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Abstract
Alpine lakes in the interior of Tibet, the endorheic Changtang Plateau (CP), serve as ‘sentinels’ of
regional climate change. Recent studies indicated that accelerated climate change has driven a
widespread area expansion in lakes across the CP, but comprehensive and accurate quantifications of
their storage changes are hitherto rare. This study integrated optical imagery and digital elevation
models to uncover the fine spatial details of lake water storage (LWS) changes across the CP at an
annual timescale after the new millennium (from 2002–2015). Validated by hypsometric information
based on long-term altimetry measurements, our estimated LWS variations outperform some existing
studies with reduced estimation biases and improved spatiotemporal coverages. The net LWS
increased at an average rate of 7.34± 0.62 Gt yr−1 (cumulatively 95.42± 8.06 Gt), manifested as a
dramatic monotonic increase of 9.05± 0.65 Gt yr−1 before 2012, a deceleration and pause in
2013–2014, and then an intriguing decline after 2014. Observations from the Gravity Recovery and
Climate Experiment satellites reveal that the LWS pattern is in remarkable agreement with that of
regional mass changes: a net effect of precipitation minus evapotranspiration (P-ET) in endorheic
basins. Despite some regional variations, P-ET explains ∼70% of the net LWS gain from 2002–2012
and the entire LWS loss after 2013. These findings clearly suggest that the water budget from net
precipitation (i.e. P-ET) dominates those of glacier melt and permafrost degradation, and thus acts as
the primary contributor to recent lake area/volume variations in endorheic Tibet. The produced lake
areas and volume change dataset is freely available through PANAGEA (https://doi.pangaea.de/
10.1594/PANGAEA.888706).

1. Introduction

Lakes are important hydrological components in alpine
environments, where water budgets are highly vul-
nerable to climate change [1, 2]. One of the world’s
largest groups of alpine lakes are located in the remote
Changtang Plateau (CP) (figure 1). Here, surface
water is landlocked due to arid climate and topo-
graphic barriers, forming a cluster of endorheic basins

in the northwestern Tibetan Plateau (TP). Different
from other arid endorheic basins, the CP possesses a
high lake density of 4.6% [3], accounting for ∼60% of
the total lake water storage (LWS) in the entire TP [4].
Under negligible human disturbance, these alpine lakes
act as ‘sentinels’ of regional climate change [5]. Influ-
enced by strengthened westerlies through advection
of heat and moisture, the CP has undergone evident
wetting [6] and warming [7, 8] during the recent
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decades, which posed inevitable impacts on the water
budget in its alpine lakes [9, 10].

Using optical and altimetric satellites, previous
studies have revealed that many large lakes on CP
experienced dramatic increase in both area and vol-
ume during the past couple of decades, especially
since the new millennium [11–17]. However, exist-
ing approaches for estimating volume variations across
the CP are restricted to a limited number of lakes or
multi-year to decadal temporal frequencies [13, 15, 16,
18–19]. For example, Zhang et al [16] applied ICESat
altimetry and satellite imagery to quantify volume vari-
ations in 68 Tibetan lakes annually from 1989–2015.
Yang et al [19] used satellite imagery and Digital Ele-
vation Model (DEM) to estimate volume variations
in 114 lakes at 5–14 year intervals during 1976–2013,
but included only three discrete years (2000, 2005
and 2013) after 2000. Lake dynamics varies across
the CP and exhibits different changing rates during
different periods. Particularly, in the past few years
(since ∼2013), expansions of many Tibetan lakes have
been decelerated or partially reversed [3, 16, 18, 20],
which suggests the necessity of a continuous, long-term
monitoring of their volume variations.

