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Abstract

Stochastic hybrid system (SHS) is a class of dynamical systems that experience interac-
tion of both discrete mode and continuous dynamics with uncertainty. State estimation for
SHS has attracted research interests for decades with Kalman filter based solutions domi-
nating the area. Mode-based Kalman filter is an extended version of the traditional Kalman
filter for SHS. In general, as Kalman filter is unbiased for non-hybrid system estimation, prior
research efforts primarily focus on the behavior of error covariance. In SHS state estimate,
mode mismatch errors could result in a bias in the mode-based Kalman filter and have im-
pacts on the continuous state estimation quality. The relationship between mode mismatch
errors and estimation stability is an open problem that this dissertation attempts to address.
Specifically, the probabilistic model of mode mismatch errors can be independent and iden-
tically distributed (i.i.d.), correlated across different modes and correlated across time. The
proposed approach builds on the idea of modeling the bias evolution as a transformed sys-
tem. The statistical convergence of the bias dynamics is then mapped to the stability of the
transformed system. For each specific model of the mode mismatch error, the system matrix
of the transformed system varies which results in challenges for the stability analysis. For the
first time, the dissertation derives convergence conditions that provide tolerance regions for
the mode mismatch error for three mode mismatch situations. The convergence conditions
are derived based on generalized spectral radius theorem, Lyapunov theorem, Schur stability
of a matrix polytope and interval matrix method. This research is fundamental in nature
and its application is widespread. For example, the spatially and timely correlated mode
mismatch errors can effectively capture cyber-attacks and communication link impairments
in a cyber-physical system. Therefore, the theory and techniques developed in this disser-
tation can be used to analyze topology errors in any networked system such as smart grid,

smart home, transportation, flight management system etc. The main results provide new



insights on the fidelity in discrete state knowledge needed to maintain the performance of a

mode-based Kalman filter and provide guidance on design of estimation strategies for SHS.
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Chapter 1

Introduction

In this chapter, we introduce the background of this dissertation. Using a motivating exam-
ple, we introduce the research questions of interest and highlight the contributions of this

dissertation.

1.1 Stochastic Hybrid System

Stochastic hybrid systems (SHS) are dynamical systems that involve the interaction of contin-
uous and discrete dynamics (also referred to as mode) with uncertainties. The uncertainties
can be part of the continuous dynamics, discrete state transitions, or both. In most cases, the
evolution of the continuous state is described via a stochastic differential /difference equation
(SDE) whereas the discrete state evolves depending on the application. Discrete state evo-
lution typically follows a random process (such as a Markov chain) or guard conditions (i.e.,
the discrete state transitions depend on the continuous state). SHS models have been widely
used to model cyber-physical systems (CPS) thanks to its capability to capture complex
dynamics. The applications of SHS include, but are not limited to, modeling of biochemical
processes [1, 2|, manufacturing processes [3], communication networks [4], flight management
systems [5, 6] and smart grid [7], etc.

Based on different models for the continuous dynamics and discrete transitions, SHS



can be categorized into several subclasses. For example, a state-dependant SHS (SDSHS)
denotes an SHS in which the discrete mode transitions are governed by guard conditions.
Another important category of SHS is Markov jump linear systems (MJLS). MJLS models
are applicable to systems that can be represented by a set of linear systems with modal
transitions governed by a Markov chain. MJLS has attracted significant attention in the
research community due to its analytical tractability as well as applicability to practical
systems, e.g., microgrid [8], networked control systems [9], etc. At a higher level, the gen-
eralized SHS can be abstracted as a switched system with arbitrary switchings. This allows
researchers to neglect the details of the discrete behavior and instead focus on all possible
switching patterns. This represents a significant departure from hybrid systems, especially
at the analysis stage [10].

Like many other dynamical systems, a successful and reliable implementation of SHS
presents several challenges. Specifically, stability [11-14], reachability [15, 16], situational
awareness (state estimation) [17-19] related problems for a general class of SHS are still
an ongoing research field and lack a universal solution. The above mentioned challenges are
critical for analysis of SHS and need to be well addressed. In this dissertation, we investigate
state estimation strategies for SHS and study the impact of inaccurate mode information
on continuous state estimation. Before we highlight the contributions of this dissertation,
we first introduce a motivating example of a smart grid system that illustrates the mode

mismatch problem and the contributions of this work to the community.

1.2 Motivating Example

The conventional power grid is transforming to a “smart grid” with the addition of renew-
able energy sources (e.g., photovoltaics (PV)), advanced metering and sensing infrastructure,
electric vehicles and controllable loads [7]. Integration of these technologies enable it to de-
liver affordable electric power with improved reliability, security and efficiency. We highlight

three characteristic behaviors that may be observed in a smart grid:

- Discrete behaviors: Smart grid contains a variety of operation modes that depend on
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Figure 1.1: A general SHS model for smart grids

the network topology. Network topology indicates the connection of main distribution

grid, load and storage devices, status of renewable energy generation, etc.

- Continuous behaviors: The physical components in a smart grid include generated
power, node voltage, etc. They evolve continuously and the evolution depends on the

current system modes (discrete states).

- Stochasticity: There are external and internal uncertainties that have to be taken
into consideration. For example, the randomness of human behavior, the failure of
the main grid, the influence of weather as well as measurement noise can all impact
grid behavior. The above mentioned stochasticity can be modeled as random mode

transitions or noise in continuous state knowledge.

Due to the existence of both discrete and continuous behavior as well as the uncertainties
within a smart grid, SHS is an appropriate model to capture the above mentioned charac-
teristics. In fact, SHS can not only model the uncertainties in loads, generations and other
physical components, but also offer a general framework to model the cyber-infrastructure
states and the economic strategies (dynamic pricing) in a smart grid. The general concept
of modeling the smart grid as an SHS is illustrated in Figure 1.1.

This dissertation considers network topology errors in a smart grid as a motivating ex-

ample. A conceptual small-scale smart grid model is shown in Figure 1.2. This toy model
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Figure 1.2: Conceptual smart grid model

includes a bank of PV panels, electricity grid, home loads and electric vehicles. To aid state

estimation, there are two types of data collected in the smart grid:
1. Status data for switches, breakers, and communication links;
2. Analog data such as bus voltage, power flow, reactance, etc.

The continuous state can be estimated based on measurements of analog data and a mode-
based Kalman filter is proven to be the optimal estimator if the discrete mode is known [20].
Meanwhile, the status data in a smart grid determines the network topology with each
topology representing one discrete mode. The status data is sometimes reported by a human
operator, obtained from sensor measurements, or estimated based on analog data. All three
approaches are error prone due to human errors, missing data, communication errors or
estimation errors. As a consequence, errors in status data result in a network topology
(mode) error. Network topology errors in smart grids as discussed in [21] is a critical problem

for any networked system. Since continuous state evolves differently for different modes,

4



errors in the network topology (mode) will impact the performance of mode-based Kalman
filter for continuous state estimate. Therefore, in this research, we consider the situation
wherein we have information on the discrete states but the information is inaccurate, also
referred to as mode mismatch errors. As shown in Figure 1.2, there are different types of
mode mismatch errors considered in this dissertation - (i) general mode mismatch; (ii) mode
mismatch resulting from cyber-impairment which includes cyber-attacks and communication
link failures. Specifically, for each scenario, we investigate the effect of mode mismatch on
mode-based Kalman filter and study the fidelity of discrete state knowledge required for

maintaining the continuous state estimate quality.

