories. To evaluate the
proposed algorithm as well as prior work, a hand-annotated dataset was created, which consisted of
11 diverse 5-minute videos collected from existing traffic surveillance cameras. For each frame, the
location and extent of each moving object was provided, which enabled accurate, quantitative
evaluation.

The proposed algorithm was compared against multiple state-of-the-art trackers, which rely on
human input for initialization. On this dataset, there was considerably better performance and
substantial accuracy improvement when using our new automatic initialization method than that of
the state-of-the-art with manual initialization. Moreover, we demonstrate throughput 4 times faster
than real time and over 5 times faster compared to 5 out of 7 several baseline trackers. In the best
case, the throughput improvement is up to 47 ×.

2.1 PRELIMINARIES
The problem of vehicle tracking in existing traffic surveillance video presents some unique computer
vision challenges, including scale changes, video quality (exposure control, automatic white balance,
and compression), weather conditions, illumination changes, variations in perspective, and occlusion.
Current work in object detection, tracking, and background subtraction can deal with a subset of
these conditions, but so far a generic system has been elusive. Below, we first introduce the
underlying methods used in our system, then describe our vehicle tracking framework in detail.

2.1.1 Background Subtraction
Background subtraction generates a binary foreground mask given a sequence of frames. Connected
areas in the foreground mask can be treated as moving objects, although this technique can be error-
prone. ViBe was used for its balance of speed, robustness, and accuracy (Barnich and Droogenbroeck
2011.) However, other methods could be substituted with acceptable results in many cases.

6

Figure 3 summarizes four common failure cases of the background subtraction with foreground
bounding boxes on the original frame on the left and the foreground on the right. Automatic
exposure (Figure 3(a)) is performed by the camera during recording, whereas illumination variation
(Figure 3(b)) is due to external light sources, such as the sun and vehicle headlights. Both automatic
exposure and illumination variation cause rapid and widespread changes in pixel values, which is
something that most background subtraction methods struggle with. Ghosting (Figure 3(c)) usually
happens when a foreground object remains stationary for a long time, during which time it is
gradually assimilated into the background model. When the object begins to move, what appears
from behind the object is inaccurately marked as foreground, until the background model has had
time to adjust. Occlusion (Figure 3(d)) creates a single connected foreground area out of two or more
moving objects. Sometimes it creates multiple foreground areas for a single moving object, breaking
any assumption of a one-to-one mapping between foreground areas and moving objects.

(a) Camera auto-exposure. (b) Illumination change.

(c) Ghosting. Stopped vehicles have become

part of the background model.

(d) Occlusion.

Figure 3: Background subtraction failure cases. Pixel values change for reasons other than motion.

In summary, background subtraction provides the ability to capture small movements without
manual setup beforehand. However, it is error-prone and must be compensated by other methods to
create a robust vehicle tracking system.

2.1.2 Object Detection
Object detectors work on individual frames by scanning the image for areas that appear similar to
offline training samples. Compared to background subtraction, object detection method tends to be
more robust to illumination change and occlusion. However, the cost of object detection is
significant, as it often involves an exhaustive search throughout the image, both in location and
object size. More recently, deep neural networks have emerged as a promising approach to object
detection. A state-of-the-art detector called faster-RCNN was used (Ren et al. 2017). Running on a
high-end graphics processing unit (GPU), the time required for detection on one image drops from 2

7

seconds to 198 milliseconds (ms) on the PASCAL 2007 dataset, making the real-time detection in
video feasible. However, like other detectors, faster-RCNN still has missing and false detections. A
missing rate in excess of 65% and 86% on high- and low- resolution videos is reported on the
anootated dataset, respectively. Thus, given the high miss rate, especially on poor quality images,
object detection alone will not suffice for a robust vehicle tracking system.

2.1.3 Optical Flow
Optical flow is an estimate of the movement of pixels between two images: in our case, two
consecutive video frames. Optical flow provides a low-level description of motion in images and can
offer useful evidence for tracking applications. Estimating optical flow is a research area in its own
right, but the seminal Lucas-Kanade algorithm was used in this system, as it runs fast on GPUs. It also
provides useful results while making minimal assumptions about the underlying scene and image.
Figure 4 illustrates two optical flow problems that may affect tracking accuracy. The left column
shows the direction and magnitude of the optical flow vectors, while the right column is the color
code visualization of the optical flow results, with the color wheel at the bottom right corner of Figure
4(b) indicating the corresponding direction. Figure 4(a) illustrates the so-called aperture problem,
where the center of the truck has no reported optical flow, due to its large and uniformly colored
surface. Figure 4(b) illustrates the “turbulent”, error-prone flow that occurs where objects traveling in
opposite directions meet.

