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Abstract

Stochastic hybrid system (SHS) is a class of dynamical systems that experience interac-

tion of both discrete mode and continuous dynamics with uncertainty. State estimation for

SHS has attracted research interests for decades with Kalman filter based solutions domi-

nating the area. Mode-based Kalman filter is an extended version of the traditional Kalman

filter for SHS. In general, as Kalman filter is unbiased for non-hybrid system estimation, prior

research efforts primarily focus on the behavior of error covariance. In SHS state estimate,

mode mismatch errors could result in a bias in the mode-based Kalman filter and have im-

pacts on the continuous state estimation quality. The relationship between mode mismatch

errors and estimation stability is an open problem that this dissertation attempts to address.

Specifically, the probabilistic model of mode mismatch errors can be independent and iden-

tically distributed (i.i.d.), correlated across different modes and correlated across time. The

proposed approach builds on the idea of modeling the bias evolution as a transformed sys-

tem. The statistical convergence of the bias dynamics is then mapped to the stability of the

transformed system. For each specific model of the mode mismatch error, the system matrix

of the transformed system varies which results in challenges for the stability analysis. For the

first time, the dissertation derives convergence conditions that provide tolerance regions for

the mode mismatch error for three mode mismatch situations. The convergence conditions

are derived based on generalized spectral radius theorem, Lyapunov theorem, Schur stability

of a matrix polytope and interval matrix method. This research is fundamental in nature

and its application is widespread. For example, the spatially and timely correlated mode

mismatch errors can effectively capture cyber-attacks and communication link impairments

in a cyber-physical system. Therefore, the theory and techniques developed in this disser-

tation can be used to analyze topology errors in any networked system such as smart grid,

smart home, transportation, flight management system etc. The main results provide new



insights on the fidelity in discrete state knowledge needed to maintain the performance of a

mode-based Kalman filter and provide guidance on design of estimation strategies for SHS.



Bias analysis in mode-based Kalman filters for

stochastic hybrid systems

by

Wenji Zhang

B.E., University of Electronic Science and Technology of China, 2014

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

Approved by:

Major Professor
Balasubramaniam Natarajan



Copyright

c© Wenji Zhang 2018.



Abstract

Stochastic hybrid system (SHS) is a class of dynamical systems that experience interac-

tion of both discrete mode and continuous dynamics with uncertainty. State estimation for

SHS has attracted research interests for decades with Kalman filter based solutions domi-

nating the area. Mode-based Kalman filter is an extended version of the traditional Kalman

filter for SHS. In general, as Kalman filter is unbiased for non-hybrid system estimation, prior

research efforts primarily focus on the behavior of error covariance. In SHS state estimate,

mode mismatch errors could result in a bias in the mode-based Kalman filter and have im-

pacts on the continuous state estimation quality. The relationship between mode mismatch

errors and estimation stability is an open problem that this dissertation attempts to address.

Specifically, the probabilistic model of mode mismatch errors can be independent and iden-

tically distributed (i.i.d.), correlated across different modes and correlated across time. The

proposed approach builds on the idea of modeling the bias evolution as a transformed sys-

tem. The statistical convergence of the bias dynamics is then mapped to the stability of the

transformed system. For each specific model of the mode mismatch error, the system matrix

of the transformed system varies which results in challenges for the stability analysis. For the

first time, the dissertation derives convergence conditions that provide tolerance regions for

the mode mismatch error for three mode mismatch situations. The convergence conditions

are derived based on generalized spectral radius theorem, Lyapunov theorem, Schur stability

of a matrix polytope and interval matrix method. This research is fundamental in nature

and its application is widespread. For example, the spatially and timely correlated mode

mismatch errors can effectively capture cyber-attacks and communication link impairments

in a cyber-physical system. Therefore, the theory and techniques developed in this disser-

tation can be used to analyze topology errors in any networked system such as smart grid,

smart home, transportation, flight management system etc. The main results provide new



insights on the fidelity in discrete state knowledge needed to maintain the performance of a

mode-based Kalman filter and provide guidance on design of estimation strategies for SHS.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Stochastic Hybrid System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Organization of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 State Estimation for SHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Scenario 1: Discrete states are directly available . . . . . . . . . . . . 11

2.1.2 Scenario 2: Discrete states are not directly available . . . . . . . . . . 12

2.2 Performance Analysis for Kalman Filters . . . . . . . . . . . . . . . . . . . . 13

3 State Estimation in SHS with Mode-Based Kalman Filter . . . . . . . . . . . . . . 16

viii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Impact of Independent and Identically Distributed Mode Mismatch Errors . . . . 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Bias Dynamics in a Mode-based Kalman Filter . . . . . . . . . . . . 29

4.2.3 Error Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 SHS with Bernoulli Distributed Discrete States . . . . . . . . . . . . . . . . 33

4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Generalized SHS with Arbitrary Discrete State Transitions . . . . . . . . . . 41

4.4.1 Transformed Switched System . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Numerical Example I . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 Numerical Example II . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.3 Case Study: Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Time Correlated (Markovian Distributed) Mode Mismatch Errors . . . . . . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 MJLS with two discrete states . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Convergence on the Autonomous System . . . . . . . . . . . . . . . . 76

ix



5.3.2 Boundedness on the Continuous States . . . . . . . . . . . . . . . . . 81

5.4 MJLS with arbitrary numbers of modes . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Mean Process of the Bias Dynamics . . . . . . . . . . . . . . . . . . . 83

5.4.2 Stability Analysis for Mean Bias Dynamics . . . . . . . . . . . . . . . 86

5.4.3 Schur Stability of Interval Matrix . . . . . . . . . . . . . . . . . . . . 89

5.4.4 Conditions on Transition Matrix . . . . . . . . . . . . . . . . . . . . . 94

5.4.5 Boundedness on the Continuous States . . . . . . . . . . . . . . . . . 96

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1 Numerical Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Numerical Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Spatially Correlated Mode Mismatch Errors . . . . . . . . . . . . . . . . . . . . . 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Correlated Mode Mismatch Errors . . . . . . . . . . . . . . . . . . . 107

6.3.2 Mode-Based Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.3 Transformed Switched System . . . . . . . . . . . . . . . . . . . . . . 110

6.3.4 Stability for Markov Jump Linear Systems . . . . . . . . . . . . . . . 111

6.3.5 Discussion on the Convergence of Bias Dynamics . . . . . . . . . . . 115

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

x



List of Figures

1.1 A general SHS model for smart grids . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Conceptual smart grid model . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Structure of the IMM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Mode update and base state update . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Proposed estimation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Example of a toy robot moving . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Robot Motion Example: Moving trajectory of the robot . . . . . . . . . . . . 23

3.4 Robot Motion Example: Continuous state and estimation . . . . . . . . . . . 23

3.5 Robot Motion Example: Discrete state and estimation . . . . . . . . . . . . 24

4.1 Stability analysis for the transformed switched system . . . . . . . . . . . . . 44

4.2 Maximum of ‖E(ek)‖ versus different values of λ . . . . . . . . . . . . . . . . 57

4.3 Maximum of ‖E(ek)‖ versus different values of ε . . . . . . . . . . . . . . . . 58

4.4 ‖E(ek)‖ using Monte-Carlo simulation for different ε and λ . . . . . . . . . . 59

4.5 Bias in mode-based Kalman filter using Monte-Carlo simulation and theoret-

ical bias evolution for switching signal 1 . . . . . . . . . . . . . . . . . . . . 61

4.6 Bias in mode-based Kalman filter using Monte-Carlo simulation and theoret-

ical bias evolution for switching signal 2 . . . . . . . . . . . . . . . . . . . . 61

4.7 Upper bound of ‖x∗k‖ given mode mismatch probability P . . . . . . . . . . 62

4.8 The bias evolution to achieve an upper bound of bias B = 0.3 . . . . . . . . 62

4.9 Monte-Carlo simulation for the smart grid system with λ in stable region and

unstable region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



5.1 Motivating example: communication link impairments in a smart grid . . . . 69

5.2 Mapping from simplex space to interval matrix . . . . . . . . . . . . . . . . . 92

5.3 Stable region for λ0 and λ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 The mean of bias evolution for two different settings on λ0 and λ1 . . . . . . 98

5.5 Stable region for ααα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Monte-Carlo simulation for the bias dynamics under different settings of λ0

and λ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Motivating example: spatially correlated cyber-effects in a smart grid . . . . 105

6.2 An example of correlated nodes . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Max of ‖x∗k‖ versus λC1 when λC2 = 0.4 (stable region) . . . . . . . . . . . . . 116

6.4 Max of ‖x∗k‖ versus λC2 when λC1 = 0.5 (stable region) . . . . . . . . . . . . . 116

xii



List of Tables

4.1 Discrete Status and Continuous Dynamics Parameters . . . . . . . . . . . . . 64

xiii



Notations

Symbols

xk Continuous state at time k
yk Measurements at time k
qi Discrete mode, i = 1, · · · , d
Q Set of discrete state, Q = {q1, · · · , qd}
δk Actual discrete state at time k
γk Estimated/Measured discrete state at time k
δδδsk Sequence of actual discrete states up to time k, δδδsk = (δ1, · · · , δk)
γγγsk Sequence of measured discrete states up to time k, γγγsk = (γ1, · · · , γk)
ysk Sequence of measurements up to time k, ysk = (y1, · · · ,yk)
N+ Space of positive integers
R Space of real numbers

Operations

[·]−1 Inverse of a matrix
[·]′ Transpose of a matrix/vector
‖·‖ 2-norm of a matrix/vector
|·| Absolute value of a scalar

ρ(·) Spectral radius of a matrix
E(·) Expectation of a random variable
P(·) Probability of a random event
P
qi
γk Short notation for probability of γk = qi

A⊗B Kronecker product of two matrices
A Conjugate of matrix A

a[i] ith element of vector a
Tr(·) Trace of a matrix

diag[a1, · · · , an] Diagonal matrix with a1, · · · , an as diagonal elements
A � 0 matrix A is symmetric positive definite (s.p.d.) matrix
A ≺ 0 matrix A is symmetric negative definite (s.p.d.) matrix

xiv



Abbreviations

SHS Stochastic hybrid system
SDSHS State-dependant stochastic hybrid system

CPS Cyber-physical system
MJLS Markov jump linear system

PV Photovoltaics
IMM Interacting multiple model

MMAE Multiple model adaptive estimation
i.i.d. Independent and identically distributed

MMSE Minimum mean square error
MSE Mean square error

MVUE Minimum variance unbiased estimator
EPT Errors per transition

AEPT Average errors per transition
QLF Quadratic Lyapunov function

CQLF Common quadratic Lyapunov function
LMI Linear matrix inequality

BIBO Bounded-input bounded-output
NCS Networked control system
WSS Wide sense stationary
LQR Linear quadratic regulator
MSS Mean squared stability

xv



Acknowledgments

I would like to express my sincere gratitude to my advisor Dr. Bala Natarajan for his

guidance, encouragement and support over the years. His passion and enthusiasm kept

me constantly engaged with my research, and his personality inspired me to be a lifelong

learner. This dissertation would not have been possible without his patient and persistent

help. My special appreciation to my doctoral committee members Dr. Pavithra Prabhakar,

Dr. Nathan Albin, Dr. Behrooz Mirafzal and my outside chairperson Dr. Wei-Wen Hsu for

their constructive advice that helps improve the quality of my research.

I am also grateful to former WICOM lab members Dr. Kan Chen, Dr. Chang Liu, Dr.

Kumar Jhala, Dr. S. M. Shafiul Alam and Dr. Mohammed Taj-Eldin for their valuable

guidance and mentoring in both research and future career. Additionally, I am thankful to

current lab members Alaleh Alivar, Hazhar Sufi Karimi, Solmaz Niknam and Reza Barazideh

for their inspiration and assistance. Thanks to my friends at K-State Futing Fan, Xin Li,

Haotian Wu, Tianyu Lin, Qihui Yang and Bo Liu for all the fun memories that we shared

together.

My sincere appreciation to my parents Zhihua Zhang and Jianying Cao. Thanks for

your continuous support over the years and countless sacrifices to raise me up to what I am

today. Special thanks to my boyfriend Xiangpeng Li whose kindness, wisdom and endless

love encourage me to achieve my dreams over the years. Thanks to my younger self. Thank

you for not giving up.

This work was funded in part by the Electrical Power Affiliates Program (EPAP) and

NSF-CNS-1544705.

xvi



Dedication

To Xiangpeng. You are my light in the darkness.

xvii



Chapter 1

Introduction

In this chapter, we introduce the background of this dissertation. Using a motivating exam-

ple, we introduce the research questions of interest and highlight the contributions of this

dissertation.

1.1 Stochastic Hybrid System

Stochastic hybrid systems (SHS) are dynamical systems that involve the interaction of contin-

uous and discrete dynamics (also referred to as mode) with uncertainties. The uncertainties

can be part of the continuous dynamics, discrete state transitions, or both. In most cases, the

evolution of the continuous state is described via a stochastic differential/difference equation

(SDE) whereas the discrete state evolves depending on the application. Discrete state evo-

lution typically follows a random process (such as a Markov chain) or guard conditions (i.e.,

the discrete state transitions depend on the continuous state). SHS models have been widely

used to model cyber-physical systems (CPS) thanks to its capability to capture complex

dynamics. The applications of SHS include, but are not limited to, modeling of biochemical

processes [1, 2], manufacturing processes [3], communication networks [4], flight management

systems [5, 6] and smart grid [7], etc.

Based on different models for the continuous dynamics and discrete transitions, SHS
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can be categorized into several subclasses. For example, a state-dependant SHS (SDSHS)

denotes an SHS in which the discrete mode transitions are governed by guard conditions.

Another important category of SHS is Markov jump linear systems (MJLS). MJLS models

are applicable to systems that can be represented by a set of linear systems with modal

transitions governed by a Markov chain. MJLS has attracted significant attention in the

research community due to its analytical tractability as well as applicability to practical

systems, e.g., microgrid [8], networked control systems [9], etc. At a higher level, the gen-

eralized SHS can be abstracted as a switched system with arbitrary switchings. This allows

researchers to neglect the details of the discrete behavior and instead focus on all possible

switching patterns. This represents a significant departure from hybrid systems, especially

at the analysis stage [10].

Like many other dynamical systems, a successful and reliable implementation of SHS

presents several challenges. Specifically, stability [11–14], reachability [15, 16], situational

awareness (state estimation) [17–19] related problems for a general class of SHS are still

an ongoing research field and lack a universal solution. The above mentioned challenges are

critical for analysis of SHS and need to be well addressed. In this dissertation, we investigate

state estimation strategies for SHS and study the impact of inaccurate mode information

on continuous state estimation. Before we highlight the contributions of this dissertation,

we first introduce a motivating example of a smart grid system that illustrates the mode

mismatch problem and the contributions of this work to the community.

1.2 Motivating Example

The conventional power grid is transforming to a “smart grid” with the addition of renew-

able energy sources (e.g., photovoltaics (PV)), advanced metering and sensing infrastructure,

electric vehicles and controllable loads [7]. Integration of these technologies enable it to de-

liver affordable electric power with improved reliability, security and efficiency. We highlight

three characteristic behaviors that may be observed in a smart grid:

- Discrete behaviors: Smart grid contains a variety of operation modes that depend on

2



C Cyber-layer modes

𝑞𝑐 = 𝑐1

𝑞𝑐 = 𝑐𝐶

𝜆𝑖𝑗
𝑐

𝑞 = [𝑞𝑐 , 𝑞𝑙 , 𝑞𝑔, 𝑞𝑝]

𝑞𝑐 𝑞𝑙 𝑞𝑔 𝑞𝑝

𝜆𝑖𝑗
𝑙

L Uncertain load modes

𝑞𝑙 = 𝑙1

𝑞𝑙 = 𝑙𝐿

G Uncertain generation modes

𝑞𝑔 = 𝑔1

𝑞𝑔 = 𝑔𝐺

𝜆𝑖𝑗
𝑔

P Dynamic pricing modes

𝑞𝑝 = 𝑝𝑃

𝑞𝑝 = 𝑝1

𝜆𝑖𝑗
𝑝

Figure 1.1: A general SHS model for smart grids

the network topology. Network topology indicates the connection of main distribution

grid, load and storage devices, status of renewable energy generation, etc.

- Continuous behaviors: The physical components in a smart grid include generated

power, node voltage, etc. They evolve continuously and the evolution depends on the

current system modes (discrete states).

- Stochasticity: There are external and internal uncertainties that have to be taken

into consideration. For example, the randomness of human behavior, the failure of

the main grid, the influence of weather as well as measurement noise can all impact

grid behavior. The above mentioned stochasticity can be modeled as random mode

transitions or noise in continuous state knowledge.

Due to the existence of both discrete and continuous behavior as well as the uncertainties

within a smart grid, SHS is an appropriate model to capture the above mentioned charac-

teristics. In fact, SHS can not only model the uncertainties in loads, generations and other

physical components, but also offer a general framework to model the cyber-infrastructure

states and the economic strategies (dynamic pricing) in a smart grid. The general concept

of modeling the smart grid as an SHS is illustrated in Figure 1.1.

This dissertation considers network topology errors in a smart grid as a motivating ex-

ample. A conceptual small-scale smart grid model is shown in Figure 1.2. This toy model

3
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Kalman Filter
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𝑺𝟏, 𝑺𝟐, 𝑺𝟑, 𝑺𝟒, 𝑺𝟓, 𝑺𝟔

𝑷𝑮

𝑷𝑮

Home1

Electric
Vehicle

Home2

𝑺𝟑

𝑺𝟏

𝑺𝟒

Measurement on 
Analog Data

𝑺𝟐 𝑺𝟓

𝑺𝟔

Electricity GridHome3

Discrete 
State

Communication
Link

Communication
Link

Cyber-Attacks

2

Communication 
Link 

Impairments3

General Mode 
Mismatches1

Figure 1.2: Conceptual smart grid model

includes a bank of PV panels, electricity grid, home loads and electric vehicles. To aid state

estimation, there are two types of data collected in the smart grid:

1. Status data for switches, breakers, and communication links;

2. Analog data such as bus voltage, power flow, reactance, etc.

The continuous state can be estimated based on measurements of analog data and a mode-

based Kalman filter is proven to be the optimal estimator if the discrete mode is known [20].

Meanwhile, the status data in a smart grid determines the network topology with each

topology representing one discrete mode. The status data is sometimes reported by a human

operator, obtained from sensor measurements, or estimated based on analog data. All three

approaches are error prone due to human errors, missing data, communication errors or

estimation errors. As a consequence, errors in status data result in a network topology

(mode) error. Network topology errors in smart grids as discussed in [21] is a critical problem

for any networked system. Since continuous state evolves differently for different modes,
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errors in the network topology (mode) will impact the performance of mode-based Kalman

filter for continuous state estimate. Therefore, in this research, we consider the situation

wherein we have information on the discrete states but the information is inaccurate, also

referred to as mode mismatch errors. As shown in Figure 1.2, there are different types of

mode mismatch errors considered in this dissertation - (i) general mode mismatch; (ii) mode

mismatch resulting from cyber-impairment which includes cyber-attacks and communication

link failures. Specifically, for each scenario, we investigate the effect of mode mismatch on

mode-based Kalman filter and study the fidelity of discrete state knowledge required for

maintaining the continuous state estimate quality.

1.3 Motivation and Research Questions

As the preceding discussion suggests, state estimation in SHS is critical for both situational

awareness and implementation of control actions. Due to the interaction between continuous

states and discrete states, there exists challenges in SHS state estimation. Mode-based

Kalman filters have been widely used in continuous dynamics estimation. It has been shown

that a mode-based Kalman filter is an optimal estimator if the discrete states (modes) are

known [20, 22]. If discrete states are not available, the optimal estimator is composed of a

bank of Kalman filters with each filter corresponding to one discrete state. Several widely-

used hybrid estimation strategies such as interacting multiple model (IMM) algorithm [9]

and multiple model adaptive estimation (MMAE) algorithm [23] are established based on

this idea. Related to the problem of state estimation in SHS, we seek to address a few

fundamental research questions in this dissertation:

Question 1. For an SDSHS (SHS with guard conditions), how can one develop a state

estimation strategy using mode-based Kalman filter?

Question 2. For a general SHS model with mode mismatch errors modeled as independent

and identically distributed (i.i.d.) Bernoulli random variables, how does mode mismatch

impact the performance of a mode-based Kalman filter?

Question 3. For an MJLS with time correlated mode mismatch errors, can we establish
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algebraically solvable conditions under which the bias of mode-based Kalman filter resulting

from mode mismatch errors is statistically convergent? Can this result be extended to an

MJLS with arbitrary number of modes?

Question 4. What if the mode mismatch errors are spatially correlated in an MJLS with

arbitrary number of modes? Can we still derive algebraically solvable conditions such that

the bias of mode-based Kalman filter converges?

1.4 Contributions of This Dissertation

In this dissertation, we consider the case where we have information on the discrete state but

the information is inaccurate. In this case, it is possible to implement a bank of Kalman filters

for continuous state estimation. However, this approach suffers from exponentially increasing

memory and computational complexity. On the other hand, we can treat the known discrete

states as the true state and conduct the estimation via only one Kalman filter (i.e., a mode-

based Kalman filter). This Kalman filter is optimal if there is no mode mismatch. A mode

mismatch error will introduce a bias to the estimator with the error covariance remains

bounded [24–28]. In this regard, the major contributions of this dissertation summarized

below captures the foundation of this research.

• Question 1: State estimation design for SHS with guard conditions (SDSHS).

- Propose a new state estimation strategy for SHS with quadratic guard conditions.

Unlike the previous effort [29], only one Kalman filter is needed and the discrete

state estimate is derived based on the estimated continuous state.

- Derive the exact distribution for the guard condition instead of an approximation

of the distribution (as in [29]). Based on this distribution, we derive a threshold

for deciding whether a discrete transition occurs or not.

- The proposed approach results in an extremely low error rate for the discrete state

estimates even when transitions are frequent.
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We discuss these contributions in Chapter 3 and in the following article:

[19] W. Zhang and B. Natarajan, “State estimation in Stochastic Hybrid Systems with

Quadratic Guard Conditions,” in 2016 54th Annual Allerton Conference on Commu-

nication, Control, and Computing (Allerton), pp. 752-757, Sept 2016.

• Question 2: Performance analysis for generalized SHS with mode mismatch errors

modeled as i.i.d. Bernoulli random variable.

- Quantify the performance of a mode-based Kalman filter with mode mismatch

errors and derive the bias dynamics resulting from mode mismatch errors.

- Derive a computationally efficient sufficient condition for a special case of SHS

with two discrete states. The approach involves solving a straightforward eigen-

value problem to derive the critical region on the mode probability.

- For a generalized SHS with arbitrary number of modes, we propose the use of a

transformed switched system to describe the bias dynamics. The convergence of

the bias is then mapped to the stability of the transformed switched system.

- Derive sufficient and necessary conditions for stability of the corresponding au-

tonomous switched system and investigate the bounded input bounded output

stability of the transformed switched system. Acquire a tolerant region on proba-

bility of mode mismatch errors that guarantees convergence of the bias dynamics.

We discuss these contributions in Chapter 4 and in the following articles:

[24] W. Zhang and B. Natarajan, “Quantifying the Bias Dynamics in a Mode-based

Kalman Filter for Stochastic Hybrid Systems,” in 2018 Annual American Control Con-

ference (ACC), pp. 5849-5856, June 2018.

[25] W. Zhang and B. Natarajan, “On the Convergence of Bias of a Mode-based Kalman

Filter for Stochastic Hybrid Systems,” EURASIP Journal on Advances in Signal Pro-

cessing (In Press), 2018.
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• Question 3: Study the impact of time correlated mode mismatch errors on MJLS state

estimation.

- Quantifying the impact of time correlated (Markovian distributed) mode mis-

match errors on a mode-based Kalman filter for MJLS state estimation.

- Begin the analysis with an MJLS with two discrete states and derive sufficient

and necessary conditions (based on the results from Schur stability of a matrix

polytope) under which the bias dynamics are statistically convergent.

- Model the mean of bias dynamics as an auxiliary linear system. The system

matrix of this linear system is determined by a polytope of matrices with each

vertex matrix related to the original MJLS system matrices.

- For MJLS with arbitrary numbers of modes, by mapping the matrix polytope

to an interval matrix, and by leveraging results in Schur stability analysis for an

interval matrix, derive sufficient conditions on mode mismatch probabilities under

which the bias resulting from mode mismatches is statistically convergent.

These contributions are discussed in detail in Chapter 5 and in the following articles:

[26] W. Zhang and B. Natarajan, “Impact of Time Correlated Mode Mismatch on

Markov Jump Linear System State Estimation,” IEEE Control Systems Letters, vol.

2, pp. 489-494, July 2018.

[27] W. Zhang and B. Natarajan, “On the Performance of Kalman filter for Markov

Jump Linear Systems with Mode Mismatch,” Manuscript submitted to IEEE Trans-

action on Automatic Control, 2018.