1.3 Motivation and Research Questions

As the preceding discussion suggests, state estimation in SHS is critical for both situational
awareness and implementation of control actions. Due to the interaction between continuous
states and discrete states, there exists challenges in SHS state estimation. Mode-based
Kalman filters have been widely used in continuous dynamics estimation. It has been shown
that a mode-based Kalman filter is an optimal estimator if the discrete states (modes) are
known [20, 22]. If discrete states are not available, the optimal estimator is composed of a
bank of Kalman filters with each filter corresponding to one discrete state. Several widely-
used hybrid estimation strategies such as interacting multiple model (IMM) algorithm [9]
and multiple model adaptive estimation (MMAE) algorithm [23] are established based on
this idea. Related to the problem of state estimation in SHS, we seek to address a few
fundamental research questions in this dissertation:

Question 1. For an SDSHS (SHS with guard conditions), how can one develop a state
estimation strategy using mode-based Kalman filter?

Question 2. For a general SHS model with mode mismatch errors modeled as independent
and identically distributed (i.i.d.) Bernoulli random wvariables, how does mode mismatch
impact the performance of a mode-based Kalman filter?

Question 3. For an MJLS with time correlated mode mismatch errors, can we establish



algebraically solvable conditions under which the bias of mode-based Kalman filter resulting
from mode mismatch errors is statistically convergent? Can this result be extended to an
MJLS with arbitrary number of modes?

Question 4. What if the mode mismatch errors are spatially correlated in an MJLS with
arbitrary number of modes? Can we still derive algebraically solvable conditions such that

the bias of mode-based Kalman filter converges?

1.4 Contributions of This Dissertation

In this dissertation, we consider the case where we have information on the discrete state but
the information is inaccurate. In this case, it is possible to implement a bank of Kalman filters
for continuous state estimation. However, this approach suffers from exponentially increasing
memory and computational complexity. On the other hand, we can treat the known discrete
states as the true state and conduct the estimation via only one Kalman filter (i.e., a mode-
based Kalman filter). This Kalman filter is optimal if there is no mode mismatch. A mode
mismatch error will introduce a bias to the estimator with the error covariance remains
bounded [24-28]. In this regard, the major contributions of this dissertation summarized

below captures the foundation of this research.

e Question 1: State estimation design for SHS with guard conditions (SDSHS).

- Propose a new state estimation strategy for SHS with quadratic guard conditions.
Unlike the previous effort [29], only one Kalman filter is needed and the discrete

state estimate is derived based on the estimated continuous state.

- Derive the exact distribution for the guard condition instead of an approximation
of the distribution (as in [29]). Based on this distribution, we derive a threshold

for deciding whether a discrete transition occurs or not.

- The proposed approach results in an extremely low error rate for the discrete state

estimates even when transitions are frequent.



We discuss these contributions in Chapter 3 and in the following article:

[19] W. Zhang and B. Natarajan, “State estimation in Stochastic Hybrid Systems with

Quadratic Guard Conditions,” in 2016 54th Annual Allerton Conference on Commu-

nication, Control, and Computing (Allerton), pp. 752-757, Sept 2016.

e Question 2: Performance analysis for generalized SHS with mode mismatch errors

modeled as i.i.d. Bernoulli random variable.

Quantify the performance of a mode-based Kalman filter with mode mismatch

errors and derive the bias dynamics resulting from mode mismatch errors.

Derive a computationally efficient sufficient condition for a special case of SHS
with two discrete states. The approach involves solving a straightforward eigen-

value problem to derive the critical region on the mode probability.

For a generalized SHS with arbitrary number of modes, we propose the use of a
transformed switched system to describe the bias dynamics. The convergence of

the bias is then mapped to the stability of the transformed switched system.

Derive sufficient and necessary conditions for stability of the corresponding au-
tonomous switched system and investigate the bounded input bounded output
stability of the transformed switched system. Acquire a tolerant region on proba-

bility of mode mismatch errors that guarantees convergence of the bias dynamics.

We discuss these contributions in Chapter 4 and in the following articles:

[24] W. Zhang and B. Natarajan, “Quantifying the Bias Dynamics in a Mode-based

Kalman Filter for Stochastic Hybrid Systems,” in 2018 Annual American Control Con-

ference (ACC), pp. 5849-5856, June 2018.

[25] W. Zhang and B. Natarajan, “On the Convergence of Bias of a Mode-based Kalman

Filter for Stochastic Hybrid Systems,” FURASIP Journal on Advances in Signal Pro-

cessing (In Press), 2018.



e Question 3: Study the impact of time correlated mode mismatch errors on MJLS state

estimation.

Quantifying the impact of time correlated (Markovian distributed) mode mis-

match errors on a mode-based Kalman filter for MJLS state estimation.

- Begin the analysis with an MJLS with two discrete states and derive sufficient
and necessary conditions (based on the results from Schur stability of a matrix

polytope) under which the bias dynamics are statistically convergent.

- Model the mean of bias dynamics as an auxiliary linear system. The system
matrix of this linear system is determined by a polytope of matrices with each

vertex matrix related to the original MJLS system matrices.

- For MJLS with arbitrary numbers of modes, by mapping the matrix polytope
to an interval matrix, and by leveraging results in Schur stability analysis for an
interval matrix, derive sufficient conditions on mode mismatch probabilities under

which the bias resulting from mode mismatches is statistically convergent.

These contributions are discussed in detail in Chapter 5 and in the following articles:

[26] W. Zhang and B. Natarajan, “Impact of Time Correlated Mode Mismatch on
Markov Jump Linear System State Estimation,” IEEE Control Systems Letters, vol.
2, pp. 489-494, July 2018.

[27) W. Zhang and B. Natarajan, “On the Performance of Kalman filter for Markov
Jump Linear Systems with Mode Mismatch,” Manuscript submitted to IEEE Trans-

action on Automatic Control, 2018.

e Question 4: Analyze bias dynamics in mode-based Kalman filter with spatially corre-

lated mode mismatch errors.

- Consider the case of correlated mode mismatches that can capture spatially corre-
lated cyber-impairments (communication link failures and cyber-attacks) in prac-

tical applications.



- Derive sufficient conditions under which the bias resulting from mode mismatches
is statistically convergent. The condition is related to mode mismatch probabili-
ties and it provides guidance on the fidelity of discrete state information needed

to sustain the quality of the Kalman filter estimate.

- For the first time, we are able to derive an algebraically solvable condition in terms
of the mode mismatch probabilities that guarantees the statistical convergence of

the bias.

These contributions are discussed in detail in Chapter 6 and in the following articles:
[28] W. Zhang and B. Natarajan, “Bias Analysis in Kalman Filter with Correlated Mode
Mismatch Errors,” Signal Processing, vol. 154, pp. 232-237, 2019.

1.5 Organization of This Dissertation

Chapter 2 presents a literature review on state estimation strategies for SHS and their perfor-
mance. In Chapter 3, a state estimation strategy based on mode-based Kalman filter for SHS
with quadratic guard conditions is proposed. Chapter 4 derives the bias dynamics resulting
from mode mismatches modeled as i.i.d. Bernoulli random variables and studies its statis-
tical convergence. Chapter 5 investigates the performance of a mode-based Kalman filter
with time correlated mode mismatches. In Chapter 6, spatially correlated mode mismatch
errors are considered and a sufficient condition such that bias dynamics remain bounded in
an MJLS state estimation is derived. Concluding remarks and future research directions are

discussed in Chapter 7.



Chapter 2

Literature Review

In this chapter, we review the prior literature on state estimation for stochastic hybrid
systems (SHS). Specifically, we focus on efforts that relate to performance and bias analysis

for hybrid estimation strategies.