(a) Aperture problem. (b) Occlusion “turbulence”.

Figure 4: Common problems in optical flow estimation.

Thus, while accurate optical flow estimates offer valuable information about movement in the scene,
they are neither complete (due to the aperture problem), nor free of severe estimation errors, near
the occlusion boundaries in particular.

2.1.4 Object Entry and Exit
Currently available datasets usually have tracked objects in the center of the first frame. However,
initialization can be more challenging when objects enter the scene in a variety of ways such as:
approaching from a distance; entering from the image boundary; appearing from behind an occluding
object—moving or stationary; and becoming visible due to changes in lighting or background
conditions. Termination has similar challenges—vehicles may disappear temporarily behind
obstructions or due to changing conditions, they may linger near the edge of the screen, exit the
scene while behind a moving vehicle, or disappear slowly into the distance. It is usually natural to
terminate tracking when a sequence ends or when objects leave the scene in short sequences. In

8

practice, however, it is hard to distinguish between exiting and temporal occlusion when the object is
not visible in long-time videos.

As automatic initialization and termination are missing in the majority of current tracking literature,
there are generally two accepted methods. The first is to heuristically manually label an entry/exit
area beforehand under the assumption that objects always enter or exit within a certain area. The
second is to rely on fully manual initialization. The first method is too simplistic for general purpose
vehicle tracking, and the second is impractical under constrained expense/time budget for large-scale
use.

In the only available literature (Y.Wu et al. 2013) that explicitly addresses the effect of tracker
initialization, the author concludes that slight temporal and spatial variation would result in
performance difference. However, unlike the currently available dataset, vehicles frequently
encounter significant scale change while leaving or entering the scene in the traffic surveillance
videos are available. This presents a unique problem for initialization because early initialization
results in small poor-quality images, and late initialization results in missing information due to the
short trajectory. Thus, striking the right balance between tracking performance and lifetime is the key
to automatic tracker initialization.

2.2 PROPOSED METHOD
Figure 5 describes the workflow of the automatic tracking application. First, background subtraction
and object detection was applied to each frame. This generated two sets of candidate boxes, which
were used to initialize and update trackers. Each tracker is represented by an individual Kalman.
Optical flow was also computed. Any flow that matched a tracked object, both by location and
velocity, was used for tracker update. Tracking was terminated based on object location, velocity and
time; short-lived or otherwise spurious objects are filtered out.

Figure 5: Overview of proposed system. Separate Kalman filter state is initialized, maintained and
terminated for each object, updated by background subtraction, object detection and optical flow.

2.2.1 Model Definition
The Kalman filter was used to smooth out the noises in the observed measurements by the
aforementioned components. More importantly, the filter was used to integrate the strengths and

9

make up for the weakness of each component. The prediction by its linear model was corrected with
measurements observed over time. Therefore, the generated estimation is much smoother despite
the noises in measurement input. For such a continuous system, a time unit was defined as 𝑑𝑑𝑙𝑙, which
is the time interval when updates were performed, and in this case, the time between two
consecutive frames. Each variable had its own value at a certain time step t, indicated by the
subscript. The prediction was performed as follows:

𝒙𝒙�𝑡𝑡− = 𝑨𝑨𝒙𝒙�𝑡𝑡−1− , 𝑷𝑷𝑡𝑡− = 𝑨𝑨𝑷𝑷𝑡𝑡−1𝑨𝑨𝑇𝑇 + 𝑸𝑸.

Here 𝒙𝒙�𝑡𝑡−1− and 𝒙𝒙�𝑡𝑡− are internal states before and after prediction at time 𝑙𝑙. 𝑷𝑷𝑡𝑡−1 and 𝑷𝑷𝑡𝑡− are prior and
post error covariances, and 𝑸𝑸 is the process noise covariance. In our case, we define the internal
state a 10-dimensional vector:

𝒙𝒙 = [𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ, 𝑥𝑥′,𝑦𝑦′,𝑤𝑤′,ℎ′, 𝑥𝑥′′,𝑦𝑦′′],

corresponding to the object’s top-left location (𝑥𝑥, 𝑦𝑦), size (𝑤𝑤, ℎ), as well as the velocity (𝑥𝑥′,𝑦𝑦′) rate
of growth (𝑤𝑤′,ℎ′) and acceleration (𝑥𝑥′′,𝑦𝑦′′), respectively. The dynamic model 𝐴𝐴 is defined based on
the physics equation of displacement with velocity and acceleration. With the assumption that the
object has constant acceleration within 𝑑𝑑𝑙𝑙, we have:

