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Payment for environmental service contracts commonly require actions beyond adoption of a practice, such
as undergoing specified enrollment procedures, granting consent to being monitored, and paying penalties
for violations. These provisions are a bundle of attributes a landholder must accept with contract enrollment,
leading to transaction costs in the contracting process. This article develops a principal-agent framework to
study the links between these transaction costs and the well-known information asymmetries between the
landholders and the government agency offering contracts. Using stated choice data collected from a sample
of farmers, we estimate a mixed logit model to quantify the contribution of different contract attributes on
contract willingness-to-accept (WTA). More stringent provisions in contracts were found to raise individual
WTA by widely differing amounts across farmers, but the average effects imply that overall contract supply
is sensitive to stringency. From a series of microsimulations based on the estimated model, we find that
transaction costs create a significant drain on the cost-effectiveness of contracting from the agency’s point
of view, similar in magnitude to the inefficiency created by hidden information. While stringent contractual
terms raise program expenditures, they may be justified if they raise compliance rates enough to offset the
added cost. We also simulate an implicit frontier to trace out the change in compliance needed to justify
a given increase in stringency. For environmental benefits in the range of previous estimates, this analysis
suggests that stringent terms would need to substantially raise compliance rates to be cost effective.
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Payment for environmental services (PES) contracts are a common means of acquiring ecosystem

goods or services from private landholders. Such contracts are becoming more prevalent glob-

ally, with much of the growth coming from environmental markets in developing nations where

PES contracts are a traded instrument (Blackman and Woodward 2010; Pattanayak, Wunder, and

Ferraro 2010). In the United States, PES contracts are used in a number of the major federal

conservation programs in forestry and agriculture (Mercer, Cooley, and Hamilton 2011; Claassen,

Cattaneo, and Johansson 2008), in which a government agency is the sole buyer. In these and many

other PES settings, enrolled landholders receive a payment in exchange for a practice or change in

land use instead of service provision per se, because of the difficulty in measuring environmental

services at small scales.

A large literature has addressed the performance of PES schemes, which can be hindered by

various factors (Wunder, Engel, and Pagiola 2008). PES contracts are executed in a principal-

agent setting, where the buyer of contracts is the principal and the landholder selling a contract is

an agent. Frictions due to information asymmetries arise because agents hold private information

on their individual costs before contracts are signed (Chambers 1992; Ferraro 2008; Fraser 1995;

Latacz-Lohmann and Van der Hamsvoort 1997; Peterson and Boisvert 2004; Spulber 1988; Wu and

Babcock 1996) and on their compliance during the contract period (Choe and Fraser 1999; Fraser

1995; Hart 2005; Ozanne 2001; Ozanne and White 2008). Even with full compliance, practice-

based contracts commonly assume spatially averaged or simulated service provision, which may

not be realized on all contracted sites (Cattaneo 2003). Moreover, some of the enrolled landholders

may have adopted the practice in the absence of contracts, so that some contracts lack “addition-

ality” (Mason and Plantinga 2013; Pattanayak, Wunder, and Ferraro 2010). A recognized but

sparsely studied friction is the transaction cost incurred by contracting parties, which adds social

costs to the realized level of services.

Transaction costs in contracting occur in many forms, including the costs of formulating, ne-

gotiating, and executing contracts, as well as the costs of monitoring and measuring actions during
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the contract period (Cacho, Marshall, and Milne 2005). While very few studies address PES con-

tracts specifically, there exists an empirical literature on various types of transaction costs borne by

government agencies and farmers in environmental programs (e.g., Falconer, Dupraz, and Whitby

2001a; McCann and Easter 1999; McCann 2009; Vernimmen 2000). This paper focuses on the

transaction costs borne by agents in the PES contracting process and the associated impacts on

aggregate outcomes. Previous studies have simulated the aggregate effects of transaction costs

in PES schemes (e.g., Antle et al. 2007; Netusil and Braden 2001) but because of the paucity of

empirical estimates, they usually model transaction costs as a constant price premium across all

contracts sold. In this paper, we develop estimates of transaction costs that vary across agents,

which allows for a varying premium.

Our estimates are based on a principal-agent framework, which captures the potential links

between transaction costs and information asymmetries. To mitigate against noncompliance or

“moral hazard,” many PES contracts include provisions beyond a commitment to adopt a practice.

Agents often face a detailed enrollment process before signing a contract, and by signing usually

grant their consent to being monitored with penalties assessed for violations (Wunder, Engel, and

Pagiola 2008). We model these provisions as a bundle of attributes an agent must accept with

contract enrollment. More stringent provisions (e.g., increased inspection frequency) raise the

likelihood of contract compliance but at the same time reduce the agent’s utility of enrolling. To

maintain the enrollment of the marginal agent, the principal must add a premium to payments

to cover the transaction costs of the extra stringency. At an aggregate scale, contract stringency

determines both the location and shape the contract supply curve. Heterogeneity across agents

implies an upward sloping supply curve and contract stringency shifts the supply toward higher

prices, although not necessarily in parallel fashion.

Our model also captures the second information asymmetry between the principal and agents.

If agents hold private information on their reservation prices of contracting, the principal can only

offer a uniform contract payment, which implies that at least some agents receive a payment
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exceeding their willingness-to-accept (WTA). These excess payments are known as information

rents, which have been estimated to be a substantial share of payments in many existing programs

(Ferraro 2008).

To fix ideas, we assume that the principal faces an exogenous enrollment target, and that the

program objective is to maximize the net gains from the contracted acreage. Net gains are defined

as environmental benefits, which depend on contract stringency through compliance effects, less

payment expenditures, which are determined from the contract supply. The principal’s problem is

analyzed in two steps, where aggregate payment expenditures are derived as a function of contract

stringency first, and then stringency is chosen by trading off environmental benefits against aggre-

gate payments. A key result from the first step is that contract stringency generally affects both

transaction costs and information rents. This implies that the principal can reduce aggregate ex-

penditures by varying stringency, as an alternative to price discriminating on the basis of individual

WTA. In the second step, we derive the implicit optimal frontier between stringency and contract

compliance, which traces out the minimum change in compliance needed to justify an increase in

stringency.

We apply our model to empirically assess the role of transaction costs in a hypothetical water

quality trading market in Kansas. Our analysis is related to a recent literature that has analyzed

contract enrollment decisions with stated choice data (Christensen et al. 2011; Espinosa-Goded,

Barreiro-Hurlé, and Ruto 2010; Horne 2006; Hudson and Lusk 2004; Ma et al. 2012; Ruto and

Garrod 2009; Vedel, Jacobsen, and Thorsen 2010). Similar to these works, we employ data from

discrete choice experiments with landowners, where contract alternatives included price and non-

price attributes, and we analyze the resulting data with a mixed logit model. We depart from the

existing literature, however, by estimating the full set of correlations among the coefficients in

agents’ utility functions. The estimated correlations are needed to capture the potential nonlinear-

ities of shifts in contract supply.
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We then conduct a series of microsimulations of the estimated model to assess aggregate im-

pacts. With our sample of farmers, we find that transaction costs account for a substantial portion

of total payments, comparable in magnitude to information rents. We also find that the princi-

pal could significantly reduce information rents (as well as transaction costs) by relaxing contract

stringency. In our setting, the simulated compliance frontier suggests that for plausible values of

environmental benefits, very large increases in compliance are necessary to justify even moderate

contract stringency levels.