2.1 State Estimation for SHS

The state space of an SHS is composed of both discrete states and continuous states and
the state space reveals the current status of the system. In most practical applications,
the continuous state itself may not be directly accessible and instead we observe a noisy
measurement that is a function of the states. For this case, state estimation is critical since it
benefits both situational awareness and implementation of control actions. The discrete state
usually reflects the operational mode of the system and it might be known (directly available)
or estimated. For these two different scenarios, the estimation strategies for continuous state
are different due to the interaction between continuous states and discrete states. In the

following, we present related research works considering the two different scenarios.
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2.1.1 Scenario 1: Discrete states are directly available

For the case that discrete states (also referred to as modes) are known and continuous states
evolve linearly, mode-based Kalman filter is an optimal estimator for continuous state [20,
22, 30]. Let us take Markov jump linear system (MJLS) [20] as an example. A discrete-time
MJLS can be described as

Xk+1 = A(gk (k‘)Xk —|— ng(k})wk

vi = Cs, (k)xi + Vi

where x;, € R™ is the continuous state, J, € Q is the discrete mode which follows a Markov
process and yr € R™ is the measurement. Ay, (k), Bs, (k) and Cs, (k) are matrices corre-
sponding to mode d;. The mode-based Kalman filter is updated based on the measurement
sequence and mode sequence up to time k, i.e., yi = (y1, - ,¥Yx), 03 = (01, -, 0x) respec-

tively. The mode-based Kalman filter algorithm is presented in Algorithm 1.

Algorithm 1 Mode-based Kalman filter

1: function ESTIMATION UPDATE(po, Moo, Q, R, 67, ¥7)
2: Xolo = Ho, Mojo = o

3 yi=n )

4: 0F = (01, ,0k)

5: fori=1:kdo

6: Xili—1 = As;Xi—1)i—1

7 M1 = As M1 1A%, +Q

8: Ks, i = My;_1Cj, (C5,M;);-1Cj, + R)™!
9: Xili = Xiji—1 + Kig, (yi — Cs5.Xiji-1)
10: M, = (I - K, ,Cs,) M,
11: end for
12: return X

13: end function

The estimated state x|, is a minimum mean square error (MMSE) estimate of the actual
continuous state xi. MMSE here indicates zero-bias and minimum error covariance. A proof
of this can be found in Chapter 5 of [20]. A similar example is for an MJLS with observation

of continuous state and delayed measurement of discrete state and a mode-based Kalman
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Figure 2.2: Mode update and base state update

filter can also be applied as a MMSE estimator as demonstrated in [31]. In [32], the authors
expand their results to the case of delayed observations of both continuous and discrete

states.

2.1.2 Scenario 2: Discrete states are not directly available

In most realistic applications, the continuous states and discrete states may not be directly
accessible. For this situation, an optimal estimator is composed of a bank of Kalman filters
with each filter corresponding to one discrete state. Several widely-used hybrid estimation
strategies such as interacting multiple model (IMM) algorithm [33, 34] and multiple model
adaptive estimation (MMAE) algorithm [23] are established based on this idea. The process
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of the IMM algorithm is presented in Figure 2.1 and Figure 2.2. Specifically, X; xx, M,k
are the state estimate and covariance of Kalman filter corresponding to mode j at time £k,
respectively. Xoj; kjx, Mojkx are the mixed condition of Kalman filter corresponding to mode
J at time k. py, pgr are the mode probabilities and mixing probabilities at time & and L,
is the likelihood function of Kalman filter corresponding to mode j. This algorithm can be

intuitively explained as follows.
1. Tt contains of a low gain filer (for the nearly uniform motion) and a high gain filter;

2. These filters interact (exchange information) with time-variant weights (the mixing

probabilities);

3. The final estimate is a combination (weighted average) of each filter’s estimate, with

the weights being the mode probabilities;

4. The weights for interaction and combination are based on which model fits better the

data (and other factors, such as the expected transition from one mode to another).

More recently, IMM algorithm has been extended to SDSHS and MJLS with time-variant
transition rates of the Markov chain [17, 29, 35]. [17, 29] According to Figure 2.1, the
IMM algorithm involves d (number of discrete states) Kalman filters. Similarly, the MMAE
algorithm also requires a bank of Kalman filters and they therefore suffers from exponentially

increasing memory and computational complexity [20, 36].

2.2 Performance Analysis for Kalman Filters

Mean square error (MSE) is one common measure for estimate quality. MSE measures the
average squared difference between the estimated values and the estimation. Mathematically,

the MSE of 6 that is an estimate of parameter 0 is defined as

MSE(6) = (bias(0,0))? + Var(0), (2.1)
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with

According to (2.1), MSE is defined both on the bias and variance of the estimator. Bias
reflects how far off the average estimated value is from the true value and the variance reflects
how widely spread the estimates are. Typically, an unbiased estimator with the smallest
variance is the best unbiased estimator, also referred to as minimum variance unbiased
estimator (MVUE). As the preceding discussion suggests, considering the entire space of
estimation algorithms proposed for SHS, Kalman filter based algorithms dominate the area.
In the following, we will discuss the performance of Kalman filter and review efforts that
have been done to address this problem.

For non-hybrid linear system, the Kalman filter is the optimal filter (in MVUE sense)
[37] if the model matches the real system and the system noise is white Gaussian distributed.
However, if there exists missing measurements or intermittent observations in a dynamical
system, then the error covariance can diverge and become unbounded. This type of system
have been studied in [38-40]. [41] extends the analysis for the case of measurement loss in
distributed system estimation with Kalman filter. A more sophisticated case for dynamical
systems with random delays and packet dropouts (missing measurements) has been consid-
ered in [42-45]. All the above mentioned works follow a similar approach that is to derive a
bound for the critical probability of missing observation that ensures the statistical conver-
gence of error covariance. The bias is not taken into consideration in the above mentioned
papers due to the fact that Kalman filter is unbiased in such situations. Another work [46]
considers a different scenario where the model for Kalman filter is mismatched with the true
system (mismodeling). They take a unique perspective with focusing on a linear system with
possible failures and the failure then can be modeled as a deviation from the true model. The
considered metric is the residual of the Kalman filters and it can be shown that mismodeling

also introduces a bias to the Kalman filter. [46] derives mean and covariance of the residual
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without an algebraic convergence analysis.

As stated in the previous section, several state estimation strategies have been proposed
for SHS and Kalman filter is a critical component for most of the estimation strategies.
In terms of performance analysis of hybrid estimation strategies, there are only limited
prior efforts [47-49] with focus on the stability analysis of MMAE and IMM algorithm. [47]
proposes to evaluation the performance of MMAE and IMM using steady-state mean residual
for each mode. In [48], the authors propose an algorithm to analyze the performance of
IMM algorithm. Specifically, their approach involves several steps to approximate the mean
of mixing probability, means and covariance of Kalman filter residuals, mean of likelihood
function and mean-squared errors of the state estimation. A more recent work [49] studies
the lower and upper bounds on the error covariance of residual from a Kalman filter and
derives a sufficient condition for exponential stability of the IMM algorithm. With restricted
to IMM and MMAE algorithms, the prior works lack of exploration on the relationship
between mode mismatch errors and performance of a general Kalman filter. Let us take an
example of IMM algorithm as shown in Figure 2.1. For any hybrid system with d discrete
modes, there is only one Kalman filter that corresponds to the true mode is unbiased among
the bank of d Kalman filters. How sensitive is the convergence of bias in a mode-based
Kalman filter to errors in discrete state knowledge? Is there a critical region within which
the error dynamics in a mode-based Kalman filter will converge? These are the fundamental

unanswered questions that this dissertation seeks to address.
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Chapter 3

State Estimation in SHS with

Mode-Based Kalman Filter

In the first research, we design a state estimation strategy for a special class of SHS in
which the continuous state evolves linearly and the discrete state is governed by quadratic
guard conditions. This work provides us insights on how discrete state and continuous state

estimation are interacting and serves as a starting point of this dissertation.

3.1 Introduction

For any SHS, the evolution of continuous states depends on discrete states, whereas the
converse does not always hold. State-dependent stochastic hybrid system (SDSHS) is a
special subclass of SHS where the discrete state transitions are governed by guard conditions.
In this model, a discrete state transition happens only when a certain deterministic guard
condition is satisfied. SDSHS with guard condition has been shown to be an appropriate
model for many applications such as air traffic control [17, 29] and fuel-transfer system of
fighter aircraft [50]. State estimation in SDSHS presents some unique challenges as the
continuous state and discrete state are interacting with each other. On the other hand,

the discrete state estimation is benefit from the auxiliary information of continuous state
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estimates. The objective of this research is to design a Kalman filter based hybrid estimation
strategy for SDSHS with quadratic guard conditions.

