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ABSTRACT 

ISOTROPIC MODELING OF TRANSVERSELY 

ISOTROPIC WEDGE INDENTATION 

by Tom Stanley Marshall 

The need has become evident for a more thorough understanding of 

the causes of hole deviation when drilling through stratified forma¬ 

tions. The approach to this problem herein is to analyze the forces 

between the bit teeth and rock and how they might affect horizontal 

deflection of the drill bit. This study is specifically concerned 

with methods of modeling the rock and bit tooth interaction so that 

valid predictions can be made of the actual behavior. 

The rock and bit tooth interaction is modeled by a vertical wedge 

indentation into the flat, level surface of an arbitrarily oriented 

transversely isotropic rigid - perfectly plastic medium. The trans¬ 

versely isotropic wedge is itself modeled by vertical wedge indentation 

into the flat, inclined surface of an isotropic medium with arbitrary 

orientation of the direction of maximum slope. An upper bound approxi¬ 

mation method for predicting horizontal and vertical loads is developed 

using fundamental principles of plasticity theory and an experimental 

study conducted as verification of the method. It is demonstrated herein 

that the experimental behavior has been satisfactorily predicted by the 

theoretical analysis and that a limit analysis solution to the isotropic 

wedge indentation problem has been obtained. An approach to the analysis 

of the transversely isotropic problem is outlined as a possible introduc¬ 

tion to further work on this problem. 
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Introduction 
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Introduction 

Drill Bit Deviation Problem 

Hole deviation when drilling through a stratified formation is a 

phenomenon which has aroused considerable interest and concern, but has 

yet to be fully understood. The mechanics of a flexible drill string 

and the anisotropic characteristics of the formation may both play im¬ 

portant roles in causing horizontal deviation. This study will concen¬ 

trate on hole deviation behavior caused by the bottom hole forces be¬ 

tween the bit teeth and the anisotropic formation. 

Transversely Isotropic Wedge Indentation 

The rock and bit tooth interaction when drilling vertically through 

a bedded formation is modeled by a two dimensional wedge indentation into 

a transversely isotropic plastic medium (Figure 1). The axis of trans¬ 

verse isotropy Çi') is normal to the bedding planes of the actual forma¬ 

tion. The actual mechanics of the bit tooth indentation, scraping action, 

and the drill bit design make the actual problem quite complex and the 

simplification of the two dimensional model considerable. Plasticity 

theory is utilized in the analysis of the problem, the applicability to 

mechanical testing of rock at high pressure having been justified by pre¬ 

vious experimental work [2, 4, 7, 14, 20, 23, 32]. 

Isotropic Model 

An isotropic model has been developed for the transversely isotropic 

wedge indentation problem to gain a qualitative knowledge of the rock and 

bit tooth problem and to determine a satisfactory analytical method. A 

wedge is forced vertically into an isotropic medium, the flat surface of 

which is inclined with respect to the horizontal (Figure 2). The direction 

of maximum slope varies arbitrarily with respect to the orientation of the 

wedge. In the course of this study an analytical method has been developed 

and verified experimentally for the vertical and horizontal external loads 

required to force the wedge in a vertical direction. The isotropic model is 

considered a qualitatively accurate analogy to the transversely isotropic 

wedge indentation problem. 

(5) 



Figure 2 Isotropie Indentation Model 

(6) 



Introduction to Principles of Plasticity 

Some fundamentals of plasticity theory should be mentioned before a 

discussion of this experimental study may be continued. The discussion 

to follow includes some principles of yield conditions, limit analysis, 

method of characteristics and its application to a slip line field solu¬ 

tion for plane strain, velocity and stress discontinuities and Prager's 

mapping technique from the physical plane to the stress and velocity planes. 

Yield Conditions 

Consider a simple uniaxial tensile test which gives a typical experi¬ 

mental true stress - true strain curve as shown in Figure 3. The material 

is linearly elastic - plastic with an initial yield stress CT and plastic 

work hardening evident. An elastic - perfectly plastic material would ex¬ 

hibit a level curve beyond the yield point and the curve for a rigid - per¬ 

fectly plastic material would be vertical in the elastic region showing 

no elastic strain. In general, a material may exhibit elastic behavior 

(either linear or non-linear) and a non-decreasing plastic curve beyond 

the yield point. A yield function is a mathematical description of condi¬ 

tions which must be satisfied for plastic deformation to occur. For ini¬ 

tial yielding in the uniaxial tensile test a possible yield function would 

be: a - a =0. 
yp 

A complete yield criterion for an isotropic material can be represented 

by a surface in the three dimensional principal stress space. For the 

purpose of convenient illustration the yield condition is represented by a 

two dimensional curve in a principal stress plane. As shown in Figure 4 

the principal stress plane may then be superimposed onto the principal 

strain plane such that the stress and strain axes are mutually parallel. 

This two dimensional representation is convenient for describing the 

various stress and strain parameters and yield behavior as depicted in 

Figure 5. The diagram shows a general work hardening behavior tinder yield; 

the shape and position of the yield curve may change when undergoing 

plastic deformation. The yield curve must everywhere be convex and the 

increment of.plastic strain (Ae**) must be normal to the surface. These 

two fundamental properties of yield functions can be rigorously proven 

[8, 10], but only a brief clarification will follow. 

(7) 
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Figure 3 Uniaxial Stress-Strain Curve 



Figure 5 Behavior of Two Dimensional Yield Condition Model 

Figure 6 Convexity and Normality of Yield Function 

(9) 



Drucker's postulate for mechanical stability states that the work 

done by external forces on a body in a state of yield must be positive 

[8, 10]. An equivalent mathematical statement is: 

(a - o*) • deP > 0 and do • deP > 0 

where O* is an initial state of stress before external loads are 

applied. (See Figure 6.) 

The two fundamental requirements for a yield function follow directly from 

the stability criterion. 

1. The yield surface is convex. 

do • de** = Idollde^l cos9„ a: 0 
rs* fw 1 fs*' 1 f** 1 £ 

_ II £ Q < n 
2 ®2 * 2 

2. The plastic strain increment is always normal to the yield 

surface where the surface is smooth and between normals to 

the surface at a corner. 

(o - o*) • dep = |o - o*||dep| cosS, s 0 

A necessary consequence of normality is the principle of plastic potential, 

dep « X — , where X is a proportionality constant, 
ij 3otj 

Before various yield conditions are presented a note must be made on 

material symmetries. A material is said to be anisotropic if the mechani¬ 

cal properties of a body are in some way dependent upon the orientation of 

the material within the body. If there exist three mutually orthogonal 

planes of anisotropic symmetry then the material is said to be orthotropic 

and the intersections of these planes are the principal axes of anisotropy. 

If a principal axis of anisotropy is also an axis of rotational symmetry 

with respect to the state of anisotropy the material is said to be trans¬ 

versely isotropic. If there exist two axes of rotational symmetry the 

material must be isotropic. 

In the analysis to follow elastic strains will be neglected and it 

will be assumed that no work hardening takes place. In other words, the 

analysis will assume a rigid - perfectly plastic mechanical behavior. 