Conceptual Model

Consider a principal who must set both the terms and prices of PES contracts to be offered to a large

number of heterogeneous agents. A contract is specified by (p,x), where p is the contract payment

for enrolling a fixed amount of land and x = (x1, . . . , xK) is a set of nonprice attributes including

eligibility requirements, noncompliance penalties, monitoring procedures, and other provisions.

Agents may be heterogeneous both with respect to their costs of committing to a contract and

with respect to the environmental benefits from adopting the practice it requires (Ferraro 2003;

Yang, Khanna, and Farnsworth 2005). In general, the principal may have and exploit agent-level

information on both costs and benefits in the contracting process. However, we consider a pure

practice-based program, in which payments are in exchange for practice adoption and do not de-

pend on individual levels of environmental services. This accords with many PES schemes, which

commonly do not attempt to measure the actual benefits provided by each agent (Wunder, Engel,

and Pagiola 2008). Regarding costs, we consider alternative cases where the principal does and

does not exploit agent-level information.

Agents’ Choices

We first consider the agents’ decisions. Each agent n = 1, . . . , N makes a voluntary choice to

enroll in at most one contract and, conditional on enrollment, decides whether to comply with its
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terms. Enrolling in a contract (p,x) will yield an expected utility of

(1) Un(p,x) = max{αnp− cn(x), αnp− vn(x)},

where αn is the agent’s marginal utility of income, cn(x) is the expected disutility of complying

with the contract, and vn(x) is the expected disutility of violating the contract. cn(·) accounts for

the costs of adopting the practice required by the contract as well as the disutility of complying

with the terms in x. vn(·) accounts for the psychic and reputation costs of violation as well as the

expected monetary expenses such as noncompliance penalties. Equation (1) implies that agent n

will comply as long as vn(x) ≥ cn(x). We define the nonprice attributes as stringency-increasing,

where greater stringency implies a higher cost of violating but also a higher cost of complying (i.e.,

∂cn/∂xk ≥ 0 and ∂vn/∂xk ≥ 0 for all k).

To characterize the enrollment decision, the reservation utility of non-enrollment is normalized

to u0 = 0 for all n. The optimized utility of enrolling from equation (1) can be expressed as

Un(p,x) = αnp − φn(x), where φn(x) ≡ min{cn(x), vn(x)} is the cost of the agent’s optimal

compliance/violation choice given the terms x. Enrollment will then be optimal if αnp−φn(x) ≥ 0,

implying a decision rule that we express as

(2) yn(p,x) =


1 if p ≥ φn(x)/αn

0 if p < φn(x)/αn,

where yn = 1 and yn = 0 indicate enrollment and non-enrollment, respectively. The term

φn(x)/αn ≡ WTAn(x) is defined as agent n’s willingness-to-accept or minimum acceptable pay-

ment.

Heterogeneity in preferences across agents leads to a distribution of WTA, which in turn im-

plies that the fraction of agents who enroll varies with contract payments and terms. The rela-

tionship between aggregate enrollment and varying combinations of (p,x) can be regarded as a
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contract supply function. The properties of contract supply can be usefully analyzed with order

statistics.1 Let w(q,x) denote the qth order statistic of the distribution {WTAn(x)}Nn=1. For a given

set of attributes, x, the vector [w(1,x), . . . , w(N,x)] is the set of all agents’ WTA values sorted in

ascending order. We assume that each agent has a distinct WTA, so that the sorted values increase

in a strictly monotone way for all x; i.e., w(1,x) < w(2,x) < · · · < w(N,x).2

The locus of points {(q, w(q,x))} then traces out the contract supply relationship. For simplic-

ity, we assume that each contract enrolls a fixed amount of land (e.g., 100 acres) so the contract

acreage supply is proportional to the contract supply. Note that the supply of environmental ser-

vices depends on the pattern of heterogeneity in environmental benefits from the practice and

compliance with the contract; we return to this issue below. Figure 1 depicts two contract sup-

ply relationships in the special case where WTA is uniformly distributed across a large number of

agents, so that supply is closely approximated by a linear function. The two supply functions in

the figure correspond to two different contractual terms that differ in stringency, x0 � x1.

The relative locations of the two supply functions illustrates a general property of order statis-

tics: if WTAn(x1) > WTAn(x0) for all n, then w(q,x1) > w(q,x0) for all q. Intuitively, this

property means that increasing contractual stringency causes the supply relationship to shift to-

ward higher prices. The size of the shift represents the transaction costs borne by agents, in the

sense that increasing stringency from x0 to x1 requires a premium of τ ≡ w(q,x1)−w(q,x0) to be

added to the payment in order to maintain the enrollment of q agents. Figure 1 depicts a case where

this premium is positively correlated with initial WTA; i.e., τ grows as w(q; 0) increases along the

supply locus. In this case w(q,x1) has a steeper slope than w(q; x0). If this premium is negatively

correlated with initial WTA, then w(q,x1) is flatter than w(q; x0). The nature of such correlations

and their effects on the shape of contract supply are empirical questions that we address in our

application below.
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Principal’s Choice of Payments

The principal’s choices can be analyzed in two stages, where nonprice attributes are selected in

the first stage and contract payment levels are set in the second stage. We analyze the problem

by backward induction, starting with the second stage. The second-stage objective is to minimize

aggregate expenditures on payments, conditional on the contract terms (x) set in the first stage,

while meeting a target of enrolling Q ∈ (0, N ] agents. The value of Q is assumed to be known and

exogenous, determined from legislation or other predetermined program goals.3

The structure of the problem depends on the level of the principal’s information on agents’

individual WTA. We consider the polar cases of full information on individual agents and zero

(aggregate only) information. In case of full information, the principal can perfectly price discrim-

inate and offer a distinct price to each agent, leading to the problem

(3) min
p1,...,pN

{
N∑

n=1

pnyn(pn,x) :
N∑

n=1

yn(pn,x) ≥ Q

}

where pn is the payment offered to agent n. In the case of zero information, the problem is (3)

with the additional constraint of a uniform price, i.e., p1 = p2 = · · · = pN . By letting p denote the

common price charged to all agents, the problem simplifies to

(4) min
p

{
p

N∑
n=1

yn(p,x) :
N∑

n=1

yn(p,x) ≥ Q

}
.

We denote the solutions to problem (3) by pn(x) (n = 1, . . . , N ) and the solution to (4) by p(x).

We also let einfo(x) and enoinfo(x) denote the optimized value of the objective function, or minimum

payment expenditures, in the cases of full and zero information, respectively.

In the case of full information, the principal will optimally enroll the set of agents with the

lowest WTA to meet the enrollment target. These agents are precisely the group with a WTA at or

below the Qth lowest value in the population, or those meeting the condition WTAn ≤ w(Q,x).
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The principal will optimally offer a price to each such agent following the rule of first-degree price

discrimination. That is, the solution to problem (3) is

(5) pn(x) = WTAn(x) if WTAn(x) ≤ w(Q,x).

For the remaining high-cost agents (those with WTAn > w(Q,x)), the principal may offer any

price strictly below WTA to dissuade them from enrolling. For the example in figure 1 when

contractual terms are x = x0, enrolled agents receive the varying prices along the curve w(q,x0)

to the left of the target Q. Total expenditures are then the accumulated area under w(q,x) up to Q,

i.e.,

(6) einfo(x) =

Q∑
q=1

w(q,x),

which is area D in figure 1 when contract terms are x0 and area B + C +D when they are x1.