Research work in state estimation for SHS has been ongoing for decades. One category
of well-established SHS model is discrete-time Markov jump linear systems (MJLS) [20] that
are applicable for systems that can be represented by a set of discrete-time linear systems
with modal transitions given by a Markov chain. [18, 20, 51] consider estimation problems
for MJLS. [18] proposes a simulation based algorithms called particle filters that also finds
application for non-linear SHS later in [52, 53]. [51] develops interacting-multiple model
(IMM) algorithm based on a bank of Kalman filter. Since the above mentioned papers have
not considered SDSHS, discrete states estimation is independent with continuous estima-
tion in nature. In the most recent, estimation problem for SDSHS gains research interest
as it greatly expands the application area in air traffic control [5, 17, 29, 54] and smart
grid [7]. State estimation in such systems have been considered in [17, 29, 55]. In [55], the
authors consider a system where the discrete state transitions are described by a Markov
chain but the transition rate is dependent on the continuous state. The authors extend the
well-known IMM algorithm for MJLS to systems with variable transition rates. In[17], the
authors consider a system with guard condition and they propose a bank of Kalman filter-
based algorithm called state-dependent-transition hybrid estimation algorithm. However,
the algorithm proposed in [17] is only suitable for linear guard conditions. In this case, the
problem is simplified as the linear transformation property of Gaussian random variables
holds. For SHS with quadratic guard conditions, [29] follows a similar approach as in [17]
and approximates the guard condition via the Laurent series and Taylor series expansion
that enables a simple form. However, the algorithms in [17, 29] require on-line calculation
from a bank of Kalman filter and it suffers from computation complexity. Additionally, the
simulation results suggest that discrete state estimation errors occur during every transition.

Therefore, the applicability of [29] for many practical systems is limited.
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Figure 3.1: Proposed estimation strategy
3.2 Proposed Approach

Mathematically, the evolution of continuous dynamics in a linear SHS can be represented

by:

X, = As, X1 + Wy, (31)

vi = Cs, X + Vi,

where, x; € R" is the continuous state and y; € R™ is the measurement. w;, ~ A (0, Q) and
v ~ N(0,R) are both independent Gaussian noise that capture model and measurement
uncertainty, respectively. Without lose of generality, we define @ = {¢,,---,¢q;} as the
discrete states set. The discrete state is 0 = ¢, € Q whose transitions are governed by a
set of guard conditions G = {G(7,j) :4,j € Q}. G(i,j) = {x:g;;(x) <0} is a subspace of
continuous state space in which the guard condition g; ;(x) < 0 is satisfied. For quadratic

guard condition, the function g; ;(x) = x'W¥;;x — ¢;; where ¢;; is a scalar constant and ¥;;
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is an n-by-n symmetric positive definite (s.p.d) matrix for each pair of modes (g;, g;). If the
current mode 0, = ¢;, and continuous dynamics enter the subset G(3, j), then discrete state
makes transition from &, = ¢; to dx41 = ¢;. The proposed estimation strategy estimates the
system states recursively as shown in Figure 3.1. The continuous state is estimated via a
mode-based Kalman filter and the transition probability for discrete states is obtained by
derive the distribution of guard condition.

Through the rest of the this dissertation, we assume the initial distribution for continuous
state is xo9 ~ N (o, Xo) and there is a unique initial discrete state dg = ¢;. We consider
the case that discrete states are not available (cannot be directly observed), therefore the
mode-based Kalman filter is processed based on estimated modes. Let the measurement
sequence and estimated mode sequence up to time k be y§ = (y1, -, ¥x), ¥s = (Y1, » %)
respectively. The mode-based Kalman filter algorithm is presented in Algorithm 2. Note
that K, ; is the Kalman gain related to mode ;. Xy is the estimate of x; and we denote

it as }A(k

Algorithm 2 Mode-based Kalman filter
function ESTIMATION UPDATE(po, Moo, Q, R, 77, ¥})
Xolo = Mo, Moo = X
Yi= (1 ¥k)

1:

2

3

4 =)
5: fori=1:kdo
6

7

8

9

Xili—-1 = A%Xi—ui—l
M1 =AM, 1, 1AL +Q
K. =M,;_C (C,My_,C, +R)"!
: Xili = Xifi-1+ KZ}%‘ (Yi - C%‘Xili—l)
10: Mlh — (I - K%iC%)Mi‘i,l

11: end for
12: return X

13: end function

For discrete state estimation, the transition probability is approximated by:

P(yke1 = glve = ¢ %e) = P(gi;(Xi) < 0) = P(X, W%, — ci; < 0). (3.2)

As the output of Kalman filter X, is a random variable, the transition probability depends
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on the distribution of xj W;;%X;, which is also a random variable.

Theorem 3.2.1. The quadratic form random variable X}, W;;X; has a non-central x*(r, vi)
distribution, with degrees of freedom T = n and non-centrality parameter vi = b} ®.by,
where

_1
®, = UM}, ¥,M7, U, b, = UM%, (3.3)

and U s a unitary matrix.

Proof. At time k, the continuous state estimation Xy, follows distribution of N (g, 23;@), where
My, = Xy, and ﬁk = M. Since the matrix W¥;; is positive definite, we can always find a

unitary matrix U such that

U,Ml?\k:lp Mk|kU = diag(¢rk, s Png] = Pi- (3.4)
Therefore,
1 /
v = (Mk\kU) Py, (Mk|kU) (3.5)
Let h := %}, W;;X, so we can rewrite h as:
Y, e R
h =x (Mk\kU) Py, (MHEU) Xk
— (UM, 2%,) (UM, /%)
1 1 3.6
=Tr {@k(U'MH;xk) (U’Mk“ixk)/] (3.6)
= Z Gi k [(U' KiX k)m]
i=1
Specifically,
O\ RN
(U Mk|kxk) <U Mk\k( #k)) + (U’ k|2”k)” (3.7)
Let
o\
£l <U/Mk\k< ) (3.8)
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and

i S a0\
by = (UM, ix) . (3.9)
It is easy to show that f,gi] ~ N(0,1) and bZ] is a time-variant non-random variable [56].
/
So f, = [flE] fl[cn]} is a Gaussian random vector with mean 0 and covariance I while
i
b, = {bg] . bL"]} is a time-variant non-random vector. Then, we have
b n
A A i i)\ 2 i\ 2
h=x%x,W,;x, = Z A (f,£] + bL]) = Z Gik (SL]) = s, ®ysy, (3.10)
i=1 i=1

where, s; ~ N (bg,I). Therefore, h follows a non-central x?(7,v?) distribution [57] with

degrees of freedom 7 = n and non-centrality parameter v7 = b/, ®;by. O]

According to Theorem 3.2.1 and equation (3.2), the probability of state transitions can

be approximated as:

P(Yks1 = gjlme = ¢ %) = P(9i5(Xk) < 0) = P(X, 3% — iy < 0) =1~ Qr(vp, /Ci5),

(3.11)
where, Q7 is the Marcum-Q-function [58] defined as
1 R o/
D%(Uk, w/cij) = ? tz2e 2 I%_l(Ukt)dt (312)

Uk: \/ Cij

The estimation of discrete states depends on the calculated transition probability. Specif-
ically, if there are more than two discrete states, the transition probability needs to be
normalized such that

d

D POyksr = gl = %) = 1.