• Question 4: Analyze bias dynamics in mode-based Kalman filter with spatially corre-

lated mode mismatch errors.

- Consider the case of correlated mode mismatches that can capture spatially corre-

lated cyber-impairments (communication link failures and cyber-attacks) in prac-

tical applications.
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- Derive sufficient conditions under which the bias resulting from mode mismatches

is statistically convergent. The condition is related to mode mismatch probabili-

ties and it provides guidance on the fidelity of discrete state information needed

to sustain the quality of the Kalman filter estimate.

- For the first time, we are able to derive an algebraically solvable condition in terms

of the mode mismatch probabilities that guarantees the statistical convergence of

the bias.

These contributions are discussed in detail in Chapter 6 and in the following articles:

[28] W. Zhang and B. Natarajan, “Bias Analysis in Kalman Filter with Correlated Mode

Mismatch Errors,” Signal Processing, vol. 154, pp. 232-237, 2019.

1.5 Organization of This Dissertation

Chapter 2 presents a literature review on state estimation strategies for SHS and their perfor-

mance. In Chapter 3, a state estimation strategy based on mode-based Kalman filter for SHS

with quadratic guard conditions is proposed. Chapter 4 derives the bias dynamics resulting

from mode mismatches modeled as i.i.d. Bernoulli random variables and studies its statis-

tical convergence. Chapter 5 investigates the performance of a mode-based Kalman filter

with time correlated mode mismatches. In Chapter 6, spatially correlated mode mismatch

errors are considered and a sufficient condition such that bias dynamics remain bounded in

an MJLS state estimation is derived. Concluding remarks and future research directions are

discussed in Chapter 7.
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Chapter 2

Literature Review

In this chapter, we review the prior literature on state estimation for stochastic hybrid

systems (SHS). Specifically, we focus on efforts that relate to performance and bias analysis

for hybrid estimation strategies.

2.1 State Estimation for SHS

The state space of an SHS is composed of both discrete states and continuous states and

the state space reveals the current status of the system. In most practical applications,

the continuous state itself may not be directly accessible and instead we observe a noisy

measurement that is a function of the states. For this case, state estimation is critical since it

benefits both situational awareness and implementation of control actions. The discrete state

usually reflects the operational mode of the system and it might be known (directly available)

or estimated. For these two different scenarios, the estimation strategies for continuous state

are different due to the interaction between continuous states and discrete states. In the

following, we present related research works considering the two different scenarios.
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2.1.1 Scenario 1: Discrete states are directly available

For the case that discrete states (also referred to as modes) are known and continuous states

evolve linearly, mode-based Kalman filter is an optimal estimator for continuous state [20,

22, 30]. Let us take Markov jump linear system (MJLS) [20] as an example. A discrete-time

MJLS can be described as

xk+1 = Aδk(k)xk + Bδk(k)wk

yk = Cδk(k)xk + vk

where xk ∈ Rn is the continuous state, δk ∈ Q is the discrete mode which follows a Markov

process and yk ∈ Rm is the measurement. Aδk(k), Bδk(k) and Cδk(k) are matrices corre-

sponding to mode δk. The mode-based Kalman filter is updated based on the measurement

sequence and mode sequence up to time k, i.e., ysk = (y1, · · · ,yk), δδδsk = (δ1, · · · , δk) respec-

tively. The mode-based Kalman filter algorithm is presented in Algorithm 1.

Algorithm 1 Mode-based Kalman filter

1: function Estimation update(µµµ0,M0|0,Q,R, δδδ
s
k,y

s
k)

2: x0|0 = µµµ0,M0|0 = Σ0

3: ysk = (y1, · · · ,yk)
4: δδδsk = (δ1, · · · , δk)
5: for i = 1 : k do
6: xi|i−1 = Aδixi−1|i−1

7: Mi|i−1 = AδiMi−1|i−1A
′
δi

+ Q
8: Kδi,i = Mi|i−1C

′
δi

(CδiMi|i−1C
′
δi

+ R)−1

9: xi|i = xi|i−1 + Ki,δi(yi −Cδixi|i−1)
10: Mi|i = (I−Kδi,iCδi)Mi|i−1

11: end for
12: return xk|k
13: end function

The estimated state xk|k is a minimum mean square error (MMSE) estimate of the actual

continuous state xk. MMSE here indicates zero-bias and minimum error covariance. A proof

of this can be found in Chapter 5 of [20]. A similar example is for an MJLS with observation

of continuous state and delayed measurement of discrete state and a mode-based Kalman
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Figure 2.1: Structure of the IMM algorithm

𝜇𝑘|𝑘Mode 

probability 

update

… … 
𝕃1, 𝑘

𝕃𝑑, 𝑘

State estimate 

and covariance 

combination

𝑥𝑘|𝑘

𝑀𝑘|𝑘

… … 
𝑥1, 𝑘|𝑘 , 𝑀1, 𝑘|𝑘

𝑥𝑑, 𝑘|𝑘 , 𝑀𝑑, 𝑘|𝑘

(a) Mode update (b) Base state update

𝜇𝑘 𝜇𝑘
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filter can also be applied as a MMSE estimator as demonstrated in [31]. In [32], the authors

expand their results to the case of delayed observations of both continuous and discrete

states.

2.1.2 Scenario 2: Discrete states are not directly available

In most realistic applications, the continuous states and discrete states may not be directly

accessible. For this situation, an optimal estimator is composed of a bank of Kalman filters

with each filter corresponding to one discrete state. Several widely-used hybrid estimation

strategies such as interacting multiple model (IMM) algorithm [33, 34] and multiple model

adaptive estimation (MMAE) algorithm [23] are established based on this idea. The process
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of the IMM algorithm is presented in Figure 2.1 and Figure 2.2. Specifically, xj,k|k, Mj,k|k

are the state estimate and covariance of Kalman filter corresponding to mode j at time k,

respectively. x0j,k|k, M0j,k|k are the mixed condition of Kalman filter corresponding to mode

j at time k. µk, µk|k are the mode probabilities and mixing probabilities at time k and Lj,k

is the likelihood function of Kalman filter corresponding to mode j. This algorithm can be

intuitively explained as follows.

1. It contains of a low gain filer (for the nearly uniform motion) and a high gain filter;

2. These filters interact (exchange information) with time-variant weights (the mixing

probabilities);

3. The final estimate is a combination (weighted average) of each filter’s estimate, with

the weights being the mode probabilities;

4. The weights for interaction and combination are based on which model fits better the

data (and other factors, such as the expected transition from one mode to another).

More recently, IMM algorithm has been extended to SDSHS and MJLS with time-variant

transition rates of the Markov chain [17, 29, 35]. [17, 29] According to Figure 2.1, the

IMM algorithm involves d (number of discrete states) Kalman filters. Similarly, the MMAE

algorithm also requires a bank of Kalman filters and they therefore suffers from exponentially

increasing memory and computational complexity [20, 36].

2.2 Performance Analysis for Kalman Filters

Mean square error (MSE) is one common measure for estimate quality. MSE measures the

average squared difference between the estimated values and the estimation. Mathematically,

the MSE of θ̂ that is an estimate of parameter θ is defined as

MSE(θ̂) = (bias(θ̂, θ))2 + V ar(θ̂), (2.1)
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with

bias(θ̂, θ) =
(
E(θ̂)− θ

)
,

V ar(θ̂) = E

[(
θ̂ − E(θ̂)

)2
]
.

According to (2.1), MSE is defined both on the bias and variance of the estimator. Bias

reflects how far off the average estimated value is from the true value and the variance reflects

how widely spread the estimates are. Typically, an unbiased estimator with the smallest

variance is the best unbiased estimator, also referred to as minimum variance unbiased

estimator (MVUE). As the preceding discussion suggests, considering the entire space of

estimation algorithms proposed for SHS, Kalman filter based algorithms dominate the area.

In the following, we will discuss the performance of Kalman filter and review efforts that

have been done to address this problem.

For non-hybrid linear system, the Kalman filter is the optimal filter (in MVUE sense)

[37] if the model matches the real system and the system noise is white Gaussian distributed.

However, if there exists missing measurements or intermittent observations in a dynamical

system, then the error covariance can diverge and become unbounded. This type of system

have been studied in [38–40]. [41] extends the analysis for the case of measurement loss in

distributed system estimation with Kalman filter. A more sophisticated case for dynamical

systems with random delays and packet dropouts (missing measurements) has been consid-

ered in [42–45]. All the above mentioned works follow a similar approach that is to derive a

bound for the critical probability of missing observation that ensures the statistical conver-

gence of error covariance. The bias is not taken into consideration in the above mentioned

papers due to the fact that Kalman filter is unbiased in such situations. Another work [46]

considers a different scenario where the model for Kalman filter is mismatched with the true

system (mismodeling). They take a unique perspective with focusing on a linear system with

possible failures and the failure then can be modeled as a deviation from the true model. The

considered metric is the residual of the Kalman filters and it can be shown that mismodeling

also introduces a bias to the Kalman filter. [46] derives mean and covariance of the residual
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without an algebraic convergence analysis.

As stated in the previous section, several state estimation strategies have been proposed

for SHS and Kalman filter is a critical component for most of the estimation strategies.

In terms of performance analysis of hybrid estimation strategies, there are only limited

prior efforts [47–49] with focus on the stability analysis of MMAE and IMM algorithm. [47]

proposes to evaluation the performance of MMAE and IMM using steady-state mean residual

for each mode. In [48], the authors propose an algorithm to analyze the performance of

IMM algorithm. Specifically, their approach involves several steps to approximate the mean

of mixing probability, means and covariance of Kalman filter residuals, mean of likelihood

function and mean-squared errors of the state estimation. A more recent work [49] studies

the lower and upper bounds on the error covariance of residual from a Kalman filter and

derives a sufficient condition for exponential stability of the IMM algorithm. With restricted

to IMM and MMAE algorithms, the prior works lack of exploration on the relationship

between mode mismatch errors and performance of a general Kalman filter. Let us take an

example of IMM algorithm as shown in Figure 2.1. For any hybrid system with d discrete

modes, there is only one Kalman filter that corresponds to the true mode is unbiased among

the bank of d Kalman filters. How sensitive is the convergence of bias in a mode-based

Kalman filter to errors in discrete state knowledge? Is there a critical region within which

the error dynamics in a mode-based Kalman filter will converge? These are the fundamental

unanswered questions that this dissertation seeks to address.
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Chapter 3

State Estimation in SHS with

Mode-Based Kalman Filter

In the first research, we design a state estimation strategy for a special class of SHS in

which the continuous state evolves linearly and the discrete state is governed by quadratic

guard conditions. This work provides us insights on how discrete state and continuous state

estimation are interacting and serves as a starting point of this dissertation.

3.1 Introduction

For any SHS, the evolution of continuous states depends on discrete states, whereas the

converse does not always hold. State-dependent stochastic hybrid system (SDSHS) is a

special subclass of SHS where the discrete state transitions are governed by guard conditions.

In this model, a discrete state transition happens only when a certain deterministic guard

condition is satisfied. SDSHS with guard condition has been shown to be an appropriate

model for many applications such as air traffic control [17, 29] and fuel-transfer system of

fighter aircraft [50]. State estimation in SDSHS presents some unique challenges as the

continuous state and discrete state are interacting with each other. On the other hand,

the discrete state estimation is benefit from the auxiliary information of continuous state
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estimates. The objective of this research is to design a Kalman filter based hybrid estimation

strategy for SDSHS with quadratic guard conditions.

Research work in state estimation for SHS has been ongoing for decades. One category

of well-established SHS model is discrete-time Markov jump linear systems (MJLS) [20] that

are applicable for systems that can be represented by a set of discrete-time linear systems

with modal transitions given by a Markov chain. [18, 20, 51] consider estimation problems

for MJLS. [18] proposes a simulation based algorithms called particle filters that also finds

application for non-linear SHS later in [52, 53]. [51] develops interacting-multiple model

(IMM) algorithm based on a bank of Kalman filter. Since the above mentioned papers have

not considered SDSHS, discrete states estimation is independent with continuous estima-

tion in nature. In the most recent, estimation problem for SDSHS gains research interest

as it greatly expands the application area in air traffic control [5, 17, 29, 54] and smart

grid [7]. State estimation in such systems have been considered in [17, 29, 55]. In [55], the

authors consider a system where the discrete state transitions are described by a Markov

chain but the transition rate is dependent on the continuous state. The authors extend the

well-known IMM algorithm for MJLS to systems with variable transition rates. In[17], the

authors consider a system with guard condition and they propose a bank of Kalman filter-

based algorithm called state-dependent-transition hybrid estimation algorithm. However,

the algorithm proposed in [17] is only suitable for linear guard conditions. In this case, the

problem is simplified as the linear transformation property of Gaussian random variables

holds. For SHS with quadratic guard conditions, [29] follows a similar approach as in [17]

and approximates the guard condition via the Laurent series and Taylor series expansion

that enables a simple form. However, the algorithms in [17, 29] require on-line calculation

from a bank of Kalman filter and it suffers from computation complexity. Additionally, the

simulation results suggest that discrete state estimation errors occur during every transition.

Therefore, the applicability of [29] for many practical systems is limited.
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Figure 3.1: Proposed estimation strategy

3.2 Proposed Approach

Mathematically, the evolution of continuous dynamics in a linear SHS can be represented

by:

xk = Aδkxk−1 + wk,

yk = Cδkxk + vk,

(3.1)

where, xk ∈ Rn is the continuous state and yk ∈ Rm is the measurement. wk ∼ N (0,Q) and

vk ∼ N (0,R) are both independent Gaussian noise that capture model and measurement

uncertainty, respectively. Without lose of generality, we define Q = {q1, · · · , qd} as the

discrete states set. The discrete state is δk = qi ∈ Q whose transitions are governed by a

set of guard conditions G = {G(i, j) : i, j ∈ Q}. G(i, j) = {x : gi,j(x) ≤ 0} is a subspace of

continuous state space in which the guard condition gi,j(x) ≤ 0 is satisfied. For quadratic

guard condition, the function gi,j(x) = x′Ψijx − cij where cij is a scalar constant and Ψij
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is an n-by-n symmetric positive definite (s.p.d) matrix for each pair of modes (qi, qj). If the

current mode δk = qi, and continuous dynamics enter the subset G(i, j), then discrete state

makes transition from δk = qi to δk+1 = qj. The proposed estimation strategy estimates the

system states recursively as shown in Figure 3.1. The continuous state is estimated via a

mode-based Kalman filter and the transition probability for discrete states is obtained by

derive the distribution of guard condition.

Through the rest of the this dissertation, we assume the initial distribution for continuous

state is x0 ∼ N (µµµ0,Σ0) and there is a unique initial discrete state δ0 = q1. We consider

the case that discrete states are not available (cannot be directly observed), therefore the

mode-based Kalman filter is processed based on estimated modes. Let the measurement

sequence and estimated mode sequence up to time k be ysk = (y1, · · · ,yk), γγγsk = (γ1, · · · , γk)

respectively. The mode-based Kalman filter algorithm is presented in Algorithm 2. Note

that Kγi,i is the Kalman gain related to mode γi. xk|k is the estimate of xk and we denote

it as x̂k.

Algorithm 2 Mode-based Kalman filter

1: function Estimation update(µµµ0,M0|0,Q,R, γγγ
s
k,y

s
k)

2: x0|0 = µµµ0,M0|0 = Σ0

3: ysk = (y1, · · · ,yk)
4: γγγsk = (γ1, · · · , γk)
5: for i = 1 : k do
6: xi|i−1 = Aγixi−1|i−1

7: Mi|i−1 = AγiMi−1|i−1A
′
γi

+ Q
8: Kγi,i = Mi|i−1C

′
γi

(CγiMi|i−1C
′
γi

+ R)−1

9: xi|i = xi|i−1 + Ki,γi(yi −Cγixi|i−1)
10: Mi|i = (I−Kγi,iCγi)Mi|i−1

11: end for
12: return xk|k
13: end function

For discrete state estimation, the transition probability is approximated by:

P(γk+1 = qj|γk = qi, x̂k) = P(gi,j(x̂k) ≤ 0) = P(x̂′kΨijx̂k − cij ≤ 0). (3.2)

As the output of Kalman filter x̂k is a random variable, the transition probability depends
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on the distribution of x̂′kΨijx̂k which is also a random variable.

Theorem 3.2.1. The quadratic form random variable x̂′kΨijx̂k has a non-central χ2(τ, υ2
k)

distribution, with degrees of freedom τ = n and non-centrality parameter υ2
k = b′kΦkbk,

where

Φk = U′M
1
2

k|kΨijM
1
2

k|kU, bk = U′M
− 1

2

k|k x̂k (3.3)

and U is a unitary matrix.

Proof. At time k, the continuous state estimation x̂k follows distribution ofN (µ̂µµk, Σ̂k), where

µ̂µµk = xk|k and Σ̂k = Mk|k. Since the matrix Ψij is positive definite, we can always find a

unitary matrix U such that

U′M
1
2

k|kΨijM
1
2

k|kU = diag[φ1,k, · · · , φn,k] = Φk. (3.4)

Therefore,

Ψij =
(
M
− 1

2

k|kU
)
Φk

(
M
− 1

2

k|kU
)′

(3.5)

Let h := x̂′kΨijx̂k, so we can rewrite h as:

h = x̂′k
(
M
− 1

2

k|kU
)
Φk

(
M
− 1

2

k|kU
)′

x̂k

=
(
U′M

− 1
2

k|k x̂k
)′

Φk

(
U′M

− 1
2

k|k x̂k
)

= Tr

[
Φk

(
U′M

− 1
2

k|k x̂k
)(

U′M
− 1

2

k|k x̂k
)′]

=
n∑
i=1

φi,k

[(
U′M

− 1
2

k|k x̂k
)[i]
]2

(3.6)

Specifically,

(
U′M

− 1
2

k|k x̂k
)[i]

=
(
U′M

− 1
2

k|k (x̂k − µ̂µµk)
)[i]

+
(
U′M

− 1
2

k|k µ̂µµk
)[i] (3.7)

Let

f
[i]
k =

(
U′M

− 1
2

k|k (x̂k − µ̂µµk)
)[i]

, (3.8)
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and

b
[i]
k =

(
U′M

−1
2

k|kµ̂µµk
)[i]
. (3.9)

It is easy to show that f
[i]
k ∼ N (0, 1) and b

[i]
k is a time-variant non-random variable [56].

So fk =

[
f

[1]
k · · · f

[n]
k

]′
is a Gaussian random vector with mean 0 and covariance I while

bk =

[
b

[1]
k · · · b

[n]
k

]′
is a time-variant non-random vector. Then, we have

h = x̂′kΨijx̂k =
b∑
i=1

λi
(
f

[i]
k + b

[i]
k

)2
=

n∑
i=1

φi,k
(
s

[i]
k

)2
= s′kΦksk, (3.10)

where, sk ∼ N (bk, I). Therefore, h follows a non-central χ2(τ, υ2
k) distribution [57] with

degrees of freedom τ = n and non-centrality parameter υ2
k = b′kΦkbk.

According to Theorem 3.2.1 and equation (3.2), the probability of state transitions can

be approximated as:

P(γk+1 = qj|γk = qi, x̂k) = P(gi,j(x̂k) ≤ 0) = P(x̂′kΨijx̂k − cij ≤ 0) = 1−Q τ
2
(υk,
√

cij),

(3.11)

where, Q τ
2

is the Marcum-Q-function [58] defined as

Q τ
2
(υk,
√

cij) =
1

υ
τ
2
−1

k

∫ ∞
√
cij

t
τ
2 e−

t2+υ2k
2 I τ

2
−1(υkt)dt. (3.12)

The estimation of discrete states depends on the calculated transition probability. Specif-

ically, if there are more than two discrete states, the transition probability needs to be

normalized such that

d∑
j=1

P(γk+1 = qj|γk = qi, x̂k) = 1.

21



𝑥

𝑦

𝛼

𝛽

Figure 3.2: Example of a toy robot moving

The estimated mode is obtained via

γk+1 = argmax
qj

P(γk+1 = qj|γk = qi, x̂k).

3.3 Experimental Results

We consider a simplified autonomous robot motion example as a potential application of our

work. As shown in Figure 3.2, the goal is to keep the robot moving in the shaded ring region.

We assume a robot is moving in a coordinate plane with two modes of motion - moving away

from the origin and moving towards the origin. The continuous state

x =

[
posx posy

]′

is a two-dimensional vector represents x-axis and y-axis of the robot position. The discrete

state space is Q = {q1, q2} and the guard condition to be g1,2(xk) = x′kIxk − 252 and

g2,1(xk) = x′k(−I)xk + 152. In Figure 3.3, the small circles present the position of robot
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Figure 3.3: Robot Motion Example: Moving trajectory of the robot
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Figure 3.4: Robot Motion Example: Continuous state and estimation
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Figure 3.5: Robot Motion Example: Discrete state and estimation

during the 100s simulation and the stars are the estimation positions. Figure 3.4 presents

the dynamics of xk in dashed line and their estimation in solid line. Figure 3.4 indicates that

the continuous state estimate tracks the actual state accurately. The solid line in Figure 3.5

shows the actual discrete states while the dashed line with ‘+’ marks shows the estimated

states. It should be noted that the number of discrete state transitions has a significant

impact on the error performance of estimation strategies. From Figure 3.5, we observe that

our algorithm maintains high accuracy even if the state transition happens very frequently.

In this simulation, there is only 1 estimation error points over the 100 seconds. We can

also define AEPT (average errors per transition) which captures average EPT over multiple

runs. We perform 500 Monte-Carlo simulations and compare our results to the results in

[29]. In terms of the AEPT, our algorithm has only 0.3691 AEPT while [29] has 1.505. We

can conclude that our algorithm offers a significant improvement in AEPT. Additionally,

our algorithm only requires one Kalman filter operation at each time instead of d Kalman

filters. This advantage broadens applicability in practice.
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3.4 Summary

In this chapter, we propose a state estimation strategy for stochastic hybrid systems with

quadratic guard conditions. In the proposed approach, we use a Kalman filter for continuous

state estimation. We prove that the distribution for guard condition is a non-central χ2 dis-

tribution with parameters related to the dimensional and statistical properties of continuous

states. The transition probabilities for discrete states are obtained via the cdf of the guard

condition. We also discuss approaches to choose a proper threshold to estimate the discrete

states based on the transition probabilities. We find a potential application of our result and

simulate this robot motion system with superior error performance.
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Chapter 4

Impact of Independent and Identically

Distributed Mode Mismatch Errors

In the previous chapter, we proposed a hybrid state estimation strategy for a state-dependant

stochastic hybrid system (SDSHS) which is composed of a mode-based Kalman filter and

mode switches estimation. In this chapter, we first derive the bias dynamics in a mode-based

Kalman filter that results from mode mismatches. By modeling the mode mismatch errors

as independent and identically distributed (i.i.d.) Bernoulli random variables, the statistical

convergence of the bias dynamics is also investigated in this chapter.

4.1 Introduction

State estimation in stochastic hybrid system (SHS) has attracted research interest for decades.

Kalman filter based strategies dominate the area. For one category of SHS where both dis-

crete and continuous states are observable and the discrete state transitions are independent

with continuous state, mode-based Kalman filter can be applied as a minimum mean square

error (MMSE) estimator [20, 22, 30]. In general SHS applications, discrete state may not

be directly observable [17, 19, 20, 23, 29, 33, 59, 60]. In this case, the optimal estimator

is obtained from a weighted sum of a bank of Kalman filters with each filter matched to a
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possible mode. Therefore, it requires exponentially increasing memory and computing time.

A couple of hybrid estimation algorithms have been proposed for Markov jump linear sys-

tem (MJLS), such as interacting multiple model (IMM) algorithm [33] and multiple model

adaptive estimation (MMAE) algorithm [23, 60]. [17, 29] extend the IMM algorithm to state

dependent SHS. Note that all the above mentioned algorithms require on-line computation

with a bank of Kalman filters and they suffer from high computational complexity. [19, 59]

decrease the complexity by formulating the mode estimation as a problem of belief-state up-

date and using only one Kalman filter corresponding to estimated mode for continuous state

estimation. As the preceding discussion suggests, the Kalman filter plays an important role

in most of the estimation algorithms for SHS. While there has been limited prior work that

analyzes the bias (error) of Kalman filter in SHS estimation, multiple efforts have focused

on Kalman filter error performance in non-hybrid scenarios [38–43, 45, 46, 61]. Due to the

fact that the Kalman filter yields an unbiased estimator in a non-hybrid system framework,

when analyzing error performance, only error covariance matrix is taken into consideration

[38–43, 45, 61]. Specifically, [38–43, 45, 61] consider dynamical system with missing mea-

sures, intermittent observations, random delays and packet dropouts and they follow the

similar approach to derive a bound for the critical probability of missing observation that

ensures the convergence of error covariance. In [46], the authors consider an estimation prob-

lem where the model for the Kalman filter is mismatched with the true system. Unlike the

previous mentioned papers, [46] studies the residual of Kalman filter and derives mean and

covariance of the Kalman filter residual without analyzing its convergence behavior. In terms

of estimation strategies for SHS, there are several prior efforts have been made [47–49, 62].