Different from area change, volume variation has
a unit dimension consistent with water fluxes such as
precipitation (P) and evapotranspiration (ET). Thus,
an accurate monitoring of CP lake volume is funda-
mental for a quantitative attribution of lake changing
mechanism. Specifically, we aim at applying estimated
volume changes to answer: was the observed lake
dynamics across the CP (e.g. rapid expansion from
∼2000 and then deceleration since ∼2013) predomi-
nantly driven by the net change in precipitation and
evapotranspiration (thereafter net precipitation) or by
warming-induced glacier melt or permafrost degrada-
tion? Recently, Zhang et al [16] suggested that net
precipitation is likely the key driver for lake volume
variations on CP during 2003–2009 (when the ICE-
Sat observations were available). Nevertheless, the 68
lakes they studied cover ∼53% of the total lake area
across the CP [21], and the impact of net precipita-
tion after 2009, including the period of decelerated lake
expansion, remained unquantified.

Our recent effort [3] applied multi-source satellite
imagery (Landsat and Huanjing) to produce a detailed
mapping of all lakes greater than 1 km2 (accounting
for ∼97% of the total lake area [4]) across the CP from
2009–2014. Despite a limited period, our applied map-
ping methods and revealed lake area dynamics (see
section 2.2.1) provide a critical basis that allows for an
extended and more thorough monitoring of LWS vari-
ations across the CP. Thus in this study, we synergized
ourrecentmappingwithextendedarchival imageryand
existing global DEMs (SRTM DEM [22] and ASTER
GDEM [23]) to estimate water storage variations in the
871 lakes greater than 1 km2 across the CP annually
from 2002–2015. This estimate, to our best knowl-
edge, achieved some of the highest spatial and temporal

details in LWS monitoring on the climate-sensitive TP.
Calculated LWS changes were next validated against
the estimates derived from long-term radar altime-
try, and then used along with the total water storage
(TWS) variations observed by the Gravity Recovery
and Climate Experiment (GRACE) satellites to test the
hypothesis that ‘net precipitation is thedominant driver
for recent lake dynamics across the CP’. Our goal is to
further eliminate the uncertainty in net LWS changes
and improveourunderstandingof the recent andongo-
ing climate impacts on surface water budgets in the
endorheic Tibet.

2. Methods

2.1. Monitoring LWS variations
We calculated the annual time series of water storage
variation for each studied lake from2002–2015 through
a synergy of water area changes mapped from satellite
imagery and bathymetric information retrieved from
freely-available DEMs. Detailed methods are explained
below.

2.1.1. Mapping lake area dynamics
Imagery from the Landsat archive (5, 7 and 8; 16 day
repeat cycle) and China’s Huanjing satellites (1A and
1 B; 2 day repeat cycle) were combined to improve the
temporal coverage of cloud-free observations through
data blending and fusion. All imagery have the same
resolution (30 m) in visible and near-infrared bands
(see [3] for details), and were collected from Septem-
ber to December during which lake extents on Tibetan
Plateau are generally stable [2, 3, 13, 25–26]. Com-
bined imagery from Landsat and Huanjing were used
to extract annual extents in 871 lakes larger than 1 km2

from 2009–2015. Among them, lake areas from 2009–
2014weredirectlyobtained fromourpreviousmapping
[3]. For the period before 2009 (2002–2008) when
Huanjing imagerywereunavailable, images fromLand-
sat 5 and7were fusedusing theplanetary-scaleplatform
Google Earth Engine (GEE) [27]. GEE provides par-
allel computation for large amounts of satellite data,
making fusion of optical images efficient. For each
lake, images acquired from September to December
were filtered by the SimpleCloudScore algorithm pro-
vided in the GEE algorithms API, and then mosaicked
using median-value composite. Despite an improved
coverage through Landsat image fusion, cloud-free
observations were not always feasible for each year and
each lake. As a compromise, annual lake areas prior
to 2009 were mapped only for 126 lakes larger than
50 km2.