J=1
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Figure 3.2: Ezample of a toy robot moving

The estimated mode is obtained via

V1 = argmax P(yr1 = ¢l = ¢, Xe)-
5

3.3 Experimental Results

We consider a simplified autonomous robot motion example as a potential application of our
work. As shown in Figure 3.2, the goal is to keep the robot moving in the shaded ring region.
We assume a robot is moving in a coordinate plane with two modes of motion - moving away

from the origin and moving towards the origin. The continuous state

!/
X = {posx posy}

is a two-dimensional vector represents x-axis and y-axis of the robot position. The discrete
state space is @ = {q, ¢} and the guard condition to be g12(xx) = x}Ixx — 25? and

g2.1(xx) = x}(—I)x; + 15%. In Figure 3.3, the small circles present the position of robot
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Figure 3.3: Robot Motion Example: Moving trajectory of the robot

Continuous State Trajectory
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Figure 3.4: Robot Motion Example: Continuous state and estimation
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Discrete State (mode)
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Figure 3.5: Robot Motion Example: Discrete state and estimation

during the 100s simulation and the stars are the estimation positions. Figure 3.4 presents
the dynamics of x;, in dashed line and their estimation in solid line. Figure 3.4 indicates that
the continuous state estimate tracks the actual state accurately. The solid line in Figure 3.5
shows the actual discrete states while the dashed line with ‘+’ marks shows the estimated
states. It should be noted that the number of discrete state transitions has a significant
impact on the error performance of estimation strategies. From Figure 3.5, we observe that
our algorithm maintains high accuracy even if the state transition happens very frequently.
In this simulation, there is only 1 estimation error points over the 100 seconds. We can
also define AEPT (average errors per transition) which captures average EPT over multiple
runs. We perform 500 Monte-Carlo simulations and compare our results to the results in
[29]. In terms of the AEPT, our algorithm has only 0.3691 AEPT while [29] has 1.505. We
can conclude that our algorithm offers a significant improvement in AEPT. Additionally,
our algorithm only requires one Kalman filter operation at each time instead of d Kalman

filters. This advantage broadens applicability in practice.
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3.4 Summary

In this chapter, we propose a state estimation strategy for stochastic hybrid systems with
quadratic guard conditions. In the proposed approach, we use a Kalman filter for continuous
state estimation. We prove that the distribution for guard condition is a non-central x? dis-
tribution with parameters related to the dimensional and statistical properties of continuous
states. The transition probabilities for discrete states are obtained via the cdf of the guard
condition. We also discuss approaches to choose a proper threshold to estimate the discrete
states based on the transition probabilities. We find a potential application of our result and

simulate this robot motion system with superior error performance.
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Chapter 4

Impact of Independent and Identically

Distributed Mode Mismatch Errors

In the previous chapter, we proposed a hybrid state estimation strategy for a state-dependant
stochastic hybrid system (SDSHS) which is composed of a mode-based Kalman filter and
mode switches estimation. In this chapter, we first derive the bias dynamics in a mode-based
Kalman filter that results from mode mismatches. By modeling the mode mismatch errors
as independent and identically distributed (i.i.d.) Bernoulli random variables, the statistical

convergence of the bias dynamics is also investigated in this chapter.

4.1 Introduction

State estimation in stochastic hybrid system (SHS) has attracted research interest for decades.
Kalman filter based strategies dominate the area. For one category of SHS where both dis-
crete and continuous states are observable and the discrete state transitions are independent
with continuous state, mode-based Kalman filter can be applied as a minimum mean square
error (MMSE) estimator [20, 22, 30]. In general SHS applications, discrete state may not
be directly observable [17, 19, 20, 23, 29, 33, 59, 60]. In this case, the optimal estimator

is obtained from a weighted sum of a bank of Kalman filters with each filter matched to a
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possible mode. Therefore, it requires exponentially increasing memory and computing time.
A couple of hybrid estimation algorithms have been proposed for Markov jump linear sys-
tem (MJLS), such as interacting multiple model (IMM) algorithm [33] and multiple model
adaptive estimation (MMAE) algorithm [23, 60]. [17, 29] extend the IMM algorithm to state
dependent SHS. Note that all the above mentioned algorithms require on-line computation
with a bank of Kalman filters and they suffer from high computational complexity. [19, 59]
decrease the complexity by formulating the mode estimation as a problem of belief-state up-
date and using only one Kalman filter corresponding to estimated mode for continuous state
estimation. As the preceding discussion suggests, the Kalman filter plays an important role
in most of the estimation algorithms for SHS. While there has been limited prior work that
analyzes the bias (error) of Kalman filter in SHS estimation, multiple efforts have focused
on Kalman filter error performance in non-hybrid scenarios [38-43, 45, 46, 61]. Due to the
fact that the Kalman filter yields an unbiased estimator in a non-hybrid system framework,
when analyzing error performance, only error covariance matrix is taken into consideration
[38-43, 45, 61]. Specifically, [38-43, 45, 61] consider dynamical system with missing mea-
sures, intermittent observations, random delays and packet dropouts and they follow the
similar approach to derive a bound for the critical probability of missing observation that
ensures the convergence of error covariance. In [46], the authors consider an estimation prob-
lem where the model for the Kalman filter is mismatched with the true system. Unlike the
previous mentioned papers, [46] studies the residual of Kalman filter and derives mean and
covariance of the Kalman filter residual without analyzing its convergence behavior. In terms
of estimation strategies for SHS, there are several prior efforts have been made [47-49, 62].
Their analysis is based on MMAE algorithm and the IMM approach. [47] first considers the
problem of quantifying performance of a hybrid estimation algorithm and derive the condi-
tion for exponential convergence of the estimator in terms of detection delay and sojourn
time [62]. In [48, 49], the authors extend their research on evaluating the stability of IMM
algorithm and they focus on the mean and covariance of the Kalman filter residual. However,
the existing research efforts have not explored the relationship between mode mismatch error

and SHS estimation. It is not known as to how discrete state estimation error influences the
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performance of a mode-based Kalman filter. How sensitive is the convergence of bias in a
mode-based Kalman filter to errors in discrete state knowledge? Is there a critical region
within which the error dynamics in a mode-based Kalman filter will converge? These are
the fundamental unanswered questions that this chapter seeks to address.

In this chapter, we study the statistical convergence of the bias dynamics in a mode-based
Kalman filter in the presence of i.i.d. mode mismatch errors. We first derive the dynamics of
a bias that results from mode mismatch errors for a specific model of SHS with two discrete
states. Additionally, the discrete state transitions are modeled via i.i.d. binary Bernoulli
random variables. For this specific system, we derive sufficient conditions for statistical
convergence of bias. Then, for a generalized SHS with arbitrary numbers of discrete states,
we take a fresh perspective and propose to use a transformed switched system to describe the
bias dynamics. The convergence of the bias is then mapped to the stability of the transformed
switched system. Finally, the theoretical results are verified and validated using numerical
examples and simulation of a smart grid with network topology errors. Theoretical and
numerical results help us identify the fidelity required in discrete state knowledge in order

to meet the performance requirements of continuous state estimates.

4.2 Preliminaries

4.2.1 System Model

We consider a discrete-time autonomous linear SHS. Mathematically, the continuous state

X, € R" and measurement y;, € R™ are related via the following equations:

X, = As, X1 + Bs, Wi,
(4.1)

i = Cs,Xi + Vi,

Here, 0;, represents the discrete state at time k, which is sometimes referred to as the mode.

Without loss of generality, we define discrete space as Q = {q;, -, q;}. For each d, the
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corresponding A;, is an n-by-n matrix, By, is an n-by-p matrix and C;, is a m-by-n matrix.

Regarding the system model, we have the following assumptions:

1. wi ~N(0,Q) and v;, ~ N (0, R) are mutually independent white Gaussian capturing

model and measurement uncertainty, respectively.

2. The initial distribution of the continuous state follows a Gaussian distribution xy ~

N (po, Xo). The discrete state has a unique initial mode 6y = ¢, € Q.
3. For all 6, € Q, (As,,Bs, QBy, ) is controllable and (Cs,, As,) is observable.

4. Ay, Vg € Q are distinet; Cy Ay = Cy A, if and only if ¢; = ¢;. This assumption

guarantees that all modes can be distinguished from each other.