Their analysis is based on MMAE algorithm and the IMM approach. [47] first considers the

problem of quantifying performance of a hybrid estimation algorithm and derive the condi-

tion for exponential convergence of the estimator in terms of detection delay and sojourn

time [62]. In [48, 49], the authors extend their research on evaluating the stability of IMM

algorithm and they focus on the mean and covariance of the Kalman filter residual. However,

the existing research efforts have not explored the relationship between mode mismatch error

and SHS estimation. It is not known as to how discrete state estimation error influences the
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performance of a mode-based Kalman filter. How sensitive is the convergence of bias in a

mode-based Kalman filter to errors in discrete state knowledge? Is there a critical region

within which the error dynamics in a mode-based Kalman filter will converge? These are

the fundamental unanswered questions that this chapter seeks to address.

In this chapter, we study the statistical convergence of the bias dynamics in a mode-based

Kalman filter in the presence of i.i.d. mode mismatch errors. We first derive the dynamics of

a bias that results from mode mismatch errors for a specific model of SHS with two discrete

states. Additionally, the discrete state transitions are modeled via i.i.d. binary Bernoulli

random variables. For this specific system, we derive sufficient conditions for statistical

convergence of bias. Then, for a generalized SHS with arbitrary numbers of discrete states,

we take a fresh perspective and propose to use a transformed switched system to describe the

bias dynamics. The convergence of the bias is then mapped to the stability of the transformed

switched system. Finally, the theoretical results are verified and validated using numerical

examples and simulation of a smart grid with network topology errors. Theoretical and

numerical results help us identify the fidelity required in discrete state knowledge in order

to meet the performance requirements of continuous state estimates.

4.2 Preliminaries

4.2.1 System Model

We consider a discrete-time autonomous linear SHS. Mathematically, the continuous state

xk ∈ Rn and measurement yk ∈ Rm are related via the following equations:

xk = Aδkxk−1 + Bδkwk,

yk = Cδkxk + vk,

(4.1)

Here, δk represents the discrete state at time k, which is sometimes referred to as the mode.

Without loss of generality, we define discrete space as Q = {q1, · · · , qd}. For each δk, the
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corresponding Aδk is an n-by-n matrix, Bδk is an n-by-p matrix and Cδk is a m-by-n matrix.

Regarding the system model, we have the following assumptions:

1. wk ∼ N (0,Q) and vk ∼ N (0,R) are mutually independent white Gaussian capturing

model and measurement uncertainty, respectively.

2. The initial distribution of the continuous state follows a Gaussian distribution x0 ∼

N (µµµ0,Σ0). The discrete state has a unique initial mode δ0 = q1 ∈ Q.

3. For all δk ∈ Q, (Aδk ,BδkQB′δk) is controllable and (Cδk ,Aδk) is observable.

4. Aqi , ∀qi ∈ Q are distinct; CqiAqi = CqjAqj if and only if qi = qj. This assumption

guarantees that all modes can be distinguished from each other.

4.2.2 Bias Dynamics in a Mode-based Kalman Filter

Mode-dependent Kalman filter is used to estimate the continuous state in many hybrid

estimation algorithms [17, 19, 29, 32]. The mode-based Kalman filter algorithm for system

in (4.1) is introduced in Algorithm 3. Note that we denote the estimated/known mode as

γk and it also takes value in Q.

Algorithm 3 Mode-based Kalman filter

1: function Estimation update(µµµ0,M0|0,Q,R, γγγ
s
k,y

s
k)

2: x0|0 = µµµ0,M0|0 = Σ0

3: ysk = (y1, · · · ,yk)
4: γγγsk = (γ1, · · · , γk)
5: for i = 1 : k do
6: xi|i−1 = Aγixi−1|i−1

7: Mi|i−1 = AγiMi−1|i−1A
′
γi

+ BγiQB′γi
8: Kγi,i = Mi|i−1C

′
γi

(CγiMi|i−1C
′
γi

+ R)−1

9: xi|i = xi|i−1 + Ki,γi(yi −Cγixi|i−1)
10: Mi|i = (I−Kγi,iCγi)Mi|i−1

11: end for
12: return xk|k
13: end function

Here, Kγi,i is the Kalman gain related to mode γi. xk|k is the estimate of xk and we

denote it as x̂k. If the estimator has full knowledge of the actual mode, the mode-based
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Kalman filter is a minimum mean square error estimator. This situation is the same as a

typical Kalman filter used in a non-hybrid system. However, if γk 6= δk, then x̂k is a biased

estimate of xk. We define the estimation error (bias) at time k as

ek = E(x̂k)− E(xk). (4.2)

It should be pointed out that we define the bias to be the difference between mean of

estimate and the true state. In general, bias captures the difference between estimate and

actual value. However, both x̂k and xk are random variables that result in the bias being a

random variable. Therefore, we capture the difference between x̂k and xk in a mean sense

via ek. This metric is similar to those considered in [46, 47]. In the following, we first define

the unbiased property of Kalman filter for completeness.

Definition 4.2.1. A mode-based Kalman filter is unbiased if and only if ∀k, E(xk) = E(x̂k),

i.e., ∀k, ek = 0.

Lemma 4.2.1. A mode-based Kalman filter is an unbiased estimator if ∀k ≥ 0, γk = δk.

With the above definition and lemma, we prove the following corollary that if there exists

mode mismatch errors, then the mode-based Kalman filter is biased.

Corollary 4.2.1.1. A mode-based Kalman filter is biased if ∃k > 0 such that γk 6= δk.

Proof. We want to show that if ∃k̄ > 0 such that γk̄ 6= δk̄, then ek 6= 0 for some k. Let i

denote the estimated mode and t denote the actual mode.

For k < k̄ (i.e., time instants before mode mismatch occurs): Since i = t, as a result

of Lemma 4.2.1, E(xk) = E(x̂k).

For k = k̄ (i.e., time instant that mode mismatch occurs):

E(x̂k̄) = AiE(x̂k̄−1) + Ki,k̄[E(yk̄)−CiAiE(x̂k̄−1)]

= (Ai −Ki,k̄CiAi)E(x̂k̄−1) + Ki,k̄CtE(xk̄)

= (Ai −Ki,k̄CiAi)E(x̂k̄−1) + Ki,k̄CtAtE(xk̄−1)
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Therefore,

ek̄ = E(x̂k̄)− E(xk̄) = E(x̂k̄)−AtE(xk̄−1)

= (Ai −Ki,k̄CiAi)E(x̂k̄−1) + (Ki,k̄CtAt −At)E(xk̄−1)

(a)
= [Ai −At + Ki,k̄(CtAt −CiAi)]E(xk̄−1)

(a) is due to the fact that E(xk) = E(x̂k) for k < k̄. When k = k̄, we get i 6= t, Ai−At 6= 0 and

CtAt −CiAi 6= 0 based on assumptions in system model, which leads to ek̄ 6= 0. Therefore,

the mode-based Kalman filter is biased.

Remark 4.2.1. If Aqi = Aqj or CqiAqi = CqjAqj for some qi and qj, the mode-based

Kalman filter cannot discern that a mode mismatch has occurred. The result of Corollary

4.2.1.1 also excludes a trivial case that E(xk̄−1) lies in the null-space of the matrix Ai−At +

Ki,k̄(CtAt −CiAi). In this case, the corresponding contribution to bias ek is 0.

For the sake of compactness in notation, we follow the notation in proof of Corollary

4.2.1.1 and introduce t and i to denote actual mode and estimated mode at time k in this

chapter. That is, t = δk ∈ Q and i = γk ∈ Q. It needs to be noted that t and i are indeed

time-variant random variables. From the discussion in the proof of Corollary 4.2.1.1, we can

write

ek =(Ai −Ki,kCiAi)E(x̂k−1) + (Ki,kCtAt −At)E(xk−1)

=(Ai −Ki,kCiAi)ek−1 + (Ai −Ki,kCiAi + Ki,kCtAt −At)E(xk−1) (4.3)

Lemma 4.2.2. If ∃N, s.t.∀k > N, i = t, then the error of a mode-based Kalman filter will

converge, i.e., lim
k→∞

ek = 0.

Proof. ∀k > N , i = t, so Ai−Ki,kCiAi+Ki,kCtAt−At = 0. Then ek = (Ai−Ki,kCiAi)ek−1 =

Λi,kek−1 where,

Λi,k = Ai −Ki,kCiAi = (I−Ki,kCi)Ai.
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In order to prove lim
k→∞

ek = 0, we need to show that ρ(Λi,k) < 1.

For any Kalman filter, the observer gain corresponding to mode i is defined as Li,k =

AiMk|k−1C
′
i(CiMk|k−1C

′
i + R)−1. Given that (Ai,BiQB′i) is controllable and (Ci,Ai) is

observable for all i ∈ Q, the closed-loop dynamics Ai − Li,kCi is stable. Then

Ai − Li,kCi = Ai −AiKi,kCi = Ai(I−Ki,kCi).

From commutativity property of spectral radius,

ρ(Ai − Li,kCi) = ρ(Λi,k) < 1.

4.2.3 Error Covariance

Mean squared error (MSE) is an important metric to analyze performance of any estimator.

MSE of θ̂ that is an estimate of parameter θ is defined as MSE(θ̂) = (bias(θ̂, θ))2 + V ar(θ̂).

Here, V ar(θ̂) is the error variance. For a typical Kalman filter, since it is unbiased, prior

research efforts primarily focus on behavior of the error covariance. For any Kalman filter,

estimation error covariance is recursively updated as:

Mk|k = Mk|k−1 −Mk|k−1C
′
i(CiMk|k−1C

′
i + R)−1CiMk|k−1. (4.4)

Equation (4.4) shows that the error covariance matrix is updated depending on the current

estimated mode i. The assumptions that (Ai,BiQB′i) is controllable and (Ci,Ai) is observ-

able guarantee existence of a steady-state error covariance for each mode. As discussed in

[63], given Q and R are constant, the error covariance Mk|k and Kalman gain will stabilize

quickly. Disregarding whether mode i reflects the true state t or not, the updating process

(4.4) remains bounded. This situation is different from the analysis of Kalman filter with

intermittent measurement problem (see for example [64]) or coupled Riccati equations for
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switched system [65] as the error covariance matrix evolves corresponding to a complete

Riccati equation defined by mode i. Since the error covariance matrix is bounded, we focus

on the bias of the mode-based Kalman filter in the rest of the chapter.

4.3 SHS with Bernoulli Distributed Discrete States

In this section, we focus on the specific class of SHS in which the discrete transitions are

modeled via i.i.d. Bernoulli random variables and the discrete space contains only two

modes, i.e., Q = {q1, q2}. We derive conditions under which the bias dynamics is statistically

convergent .

4.3.1 Problem Formulation

Irrespective of the methods used to estimate the discrete states, mismatch of discrete states

is a typical problem in SHS estimation. Similar to the pioneering work [38–42, 46, 61] in

missing observation problem for non-hybrid system, we use i.i.d. binary Bernoulli random

variables υk to describe the mode mismatch, i.e.,

υk =

 1 with probability λ;

0 with probability 1− λ.

Here, υk = 1 indicates the estimated mode is inconsistent with actual mode while υk = 0

indicates they are the same. The extension to more general models such as correlated mode

mismatch error process will be considered in the following chapters. As discussed, the update

of ek is described via equation (4.3). Following the notation Λi,k = Ai − Ki,kCiAi in the

proof of Lemma 4.2.2, and defining Γi,t,k = At −Ki,kCtAt, when t = i, Γi,t,k = Λi,k. We can

rewrite (4.3) as:

ek = Λi,kek−1 + (Λi,k − Γi,t,k)E(xk−1). (4.5)
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After introducing υk, we have:

for υk = 1, ek = Λi,kek−1 + (Λi,k − Γi,t,k)E(xk−1);

for υk = 0, ek = Λi,kek−1.

So we rewrite equation (4.5) as:

ek = Λi,kek−1 + υk(Λi,k − Γi,t,k)E(xk−1). (4.6)

Denote the steady Kalman gain Ki,∞ for mode i as Ki, along with the relative matrices

Λi = Ai − KiCiAi and Γi,t = At − KiCtAt. Since we assume that Q and R are same

constant for all modes i ∈ Q, the Kalman gain Ki,k will converge to the corresponding

steady Kalman gain Ki quickly [63]. The steady Kalman gain can be computed before any

observation is made and it has been used in sub-optimal control problem for decades. As it

involves an off-line calculation and can reduce complexity of the estimation process, we use

Ki to approximate Ki,k and simplify equation (4.6) as:

ek = Λiek−1 + υk(Λi − Γi,t)E(xk−1). (4.7)

It is important to note that even though we remove subscript k from Λi and Γi,t, they are still

time-variant because t and i change with k. Therefore, t and i in (4.7) should be interpreted

as the actual mode at time k and estimated mode i at time k, respectively.

4.3.2 Main Results

From equation (4.7), {ek}∞k=0 is a stochastic process for a given initial value e0. Note that

ek is bounded with probability 1 if and only if E(ek) is bounded [39]. Therefore, we consider

convergence in mean, i.e., lim
k→∞

E(ek) <∞. Here, E(ek) is a n-dimensional vector and E(ek) <

∞ means each element is finite. From tower rule, we know that E(ek) = E(E(ek|ek−1)), where
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the outer expectation is taken over ek−1 while the inner expectation is taken over the random

variable υk.

E(ek) = ΛiE(ek−1) + λ(Λi − Γi,t)E(xk−1) (4.8)

Our goal is to determine the conditions under which (4.8) is bounded. To help in the analysis,

we first define an auxiliary iteration function fλ(h, l) = S1h + λS2l. We have:

E(ek) = E

[
fλ
(
ek−1,E(xk−1)

)]
= fλ

(
E(ek−1),E(xk−1)

)
,

with S1 = Λi and S2 = Λi − Γi,t.

For the vector ek with finite dimensions, lim
k→∞
‖E(ek)‖ < ∞ gives the sufficient and

necessary condition for lim
k→∞

E(ek) < ∞. So if we can prove that ‖fλ(E(ek−1),E(xk−1))‖ is

bounded, then lim
k→∞
‖E(ek)‖ <∞ will hold. In the following, we will focus on the convergence

property of
∥∥fλ(E(ek−1),E(xk−1)

)∥∥.

Theorem 4.3.1. The iteration function ‖h‖ = ‖fλ(h, l)‖ is monotonically increasing w.r.t.

λ when the iteration starts from h = 0.

Proof. Let 0 ≤ λ1 < λ2 ≤ 1. To prove the iteration function is monotonically increasing

w.r.t. λ, we need to prove for the same initial condition h0 and l0, after k ∈ N+ iterations,

‖hλ1,k‖ =
∥∥fkλ1(h0, l0)

∥∥ < ‖hλ2,k‖ =
∥∥fkλ2(h0, l0)

∥∥. Here,

fkλ(h0, l0) = (fλ ◦ fλ ◦ ... ◦ fλ)︸ ︷︷ ︸
k times

(h0, l0),

and ◦ is function composition defined for any function f as (f ◦ f)(x) = f(f(x)). The update

process is:

h1 = S1h0 + λS2l0;

h2 = S1h1 + λS2l1 = S2
1h0 + λ(S1S2l0 + S2l1);
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...

hk = Sk1h0 + λ
k−1∑
i=0

Sk−1−i
1 S2li.

For h0 = 0, hk = λ
k−1∑
i=0

Sk−1−i
1 S2li. Then ‖hk‖ = |λ|

∥∥∥∥k−1∑
i=0

Sk−1−i
1 S2li

∥∥∥∥. So

λ1

∥∥∥∥∥
k−1∑
i=0

Sk−1−i
1 S2li

∥∥∥∥∥ < λ2

∥∥∥∥∥
k−1∑
i=0

Sk−1−i
1 S2li

∥∥∥∥∥
‖hλ1,k‖ < ‖hλ2,k‖ .

In our case, e0 = E(x0)−E(x̂0) = 0 which guarantees that the initial fλ(E(ek−1),E(xk−1))

is 0. Therefore, Theorem 4.3.1 is applicable to the average error dynamics in (4.8). As defined

before, λ represents the probability that estimation mode is inconsistent with actual mode,

and Theorem 4.3.1 indicates that as λ increases, ‖E(ek)‖ will increase at each step update.

Additionally, Theorem 4.3.1 also indicates that the increase of ‖E(ek)‖ is linearly related to

λ.

Now, as we have uncovered the relationship between λ and the mean error dynamics, in

the following, we will establish conditions for the error dynamics to convergence in mean.

We first introduce two definitions of “the largest possible spectral radius” and “Lypunov

stability in mean” which will help us derive the convergence conditions.

Definition 4.3.1. [66] Given A is a set of matrices, ρ̄k(A) is the largest possible spectral

radius of all products of k matrices chosen in the set A, i.e.,

ρ̄k(A) := max

{
ρ

( k∏
i=1

Ai

)
: ∀i,Ai ∈ A

}
.

Definition 4.3.2. A SHS is Lyapunov stable in mean if given a ξ > 0, there exists
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ϑ(ξ, 0) such that E(‖x0‖) < ϑ implies

E(sup
k≥0
‖xk‖) < ξ.

From the proof for theorem 4.3.1:

hk = λ

k−1∑
i=0

Sk−1−i
1 S2li,

so we can write

E(ek) = λ
k−1∑
i=0

Λk−1−i
i (Λi − Γi,t)E(xi) (4.9)

One interesting observation is that (4.9) does not depend on E(ek−1) if e0 is 0. Moreover,

evolution of E(ek) is related to the statistical properties of the actual state {xi}k−1
i=0 . For a

typical non-hybrid system, E(xk) can be obtained based on the system model, where for SHS,

since the discrete state transitions are random, E(xk) cannot be obtained without knowing

the actual mode. Indeed, ρ̄k(A) can help to illustrate the convergence property of E(xk). For

an SHS with Q = {q1, · · · , qd}, let A = {Aq1 , · · · ,Aqd}. Denote Ak
s as product of matrices

on A, i.e.,

Ak
s =

k∏
i=1

Ai, ∀i,Ai ∈ A. (4.10)

Recall that the initial assumption is x0 ∼ N (µµµ0,Σ0), so we can write E(xk) = Ak
sµµµ0.

Theorem 4.3.2. lim
k→∞

ρ̄k(A) < 1 gives a sufficient condition for lim
k→∞
‖E(ek)‖ <∞.

Proof. By definition, ∀k, ρ(Ak
s) ≤ ρ̄k(A), so lim

k→∞
ρ(Ak

s) < 1, which leads to

lim
k→∞
‖E(xk)‖ = lim

k→∞

∥∥Ak
sµµµ0

∥∥ = 0.

Therefore, the sequence {‖E(xk)‖}∞k=0 is bounded by some constant C. Let assume for k > k∗,

‖E(xk)‖ = 0. Then C = max
0≤k≤k∗

‖E(xk)‖. Since
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‖E(ek)‖ = λ

∥∥∥∥∥
k−1∑
i=0

Λk−1−i
i (Λi − Γi,t)E(xi)

∥∥∥∥∥
≤ λ

k−1∑
i=0

∥∥Λk−1−i
i

∥∥ ‖Λi − Γi,t‖ ‖E(xi)‖ ,

then,

lim
k→∞
‖E(ek)‖ ≤ lim

k→∞
λ

k−1∑
i=0

∥∥Λk−1−i
i

∥∥ ‖Λi − Γi,t‖ ‖E(xi)‖

= λ
k∗∑
i=0

∥∥Λk∗−i
i

∥∥ ‖Λi − Γi,t‖ ‖E(xi)‖

≤
k∗∑
i=0

C1,iC2C <∞,

where C1,i =
∥∥Λk∗−i

i

∥∥ and C2 = ‖Λi − Γi,t‖, the finite sum of some bounded constants will

be bounded.

Theorem 4.3.3. If a SHS is Lyapunov stable in mean, then lim
k→∞
‖E(ek)‖ <∞.

Proof. Since the SHS is Lyapunov stable in mean, E(sup
k≥0
‖xk‖) < ξ, which leads to

lim
k→∞

E(‖xk‖) < ξ
(a)⇒ lim

k→∞
‖E(xk)‖ < ξ.

(a) is the result of Jensen’s inequality. Therefore, the sequence {‖E(xk)‖}∞k=0 is bounded by

ξ.

lim
k→∞
‖E(ek)‖ ≤ lim

k→∞
λ

k−1∑
i=0

∥∥Λk−1−i
i

∥∥ ‖Λi − Γi,t‖ ‖E(xi)‖

≤ lim
k→∞

λξ

k−1∑
i=0

∥∥Λk−1−i
i

∥∥ ‖Λi − Γi,t‖ <∞
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The evolution of E(ek) depends on Λi, Γi,t, E(xk−1) and υk. It reflects how close the

expectation of continuous state estimates are to the actual states. So far, we have uncovered

the relationship between Λi, Γi,t, E(xk−1), υk and the convergence of E(ek) as k → ∞.

The result in Theorem 4.3.2 is a strong condition but the condition lim
k→∞

ρ̄k(A) < 1 is still

challenging and it is algorithmically undecidable [67]. In the following, we will consider a

specific type of SHS which has two discrete states. With this assumption, all the theorems

discussed in this subsection also hold. Additionally, since i and t can only take two values in

this scenario, we are able to easily derive a critical region for discrete state probability that

will guarantee convergence in a mean sense.

Consider a stochastic hybrid system with two discrete states. Without loss of generality,

we denote Q = {q1, q2}. When (t = q1)&(i = q2) or (t = q2)&(i = q1), υk = 1; otherwise,

υk = 0. Assume we have prior knowledge on the discrete states distribution, for example,

let P(t = q1) = ε and P(t = q2) = 1 − ε. Define ζk to be a i.i.d Bernoulli random variable

that represents the actual mode t as:

ζk =

 1(t = q1) with probability ε;

0(t = q2) with probability 1− ε.
(4.11)

For ζk = 1, ek = Λiek−1 + υk(Λi − Γi,1)E(xk−1)

(a)
= Λiek−1 + γk(Λ2 − Γ2,1)E(xk−1).

For ζk = 0, ek = Λiek−1 + υk(Λi − Γi,2)E(xk−1)

(b)
= Λiek−1 + γk(Λ1 − Γ1,2)E(xk−1).

(a) and (b) result from the fact that when i = t, υk = 0, we can replace the term Λi−Γi,1
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with Λ2 − Γ2,1 and Λ1 − Γ1,2 respectively. Equation (4.7) in this case can be rewritten as:

ek =ζk[Λiek−1 + υk(Λ2 − Γ2,1)E(xk−1)] + (1− ζk)[Λiek−1 + υk(Λ1 − Γ1,2)E(xk−1)]

=Λiek−1 + ζkυk(Λ2 − Γ2,1)E(xk−1) + (1− ζk)υk(Λ1 − Γ1,2)E(xk−1)

(4.12)

Therefore, {ek}∞k=0 is a stochastic process related to υk and ζk. As stated, we consider the

convergence in mean, i.e., lim
k→∞

E(ek) < ∞. E(ek) = E(E(ek|ek−1)), the outer expectation is

taken over ek−1 while the inner expectation is taken over the random variable ζk and υk.

E(ek|ek−1) =Λiek−1 + ελ(Λ2 − Γ2,1)E(xk−1) + (1− ε)λ(Λ1 − Γ1,2)E(xk−1) (4.13)

With iteration function h = fλ(h, l) defined in last section,

E(ek) = fλ(E(ek−1),E(xk−1))

with S1 = Λi and S2 = ε(Λ2−Γ2,1) + (1− ε)(Λ1−Γ1,2). Generally, fλ(h, l) is not a function

of ε. However, if S1 and S2 are defined as shown, the ‘hidden’ parameter ε in S2 has impact

on the convergence property of ‖fλ(h, l)‖. In the following, we will quantify the impact and

obtain a critical stable region of ε.

Theorem 4.3.4. For a system with Q = {q1, q2} with ζk as defined in (4.11) indicates the

actual mode, ρ(εA1 + (1− ε)A2) < 1 gives a sufficient condition for lim
k→∞
‖E(ek)‖ <∞.

Proof. Since xk = (ζkA1 +(1− ζk)A2)xk−1 +wk and E(xk) = E[E(xk|xk−1)], where the inner

expectation is over ζk and the outer expectation is over xk−1, we can write

E(xk) = (εA1 + (1− ε)A2)E(xk−1)

= (εA1 + (1− ε)A2)kE(x0) = (εA1 + (1− ε)A2)kµµµ0.