A self-adaptive lake mapping scheme (similar to
Li and Sheng [28] and Sheng et al [21]) was mod-
ified to extract lake extents from the optical images
(see Yang et al [3] for details). In brief, the High
Resolution Water Index (HRWI) [29] was applied
to enhance the contrast between the water and non-
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Figure 1. Studied alpine lakes across the CP, a total area of∼700 thousand km2 in the northwestern TP, home to 396 endorheic basins
[24]. Lake positions and sizes were derived from Yang et al [3].

water pixels in each image. Then, an initial threshold
(T0) of HRWI (T0 = 0) was applied to flag possible
water bodies. For each possible water body, the HRWI
threshold was further fine-tuned by an iterative buffer-
ing method which updates the water extents and its
local buffering region until the water extents con-
verge. After that, any remnant errors in the automation
results were removed manually with assistance of an
interactive editing tool [30]. Our previous results have
shown that lake extents extracted from both Landsat
and Huanjing imagery using the proposed approach
are highly consistent (slope = 1.00, R2 > 0.99) (refer to
Yang et al [3] for details). As our studied minimum
lake area (1 km2) far exceeds the spatial resolution
of both imagery (30 m), the error in mapped lake
areas was considered to be trivial [20, 31, 32] and thus
not included in the uncertainty propagation for lake
volume changes (see section 2.3).

2.1.2 Calculating lake volume changes
A DEM may provide useful bathymetric information
for inferring lake volume changes if the lakebed topog-
raphy between the minimum and maximum water
levels during the study period was well exposed at the
acquisition time of the DEM [19, 33]. As most lakes
on the CP have expanded since at least 2000 [34],
the exposed topography surrounding each expanded
lake on the SRTM DEM, which was acquired in
February 2000, reveals the bathymetry that suffices

the estimation of this lake’s volume changes during
our study period from 2002–2015. In other words,
the hypsometry (i.e. level-area curve) derived from
the SRTM DEM covers the range needed for volume
change calculation without any downward extrapola-
tion. For the remaining lakes where minimum water
levels in the study period were higher than those in
February 2000, the ASTER GDEM acquired during
2001–2008 was further considered if it could reduce the
uncertainties of hypsometry extrapolation.

Specifically, we used the SRTM DEM version 3.0
[22] and the ASTER GDEM version 2 [23], both under
the same resolution (1 arc second or ∼30 meters).
The inundation area of a lake in the SRTM DEM was
obtained from the SRTM Water Body Dataset (SWBD)
[35] while that in the ASTER GDEM was detected
based on surface flatness as in Fujisada et al [36].
Such a lake area (hereafter referred to as ‘base area’)
corresponds to the water level (hereafter referred to as
‘base level’) at the acquisition time of the DEM (figure
2). Given higher vertical accuracy and quality consis-
tency [37, 38], the SRTM DEM was prioritized: it was
chosen if (1) the base area is lower than the mini-
mum lake area during the study period, or (2) the
base area is lower than that in ASTER GDEM. Other-
wise, the ASTER GDEM was applied. Then, base level
was simulated to increase at a step of 1 m (the preci-
sion for these two DEMs) and the corresponding area
below the simulated level in the chosen DEM was cal-
culated until the area is greater than maximum lake
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Figure 2. Derived hypsometry for Xiangyang Lake (89.42◦ N,
35.80◦ E) from the SRTM DEM. The hypsometric curve was
calibrated by the monotonic cubic spline fitting.

area during the study period (figure 2). These level-
area pairs were used to construct the hypsometry. If
the number of pairs is less than six, base level was
further extended until the number reaches six for a
better curve fitting purpose. Monotonic cubic spline
fitting from the ‘splines’ package of the R software
was implemented to fit the hypsometry considering
the cubic spline generally outperforms other models
(e.g. polynomial) in fitting statistics [4, 39]. Finally,
lake volume variations were calculated by the integral
of the fitted hypsometry (f) as in equation 1:

Δ𝑉 = ∫
𝐿𝑡2

𝐿𝑡1

𝑓 (𝐿)𝑑𝐿 = ∫
𝐴𝑡2

𝐴𝑡1

𝑓−1(𝐴)𝑑𝐴 (1)

where Δ𝑉 denotes the water storage change from time
(t1) with lake area (A𝑡1) and water level (L𝑡1) to time
(t2) with lake area (A𝑡2) and water level (L𝑡2).