In the case of zero information, the optimal solution is a uniform price of p(x) = w(Q,x) to

all agents, implying optimized expenditures of

(7) enoinfo(x) = Qw(Q,x).

For contractual terms of x0, the smallest uniform payment that will enroll Q agents is the value

along the supply curve, w(Q,x0), and the principal’s total expenditures are the area C+D. For the

more stringent terms x1, the uniform payment would need to be increased to w(Q,x1), yielding

total expenditures of A+B + C +D.

We can now define two measures that quantify the response of expenditures to changes in

information and to contract stringency. First, information rents are defined as

r(x) ≡ enoinfo(x)− einfo(x),(8)
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or the reduction in expenditures between the polar cases of zero and full information. Because

information rents arise from a given supply curve, they are a function of the stringency of contracts,

x. For the case of x = x0 in figure 1, going from zero to full information reduces expenditures by

r(x0) = C. Information rents with the more stringent contracts are r(x1) = A.

A second measure quantifies the stringency-induced transaction costs from the principal’s point

of view, holding the level of information fixed. Let

(9) ti(x0,x1) ≡ ei(x1)− ei(x0)

denote the increase in payment expenditures resulting from a change in contract terms from x0

to x1, where i ∈ {info, noinfo} denotes the level of information. In what follows we refer

to this measure as the “additional transaction costs” due to a change in stringency. In the no-

information case in figure 1, raising contract stringency from x0 to x1 raises payment expenditures

from enoinfo(x0) = C+D to enoinfo(x1) = A+B+C+D, implying additional transaction costs of

tnoinfo(x1,x0) =A+B. In the full information case, additional transaction costs are tinfo(x1,x0) =

B + C.

The relationships in figure 1 suggest that correlation patterns between the transaction cost pre-

mium (τ) and the supply curve create a dependency of information rents on contract stringency.

For the case of linear relationships and positive correlation depicted in the figure, an increase in

stringency from x0 to x1 not only generates additional transaction costs, but also changes infor-

mation rents from r(x0) = C to r(x1) = A. As noted above, the positive correlation causes the

supply relationship for x1 to be more steeply sloped than that for x0, which implies thatA > C. For

nonlinear supply relationships, the interaction effects must be resolved empirically. We explicitly

account for this correlation in our analysis below.

The dependence of information rents on stringency has important policy implications. Previous

literature has shown that information rents can be large, but often schemes to price discriminate are
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practically difficult to implement and politically unappealing. If information rents can be reduced

instead by relaxing stringency, the principal has a more politically feasible alternative that also has

the benefit of lowering transaction costs. Of course, one concern with less stringent contracts is

that compliance may decrease. This tradeoff is formalized in the principal’s first-stage problem.

Principal’s Choice of Stringency

In the first stage, the principal sets contract stringency, x, accounting for the changes in payment

expenditures as well as the changes in environmental benefits due to compliance effects. Let bq

(q = 1, . . . , Q) denote the potential environmental benefits obtained from the contracted practice

for the agent in the qth position on the contract supply curve and let λq(x) denote the expected

share of benefits actually obtained given the agent’s compliance effort.4 Total expected environ-

mental benefits among the Q agents enrolled is then B(x) =
∑Q

q=1 bqλq(x) = QE[bqλq(x)]. The

properties of B(x) depends on the joint distribution of bq and λq(x). In particular, the definition of

covariance implies that expected benefits can be written

(10) B(x) = Q
[
b̄λ̄(x) + σ

]
,

where b̄ = E[bq] and λ̄(x) = E[λq(x)] are the means of benefits and compliance, respectively,

for those agents that enroll in a contract and σ is the covariance between benefits and compliance.

Compared to the case where b and compliance are uncorrelated (σ = 0), equation (10) reveals

that a positive correlation implies higher expected benefits. This occurs because correlation causes

the farmers with the highest potential environmental benefits to have the largest fraction of their

benefits captured.5 We assume here that the covariance between benefits and compliance is fixed

and does not depend on contract stringency. In the supplementary appendix, we show that results

from the conceptual and empirical models differ little if the covariance is endogenous.
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Another relevant correlation is that between potential benefits and agents’ WTA along the con-

tract supply curve. This correlation affects the mean of potential benefits among the sub-population

of agents enrolling in contracts, b̄. As the sub-population of agents enrolling are those with the low-

est WTA (figure 1), a positive (negative) correlation between WTA and potential benefits implies

that the mean benefits among enrollees will be relatively low (high) compared to the overall mean.

Thus, the B(x) function will shift downward if the correlation between WTA and b rises.

Using (10), the principal’s first-stage problem with an information level of i can be written

(11) max
x

Q[b̄λ̄(x) + σ]−Qa(x)− ei(x),

where a(x) is the principal’s administrative cost of executing and enforcing a contract with a

stringency of x. The principal’s objective is to maximize environmental benefits, net of of admin-

istrative costs and payment expenditures. In practice, there is considerable uncertainty around the

solution to this problem because little is known about the component functions.6 However, infor-

mation on the expenditure function, which is the empirical focus in this article, can be exploited

to trace out the efficient frontier between stringency and mean compliance. In particular, changing

stringency from x0 to x1 would increase the value of the objective function in (11) if

Q
[
b̄λ̄(x1)− a(x1)

]
− ei(x1)−

(
Q
[
b̄λ̄(x0)− a(x0)

]
− ei(x0)

)
> 0,

which reduces to

(12) ∆λ̄ >

[
ti(x0,x1)

Q
+ ∆a

]/
b̄,

where ∆λ̄ = λ̄(x1)− λ̄(x0) and ∆a = a(x1)− a(x0). The expression on the right side of (12) is

a bound on the increase in mean compliance that a change in stringency must achieve. This bound
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is the ratio of the costs of the stringency change, ti(·)/Q+ ∆a, to mean environmental benefits, b̄.

The bound is a declining and convex curve when plotted against environmental benefits.

For some intuition, consider a simple example where an increase in stringency would create

additional transaction costs per enrollee of ti(·)/Q =$30. Initially suppose also that ∆a = 0; i.e.,

contract stringency has no effect on administrative costs. For environmental benefits of b̄ =$100,

the added stringency would need to satisfy ∆λ̄ > 0.3. As transaction costs represent 30% of

potential benefits, an extra 3 out of every 10 farmers need to comply to capture enough new benefits

to offset the new costs. If stringency does affect a, the condition becomes ∆λ̄ ≥ 0.3 + ∆a/b̄. In

the empirical analysis below, we generate points along the frontier in (12) from our estimates of

the ti(·) relations and other parameter values from the literature.

Data

Our data are from choice experiments representing contracting alternatives in a hypothetical water

quality market. Our experiments were framed as a proposed market where municipal wastewater

treatment plants could offset their discharges by buying PES contracts from farmers. Each plant

could offer contractual payments and rules to suit its individual needs, generating a variety of

contract offerings for farmers to consider.