The condition ρ(εA1 + (1− ε)A2) < 1 leads to lim
k→∞

E(xk) = 0. Follow the proof in Theorem

4.3.2, lim
k→∞
‖E(ek)‖ <∞.
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Theorem 4.3.4 shows that for a given SHS with A1 and A2, if

ε ∈
{
ε∗
∣∣∣∣ ρ(ε∗A1 + (1− ε∗)A2

)
< 1

}
, (4.14)

E(ek) is bounded. Therefore, (4.14) represents the stable region for ε where the error

converges in mean. This result is specially useful in practical systems as it helps identify the

fidelity needed in estimating the discrete state to ensure that the continuous state estimates

converge.

4.4 Generalized SHS with Arbitrary Discrete State Tran-

sitions

In the previous section, we derive the formulation of bias dynamics that results from mode

mismatch errors. Specifically, for a SHS with two discrete states and the discrete state

transitions are modeled via an i.i.d. binary Bernoulli random variables, the previous section

presents a sufficient condition such that the bias dynamics is statistically convergent. As

an extension, we now relax the constraints on two modes and i.i.d. Bernoulli transitions.

The SHS model considered in this section is general and can be applied for many practical

systems. The novelty lies in modeling the bias dynamics as a transformed switched system

enabling us to exploit techniques developed for stability analysis of switched system to our

problem of interest.

4.4.1 Transformed Switched System

Thus far, we have derived the dynamics of the bias in a mode-based Kalman filter. In

equation (4.7), the bias evolves based on matrices Λi and Γi,t. As defined in the previous

section, i and t are random variables that represent estimated and true mode at time k. In

general, for an SHS with discrete state space Q = {q1, · · · , qd}, if the actual state is t, there

are d− 1 mode mismatch errors could happen. Intuitively, we want to derive the evolution
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of ek as a stochastic equation based on the probabilistic event of mode mismatch occurrence.

In the following, we will formally model this random process by introducing two sequences

of random variables, {Θt}t=dt=1 and {Ξt}t=dt=1 as:

Θt =



Λ1 with probability λ1,t;

Λ2 with probability λ2,t;

...
...

Λd with probability λd,t

with
∑d

i=1 λi,t = 1. For a given t, Θt is a random variable on the outcome space {Λ1, · · · ,Λd}

and all the events Θt = Λ1, · · · , Θt = Λd are mutually exclusive. The probability λi,t can

be interpreted as the probability that the estimated mode is i while the true mode is t. It is

worth mentioning that in realistic applications, the probability of mode mismatch may not

only be a function of i and t but can also correlated across time or across mode. Similarly,

a random variable Ξt is defined as:

Ξt =



Λ1 − Γ1,t with probability λ1,t;

Λ2 − Γ2,t with probability λ2,t;

...
...

Λd − Γd,t with probability λd,t.

Note that the probabilities are the same as Θt for the same t. With Θt and Ξt, we can

rewrite equation (4.7) as:

ek = Θtek−1 + ΞtE(xk−1). (4.15)

From equation (4.15), {ek}∞k=0 is a stochastic process for a given initial value e0. The

process ek is bounded with probability 1 if and only if E(ek) is bounded [39]. Therefore,

we consider convergence in mean, i.e., lim
k→∞

E(ek) < ∞. According to the tower rule, we
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have E(ek) = E(E(ek|ek−1)), where the outer expectation is taken over ek−1 and the inner

expectation is taken over the random variables Θt and Ξt. Therefore,

E(ek) =
d∑

i=1

λi,tΛiE(ek−1) +
d∑

i=1

λi,t(Λi − Γi,t)E(xk−1) (4.16)

Recall that a discrete-time stochastic system is defined on the hybrid space of continuous

and discrete state spaces. The dynamics of E(ek) in equation (4.16) follows the structure of

the system in (4.1). That is, the evolution of E(ek) is linearly dependant on the previous

E(ek−1) and the current mode t (which by definition is the actual discrete state in the original

system). Therefore, we propose to define a transformed stochastic hybrid system to describe

(4.16) as:

x∗k = Fqkx
∗
k−1 + Gqkuk−1, (4.17)

where the continuous state x∗k = E(ek) and uk = E(xk) can be treated as an external input.

We use the same notation qk to denote the discrete state since it follows the same transitions

in both the original system and the transformed switched system. The system matrices are:

Fqk =
d∑

i=1

λi,qkΛi, Gqk =
d∑

i=1

λi,qk(Λi − Γi,qk)

Our goal is to find conditions under which E(ek) converges. It is important to note that

the evolution of x∗k in (4.17) does not contain uncertainty (i.e., modeling noise) as in (4.1).

Thus, (4.17) is effectively a switched system. Since in this section, we consider a generalized

SHS model without restricting ourselves to any specific type of discrete state transitions.

At a higher level, the generalized SHS can be astracted as a switched system with arbitrary

switching. This allows us to neglect specific details of the discrete state behavior and instead

incorporate all possible switching patterns [10]. With this connection between switched

system and the generalized SHS model in mind, we confine ourselves to the convention of

switched systems with arbitrary switching signals throughout the remainder of this section.

With the transformed switched system (4.17), this problem is equivalent to analyze the
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Figure 4.1: Stability analysis for the transformed switched system

stability of x∗k. As stated, we abstract the discrete state transitions in (4.1) as arbitrary

switching between each linear subsystem. Therefore, the goal is to find conditions such that

the switched system (4.17) with arbitrary switching signal is statistically stable. Additionally,

since the system matrices Fqk and Gqk depend on the probability of mode mismatch λi,qk ,

the impact of λi,qk on the stability of (4.17) also needs to be investigated. In the following,

we will first review and summarize the progress that has been made regarding the stability

for switched systems and then derive convergence conditions for stability of (4.17).

4.4.2 Main Results

As with general linear systems, numerous concepts of stability have been defined for switched

systems. In this section, we use the definition of asymptotic stability for switched systems.

Definition 4.4.1. The switched system (4.17) is asymptotically stable if there exists

some δ > 0 such that ‖x∗0‖ < δ implies ∀k, ‖x∗k‖ < ε (or lim
k→∞
‖x∗k‖ = 0) for all solutions x∗k

of the system.

Remark 4.4.1. A switched system is marginally stable if it is neither asymptotically stable

nor unstable.

Note that asymptotic stability gives a stronger condition for lim
k→∞
‖x∗k‖ <∞ since it not
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only requires convergence but requires convergence to the origin. The definition of marginal

stability implies that the state trajectory is bounded but not necessarily convergent, which

is equivalent to lim
k→∞
‖x∗k‖ < ∞. Therefore, conditions for asymptotic stability is sufficient

to guarantee lim
k→∞
‖x∗k‖ < ∞. Also, because asymptotic stability is closely related to the

stability of the corresponding autonomous system, it is typical to consider the stability of the

autonomous system first. For the transformed switched system in (4.17), the corresponding

autonomous system is:

x∗k = Fqkx
∗
k−1. (4.18)

Among the existing research works, there are primarily two approaches to address the sta-

bility of the autonomous system in (4.18). One approach involves solving the generalized

spectral radius of bounded semigroups of matrices. This approach leads to the joint spectral

radius problem [68]. While its computation is Turing-undecidable in general, the compu-

tation and approximation of generalized spectral radius is an active area of research. The

other approach is primarily built on the well-known Lyapunov theory. It should be noted

that the common quadratic Lyapunov function (CQLF) approach is a well-known approx-

imation of the joint spectral radius and the existence of a CQLF is a sufficient condition

for the asymptotic stability. Since generalized spectral radius problem is computationally

unsolvable as proved in [67], our main results are built on Lyapunov theory. The complete

process of our analysis is summarized in Fig. 4.1.

We use �Fq : x∗k = Fqx
∗
k−1 to denote the subsystem corresponding to mode q. The

autonomous switched system (4.18) switches between �Fq for all q. The following lemma is

introduced in [69].

Lemma 4.4.1. The switched system (4.18) is asymptotically stable under arbitrary switching

signal if:

(i). ρ(Fq) < 1,∀q ∈ Q;

(ii). ∃P = P′ � 0, F′qPFq −P ≺ 0.

Condition (i) in Lemma 4.4.1 implies asymptotic stability of every subsystem �Fq and

condition (ii) is the existence of common Lyapunov quadratic function (CQLF). Also, it is
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worth pointing out that the stability for each subsystem does not imply asymptotic stability

of the switched system [70]. The converse does not always hold either. As discussed in [71],

by choosing the switching signal carefully, the switched system can be made asymptotically

stable even though the subsystem is not. In the following, we first study conditions such

that

ρ(Fq) < 1,∀q ∈ Q (4.19)

holds, i.e., each subsystem is asymptotically stable.

Stability of the Subsystem

By definition, Fq is composed of convex combination of matrices as:

Fq =
d∑

i=1

λi,qΛi

The task of checking spectral radius of summation of matrices is not trivial in general. If

two matrices are commutable, i.e., AB = BA, then ρ(A + B) ≤ ρ(A) + ρ(B) [72]. If all the

matrices are non-negative (element-wise), [73] proves that spectral radius is strictly convex.

But all the mentioned results cannot be extended to general cases. Therefore, directly

checking the spectral radius is not feasible. An alternative approach is built on Lyapunov

theory which demonstrates the relationship between a quadratic Lyapunov function (QLF)

and the spectral radius of system matrices.

Lemma 4.4.2. The following statements are equivalent:

(i) if there exists a positive definite matrix P such that F′qPFq −P ≺ 0;

(ii) ρ(Fq) < 1;

(iii) the subsystem �Fq is asymptotically stable.

We first illustrate a property related to the spectral radius of Λi in the following lemma.

Lemma 4.4.3. For a SHS defined in (4.1), if (Ai,BiQB′i) is controllable and (Ci,Ai) is

observable for all i ∈ Q, then ∀i ∈ Q, ρ(Λi) < 1.
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Proof. From the definition,

Λi = Ai −KiCiAi = (I−KiCi)Ai.

For any Kalman filter, the observer gain corresponding to mode i is defined as

Li = AiMiC
′
i(CiMiC

′
i + R)−1.

Here, Mi is the steady error covariance related to steady Kalman gain Ki. Given that

(Ai,BiQB′i) is controllable and (Ci,Ai) is observable for all i ∈ Q, the closed-loop dynamics

Ai − LiCi is stable. That is,

ρ(Ai − LiCi) < 1.

Rewrite it as:

Ai − LiCi = Ai −AiKiCi = Ai(I−KiCi).

From commutativity property of spectral radius,

ρ(Ai − LiCi) = ρ(Λi) < 1.

With the fact that all the matrices Λi are stable, we have the following theorem.

Lemma 4.4.4. If there is only one λi,q > 0 for each q ∈ Q, then the subsystem �Fq is

asymptotically stable for all q ∈ Q.

Proof. Let kq be the index indicating the non-zero λkq,q for each q ∈ Q, note that kq also

takes value in Q. Based on the property of random variable Ξt, λkq,q = 1. Therefore, we

have

Fq = Λkq ,∀q.

From Lemma 4.4.3, it is straightforward to conclude that ρ(Fq) = ρ(Λkq) < 1,∀q ∈ Q.
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According to Lemma 4.4.2, all the subsystems �Fq are asymptotically stable.

Following the notation in proof of Lemma 4.4.4, we use kq to denote the index indicating

the non-zero λkq,q for each q ∈ Q. Note that kq is not necessarily equal to q. As ρ(Λq) < 1

for all q, even though the probability of mode mismatch between q and mode kq is 1 (i.e.,

the mode mismatches always happen), all the subsystems �Fq are still stable. The physical

interpretation behind the result seems inconsistent. However, this result is only related to

the stability of the autonomous subsystem but not the complete switched system. In fact,

if we take a close look at our system in (4.17), the choice of λkq,q will have impact on the

input matrix Gq. We will discuss this result later.

Lemma 4.4.4 gives a non-trivial condition such that the stability of each subsystem �Fq

is guaranteed. However, the condition that only one λi,q > 0 is not generally realistic since it

eliminates the randomness associated with errors. The next theorem is built on the concept

of CQLF and it is applicable for broader choices of λi,q.

Theorem 4.4.1. If for all i ∈ Q, Λi share a common quadratic Lyapunov function. That

is, if there exists a s.p.d. matrix P ∈ Rn×n such that

Λ′iPΛi −P ≺ 0,∀i ∈ Q, (4.20)

then every subsystem �Fq ∀q ∈ Q is asymptotically stable for all choices of λi,q.

Proof.

Λ′iPΛi −P ≺ 0
(a)⇐⇒ P−ΛiPΛ′i � 0

(b)⇐⇒

P Λi

Λ′i P−1

 � 0.

(a) is due to the fact that P is s.p.d. and (b) is a result of Schur decomposition. According

to Lemma 4.4.2, in order to prove �Fq is asymptotically stable for all q, we need to find if

there exists some s.p.d. matrix Pq for each q such that Pq − FqPqF
′
q � 0.

Since P − ΛiPΛ′i � 0, therefore P − λ2
i,qΛiPΛ′i � 0 for 0 ≤ λi,q ≤ 1. For all q ∈ Q, we
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have:  P λi,qΛi

λi,qΛ
′
i P−1

 � 0 =⇒
d∑

i=1

 P λi,qΛi

λi,qΛ
′
i P−1

 � 0

=⇒

 P
d∑

i=1

λi,qΛi

d∑
i=1

λi,qΛ
′
i P−1

 � 0

=⇒

P Fq

F′q P−1

 � 0 =⇒ P− FqPF′q � 0.

By taking Pq = P, we proved that there exists positive definite matrix Pq for each q such

that Pq − FqPqF
′
q � 0. Therefore, every subsystem �Fq ∀q ∈ Q is asymptotically stable for

all choices of λi,q.

As presented in Lemma 4.4.1, there are two conditions that can guarantee the stability of

the autonomous switched system. Condition (i) is related to the stability of each subsystem

and we have developed Lemma 4.4.4 and Theorem 4.4.1 determine ρ(Fq) < 1 for all q ∈ Q.

To complete the stability analysis for switched autonomous system in (4.18), we will study

conditions such that constraint (ii) in Lemma 4.4.1 is satisfied in the following subsection.

Stability of Switched Autonomous Systems

We have introduced the concept of CQLF in Lemma 4.4.1. For stability analysis and CQLF

conditions, [14] provides an excellent survey on the progress that have been made in this

research area. In general, determining algebraic conditions (on the subsystems’ state ma-

trices) for the existence of a CQLF remains an open task. For switched system with only

two modes, [74] derives a necessary and sufficient for the existence of a CQLF for a second-

order (two dimensional) continuous-time switched system with two modes while a similar

approach proposed in [69] by considering discrete-time system. Their approach is based on

the stability of the matrix pencil constructed using the state matrices corresponding to the

two modes. The matrix pencil presents a different viewpoint on the CQLF existence problem
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but it also lacks an analytical solution.

In this section, the switched system in (4.18) contains unknown variable λi,q in the sub-

system matrices Fq. Due to the unknown values in Fq and lack of algebraic solutions, we

cannot directly solve the LMI conditions nor derive constraints on λi,q such that the exis-

tence of CQLF for Fq is guaranteed. In the following, we propose to establish a relationship

between the existence of CQLF for Λi and Fq and then obtain conditions for stability of

switched system (4.18) regardless of the choice of λi,q.

Theorem 4.4.2. If there exists a CQLF for Λi,∀i ∈ Q, then there exists a CQLF for

Fq,∀q ∈ Q. As a consequence, the switched system (4.18) is asymptotically stable under

arbitrary switching signal.

Proof. We will use the similar approach as shown in the proof of Theorem 4.4.1. If there

exists a CQLF for Λi, we know that there exists a positive definite matrix P ∈ Rn×n such

that

Λ′iPΛi −P ≺ 0,∀i ∈ Q.

As a result of Theorem 4.4.1, for all q ∈ Q, we have

d∑
i=1

 P λi,qΛi

λi,qΛ
′
i P−1

 � 0 =⇒

P Fq

Fq P−1

 � 0 =⇒ F′qPFq −P ≺ 0.

Therefore, there exists a CQLF for Fq,∀q ∈ Q. From Lemma 4.4.1, the switched system

(4.18) is asymptotically stable under arbitrary switching signal.

The condition derived in Theorem 4.4.2 is only based on all the matrices Λi which can be

determined given the system matrix. The LMI condition can be easily checked in practice

via an LMI solver alleviating the lack of an analytical solution. As illustrated in Figure 4.1,

we have completed the discussion for the stability of autonomous switched system (4.18)

thus far. In the following, we will consider stability of the complete transformed switched

system (4.17) including the input term.
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Bounded-Input Bounded-Output (BIBO) Stability

For the transformed switched system in (4.17), we introduce the notion of BIBO stability

that has been defined in [12].

Definition 4.4.2. The system in (4.17) is BIBO stable if there exists a positive constant

η such that for any essentially bounded input signal u, the continuous state x∗ satisfies

sup
k≥0
‖x∗k‖ ≤ η sup

k≥0
‖uk‖ .

According to this definition, an input signal cannot be amplified by a factor greater than

some finite constant η after passing through the system if the system is BIBO stable. It has

been proven that if the corresponding autonomous switched system (4.18) is asymptotically

stable, then the input-output system (4.17) is BIBO stable provided the input matrix Gq is

uniformly bounded in time for all q [75]. This in fact is the case when the system switches

between a finite family of matrices. In our transformed switched system, the input signal

uk = xk, where xk is the continuous state of original system (4.1). Therefore, depending on

the stability of (4.1), uk can be either bounded or unbounded. Therefore, we should consider

two different scenarios based on the boundedness of uk in the following discussions.

Scenario 1: Original system in (4.1) is not asymptotically stable

If the original system in (4.1) is unstable, then supk≥0 ‖uk‖ = supk≥0 ‖xk‖ =∞. Since uk

is an n-dimensional vector, when uk is unbounded, at least one of the elements in the vector

is unbounded. We refer to those elements as unstable components and these components are

collected in the set I:

I =

{
i : sup

k≥0
u

[i]
k =∞

}
.

For this situation, if the columns of Gq corresponding to those unstable components of uk

are 0, then the boundedness of supj≥0,q ‖Gquj‖ is guaranteed. The process of finding the

stable region for each probability of mode mismatch error is summarized in Algorithm 4:

Generally, λi,q = 1 for i = q should always be a solution of Algorithm 4 because of Λi = Γi,q
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Algorithm 4 Find stable region of λi,q
1: Analyze stability of the original SHS
2: Find unstable components → I
3: for all q ∈ Q do
4: for all i ∈ Q do
5: Let T = Λi − Γi,q

6: if ∃j ∈ I s.t. jth column of T is not 0 then
7: λi,q = 0
8: else
9: 0 ≤ λi,q ≤ 1
10: end if
11: end for
12: Solve

∑
i

λi,q = 1 for all non-zero λi,q

13: end for

for i = q. Furthermore, this condition along with the result of Lemma 4.4.4 indicate that

λi,q = 1 for i = q not only guarantees stability of subsystem but also BIBO stability of the

switched system in (4.17). By definition, λi,q represents the probability that true mode is q

while estimated mode is i. λi,q = 1 for i = q meaning that there is no mode mismatch error.

Therefore, the convergence of x∗k (i.e., the bias generated from mode-based Kalman filter) is

reasonable. Besides the trivial solution, Algorithm 4 also gives a less conservative result. For

those unstable components in the original SHS, if the difference of Λi − Γi,q at the column

corresponding to the unstable components are all 0, the mode-based Kalman filter is still

tolerant of the mode mismatch between i and q.

Scenario 2: Original system in (4.1) is asymptotically stable

If the original system in (4.1) is asymptotically stable, then the continuous state xk (i.e.,

uk in the transformed switched system) is bounded. Since linear transformations of a vector

is a bounded operator in Euclidean space, for a bounded vector u, Gu is bounded. For this

situation, we are interested in minimizing the upper bound of ‖x∗k‖. From the definition of

BIBO stability, we can write

‖x∗k‖ ≤ η sup
k≥0,q
‖Gquk‖

(a)

≤ ηmax
q
‖Gq‖ sup

j≥0
‖uj‖ , (4.21)
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where η and supj≥0 ‖uj‖ are fixed constant for a given system and Gq is related to the

unknown variable λi,q. The equality in (a) holds if and only if each row of Gq is linearly

dependent of uk for all q, k. In this framework, we seek to address the following questions:

(1) Given the probability of mode mismatch is P , i.e.,
∑d

i=1
i6=q
λi,q = P ,∀q, what is the

lowest upper bound of ‖x∗k‖?

(2) Given a certain upper bound B of ‖x∗k‖, what is the largest tolerant region for mode

mismatch probability P that will guarantee that B is achievable?

The following theorem is developed to answer the first question.

Theorem 4.4.3. Given the probability of mode mismatch P 6= 0 and the original system in

(4.1) is asymptotically stable, the lowest upper bound of ‖x∗k‖ that can be achieved is:

‖x∗k‖ ≤ η · P · sup
j≥0
‖uj‖ ·max

q
min
i,i6=q
‖Λi − Γi,q‖ .

Proof. From the definition of Gq,

‖Gq‖ =

∥∥∥∥∥
d∑

i=1

λi,q(Λi − Γi,q)

∥∥∥∥∥ =

∥∥∥∥∥∥∥
d∑

i=1
i 6=q

λi,q(Λi − Γi,q)

∥∥∥∥∥∥∥
≤

d∑
i=1
i 6=q

λi,q ‖Λi − Γi,q‖ . (4.22)

With the constraint that
∑d

i=1
i6=q
λi,q = P , we have:

min
λi,q

d∑
i=1
i 6=q

λi,q ‖Λi − Γi,q‖ = P min
i,i6=q
‖Λi − Γi,q‖ . (4.23)

From equation (4.21), we have the lowest bound of ‖x∗k‖ as a function of ‖Gq‖. Given the

constraint on mode mismatch probability and results of (4.22) and (4.23), we get the lowest
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upper bound of ‖x∗k‖ that can be reached is:

‖x∗k‖ ≤ η · P · sup
j≥0
‖uj‖ ·max

q
min
i,i6=q
‖Λi − Γi,q‖ .

To assist in the analysis for the second question, we first define an auxiliary function

φ : Rd−1 → R as:

φ(υυυ) = max
q

∥∥∥∥∥
d−1∑
i=1

υυυ[i]Si,q

∥∥∥∥∥ , υυυ ∈ Rd−1

where Si,q ∈ Rn×n is a series of known matrices for a given q. The following lemma illustrates

the convexity of this function.

Lemma 4.4.5. φ(υυυ) is a convex function respect to υυυ.

Proof. In order prove that φ(υυυ) is a convex function respect to υυυ, we want to show that for

all υυυ,ννν ∈ Rd−1, and θ with 0 ≤ θ ≤ 1, φ(θυυυ + (1− θ)ννν) ≤ θφ(υυυ) + (1− θ)φ(ννν). We have

φ(θυυυ + (1− θ)ννν) = max
q

∥∥∥∥∥
d−1∑
i=1

(θυυυ + (1− θ)ννν)[i]Si,q

∥∥∥∥∥
= max

q

∥∥∥∥∥θ
d−1∑
i=1

υυυ[i]Si,q + (1− θ)
d−1∑
i=1

ννν [i]Si,q

∥∥∥∥∥
≤ max

q

∥∥∥∥∥θ
d−1∑
i=1

υυυ[i]Si,q + (1− θ)
d−1∑
i=1

ννν [i]Si,q

∥∥∥∥∥
≤ θmax

q

∥∥∥∥∥
d−1∑
i=1

υυυ[i]Si,q

∥∥∥∥∥+ (1− θ) max
q

∥∥∥∥∥
d−1∑
i=1

ννν [i]Si,q

∥∥∥∥∥
= θφ(υυυ) + (1− θ)φ(ννν).

Therefore φ(υυυ) is a convex function on υυυ.

Recall that the second question is to derive the largest tolerant region for mode mismatch

probability P such that an upper bound B of ‖x∗k‖ is achievable. In other words, we need
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to solve for λi,q such that
∑d

i=1
i 6=q
λi,q = P and ‖x∗k‖ ≤ B holds. Based on equation (4.21), we

have

‖x∗k‖ ≤ ηmax
q
‖Gq‖ sup

j≥0
‖uj‖ ≤ B

=⇒max
q
‖Gq‖ ≤

B
η · sup

j≥0
‖uj‖

=⇒max
q

∥∥∥∥∥∥∥
d∑

i=1
i6=q

λi,q(Λi − Γi,q)

∥∥∥∥∥∥∥ ≤
B

η · sup
j≥0
‖uj‖

. (4.24)

Use the auxiliary function and define λλλ ∈ Rd−1 and Si,q = Λi − Γi,q. We can write the

left-hand side of (4.24) as:

φ(λλλ) = max
q

∥∥∥∥∥
d−1∑
i=1

λλλ[i]Si,q

∥∥∥∥∥ .
Since φ(λλλ) is convex in λλλ, a non-negative bound B is achievable by taking λλλ[i] = 0 for all i.