The proposed approach using DEM hypsometry
was applied to estimate volume variations in all stud-
ied lakes except Zhuonai Lake (35.55◦ N, 91.94◦ E)
because there was a drastic decline in its water level
caused by a moraine dam failure in September of
2011 [40]. The DEM hypsometry for Zhuonai Lake
was, thus, extended by an additional pair of water
area and level after the dam failure observed by Land-
sat 5 imagery and Croysat-2 altimetry, respectively, in
order to reduce the error from directly extrapolating the
DEM hypsometry.

As previously described, annual time series of vol-
ume variation for all 871 lakes larger than 1 km2 were
estimated from the period 2009–2015, while those for
the 126 lakes larger than 50 km2 were further estimated
for 2002–2008 duringwhich smaller lakes were not esti-
mated because of a poor temporal coverage caused by
the absence of Huanjing imagery before 2009. These
126 larger lakes account for ∼83% of the total lake
area and ∼96% of the total lake volume across the
CP [3, 4]. Given such dominance, their total volume
changes may well represent those in all CP lakes. This
is corroborated by a strong linear relationship between
the two during the period of 2009–2015 (figure 3(b)).

This relationship was used as a scaling function to
infer annual volume variations in all CP lakes from
2002–2008 from those in the 126 large lakes (also see
section 3.1). The best-fit linear regression was applied
to calculate the trends in LWS time series (hereafter
referred as ‘DEM-derived trends’), and the uncertainty
analysis is given in section 2.3.

2.2. Attributing LWS variations
We investigated the mechanism of monitored LWS
variations across the CP using a simple mass balance
model, where the change in TWS (ΔTWS), is the resid-
ual of precipitation (P), evapotranspiration (ET), and
runoff (R).

ΔTWS = P − ET − R. (2)

On the CP where surface outflow is landlocked
within each endorheic basin, the net runoff through
each basin is considered to be zero (R≈ 0), meaning
that ΔTWS equals the difference between P and ET
(i.e. net precipitation). If we partition ΔTWS on the
CP into changes in LWS and other water components
(integrating glaciers, permafrost, accumulated snow,
soil moisture, and groundwater; hereafter non-lake
water storage or NLWS), coupled with equation 2, LWS
change (ΔLWS) equals net precipitation subtracted by
NLWS change (ΔNLWS):

ΔLWS = (P − ET) − ΔNLWS. (3)

Lacking in-situ meteorological measurements,
direct acquisitions of P and ET are practically difficult
in the remote CP [41]. For this reason, we substi-
tuted the changes in net precipitation by those of
TWS observed by GRACE satellites [42–44]. Here we
used monthly mass anomalies from the Jet Propulsion
Laboratory mascon solution (JPL-RL05M version 2),
which outperforms the conventional harmonic solu-
tions with improved spatial localization and less signal
leakage error [45–47]. The storage time series in each
mascon can be considered to be fairly independent
from those in the neighboring mascons [48]. Limited
by the coarse mascon size (3 degrees, approximately
100 thousand km at the equator), TWS changes were
retrieved only for the entire endorheic CP (∼700 thou-
sand km2) and four sub-regions (figure 1; sections 3
and 4) using a simple area scaling (see sections 2.3
and 4 for uncertainty analysis). The contribution of
net precipitation to LWS changes was computed as
the trend in GRACE-observed TWS time series (with
removal of climatology) using best-fit linear regres-
sion, and the contribution of NLWS was calculated as
the residual between net precipitation and LWS trends
as in equation 3.