(10) 



Yield conditions will be prescribed in the form f = f(CT^j). If f < O'the 

material is below yield. Yielding occurs when f = 0. In all cases f £ 0. 

The familiar Tresca yield condition states that plastic flow will 

take place when the maximum shear stress reaches yield. 

f, = T - R. = 0 lml 

In terms of an arbitrary state of stress this can be written in a more 

rigorous form [27]. 

fL - 4J2 - 27J* - 36R^ J* + 96R^J2 - 64R® = 0 

where and are the second and third deviatoric stress invariants. The 

Mohr-Coulomb yield condition is a modification of the Tresca criterion and 

accounts for a mean stress dependency. 

T - R_ - SO 
m 2 2 m 

Experimental evidence of hydrostatic pressure compaction suggests a quad¬ 

ratic relationship for some materials [32]. 

.2 
T - R - S_CT - TO 
in j J m J m 

The von Mises yield condition states that yielding occurs when a maximum 

distortion strain energy is reached. 

f4 - 4 -k ■0 

An extended von Mises yield condition can be formulated as 

f5 " J2 ‘ k " "l1 

where I is the first stress tensor invariant [9]. A further extension 

of the von Mises condition gives the following relationship [32]. 

All of the yield conditions above describe the behavior of an isotropic 

medium. Anisotropic yield conditions can be formulated which for the case 

of infinitesimal anisotropy reduce to the isotropic criteria. 

f 
1 

Y 
f 
2 

T„ - R1 - f7 • TM - W 
describes the orientation of the principal axes of anisotropy 

Tm - R2 - S2°m = f8 * V ‘ ^ 

<U> 



f3 = m 
S-CJ 

3 m 3 m f9 = Tm - R3(Y> - S3<Y>CTm ' h*K [32] 

f4 " J2 - k * f._ - [A(a -a )2 + B(a -c )2 + C(a -a )2 + 10 u ' y z' z x' ' x y 

+ DT 2 + ET 2 + FT 2]^ - 1 
yz zx xy [16] 

f5 « J2 - k - rij^I £„ = [A(a -a )2 + B(a -a )2 + C(a -a )2 + 11 ' y ,z ' z x ' x y 

o o 2 
+ DT + ET + FT Y + yz zx xy J 

(Ga +KJ + RJ ) - 1 x y z [21] 

f6 ’ J2% ' k ' n2I ' V2 f,, « [A(cr -a )z + B(a -c )z + 12 u v y z' N z x7 

+ c(a -a )2 + DT 2 + ET 2 + x y' yz zy 

2 i 
+ FT ]’ -* (Ga + Her + Ka ) + xy J x y z 

- (Iax + M7y + NJZ)2 - 1 [32] 

As with the isotropic yield conditions, is a simplification of fg 

which is likewise of f^, and f^^ is a simplification of which is like 

wise of f,„. For the case of plane strain f.“f,, f_“f„, f =f0, f, =f, 
JLZ 4J.3Z0J1U/, 

f^^= fg and ^^2*^9 For P^P0865 of analysis of the wedge indenta¬ 

tion problem the von Mises isotropic yield condition will be utilized 

solely. 

Limit Analysis [11,12] 

A brief word must be said on the application of limit analysis to 

problems in plasticity. Three constraints define a statically admissible 

stress field for a body. A statically admissible stress field must 

1. satisfy force equilibrium 

2. be everywhere below yield (f(a^j) < 0), and 

3. satisfy boundary conditions where surface tractions are 

specified 

(12) 



A body cannot undergo plastic yield as long as there exists a statically 

admissible stress field. Restated, the surface tractions and body forces 

associated with a statically admissible stress field constitute a lower 

bound to the loads necessary for plastic flow to occur. A kinematically 

admissible velocity field for a body must satisfy the following constraints. 

1. The velocities v and their first spatial derivatives V-v 

must be continuous everywhere except along a finite number 

of surfaces of discontinuity. Along these surfaces only ve¬ 

locity components tangential to the surface may be discon¬ 

tinuous . 

2. Incompressibility must be satisfied everywhere. 

3. The rate of energy dissipation by surface tractions T^ must 

be positive. 

J* T^ds > 0 
s 

s denotes the surface of the body 

The principle of virtual work can be stated as follows. 

I Tivids 

V 
F£v dV dV 

where T^ * component of surface traction 

v^ ■ component of body force 

V denotes the volume of the body 

and s denotes the surface of the body 

J a 
ijij 

dV is often called the "power dissipation". A body must under¬ 

go yield if the loading system of surface tractions and body forces 

satisfy the principle of virtual work for a kinematically admissible ve¬ 

locity field and a state of stress satisfying the criterion for yielding. 

Restated, for a kinematically admissible velocity field and stress state 

under yield, a system of surface tractions and body forces satisfying the 

principle of virtual work will be an upper bound for the loading system 

necessary for yield. A fundamental approach to solution of problems in 

plasticity is to seek a greatest lower bound and least upper bound solu¬ 

tion for the actual loading system at yield. The analysis to follow will 

be primarily concerned with determining a reasonable upper bound solution 

for the wedge indentation problem. 

(13) 



Method of Characteristics in 
To obtain an exact solution of the partial differential equations 

in plasticity the "Method of Characteristics" is employed [10]. Assume 

we have the following system of two linear first order partial differen¬ 

tial equations in the xy plane. 

A.f2 
lox B.|S lay cjr + lôx 

D.|ï- 
loy 

A
2ôX + B2ôy + c2âx + D20y *2 

The goal is to solve for u and v in terms of x and y. 

functions of x and y, 

J Su . , ôu . du - ~— dx + — dy 
dx ôy 

Since u and v are 

dv = dx + ^ dy 
dx ôy * 

The above four equations may be combined into a matrix form 

B, 

B„ 

dx dy 

dx dy 

*du‘ 
dx E1 

du V 
ôy 

E2 

dv 
dx 

du 

dv 
dv 

The requirement for the system of equations to be linear means that the 

coefficients A^, k^, B^,...,E^, are all functions of x and y only. 

If for the case of nonlinearity E^ = E£ = 0 and A^, k^,•••, are 

functions of u and v only then the system may be transformed to a linear 

system by interchanging the roles of dependent and independent variables. 

Thus, the system of equations must be either linear or reducible to lin¬ 

earity for the solution method to apply. In the xy plane there exist 

certain lines or directions characteristic to the solution of u(x,y) and 

v(x,y) called, simply, characteristics. The characteristics may be des¬ 

cribed as the lines along which the partial differential equations become 

ordinary differential equations with respect to a spatial coordinate tan- 

(14) 



gential to the characteristic line. The derivatives of u and v with 

respect to x and y may be indeterminate only along a characteristic line. 

Discontinuities' in the derivatives of u and v must propagate in the xy 

plane only along characteristics. Restated, wherever discontinuities in 

the derivatives of u and v exist, a continuous solution occurs only in 

the characteristic direction. The derivatives of u and v may be indeter¬ 

minate, but for a solution to exist must be mutually related. To satisfy 

this condition the following (n+1) x n matrix must be of rank (n-1). 