Experimental Design

The attributes of the hypothetical contracts and the levels across which they were varied are in

table 1. The first attribute is represented by the vector of dummy variables z = (FSnohay,FShay,

NTcont,NTrot), where the single element of z equal to one in a given alternative indicates the con-

tracted practice (e.g., z = (0, 0, 1, 0) represents a contract requiring Continuous No-till). FSnohay

and FShay represent two types of filter strips, a grass buffer area along a field edge that slows

runoff and filters out sediments and nutrients. FSnohay is a filter strip that does not allow haying

or grazing on the buffer area, while FShay permits both haying and grazing. NTcont represents
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Continuous No-till, where no soil tillage is permitted for the duration of the contract, and NTrot

indicates Rotational No-till, where tillage is allowed for up to half of the contracted years. These

practices were selected because they are relatively common and are easily understood by farmers,

and are also known to be effective at increasing water quality.7

The remaining attributes are contractual terms. AppTime is the time requirement at contract

initiation to go through the enrollment process; it was varied from 4 to 40 hours to reflect a wide

range of enrollment complexity. InspectPr indicates the share of contract enrollees inspected for

compliance each year, which was either 10% or 100%. Penalty is a one-time fine to be paid if

the farmer is found in violation of a contract, and was varied from $50/acre to $500/acre. Finally,

the Payment attribute was varied from $3/acre/year to $25/acre/year, based on the ranges used by

Cooper and Keim (1996) and Cooper (1997).

Subjects in the experiments were given booklets with a series of choice tasks, each task having

three contract alternatives. For visual consistency and to reduce the number of attributes in our

experimental design, the first alternative in every choice task was a contract requiring installation

of a filter strip, the second was a contract requiring no-till, and the third alternative was a do-not-

enroll option. To facilitate comparison, subjects were told that all contracts had a 10-year duration

and that the field being considered for enrollment was 100 acres in size. In addition, they were

asked to assume that (i) the land quality of the field was representative of their farm, (ii) the most

recent tillage practice was minimum tillage (not no-till or conventional tillage), and (iii) the recent

cropping pattern followed their typical crop rotation.

Prior to data collection, the attribute levels and data collection procedures were refined from

meetings with cooperative Extension staff and a focus group with farmers. To construct the choice

scenarios, we generated an orthogonal main effects design that varied all five attributes across the

two contract alternatives (Adamowicz, Louviere, and Williams 1994). The smallest such design

contained 32 scenarios, which were blocked into two sets of 16, giving us two versions of the

experiment that were randomly assigned across subjects.
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Sample Characteristics

Data were gathered from groups of farmers attending Extension meetings at four locations in

Kansas. Subjects were recruited at each meeting via a pre-registration mailing and an announce-

ment at the opening conference session. The choice experiment itself was then conducted during

a 1-hour session, typically scheduled with the help of the meeting organizers as a parallel session

in a one-day program. Data were collected from 135 subjects across the four locations, provid-

ing a total of 2,177 usable choice observations.8 Additional details on data collection are in the

supplementary appendix.

Table 2 provides descriptive statistics for the sample. The average responses to the choice

scenarios in the top panel of the table indicate the choices were fairly balanced across the three

alternatives in each choice set. Among all choice observations in the sample, a filter strip alternative

was chosen 39% of the time, a no-till alternative 34% of the time, and the do-not-enroll alternative

27% of the time.

The bottom panel gives summary statistics of the respondents and their operations. The farmers

in our sample have an average farm size of over 1,600 acres, which is larger than the averages

reported in the 2007 Census of Agriculture (USDA 2009) for all Kansas farms (707 acres) and for

all US farms (418 acres). Census data, however, include a large number of very small operations.

Over 32 percent of Kansas farms in the 2007 Census were smaller than 100 acres, which would not

be of sufficient scale to participate in the PES contracts considered here. The average Kansas farm

in the 2007 Census is 1,322 and 1,543 acres for the sub-populations with sizes of at least 100 and

200 acres, respectively. Our average subject is actually about 400 acres smaller than the average

farm in the Kansas Farm Management Association, an entity with 1,543 farm members providing

data that are frequently used for policy analysis. Thus, while our sample is not representative of

all farm sizes, it likely better represents those for which such contracts are feasible.

Because our sample was drawn from attendees at Extension conferences, deviations in operator

characteristics from state state averages are not surprising. At 41.5 years, our average respondent is
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younger than the state census average of 57.7 years. 58% of our respondents indicated that farming

is their primary occupation, compared to 47% of farmers in the state census data. Education lev-

els are not reported in the Census of Agriculture, but USDA Agricultural Resource Management

(ARMS) survey data (USDA-ERS 2011) indicates that 66% of US farm operators have at least

a high-school level education and 25% have a college degree. Compared to these statistics our

sample of farmers have substantially more education, with 100% and 64.9% having high school

and college diplomas, respectively. Our sample also has more experience with conservation pro-

grams, with 45% having participated in the Conservation Reserve Program (CRP) and 30% in the

Environmental Quality Improvement Program (EQIP), compared to 16% of ARMS respondents

receiving conservation program payments.

The nature of our sample then, may have implications for the extent to which results are gen-

eralizable to a broader population. The transaction cost measurement literature suggests that our

sample will produce an under-estimate of the transaction costs incurred by the average farmer.

Education reduces information processing costs (Huffman 1974), thereby lowering the cost of

identifying and enrolling in government programs (Falconer 2000; McCann 2009; Mettepennin-

gen et al. 2007). Full time farmers are expected to incur lower transaction costs relative to part-time

operators, who must divide their available time between off farm employment, farm operation, and

administrative tasks such as program enrollment (McCann 2009). Finally, transaction costs of

enrollment in programs has been found to have a strong learning-by-doing effect (McCann et al.

2005; Mettepenningen et al. 2007), implying that farmers who have enrolled in similar programs

previously incur lower transaction costs from future enrollment. Overall, the characteristics of our

sample likely strengthen our result that transaction costs comprise a significant portion of the cost

of contracting.

16



Econometric Analysis

Our econometric analysis is built on a random utility framework. Let Cs denote the set of alterna-

tives in choice scenario s = 1, . . . , 16. In our empirical specification of equation (1), subject n’s

utility from choosing contract alternative j ∈ Cs in choice scenario s is Unj = Vnj + εj , where Vnj

is the nonrandom portion of utility that can be modeled as a function of observed factors and εj is

a random term representing unobserved factors. The modeled portion of utility is specified as

(13) Vnj = αnPaymentj + γ ′nzj + β′nxj

where zj = (FSnohayj,FShayj,NTcontj,NTrotj) indicates the contracted practice, xj = (AppTimej,

Epenj,Annualj) is a vector of nonprice attributes, and θn ≡ (αn,γn,βn) are the utility coefficients

to be estimated. The first element of xj (AppTime) is taken directly from the choice experiments

(table 1), while the remaining two are derived attributes. The second element is the interaction be-

tween inspection frequency and the penalty: Epen = InspectPr× Penalty, or the expected penalty

to be paid conditional on violating the contract. The third element, Annual, is a binary variable

capturing the independent effect of increased inspections, where Annual = 1 if InspectPr = 1 (“an-

nual monitoring”) and Annual = 0 otherwise. These derived attributes allow us to separate two

conceptually distinct effects of inspection probability on enrollment. To identify the parameters of

the model we impose the normalization restriction that Vnj = 0 for the do-not-enroll alternative.

In sum, our empirical specification of utility captures the disutility of enrollment (φn(·) in the con-

ceptual section) through the terms γ ′nzj +β′nxj . The elements of γ are practice-specific constants,

while the elements of β represent the marginal utility of contract attributes.9
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Derived Estimates

Given estimates of the utility coefficients, θ̂n, we can derive estimates of several other variables of

interest. First, a point estimate of agent n’s WTA for a particular contract is

(14) WTAn = − γ̂ ′nz + β̂
′
nx

α̂n

.