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 + 𝑥𝑥𝑡𝑡−1′ ∙ 𝑑𝑑𝑙𝑙 +
1
2
𝑥𝑥𝑡𝑡−1′′ ∙ 𝑑𝑑𝑙𝑙2

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝑦𝑦𝑡𝑡−1′ ∙ 𝑑𝑑𝑙𝑙 +
1
2
𝑦𝑦𝑡𝑡−1′′ ∙ 𝑑𝑑𝑙𝑙2

𝑥𝑥𝑡𝑡′ = 𝑥𝑥𝑡𝑡−1′ + 𝑥𝑥𝑡𝑡−1′′ ∙ 𝑑𝑑𝑙𝑙

𝑦𝑦𝑡𝑡′ = 𝑦𝑦𝑡𝑡−1′ + 𝑦𝑦𝑡𝑡−1′′ ∙ 𝑑𝑑𝑙𝑙.

For width and height, constant growth rate within 𝑑𝑑𝑙𝑙 was assumed instead, thus

𝑤𝑤𝑡𝑡 = 𝑤𝑤𝑡𝑡−1 + 𝑤𝑤𝑡𝑡−1
′ ∙ 𝑑𝑑𝑙𝑙

ℎ𝑡𝑡 = ℎ𝑡𝑡−1 + ℎ𝑡𝑡−1′ ∙ 𝑑𝑑𝑙𝑙.

After prediction, the estimated state 𝒙𝒙�𝑡𝑡− is corrected by an 𝑙𝑙 observed measurement 𝒛𝒛 at each time
step by the steps below:

𝑲𝑲𝑡𝑡 = 𝑷𝑷𝑡𝑡−𝑯𝑯𝑇𝑇(𝑯𝑯𝑷𝑷𝑡𝑡−𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1

𝒙𝒙�𝑡𝑡 = 𝒙𝒙�𝑡𝑡− + 𝑲𝑲𝑡𝑡(𝒛𝒛 − 𝑯𝑯𝒙𝒙�𝑡𝑡−)

𝑷𝑷𝑡𝑡 = (𝟏𝟏 − 𝑲𝑲𝑡𝑡𝑯𝑯)𝑷𝑷𝑡𝑡−.

In this case, there was a 10-dimensional measurement vector:

10

 𝒛𝒛 = [𝑥𝑥𝑏𝑏𝑏𝑏,𝑦𝑦𝑏𝑏𝑏𝑏,𝑤𝑤𝑏𝑏𝑏𝑏,ℎ𝑏𝑏𝑏𝑏, 𝑥𝑥𝑑𝑑𝑑𝑑𝑡𝑡 ,𝑦𝑦𝑑𝑑𝑑𝑑𝑡𝑡,𝑤𝑤𝑑𝑑𝑑𝑑𝑡𝑡,ℎ𝑑𝑑𝑑𝑑𝑡𝑡, 𝑣𝑣𝑥𝑥 , 𝑣𝑣𝒚𝒚], representing the top-left coordinates (𝑥𝑥,𝑦𝑦),
width (𝑤𝑤), height (ℎ), reported by background subtraction 𝑏𝑏𝑏𝑏 and detector 𝑑𝑑𝑙𝑙𝑙𝑙, separately, as well
as the velocity (𝑣𝑣𝑥𝑥, 𝑣𝑣𝒚𝒚) reported by optical flow estimation. The measurement model 𝑯𝑯 is a 10-by-10
matrix of zeros except for ones at (0, 0), (1, 1), (2, 2), (3, 3), (0,4), (1,5), (2,6), (3,7), (4,8), (5,9),
signifying that the background and detector boxes directly measure 𝑥𝑥,𝑦𝑦,𝑤𝑤, and ℎ, and that optical
flow directly measures 𝑥𝑥′ and 𝑦𝑦′. In other words, there are no direct measurements of 𝑤𝑤′, ℎ′, 𝑥𝑥′′ or
𝑦𝑦′′ since they are not observable. 𝑹𝑹 is the measurement noise covariance, indicating the noisiness of
measurement. By manipulating the measurement noise covariance 𝑹𝑹, we indirectly adjust the
Kalman gain 𝑲𝑲𝑡𝑡, indicating the weight of the measurement to update the corresponding prediction.