2 

dx 

0 

B, 

B 2 

dy 

0 

2 

0 

dx 

1 

D2 

0 

dy 

2 

du 

dv 

n 

This condition can be satisfied only if 

2 

dx 

0 

and 

2 

dx 

0 

Bi 

B2 

dy 

0 

B1 

B2 

dy 

0 

2 

0 

dx 

D 2 

0 

dy 

= 0 

2 

0 

dx 

2 

du 

dv 

The first relationship determines the characteristic directions and the 

second determines the solution of the ordinary differential equation along 

the characteristics. The first relationship yields the solution 

dy _ ~b ± •yb*' - 4ac 
dx 2a 

where a = AJC2 - 

b = ®2^l " B
I^2 ^2^1 * ^i®2 

c = BJ^2 B2D1 

The system of equations is classified according to the value b - 4ac. 

(15) 



2 
b - 4ac >0 =* hyperbolic 

2 
b - 4ac =0 =* parabolic 

2 
b - 4ac <0 => ellyptic 

Only for a hyperbolic system of linear first order partial differential 

equations does the method provide a useful solution. 

Solution for Plane Strain in 

For most solutions of problems in plasticity to be mathematically 

tractable the constraint to problems of plane strain must be employed. 

The analysis following will be restricted to plane strain in the xy plane 

and body forces will be considered negligible. The von Mises isotropic 

yield condition f = 1/6 [ (O - CX )^ + (a - CT )^ + (CF - O’ )^] + 
' x y y z z x 

2 2 2 2 4* T + T + T - k - 0 and the principle of plastic potential 
xy yz zx r r r r 

ê^j® yield, for plane strain 

- V ‘° 

yz 
2 XT 

yz 
0 

zx 
2 XT 

zx 

Solving for a , T and T- 
z yz zx 

a = %(a + a ) 
z x y 

and substituting into the yield condition gives 

T = T « 0 
yz zx 

The yield condition can be represented by the Mohr Circle diagram (Figures 

7,8). 

O - p + k cos20 
x r 

(16) 



a - p - k cos20 
y 

T = ksin20 xy (1) 

p « hydrostatic pressure 

0 = angle from the ^i' - axis to the direction of maximum principal 

stress 

The equations of equilibrium are, 

!!x 
9x 

9T 

by 

(2) 

9T 9a 
+ _J 

9x 9y = 0 

Substitute (1) into (2) to obtain 

f2 - 2ksin20 
Ôx ÔX 
^ - 2ksin20 + 2kcos20 = 0 

9y 

I2 + 2kcos20 + 2ksin20 * 0 
9y 9x 9y 

p and 0 are to be solved in terms of x and y 

dp ■r2 dx + ~2 dy 
9x 9y 3 

99 j , 99 j d0 = — dx + — dy 
9x 9y 

The four equations combine to form a system of linearly reducible 

first order partial differential equations. 

1 

0 

dx 

0 

1 

dy 

0 

-2ksin20 

2kcos29 

0 

dx 

2kcos20 

2ksin29 

0 

dy 

Ô£ 
9x 0 

by 
0 

99 
9x dp 

99 

.ôy. d0 

By the method of characteristics, the stress characteristics are defined 

by 1 

0 

dx 

0 

0 

1 

dy 

0 

-2ksin20 

2kcps26 

0 

dx 

2kcos20 

2ksin20 

0 

dy 
- 0 

(17) 



Figure 7 Representation of Stress in Physical Plane 

Figure 8 Mohr's Circle Representation of Stress 



Let 0 be the angle between i1 - axis and a characteristic direction 
c ** 

dy Then -f- - tan0 and dx c 

1 

0 

1 

0 

0 -2ksin20 2kcos20 

1 2kcos20 2ksin20 

tan0 0 0 
c 
0 1 tan0 c 

= 0 

Subtract the third row from the first, 

0 -tan0 -2ksin20 
c 

0 1 2kcos20 

1 tan0 0 
c 

0 0 1 

2kcos20 

2ksin20 

0 
=0 

tan0 c 

-tan0 
c 

1 

0 

2 
-2kcos20tan 0 

c 

-2ksin20 2kcos20 

2kcos29 2ksin20 

1 tan0 
c 

+ 2kcos20 + 4ksin20tan0c 

= 0 

0 

2 
tan 0 - 2tan20tan0 -1=0 c c 

tan0c = tan20 ± sec20 

2 
tan© 1+tan 0 

= 2 ± 2 
1-tan 0 1-tan 0 

(1 ± tan0)(tan9 ± 1) 
(1 dt tan0)(l T tan©) 

tan© ± 1 
1 T tan© 

or tan0c = tan(0 ± ^ ) 

The stress field solution along the characteristics is defined by 

1 

0 

1 

0 

0 

1 

tan0 

-2ksin20 

2kcos20 

0 

1 

0 

0 

d£ 
dx 
d0 
dx 

(3) 
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A similar procedure is utilized to determine the solution of the ve¬ 

locity field of a body undergoing plane plastic strain. The assumption 

of incompressibility implies 

dv dv 
T—~ + T-

2
 = 0 dx dy 

The strain increments are 

(4) 

x 

6 = 2\T xy xy 

<7 ) 
dv 
 X 

y ~ ôx 

O ) 
X 

dv 
_ X 

dy 

I dv dv ) 
= % + —2 

\ôy dx J % V xy 

é-ê 2\(a - a ) o - a x y m ' x y _ x v 

'xy 
4\T 

xy 
2T 

xy 

dv dv ff - O  x _ y _ x v 
dx ôy 2T 

J xy 

The velocities are functions of x and y. 

dv dv 
dv * r—^ dx + —- dy x dx dy 

(5) 

dv dv 
dv = T—

2 dx + ■ 2 dy 
y dx dy 

The equations (4), (5), and (6) can be combined in matrix form. 

1 -Ç 

dx dy 

0 0 

a - a 
where % * — 2 

xy 

dx dy 

dv 
X 

dx 0 

dv 
X 

dy 
0 

Ü 
dx dv 

X 

dvy 

 
1

 
>> 

s
 

 
1

 

(6) 

(21) 



1 0 0 1 

1 -§ -5 -1 

dx dy 0 0 

0 0 dx dy 

The velocity characteristics are defined by, 

= 0 

[-dx dy + Ç dy^] - [dy dx] + dx[-Çdx] = 0 

i(£) 
(£)- 

1 = 0 

4î 
J2L 

(S 

a - a 
x y 

- 2ta”2el£ - 1 ■ o 

This relationship is the same as (3). Thus the velocity characteristics 

coincide with the stress characteristics. The velocity field along the 

characteristics is defined by 

1 0 0 0 

1 -Ç -Ç 0 

dx dy 0 dv 

0 0 dx dv 

£ dx dv + £ dy dv =0 r> x ^ J y 

dv + dv x y (£)' 
Let s+ and s be length coordinates along the characteristics, with orien¬ 

tations 0. and 0 with respect to the i' - axis. Then + ~ 

COS0. 
^2 

’+ ds. 

dv 
+ sin. 

dv 
sin0 + ds 

*+ ds 

COS0 

0 
+ 

dv 

+ ds 

(7) 

0 

v 
y J 

cos0 -sin0 

sin0. COS0, (8) 

(22) 



With some mathematical manipulation substitution of (8) into (7) yields 

the Geiringer Relationships. 