To seek a λλλ such that

φ(λλλ) ≤ B
η · sup

j≥0
‖uj‖

,

we will use triangle inequality to approximate φ(λλλ) and get a more conservative condition.

Since

φ(λλλ) ≤ max
q

d−1∑
i=1

λλλ[i] ‖Si,q‖ ,

with ‖Si,q‖ is known for all i and q. The condition

max
q

d−1∑
i=1

λλλ[i] ‖Si,q‖ ≤
B

η · sup
j≥0
‖uj‖

(4.25)
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is a 1st degree polynomial inequality with d − 1 variables, and this can provide a feasible

region for each λi,q on the d− 1 dimensions space.

The discussion of BIBO stability completes the convergent analysis of bias dynamics

in a mode-based Kalman filter. Both stable and unstable original SHS have been taken

into consideration. For an unstable system, we can still stabilize the bias dynamics by

specifically choosing the probability λi,q. For an asymptotically stable system, we addressed

two important questions regarding the minimization of the upper bound for the bias.

4.5 Experimental Results

In this section, we conduct three experiments to verify our main results that presented in

Chapter 4.3 and Chapter 4.4. We first consider an SHS with two discrete states and the

discrete state transitions are modeled via i.i.d. Bernoulli random variable. Then we simulate

a generalized SHS (switched system with arbitrary switching signal). Finally, we illustrate

the value of the theoretical results on a small scale smart grid application.

4.5.1 Numerical Example I

We implement an experiment on MATLAB to verify our first main result on an SHS with

two discrete states Q = {q1, q2}. Define matrices Aq and Cq, ∀q ∈ Q as:

A1 =

0.9 0

2 0.8

 , A2 =

0.5 0.2

0.2 0.4

 ;

C1 = I,C2 = 5I.

Let the system noise be wk ∼ N (0,Q) and measurement noise be vk ∼ N (0,R), where

Q = 0.5I and R = 0.3I. In this system setting, (A1,Q) and (A2,Q) are both controllable

and (C1,A1) and (C2,A2) are observable. From Theorem 4.3.4, we can compute the stable

region for ε before executing the system. By solving ρ(εA1 + (1− ε)A2) < 1, we obtain that
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Figure 4.2: Maximum of ‖E(ek)‖ versus different values of λ

the stable region of ε as ε∗ = [0, 0.55] ∪ [0.91, 1].

To validate the relationship between λ and ‖E(ek)‖ stated in Theorem 4.3.1, we run

N = 1000 Monte-Carlo simulations to simulate an SHS over time range [0, 500]. Figure 4.2

shows the results for different ε. It can be concluded that as λ increases, ‖E(ek)‖ increases

approximately linearly as postulated by Theorem 4.3.1. We also notice that for different ε,

the slope changes. For ε = 0.7 /∈ ε∗, ‖E(ek)‖ increases rapidly with λ. The slope for ε within

the stable region is much smaller than for ε outside of the stable region.

Figure 4.3 reveals the relationship between ε and ‖E(ek)‖. It is important to remark

that all the conditions we have established are sufficient conditions, which means outside

the stable region, the evolution of E(ek) can be either stable or unstable. The unshaded

regions are the stable region for ε calculated from Theorem 4.3.4. This plot is obtained by

executing N = 1000 Monte-Carlo simulation over time [0, 400] for two different λ values.

It should be noted that the y-axis of Figure 4.3 is 10 log(‖E(ek)‖), because outside the

guaranteed stable region, ‖E(ek)‖ might explode to extremely large values. Therefore, the

actual difference between stable region and unstable region is quite significant (around 105).

Additionally, in Fig 4.2 and Figure 4.3, for each λ (or ε), we plot max
k
‖E(ek)‖ where ‖E(ek)‖
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Figure 4.3: Maximum of ‖E(ek)‖ versus different values of ε

is average among Monte-Carlo simulations. max
k
‖E(ek)‖ can reveal if ‖E(ek)‖ diverges or

not. However, the actual trend of the evolution ‖E(ek)‖ is not revealed in Figure 4.2 and

4.3. To illustrate how ‖E(ek)‖ evolves with time k, we choose four sets of value for ε and λ,

they are {ε = 0.3, λ = 0.2}, {ε = 0.3, λ = 0.7}, {ε = 0.6, λ = 0.2} and {ε = 0.6, λ = 0.7}.

For the first two sets of values, ε ∈ ε∗ while the other two sets ε /∈ ε∗. We run N = 6000

Monte-Carlo simulations over the time range [0, 300] and the results are shown in Figure 4.4.

We have the following observations:

1). ε determines the behavior of ‖E(ek)‖. In this experiment, when ε is within stable region

(Figure 4.4 (a)), ‖E(ek)‖ converges, i.e., lim
k→∞
‖E(ek)‖ < ∞. On the other hand, if ε /∈ ε∗

(Figure 4.4 (b)), ‖E(ek)‖ increases significantly with time k;

2). As expected, increasing of λ increases ‖E(ek)‖. In Figure 4.4 (a) and (b), while dashed-

line (λ = 0.7) and solid-line (λ = 0.2) follow the same trend, ‖E(ek)‖ is larger when λ = 0.7.

The two observations are consistent with Theorems 4.3.1,4.3.2 and 4.3.4. It suggests that

for SHS with lim
k→∞

ρ̄k(A) < 1, even the estimated mode is completely incorrect, the error in

mode-based Kalman filter can still be bounded. Furthermore, because the conditions in

Theorem 4.3.2 and 4.3.4 are only related to system matrices A1 and A2, we can verify the

convergence conditions apriori.
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Figure 4.4: ‖E(ek)‖ using M-C simulation for different ε and λ

4.5.2 Numerical Example II

Consider a switched system with two discrete states Q = {q1, q2}. The continuous state is a

2-dimensional vector. Define matrices A, B and C as:

A1 =

0.9 0

0.2 0.8

 , A2 =

0.5 0.2

0.2 0.4

 ; B1 =

1 0

0 0.8

 , B2 =

1.3 0.4

0.2 0.7

 ;

C1 = I,C2 = 5× I.

Let the system noise be wk ∼ N (0,Q) and measurement noise be vk ∼ N (0,R), where

Q = 0.5 × I and R = 0.3 × I. In this system setting, (A1,B1QB′1) and (A2,B2QB′2) are

both controllable and (C1,A1) and (C2,A2) are observable. The corresponding Λi and Γi,t

are calculated as follows:
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Λ1 =

0.2763 −0.0137

0.0654 0.3232

 , Λ2 =

0.0054 −0.0034

0.0033 0.0205

 ;

Γ1,2 =

−1.2401 −0.5234

−0.4387 −0.8091

 , Γ2,1 =

0.7225 −0.0028

0.1593 0.6496

 .
For this setup, we get ‖Λ1‖ = 0.3373 < 1, ‖Λ2‖ = 0.0209 < 1. Therefore, for any choice of

λi,t, we have

ρ(F1) = ρ(λ1,1Λ1 + λ2,1Λ2) ≤ λ1,1 ‖Λ1‖+ λ2,1 ‖Λ2‖ < 1,

ρ(F2) = ρ(λ1,2Λ1 + λ2,2Λ2) ≤ λ1,2 ‖Λ1‖+ λ2,2 ‖Λ2‖ < 1.

(4.26)

By solving the feasibility of two LMIs that defined in (4.20), the result shows that Λ1

and Λ2 share a CQLF. Based on Theorem 4.4.2, there exists a CQLF for F1 and F2 with any

choice of λ1,1, λ1,2, λ2,1, λ2,2. Therefore, the switched system composed with ΣF1 and ΣF2 is

asymptotically stable under arbitrary switching signal.

The next step is to study the boundedness of uk (i.e., xk of the original system). The

boundedness of xk can be checked by the existence of CQLF between A1 and A2. With a

similar LMI condition, it shows that the original system is asymptotically stable. Therefore,

the bias dynamics in the mode-based Kalman filter should be BIBO stable with upper bounds

derived in (4.21).

Figure 4.5 and figure 4.6 are the experiment results over N = 5000 Monte-Carlo Simula-

tion for two different switching signals. For each switching signal, two different probabilities

of mode-mismatch error λ1,2 and λ2,1 were considered. In both figure 4.5 and figure 4.6, we

plot the theoretical bias performance in line with squares. The theoretical bias is obtained

via equation (4.16). The actual bias dynamics (difference of E(x̂k) and E(xk)) from Monte-

Carlo simulation is presented using dashed line with triangles. Since we have verified that the

bias evolution should always converge with any switching signal, all the above experiments
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Figure 4.5: Bias in mode-based Kalman filter using Monte-Carlo simulation and theoretical
bias evolution for switching signal 1
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Figure 4.6: Bias in mode-based Kalman filter using Monte-Carlo simulation and theoretical
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Figure 4.8: To achieve an upper bound of bias B = 0.3, the bias evolution with probability
of mode mismatch as λ1,2 = λ2,1 = 0.154554

also validate this result.

In Figure 4.7, the line with squares shows the maximum value for norm of bias over

Monte-Carlo simulation given that probability of mode mismatch is P . The dashed line is

the upper bound calculated using Theorem 4.4.3. In Figure 4.8, we seek to address question

(2) proposed in the last section. That is, we want to achieve a certain upper bound B = 0.3 for

the bias dynamics. By solving equation (4.25), the maximum probability of mode mismatch

is λ1,2 = λ2,1 = 0.154554. Figure 4.8 shows the actual and theoretical bias evolution with
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mode mismatch error λ1,2 = λ2,1 = 0.154554. We can conclude that the target bound has

been achieved.

4.5.3 Case Study: Smart Grid

A classic example of a cyber-physical system that can be modeled in the SHS framework is

a smart grid. We consider a toy smart grid set up inspired by [7, 76]. The system consists

of three components - main distribution grid, local power network, and electrical loads. The

discrete status for each component is:

• Local power network (L) - On: 1, Failure mode: 0;

• Distribution grid (G) - Connected: 1, Disconnected: 0;

• Electrical loads (D) - Connected: 1, Disconnected: 0.

The corresponding power generation and power consumption dynamics are given below:

• Grid power: If the micro grid is connected to the main electricity grid (G = 1),

the grid power PG has the following dynamics: ṖG = kGPG + σGdW , where kG is a

proportional coefficient and σG is a variation parameter [7]. If G = 0, both kG and σG

are close to 0. dW denotes Wiener process.

• Electrical loads: Electrical loads can be modeled via stochastic differential equation.

We use Uhlenbeck-Ornstein model to describe electricity loads [76]. Let ṖD = α(m−

PD)dt + σDdW . Here, we assume m = 0. α represents a tracking coefficient. σD is a

variation coefficient, and dW denotes Wiener process.

Therefore, the continuous state in this smart grid system can be defined as x = [PG, PD]′

with corresponding state equation as:

ṖG
ṖD

 =

kG 0

0 −α


PG
PD

+

σG 0

0 σD

 dW
dt

.
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Table 4.1: Discrete Status and Continuous Dynamics Parameters

Status L G D q kG α σG σD

Failure Mode 0 0 0 1 0.1 0.1 0.1 0.1

Grid Connected
1 1 0 2 3 0.5 0.8 0.8
1 1 1 3 3 0.49 1.5 1

By discretizing the state space with a sampling period of τ , we get a discrete-time SHS:

xk = Aqkxk−1 + Bqkwk, (4.27)

where

Aqk =

ekGτ 0

0 e−ατ

 , (4.28)

and

Bqk =

kG 0

0 −α


−1

(Aqk − I)

σG 0

0 σD

 . (4.29)

Here, the index k corresponds to the time instant kτ . The discrete state space is de-

fined by combination of different status of L,G,D. Consequently, the value of parame-

ters kG, α, σG, σD are determined by different discrete states. The measurement equation

corresponds to

yk = Cqkxk + vk. (4.30)

For this case study, the status of components L, G and D and the grid parameters are

defined in Table 4.1. Based on system settings, kG, α, σG and σD completely determine

the system matrices Aq and Bq. Let Cq = I for all modes. Define the noise as wk ∼

N (0,Q) and vk ∼ N (0,R) with Q = 2 × I and R = I. With this system setting, we get

‖Λ1‖ = 0.9817, ‖Λ2‖ = 0.8837 and ‖Λ3‖ = 0.8611. Therefore, similar as (4.26), we have

ρ(F1), ρ(F2), ρ(F3) < 1 for all choices of λi,t. The next step is to solve the LMI conditions on

Λ1, Λ2 and Λ3 and the results shows that Λ1, Λ2 and Λ3 share a CQLF. Based on Theorem
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Figure 4.9: Monte-Carlo simulation for the smart grid system with λ in stable region and
unstable region

4.4.2, the switched system composed with ΣF1 , ΣF2 and ΣF3 is asymptotically stable under

arbitrary switching signal. In order to check the boundedness of input uk, we solve for the

CQLF for A1, A2 and A3. In this case, the result reveals that the original SHS is not stable

(falls into scenario 1). Therefore, we are able to use Algorithm 4 to derive the stable region

of each λi,q. In this system, the unstable component is: I = {1}, i.e., only the first element

is unstable. Based on Algorithm 4, we need to calculate Ti,q and find out the corresponding

elements on column 1 of each matrix. We get:

T1,2 =

−0.3303 0

0 0.0385

 ,T1,3 =

−0.3303 0

0 0.0375

 ,T2,1 =

0.1827 0

0 −0.0361

 ,
T2,3 =

0 0

0 −0.0088

 ,T3,1 =

0.1745 0

0 −0.0342

 ,T3,2 =

0 0

0 0.0086

 .
It can be observed that the first column in T2,3 and T3,2 are 0. Therefore, the mode-based

Kalman filter can be tolerant on mode mismatch error between mode 2 and mode 3. The
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stable region for each λ is:

λ1,2 = λ1,3 = λ2,1 = λ3,1 = 0

0 ≤ λ2,3, λ3,2, λ1,1, λ2,2, λ3,3 ≤ 1.

Note that the condition that
∑3

i=1 λi,q = 1 should also hold for every q. Figure 4.9 shows a

Monte-Carlo simulation for two different λ settings. Setting I we use λ2,1 = λ3,1 = λ1,2 =

λ1,3 = 0, λ3,2 = 0.4, λ2,3 = 0.7 where all the λs are within the stable region. The simulation

results for Setting I are shown in lines with squares and triangles with left y-axis. Specifically,

the line with squares is the theoretical bias derived using the bias evolution equation (4.17)

while the line with triangles shows the bias in a mode-based Kalman filter via Monte-Carlo

simulation. We can conclude that when all the λs are in stable region, the bias of the mode-

based Kalman filter is convergent and bounded. For Setting II we use λ2,1 = λ3,1 = λ1,2 =

0.1, λ1,3 = 0, λ3,2 = 0.3, λ2,3 = 0.2 in which λ2,1, λ3,1, λ1,2 are outside the stable region. The

solid line and the dashed line with right y-axis present the results for theoretical bias and

actual bias generated in a mode-based Kalman filter via Monte-Carlo simulation. Note that

the y-axis on the right is log(‖x∗k‖) since the actual ‖x∗k‖ explodes rapidly. As this system

does not have tolerance between mode 1,2 and mode 1,3, even a small probability of error

(i.e., 0.1 in this case) will result in rapid explosion in the bias dynamics.

4.6 Summary

In this chapter, we consider the open research problem of quantifying the impact of mode-

mismatch errors on the performance of a mode-based Kalman filter. Specifically, the mode

mismatch errors are captured by i.i.d. Bernoulli random variables. The problem itself is

appropriate to describe network topology errors in a smart grid or other cyber-physical

systems. We first study the bias performance for SHS with i.i.d. Bernoullian mode switches

and then generalize the analysis to SHS with arbitrary mode modelling. The main technique

proposed involves modeling the bias dynamics in the Kalman filter as a transformed switched
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system. Abstracting the discrete state transitions as arbitrary switching signals not only

broaden the application space but also provides us tools from switched system stability

analysis to study the statistical convergence of the bias.
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Chapter 5

Time Correlated (Markovian

Distributed) Mode Mismatch Errors

In the previous chapter, we derived the bias dynamics in a mode-based Kalman filter for

a generalized model of stochastic hybrid system (SHS) and studied conditions such that

the bias is statistically convergent. Specifically, the bias results from an independent and

identically distributed (i.i.d.) Bernoulli distributed mode mismatches. In this chapter, we

consider the situation where mode mismatch errors are correlated across time and we derive,

for the first time, a sufficient and necessary condition on the statistical convergence of the

bias.

5.1 Introduction

SHS have been proven to be a reliable model for many cyber-physical systems (CPS) that

experience interaction between continuous dynamics and discrete modes. Markov jump

linear systems (MJLS) is a particular subset of SHS in which the discrete mode switches

are modeled as a Markov chain and continuous states evolve linearly. MJLS has attracted

significant attention in the research community due to its analytical tractability as well as

applicability to practical systems such as power systems [8] and networked control system
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Figure 5.1: Motivating example: communication link impairments in a smart grid

(NCS) [9], etc. While the continuous states along with the discrete modes fully describe the

MJLS, the continuous states may not be directly accessible in many applications. In such

cases, state estimation becomes critical for both situational awareness and implementation

of control actions. With many state estimation strategies have been proposed for MJLS,

Kalman filter based strategies still dominate the area [18, 20, 22].

Consider a toy example of a smart grid as shown in Figure 5.1. The system consists

of a bank of PV panels, three home loads, one electric vehicle and the main grid. There

are ‘switches’ S1 to S6 that can be turned ON and OFF depending on the weather, power

demands etc. There are sensors that communicate the observation on status of switches S1

to S6 to a central topology processor and the status of all switches determines the topology

of the network. One topology corresponds to one discrete state (mode) and the evolution of

continuous states are based on the mode. Additionally, there are sensors that communicate

analog/continuous measurements (such as power consumption, bus voltage, etc.) to a central

estimator (mode-based Kalman filter) to estimate the true continuous state. In this chapter,

we consider the situation wherein impairments in communication link between switch status

sensors and topology processor result in erroneous information about switch status/network
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topology. Network topology errors (mode mismatch) in smart grids as discussed in [21] is

a critical problem for any networked system. Since continuous state evolves differently for

different modes, errors in the network topology (mode) will impact the continuous state

estimate. Based on this example, we take a fresh perspective in analyzing the performance

of a mode-based Kalman filter for MJLS. Specifically, we consider the errors that due to

problems in sensing the discrete states or due to communication network impairments in

a CPS setting. The mode mismatches are modeled via a Markov chain as it effectively

captures communication link failures and cyber-attacks in many CPS (e.g. topology errors

in a smart grid system [21], packet drops/damage in NCS [41, 77]). For this situation,

we can treat the (possible) inaccurate discrete mode as the true state and implement an

optimal mode-based Kalman filter without suffering from increased complexity. The main

purpose of this chapter is to investigate conditions under which the errors in a mode-based

Kalman filter are still bounded in the presence of discrete mode mismatch. We first consider

an MJLS with two modes derive sufficient and necessary conditions (based on the results

from Schur stability of a matrix polytope) under which the bias dynamics are statistically

convergent. We then extend the analysis to MJLSs with arbitrary numbers of discrete modes.

This extension is not trivial as the results for MJLS with two modes are built on an earlier

mathematical result [78] that is applicable to only two modes. For this case, we propose

to model the mean of bias dynamics as an auxiliary linear system. The system matrix of

this linear system is determined by a polytope of matrices with each vertex matrix related

to the original MJLS system matrices. By mapping the matrix polytope to an interval

matrix, and by leveraging results in Schur stability analysis for an interval matrix, we derive

sufficient conditions on mode mismatch probabilities under which the bias resulting from

mode mismatches is statistically convergent. This new fundamental result provides guidance

on design of estimation strategies for MJLS and sheds light on their resilience in the presence

of mode mismatch errors.
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5.2 Preliminaries

We consider a discrete-time MJLS with a finite discrete state space denoted asQ = {q1, · · · , qd}.

The discrete state transitions are modeled via a time-homogeneous Markov chain. Let

δk : k → Q denote the discrete state. Then, the transition probability corresponds to,

P(δk = qj|δk−1 = qi, · · · , δ0 = q1)

= P(δk = qj|δk−1 = qi) = πij, (5.1)

and the transition matrix is defined as Ps = [πij] ∈ Rd×d. The continuous state xk ∈ Rn and

measurements yk ∈ Rm evolve as:

xk = Aδkxk−1 + Bδkwk,

yk = Cδkxk + vk.

(5.2)

Here, wk ∼ N (0,Q) and vk ∼ N (0,R) are both independent Gaussian noise capturing

model and measurement uncertainties. Given δk = qi ∈ Q, Aδk , Bδk and Cδk are n×n, n×p

and m × n matrices, respectively. We assume the initial continuous state is Gaussian with

mean µµµ0 and covariance Σ0 and the initial discrete mode is q1.

We consider correlated mode mismatch errors modeled by a time-homogeneous Markov

chain. The correlation is across time and can result due to multiple practical constraints

(e.g., correlated fading of wireless channel). In this case, the probability of mode mismatch

at the current instant only depends on the quality of communication channel at previous

time instant. Let θk : k → {0, 1} be a variable denoting the occurrence of mode mismatch.

That is, θk = 0 implies no mode mismatch and θk = 1 otherwise. Note that we assume both

δk and θk are irreducible and aperiodic. The transition matrix for the Markov chain θk is:

Pm =

 λ0 1− λ0

1− λ1 λ1

 . (5.3)
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Algorithm 5 Mode-based Kalman filter

1: function Estimation update(µµµ0,M0|0,Q,R, γγγ
s
k,y

s
k)

2: x0|0 = µµµ0,M0|0 = Σ0

3: ysk = (y1, · · · ,yk)
4: γγγsk = (γ1, · · · , γk)
5: for i = 1 : k do
6: xi|i−1 = Aγixi−1|i−1

7: Mi|i−1 = AγiMi−1|i−1A
′
γi

+ BγiQB′γi
8: Kγi,i = Mi|i−1C

′
γi

(CγiMi|i−1C
′
γi

+ R)−1

9: xi|i = xi|i−1 + Ki,γi(yi −Cγixi|i−1)
10: Mi|i = (I−Kγi,iCγi)Mi|i−1

11: end for
12: return xk|k
13: end function

As the continuous states are not directly observable in system (5.2), a mode-based

Kalman filter can be used to estimate the continuous state xk based on: (1) the mea-

surements, and (2) discrete states up to time k. If there is a mode mismatch error, the

known mode will be different than the actual mode. Let γk denote the known (or estimated)

mode at time k. Based on definition of θk, we have γk = δk if and only if θk = 0. De-

note the measurement sequence and mode sequence up to time k as ysk = (y1, · · · ,yk) and

γγγsk = (γ1, · · · , γk), respectively. The mode-based Kalman filter equations for MJLS (5.2) are

given in Algorithm 5. For a hybrid system, the estimate x̂k = xk|k is unbiased only if γγγsk = δδδsk

where δδδsk = (δ1, · · · , δk). It is worth pointing out that even if there is mismatch between γγγsk

and δδδsk, the error covariance matrix still remains bounded as proved in the previous chapter.

Therefore, we only focus on the bias term. Since both x̂k and xk are random variables in

an MJLS, we define the bias to be the difference between means of estimator and the true

state, i.e.,

ek = E(x̂k)− E(xk).

In other words, we capture the difference between x̂k and xk in a mean sense via ek. Ac-

cording to Kalman filter equations and the derivation in the previous chapter, the dynamics
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of ek corresponds to:

ek = (Aγk −KγkCγkAγk)ek−1

+ θk(Aγk −KγkCγkAγk + KγkCδkAδk −Aδk)E(xk−1).

Here, Kγk is the steady Kalman gain that corresponds to the mode γk ∈ Q. Since we

assume that Q and R are constants for all modes, the Kalman gain will converge to the

corresponding steady Kalman gain Kγk quickly [63]. For a hybrid system, it is reasonable

to approximate the time-variant Kalman gain using the steady Kalman gain in practice as

the mode switches are infrequent relative to the evolution of the continuous states. This

assumption has also been used in sub-optimal control problems for decades [20, 44]. To

simplify the presentation of this equation, we define

Λγk = Aγk −KγkCγkAγk ,

Γγk,δk = Aδk −KγkCδkAδk .

Then, the ek dynamics evolves as:

ek = Λγkek−1 + θk(Λγk − Γγk,δk)E(xk−1). (5.4)

As the evolution of ek depends on γk, δk and θk, the process {ek}∞k=0 is a stochastic process.