The change in WTA in response to a change in the kth attribute in x, or the marginal willingness-

to-accept (MWTA) of xk, can be estimated as

MWTAnk ≡
∂WTAn

∂xk
= − β̂nk

α̂n

.

MWTA measures the separate effect of each contract attribute on enrollment costs. The MWTA

for each of the binary elements of z is −γ̂nl/α̂n, which can be interpreted as agent n’s expected

cost of committing to the lth practice.

Under particular assumptions, the MWTA for expected penalties has a further interpretation as

an indicator of an agent’s compliance intentions. Let λn denote agent n’s subjective probability of

complying with a contract if he/she were to enroll, which is assumed to differ across individuals

but to remain constant across practices (z) and contractual terms (x) for each individual. A $1

increase in Epen then imposes a cost of $1 on an agent in the state of the world where the agent

violates the contract (occurring with probability 1 − λn), and has a cost of zero otherwise, for an

expected cost of $(1−λn). If agent n is risk neutral, then MWTAn,Epen = 1−λn or n’s subjective

probability of violating contracts. If the agent is risk averse, then MWTAn,Epen is an upper-bound

estimate of the subjective violation probability. A complete derivation of these results is in the

supplementary appendix.

It should be noted, however, that the assumption of fixed individual compliance rates is restric-

tive because it holds a farmer’s compliance probability constant across across practices and across
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different stringency levels. Compliance may differ across practices because tillage and the width

of a filter strip would be easy to monitor, but grazing a filter strip may be difficult to detect in a

late-season inspection. Further, the probability of complying may rise if penalties or the inspection

frequency increase. Given the structure of our data, we cannot identify the parameters of a function

λn(z,x), separately from the utility coefficients, β. Although our derived estimate of λn cannot

capture within-subject variation in compliance, it does capture the cross-sectional heterogeneity

in farmers’ ex ante uncertainty about their ability to comply, such as prior experience with the

practice or uncertainty regarding future constraints on production (Vedel, Jacobsen, and Thorsen

2010).

Mixed Logit Specification

The utility coefficients were estimated with a mixed logit (MXL) model (Train 1998, 2003). The

MXL model is one of the most general approaches to capture preference heterogeneity, in which

coefficients are allowed to vary across subjects following a specified distribution. A limitation of

the MXL model is that the researcher must specify a form for the coefficient distribution based on

little guidance from theory. Here, our base specification is the multivariate normal distribution, i.e.,

θ ∼ MVN(µ,Σ) where µ is the mean vector of the coefficients and Σ is the covariance matrix.

We specify the most general form of this distribution allowing for all pairwise correlations among

the coefficients. While these correlations complicate estimation, they are relevant here because

they may affect the shape of contract supply.

Although a common choice in applications of the MXL model, the normal distribution imposes

a symmetric shape on the coefficient distribution and has unbounded support. These assumptions

may not be valid for all coefficients. For example, the marginal utility of income (αn) is expected

to be bounded above zero for all agents. In addition, we might expect this (and other) coefficient

distributions to be skewed if there are clusters of values near zero and a number of outliers spread

over a long tail on one side of zero. As a robustness check, we also estimated the model where
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the coefficients with a theoretically expected sign were distributed lognormally while those with

unrestricted signs were distributed normally (see the supplementary appendix). The distributional

assumptions make little difference to our main conclusions, so we only present results here for the

model with all coefficients normally distributed.

Estimation procedures for the MXL model are described by Train (2003) and Greene (2007).

The model derives its name from the ‘mixing’ of the coefficient distribution in estimation with the

utility error, εj , which is assumed to follow an extreme-value type I distribution. The likelihood

that a subject’s utility is maximized under their observed choices then has a known form but must

be integrated over the mixing distribution using simulation or other methods (Train 2003, p. 148-

151). We employed the maximum simulated likelihood method with NLOGIT 4.0 Greene (2007),

with 150 draws taken from the coefficient distribution in each iteration. Coefficients are specified

to vary across individuals but are fixed for a given individual across all choice scenarios.

Estimation Results

The estimated means and dispersions (standard deviations) of the utility coefficients from the base

model are reported in table 3. Nearly all of these parameters were estimated with high statistical

significance, evidence that the coefficient distributions are centered away from zero and also vary

across individuals. The magnitudes of the estimates are difficult to interpret directly as they are

measured in utility units. To aid in interpretation, the last column of the table reports the implied

marginal WTA of each variable at the estimated means of the coefficients. The next section presents

a more comprehensive analysis of the implied WTA distributions.

The estimated coefficient means have signs consistent with theory and previous studies. The

mean subject is estimated to incur disutility from committing to a practice (γ̂ � 0). The MWTA

associated with the practice dummies represents the average farmer’s perceived commitment costs,

which range from $1.45/acre to $9.43/acre across the four practices. The estimated cost of com-

mitting to less restrictive versions of the practices are smaller; filter strips are less costly when
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haying and grazing is allowed, and no-till is less costly when it can be adopted on a rotational

basis. Consistent with previous findings (Broch and Vedel 2010; Espinosa-Goded, Barreiro-Hurlé,

and Ruto 2010), these differences indicate that greater flexibility reduces agents’ opportunity costs

of committing to a practice.

The estimated mean of the coefficient on AppTime implies that the average farmer would need

about $0.20/acre in additional annual income to be compensated for an extra hour of application

time at contract inception. Given that a contract would enroll a 100-acre field and the payments

would be received annually over a 10-year period, this estimate translates to an hourly compensa-

tion of about $150/hour assuming the farmer discounts the income stream at a rate of 0.05. This

value seems large, but may partly reflect landowners’ expectation of reporting requirements during

the contract period if the enrollment process is complex, along with a strong aversion to paperwork.

The estimated mean coefficient for Epen implies a MWTA of about $0.015/acre per dollar of

expected penalties. As discussed above, under particular assumptions this result means that the

average landowner places at most a 1.5% probability on violating contractual terms. This estimate

is somewhat lower than the observed noncompliance rates in existing programs. Both citing USDA

datasets, Cattaneo (2003) reported that 11% of the contracted practices in the EQIP program during

the period 1997-2000 were not fulfilled, while Giannakas and Kaplan (2005) reported that 4% of

audited farmers receiving commodity payments in 1997 did not fulfill conservation compliance

requirements. However, our estimate represents a farmer’s subjective probability formed prior to

enrollment, which may be influenced by psychological factors such as overconfidence in one’s

future performance or the desire to punish violators. Overconfidence has been found to be more

prevalent among males (Estes and Hosseini 1988; Bhandari and Deaves 2006), who comprise the

vast majority of our sample.

Finally, the negative MWTA of Annual implies that, holding all other attributes constant in-

cluding expected penalties, the average subject prefers annual monitoring over a 10% spot check

system. However, this interpretation assumes that all other regressors are constant, which implies
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that a change from a spot-check to an annual monitoring system would be accompanied by a 10-

fold decrease in the Penalty variable to keep Epen unchanged. If instead Penalty is held constant,

then the MWTA of Annual at mean coefficients is −(β̂3 + 0.9× β̂2 × Penalty)/α̂.10 This value is

negative when Penalty is less than $204 but becomes positive for larger penalties, reaching a value

of $4.08 at Penalty = 500, the maximum of that attribute in the choice experiments. These results

are consistent with recent research suggesting that agents perceive both benefits and costs from

monitoring of their actions, so that net benefits may differ in sign across different situations. 11

While the means of the distributions generally conform with expectations, most of the coeffi-

cients have relatively large estimated dispersions, implying that a non-trivial share of individuals

are estimated to have coefficients with the opposing sign as the mean. The implied percentage

of subjects with negative coefficients are reported in the second-to-last column of table 3. As

discussed above, these patterns may arise partly from the unbounded support of the normal distri-

bution. Another potential data problem is that preferences of a given subject may not remain stable

as they complete a sequence of 16 choice tasks due to learning and/or fatigue effects (Savage and

Waldman 2008). We ran alternative models that address both these issues, and found that our main

findings were robust across models (see supplementary appendix).