The transpose of (8) gives 

dv, = cos0, dv + sin0, dv„ 
+ + x + y 

(9) 
dv = -sin0, dv + cos0, dv 
- + x + y 

Inspection of (7) and (9) yields the condition that the characteristics 

are inextensible. 

dv+ = dv =0 

To solve an actual problem in plane strain a slip line field is de¬ 

termined by the solution for the characteristics and the known boundary 

conditions [24]. The state of stress is then known throughout the field 

due to the stress relationships along the characteristics. 

Stress and Velocity Discontinuities 

Velocity discontinuities can occur only along slip lines, the velo¬ 

city (and stress) characteristics. Incompressibility requires that only 

velocities tangential to the line of discontinuity may be discontinuous. 

The Geiringer Relationships require that the jump in tangential velocity 

be constant along a line of discontinuity (Figure 9). 

dv+* - v_ d0+ = 0 

dv 2 - v d0 = 0 
T “ i 

dv+
X - dv+

2 - 0 

There are two possible states of stress at yield due to an arbitrary 

surface traction (Figures 10, 11). Whether the weak or strong solution 

is appropriate is determined by the boundary conditions as a whole. A 

line of stress discontinuity cannot coincide with a slip line (Figures 

12 and 14). The slip line field on either side of a line of stress dis- 

(23) 



Z 

Figure 9 Velocity Discontinuity 

Figure 10 Surface Traction 

Figure 11 Stress Plane Representation of Surface Traction 

(24) 



Figure 12 Stress Discontinuity 

Figure 13 Stress Plane Representation of Stress Discontinuity 

Figure 14 Slip Line Field Near Stress Continuity 

(25) 



Figure 15 Happing Technique - Physical Plane 

Figure 16 Mapping Technique - Stress Plane 

Figure 17 Mapping Technique- Velocity Plane (Hodograph) 

(26) 



continuity will be symmetric with respect to the line of stress discon¬ 

tinuity. Equilibrium requires that only the normal stress component tan¬ 

gential to the line of stress discontinuity may be discontinuous. From 

the Mohr Circle diagram the stress jump across the line of stress dis¬ 

continuity is readily- obtained. 

The inextensibility of the slip lines requires that lines of stress dis¬ 

continuity be inextensible. 

Mapping Techniques [24] 

Prager has developed a mapping technique which serves as a useful 

aid in studying plane strain plasticity (Figures 15 - 17). Slip lines in 

the physical plane are mapped into- cycloidal curves in the stress plane 

generated by the pole of the Mohr Circle as the circle rolls without slid¬ 

ing along either the line T = k or T = -k. The direction of the cycloidal 

tangent is perpendicular to the corresponding slip line field direction. 

A point in the physical plane is mapped into a pole of a Mohr Circle. A 

mapping is generated by first deciding upon a "weak" or "strong" stress 

state solution for a particular point in the physical plane and simply 

"rolling" the Mohr Circle according to the corresponding slip line field. 

A hodograph is a mapping of the physical plane into the velocity plane. 

The mapping of a slip line is a line whose tangent is always perpendicular 

to the slip line direction. A slip line field with one family of slip 

lines straight (called a centered fan) maps into a single cycloid in the 

stress plane and a single circular arc in the hodograph. A slip line field 

where all the slip lines are straight maps into a single point in both the 

stress and velocity planes. 

The discussion above constitutes a brief summary of the fundamentals 

of plasticity theory necessary for the practical analysis to follow. 

(27) 



Theoretical Isotropic Wedge Indentation Solution 

An upper bound solution is desired for the horizontal and vertical 

forces necessary to force a wedge of finite width vertically into an in¬ 

clined isotropic medium with arbitrary orientation of wedge and direction 

of maximum slope. The problem will be divided into two parts. A solution 

will be found for the plane strain indentation of a wedge of infinite width 

and # =0. These results will then be used to determine the solution for 
’y 

the actual wedge and arbitrary ÿ assuming a plane strain slip line field 

on all sides of the wedge. As will be shown later in this discussion the 

analysis constitutes an upper bound for the horizontal load, but not for 

the vertical. The necessary correction will be described and calculated 

for several cases. 

Plane Strain Infinite Wedge Solution 

In the course of this study solutions were found for smooth, rough, 

and frictional wedge conditions using both Prandtl - type (no lip forma¬ 

tion) and Hill - type (lip formation) slip line fields. The analysis to 

follow assumes the least number of simplifying constraints and is proposed 

as the most meaningful prediction of physical behavior. A vertically sym¬ 

metric two dimensional infinite width frictional wedge is assumed to move 

in a non - vertical direction (for sake of generality) into a semi - in¬ 

finite incompressible non - work hardening isotropic medium whose smooth 

flat surface is inclined with respect to the horizontal. The resulting 

slip line field is one which predicts lip formation on each side of the 

wedge. The other solutions are described in Appendix A to this report. 

The physical plane slip line field determined by application of the 

boundary conditions to the solution for the characteristics is shown along 

with the corresponding mappings in the stress and velocity planes (Figures 

18 - 21). The known parameters in the physical plane are P, \|r , |a, ô_, b, 
X V 

k, and e. In actual numerical calculations for vertical indentation, 

e = 0. Relationships for the other physical plane parameters are deter¬ 

mined geometrically. 

(0M) = 0yCostyx + d^siny^ 

(OL) = 6yCosi|rx + d2sinY2 

(28) 
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Also, 

(OM) = (OA) cos(P - d1sec\1cos(P - fx) 

(ÔL) = (ÔË) cos(p + i|fx) «y=> d2sec\2cos(p + i|^ 

Combine the equations above to obtain 

y|,d1sec\1cos(p - tx) - 6vcos\(rx + d1siny1 

d2sec\2cos(P + \|fx) = 6ycosi|rx + d2siny2 

or, 

dx -/2’costx 

6y “ VecXjCos(0 - Ÿx) -V2sin\^ 

d2 -tfTcosty* (10) 

6y “ secX2cos(P + i|rx) -V2s tny2 

It can be seen by inspection that 

bx = (Bl)siny^ 

b2 = (FI)siny2 

and 

(BI) = d1cosy1 + (OA)sin(P - i|ix) + 0vcosi|rxtanO|fx + e) 

(FI) = d2cosy2 + (OE)sin(P + i[fx) - 6
v

cos1l'x
tan(1l,x + e) 

Then 

bl = ^dicosYi +
1/§’ d1

secX1sin(t3 - i|rx) + 6vcosiJ;x tan(i|fx + e)]sinX1 

b2 = ^d2COSY2 +/I’d2
sec^2Sin^ + “ ^VCOS^x tan^x + e)3sin^2 

(30) 



or 

b 

6 
1 

V 

sintfi - * ) \ dj 

pYi+ — 1 J; 
+ cos\(f tan(\|/ + e) 

X X 
siny. 