4.2.2 Bias Dynamics in a Mode-based Kalman Filter

Mode-dependent Kalman filter is used to estimate the continuous state in many hybrid
estimation algorithms [17, 19, 29, 32]. The mode-based Kalman filter algorithm for system
in (4.1) is introduced in Algorithm 3. Note that we denote the estimated/known mode as

v, and it also takes value in Q.

Algorithm 3 Mode-based Kalman filter

1: function ESTIMATION UPDATE(po, Moo, Q, R, 73, ¥})
2: Xolo = o, Moo = X

3: Y=L Ye)

4y = )

5: fori=1:kdo

6: Xili—1 = Ay, X 1)i—1

7 M1 =AM, 1, ,AL +B,,QB,

8: K%.,i = Mi|i_1nyi<C%MZ’|i_1Cfﬁ + R)_l
9: Xili = Xiji—1 + Kin, (yi — CyXipi-1)
10: M”l — (I - K’yi,ic’yi)Mi\i—l
11: end for
12: return x

13: end function

Here, K, ; is the Kalman gain related to mode 7;. Xy is the estimate of x; and we

denote it as xj. If the estimator has full knowledge of the actual mode, the mode-based
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Kalman filter is a minimum mean square error estimator. This situation is the same as a
typical Kalman filter used in a non-hybrid system. However, if v # dx, then X; is a biased

estimate of x;. We define the estimation error (bias) at time k as

It should be pointed out that we define the bias to be the difference between mean of
estimate and the true state. In general, bias captures the difference between estimate and
actual value. However, both x; and x; are random variables that result in the bias being a
random variable. Therefore, we capture the difference between X, and x; in a mean sense
via eg. This metric is similar to those considered in [46, 47]. In the following, we first define

the unbiased property of Kalman filter for completeness.

Definition 4.2.1. A mode-based Kalman filter is unbiased if and only if Vk, E(xy) = E(Xx),
.e., Vk, e, = 0.

Lemma 4.2.1. A mode-based Kalman filter is an unbiased estimator if Vk > 0, v, = 0.

With the above definition and lemma, we prove the following corollary that if there exists

mode mismatch errors, then the mode-based Kalman filter is biased.
Corollary 4.2.1.1. A mode-based Kalman filter is biased if Ik > 0 such that ~y;, # .

Proof. We want to show that if 3k > 0 such that vz # 6z, then e, # 0 for some k. Let i
denote the estimated mode and t denote the actual mode.

For k < k (i.e., time instants before mode mismatch occurs): Since i = t, as a result
of Lemma 4.2.1, E(x;) = E(Xy).

For k =k (i.e., time instant that mode mismatch occurs):

E(x7) = AiE(X_1) + K z[E(yz) — CAE(X5_q)]
= (Ai - KLIECiAi)[E(}A(E—l) + Kijcct[E(XE)

= (A — Ki;CGA)E(x5-1) + K zCeAE(xz )
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Therefore,

er = E(xz) — E(xz) = E(xz) — AcE(xz_4)
= (Ai — K ;CiA)E(x5_1) + (K ;CiAr — Ao E(x5_4)

“ A — A, + K 4(CeA, — CA)E(x;_y)

(a) is due to the fact that E(x;) = E(X},) for k < k. When k = k, we get i # t, Aj— A, # 0 and
C:A; — G/A; # 0 based on assumptions in system model, which leads to ez # 0. Therefore,

the mode-based Kalman filter is biased. ]

Remark 4.2.1. If A, = A, or Cy A, = Cy Ay for some g; and q;, the mode-based
Kalman filter cannot discern that a mode mismatch has occurred. The result of Corollary
4.2.1.1 also excludes a trivial case that E(xj_,) lies in the null-space of the matriz A; — A+

Ki’,;(CtAt — CiA)). In this case, the corresponding contribution to bias ey is 0.

For the sake of compactness in notation, we follow the notation in proof of Corollary
4.2.1.1 and introduce t and i to denote actual mode and estimated mode at time £ in this
chapter. That is, t = 0, € Q and i = v, € Q. It needs to be noted that t and i are indeed
time-variant random variables. From the discussion in the proof of Corollary 4.2.1.1, we can

write

er =(Ai — Ki ;G A)E(x—1) + (Ki 1 CeAr — Ap)E(x5-1)

=(A; — K 1CiAj)er—1 + (Ai — K CiA; + K; 1 Ci A — Ay)E(xk-1) (4.3)

Lemma 4.2.2. If AN, s.t.Yk > N,i = t, then the error of a mode-based Kalman filter will

converge, i.e., lim e = 0.
k—o0

PTOOf. Vk > N, = t, SO Ai_Ki,kCiAi+Ki,kCtAt_At = 0. Then €er — (A;—K;,kC;A;)ek_l =

Ai’kek,1 Where,

A=A - K;;CGA; = (I-K;;,C)A,.
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In order to prove klim e; = 0, we need to show that p(A;;) < 1.
—00
For any Kalman filter, the observer gain corresponding to mode i is defined as Lj; =
AMy—1C/(CiM,-1C] + R)™!. Given that (A;, B;QB!) is controllable and (C;, A;) is

observable for all i € Q, the closed-loop dynamics A; — L;;C; is stable. Then
Ai - Li.Ci = A — AK;:Ci = A(I - K .C)).
From commutativity property of spectral radius,

p(Al — Li7kCi) = p(A,,k) < 1.

4.2.3 Error Covariance

Mean squared error (MSE) is an important metric to analyze performance of any estimator.

MSE of  that is an estimate of parameter 0 is defined as MSE(0) = (bias(6,0))2 + Var(6).
Here, Var(0) is the error variance. For a typical Kalman filter, since it is unbiased, prior
research efforts primarily focus on behavior of the error covariance. For any Kalman filter,

estimation error covariance is recursively updated as:
My = Myjp—1 — My—1 C{(CiMy—1 Cf + R)_ICiMMka (4.4)

Equation (4.4) shows that the error covariance matrix is updated depending on the current
estimated mode i. The assumptions that (A;, B;QB!) is controllable and (C;, A;) is observ-
able guarantee existence of a steady-state error covariance for each mode. As discussed in
[63], given Q and R are constant, the error covariance My, and Kalman gain will stabilize
quickly. Disregarding whether mode i reflects the true state t or not, the updating process
(4.4) remains bounded. This situation is different from the analysis of Kalman filter with

intermittent measurement problem (see for example [64]) or coupled Riccati equations for
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switched system [65] as the error covariance matrix evolves corresponding to a complete
Riccati equation defined by mode i. Since the error covariance matrix is bounded, we focus

on the bias of the mode-based Kalman filter in the rest of the chapter.

4.3 SHS with Bernoulli Distributed Discrete States

In this section, we focus on the specific class of SHS in which the discrete transitions are
modeled via i.i.d. Bernoulli random variables and the discrete space contains only two
modes, i.e., @ = {q, ¢,}. We derive conditions under which the bias dynamics is statistically

convergent .

4.3.1 Problem Formulation

Irrespective of the methods used to estimate the discrete states, mismatch of discrete states
is a typical problem in SHS estimation. Similar to the pioneering work [38-42, 46, 61] in
missing observation problem for non-hybrid system, we use i.i.d. binary Bernoulli random

variables vy to describe the mode mismatch, i.e.,

1 with probability A;
Vi —
0  with probability 1 — A.

Here, v, = 1 indicates the estimated mode is inconsistent with actual mode while v, = 0
indicates they are the same. The extension to more general models such as correlated mode
mismatch error process will be considered in the following chapters. As discussed, the update
of e is described via equation (4.3). Following the notation A;; = A; — K;;C;A; in the

proof of Lemma 4.2.2, and defining I, = Ay — K ;CiA¢, when t =i, I, = A . We can

rewrite (4.3) as:

e, = Aiger—1 + (Aig — Dier) E(xp—1). (4.5)
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After introducing vy, we have:

for vy, =1, e = Ajpep—1 + (Aip — Digr) E(xp—1);

for Vg = 0, e — Ai7kek_1.