2.2.2 Measurement Acquisition
It was observed that none of the input measurements such as background subtraction, object
detection, and optical flow, corresponded directly to an individually tracked object. Instead, they
generated boxes and flow indications for an entire frame. To produce input to an individually tracked
object’s filter, one should compute a matching of input data to tracked objects. Then apply the
matched boxes and flow to the Kalman filter state of the corresponding object.

2.2.2.1 Background Subtraction and Object Detection

Both background subtraction and object detection generate bounding boxes {𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ}. We only
take those boxes that are consistent with tracker’s current state as the measurement. For each
Kalman filter, the best matching box as the measurement maximizes the total overlap between the
predicted bounds of internal filter and the bounds of the measured boxes. Boxes must overlap with
the predicted state in order to be considered a match. Any remaining boxes were used to initialize
newly tracked objects.

2.2.2.2 Optical Flow

Optical flow reports velocity on a pixel-by-pixel basis with many erroneous flow vectors, due to the
aperture and turbulence problems described earlier. To produce a velocity measurement from the
optical flow field for a single object, the noise was first removed from the flow field by forward-
backward error thresholding. Then the flow was filtered by location, velocity magnitude, and
direction. In particular, consideration was only given to flow vectors that: 1) Originate from the
location of the object in the previous frame; 2) Follow the similar direction (within in 45°) of the
previous state in order to reduce the effect of the turbulence problem; and 3) Only keep those
vectors that fall within twice the error covariance (available in 𝑷𝑷, diagonal entries corresponding to
the object velocity in 𝒙𝒙�), using the simplifying assumption that flow errors follow a normal
distribution. Finally, the mean of the remaining flow vectors was used on horizontal and vertical
directions, respectively, as the optical flow measurement for the object.

2.2.3 Model Update
The measurements above were directly plugged into the update equations above. However, they are
of different quality. Oftentimes, some of the measurements are missing entirely. For example, the
invalid foreground is generated when occlusion happens, when a detector misses a small-sized

11

object, or when an aperture problem gives zero movements of an object. These problems were
addressed by varying the measurement noise covariance accordingly, which in turn caused the
Kalman filter to choose a gain 𝑲𝑲 that maximized the quality of the internal state. A large
measurement covariance 𝑸𝑸 would result in a smaller 𝑲𝑲, which would cause the measurement to
weigh less in correction. When a measurement was missing, the value already in 𝒙𝒙� was used as a
proxy and the covariance was set to 1. Consequently, when none of the three measurements were
available, the tracker merely relied on the internal prediction, which is called extrapolation. The
tracker could still generate tracking results by the internal linear model during extrapolation. The
other two cases in Figure 5 demonstrate when at least one bounding box is available (bound update)
or only optical flow is obtained (velocity update).

Error gating was also applied to the background subtraction and object detection measurements. For
example, only foreground bounding boxes that were well overlapped with their corresponding
tracked objects (more than 30% overlap) were used for the update. Meanwhile, the optical flow has
a lower confidence with zero value in both directions, since it is unknown whether the object was
still, or the aperture problem happened. In addition, as described before, the three measurement
types naturally had different error covariances. Although detector had a higher missing rate, the
precision was also high. Therefore, a smaller noise covariance was assigned to the measurements
from the detector, than to those from the background model.

2.2.4 Tracker Initialization and Termination
Ideally, a fully automatic computer vision-based tracker followed each vehicle as it entered, traversed
and exited the scene. The proposed system initialized new trackers based on unmatched boxes from
background subtraction and object detection. This supported the challenging cases described above
but can result in many spurious trackers due to the noisy nature of both background subtraction and
optical flow. A two-pronged approach was used to limit such spurious results. First, initialization was
limited to objects larger than 10 × 10 pixels. This reduced the number of trackers in flight, without
significant negative effect. Cars with a reasonable chance of being captured tend to be larger than
that in these videos, except when approaching from or driving toward the vanishing point. Second,
trackers were terminated when the object left the frame after no direct observations (boxes or
optical flow) were made for 50 frames, also known as extrapolation mode. Any object would have
such 50 frames before exit. However, upon termination, tracked objects were validated based on the
number of observations and distance traveled. Spurious noise tended to be stationary and short-
lived, whereas vehicles typically followed a continuous and long-lived path through the scene. To
adapt to the variety of video and objects, distance threshold was dynamically computed by object
size and video resolution. One good consequence of such scheme was that many early initialized
noises were quickly discarded. This is because there was usually no consistent measurement available
for them, while those tiny objects discarded as noises were soon available for future initialization,
with better quality. Therefore, real small objects were able to be initialized at the earliest point and
survive with a complete trajectory.