(ID 

7 s*n(P + ♦„) \ d
2 

^C0SY2 + =75^ ) 6^ ' c«s**ean(*lt 
+ e> 

s inY' 

The following relationships can be discerned from the hodograph (Figure 

21). = vsin(P + e)sec\j 

v2 = vsin(P - e)sec\2 

Let t = - 
v 

V 
Then b1 = ^r- 

vtsin(g - e) 
V? cosX2 

b = = ytsin(p - e) 
2 VF VTCOSX2 

From the physical plane, 

Then 

b 

6 
1 

V 

vt — K — 6 cosi|r sec(t|; + e) 
V X X 

cosÿx(sin(P + e) 

VF cos(tyx + e)cos\j 

b2 cosi|rxsin(P - e) 

6V VF cos(i|rx + e)cos\2 

From the physical plane, a summation of angles at A and E yields 

4 + “t + X1 + ( 2 " e) + + Y1 ‘ " 

4 + “2 + *2 + (2 ' P) - *x + Y2 ‘ " 

or 

Yl " 4 + P ‘ *x ’ *1 • X1 

Y2 = 5 + P + ■ “2 ■ X2 

(12) 

(13) 

(31) 



Figure 19 Upslope Stress Diagram for Frictional/Lip Hypothesis 

Figure 20 Downslope Stress Diagram for Frictional/Lip Hypothesis 

(32) 



The Mohr Circle diagrams in the stress plane yield the following relation¬ 

ships . 

aQA = k(2û'1 + 1 + sin2X1) , TQA = kcos2\1 

a0E “ k(2a2 + 1 + sin2X
2) » T

OE = kcos2X
2 

From the definition of coefficient of friction, 

T - |iO 

Then 

cos2X^ = |j(2û'^ + 1 + sin2\j) 

cos 2X2 = li(2o?2 + 1 + sin2\2) 

or 

1 /cos2Xl \ 
*1 = 2 ~ 1 - Sin2Xl) 

(14) 

1 I cos2*2 \ 
“2= 2 ( —— 1 -,lna

2 j 
An iterative numerical procedure must be used 

parameters in the solution: 

to determine the various 

1. Choose 

2. Calculate or^ from (14). 

3. Calculate from (13). 

4. 
di 

Calculate T— from (10) . 
°V 

5. Calculate T— from (11) and (12), compare. 
°V 

6. Repeat the procedure vmtil (11) and (12) give the same r—. 
v’ 

When these parameters have been determined the forces that must be exerted 

on the wedge by an external source can be calculated. 

(33) 



P = b(0A)[OgAs inP + TnAcosP] + b (OE)[ani?sinP + TnRcosP] 'OA OE 'OE 

W « b(OA)[-CTQAcosP + TnAsinP] + b(OE)[aril? cosP - Tnpsinp] OA OE OE 

where 

and 

(OA) » 
dl 6v (L 

V2cos\^ VScosX^ 
\ 6v 

(ÔË) = 
d2 6V (ti 

V2COS\2 V2COSX2 \6V 
1 

<
 
O
 

1- kcos2X^ 
CT
OA 

= 

T 
OE 

kcos2X2 

OE |j 

Substitution above gives 

bô. 

V2cosX 

b6 

b6v (d2 

VîcosX.2 \6V, 

W = 
V2cosX, 

- ^kcos2X^sinB + cospj 

^ (^) LMai(.w - æi) - [rv 
or 

cos2X- cos2X, 

J sii 
\ I- 

kcos2X^|sinB + cosf 

kcos2X2^sinp ~ 
cos^ 

bô yk cos(P - i|(x) - 2cos\^siny1 cos(P + i|rx) - 2cosX2sinyjy |i 

sinp.cosBl 
 E4- rJ cos\|r 

x 

W 

*V 

cos2\. cos2\. 

cos (P - i|rx) - 2cosX^sinyj cos (P + ÿx) - 2cosX2siny2 

n 

blnS-ç^|\cos^ 

For the special, case where P < ^ + \^ + " 4 a stress discontinuity is 

found on the down slope side of the wedge (Figures 22 - 24). The pattern 

of velocity discontinuities in the physical plane becomes an infinitesimally 

fine mesh near A. Inspection of the physical plane slip line field will 

yield a derivation for 0'. Summing angles about C gives 

(34) 



0 <fx 
+ X,+ y,-% 

Figure 22 Frictional/Lip Slip Line Field with Stress Discontinuity 

Figure 23 Frictional/Lip Stress Diagram for Stress Discontinuity 
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Vwtdge * v 

Va*Vc*Ve*.. . 

vb*vd*...*vm*v9 

vn*v„»vf «... 

Figure 24 Frictional/Lip Hodograph for Stress Discontinuity 



(16) 

Z.OCB + E + 0'+ E = 2n 

Z.OCB + q>' = n 

0' =ACOB +ACBO 

Summing angles about B gives 

(j - Yi) + AcBO + Z.OBS = i|r (17) 4 1 X 

Summing angles about 0 gives 

P + (j “ + Z-COT = J 

A COB - Z.TOB - XL - P (18) 

Using Z.TOB = Z_OBS, (18) and (17) become, respectively, 

Z_TOB = Z_COB + p - 

^ - Yx + Z-CBO + Z-COB + p - (19) 

(16) and (19) combine to yield 

5 • n+ *' *9 - H ■ *x 

or 0,*='t,x"P"4 + Y1
+^l (2°) 

Inspection of the stress plane will yield the following relationships. 

Ap = 2ksin0' 

OQ^ = ksin2\^ - (Ap - k) = k(sin2X^ - 2sin0' + 1) 

T
OA ■ kCos2Xl 

From the friction criterion, T_. = na-., the above relations can be 
OA ^ OA 

written cos2\^ = n(sin2\^ - 2sin0' + 1) 

/ cos2\.\ 
or s in0 ' = ^ ( s in2\ ^ + 1 -  1 

(37) 
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Substitution of (20) gives 

sin(i|rx - -!(s P
 " 4 + Yi + X> " ?lsin2Xi + 1 “ 

cos2X 

M ‘) 
(21) 

The solution is obtained in the same manner as before if (21) is substitu¬ 

ted for the first relationship of (13) above. The value of friction coeffi¬ 

cient to be used in the analysis is in no case greater than the friction 

coefficient necessary for a rough wedge, as calculated from the results 

of the rough wedge analysis (Appendix A). Table 1 is the result of cal¬ 

culations made with a programmable desk top calculator for the case of 

(j = 0.169 (experimentally determined) and e = 0. 

Plane Strain Solution for Actual Wedge 

The actual wedge indentation solution assumes plane plastic flow on 

all sides of the wedge. This assumption may appear dubious for the ends 

of the wedge on first consideration. Deviation from plane plastic flow is 

due to shear forces of the surrounding medium during flow. Since no 

material is displaced by the vertical faces on the ends of the wedge, no 

plastic flow takes place and there are no forces causing a deviation from 

plane plastic flow. The assumption is a correct analysis for the ends of 

the wedge whereas for the plastic flow on the sides of the wedge it is only 

an approximation to actual behavior. 