So we rewrite equation (4.5) as:

er = Aigerp_1 + Up(Aig — Tiv ) E(xp—1). (4.6)

Denote the steady Kalman gain K., for mode i as Kj, along with the relative matrices
A = A — KiGA; and T'j; = A; — K;C{A,. Since we assume that Q and R are same
constant for all modes i € Q, the Kalman gain Kj; will converge to the corresponding
steady Kalman gain K; quickly [63]. The steady Kalman gain can be computed before any
observation is made and it has been used in sub-optimal control problem for decades. As it
involves an off-line calculation and can reduce complexity of the estimation process, we use

K; to approximate K; and simplify equation (4.6) as:

er = Aieg1 + vp(A; — Tio) E(xp—1). (4.7)

It is important to note that even though we remove subscript £ from A; and I';, they are still
time-variant because t and i change with k. Therefore, t and i in (4.7) should be interpreted

as the actual mode at time k and estimated mode i at time &, respectively.

4.3.2 Main Results

From equation (4.7), {ex},—, is a stochastic process for a given initial value ey. Note that

e is bounded with probability 1 if and only if E(ey) is bounded [39]. Therefore, we consider

convergence in mean, i.e., klim E(er) < oo. Here, E(eg) is a n-dimensional vector and E(ey,) <
—00

oo means each element is finite. From tower rule, we know that E(e;) = E(E(ex|ex_1)), where

34



the outer expectation is taken over e,_; while the inner expectation is taken over the random

variable vy,.

[E(ek) = A;[E(ek_l) + )\(A| — I‘i’t>[E(Xk_1) (48)

Our goal is to determine the conditions under which (4.8) is bounded. To help in the analysis,

we first define an auxiliary iteration function [y (h,1) = S;h + AS,1. We have:

Eer) = E|fx(er—1, E(xx-1)) | = Fx(E(er—1), E(xx-1)),

with 81 = Ai and 82 = Ai - Fi,t-
For the vector e, with finite dimensions, klim |E(ex)|| < oo gives the sufficient and
—00
necessary condition for klim E(er) < oo. So if we can prove that [|Fy(E(ex—1), E(xk-1))] is
— 00

bounded, then klim |E(ex)|| < oo will hold. In the following, we will focus on the convergence
—00

property of ||y (E(ex_1), E(xx—1))]|-

Theorem 4.3.1. The iteration function ||h|| = ||F\(h,1)|| is monotonically increasing w.r.t.

A when the iteration starts from h = 0.

Proof. Let 0 < A\ < Ay < 1. To prove the iteration function is monotonically increasing

w.r.t. A, we need to prove for the same initial condition hy and ly, after k& € NT iterations,

HhAth = H[Fl)g\1<h0710)|| < |’h>\2,kH = H&\I)c\g(hmlo)” Herev

[F])C\(ho, 10> = (ﬁ‘)\ ¢) [F)\ ©...0 ﬁ\)\)<h0, 10),

N 4
-~

k times

and o is function composition defined for any function [ as (F o [)(x) = F(f(x)). The update
process is:
h1 == Slh() + )\SQIO7
hg = Slhl + )\Sgll = S%ho -+ )\(Slsglo + Sgll),
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k—1

h; = Sthy + A S{7 'Sl

=0
k—1 ) k—1 )
For hy = 0, hy = A > S¥17iS,1;. Then ||hy|| = [A] || 32 SF1S,1||. So
i=0 =0
k—1 k—1
A SETISaL || < A D SETISaL
=0 =0

[ e |l < (g k] -

]

In our case, eg = E(x0) —E(X() = 0 which guarantees that the initial [y (E(eg_1), E(xx-1))
is 0. Therefore, Theorem 4.3.1 is applicable to the average error dynamics in (4.8). As defined
before, A represents the probability that estimation mode is inconsistent with actual mode,
and Theorem 4.3.1 indicates that as A increases, ||E(ey)|| will increase at each step update.
Additionally, Theorem 4.3.1 also indicates that the increase of ||E(eg)]| is linearly related to
A

Now, as we have uncovered the relationship between A and the mean error dynamics, in
the following, we will establish conditions for the error dynamics to convergence in mean.
We first introduce two definitions of “the largest possible spectral radius” and “Lypunov

stability in mean” which will help us derive the convergence conditions.

Definition 4.3.1. [66] Given A is a set of matrices, p,(A) is the largest possible spectral

radius of all products of k matrices chosen in the set A, i.e.,

pr(A) := mazx {p(ﬁAZ) Vi, A, € A} .

Definition 4.3.2. A SHS is Lyapunov stable in mean if given a & > 0, there exists
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9¥(£,0) such that E(||xol|) < O implies

E(sup [|x[]) < ¢
k>0

From the proof for theorem 4.3.1:

k—1
hy =) SES1,
=0
so we can write -
Eler) = AD A '7H(A = Ti)E(x;) (4.9)

=0

One interesting observation is that (4.9) does not depend on E(ej_1) if e is 0. Moreover,
evolution of E(ey) is related to the statistical properties of the actual state {x; ;:01 . For a
typical non-hybrid system, E(x;) can be obtained based on the system model, where for SHS,
since the discrete state transitions are random, E(xj) cannot be obtained without knowing
the actual mode. Indeed, pi(A) can help to illustrate the convergence property of E(xy). For
an SHS with @ = {¢,---, ¢4}, let A={A,,---,A,}. Denote A* as product of matrices
on A, i.e.,

k
Ab=TJAViAic A (4.10)

i=1

Recall that the initial assumption is xo ~ N (o, Xo), so we can write E(x;) = AXp,.

Theorem 4.3.2. lim pi(A) < 1 gives a sufficient condition for klim |E(er)|| < oo.
—00

k—o0

Proof. By definition, Vk, p(A¥) < pr(A), so klim p(A¥) < 1, which leads to
—00
lim [E(x)|| = lim | Akpo|| = 0.
—00 k—o0

Therefore, the sequence {||E(xx)||}22, is bounded by some constant C. Let assume for k& > k*,

|E(xx)|l = 0. Then C = ohax,

E(xg)||. Since

37



k—1

IECer)| = A||D> 0 AFT A — T E(xi)
i=0
k—1
SO [IAFT A = Tl E ()]
i=0
then,
k—1
i < i k—1—i T .
Jim ECew) < Jim A3 [JAS ] 114 = Tl EGe) |
k*
=AY [AF T 1A = Tl E )|
i=0
k*
< ZCl’iCQC < 00,
i=0
where Cy; = ||A|’“’1H and Cy = ||A; — I'i¢||, the finite sum of some bounded constants will
be bounded. O

Theorem 4.3.3. If a SHS is Lyapunov stable in mean, then klim |E(ex)]| < oo.
—00

Proof. Since the SHS is Lyapunov stable in mean, E(sup ||xx||) < &, which leads to
k>0

lim E(xil)) < & 5 Jim [|EGe)] <&
k—ro0 k—ro0
(a) is the result of Jensen’s inequality. Therefore, the sequence {||E(xy)|}2, is bounded by

¢.

k—1

Jin (@0 < i 33 A 1A = Ful 1EG)]

k-1
< Jim A6 [AF 1A=l < o
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The evolution of E(e;) depends on A;, Ty, E(xx—1) and vg. It reflects how close the
expectation of continuous state estimates are to the actual states. So far, we have uncovered
the relationship between A;, T:, E(xx_1), vx and the convergence of E(e;) as k — oo.
The result in Theorem 4.3.2 is a strong condition but the condition khj& pre(A) < 1 is still
challenging and it is algorithmically undecidable [67]. In the following, we will consider a
specific type of SHS which has two discrete states. With this assumption, all the theorems
discussed in this subsection also hold. Additionally, since i and t can only take two values in
this scenario, we are able to easily derive a critical region for discrete state probability that
will guarantee convergence in a mean sense.