We are interested in convergence in mean, i.e., lim
k→∞

E(ek) < ∞ [39, 41]. Analyzing the

statistical convergence of ek becomes mathematically challenging because of the dependency

between γk and θk, δk. In the following, we first consider an MJLS with two modes as a

starting point and derive a necessary and sufficient conditions such that the bias is statisti-

cally convergent. Finally, we address the same problem for MJLSs with arbitrary numbers

of modes.
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5.3 MJLS with two discrete states

We first attempt to address this challenge by focusing on an MJLS with two modes as a

starting point, i.e., Q = {q1, q2}. The two-mode assumption guarantees that when mode

mismatch happens (i.e., θk = 1), there is only one error value that γk can take. From the

definition, we can rewrite γk as a function of δk and θk:

γk = (1− θk)δk + θkδ̄k, (5.5)

where δ̄k is the opposite value of δk, i.e., {δk}
⋃{

δ̄k
}

= Q. Assume the initial distributions

for δ0 and θ0 are:

ωωωδ =

P(δ0 = q1)

P(δ0 = q2)


′

,ωωωθ =

P(θ0 = 0)

P(θ0 = 1)


′

.

As a property of Markov chain, we get the probability distributions for δk and θk as:

P(δk = q1)

P(δk = q2)


′

= ωωωδPs
k,

P(θk = 0)

P(θk = 1)


′

= ωωωθPm
k.

From the definition, γk takes value on q1 and q2 based on the value of θk and δk. Specifically,

γk =


q1, if θk = 0 and δk = q1 or θk = 1 and δk = q2;

q2, if θk = 0 and δk = q2 or θk = 1 and δk = q1.

Because θk and δk are independent variables, we can write the probability measure for γk as:

P(γk = q1) =

P(θk = 0)

P(θk = 1)


′ P(δk = q1)

P(δk = q2)

 = ωωωθPm
k(ωωωδPs

k)′, (5.6)

P(γk = q2) = 1−ωωωθPm
k(ωωωδPs

k)′. (5.7)
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Based on the values of γk, θk and δk, the bias dynamics in equation (5.4) can be grouped

into the following four scenarios:

Scenario 1 (θk = 0 and δk = q1):

ek = Λq1ek−1.

Scenario 2 (θk = 0 and δk = q2):

ek = Λq2ek−1.

Scenario 3 (θk = 1 and δk = q2):

ek = Λq1ek−1 + (Λq1 − Γq1,q2)E(xk−1).

Scenario 4 (θk = 1 and δk = q1):

ek = Λq2ek−1 + (Λq2 − Γq2,q1)E(xk−1).

Recall that we consider analyzing the convergence of ek in a mean sense, i.e., lim
k→∞

E(ek) <∞.

According to the four scenarios and the probability measures derived in (5.6) and (5.7), we

have:
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E(ek) = E(E(ek|ek−1))

=
[
P(γk = q1)Λq1 + P(γk = q2)Λq2

]
E(ek−1)

+P(θk = 1)P(δk = q1)(Λq2 − Γq2,q1)E(xk−1)

+P(θk = 1)P(δk = q2)(Λq1 − Γq1,q2)E(xk−1)

=
[
ωωωθPm

k(ωωωδPs
k)′Λq1

+
(

1−ωωωθPm
k(ωωωδPs

k)′
)
Λq2

]
E(ek−1)

+
[
ωωωθPm

ku2ωωωδPs
ku1(Λq2 − Γq2,q1)

+ωωωθPm
ku2ωωωδPs

ku2(Λq1 − Γq1,q2)
]
E(xk−1)

(5.8)

where the outer expectation is taken over ek−1 and the inner expectation is taken over θk

and δk. In the following, we will focus on deriving conditions under which the dynamics in

(5.8) converges. As shown in (5.8), the process of E(ek) evolves based on a dynamic updating

equation with a stochastic input signal related to E(xk−1). To determine the conditions for

convergence of (5.8), we first consider the convergence of the first term that is related to

E(ek−1) and then analyze the boundedness on the second (input) term.

5.3.1 Convergence on the Autonomous System

The first term of equation (5.8) is a deterministic update equation on E(ek−1). Define an

auxiliary process zk that evolves as:

zk =
[
ωωωθPm

k(ωωωδPs
k)′Λq1 +

(
1−ωωωθPm

k(ωωωδPs
k)′
)
Λq2

]
zk−1. (5.9)
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To address convergence of E(ek), we first consider lim
k→∞

zk. Since there are stationary distri-

butions for both δk and θk, we denote them as ωωωδ∗ and ωωωθ∗ with

ωωωδ∗ = lim
k→∞

ωωωδPs
k, ωωωθ∗ = lim

k→∞
ωωωθPm

k. (5.10)

Let ck = ωωωθPm
k(ωωωδPs

k)′, then we have

lim
k→∞

ck = c∗ = ωωωθ∗ωωω
′
δ∗ .

It is easy to show that 0 ≤ c∗ ≤ 1. As the Markov chain δk only depends on the system

model, the stationary distributions can be computed apriori. Thus, we can treat ωωωδ∗ as a

fixed value and only focus on the term ωωωθ∗ . The stationary distribution ωωωθ∗ relies on Pm

that contains the parameters λ0 and λ1. Therefore, the main purpose here is to find regions

for λ0 and λ1 such that lim
k→∞

zk < ∞ holds. We first consider the following spectral radius

problem as it is closely related to the convergence of zk. That is, find conditions on c ∈ [0, 1]

such that:

ρ(cΛq1 + (1− c)Λq2) < 1.

Before we introduce our main result, the following supporting lemmas that assist in the proof

of the main theorem need to be stated. Proofs for Lemmas 5.3.1 and 5.3.2 can be found in

[78].

Lemma 5.3.1. Let H(r) = r2H2+rH1+H0. Suppose H0 is nonsingular, then the maximum

range [rmin, rmax] for all H(r) to be nonsingular is given by:

rmin =
1

ν−min(G)
, rmax =

1

ν+
max(G)

,
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with

G =

 0 I

−H−1
0 H2 −H−1

0 H1


where ν−min(G) denotes the minimum negative real eigenvalue of G and ν+

max(G) denotes the

maximum positive real eigenvalue of G.

Lemma 5.3.2. If matrix Λq2 is Schur stable, then

H0 = I⊗ I−Λq2 ⊗Λq2

is nonsingular.

Lemma 5.3.3. The matrix Λ(r) = (1 − r)Λq2 + rΛq1 is Schur stable if and only if Λq2 is

strictly Schur and I⊗ I−Λ(r)⊗Λ(r) is nonsingular.

We first define the following auxiliary matrices to assist our analysis:

H0 = I⊗ I−Λq2 ⊗Λq2 ,

H1 = 2Λq2 ⊗Λq2 −Λq2 ⊗Λq1 −Λq1 ⊗Λq2 ,

H2 = Λq2 ⊗Λq1 + Λq1 ⊗Λq2 −Λq2 ⊗Λq2 −Λq1 ⊗Λq1 ,

G =

 0 I

−H−1
0 H2 −H−1

0 H1

 .
(5.11)

Note that matrix G is defined only for the case that H0 is nonsingular.

Theorem 5.3.1. The matrix cΛq1 + (1 − c)Λq2 is Schur stable if and only if Λq2 is Schur

and c is in the range of [ 1
ν−min(G)

, 1
ν+max(G)

] with the definition of H0,H1,H2 and G shown in

(5.11).

Proof. Since Λq2 is Schur stable, then H0 = I ⊗ I − Λq2 ⊗ Λq2 is nonsingular as a result

of Lemma 5.3.2. According to Lemma 5.3.1, if H0 is nonsingular and c is in the range of
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[ 1
ν−min(G)

, 1
ν+max(G)

], H(c) = c2H2 + cH1 + H0 is nonsingular. Given Λq2 is Schur, based on

Lemma 5.3.3, the matrix

cΛq1 + (1− c)Λq2

is Schur stable if I⊗ I−Λ(c)⊗Λ(c) is nonsingular. Since

I⊗ I−Λ(c)⊗Λ(c) =I⊗ I−
[
(1− c)Λq2 + cΛq1

]
⊗
[
(1− c)Λq2 + cΛq1

]
=I⊗ I− (1− c)2Λq2 ⊗Λq2 − (1− c)cΛq2 ⊗Λq1

− c(1− c)Λq1 ⊗Λq2 − c
2Λq1 ⊗Λq1

=I⊗ I−Λq2 ⊗Λq2

+ c
[
2Λq2 ⊗Λq2 −Λq2 ⊗Λq1 −Λq1 ⊗Λq2

]
+ c2

(
Λq2 ⊗Λq1 + Λq1 ⊗Λq2 −Λq2 ⊗Λq2 −Λq1 ⊗Λq1

)
=c2H2 + cH1 + H0 = H(c).

Therefore, cΛq1 + (1− c)Λq2 is Schur stable.

Recall that we define the scalar c∗ = ωωωθ∗ωωω
′
δ∗ and ωωωδ∗ is known for a given system. Let

us denote cmin = 1
ν−min(G)

and cmax = 1
ν+max(G)

. For c∗ in the range of [cmin, cmax], the corre-

sponding range for ωωωθ∗ is obtained as:

ωωω
[1]
θ∗ =

c∗ −ωωω[2]
δ∗

ωωω
[1]
δ∗ −ωωω

[2]
δ∗

, ωωω
[2]
θ∗ = 1− c∗ −ωωω[2]

δ∗

ωωω
[1]
δ∗ −ωωω

[2]
δ∗

. (5.12)

Since ωωω
[2]
θ∗ can be obtained from ωωω

[1]
θ∗ , we only look into the range for ωωω

[1]
θ∗ . Equation (5.12)

illustrates the linear relationship between ωωω
[1]
θ∗ and c∗. Therefore, the valid range for ωωω

[1]
θ∗ is

given by:

1) if ωωω
[1]
δ∗ −ωωω

[2]
δ∗ > 0,

ωωω
[1]
θ∗ ∈

[cmin −ωωω[2]
δ∗

ωωω
[1]
δ∗ −ωωω

[2]
δ∗

,
cmax −ωωω[2]

δ∗

ωωω
[1]
δ∗ −ωωω

[2]
δ∗

]
∩ [0, 1],
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2) if ωωω
[1]
δ∗ −ωωω

[2]
δ∗ < 0,

ωωω
[1]
θ∗ ∈

[cmax −ωωω[2]
δ∗

ωωω
[1]
δ∗ −ωωω

[2]
δ∗

,
cmin −ωωω[2]

δ∗

ωωω
[1]
δ∗ −ωωω

[2]
δ∗

]
∩ [0, 1].

For both situations, all the values for cmax, cmin and ωωωδ∗ are known so that the range for ωωω
[1]
θ∗

can be computed. To simplify notations, denote ηmin ≥ 0 be the lower bound and ηmax ≤ 1

be the upper bound of ωωω
[1]
θ∗ , i.e., ηmin ≤ ωωω

[1]
θ∗ ≤ ηmax. Next lemma presents the relationship

between ωωω
[1]
θ∗ and λ0, λ1.

Lemma 5.3.4. Given the boundary on the stationary distribution ηmin ≤ ωωω
[1]
θ∗ ≤ ηmax, the

corresponding region for λ0 and λ1 are:

Scenario 1: ηmin = 0 and ηmax < 1

0 ≤ λ0 ≤
(1− ηmax

ηmax
λ1 +

2ηmax − 1

ηmax

)
. (5.13)

Scenario 2: ηmin > 0 and ηmax = 1

(1− ηmin
ηmin

λ1 +
2ηmin − 1

ηmin

)
≤ λ0 ≤ 1. (5.14)

Scenario 3: ηmin > 0 and ηmax < 1

(1− ηmin
ηmin

λ1 +
2ηmin − 1

ηmin

)
≤ λ0 ≤

(1− ηmax
ηmax

λ1 +
2ηmax − 1

ηmax

)
.

(5.15)

Proof. For transition matrix of a Markov chain defined as in (5.3), we first have:

lim
k→∞

Pm
k =

1

2− λ0 − λ1

1− λ1 1− λ0

1− λ1 1− λ0

 .
Therefore, the stationary distribution is

ωωωθ∗ = lim
k→∞

ωωωθPm
k =

[
1−λ1

2−λ0−λ1
1−λ0

2−λ0−λ1

]
. (5.16)
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Given the boundary on ωωω
[1]
θ∗ , we have:

ηmin ≤
1− λ1

2− λ0 − λ1

≤ ηmax. (5.17)

Based on different values of ηmin and ηmax, we can get the inequalities in (5.13)-(5.15).

Equations (5.13)-(5.15) yield an underdetermined problem, i.e., there is one degree of

freedom. The relationship in (5.13)-(5.15), along with the constrains 0 ≤ λ0, λ1 ≤ 1 fully

define the possible ranges for λ0 and λ1 that ensures the convergence of the first term in

(5.8).

5.3.2 Boundedness on the Continuous States

We have addressed the convergence problem for the system in (5.9). In this section, we deal

with the boundedness problem for the second term in equation (5.8):

u′2Pm
kωωωθωωωδPs

k ×
[
u1(Λq2 − Γq2,q1) + u2(Λq1 − Γq1,q2)

]
E(xk−1). (5.18)

For a given system, the matrix

u′2Pm
kωωωθωωωδPs

k
[
u1(Λq2 − Γq2,q1) + u2(Λq1 − Γq1,q2)

]
is deterministic and finite. Therefore, the boundedness of (5.18) only depends on E(xk).

Recall that E(xk) is the expectation of the continuous state of the MJLS in (5.2). This

boundedness problem is equivalent to the stability analysis of MJLS in (5.2). We first

investigate the stability problem for the following Markov jump autonomous linear system:

xk = Aδkxk−1. (5.19)

There are numerous concepts of stability that have been defined for SHS. In this chapter,

we use the definition of stochastic second moment stability, also referred to as mean squared
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stability (MSS) [79, 80]. The autonomous system (5.19) is MSS if for any initial distribution

of x∗0 and δ0,

lim
k→∞

E(‖x∗k‖) = 0.

Among the existing approaches to study stability, the main approach is primarily built on

the well-known Lyapunov theory. A necessary and sufficient condition for stability of system

(5.19) with finite Markov chain {δk} is presented in [81]. A condition using Kronecker

product provides a testable condition and our following analysis is built on this result. The

following theorem can be found in [80].

Theorem 5.3.2. The system in (5.19) is MSS if and only if the matrix Z is Schur stable

(ρ(Z) < 1) with Z defined as:

Z = diag[Aq1 ⊗Aq1 , · · · ,Aqd ⊗Aqd ] · (Ps
′ ⊗ I). (5.20)

For a given system (5.19), the matrices Aq1 , · · · ,Aqd and Ps are known. Therefore, the

condition ρ(Z) < 1 is numerically testable. The following theorem exposes the relationship

between the stability of (5.2) and (5.19) with a detailed proof in [20].

Theorem 5.3.3. The following statements are equivalent:

(i) The MJLS represented in (5.19) is MSS;

(ii) The MJLS represented in (5.2) is MSS if wk is second order independent wide sense

stationary (WSS).

In our system model, wk is second order independent WSS since we assume it is Gaussian

with mean 0 and covariance Q. Therefore, the condition in Theorem 5.3.2 also indicates the

stability of (5.2) which results in the boundedness of (5.18). Finally, we can combine all the

results introduced thus far and present our main result in the following theorem.

Theorem 5.3.4. For the MJLS in (5.2), the state estimation bias dynamics introduced by

mode mismatch modeled as a Markov chain θk is statistically convergent as limk→∞ E(ek) <
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∞ if:

(i) The probabilities λ0 and λ1 satisfy (5.13)-(5.15);

(ii) Matrix Z is Schur stable with Z defined as (5.20).

Proof. The first condition that λ0 and λ1 satisfy (5.13)-(5.15) ensures the convergence of

(5.9). The second condition guarantees the boundedness of (5.18). Since the mean of bias

dynamics evolves as in (5.8), (5.8) is bounded-input bounded-output (BIBO) stable [12].

5.4 MJLS with arbitrary numbers of modes

In Chapter 5.2, we have derived the dynamics of bias ek in (5.4). In this section, we consider

a generalized MJLS and analyze the mean process of ek. The proposed approach is to model

it as an auxiliary linear system and then study the statistical convergence on the mean

process.

5.4.1 Mean Process of the Bias Dynamics

Based on equation (5.4), {ek}∞k=0 is a stochastic process that depends on γk, δk and θk.

Therefore, we consider convergence in mean, i.e.,

lim
k→∞

E(ek) <∞. (5.21)

According to the tower rule, we have E(ek) = E(E(ek|ek−1)) where the outer expectation is

taken over ek−1 and the inner expectation is taken over γk, δk and θk. We can write:

E(ek) =Eγk
[
Λγk

]
E(ek−1) + Eγk,θk,δk

[
θk(Λγk − Γγk,δk)

]
E(xk−1). (5.22)

The dynamics of E(ek) in (5.22) can be interpreted as a linear system in the form:

zk = Ωkzk−1 + Φkuk−1, (5.23)
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where the state and input correspond to:

zk = E(ek), uk = E(xk),

and

Ωk = Eγk
[
Λγk

]
Φk = Eγk,θk,δk

[
θk(Λγk − Γγk,δk)

]
.

Therefore, the matrices Ωk and Φk are closely related to the distributions of γk, θk and δk.

Recall that γk denotes the observed (or estimated) mode at time k and γk is correlated with

θk and δk. In the rest of this chapter, we will use the notation P
qi
γk to denote that probability

of γk taking the value qi, i.e.,

Pqi
γk

= P(γk = qi),

and pγk for the distribution of γk as:

pγk =

[
P
q1
γk , · · · , P

qd
γk

]
.

We can use a similar notation for the distribution of δk and θk. Since the distribution on

γk fully depends on δk and θk, we will first derive the distribution for δk and θk and then

present the distribution of γk. Denote the initial distributions for δ0 and θ0 as row vectors

as shown below:

pδ0 =

[
P
q1
δ0
, · · · , P

qd
δ0

]
,

pθ0 =

[
P0
θ0
, P1

θ0

]
.
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Since both δk and θk are Markovian process, we can write the probability distributions of δk

and θk as:

pδk = pδ0Ps
k, pθk = pθ0Pm

k.

We denote the stationary distribution of γk and δk as:

pδ = lim
k→∞

pδk =

[
P
q1
δ , · · · , P

qd
δ

]
,

pγ = lim
k→∞

pγk =

[
P
q1
γ , · · · , P

qd
γ

]
.

As discussed earlier, we consider a multi-mode discrete state space, i.e., Q = {q1, · · · .qd}.

Therefore, γk follows the same distribution as δk if θk = 0. However, the distribution for γk

cannot be fully determined if θk = 1. In order to derive the distribution of γk, we make the

following assumption: if θk = 1, γk takes values in Q\{δk} with equal probability. Therefore,

we have ∀qi ∈ Q, the probability of γk = qi is:

Pqi
γk

= P0
θk

P
qi
δk

+
P1
θk

d− 1

qj 6=qi∑
qj∈Q

P
qj
δk
, (5.24)

with

∑
qi∈Q

Pqi
γk

=
∑
qi∈Q

(
P0
θk

P
qi
δk

)
+
∑
qi∈Q

(
P1
θk

d− 1

qj 6=qi∑
qj∈Q

P
qj
δk

)

= P0
θk

∑
qi∈Q

P
qi
δk

+
P1
θk

d− 1

∑
qi∈Q

qj 6=qi∑
qj∈Q

P
qj
δk

= P0
θk

+
P1
θk

d− 1

∑
qi∈Q

(
1− P

qi
δk

)

= P0
θk

+
P1
θk

d− 1

(
d− 1

)
= 1.
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5.4.2 Stability Analysis for Mean Bias Dynamics

Based on preceding discussion, it is easy to see that the convergence of E(ek) as (5.21)

is equivalent to the marginal stability of zk. Definition of marginal stability is based on

Lyapunov stability and we include the definition below for the sake of completeness.

Definition 5.4.1. A linear system in (5.23) is Lyapunov stable if there exists some ξ > 0

such that ‖z0‖ < ξ implies ‖zk‖ < ε for all k.

Remark 5.4.1. A linear system is marginally stable if it is neither Lyapunov stable nor

unstable.

Note that Lyapunov stability gives a stronger condition than (5.21) since it requires not

only convergence but convergence to a region close to 0. In the following, we will develop

conditions on Lyapunov stability of (5.23) which can guarantee that (5.21) is satisfied. We

first consider stability for the corresponding autonomous system:

zk = Ωkzk−1. (5.25)

It is known that system (5.25) is Lyapunov stable if and only if lim
k→∞

ρ(Ωk) < 1 with Ωk

defined as

Ωk = Eγk
[
Λγk

]
=

d∑
i=1

Pqi
γk

Λqi . (5.26)

We have:

lim
k→∞

ρ(Ωk) = ρ

(
lim
k→∞

Ωk

)
= ρ

[
lim
k→∞

( d∑
i=1

Pqi
γk

Λqi

)]
= ρ

( d∑
i=1

Pqi
γ Λqi

)
. (5.27)

The matrix in (5.27) is a convex combination of d matrices Λq1 , · · · ,Λqd (also referred to

as matrix polytope). Derivation of closed form algebraic expression for spectral radius of a
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matrix polytope is still an open task. In the previous section (Chapter 5.3), we considered

the same research question with discrete state space containing only two modes, i.e., Q =

{q1, q2}. The two mode assumption simplifies the analysis as known δk and θk can uniquely

determine the value of γk. Additionally, the two-mode assumption enables us to develop

a necessary and sufficient condition that guarantees the statistically convergence on ek by

leveraging results on Schur stability and nonsingularity of an auxiliary matrix. In this

section, due to the fact that γk, δk and θk are correlated and a generalized discrete space

Q = {q1, · · · .qd} is considered, we take an different approach than the previous section and

derive a sufficient condition such that (5.21) is satisfied. In the following, we will review the

prior efforts related to the spectral analysis of a matrix polytope and then present our main

results.

A matrix polytope is defined as:

V =

{
V =

m∑
i=1

αiVi

∣∣∣∣∣ αi ≥ 0,
m∑
i=1

αi = 1,Vi ∈ Rn×n
}
. (5.28)

Research work on spectral radius of (5.28) spans multiple decades. Approaches can be

broadly grouped into three categories: (1) Singularity approach; (2) Interval matrix approach

and, (3) Linear matrix inequality (LMI) approach.

Singularity Approach

[78] studies Schur stability for polytope with two matrices and they derive conditions on αi

that assures the stability of (5.28). [82] extends result of [78] to the case of three matrices and

they first introduce the equivalence between polytope of matrices and the interval matrix.

The approach they proposed for Schur stability of (5.28) is to check a block P-matrix respect

to partitions on space {1, · · · , 6n2}. [83] generalizes the results in [82] to all cases of k ≥ 2.
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Interval Matrix Approach

As stated in [82], the convex combination of matrices is equivalent to an interval matrix. [84]

first proposes a sufficient and necessary condition for stability of interval matrices but [85]

then proves that the condition derived in [84] is not sufficient using a counterexample. [86]

proposes a sufficient and necessary condition for a specific class of interval matrices where all

diagonal elements are negative and non-diagonal elements are non-negative. [87] presents an

algebraically testable sufficient condition for a general class of interval matrices. It also proves

a sufficient and necessary condition on subinterval matrices. [88] studies Schur stability of

interval matrices based on the definition of M-matrix and derives sufficient element-wise

conditions.

LMI-based Approach

Another approach is to derive LMI-based conditions originally used for stability analysis. For

polytopic systems, [89] derives sufficient and necessary conditions based on a class of affine

parameter-dependent Lyapunov functions. A similar problem has been studied in [90–92]and

they provide less conservative necessary and sufficient computationally verifiable conditions

for a symmetric positive definite polytope of matrices. Another result is presented in [93]

and their approach is based on homogeneous polynomially parameter-dependent quadratic

Lyapunov function (HPD-QLF). Other related works can be found in [94, 95].

In this chapter, we intend to derive conditions on probability of mode mismatch such

that the bias dynamics is statistical convergent (i.e., (5.21) is satisfied). Due to the fact that

both singularity approach and LMI-based approach do not provide an algebraic solution for

the coefficient αi, we will build our results on the interval matrix approach.

To study the statistical convergence of the bias dynamics, we first analyze the spectral

radius of the matrix polytope Ωk. By mapping the matrix polytope into an interval matrix,

we derive sufficient conditions that guarantees the stability of (5.25), Finally, we analyze the

stability of the input term in (5.23) and complete the analysis.
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5.4.3 Schur Stability of Interval Matrix

Recall that the goal is to find conditions such that lim
k→∞

ρ(Ωk) < 1 with lim
k→∞

ρ(Ωk) defined

in (5.27). A d-dimensional standard (or probability) simplex is defined as:

A =

{
a

∣∣∣∣∣
d∑
i=1

a[i] = 1

}
⊂ [0, 1]d.