The estimated correlation coefficients in table 4 reveal a number of important patterns.12 The

practice specific constants are positively correlated with each other, indicating that farmers who

can adopt one practice at low cost can also adopt other practices at low cost. The coefficient on

Epen (β2) is positively correlated with all the practice constants, which, consistent with intuition,

suggests that farmers who have a low subjective probability of violating a contract are also low-cost

adopters. Also consistent with intuition, the correlation between the coefficients of Payment (α)

and AppTime (β1) is negative and significant, indicating that farmers with a high marginal utility

of income also have a high disutility of enrollment time.
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Contract Simulations

We conducted a series of microsimulations to quantify the market-level effects implied by our

econometric estimates. Our simulations are numerical implementations of our conceptual model,

yielding predicted points on the surface of the expenditure function ei(x), from which we can

generate estimates of information rents and additional transaction costs. The statistical uncertainty

around each point is quantified with Monte Carlo methods.

Each simulation predicts outcomes for contracts requiring a single practice. We ran two sim-

ulations, one for Continuous No-till contracts and the other for Filter Strip (no haying/grazing)

contracts. These simulations are sufficient to capture the differences across practice types, as the

two additional practices in our choice experiments are more flexible (and hence lower cost) ver-

sions of the simulated ones.

Costs and Contract Payments

We first simulated the outcomes in the second stage of the principal’s problem, in which contract

payments are set given contract supply relations, a fixed enrollment target, and a specified level of

contract stringency. The inputs for each simulation include the following elements:

• The estimation results from the MXL model. These include the estimated coefficient means,

µ̂, and covariance matrix, Σ̂, that reflect the pattern of preference heterogeneity across

agents. In addition, to simulate the confidence intervals around the final outputs, the model

requires estimates of the sampling variance around these point estimates. Letting δ̂ =

vec(µ̂, Σ̂) denote the full set of (vectorized) parameters estimated, the simulations also use

the matrix V = v̂ar(δ̂), the maximum likelihood estimate of the sampling covariances sur-

rounding the estimated parameters.
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• The enrollment target,Q. The simulation model inputs this target as the proportion ȳ ∈ [0, 1]

of agents to be enrolled (i.e., Q = ȳN ). We specified a target of ȳ = 0.5, which implies that

the last agent enrolled has median preferences.

• The stringency level(s) of the contract. To be able to trace out a frontier for the first stage

decision, we simulated four stringency levels represented by the attribute profiles, x, in table

5. The first profile represents a base case where all attributes are set at the minimum val-

ues in the choice experiments, while the remaining profiles are intended to represent “low,”

“medium,” and “high” stringency levels based on the range of estimates from the literature.13

The simulation follows a nested Monte-Carlo method based on Hu, Veeman, and Adamow-

icz (2005). An ‘inner’ algorithm captures the variation in agent’s costs and enrollment actions

due to preference heterogeneity, while an ‘outer’ loop quantifies the statistical uncertainty in the

inner simulation results.14 In the inner loop, a sequence of independent draws,
{
θ̂1, . . . , θ̂N

}
, is

taken from a MVN(µ̂, Σ̂) distribution, where each draw θ̂n represents the utility coefficients of

an agent. For each agent, WTAn is calculated for each of the four x profiles using equation (14).

The WTAn’s are then sorted in ascending order for each x, generating the family of supply rela-

tionships in panels (a) and (b) of figure 2. For each supply curve, expenditures under full and zero

information are calculated from equations (6) and (7), yielding the results in panels (c) and (d).

Finally, information rents and additional transaction costs are calculated from (8) and (9), shown

in panels (e) and (f). The simulation results are the empirical equivalents of the theoretical areas in

figure 1, where areas are calculated as numerical integrals.

The ‘outer’ loop runs m = 1, . . . ,M iterations of the inner algorithm, each time perturbing the

MVN(µ̂, Σ̂) coefficient distribution with an error drawn from V. In effect, payments are simu-

lated for M agent populations, each of which has a slightly different distribution of preferences

over its N members. We set M = N = 10, 000 in both simulations. The bar heights in the middle
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and bottom panels of figure 2 are the means of the output across the M perturbations, while the

error bars represent 95% confidence intervals.

Panels (a) and (b) of figure 2 reveal that contract stringency has both first-order and second-

order effects on contract supply. The first order effect is that more stringent contracts shift the

supply relationship toward higher prices, as expected. Although the attributes of more stringent

contracts are not costly for all agents (table 3), the bulk of agents face higher costs, resulting in an

upward shift. The second order effect is a reduction in supply elasticity - i.e., the supply curves

become more steeply sloped as contracts become more stringent.

The results in panels (c)-(f) of figure 2 decompose the payments needed to enroll half of the

agents in the respective practice. As explained in the conceptual section, information rents are the

difference between simulated expenditures at zero and full information, while additional transac-

tion costs are the difference between expenditures at a given stringency and those at Minimum

stringency. At each stringency level, the heights of the two bars in panels (e) and (f) represent the

potential reduction in payment expenditures from either (i) eliminating information rents by using

individual WTA information to price discriminate or (ii) reducing additional transaction costs by

reducing contract stringency to the Minimum level. The additional transaction costs assume zero

information, which we take to be the policy-relevant baseline.

Consistent with previous findings, simulated information rents were large in proportion to total

payments in each scenario, ranging from 64% and 78% of zero-information payments. Thus, a

potentially large fraction of payment expenditures could be avoided through the collection and use

of information. We find here that additional transaction costs are of a comparably large magnitude,

although they naturally depend on the assumed level of stringency. At Low stringency, additional

transaction costs represent 18% and 32% of zero-information payments for the No-till and Filter

Strip contracts, respectively, while at High stringency they account for 52% and 69% of initial

payments for those contracts.
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From a baseline of highly stringent contracts and zero information, the principal has a similar

scope to reduce payments through changes in contract design as through collecting information.

Moreover, relaxing contract stringency reduces information rents as well as transaction costs. For

example, by relaxing stringency of Filter Strip contracts from High to Low, information rents

decline from $8.72 to $4.55 per enrolled acre (while at the same time transaction costs decline

from $9.36 to $1.94 per enrolled acre). This interaction does not hold in general, but arises in our

setting because of the estimated second-order effects of stringency as described above.

Compliance Frontiers

Even if stringent contracts result in larger payments, the principal may still prefer greater stringency

if it raises environmental benefits through greater compliance. To quantify this effect, we simulated

the results of the principal’s first-stage problem, finding points along the frontier in equation (12).

The value of ti(x0,x1)/Q in (12) was set at the simulated (zero-information) additional transaction

costs in panels (e) and (f) of figure 2, while b̄was varied across a range of values based on estimates

from the literature.15 As b̄ is the mean potential benefit among enrolled (i.e., low-WTA) agents, the

varying levels of this parameter represent different correlations between potential environmental

benefits and WTA, with smaller (larger) values of b̄ corresponding to positive (negative) WTA-

benefit correlations.