2.3. Accuracy assessments
DEM-derived LWS trends from 2002–2015 were
validated against the trends during the same
period but calculated using available hypsometric
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curves provided in the LEGOS Hydroweb database
(http://hydroweb.theia-land.fr; hereafter Hydroweb-
derived trends) [49]. Many hypsometric curves
provided by Hydroweb were constructed from multi-
decadal records of water levels observed by radar
altimeters and water extents mapped from satellite
imagery [18, 49]. A total of 18 lakes on the CP with
Hydroweb hypsometry were used for the validation.
Volume of these lakes varies from∼0.2 to∼100 gigaton
(see table S1); collectively, they account for approxi-
mately 70% of the total lake volume across the CP [4].
For a comparison purpose, we also validated the LWS
trends from 2002–2015 using hypsometric curves con-
structed from ICESat altimetry and Landsat imagery
by Zhang et al [16] (hereafter ICESat-derived trends).
This validation is limited to 14 lakes where hypsomet-
ric curves are available in both Zhang et al [16] and
Hydroweb.

Following standard error propagation rules, uncer-
tainties of our estimated annual LWS changes were
integrated from two major sources: (i) the bias of DEM-
derived trends, calculated as their discrepancy from
Hydroweb-derived trends, and (ii) the uncertainty of
estimated volume changes in small lakes during 2002–
2008, calculated as the root mean square error (RMSE)
of the rescaling relationship between volume variations
in large lakes and all lakes (figure 3(b)). Uncertainties
of estimated annual P-ET were directly estimated from
the storage errors provided in the GRACE mascondata,
and the additional uncertainties induced by signal leak-
age in the fringe mascons are further explored in the
Discussion. Propagated uncertainties were next applied
to infer 95% confidence intervals of the calculated lin-
ear trends using a Monte Carlo approach similar to
Wang et al [50].

3. Results and analysis

3.1. Accuracy of estimated LWS trends
Our DEM-derived LWS trends from 2002–2015 are
validated against the trends derived from Hydroweb
hypsometry (figure 3(a)). DEM-derived trends in the
18 assessed lakes appear to be highly consistent with
the Hydroweb-derived results (slope: 1.008, R2: 0.968).
Their aggregated storage change (the histogram in the
upper left corner of figure 3(a)) shows a minor bias
less than 5% of that derived from Hydroweb hyp-
sometry. ICESat-derived trends, by contrast, are less
consistent with the Hydroweb-derived trends (slope:
0.762, R2: 0.936). The aggregated storage change (the
histogram in the lower-right corner of figure 3(a)) is
∼20% lower than that derived from Hydroweb hyp-
sometry. This poorer consistency between ICESat- and
Hydroweb-derived storage trends is likely caused by
the extrapolation of hypsometric curves constructed
from ICESat altimetry levels that are only available dur-
ing 2003–2009 [18]. This contrast suggests that our
proposed approach, using bathymetric information

exposed in the DEMs, yields a comparable result with
that produced by longer-term radar altimetry measure-
ments, and is fairly reliable for estimating lake volume
dynamics across the CP.

As shown in figure 3(b), calculated annual vol-
ume changes from 2009–2015 in all studied 871 lakes
(>1 km2) are closely correlated to those in the 126 large
lakes (>50 km2) with a slope of 1.153, R2 of 0.993,
and RMSE of 0.856 Gt. Therefore, net annual volume
changes in the missing smaller lakes (<50 km2) from
2002–2008 were inferred by this scaling relationship
between volume changes in all lakes and large lakes, and
the scaling errors (RMSE) were integrated for propa-
gating LWS change uncertainties (refer to sections 2.3
and 4.3).