We denote αi = P
qi
γ and ααα = [α1, · · · , αd] ∈ A and define

Ω(ααα) =
d∑
i=1

αiΛqi , ααα ∈ A. (5.29)

In (5.29), Λqi are fixed matrices for a given system. Therefore, the goal is to find a

feasible region Af ⊆ A such that ∀ααα ∈ Af , ρ(Ω(ααα)) < 1. The following lemma presents the

equivalence between convex set of matrices and interval matrix.

Lemma 5.4.1. The convex set of matrices Λqi is equivalent to the interval matrix [Λ,Λ]

with

Λ[k,l] = min
qi∈Q

Λ[k,l]
qi
, ∀k, l ∈ [1, n]2

Λ
[k,l]

= max
qi∈Q

Λ[k,l]
qi
, ∀k, l ∈ [1, n]2.

(5.30)

The following theorem provides a sufficient condition on Schur stability on interval matrix

[Λ,Λ] with a detailed proof found in [87].

Theorem 5.4.1. The interval matrix [Λ,Λ] is Schur stable if:

(i) Λ0 , 1
2
(Λ + Λ) is Schur stable, and therefore, there exists a s.p.d. matrix P s.t.

Λ′0PΛ0 −P = −I

(ii) 1
2
β(Λ−Λ) <

[
β(Λ0)2 + 1

‖P‖∞

]1/2

− β(Λ0),
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where,

β(A) = max {‖A‖1 , ‖A‖∞}

and

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij| , ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| .

Based on the equivalence relation in Lemma 5.4.1 and the sufficient condition presented

in Theorem 5.4.1, the following corollary can be easily obtained.

Corollary 5.4.1.1. The matrix Ω(ααα) is Schur stable for all ααα ∈ A if the interval matrix

[Λ,Λ] is Schur stable.

For a given system described in (5.2), if the calculated Λ and Λ based on Lemma 5.4.1

satisfy conditions in Theorem 5.4.1, then the bias dynamics in (5.25) is convergent. On

the other hand, for the case that Λ and Λ do not satisfy Theorem 5.4.1, we intend to find

constraints on ααα such that the Schur stability of Ω(ααα) can still be guaranteed. Before we

present the main theorem, the concept of subinterval matrix of the interval matrix [Λ,Λ]

need to be defined.

Definition 5.4.2. An interval matrix [∆,∆] is a subinterval matrix of [Λ,Λ] if and only if

[∆,∆] ⊆ [Λ,Λ].

The following theorem states the non-existence of choice of ααα such that the matrix Ω(ααα)

is Schur stable.

Theorem 5.4.2. For the matrix Ω(ααα) defined in (5.29) and the feasible region of ααα corre-

sponding to Af ⊆ A, Af 6= ∅ if and only if there exists a subinterval matrix [∆,∆] of [Λ,Λ]

such that [∆,∆] satisfies Theorem 5.4.1. Specifically, if [Λ,Λ] satisfies Theorem 5.4.1, then

Af = A.

Proof. We first prove sufficiency (=⇒):

Let [∆,∆] ⊆ [Λ,Λ] and [∆,∆] satisfies Theorem 5.4.1. By definition, there exists ξξξ =
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[ξ1, · · · , ξd] ∈ A such that
∑d

i=1 ξiΛqi = ∆ and there exists ζζζ = [ζ1, · · · , ζd] ∈ A such that∑d
i=1 ζiΛqi = ∆. We can write:

∆0 ,
1

2
(∆ + ∆) =

1

2

( d∑
i=1

ξiΛqi +
d∑
i=1

ζiΛqi

)
=

d∑
i=1

(ξi + ζi)

2
Λqi

According to Theorem 5.4.1, we know that ρ(∆0) < 1. Since

d∑
i=1

(ξi + ζi)

2
= 1

0 ≤ (ξi + ζi)

2
≤ 1, ∀i

we have 1
2
(ξξξ + ζζζ) ∈ A. The feasible space Af at least contains 1

2
(ξξξ + ζζζ). That is, Af 6= ∅.

Now we prove necessity (⇐=):

If the feasible region Af 6= ∅, let ωωω = [ω1, · · · , ωd] ∈ Af . Since ρ(
∑d

i=1 ωiΛqi) < 1, then we

can construct an interval matrix [∆,∆] by defining ∆ = ∆ =
∑d

i=1 ωiΛqi . It is obvious

that [∆,∆] ⊆ [Λ,Λ]. The matrix ∆0 = 1
2
(∆ + ∆) =

∑d
i=1 ωiΛqi which is Schur stable,

therefore, there exists a s.p.d. matrix P such that

Λ′0PΛ0 −P = −I.

For the second condition in Theorem 5.4.1, we have the left-hand side 1
2
β(Λ − Λ) = 0.

Therefore, we need to show:

[
β(Λ0)2 +

1

‖P‖∞

]1/2

− β(Λ0) > 0

⇒
[
β(Λ0)2 +

1

‖P‖∞

]1/2

> β(Λ0)

⇒β(Λ0)2 +
1

‖P‖∞
> β(Λ0)2.
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Figure 5.2: Mapping from space A, Af to interval matrix [Λ,Λ] and [∆,∆]

This inequality holds obviously. Therefore, we prove that if Af 6= ∅, then there exists a

subinterval matrix [∆,∆] ⊆ [Λ,Λ] such that Theorem 5.4.1 is satisfied. Lastly, it is easy to

show that if [Λ,Λ] satisfies Theorem 5.4.1, then Af = A based on the derivation in the proof.

We omit the proof for this special case due to page limit constraints.

Based on the result of Theorem 5.4.2, the following two problems are equivalent:

1. Solve for a feasible region Af such that Ω(ααα) is Schur stable ∀ααα ∈ Af ;

2. Solve for a feasible region Af such that the corresponding subinterval matrix [∆,∆]

is Schur stable. Here, the subinterval matrix [∆,∆] corresponding to Af is defined as

Ω(ααα) ∈ [∆,∆] if and only if ααα ∈ Af .

To assist our analysis, we need to investigate the mapping from space A to interval matrix

[Λ,Λ]. Figure 5.2 illustrates the space A and Af to interval matrix [Λ,Λ] and [∆,∆] in 3-

dimensional space. The polytope represented by A is also called the standard simplex. Based

on the definition of Λ and Λ in (5.30), each element of matrices Λ and Λ is obtained at the

three boundary points (red circle in Figure 5.2). Therefore, the lower bound ∆ and upper

bound ∆ for the subinterval matrix can also be obtained from the boundary points (green

square in Figure 5.2). The following lemma shows the relationship between Af and [Λ,Λ].
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Algorithm 6 Map From Af to Interval Matrix [∆,∆]

1: function LPS(
{
Λqi

}d
i=1

,
{
αf i
, αf i

}d
i=1

)
2: for k, l = (1 : n, 1 : n) do

3: Minimize: V =
∑
i

αfiΛ
[k,l]
qi

4: Subject to:αf i
≤ αfi ≤ αf i

5:
d∑
i=1

αfi = 1

6:

7: Maximize: W =
∑
i

αfiΛ
[k,l]
qi

8: Subject to:αf i
≤ αfi ≤ αf i

9:
d∑
i=1

αfi = 1

10:

11: ∆[k,l] = V ∗ where V ∗ is the optimal value

12: ∆
[k,l]

= W ∗ where W ∗ is the optimal value
13: end for
14: return ∆,∆
15: end function

Lemma 5.4.2. For a d-dimensional standard simplex A and a subspace Af ⊆ A, let αααf =

[αf1, · · · , αfd] ∈ Af with:

0 ≤ αf i
≤ αfi ≤ αf i ≤ 1, ∀i (5.31)

The interval matrix [∆,∆] corresponding to Af is obtained from:

∆[k,l] = min
αf i
≤αfi≤αf i

∑
i

αfiΛ
[k,l]
qi
, ∀k, l ∈ [1, n]2

∆
[k,l]

= max
αf i
≤αfi≤αf i

∑
i

αfiΛ
[k,l]
qi
, ∀k, l ∈ [1, n]2.

(5.32)

Since Af is a convex polytope, equation (5.32) forms a linear programming problem with

d − 1 degrees of freedom. Even though the optimal solution of equation (5.32) falls on the

extreme points, an analytical solution is difficult to acquire for a general system set up.

Algorithm 6 gives a numerical approach to obtain the corresponding interval matrix if given

the boundary on ααα. Algorithm 7 is the implementation of Theorem 5.4.1 which illustrates
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Algorithm 7 Schur Stable of Interval Matrix

1: function SchurStable(∆,∆)
2: Let ∆0 = 1

2
(∆ + ∆)

3: if ρ(∆0) < 1 then
4: Find P
5: Subject to P = P′

6: P � 0
7: ∆′0P∆0 −P = −I

8: if 1
2
β(∆−∆) <

[
β(∆0)2 + 1

‖P‖∞

]1/2

− β(∆0) then

9: return True
10: else
11: return False
12: end if
13: else
14: return False
15: end if
16: end function

a method to check if an interval matrix is Schur stable (return True) or not (return False).

Algorithm 6 and Algorithm 7 can be used to analyze whether a region on ααα forms a feasible

region such that every ααα in the region implies a Schur stable Ω(ααα). An exhaustive search

can be conducted on the space [0, 1]d in order to obtain all the stable regions with respect

to ααα for a given system.

5.4.4 Conditions on Transition Matrix

As previously discussed, the Schur stability of a system formed by subspace Af can be

analyzed using Algorithm 6 and Algorithm 7. The subspace Af defines the boundaries αf i

and αf i for each αfi. In the following, we will discuss the relationship between the boundary

on αfi and the stationary distribution pγ and further derive conditions on transition matrix

Pm (λ0 and λ1).

Theorem 5.4.3. For the autonomous system shown in (5.25) with Ωk defined in (5.26), the
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system is Lyapunov stable if:

P0
θ ∈ [ηmin, ηmax] =

d⋂
i=1

[
P0,i
θ ,P

0,i
θ

]
,

where,

P0,i
θ = max

{
min

αfi=αf i
,αf i

O(αfi), 0

}
P0,i
θ = min

{
max

αfi=αf i
,αf i

O(αfi), 1

} (5.33)

and

O(αfi) =

αfi − 1
d−1

qj 6=qi∑
qj∈Q

P
qj
δ

P
qi
δ − 1

d−1

qj 6=qi∑
qj∈Q

P
qj
δ

.

Proof. By definition,

αfi = Pqi
γ = P0

θP
qi
δ +

P1
θ

d− 1

qj 6=qi∑
qj∈Q

P
qj
δ , (5.34)

where the stationary probability P
qi
δ for all qi ∈ Q is fixed for a given system. Additionally,

because of the constraint P0
θ + P1

θ = 1, we have:

P0
θ =

αfi − 1
d−1

qj 6=qi∑
qj∈Q

P
qj
δ

P
qi
δ − 1

d−1

qj 6=qi∑
qj∈Q

P
qj
δ

= O(αfi). (5.35)

Therefore, given the lower and upper range on αfi, we can solve for the range for P0
θ. As

shown in (5.35), P0
θ and αfi are linearly related, so the boundary for P0

θ should be taken

on αf i
or αf i. Due to the fact that 0 ≤ P0

θ ≤ 1, we get (5.33). For each αfi, there is a
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corresponding region

[
P0,i
θ ,P

0,i
θ

]
and the overall stable region for P0

θ should be:

[ηmin, ηmax] =
d⋂
i=1

[
P0,i
θ ,P

0,i
θ

]
.

Given the boundary on the stationary probability as ηmin ≤ P0
θ ≤ ηmax, the corresponding

region for λ0 and λ1 (in Pm) can be obtained based on Lemma 5.3.4. The result illustrates

conditions on the probabilities λ0 and λ1 that are related to the Markovian mode mismatch

process. Since both ηmin and ηmax are obtained based on the feasible region Af and stationary

distribution of δk, the stable region of λ0 and λ1 can be calculated apriori. The previous

discussion also implies that if λ0 and λ1 satisfies Lemma 5.3.4, the convergence of (5.25) can

still be guaranteed for the MJLS even in the presence of mode mismatch.

5.4.5 Boundedness on the Continuous States

Thus far, we have considered the stability of the autonomous system in (5.25). The complete

update equation for E(ek) described in (5.23) also contains an input term Φkuk−1 with

uk = E(xk). In this subsection, we will consider the boundedness of Φkuk−1. By definition,

Φkuk−1 = Eγk,θk,δk

[
θk(Λγk − Γγk,δk)

]
E(xk−1). (5.36)

For a given system, the matrix Eγk,θk,δk
[
θk(Λγk −Γγk,δk)

]
is bounded. Therefore, the bound-

edness of (5.36) fully depends on E(xk). The analysis for stability of E(xk) has been discussed

in Chapter 5.3.2 and we will omit the discussion here.

5.5 Experimental Results

In this section, we conduct two experiments base on the previous discussion. One experiment

is mode mismatches in an MJLS with two modes and the other is for a generalized MJLS.
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5.5.1 Numerical Experiment I

A numerical example is presented to validate our theoretical results. Consider an MJLS in

(5.2) with two operational modes Q = {q1, q2} and the following system set up:

Aq1 =


0.1571 0.1336 0.5830

0.7969 0.2882 0.0198

0.1756 0.7829 0.1454

 ,Bq1 =


1 0.78 0

0 1 0.26

0 0.4 5

 ,

Aq2 =


0.0107 0.4652 0.5886

0.7961 0.3409 0.7606

0.1415 0.0452 0.1609

 ; Bq2 =


3 0 0.94

0 4 0.11

1.4 0 5

 ,

Cq1 =


0.0769 0.0496 0.0340

0.0006 0.0790 0.0041

0.0181 0.0493 0.0517

 ,Cq2 = 0.015I.

The transition matrix for discrete state jumps is modeled as follows:

Ps =

0.2798 0.7202

0.1030 0.8970

 .
According to Theorem 5.3.2 and Theorem 5.3.3, this MJLS is MSS because the matrix Z

as defined in (5.20) satisfies ρ(Z) < 1 and the noise wk is WSS. The stationary distribution

is ωωωδ∗ =

[
0.1251 0.8749

]
which falls in the first situation. We can find the stable region of

λ0 and λ1 using equation (5.13). The obtained region is shown in Figure 5.3.

We choose two sets of values for λ0 and λ1: {λ0 = 0.9745, λ1 = 0.6} and {λ0 = 0.4, λ1 = 0.8}

such that the first setting lies in the stable region and the second setting lies outside the

region (marked as pentagram and square in Figure 5.3). We then experiment with different

mode mismatch probability Pm, and illustrate the evaluation of the actual mean of bias.

Based on Monte-Carlo simulations over time [0, 2000], the evolution of bias is plotted in

Figure 5.4. We can observe that when λ0 and λ1 satisfies the stable condition (5.17), BIBO
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Figure 5.4: The mean of bias evolution for two different settings on λ0 and λ1

stability can be guaranteed. On the other hand, if the choice of λ0 and λ1 are outside of the

stable region, then the bias can grow exponentially and remain unbounded. These numerical

results confirm our analysis and validate the main results introduced in Chapter 5.3.

5.5.2 Numerical Experiment II

In this section, we conduct an experiment to illustrate and verify our main result. We

consider an MJLS described as in (5.2) with xk ∈ R2, yk ∈ R2 and three modes, e.g.,
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Figure 5.5: Stable region for ααα
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Q = {q1, q2, q3}. The system matrices are defined as follows.

A1 =

0.3395 0.4119

0.3922 0.5121

 ,A2 =

0.7722 0.0984

0.9609 0.5098

 ,A3 =

0.7927 0.5183

0.1458 0.5509

 ;

B1 =

0.3088 0.9774

0.5984 0.5340

 ,B2 =

0.0304 0.5629

0.8077 0.4905

 ,B3 =

0.2991 0.3013

0.2797 0.1845

 ;

C1 =

0.6402 0.3258

0.6477 0.7202

 ,C2 =

0.4140 0.0211

0.3412 0.3836

 ,C3 =

0.8258 0.0389

0.7817 0.1139

 .
The transition matrix for discrete states is

Ps =


0.3131 0.4550 0.2319

0.0939 0.1589 0.7472

0.1070 0.0077 0.8853

 .

With this transition matrix, we calculate the stationary distribution for this Markov chain

is:

pδ =

[
0.1335 0.0794 0.7871

]
.

The first step is to obtain matrices Λqi ,∀qi ∈ Q and then map the polytope of matrices Λqi

into an interval matrix [Λ,Λ]. Based on Lemma 5.4.1, we have:

Λ =

0.7430 0.4844

0.8739 0.5372

 ,Λ =

0.2979 0.0871

0.1257 0.4585

 .
We then apply algorithm 6 and algorithm 7 to compute the region on ααα such that the matrix

Ω(ααα) is Schur stable. As shown in Figure 5.5, the stable region for ααα is displayed as the
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shaded region. The region we calculated is:

0 ≤ αf1 ≤ 0.9192

0.07071 ≤ αf2 ≤ 1

0 ≤ αf3 ≤ 0.9293

It should be noted that for ααα that falls in the area that is outside the dotted stable region,

Ω(ααα) can be Schur stable or unstable as Theorem 5.4.1 only presents a sufficient condition.

For the feasible region on ααα, the corresponding region on P0
θ can be obtained via Theorem

5.4.3:

0 ≤ P0,1
θ ≤ 1, 0 ≤ P0,2

θ ≤ 1, 0 ≤ P0,2
θ ≤ 1

Therefore, the stable range for P0
θ is [0, 1]. According to Lemma 5.3.4, stationary distribution

for Markov chain θk is:

lim
k→∞

pθ0Pm
k =

[
1−λ1

2−λ0−λ1
1−λ0

2−λ0−λ1

]
.

Therefore, we have:

0 ≤ 1− λ1

2− λ0 − λ1

≤ 1,

which results in 0 ≤ λ0, λ1 ≤ 1. This result reveals that for this system settings, the bias

in a mode-based Kalman filter should always converge for any mode mismatch probabilities

λ0 and λ1. We then conduct several Monte-Carlo simulations for different combinations of

values of λ0 and λ1 and track the dynamics of bias. The results shown in Figure 5.6 validates

this theoretical analysis and we can see that even for the case that λ1 = 1 (θk = 1 becomes

an absorbing state which means the mode mismatch error always exists), the bias from the

Kalman filter still converges.
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5.6 Summary

In this chapter, we study the impact of time correlated mode mismatch errors on a mode-

based Kalman filter for MJLS state estimation. Specifically, the time correlated mode mis-

match error is modeled via a Markov chain and we focus on the resulting estimation bias.

Sufficient and necessary conditions regarding the mode mismatch transition probabilities

λ0 and λ1 are derived for an MJLS with two modes and a sufficient conditions has been

presented for a generalized MJLS with arbitrary number of modes. In the next chapter,

spatially correlated mode mismatches will be investigated.
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Chapter 6

Spatially Correlated Mode Mismatch

Errors

In the previous chapters, we have investigated the impact of independent and identically

distributed (i.i.d.) Bernoulli distributed and time correlated mode mismatch errors on mode-

based Kalman filters. In this chapter, we study the bias dynamics with spatially correlated

mode mismatch errors and derive a sufficient condition that guarantees the stability of the

bias.

6.1 Introduction

Markov jump linear system (MJLS) [20] is a subclass of stochastic hybrid system (SHS) where

the continuous states evolve linearly and discrete modes switch following a Markov chain.

MJLS has been used in modeling of cyber-physical systems (CPS) such as microgrid [8],

networked control systems [9], etc. State estimation is critical for MJLS if the states are

not directly accessible. The quality of state estimation impacts further system analysis

and the design of an appropriate control strategy. State estimation in MJLS is dominated

by Kalman filter based algorithms. In terms of performance analysis for hybrid system

estimation algorithms, due to the complexity of hybrid strategies, there are limited efforts
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that have been made in this field. To our best knowledge, only few works have studied the

performance of hybrid estimation algorithms [47–49]. Specifically, [47–49] focus on stability

of IMM algorithm. [46] studies the effect of mismodeling in Kalman filter for non-hybrid

system settings and it derives the mean and covariance matrix for residuals of a mismodeled

Kalman filter without analyzing the stability or convergence of the residual. In this chapter,

we analyze the performance of a mode-based Kalman filter with mode mismatch errors that

are correlated across different modes. The inaccurate mode information will introduce a

bias to the estimator as we have discussed in the previous chapters. The focus of this

chapter is to derive conditions under which the bias dynamics is statistically convergent. The

notion of correlated mode mismatch errors can efficiently capture communication-link failures

and spatially correlated cyber-impairments in CPSs. A motivating example is presented as

follows.

Network topology error is a typical problem in a smart grid [21]. Consider a conceptual

smart grid as shown in Figure 6.1. The system consists of a bank of photovoltaic (PV) panels,

three home loads, an electric vehicle and the main electricity grid. As discussed in [7], a

smart grid can be well described using a framework of SHS because of the interaction between

probabilistic elements and discrete and continuous dynamics. For example, the underlying

analog/continuous variables are power consumption, bus voltage, etc. The discrete behaviors

are captured by status of switches. The status of switches determines the network topology

of the smart grid. As shown in Figure 6.1, there could be communication link failures near

switches S1 and S2 which in turn result in erroneous status information reported to the

topology processor. Consequently, the incorrect status leads to a mode mismatch (which

could be spatially correlated as network impairments can impact multiple switch status

information) that in turn will introduce a bias in the state estimation for analog variables.

For smart grids and many other CPSs that experience similar affects, this work derives

conditions for statistical convergence of the bias dynamics of a mode-based Kalman filter

estimate.

As stated earlier, mode mismatch is a typical problem in MJLS state estimation. For

a general class of SHS, review of the recent literature reveals that there is limited prior
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Figure 6.1: Motivating example: spatial correlated cyber-effects in a smart grid

work that provides a rigorous performance analysis of SHS estimation techniques [47–49].

Both [47, 48] focus on the convergence of residual for hybrid estimation algorithms IMM. A

recent research [49] studies sufficient conditions on error covariance of IMM algorithm for

MJLS state estimation. All the above mentioned research works focus on IMM algorithm

(composed of multiple mode-based Kalman filters). However, for a general hybrid system

estimation setting, the performance of mode-based Kalman filter with presence of mode

mismatch errors has not been addressed. This chapter studies the impact of mode mismatch

in a mode-based Kalman filter for MJLS estimate. As follow-up of the previous chapters,

we consider the case of correlated mode mismatches that can capture spatially correlated

cyber-impairments in practical applications. We derive sufficient conditions under which the

bias resulting from mode mismatches is statistically convergent. The condition is related

to mode mismatch probabilities and it provides guidance on the fidelity of discrete state

information needed to sustain the quality of the Kalman filter estimate. The novelty lies in

modeling the bias dynamics as a transformed switched system. By leveraging existing results

in stability analysis for switched system, we obtain conditions for the convergence of bias.
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Furthermore, for the first time, we are able to derive an algebraically solvable condition in

terms of the mode mismatch probabilities that guarantees the statistical convergence of the

bias.

6.2 System Model

We consider a discrete-time MJLS with a finite discrete state space denoted asQ = {q1, · · · , qd}.

The discrete state transitions are modeled via a time-homogeneous Markov chain. Let

δk : k → Q be a switching signal. Then the transition probability corresponds to,

P(δk = qj|δk−1 = qi, · · · , δ0 = q1)

= P(δk = qj|δk−1 = qi) = πij, (6.1)

and the transition matrix is defined as Ps = [πij] ∈ Rd×d. The continuous state and mea-

surements evolve as:

xk = Aδkxk−1 + Bδkwk,

yk = Cδkxk + vk.

(6.2)

Here, xk ∈ Rn is the continuous state and yk ∈ Rm is the measurement. wk ∼ N (0,Q)

and vk ∼ N (0,R) are both independent Gaussian noise capturing model and measurement

uncertainty. Given δk = qi ∈ Q, Aδk , Bδk and Cδk are n × n, n × p and m × n matrices,

respectively. We assume the initial continuous state is Gaussian distributed with mean µµµ0

and covariance Σ0 and the initial discrete mode is q1.

106



6.3 Main Results

6.3.1 Correlated Mode Mismatch Errors

In general, state estimation in an SHS is challenging due to the interaction across both

discrete and continuous states. In this work, we consider the scenario wherein the continuous

state is estimated via a mode-based Kalman filter that is susceptible to correlated mode

mismatch errors due to incorrect discrete state information. The correlation considered is

between different discrete modes and can result from spatial interaction or cyber-attack. In

the following, we will present the generalized error formulation and an illustrative example.

Let the number of correlated-mode groups be K and the sets of correlated modes be

C = {C1, · · · , CK}. The mode mismatch errors only occur within each set Ci, ∀Ci ∈ C.

Generally, Ci and Cj are mutually exclusive for all distinguished i, j. Define an operator

C : Q → C that returns the correlated group that the state qi belongs to, i.e., C(qi) = Cl if

qi ∈ Cl. Let γk : k → Q denote the estimated mode. Note that γk is only correlated with δk

and it is independent with continuous state xk, ∀k. We define the conditional probability of

mode mismatch as:

P(γk = qj|δk = qi) =


λqj ,qi ∃Cl ∈ C s.t. qi, qj ∈ Cl,

0 @Cl ∈ C s.t. qi, qj ∈ Cl.