The geometry and nomenclature of the problem is shown in Figures 25 - 

30. From the previous solution of the plane strain problem for the in¬ 

finite wedge and \[r =0, the following definitions will be made. 

glO> tx) ■ 
 P_ 
bôvk 

g2 = (&» tx> s 
 W_ 
bôvk 

T (tlr) = T__(\|f ) o'Ty/ OE^x' 

cr (ilr ) = O _ (ür ) 
o Yy OE Yx 

p = 0 
ilr = ilr Tx Yy 

* - * Yx Yy 

vys TOA<**> 

e. o vys °0A<y 

g = o 

♦x = »y 

P = 0 
ilr = ilr Yx Yy 

Calculated values of T , T. , a cr, are given in Table 2. As is 
O D O, D 

in Figure 27 an integration of the plane strain functions g^ and 

the wedge is conducted to determine the forces F ' and F . 
Z X 

indicated 

g2 along 

(39) 



Figure 25 Wedge Nomenclature 

(40) 



vy 
X1 X2 

T 
0 

k 

Tb 
k 

a 
0 

k 

ab 
k 

0 33.44° 33.44° 0.3927 0.3927 2.323 2.323 

5 34.47° 32.4CP 0.4258 0.3593 2.519 2.126 

10 35.4SP 31.35? 0.4586 0.3259 2.714 1.928 

15 36.5CP 30.2S? 0.4915 0.2924 2.908 1.730 

20 37.4SP 29.19? 0.5243 0.2592 3.102 1.533 

25 38.4^ 28.0SP 0.5566 0.2267 3.293 1.341 

30 39.31 26.9^ 0.5889 0.1953 3.485 1.155 

35 40.24° 25.8CP 0.6211 0.1654 3.675 0.9787 

40 41.05° 24.61° 0.6532 0.1374 3.865 0.8133 

45 41.79P 23.38? 0.6851 0.1118 4.054 0.6616 

50 42.47° 22.1CP 0.7169 0.08820 4.242 0.5219 

55 43.07° 20.77° 0.7485 0.06732 4.429 0.3983 

Table 2 Frictional/Lip Slip Line Field Solution for 

Wedge End Stresses 

(41) 



Figure 27 Nomenclature for Forces of Medium on Wedge 

(42) 
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STRAIN READINGS 

€mn caused by force in m-n 
direction as per numbering 
of strain gages 
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Figure 28 Load Cell Placement of Strain Gages, Readings 
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Figure 29 Horizontal Deflection Nomenclature 

Figure 30 Applied Forces Nomenclature 
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dFz' = kgi<P» *x^6V^dx 

b 

V = J 6v(x)dx 

Vx> - 6y(0) - xtani|iy x <; 6v(0)co Ty 

0 x a 6v(0)cotfy 

The integration yields the following result for 6^(0) £ btani|i 

F ' 

^2 = ^ kg1♦ >cot^ v y 
(22) 

F 
m 4 kg2(P» *x>cottv v 7 

For 6^(0) £: btanty^ , 

Fz' = bkgi^’tx^6v ‘ ibtan'l'y] 

(23) 

FX = bkg2(P> ^x^^V " ibtSnty^ 

The cross-sectional indented areas of the ends of the wedge are calculated 

by inspection of the physical plane diagram for the plane plastic strain of 

the infinite wedge (Figure 18). 

A(x) = £ cos2i|/ [tan(p - * ) + tan(P + t )] 
A A A 

(24) 

Knowing the state of stress on the ends of the wedge the forces Fz“ and 

Fy may readily be calculated. 

Fz" = TQA(0) + Tb(b) 

Fy = CToA(0) - abA(b) 

Substitution of (24) gives 

V = § cos2fx[tan(p - i|fx) + tan(p + fx)][ToÔv(0)2 + Tb6v(b)2] 

Fy = i cos2||fx[tan(p - fx) + tan(P + i|rx)][ao6v(0)2 - Cb6v(b)2] 

(45) 



For ôy.(0) £ btaiu|f , 6^.(b) = 0 and 

-^2 = | cos ?xCtan(P - \|rx) + tan(p + \[rx)3 k ft) 

= i cos i|rY[tan(P - i)(x) + tan(P + i^)] k 
‘W 

(25) 

For ôy(0) ïï btanijr , 6y(b) = 6y(0) - btanty and 

F " = A 
z •§ cos t|fx[tan(P - \L) + <0 + [("k + -T) k sv2 - 2bk('r) 

X (tani)ry)6v+b2k(-^J tan2i|f 

(26) 

F = %■ cos >xCtan(p - i)ix) + tan(P + <|fx)]^“f “ ~k) k ^ + 2bk(“k) X 

X (tani|ry)Ôv - b2k(-|J tan2||/yj 

The results of these calculations, (22), (23), (25), and (26) are then 

combined in the form necessary for correlation with experiment. 

F = F ' + F " 
Z Z Z 

0 = tan 

F =/F 2 + F 2 

o V x y 

« 

These forces are the reaction of the medium on the wedge. The experiment 

measures forces which are applied to the wedge by external sources, such 

that P. ** F and P = F (Figure 30). It is necessary to know the angle 0 

so that the one horizontal force may correctly balance the forces F , and 

F . 
~y 

Adjustments for True Upper Bound 

It has been mentioned that these calculations constitute a true upper 

bound for P„, but not for P„ (Figure 31). The power dissipation on the 
xi V 

sides of the plane strain lip (ABODE) has not been included in the analysis 

Since there is no wedge velocity in the horizontal direction in the model 
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Figure 31 Plane Strain Indentation Geometry 

Figure 32 Plane Strain End Effect Geometry 

Figure 33 Hodograph for End Effects on Upper Bound 
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there can be no additional horizontal force due to the power dissipation 

across (ABODE). Therefore, the previous calculations do constitute a 

correct upper bound for the horizontal force. The additional power dis¬ 

sipation will cause a greater vertical force for a correct upper bound 

to be obtained. 

Consider the plane strain geometry previously determined (Figure 32). 

The added force is calculated by use of the upper bound principle discussed 

earlier. The rate of work done by the added force equals' the rate of 

power dissipation by the shearing forces on the plastic flow in the ver¬ 

tical plane on each end of the wedge. 

V ’
V1 “ n[eAlvl + A2v2 + A3V3 +/ V* + A5V5 + A6V6 +/ V7dA| 
L A4 A7 J 

k (27) 

n = 

2 

1 

1 + (1 - 7 tanilr )^ 
\ y 

* =o 
Yy 

ty^°> 6
V 

s btanty 

^ btanij; 

1 
e 

0 

= 0 

♦ # ry 

n corrects for the differential indentation depth on each end due 

to \|r . 
Ty 

e corrects for the fact that in the actual calculations of P^, the 

end effect slip line field was not considered for ÿ = 0. 

Normally, e = 0. 