3.2. Spatial distribution of LWS changes
Alpine lakes across the CP experienced a widespread
storage increase from 2002–2015 (figure 4(a)). The
magnitude of volume increase generally reduces along
an east-to-west direction, which is consistent with
the spatial gradient of decreasing lake abundance and
size. As summarized in figure 4(b), LWS increase is
proportional to lake size. For example, the largest
lake Selingco (31.81◦N, 89.07◦E) in the southeast-
ern CP experienced the fast volume increase of
1.22± 0.10 Gt yr−1, accounting for 17% of the total
LWS increase across the CP. About 78% of the total
storage increase fed into lakes greater than 100 km2

(figure 4(b)), while only 9% occurred in lakes with
size between 50–100 km2 and 12% (estimated from the
scaling relation as in figure 3(b)) occurred in smaller
lakes (<50 km2) (figure 4(b)).

Figure 4(c) shows storage trends in all 871 lakes
greater than 1 km2 from 2009–2015. Storage variations
in large lakes vary spatially, whereas the spatial patterns
in small lakes are generally much more homogeneous.
However, during the last 6 year period (2009–2015),
rates of volume changes in all sizes of lakes decreased
(figures 4(b) and (d)). Some large lakes in the southern
CP, e.g. Namco (30.67◦N, 90.60◦E) and Tangra Yumco
(31.00◦N, 86.55◦E), even began to shrink (figure 4(c)).

3.3. Trends in LWS across the CP and associations
with net precipitation
The trajectory of net LWS across the CP exhibits
three distinct phases (figure 5): a monotonic increase
from 2002–2012, a general cessation and pause in
2013 and 2014, and then an evident decline from
2015. Coherently, net precipitation (i.e. P-ET) gen-
erally increased from 2002–2012 but declined from
2013–2015. Increasing net precipitation from 2002–
2012 concurred with rapid lake expansion and the
decreasing net precipitation after 2013 concurred
with the recent cessation of lake expansion and the
subsequent LWS loss. However, the decreased net
precipitation did not seem to trigger an immediate
decline in LWS. Instead, LWS started to decline in
2015, about two years after the turning point of net

5
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Figure 3. Accuracy assessment of estimated lake volume variations. (a) Validation of DEM-derived trends (blue) and ICESat-derived
trends (red) in lake volume from 2002–2015 by Hydroweb-derived trends. Points represent volume trends in individual lakes (see
geographic coordinates in table S1) while histograms represent the aggregated trends in all assessed lakes. (b) Calibrated scaling
relationship between annual water storage changes in large lakes (>50 km2) and all lakes (>1 km2) from 2009–2015. Dashed lines are
best-fit regression lines.

Figure 4. Spatial distribution of lake storage changes across the CP. (a) Storage trends in large lakes (>50 km2) from 2002–2015.
(b) Aggregated lake storage changes in different size groups from 2002–2015 (aggregated storage changes in lakes between 1 and
50 km2 were estimated from the calibrated scaling relation as in figure 3(b)). (c) Storage trends in all lakes (>1 km2) from 2009–2015.
(d) Aggregated lake storage changes in different size groups from 2009–2015. Error bars in (b) and (d) illustrate 95% confidence
intervals in the estimations.
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Figure 5. Variations in LWS and total TWS across the CP from 2002–2015. The red curve shows monthly P-ET anomalies (climatology
removed) observed by GRACE satellites, while the connected blue dots represent annual LWS anomalies estimated from the proposed
approach. All anomalies are relative to the long-term means during 2002–2015. Straight lines (dashed and solid) represent linear trends
using best-fit regression for two periods (2002–2012 and 2002–2015). Transparent shades illustrate 95% confidence intervals.

Table 1. Summary of changes in LWS, P-ET (net precipitation) and NLWS on the CP. Uncertainties imply 95% confidence intervals.