12

2.3 DATASET
To the best of our knowledge, there exists no public traffic surveillance video dataset containing
complex real-world interactions and illumination variations. Existing vision datasets were either not
applicable to the proposed scenario with different a viewpoint (driver’s view) or contained short clips
with limited adversarial conditions, scale changes, and illumination variations. Even in the largest
dataset collected, only 15 out of 98 videos exceed 1000 frames (33 seconds).

11 representative surveillance videos were collected from across the state, from the local
Department of Transportation, and annotated these using VATIC (Vondrick et al. 2013). Each object
had its location and extent annotated on every frame, which was used as the ground truth. The
average length of each video was five minutes (around 9000 frames), sufficient to cover several
traffic signal cycles with real-world vehicle interactions and movement patterns. The videos were
divided into two groups: simple low resolution (LowRes), and complex high resolution (HighRes).
Figure 6 shows screenshots from this dataset, and Table 1 gives an overview of the dataset, where
the rightmost four columns indicate the number of videos reflecting various challenging aspects:
occlusion, shadows, distortion, and pedestrians.

Table 1. Dataset Overview. The Second and the Third Columns Show the Resolution and Object Size
Range in Pixels, Followed by Number of Videos Under Each Group. The Rightmost Four Columns

Show the Number of Videos Reflecting Various Challenging Aspects.

Group Resolution Object Size Number Occlusion Shadow Distortion Pedestrian

LowRes 342 × 228 32 − 44,814 5 3 1 3 0
320 × 240 48 − 25,284 2 2 1 2 0

HighRes 720 × 576 84
− 255,106 4 3 0 0 1

Figure 6: Snapshots of videos in our dataset, with various resolution, viewpoint, illumination,

vehicle size and interactions.

2.4 INTEGRATION WITH TOPIC MODEL
The insight of integrating the topic model is that good tracking results could provide useful
information for objects’ movement such as entry/exit, size, and velocity. However, with noisy
trajectories, such information may not be reliable. On the other hand, such information could help

13

the tracker eliminate spurious objects and guide the tracking process. This deadlock could be broken
by introducing an external module to learn such information. Inspired by this observation, the self-
adaptive tracker was proposed given the scene information learned by the topic model. Figure 7
shows the systematic design of it.

The result of the topic model was a set of distributions over the entire scene vocabulary, one for each
topic. At a certain frame, each cell in the scene could only move to the most possible (one) direction.
As described before, a rough estimation of the entry and exit area of each topic was available. The
direction and entry area size could be useful for eliminating spurious objects for initialization.
Similarly, trackers were stopped once the object enters the exit area, before getting lost or shifting to
other objects. Along the tracking process, although topic model could not provide the detailed
information of how much the object should go at the next frame, the object movement is roughly
constrained by the most likely direction for the current direction. By continuously checking how much
the trajectory aligns with the topic distribution numerically, one may remove the lost tracker along
the way and get a score for a naturally terminated tracker. The bounding boxes were used during the
object’s lifetime to update the statistics in the area, such as size and velocity in each cell. Once
enough global statistics are collected, they will be able to help improve the estimation of the tracking.

Figure 7: Tracker integrated with topic model.

2.4.1 Topic Match for a Frame
The first step in integrating the topic model was to determine the corresponding topic for the current
motions. A frame window of 30 frames was maintained and kept in a visual doc format as described
in Chapter 1. Then the current topic 𝑧𝑧 with the maximal the likelihood for the current snippet of the
video was used:

𝑧𝑧∗ = argmax
𝑧𝑧

� 𝑝𝑝𝑧𝑧𝑖𝑖
𝑛𝑛𝑗𝑗

𝑉𝑉

𝑖𝑖
= argmax

𝑧𝑧
�log� 𝑛𝑛𝑖𝑖 ∙ 𝑝𝑝𝑧𝑧𝑖𝑖

𝑉𝑉

1
�

𝑝𝑝𝑧𝑧𝑖𝑖 was the value of the multinomial at word 𝐷𝐷 in the vocabulary, 𝑛𝑛𝑖𝑖 was the frequency of the word 𝐷𝐷
in the current frame window, 𝑉𝑉 is the vocabulary size. The above computation could be done by
matrix multiplication. We implement it with GPU, which does not cause significant computation
overhead even though the computation is operated frame wise.