The hodograph (Figure 33) results in the following velocity relation¬ 

ships . 
sing 

V2 " V3 “ V1 cos\. 
sing 

1 cosX^ 
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In the centered fan regions, 

V4 = d./VT V2 I 
A4 

,4 1 . 2 1 , - v^dA = ■^or,d, v„ = •pOf,d, v 
?lV'2 - ÏVlS 

V- = 
7 d./VT 5 

PJA 1,2 1,2 sing ; v7d* « ^2d2 v5 = ?2d2 Vj 

The areas are determined geometrically, 

A^ = % 6y
2tanP 

The substitutions are made into (27) to obtain 

P ' 
V = n 

tanP . 
* — + \v \ 4 4 6/ cosh 

/M2/^2 J ïiW 
\‘VJ l 4 * 6/cosX, 

(28) 

Several sample curves are shown in the discussion of the experimental 

results showing the effect of this upper bound adjustment. 

The only remaining factor in the theoretical predictions is an 

error analysis to be discussed later in this report. The numerical re¬ 

sults of the theoretical analysis are presented later in graphical form. 
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Experimental Solution of Isotropie Wedge Indentation 

Historical Review of Experiment 

The designs and procedures in conducting the experimental study were 

developed and continually revised over the entire course of the study. 

For this reason a brief chronological review of the entire study would 

help to see the experimental results in a true perspective. 

An initial problem statement was first formulated and stated: 

Develop and experimentally verify an analysis of load¬ 

ing and deviation forces for wedge indentation into a 

transversely isotropic medium with arbitrary orienta¬ 

tion of principal axes of anisotropy. 

The initial phase of development towards the stated goals proceeded roughly 

as follows: 

1. The design first required a loading source and a Riehle 60,000 

lb. screw power testing machine was conveniently available. 

2. Two general experimental methods were considered. 

a) direct measurement of horizontal forces with some 

sort of force transducer -- strain gage cell, hy¬ 

draulic jack,... 

b) measurement of the bending of a load cell mounted 

in the vertical loading rod, due to horizontal 

forces 

The latter method (b) was selected for design flexibility and 

accuracy. 

3. The load cell was designed and fabricated to maximize the strain 

being measured. 

4. Plasticity theory was to be applied to predict experimental be¬ 

havior. The transversely isotropic medium would be a rock sub¬ 

stance, ductile only at high pressure. 

5. A transversely isotropic sample was constructed by lamina¬ 

ting thin slices of a weak and strong medium alternately. 

6. Two basic pressure vessel methods were considered. It was un¬ 

decided whether or not the pressure vessel would enclose the 

load cell. If so, electrical connections would be designed to 

preserve high pressure integrity. If the vessel would not en- 
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close the load cell, a hydraulic sealing problem would be 

caused by horizontal flexibility. 

It was considered imprudent to attempt high pressure testing until the 

wedge indentation problem was first studied at atmospheric pressure. The 

experimental goals were appropriately revised: 

Only atmospheric tests would be conducted. An isotropic, 

ductile substance will be utilized as the indentation 

medium, its flat surface inclined at various levels and 

orientations to model transverse isotropy. 

The ensuing development of the project proved the merit of this revis¬ 

ion: 

7. The loading rod assembly was modified to minimize hori¬ 

zontal flexibility. 

8. An attempt was made to assemble continuous output devices -- 

strain gage bridge networks, X Y recorders,... 

9. Lead was chosen as the experimental medium. 

10. Tests conducted revealed time dependent strength properties of 

lead. The lead exhibited rapid "relaxation" rates under load. 

When loaded the lead would not reach a state of equilibrium 

for an extended period of time, causing continuous, dynamic 

tests to be impractical. The data would of necessity simply 

be observed and recorded by the observer. 

11. A 5% antimonial lead (Pb - Sb) was selected as the indentation 

medium to minimize "relaxation" effects. 

12. Load cell calibration tests, Pb-Sb mechanical strength compres¬ 

sion tests, and steel - lead friction tests were conducted. 

13. Tests for which « i|r^ « 0 were conducted successfully. 

14. Tests for which ijf^ *» 0, failed because the horizontal 

flexibility of the loading rod assembly was too great. 

15. Equipment was designed and fabricated to apply a horizontal 

force directly and force the wedge to travel vertically. (Note, 

both experimental methods above, 2a, 2b were eventually employed). 

16. The remaining tests were conducted successfully. 

The theoretical analysis was developed gradually throughout all stages of 

the experiment. Certain end effect revisions were made in the upper bound 

analysis after a detailed error analysis had been completed. Rather 
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than completely rework the error analysis the effect of these revisions 

is simply demonstrated for a number of cases* 

The basic indentation test design is shown in Figure 34 and the de¬ 

tailed design and stress analysis of components is presented in Appendix 

B. To facilitate discussion of the actual indentation test, the proced¬ 

ures and results of the load cell and hydraulic jack calibrations, and 

the lead-steel friction tests are presented in Appendix C. Before the 

actual wedge indentation tests may be discussed, the important preliminary 

study of Pb-Sb compressive strength properties is presented. 

Compression Tests on 5% Antimonial Lead 

A cylindrical specimen of about 1" diameter and 2” long was placed 

in the Riehle testing machine between two flat steel plates and loaded in 

compression (Figure 35). For each datum point the loading was stopped 

and readings taken of load (L), diameter of sample (D), and deflection 

(6)- 

Antimonial lead is quite ductile, but also exhibits a marked time - 

dependent compressive strength. After the loading is ceased the deflec¬ 

tion remains constant, but the load will decrease, rapidly at first and 

slowing with time. The possible effect of relaxation on the wedge in¬ 

dentation slip line field is depicted in Figure 36. It was desired for 

the purposes of the wedge indentation tests to eliminate or at least 

minimize this time dependency, so load readings were taken for various 

"relaxation” times, for example, at t « 0, %, 1, 2, ... minutes. The 

strength value of interest was determined by the load after the most rapid 

relaxation had taken place. 

The diameter changed for each increasing load, the frictional end 

conditions causing the sample to bulge. The change during relaxation was 

too small to be measured. 

It was desired to characterize this material as rigid - perfectly 

plastic to be able to apply plasticity theory to the indentation problem, 

so the data was analyzed in the form of a stress - strain curve. Diameter 

readings were recorded for each load at the sample midpoint, where the 

diameter was a maximum and stress a minimum. The strain measurement was 

of minimal importance in determining the compressive strength, so the. true 

stress at the sample midpoint (g) was just plotted vs. the deflection (5). 
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testing 
machine 
base 

Figure 35 Compressive Strength Test Set-Up 
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Figure 36 Hypothetical Plastic Flow During Relaxation 
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Three tests were recorded, over different ranges of deflection, and plot¬ 

ted on the same graph. 

The test specimen was made by melting a portion of the indentation 

test ingot and pouring into a thin cylindrical aluminum mold. The samples 

were not perfectly circular in cross section, so the diameter measurements 

were actually averages. This inherent uncertainty, plus the uncertainty 

of correlating the time - dependent compression test with the time - de¬ 

pendent wedge indentation test required a rather liberal uncertainty to 

be assigned to the results of the compression test, ± 20%. 

Preliminary compression tests with relaxation times up to ninety 

minutes revealed that there is still perceptible relaxation after ninety 

minutes, but that all of the most rapid relaxation takes place during the 

first two minutes (Figure 37). An effort was made mathematically to deter¬ 

mine from a typical test such as this the load as t -• », thus to eliminate 

all relaxation effects (Appendix C). 