Periods LWS P-ET NLWS

Gt yr−1 Gt yr−1 % of ΔLWS Gt yr−1 % of ΔLWS

Increasing P-ET period (2002–2012) 9.05± 0.65 6.31± 0.27 69.72± 5.83 −2.74± 0.70 −30.28± 8.08
Decreasing P-ET period (2013–2015) −8.09± 3.37 −13.61± 2.03 168.23± 74.44 −5.52± 3.93 −68.23± 56.33
Entire study period (2002–2015) 7.34± 0.62 4.11± 0.19 56.00± 5.39 −3.23± 0.65 −44.01± 9.58

precipitation in 2013. This time lag implies that NLWS
(e.g. warming-induced glacier melting and permafrost
thawing) may have compensated for the LWS reduc-
tion caused by immediate net precipitation decrease in
the early period, but was unable to completely offset
the long-term effect of net precipitation decline.

As further summarized in table 1, net precip-
itation on the CP increased at an average rate of
4.11± 0.19 Gt yr−1 during our study period (2002–
2015), which explains 56.0± 5.4% of the concurrent
increase in LWS (7.34± 0.62 Gt yr−1). From 2002–
2012, net precipitation increased at 6.31 ± 0.27 Gt yr−1,
accounting for 69.7± 5.8 % of the rapid LWS increase
of 9.05± 0.65 Gt yr−1, while net precipitation declined
at a rate of −13.61± 2.03 Gt yr−1 from 2013 to 2015,
which completely explains the concurrent LWS decline
(−8.09± 3.37 Gt yr−1). Given these calculations, net
precipitation appears to be the first-order contributor
to the recent LWS changes across the CP.

4. Discussion

Our results indicate a dominant role of net precip-
itation on the recent decadal lake dynamics on the
CP, which is consistent with several existing studies
[2, 13, 16, 17, 51–52]. However, this finding may
contradict those of some other studies. For instance,
Li et al [53] found limited impacts of glacier retreat
and hypothesized that permafrost thawing was the

primary cause for Tibetan lake expansion in recent
decades, although Zhang et al [16] concluded that the
magnitude of permafrost thawing is not substantially
more than that of glacier retreat. Jiang et al [54]
also suggested the important role of permafrost on
rapid lake expansion in the northeastern CP. Thus,
we here compare the relationships between LWS and
net precipitation in four sub-regions of the CP (figure
6). In northeastern, northwestern, and southwestern
CP, rapid lake expansion accompanied with dramatic
increase in P-ET during 2002–2015 (figures 6(a)–(c)),
which confirms the dominant contribution of net pre-
cipitation. However, the covariation between LWS and
net precipitation is not evident in the southeastern CP
(figure6(d)).Thismaybecausedby thesubstantial con-
tribution from glacier retreat, as indicated in previous
studies [55, 56].

Several error sources limit our results and con-
tribute to the uncertainty of this study. First, we
ignored the additional uncertainty from hypsometry
extrapolation for 6% of studied lakes (supplementary
figure S1 available at stacks.iop.org/ERL/13/064011/
mmedia), where neither of the two DEM products
could reveal the complete bathymetry required for
storage change recovery during the study period. How-
ever, these lakes only account for less than 4% of
the total lake area on CP [21], so their hypsometry
extrapolation should not substantially affect our esti-
mated net LWS variations. Second, except the errors
provided by the RL05M mascon data, we did not
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Figure 6. Variations in the LWS and total TWS from 2002–2015 for northeastern (NE) (a), northwestern (NW) (b), southwestern
(SW) (c) and southeastern (SE) (d) CP. Symbol and color illustrations are the same as in figure 5.
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Table 2. Trends in LWS, P-ET (net precipitation) and NLWS in full mascons within the CP.

Periods LWS P-E NLWS

Gt yr−1 Gt yr−1 % of ΔLWS Gt yr−1 % of ΔLWS

Increasing P-ET period (2002–2012) 3.59± 0.28 2.51± 0.19 69.92± 7.60 −1.08± 0.34 −30.08± 9.71
Decreasing P-ET period (2013–2015) −2.43± 1.01 −4.57± 1.38 188.06± 96.62 −2.14± 1.71 88.07± 79.33
Entire study period (2002–2015) 2.86± 0.24 1.46± 0.13 51.05± 6.25 −1.40± 0.27 −48.95± 10.39