Another parameter in (12) is the change in administrative costs. While substantial evidence

exists that environmental programs involving many landholders are administratively costly (Mc-

Cann and Easter 1999; Falconer, Dupraz, and Whitby 2001b; Wunder, Engel, and Pagiola 2008),

we were unable to find quantitative estimates of the change in costs from the type of contract strin-

gency changes modeled here. We set ∆a = 0 in our simulations, which generates frontiers with

the lowest possible change in compliance needed for a given stringency change. The resulting

frontiers, in figure 3, should thus be interpreted as lower bounds.
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Figure 3 shows the simulated frontiers only for No-till contracts, with each curve representing a

change in stringency from Minimum to an alternative level. Results for the Filter Strip contracts are

not shown as they are nearly identical, except that the likely range of benefits would not include

values above $30/acre. As described in the conceptual section, these frontiers also assume that

the covariance between environmental benefits and compliance is fixed and does not depend on

stringency. In the supplementary appendix, we develop a simulation framework where covariance

is endogenous but find that our main results change little.

The frontiers reveal that highly stringent contracts must be very effective at raising compliance

to be justified, particularly when mean benefits are low. For example, if environmental benefits

are $10/acre (which is slightly above the current reimbursement rates paid by the EQIP program

in Kansas), then raising stringency from Minimum to Low, Medium, and High stringency raises

net benefits if it improves compliance rates by at least 20, 55, and 94 percentage points, respec-

tively. Even if environmental benefits are $20/acre, then raising stringency from Minimum to Low,

Medium, and High stringency must increase compliance rates by at least 10, 27, and 47 percentage

points.

Conclusions

This article has identified the role of transaction costs in PES contracts that arise from stringency

in nonprice contractual terms. Transaction costs may coexist with information rents, which arise

from landowners’ private information on their own costs of committing to a contract. In our em-

pirical analysis, we find that additional transaction costs from increased contract stringency are of

comparable magnitude to information rents. We do not, however, estimate the cost of actually col-

lecting the WTA information in order to price discriminate, which would partly offset the payment

savings represented by information rents. The substantive role of stringency-induced transaction

costs suggests that careful attention to contractual provisions is warranted in the design of PES
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programs and markets. Transaction costs may partly explain the low participation rates observed

in many environmental markets.

While much literature has devised methods, such as auctions or mechanism design, to reduce

payments by inducing agents to voluntarily reveal WTA information, our findings suggest that re-

laxing contractual stringency is an alternative payment-reducing strategy. For the case studied here,

less stringent contracts not only reduce transaction costs but also substantially reduce information

rents. This interaction may not hold in general but is linked to the positive correlations between

agents’ costs of committing to practices and their costs of dealing with stringent contractual terms.

Of course, a primary disadvantage of relaxing stringency is that environmental benefits may

be sacrificed if contract compliance rates fall. We show how the estimates of stringency-induced

transaction costs can illuminate the tradeoff between reduced payments and reduced environmental

benefits from lost compliance. For the case studied here, highly stringent contractual provisions

would be preferred only if those provisions have strong effects on compliance or if the benefits of

practices are very high.

A limitation of our empirical analysis is that our choice data are based on hypothetical re-

sponses from a non-random sample of farmers, which may limit the generalizability of our find-

ings. However, there are a number of reasons to believe that the transaction costs incurred by

representative farmers would be even larger than our estimates. First, to the extent that our sub-

jects are not representative of the population, the transaction cost measurement literature suggests

that costs of stringent contractual terms in our sample would be below average. Moreover, if our

subjects exhibited social desirability bias in favor of enrolling, or were over-confident in their abil-

ity to benefit from hypothetical contracts, our estimated costs would lie below their actual costs.

Our focus here is on practice-based contracting, where the principal seeks to maximize ex-

pected environmental benefits, net of administrative and payments costs, from practices adopted

on a fixed acreage. The contribution of such programs to social welfare depends on the correlation

between benefits and WTA (Yang, Khanna, and Farnsworth 2005; Ferraro 2003). In particular, a
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positive correlation may imply that the low-WTA agents with the greatest incentive to enroll also

provide the lowest benefits, thus reducing the welfare gain. As our framework already accounts for

the benefit-WTA correlation, a natural extension would be to model a performance-based program

where contracts are denominated in environmental services provided. Empirical analysis of such a

setting, however, would require site-specific data on environmental benefits of practice adoption.

Our analysis suggests ways that contracts should be designed to be maximally effective. Con-

tractual terms should be designed to balance the objectives of keeping transaction costs and admin-

istrative costs low while raising the incentives to comply. Perhaps because of the potentially high

costs of appeals and litigation, USDA has a relatively low frequency of inspecting and auditing

contracts, and has often declined to extract penalties when noncompliance is discovered (Catta-

neo 2003; Claassen, Cattaneo, and Johansson 2008). Instead, they have focused on an enrollment

process that clearly documents the feasibility of a practice. While these procedures may improve

compliance rates, our results suggest that they also may raise transaction costs, as farmers are

found to be very averse to enrollment time but would be less averse to frequent inspection or mod-

erate penalties. Our framework can be applied to quantify transaction costs and the most effective

contract designs using new data on different contracting schemes.
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Notes

1Let the set S denote a sample containing N values. The qth order statistic in this sample, s(q), is the qth-lowest

value in the set S, such that s(1) ≤ s(2) ≤ · · · ≤ s(N).

2This assumption does not have meaningful impacts on our results, but rules out the possibility of flat spots along

the supply relationship that would lead to indeterminacies in the quantity of contracts supplied.

3As one example, the Conservation Reserve Program has a statutory cap on enrolled acreage.

4If compliance is binary, then λq(x) represents the probability that the agent complies with the contractual re-

quirements. More generally it captures the degree or rigor of compliance (e.g., the attention paid to seeding and

maintenance of a filter strip), such that greater rigor captures a greater share of potential benefits.

5As a simple example, suppose that half of the enrolled agents have potential environmental benefits of b = 0,

while for the other half b =$100. If the compliance rate is uncorrelated with benefits with a mean of λ̄ =0.7, then

the expected total benefits captured is B = Q
2 (0)λ̄+ Q

2 (100)λ̄ = 0.35Q. However, if compliance is correlated with b

such that the conditional mean of compliance is λ̄0 = 0.5 in the zero-benefits group and λ̄1 = 0.9 in the high-benefits

group, then total benefits are B = Q
2 (0)λ̄0 + Q

2 (100)λ̄1 = 0.45Q.

6This problem is not identical to maximizing restricted social welfare (where the restriction reflects enrollment

of Q agents), but its components can be interpreted in welfare terms. In particular, if known, the first term in (11)

accurately captures social benefits, but in the case of zero information the second term over-estimates social costs

because the portion of payments reflecting information rents is simply a transfer from the principal to agents. If full

information is the starting point, however, the objective in (11) is equivalent to restricted welfare. In sum, the results

from (11) misrepresent welfare under zero information, but the maximum error is represented by information rents.

7Filter strips have varying configurations and sizes. To maintain consistency in the experiment, we specified the

filter strip as comprising 4 acres of the 100 acre field. Further, to make filter strips comparable to no-till, which

may be implemented at zero or negative costs for many farmers, subjects were told to assume that they would be

fully compensated for all installation, maintenance, and land rent costs on those 4 acres. The payment would then

be compensation for the transaction costs of the contract plus the cost of managing the filter strip (avoiding use as a

roadway, repairing and reseeding any eroded areas), and again for consistency with the no-till contract, the payment

would be received on a per acre basis for all 100 acres.