14

2.4.1.1 Tracker Initialization
At first, with only a rough entry area learned from the topic model, strict filtering was not posed on
object initialization. Instead, only boxes with a significant difference in size or distant were filtered. In
addition to size, the flow inside the bounding box was compared to the direction indicated by the
topic and used for the filtering out of those with different flows. This will be potentially useful for tiny
bounding boxes with small movements, where optical flow results tend to be noisy. For the bounding
boxes near the entry area with a consistent direction, it was only counted as a good trajectory after
evaluation upon termination. When the global statistics have been accumulated for a while, a
restricted sizing rule for objects were gradually applied.

2.4.1.2 Tracker Termination
Similar to initialization, the size information for the exit area was not very accurate at the beginning.
Apart from the old rules, objects near the exit area were given a higher confidence of leaving. Upon
exiting, the object trajectory could be formulated as a very sparse visual document, where the
frequency of the word corresponding to the cell on a certain direction is increased once the cell is
covered by one bounding box along the history. Then the likelihood is computed as shown in the
Topic Match in Section 2.4.1, which produces a numeric score for a trajectory.

2.4.1.3 Global Statistics Update
For a well-tracked object with a higher score, the global statistics with the entire history of the object
was updated. Each topic had a separate set of global statistics. A Gaussian for width, height, velocity,
was modeled separately on each cell. Its size and velocity statistics were updated once it was covered
by one bounding box in the object trajectory.

2.4.1.4 Global Statistics for Tracking
The global statistics generated an additional estimate of where the object would move and how large
it will be in the next frame. It was used as another observation for the Kalman filter and updated
without changing the covariance matrix. In other words, the observation vector was:

𝒛𝒛 = [𝑥𝑥𝑏𝑏𝑏𝑏,𝑦𝑦𝑏𝑏𝑏𝑏,𝑤𝑤𝑏𝑏𝑏𝑏,ℎ𝑏𝑏𝑏𝑏, 𝑥𝑥𝑑𝑑𝑑𝑑𝑡𝑡 ,𝑦𝑦𝑑𝑑𝑑𝑑𝑡𝑡,𝑤𝑤𝑑𝑑𝑑𝑑𝑡𝑡,ℎ𝑑𝑑𝑑𝑑𝑡𝑡, 𝑣𝑣𝑥𝑥 , 𝑣𝑣𝒚𝒚,𝑤𝑤𝑏𝑏𝑔𝑔,ℎ𝑏𝑏𝑔𝑔, 𝑣𝑣𝑥𝑥
𝑏𝑏𝑔𝑔, 𝑣𝑣𝒚𝒚

𝑏𝑏𝑔𝑔]

gs stands for “global statistics”, (𝑤𝑤𝑏𝑏𝑔𝑔,ℎ𝑏𝑏𝑔𝑔) and (𝑣𝑣𝑥𝑥
𝑏𝑏𝑔𝑔, 𝑣𝑣𝒚𝒚

𝑏𝑏𝑔𝑔) are size and velocity information,
separately. Corresponding change was also applied to the measurement model 𝑯𝑯. Global statistics
was particularly useful for objects under projection, where constant velocity/acceleration model
could not capture the change rate of the size and velocity. Besides, the topic match equation from
Section 2.4.1 was used to check whether or not the object is well tracked. If it does not follow the
motion of the current topic, it was discarded as a lost tracker.

15

CHAPTER 3: VEHICLE COUNTING
Over time, a number of vehicle counting methods have been developed. Some of them include
specialized hand-held counting boards with buttons to push, pressure tubes laid across the
pavement, magnetic loops under the pavement, and more. Overall, the most powerful techniques
rely on manual input and tend to be extremely labor intensive. On the other hand, the mostly
automatic techniques lack in accuracy and descriptiveness. In principle, computer vision provides the
most scalable and economical alternative. The research team developed a vehicle counter system
based on the computer vision tracking algorithm.