explicitly quantify the uncertainty in GRACE-derived
TWS anomalies arising from signal leakage from the
surrounding basins in the fringe mascons (which over-
ride the CP boundaries). To perceive this uncertainty,
we here explore two solutions that implement the
same procedure as described in section 2.2 to parti-
tion TWS variations into changes in LWS and NLWS.
The first solution only includes mascons that are fully
contained by the CP (table 2), while the second solu-
tion applies the mascon set of 0.5 degree scale factors
simulated by the Community Land Model (CLM)
[45] (supplementary table S2). It is worth noting that,
despite a partial recovery of the signal variation within
each mascon, the scale factors may not be suitable
for deriving TWS trends at sub-mascon resolutions.
This is because (1) the CLM does not include lake
or glacier components so the simulated surface stor-
age variations on the CP may be highly uncertain,
and (2) the least-square correction involved in the fac-
tor calculation tends to be dominated by the annual
cycles of water storage variations [45, 57]. For these
reasons, we did not apply the scale factors in the
calculations as reported in section 3, but only used
them for inferring possible uncertainty scales induced
by signal leakage in the fringe mascons. Results of
both solutions are consistent with our previous find-
ings. The increase in net precipitation (TWS) accounts
for most (∼70% or more) of the LWS increase from
2002–2012 and the net precipitation decrease fully
explains the LWS loss from 2013–2015. Therefore,
potential uncertainties due to signal leakage are not
likely to alter our primary conclusion that LWS changes
are predominantly attributed to the variations in net
precipitation.

5. Summary and concluding remarks

This study provides a comprehensive estimate of
LWS variations across the CP from 2002–2015, by
synergizing satellite imagery (Landsat and Huanjing)
and freely-available DEMs (SRTM DEM and ASTER
GDEM). The sheer number of lakes (871) analyzed
in our estimate, which account for 97% of total lake
area across the CP [21], is substantially greater than
any number recently studied for lake volume changes
on the Tibetan Plateau (e.g. 68 lakes in Zhang et al
[16] and 114 lakes in Yang et al [19]). Compared
with existing estimates [15, 16] using hypsometric
curves extrapolated from short-term ICESat observa-
tions (available during 2003–2009), our LWS trends are

more consistent with values derived from longer-term
radar altimetrymeasurements (slope=1.01,R2 = 0.97).
This implies that volume change estimates using
extrapolated hypsometry may need to be interpreted
with cautions. Given such improved spatiotemporal
coverage and reduced estimation biases, this study
advances our understanding of recent variations in
lake water budget across the remote Tibetan Plateau.
Our produced lake area and storage change data set is
freely available at PANGAEA (https://doi.pangaea.de/
10.1594/PANGAEA.888706).

From 2002–2015, the net LWS increased at
an average rate of 7.34± 0.62 Gt yr−1 (cumulatively
95.42± 8.06 Gt), manifested as a dramatic monotonic
increase of 9.05± 0.65 Gt yr−1 before 2012, a deceler-
ation and pause in 2013–2014, and then an intriguing
decline after 2014. Using TWS anomalies from GRACE
observations and a water balance model, we quan-
tified that ∼70% of the monotonic LWS increase
before 2012 was attributed to the increase in net pre-
cipitation (P-ET). Despite a smaller total influence,
warming-induced NLWS changes, including glacier
retreat and permafrost thawing, might compensate for
the LWS reduction caused by the initial net precipi-
tation decrease in 2013–2014, which is manifested by
a 2 year time lag between net precipitation and LWS
declines. However, the impact of NLWS was unable to
offset the longer-termeffectofnetprecipitationdecline,
leading to an evident LWS decrease in 2015: the first
major reverse of a double-decadal lake expansion on
the CP [16]. To this end, we conclude that net pre-
cipitation (i.e. P-ET) is a first-order contributor to
alpine lake dynamics across the CP since at the least
the new millennium.
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