Note that for any qi ∈ Q,
∑

qj∈Q
λqj ,qi = 1. Here, we assume the probabilities of mode

mismatch are the same within each correlated group. That is, ∀qi, qj ∈ Cl, we define

λqi,qj =


λCl , qi = qj

1−λCl
|Cl|−1

, qi 6= qj

with |Cl| represents the number of elements in set Cl. While this assumption will be relaxed

in our future work, we believe that this is a reasonable first step as it is a reflection of

the correlation that exists within a group. As an illustrative example, Figure 6.2 shows
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a networked system with four nodes (a,b,c and d). Each edge is either connected (1) or

disconnected (0). Consequently, the topology of the network changes based on the status of

the edges. Let the discrete state represents the topology of the network, i.e., the discrete

state space consists of 64 modes corresponding to different status of each edge. Suppose the

local network around nodes a,b and c is exposed to attack such that the actual status of E1,

E2 and E3 transmitted to the topology processor could be erroneous resulting in correlated

mode mismatches. Since there is no error in E4, E5 and E6, and their status contributes eight

distinct topologies, i.e., K = 8. Each of these eight groups of states can be mathematically

represented as:

Ci = {q|E4 = i1, E5 = i2, E6 = i3, ∀E1, E2, E3} ,

with i1, i2, i3 ∈ {0, 1}.

6.3.2 Mode-Based Kalman Filter

As the continuous states are not directly observable in system (6.2), a mode-based Kalman

filter can be used to estimate the continuous state xk based on the measurement and discrete

states up to time k. Denote the measurement sequence and mode sequence up to time k

as ysk = (y1, · · · ,yk) and γγγsk = (γ1, · · · , γk), respectively. The mode-based Kalman filter

equations for SHS (6.2) are given in Algorithm 8. For a hybrid system, the mode-based
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Algorithm 8 Mode-based Kalman filter

1: function Estimation update(µµµ0,M0|0,Q,R, γγγ
s
k,y

s
k)

2: x0|0 = µµµ0,M0|0 = Σ0

3: ysk = (y1, · · · ,yk)
4: γγγsk = (γ1, · · · , γk)
5: for i = 1 : k do
6: xi|i−1 = Aγixi−1|i−1

7: Mi|i−1 = AγiMi−1|i−1A
′
γi

+ BγiQB′γi
8: Kγi,i = Mi|i−1C

′
γi

(CγiMi|i−1C
′
γi

+ R)−1

9: xi|i = xi|i−1 + Ki,γi(yi −Cγixi|i−1)
10: Mi|i = (I−Kγi,iCγi)Mi|i−1

11: end for
12: return xk|k
13: end function

Kalman filter is unbiased only if γγγsk = δδδsk where δδδsk = (δ1, · · · , δk). Similar as previous

chapters, we define the bias to be the difference between means of estimator and the true

state, i.e., ek = E(x̂k)−E(xk). It has been shown in Chapter 4 and 5 that the bias dynamics

is:

ek =(Aγk −KγkCγkAγk)ek−1

+ (Aγk −KγkCγkAγk + KγkCδkAδk −Aδk)E(xk−1). (6.3)

Here, Kγk is the steady Kalman gain that corresponds to the mode γk ∈ Q. Since we

assume that Q and R are constants for all modes, the Kalman gain will converge to the

corresponding steady Kalman gain Kγk quickly [63]. For hybrid system, it is reasonable

to approximate the time-variant Kalman gain using the steady Kalman gain in practice as

the modes switches are much infrequent than the evolution of continuous dynamics. This

idea has also been used in sub-optimal control problems for decades. As it only involves an

off-line calculation, we use Kγk for approximation in equation (6.3). It should be mentioned

that the bias dynamics analysis is also applicable for a more general class of MJLS where

the Markov chain is nonhomogeneous [96]. In fact, the derivation of the dynamics of the

bias resulting from mode mismatch errors is not restricted to a specific model for discrete

state transitions. We focus on time-homogeneous Markov chain model since the stability of
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such systems is well studied and we are able to derive an algebraically solvable condition.

As the evolution of ek in (6.3) depends on random variable γk and δk, the process {ek}∞k=0 is

a stochastic process. Analyzing the statistical convergence of ek becomes challenging since

γk is correlated with δk. In the following, we will introduce a transformed switched system

and analyze the convergence of ek.

6.3.3 Transformed Switched System

Depending on the actual mode δk, the evolution of ek varies. Conditioning upon δk, the error

process is:

ek|δk = (Aγk|δk−Kγk|δkCγk|δkAγk|δk)ek−1

+(Aγk|δk −Kγk|δkCγk|δkAγk|δk + Kγk|δkCδkAδk −Aδk)E(xk−1).

Given the actual mode δk, the stochastic process {ek|δk}∞k=0 is a function of γk. Here, Aγk ,

Cγk and Kγk are all random matrices that take value in the space of
{
Aqi

}
qi∈Q

,
{
Cqi

}
qi∈Q

and
{
Kqi

}
qi∈Q

, respectively. The randomness in Aγk , Cγk and Kγk results only from γk.

Define matrices Λγk = Aγk −KγkCγkAγk and Γγk,δk = Aδk −KγkCδkAδk , then we can write:

ek|δk = Λγk|δkek−1 + (Λγk|δk − Γγk,δk|δk)E(xk−1). (6.4)

It should be noted that ek|δk is bounded with probability 1 if and only if E(ek|δk) is bounded

[39]. Using the tower rule and taking expectation over ek−1 and γk, we get:

E(ek|δk) =
∑

qj∈C(δk)

[λqj ,δkΛqjE(ek−1) + λqj ,δk(Λqj − Γqj ,δk)E(xk−1)]. (6.5)

Based on the definition of conditional expectation, E(ek|δk) is a random variable on the

same space of δk, i.e., Q. As δk denotes the true mode which follows a Markov chain, we

can interpret the dynamics of E(ek|δk) as a transformed MJLS with discrete state δk. To
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distinguish the transformed SHS from the original system, we use x∗k to denote the continuous

states and use uk to denote the input. The transformed state evolution is now described as:

x∗k = Fδkx
∗
k−1 + Gδkuk−1. (6.6)

Here, x∗k = E(ek|δk), uk = E(xk), and

Fδk = λC(δk)Λδk +
1− λC(δk)

|C(δk)| − 1

∑
qj∈C(δk)
qj 6=δk

Λqj ,

Gδk =
1− λC(δk)

|C(δk)| − 1

∑
qj∈C(δk)
qj 6=δk

(Λqj − Γqj ,δk).

Our goal is to find conditions under which x∗k converges. With the transformed MJLS, the

problem is equivalent to analyzing the stability of the transformed MJLS. The challenge

lies in the uncertainties corresponding to the probability λC(δk) in system matrices Fδk and

Gδk . To further address the impact of λC(δk) on the stability of (6.6), we will leverage the

results that have been established regarding the stability of MJLS and derive an algebraically

solvable condition on λC(δk) that guarantees the convergence of (6.6).

6.3.4 Stability for Markov Jump Linear Systems

Numerous concepts of stability have been defined for SHS. Here, we use the notion of stochas-

tic second moment stability (also referred as mean square stability) [79, 80]. An autonomous

system

x∗k = Fδkx
∗
k−1, (6.7)

is stochastically second moment stable if for any initial distribution of x∗0 and δ0,

lim
k→∞

E(‖x∗k(x∗0, δ0)‖2) = 0.
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The transformed MJLS (6.6) can be treated as an input-output system by defining the

measurement y∗k = x∗k. Since the stability of an input-output system is closely related to the

stability of the corresponding autonomous system, it is conventional to consider the stability

of the autonomous system (6.7) first. Among the existing approaches to study stability,

the main approach is primarily built on the well-known Lyapunov theory. A necessary and

sufficient condition for system (6.7) with finite Markov chain {δk} is presented in [81]. A

condition using Kronecker product provides a testable condition and our main analysis is

built on this result. The following theorem can be found in [80].

Theorem 6.3.1. The system in (6.7) is stochastically second moment stable if and only if

the matrix Z is Schur stable, i.e., ρ(Z) < 1 where ρ(·) is the spectral radius of a matrix and

Z is defined as:

Z = diag[Fq1 ⊗ Fq1 , · · · ,Fqd ⊗ Fqd ] · (Ps
′ ⊗ I). (6.8)

Before we develop the main result, the following lemma [97] needs to be mentioned since

it is essential for proof of the main result.

Lemma 6.3.1. Let Y = [Yij] be a square block matrix, and Z = [‖Yij‖]. Then ρ(Y) ≤ ρ(Z).

Theorem 6.3.2. The matrix diag[Fq1⊗Fq1 , · · · ,Fqd⊗Fqd ] is Schur stable if for all i ∈ [1, d],

there exists λC(qi) ∈ [0, 1] such that fi[λC(qi)] < 1. The function fi(x) is defined as

fi(x) = (K2iS
2
i −K1iSi +K3i)x

2 + (K1iSi − 2K2iS
2
i )x+K2iS

2
i ,
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where,

K1i =

∥∥∥∥∥∥∥∥∥Λqi ⊗
( ∑

qj∈C(qi)
qj 6=qi

Λqj

)
+

( ∑
qj∈C(qi)
qj 6=qi

Λqj

)
⊗Λqi

∥∥∥∥∥∥∥∥∥ ,

K2i =

∥∥∥∥∥∥∥∥∥
( ∑

qj∈C(qi)
qj 6=qi

Λqj

)
⊗

( ∑
qj∈C(qi)
qj 6=qi

Λqj

)∥∥∥∥∥∥∥∥∥ ,
K3i =

∥∥Λqi ⊗Λqi

∥∥ , Si =
1

|C(qi)| − 1
.

Proof. Let Hi = Fqi ⊗ Fqi . From the definition,

Hi =
λC(qi)(1− λC(qi))

|C(qi)| − 1

[
Λqi ⊗

( ∑
qj∈C(qi)
qj 6=qi

Λqj

)
+

( ∑
qj∈C(qi)
qj 6=qi

Λqj

)
⊗Λqi

]

+

(
1− λC(qi)

|C(qi)| − 1

)2
( ∑

qj∈C(qi)
qj 6=qi

Λqj

)
⊗

( ∑
qj∈C(qi)
qj 6=qi

Λqj

)
+ λ2

C(qi)
Λqi ⊗Λqi .

Then we have:

‖Hi‖ ≤K1iSiλC(qi)[1− λC(qi)]

+K2iS
2
i [1− λC(qi)]

2 +K3iλ
2
C(qi)

= fi[λC(qi)]

(6.9)

The spectral radius of a diagonal matrix composed of ‖Hi‖ is:

ρ(diag[‖H1‖ , · · · , ‖Hd‖]) = max
i∈[1,d]

‖Hi‖ .

Therefore, ρ(diag[‖H1‖ , · · · , ‖Hd‖]) < 1 if and only if ‖Hi‖ < 1 for all i ∈ [1, d]. According

to (6.9), the sufficient condition for each ‖Hi‖ < 1 is fi[λC(qi)] < 1, ∀i.
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From Lemma 6.3.1, we can write:

ρ(diag[H1, · · · ,Hd]) ≤ ρ(diag[‖H1‖ , · · · , ‖Hd‖]). (6.10)

As a result of (6.9) and (6.10), we can conclude that fi[λC(qi)] < 1, ∀i is also a sufficient

condition for ρ(diag[H1, · · · ,Hd]) < 1. Finally, since λC(qi) is the probability of no mode

mismatch, it needs to satisfy 0 ≤ λC(qi) ≤ 1. Therefore, if for all i ∈ [1, d], there exists

λC(qi) ∈ [0, 1] such that fi[λC(qi)] < 1, then ρ(diag[H1, · · · ,Hd]) < 1.

Based on Theorem 6.3.1 and 6.3.2, a sufficient condition for Schur stability of system in

(6.7) can be obtained as the following corollary.

Corollary 6.3.1.1. The system in (6.7) is stochastically second moment stable if fi[λC(qi)] <

1, ∀i ∈ [1, d].

Proof. From the property of Kronecker product, we have

ρ(Ps
′ ⊗ I) = ρ(Ps

′)ρ(I) = ρ(Ps). (6.11)

The following inequality holds:

ρ(Z)
(a)

≤ ρ(diag[H1, · · · ,Hd])ρ(Ps
′ ⊗ I)

(b)

≤ max
i∈[1,d]

fi[λC(qi)]ρ(Ps)
(c)

≤ max
i∈[1,d]

fi[λC(qi)].

(a) is true because of Gelfand’s formula and (b) results from (6.9) and (6.10). (c) is based

on the property of a transition matrix, i.e., ρ(Ps) = 1. Therefore, if for all i, fi[λC(qi)] < 1,

then ρ(Z) < 1. From Theorem 6.3.1, ρ(Z) being Schur stable guarantees stochastic second

moment stability of the MJLS represented by (6.7).

Thus far, we have derived the sufficient conditions for stochastic second moment stability

of the autonomous MJLS (6.7). It has been proved that stability of the autonomous system

results in bounded-input bounded-output (BIBO) stability, and this result can be extended
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to the transformed switched system [12, 75]. It is worth pointing out that in our transformed

MJLS (6.6), the input uk is not a control signal but a term that depends on the expectation

of the continuous states xk. Therefore, if the original system is second moment stable, then

uk is bounded which leads to BIBO stability of (6.6). In the following, we present conditions

for the stochastic second moment stability of the original SHS in (6.2). This theorem is

introduced in [20] with a detailed proof.

Theorem 6.3.3. The following statements are equivalent:

(i) The MJLS xk = Aδkxk−1 is stochastically second moment stable;

(ii) The MJLS xk = Aδkxk−1 +Bδkwk is stochastically second moment stable if wk is second

order independent wide sense stationary (WSS).

As we assume the system noise wk is Gaussian with mean 0 and covariance Q, analyzing

stability of (6.2) is the same as the stability analysis of (6.7). Therefore, Theorem 6.3.1 can

be applied to check stochastic second moment stability of (6.2).

6.3.5 Discussion on the Convergence of Bias Dynamics

With all the previously introduced results, we present our main result in the following the-

orem.

Theorem 6.3.4. For the state estimate of MJLS in (6.2), the bias dynamics resulting from

mode mismatch will converge if the following conditions hold:

(i) The matrix diag[Aq1 ⊗Aq1 , · · · ,Aqd ⊗Aqd ] · (Ps
′ ⊗ I) is Schur stable;

(ii) For all i ∈ [1, d], the probability λC(qi) satisfies fi[λC(qi)] < 1.

Proof. Condition (i) implies that the MJLS (6.2) is stochastically second moment stable

based on Theorem 6.3.1. The second condition indicates that the autonomous MJLS (6.7)

is stochastically second moment stable according to Theorem 6.3.2 and Corollary 6.3.1.1.

Both conditions together guarantee the BIBO stability of the bias dynamics in (6.6).
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Figure 6.3: Max of ‖x∗k‖ versus λC1 when λC2 = 0.4 (stable region)
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Figure 6.4: Max of ‖x∗k‖ versus λC2 when λC1 = 0.5 (stable region)

Theorem 6.3.2 reveals the region of λCl that guarantees convergence of the bias dynamics.

Evaluating this region only requires solving a series of quadratic equations. This main result

gives us insights on the fidelity of discrete state knowledge required for convergence of bias.

6.4 Experimental Results

In this section, we consider a three dimensional MJLS with five discrete modes. Due

to the underlying spatial correlation, the system contains two correlated mode groups:
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C1 = {q1, q5}, C2 = {q2, q3, q4}. As discussed in the motivating example (Chapter 6.1),

this simulation setup can be used to describe a smart grid with continuous states being:

x =

[
PG PD 4P

]′
,

where, PG is the power generation, PD is the power demand and 4P denotes power balance.

Depending on the status of switches within the network, there are five network topologies

captured by q1, · · · , q5. The two topologies q1 and q5 in correlated group C1 correspond to

errors in status of one of the switches. Similarly, the three topologies in group C2 correspond

to errors in status of another switch with three settings.

According to Corollary 6.3.1.1, if fi[λC(qi)] < 1, ∀i, then system in (6.7) is stochastically

second moment stable. By solving the quadratic inequality fi[λC(qi)] < 1, we get the values

of λC1 and λC2 that guarantee convergence of the bias dynamics as λC1 ∈ [0.0111, 0.9890] and

λC2 ∈ [0, 0.4672]. Note that the ranges we obtain are sufficient conditions and not necessary.

Therefore, while the system will definitely be stable within the region, it may not be unstable

outside it.

Since there are two correlated groups and mode mismatch errors λC1 and λC2 correspond

to each group, respectively, we conduct the simulation by fixing one probability and validate

the stability region on another. Figure 6.3 shows the actual ‖x∗k‖ by implementing Monte-

Carlo simulation of the system for different values of λC1 while fixing λC2 = 0.4 which

is inside the theoretically derived stable region. We can observe that among N = 1000

Monte-Carlo simulations, max of ‖x∗k‖ only slightly increases as simulation time T increases

but does not diverge for any choice of λC1 ∈ [0.0111, 0.9890]. This observation validates

the calculated stability region [0.0111, 0.9890] for λC1 . Given λC1 = 0.5 (within the stable

region), Figure 6.4 presents the maximum of ‖x∗k‖ over different values of λC2 . In Figure 6.4,

we can conclude that the bias dynamics are stable for λC2 within [0, 0.4672]. For λC2 ≥ 0.7,

the maximum of ‖x∗k‖ diverges rapidly which is consistent with our theoretical result. It is

also worth pointing out that ideally, larger the values of λC1 and λC2 , better the quality of

mode information indicating that the bias should be smaller. However, in this particular
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system setup, function f4(λ) dominates the choice of λC2 . As f4(λ) is a monotonic increasing

function in [0, 1], a larger choice of λC2 leads to f4(λ) > 1.

6.5 Summary

This chapter investigates statistical convergence of bias in a mode-based Kalman filter used

for MJLS state estimation in the presence of mode mismatch errors with focus on mode

mismatch errors that are correlated across modes. This situation is commonly encountered in

many practical systems where mode mismatch errors result due to spatially correlated cyber-

impairments. We derive an algebraically solvable condition that ensures the convergence of

bias. The theoretical results are also validated via simulations on a MJLS as a numerical

example. The main result from the work can serve as a guidance to understand the desired

fidelity in discrete state knowledge for maintaining continuous state estimation quality.
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Chapter 7

Conclusion and Future Work

This chapter concludes the dissertation with a summary of the research results and possible

future directions for this research.

7.1 Summary

In this dissertation, we investigate state estimation strategies for stochastic hybrid systems

(SHS) and evaluate the performance of a mode-based Kalman filter in the presence of mode

mismatch errors. Due to the fact that the continuous state and discrete state are interacting

in an SHS, inaccurate information of discrete state will impact the continuous state estima-

tion quality and introduce a bias in the mode-based Kalman filter. With this background,

this dissertation addresses four research questions that represent challenges in modeling and

situational awareness in an SHS. Motivated by network topology errors in a smart grid, the

four research questions can effectively capture system failure, cyber-attacks or communica-

tion link impairments in a cyber physical system (CPS). In this regard, we summary the

contributions of this dissertation as follows:

• We propose a new state estimation algorithm for state-dependant SHS (SDSHS).

Specifically, we consider an SDSHS with quadratic guard conditions. In the proposed

strategy, only one Kalman filter is needed and the discrete state estimate is derived
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based on distribution for the guard condition and the distribution is related to the esti-

mated continuous state. Based on this distribution, we propose a threshold framework

to decide whether a discrete transition occurs or not. The proposed approach results in

an extremely low error rate for the discrete state estimates even when transitions are

frequent. We demonstrate the algorithm with simulations on a robot motion system

and the result illustrates a superior error performance.

• We study the impact of mode mismatch errors on state estimation for an SHS with

mode-based Kalman filter. It is proved that the mode mismatches introduce a bias to

the mode-based Kalman filter and we derive the bias dynamics as a function of mode

mismatch probabilities. A computationally efficient sufficient condition for a special

case of SHS with two discrete states is derived and the approach involves solving a

straightforward eigenvalue problem to derive the critical region on the mode probability.

Additionally, we propose the use of a transformed switched system to describe the bias

dynamics for a generalized SHS with arbitrary number of modes and the convergence

of the bias is then mapped to the stability of the transformed switched system. A

sufficient and necessary condition such that the bias dynamics is guaranteed to be

statistically convergent. Using numerical simulations of a smart grid with network

topology errors, we verify and validate the theoretical results and demonstrate the

potency of using the analysis in critical infrastructures.

• In a practical CPS, there are situations where the mode information is inaccurate due

to cyber-impariments such as communication link failures. This type of failures can

be adequately captured by time correlated mode mismatch errors. We address this

issue by quantifying the bias dynamics resulting from Markovian distributed mode

mismatches for Markov jump linear system (MJLS) state estimation. We begin the

analysis with an MJLS with two discrete states and derive sufficient and necessary

conditions (based on the results from Schur stability of a matrix polytope) under

which the bias dynamics are statistically convergent. Then for a generalized MJLS, we

model the mean of dias dynamics as an auxiliary linear system. The system matrix
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of this linear system is determined by a polytope of matrices with each vertex matrix

related to the original MJLS system matrices. For MJLS with arbitrary numbers

of modes, by mapping the matrix polytope to an interval matrix, and by leveraging

results in Schur stability analysis for an interval matrix, derive sufficient conditions on

mode mismatch probabilities under which the bias resulting from mode mismatches is

statistically convergent.

• Another critical situation in any CPS is spatially correlated cyber-effects (e.g., cyber-

attacks and communication link impairments, etc.). This cyber-effects could impact

the accuracy of the system mode information and then further result spatially corre-

lated mode mismatches in the system. For a generalized MJLS, we derive sufficient

conditions under which the bias resulting from mode mismatches is statistically con-

vergent. The condition is related to mode mismatch probabilities and it is algebraically

solvable. The result provides new insights on the fidelity of discrete state information

needed to sustain the quality of the Kalman filter estimate.

Based on the accomplishment of this dissertation, some future research directions are

highlighted in the next section.

7.2 Future Work

In this research, we have thoroughly investigated the impact of mode mismatches on the

performance of a mode-based Kalman filter for SHS estimate. Different models of the mode

mismatch errors have been considered and those models can widely capture the cyber-effect

occurred in a practical system. With the basis developed in this dissertation, several potential

research directions are summarized as follows:

• State estimation and control problems are naturally related as the design of controller

highly depends on the quality of state estimate. Optimal control for SHS has at-

tracted intense research interests in the last decades. An example of the switched

linear quadratic regulator (LQR) has been explored in [98–102]. Another cluster of
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research work focuses on LQR problem for MJLS. For the case of complete observa-

tions of both continuous state and discrete mode, the related quadratic optimal control

problem have been found in [20] (Chapter 4), and [22, 103, 104]. In the situation where

only partial information of states is available, the separation theorem [105] is proposed

but it still faces enormous difficulty to obtain optimal control. See [20] (Chapter 6)

and [22, 106, 107] for reference. Therefore, a subsequent topic of this research is to

investigate the stability and robustness of an optimal controller for SHS in the presence

of mode mismatch errors.

• Kalman filter based state estimation have found wide acceptance in networked control

systems (NCS). Specifically, NCS typically requires a distributed estimation strategies

due to (i) states are distributed in the physical space; (ii) sensors are arbitrarily de-

ployed and they jointly sense the complete system; (iii) network infrastructure is used

to communicate measurements to the central estimation unit, etc. There are multiple

prior works focus on state estimation and performance analysis of Kalman filter for

NCS and interested readers can refer to [9, 41, 61, 108, 109], etc. However, a framework

of system that involves distributed state with hybrid (discrete and continuous) behav-

ior has not been well established. One future direction of this dissertation is to study a

Kalman filter based state estimation strategy for a distributed SHS. Furthermore, the

influence of inaccurate mode information on the performance of mode-based Kalman

filter for distributed estimate need to be investigated.

• Most practical applications of SHS such as smart grid and air traffic control system

involves communication links that connect the sensors to the estimator. In this dis-

sertation, we consider the cyber-impairments that impact the information on discrete

state information. However, the communication links that transmit continuous state

measurements can be affected resulting in delayed or lost measurements due to packet

drops. The stability of Kalman filter in the presence of intermittent observations has

been well studied for non-hybrid system [38–40, 42]. In the framework of SHS, in-

termittent observations (continuous state) and mode mismatches (discrete state) can
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both exist at the same time and the quality of a mode-based Kalman filter estimate

will be significantly impaired. With this complex but realistic cyber-effect modeling in

the system, the stability of an estimator (e.g., mode-based Kalman filter) is certainly

worth futher investigation.
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