3.1 ALGORITHM
The proposed vehicle counter took trajectories generated by the tracker as the input. It required
several possible routes, which were call “templates”. The trajectories were matched to the most
consistent template and the count for the matched template was increased. Suppose there was a set
of 𝑛𝑛 templates

𝑻𝑻 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛} and a set of trajectories of 𝑁𝑁 objects

𝑶𝑶 = {𝑂𝑂11,𝑂𝑂12, … ,𝑂𝑂1
𝑡𝑡1 ,𝑂𝑂21,𝑂𝑂22, … ,𝑂𝑂2

𝑡𝑡2 , … ,𝑂𝑂𝑁𝑁1 ,𝑂𝑂𝑁𝑁2 , … ,𝑂𝑂𝑁𝑁
𝑡𝑡𝑁𝑁},

where 𝑙𝑙𝑖𝑖 is the lifetime of object 𝐷𝐷. For each object 𝐷𝐷, the maximal distance to each template is
compute, and match the trajectory to the template with minimal maximal distance.

𝑇𝑇𝑖𝑖∗ = argmin
𝑇𝑇

avg
𝑡𝑡∈{1,…,𝑡𝑡𝑗𝑗}

𝐷𝐷(𝑂𝑂𝑖𝑖𝑡𝑡,𝑇𝑇).

The distance measurement was carefully designed, taking both Euclidian distance and direction into
consideration. The template was in the form of 𝑙𝑙 line segments 𝑇𝑇𝑚𝑚 = {𝑠𝑠𝑚𝑚1, 𝑠𝑠𝑚𝑚2, … , 𝑠𝑠𝑚𝑚𝑚𝑚}, the distance
of a point to a template was considered the closest distance to the segments of the template:

𝐷𝐷(𝑂𝑂𝑖𝑖𝑡𝑡,𝑇𝑇𝑚𝑚) = min
𝑔𝑔∈𝑇𝑇𝑚𝑚

𝑑𝑑(𝑂𝑂𝑖𝑖𝑡𝑡, 𝑠𝑠) ∙ 𝑙𝑙−𝛼𝛼∙cos(𝑝𝑝(𝑂𝑂𝑗𝑗
𝑡𝑡,𝑔𝑔)),

where 𝑑𝑑(𝑂𝑂𝑖𝑖𝑡𝑡, 𝑠𝑠) was the perpendicular distance of a point to the line 𝑠𝑠, 𝑝𝑝(𝑂𝑂𝑖𝑖𝑡𝑡, 𝑠𝑠) was the angle of the
line segment 𝑠𝑠 with the moving direction of object 𝑂𝑂𝑖𝑖 at time 𝑙𝑙, 𝛼𝛼 was a constant, currently set as 1.

To further ensure that the distance from a trajectory point to the template was the distance to the
right template segment, the order of their closest segment was considered. That is, the closest
template segment of a point should not be ahead of the closest segments of its previous points. To
ensure this property, 𝑠𝑠𝑖𝑖𝑗𝑗 was defined as the closest segment of 𝑗𝑗th point of object 𝐷𝐷. The distance of
object 𝑂𝑂𝑖𝑖 to template 𝑇𝑇𝑚𝑚 was computed as follows:

• Find the point 𝑂𝑂𝑖𝑖𝑡𝑡
∗
 with the minimal 𝐷𝐷�𝑂𝑂𝑖𝑖𝑡𝑡

∗
,𝑇𝑇𝑚𝑚�.

16

• For the points before 𝑂𝑂𝑖𝑖𝑡𝑡
∗
: 𝑂𝑂𝑖𝑖𝑡𝑡 ∈ {𝑂𝑂𝑖𝑖1,𝑂𝑂𝑖𝑖2, … ,𝑂𝑂𝑖𝑖𝑡𝑡

∗−1}, the closest segment cannot go beyond the
first to its successor’s closest segment:
𝐷𝐷(𝑂𝑂𝑖𝑖𝑡𝑡,𝑇𝑇𝑚𝑚) = min

𝑔𝑔∈{𝑔𝑔𝑚𝑚1,𝑔𝑔𝑚𝑚2,…,𝑔𝑔𝑗𝑗𝑡𝑡+1}
𝑑𝑑(𝑂𝑂𝑖𝑖𝑡𝑡, 𝑠𝑠) ∙ 𝑙𝑙−𝛼𝛼∙cos(𝑝𝑝(𝑂𝑂𝑗𝑗

𝑡𝑡,𝑔𝑔)).