8While our sample is small compared to numbers attainable with survey methods, the number of participants is

similar to that of other studies using high-level subject interaction in laboratory experiments or personal interviews.

For example, Defrancesco et al. (2008) used personal interviews with 139 farmers in Northern Italy to investigate

participation in environmental programs.
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9Although we have some data on individual characteristics (table 2), we do not attempt to estimate their impact

on utility. Our research objectives here only require estimation of the pattern of heterogeneity; the causes underlying

these patterns is a substantive research question but lies outside the scope of this paper. A reviewer also correctly notes

that our normalization of zero utility for the do-not-enroll option does not allow us to estimate the preference for or

against enrollment separately from the practice constants and attribute coefficients. For example, if subjects prefer

to enroll in contracts regardless of the practice or contract attributes, this preference would be confounded with the

estimated parameters. Because of the construction of our experiments, however, we cannot specify a model to identify

the enrollment preference as a distinct effect.

10This expression is obtained as the difference between estimated WTA (equation (14)) at Annual = 1 and Annual =

0, holding Penalty and all other variables constant.

11For PES contracts, an agent’s cost would include the opportunity cost of time and administrative costs during

additional monitoring visits, in addition to disutility from viewing monitoring as intrusive or as a signal of mistrust.

Benefits would be perceived by farmers with socially-oriented preferences, who may regard monitoring as a means to

uphold social norms of fairness (e.g., Nyborg 2000) or as supporting conscientious behavior (e.g., Frey and Jegen

2001). Our results suggest that the average farmer’s benefits outweigh his costs if penalties are low, but the reverse is

true when penalties are high.

12While not all correlation coefficients are statistically different from zero, we reject the null hypothesis uncorrelated

coefficients at the 99% percent level of confidence.

13McCann (2009) found that livestock producers in Iowa and Missouri spend an average of 16.6 hours developing

comprehensive nutrient management plans. Fang, Easter, and Brezonik (2005) and McCann and Easter (2000) found

transaction costs in the range of 30%-40% of total costs for farmers involved in contracting and technical assistance

schemes; as shown below, these estimates fall within the range of our simulation results across the different scenarios.

14This procedure fits within the broad class of Krinksy-Robb simulation methods to obtain confidence bounds on

derived parameters, with most prominent alternatives in the literature being the Delta method (Bliemer and Rose 2013)

and jackknifing or bootstrapping. While a number of previous studies, following Hu, Veeman, and Adamowicz (2005),

have applied Krinsky-Robb methods to obtain confidence bounds of WTP/WTA in mixed logit models, we extend it

here to obtain confidence bounds around various aggregate outcomes from an agent simulation model.

15Ranges of potential benefits in the central plains were developed for each practice from published estimates, where

benefits include improved water quality, soil productivity, and dust reduction due to reduced soil erosion; soil carbon

sequestration; and improved wildlife habitat. Benefit estimates range from $7 to $54 per enrolled acre per year for

No-till and from $6 to $30 per enrolled acre per year for Filter Strips. The sources and assumptions underlying the
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estimates are described in the supplementary appendix. As another a point of reference, the current payment rates

for Kansas in the Environmental Quality Incentives program (http://www.nrcs.usda.gov/wps/portal/nrcs/

main/ks/programs/financial/eqip) are $9.55 per enrolled acre for No-till and, depending on the type of grass

and land shaping requirements, from $8 to $10.40 per enrolled acre for Filter Strips ($200 to $260 per acre of filter

strip area, which we assume to be 4% of the protected area that is enrolled).
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Table 1: Choice Experiment Attributes and Levels

Attribute Levels Variable

Practice required by contract Filter Strip (no haying/grazing) FSnohay
Filter Strip (with haying/grazing) FShay
Continuous No-till NTcont
Rotational No-till NTrot

Application Time (hours) 4, 16, 24, 40 AppTime
Inspection Probabilitya 0.1, 1 InspectPr
Penalty for Violations ($/acre enrolled)b 50, 100, 250, 500 Penalty
Contract Payment ($/acre enrolled) 3, 7, 15, 25 Payment

a Estimated models used the derived attribute Annual = {0 if InspectPr = 0.1, 1 if InspectPr = 1}
b Estimated models used the derived attribute Epen = InspectPr × Penalty
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Table 2: Sample Summary Statistics

Variable Units Observations Mean Std. Dev.

Stated Choices
Filter Strip Dummy 2177 0.39 0.49
No-till Dummy 2177 0.34 0.48
Do not enroll Dummy 2177 0.27 0.44

Individual Characteristics
Acres owned Acres 135 824 1236
Acres rented Acres 135 804 1342
Male Dummy 134 0.810 0.39
Age Years 135 41.5 15.50
Education Years 97 15.1 2.00
Farming primary occupation Dummy 133 0.58 0.49
Participated in CRPa Dummy 128 0.45 0.50
Participated in EQIPb Dummy 124 0.30 0.46

a CRP = Conservation Reserve Program
b EQIP = Environmental Quality Incentives Program
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Table 3: Estimated Coefficient Means and Dispersions

Point Estimates (Std. Errors) Share with MWTA at

Coefficient Variable Mean Dispersion Coef. < 0 Coef. Means

γ1 FSnohay −0.9762∗∗∗ 1.98129∗∗∗ 68.2% 3.718
(0.25961) (0.28298)

γ2 Fshay −0.38381 2.46883∗∗∗ 56.2% 1.522
(0.28228) (0.29826)

γ3 NTcont −2.37915∗∗∗ 4.07034∗∗∗ 72.1% 9.433
(0.33950) (0.30468)

γ4 NTrot −0.36600 3.00210∗∗∗ 54.9% 1.451
(0.31287) (0.28147)

β1 AppTime −0.04908∗∗∗ 0.05365∗∗∗ 82.0%
(0.00690) (0.00925)

β2 Epen −0.00386∗∗∗ 0.00635∗∗∗ 72.8% 0.015
(0.00079) (0.00118)

β3 Annual 0.70873∗∗∗ 1.15870∗∗∗ 27.0% −2.810
(0.22835) (0.32147)

α Payment 0.25220∗∗∗ 0.14980∗∗∗ 4.6%
(0.01552) (0.01669)

Observations 2177
McFadden R2 0.413

AIC 1.329
BIC 1.444

Note: Asterisks (∗∗∗) denote statistical significance at the 99% confidence level
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Table 5: Simulated Attribute Profiles

Stringency

Attribute Minimum Low Medium High

AppTime 4 8 16 40
Epen 5 100 250 500
Annual 0 0 0 1
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Figure 1: Contract supply and decomposition of aggregate payments
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(a) Supply of no-till contracts, by stringency level           (b) Supply of filter strip contracts, by 

                                                                                                 stringency level 

 

 

         
(c) Payment expenditures, no-till contracts                     (d) Payment expenditures, filter strip contracts 

 

 

          
(e) Information rents and additional                               (f) Information rents and additional  

      transaction costs, no-till contracts                                  transaction costs, filter strip contracts 
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Figure 2: Simulation results

Note: Bar heights in panels (d) - (f) are simulated mean outcomes assuming an enrollment of 50% of eligible acreage
from panels (a) and (b). Error bars indicate 95% confidence intervals.
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tive levels
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