Consider a stochastic hybrid system with two discrete states. Without loss of generality,
we denote Q@ = {¢, ¢} When (t = ¢))&(i = ¢,) or (t = ¢)&(i = ¢q;), vp = 1; otherwise,
v = 0. Assume we have prior knowledge on the discrete states distribution, for example,
let P(t = ¢) = ¢ and P(t = ¢) = 1 — &. Define ¢, to be a i.i.d Bernoulli random variable

that represents the actual mode t as:

(t=g¢ with probability ¢;
Co = (t=a) (4.11)
0(t=¢,)  with probability 1 —e.

For ¢, =1, e, = Ajeg_1 + vp(Ai — I 1) E(xp-1)
@ Aiep_1 + Yi(Ay — o) E(xp—1).
For (;, =0, e, = Ajej—1 + vp(Ai — T 2)E(x-1)

b
® Aieg_1 + (A1 — Ty 2) E(x—1).

(a) and (b) result from the fact that when i = t, v, = 0, we can replace the term A; —T';
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with Ay —I's; and Ay — I’y 5 respectively. Equation (4.7) in this case can be rewritten as:

ey =Ci[Aie—1 + vi(A2 — To1)E(xp—1)] + (1 — G)[Aier—1 + vi(A1 — Ty 2) E(x4-1)]
(4.12)

=Aieg_1 + Gur(Ar — To1)E(xp—1) + (1 — Ce)vr(A1 — Ty 2) E(x4-1)

Therefore, {ex},-, is a stochastic process related to vy and ;. As stated, we consider the
convergence in mean, i.e., klim E(er) < co. E(ex) = E(E(ex|ex—1)), the outer expectation is
—00

taken over e,_; while the inner expectation is taken over the random variable (; and vy.

E(erer—1) =Aiex_1 + eA(Ay — Do) E(xp_1) + (1 — )A(A; — Ty 0)E(x4_1) (4.13)

With iteration function h = [y (h,1) defined in last section,

with S; = Aj and Sy = e(Ay —T'g1) + (1 —¢)(A; =Ty 2). Generally, £ (h,1) is not a function
of e. However, if S; and Sy are defined as shown, the ‘hidden’ parameter € in Sy has impact
on the convergence property of ||fy(h,1)||. In the following, we will quantify the impact and

obtain a critical stable region of ¢.

Theorem 4.3.4. For a system with Q = {q,, ¢} with {x as defined in (4.11) indicates the

actual mode, p(eA1 + (1 —e)As) < 1 gives a sufficient condition for klim |E(ex)] < oo.
—00
Proof. Since x;, = (¢ A1+ (1 — () Ag)xk_1 + Wy and E(x;) = E[E(xg|x,_1)], where the inner
expectation is over (j and the outer expectation is over x;_1, we can write
E(x) = (A1 4 (1 — ) Ay)E(xs_1)
= (A1 + (1 — ) A2)"E(x0) = (eA; + (1 — 2)Ay)Fpo.
The condition p(eA; + (1 —e)Ay) < 1 leads to klim E(xx) = 0. Follow the proof in Theorem
— 00
4.3.2, lim ||E(eg)|| < oc. O
k—o0
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Theorem 4.3.4 shows that for a given SHS with A; and A, if

56{5*

E(ex) is bounded. Therefore, (4.14) represents the stable region for ¢ where the error

p(e*Al (1 s*)Ag) < 1} , (4.14)

converges in mean. This result is specially useful in practical systems as it helps identify the
fidelity needed in estimating the discrete state to ensure that the continuous state estimates

converge.

4.4 Generalized SHS with Arbitrary Discrete State Tran-
sitions

In the previous section, we derive the formulation of bias dynamics that results from mode
mismatch errors. Specifically, for a SHS with two discrete states and the discrete state
transitions are modeled via an i.i.d. binary Bernoulli random variables, the previous section
presents a sufficient condition such that the bias dynamics is statistically convergent. As
an extension, we now relax the constraints on two modes and i.i.d. Bernoulli transitions.
The SHS model considered in this section is general and can be applied for many practical
systems. The novelty lies in modeling the bias dynamics as a transformed switched system
enabling us to exploit techniques developed for stability analysis of switched system to our

problem of interest.

4.4.1 Transformed Switched System

Thus far, we have derived the dynamics of the bias in a mode-based Kalman filter. In
equation (4.7), the bias evolves based on matrices A; and T'j;. As defined in the previous
section, i and t are random variables that represent estimated and true mode at time k. In
general, for an SHS with discrete state space Q@ = {q,,- -, q;}, if the actual state is t, there

are d — 1 mode mismatch errors could happen. Intuitively, we want to derive the evolution
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of e, as a stochastic equation based on the probabilistic event of mode mismatch occurrence.
In the following, we will formally model this random process by introducing two sequences

. t=d = t=d
of random variables, {©.},_] and {E;},_] as:

(

A with probability A;y;

A,  with probability Agy;

G)t -
\ Ay with probability Mg
with Zid:l Air = 1. For a given t, ©, is a random variable on the outcome space {Ay,--- , As}
and all the events ©@; = Ay, ---, Oy = Ay are mutually exclusive. The probability Aj; can

be interpreted as the probability that the estimated mode is i while the true mode is t. It is
worth mentioning that in realistic applications, the probability of mode mismatch may not
only be a function of i and t but can also correlated across time or across mode. Similarly,

a random variable E; is defined as:

(

A =T with probability Aj;

Ay — Ty, with probability Agy;

[1]

+

\ Ag—Tgy with probability Ag;.
Note that the probabilities are the same as ©, for the same t. With ©; and E;, we can

rewrite equation (4.7) as:

e, = Ore_ + EcE(xp-1). (4.15)

From equation (4.15), {ex}32, is a stochastic process for a given initial value eg. The
process ey is bounded with probability 1 if and only if E(ey) is bounded [39]. Therefore,

we consider convergence in mean, i.e., klim E(er) < oo. According to the tower rule, we
—00
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have E(e;) = E(E(ex|ex—1)), where the outer expectation is taken over e,_; and the inner

expectation is taken over the random variables ©; and Z;. Therefore,

E(er) = > NeAiE(es—1) + > Nie(Ai — Ti)E(xx1) (4.16)

i=1
Recall that a discrete-time stochastic system is defined on the hybrid space of continuous
and discrete state spaces. The dynamics of E(ey) in equation (4.16) follows the structure of
the system in (4.1). That is, the evolution of E(ey) is linearly dependant on the previous
E(er—1) and the current mode t (which by definition is the actual discrete state in the original
system). Therefore, we propose to define a transformed stochastic hybrid system to describe
(4.16) as:

X, =Fgx;_; + Gguq, (4.17)

where the continuous state x; = E(e;) and u, = E(xg) can be treated as an external input.
We use the same notation ¢, to denote the discrete state since it follows the same transitions

in both the original system and the transformed switched system. The system matrices are:

d d
FQk = Z AinkAi’ G‘Ik = Z Aink (A' B Fink)
i=1 i=1

Our goal is to find conditions under which E(ey) converges. It is important to note that
the evolution of xj in (4.17) does not contain uncertainty (i.e., modeling noise) as in (4.1).
Thus, (4.17) is effectively a switched system. Since in this section, we consider a generalized
SHS model without restricting ourselves to any specific type of discrete state transitions.
At a higher level, the generalized SHS can be astracted as a switched system with arbitrary
switching. This allows us to neglect specific details of the discrete state behavior and instead
incorporate all possible switching patterns [10]. With this connection between switched
system and the generalized SHS model in mind, we confine ourselves to the convention of
switched systems with arbitrary switching signals throughout the remainder of this section.

With the transformed switched system (4.17), this problem is equivalent to analyze the
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input signal bias dynamics
1 \ t ' 1
i