• For the points after 𝑂𝑂𝑖𝑖𝑡𝑡
∗
: 𝑂𝑂𝑖𝑖𝑡𝑡 ∈ {𝑂𝑂𝑖𝑖𝑡𝑡

∗+1,𝑂𝑂𝑖𝑖𝑡𝑡
∗+2, … ,𝑂𝑂𝑖𝑖

𝑡𝑡𝑗𝑗}, the closest segment cannot go beyond its
predecessor’s closest segment to the last segment:
𝐷𝐷(𝑂𝑂𝑖𝑖𝑡𝑡,𝑇𝑇𝑚𝑚) = min

𝑔𝑔∈{𝑔𝑔𝑗𝑗𝑡𝑡−1,…,𝑔𝑔𝑚𝑚𝑚𝑚}
𝑑𝑑(𝑂𝑂𝑖𝑖𝑡𝑡, 𝑠𝑠) ∙ 𝑙𝑙−𝛼𝛼∙cos(𝑝𝑝(𝑂𝑂𝑗𝑗

𝑡𝑡,𝑔𝑔)).

By defining the distance function 𝐷𝐷 with both spatial distance and direction consistency, and keeping
closest segment order, one can eliminate those close segments with different directions. Finally, the
number of trajectories belonging to each template is the desired vehicle count.

3.2 INTEGRATION WITH TOPIC MODEL
Previously, manually drawn templates to the counter application were provided. This could be
tedious for the human. Moreover, the human may have to watch a video for long time to catch all the
possible movements in the scene or draw bad lines based on their own understanding. Since the
templates are key to the final results, it is necessary to automatically generate them. Fortunately,
given the centerlines extracted from topic model results, the research team was able to reduce the
centerline into several connecting points and convert it to the template format. Therefore, automatic
template generation was achieved.

3.3 USER INTERFACE
A web interface was developed to do the counting. With the integration of the topic model, users
only needed to upload the videos, specify the location and the name of each camera, and edit the
templates. After some backend processing, the counting results were available to download. The
waiting time was also reduced by parallel processing and GPU computation. Figures 8 and 9 show the
screenshots of the system.

17

Figure 8: Screenshot of the web portal, cameras are displayed on map.

Figure 9: Screenshot of the web portal, left panel shows the counts of each template.

18

REFERENCES
Barnich, O., and Van Droogenbroeck, M. 2011. “Vibe: A Universal Background Subtraction Algorithm
 for Video Sequences,” Image Processing, IEEE Trans. On Image Processing, vol. 20, no. 6, pp.
 1709–1724.

Ren, S., He, K., Girshick, R., and Sun J. 2017. “Faster R-CNN: Towards Real-Time Object Detection with
 Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence
 vol. 39, no. 6, pp. 1137–1149.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. 2012. “Hierarchical Dirichlet Processes.” Journal of
 the American Statistical Association vol. 101, no. 476, pp. 1566-1581.

Vondrick, C., Patterson, D., and Ramanan, D. 2013. “Efficiently Scaling up Crowdsourced Video
 Annotation,” International Journal of Computer Vision, vol. 101, no. 1, pp. 184–204.

Wang, X., Ma, X., and Grimson, W.E.L. 2009. “Unsupervised Activity Perception in Crowded and
 Complicated Scenes Using Hierarchical Bayesian Models.” IEEE Transactions on Pattern
 Analysis and Machine Intelligence vol. 31, no. 3, pp. 539–555.

Wu, Y., Lim, J., and Yang, M. H. “Online object tracking: A benchmark,” in IEEE CVPR, June 2013.

Xu, H., Zhou, Y., Lin, W., and Zha, H. 2015. “Unsupervised Trajectory Clustering via Adaptive Multi-
 Kernel-Based Shrinkage,” pp. 4328–4336. In Proceedings of the IEEE International Conference
 on Computer Vision, Santiago, Chile, December 7-13, 2015

Zhao, R., and Wang, X. 2013. “Counting vehicles from semantic regions.” IEEE Transactions on
 Intelligent Transportation Systems, vol. 14, no. 2, pp. 1016–1022.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34

	FHWA-ICT-18-010
	Technical Report Documentation Page
	Acknowledgment, Disclaimer, Manufacturers’ Names
	executive summary
	TABLE OF Contents
	CHAPTER 1: scene learning
	Figure 2: Ridges (left), centerline (middle) and entry exit (right) extracted by our algorithm.
	CHAPTER 2: object tracking
	Figure 3: Background subtraction failure cases. Pixel values change for reasons other than motion.
	Figure 4: Common problems in optical flow estimation.
	Figure 7: Tracker integrated with topic model.
	CHAPTER 3: vehiclE counting
	Figure 8: Screenshot of the web portal, cameras are displayed on map.
	Figure 9: Screenshot of the web portal, left panel shows the counts of each template.

	ICTIDOTreportbackcover