A satisfactory means of determining a compressive strength value in¬ 

dependent of time-dependent "relaxation" effects was not found. For this 

reason and for the sake of convenience the compression test stress - 

strain curve is plotted for load readings t * 3 minutes, and is used to 

estimate a rigid - perfectly plastic compressive strength in wedge inden¬ 

tation tests for which loads are again recorded at t - 3 miputes. The 

results of three compression tests are plotted with stress values shown 

for both t = 0 and t = 3 minutes (Figure 38). A compressive strength 

(CT ) with a tolerance of 20% is estimated to be (7 = 9500 psi. Using the 
7 2 

ay y 
von Mises yield condition, ^ * k , k ■ ’ The result of the com¬ 

pression tests to be applied to the wedge indentation test is then, 

k = 5500 ± llOOpsi 

Wedge Indentation Tests 

The actual experimental wedge indentation tests were conducted, re¬ 

corded, and analyzed according to the following procedure. 

A steel wedge was forced vertically into an inclined, flat lead 

(Pb - Sb) surface, and vertical and horizontal forces measured at various 

depths of indentation. Three parameters were varied in conducting the 

tests — wedge angle (2p), and two inclination angles 0|fx>ty) as shown 

in Figure 26 . Four wedge angles were available (f) = 15° , 22.5° , 30° , 
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4ÿ* ) and the tests were run In basically three series. The first tests 

were for zero inclination (ijr^ * = 0). The second series consisted of 

two dimensional inclination tests (i = 0) and the last series were for 
Yy 

arbitrary inclinations with 

The hydraulic jack assembly was not used for the case of zero incli¬ 

nation of the lead surface. The jack assembly was deemed necessary for 

non-zero inclination tests as a means of directly applying a horizontal 

load to force the wedge to follow a vertical path. Although the design of 

the loading rod assembly minimized horizontal flexibility, the flexibility 

was great enough to allow the wedge to slip down slope such that no 

plastic flow took place on the uphill side of the wedge, thus rendering 

plasticity theory inapplicable. 

To conduct a typical zero inclination test the wedge was first lowered 

by the loading mechanism until the wedge just touched the lead surface. A 

dial indicator measuring vertical deflection (6^) was then set at zero be¬ 

fore beginning the test. The wedge was loaded until a certain deflection 

was reached (0.02", for example), and the testing machine was then stopped. 

Vertical force readings (P^,) were made from the loading machine gauge and 

recorded for "relaxation" times of t ■ 0, %, 1, 2, and 3 minutes. For 

maximum reliability of the compressive strength measured earlier, the load¬ 

ing speed was the same as in the previous compression tests and the force 

reading for t = 3 minutes was the only reading considered of further 

interest. Data was recorded for several different indentation depths, not 

exceeding 0.1", limiting depth for maximum reliability of the two dimen¬ 

sional plasticity theory. 

In a typical test for which i|iy ” 0 and the hydraulic jack assembly 

was used and additional readings recorded for jack pressure (p) and hori¬ 

zontal deflection in the direction opposite to the force of the jack (6^). 

The pressure was adjusted during loading such that there was no horizontal 

deflection. 

To conduct a test for which a theoretical prediction of the 

horizontal force direction was first calculated and the sample oriented such 

that the force of the jack would just balance this horizontal force. An 

additional horizontal deflection was measured in the direction perpendicu¬ 

lar to the jack force direction (6^). 
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P„ was determined primarily from pressure readings and the results 
xi 

of the hydraulic jack calibration test, and the load cell was used in all 

tests to provide an additional indication of horizontal forces. Since 

the load cell was not the primary means of force measurement, accuracy 

was of marginal importance. From the calibration tests previously con¬ 

ducted, the approximate relationship between horizontal force and 

strain reading was, P — 0.11s. 
fi 

The most complex series of tests (\|r ^0, i|f ^0) involved the record- 
x y 

ing of nine observed quantities (t, P^, p, Xq, 6^, 6^, 6^, e^» £24) from 

PH 
which experimental values of P,r, P„ and — were determined and plotted 

V H Fy 

as functions of 6^. The other tests? were just simplifications of this 

procedure. 

The following adjustments to the indentation data were necessary due 

to experimental errors. 

ôy -* + 0.002" error in zero setting of gauge 

p -• 0.95p (Tests 49-83) relaxation effect error 

PJJ -* PJJ + O.lle adjustment due to £24» ®3l readings 

XQ -* 0.75XQ (Tests 25 - 72) estimated average from final 

reading 

Each test conducted in the course of this study (less the load cell 

and hydraulic jack calibrations) was numbered in chronological order. The 

results presented in Appendix F are complete, except for the data dele¬ 

tions listed in Appendix E. 

For tests where i|r « 0, an additional data reduction was made. A 

linear regression analysis on P vs. 6„ (and P„ vs. 6„) gave an average 
V V ri V 

slope nuOO* The non - dimensional quantity mv .was plotted • 
V H bk bk 

P or i|*x and compared with theoretical results for 

A complete listing of the sources of error in this study is given 

in Appendix D. In general, the greatest portion of experimental error 

was the 20% uncertainty in the compressive strength of the lead medium. 

This; uncertainty was quite difficult to estimate and the result of 20% 

arguable. The complete error analysis resulted in toleration limits for 
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both theoretical and experimental values. These error limits should be 

interpreted in light of the above difficulties. 

The analysis of test results consists of a graphical comparison of 

experimental data points with theoretical prediction curves. The complete 

series of force -deflection results is presented in Appendix F. 
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Discussion of Experimental and Theoretical Results 

The initial zero inclination test results are first presented as a 

_ 
plot of ^ k vs* P without an error analysis shown (Figure 39). Each 

solid line corresponds to a theoretical prediction based on a particular 

set of assumptions and resulting plane strain slip line field. The actual 

details of the theoretical analyses in addition to the friction/lip analy¬ 

sis presented earlier are found in Appendix A. Although these curves are 

not valid upper bounds for the corresponding assumptions used in the analy¬ 

ses, for the present purpose the curves may be considered upper bound pre¬ 

dictions. It is estimated on inspection that the smooth wedge analyses 

will not yield a satisfactory upper bound. The two frictional wedge pre¬ 

dictions are experimental (not analytically true) upper bounds and give 

closer predictions than the rough wedge analyses. The frictional wedge 

with lip formation assumption was selected over the assumption of no lip 

formation for the remaining predictions, simply because it is a more cor¬ 

rect analysis of actual behavior and it gives a kinematically admissible 

velocity field for determination of a true upper bound. 

The results to follow and those presented in Appendix F demonstrate 

that the frictional analysis without lip formation is perhaps a closer 

prediction of actual behavior. This may be explained as reflecting two 

offsetting tendencies for error. It is readily noticed that the difference 

between the two frictional analyses increases with greater wedge angle. 

The two analyses will also have diverging predictions on the force - deflec- 

PV 
tion curves due to the differing predictions of ^ ^ . The "F/L” predic¬ 

tion will always be greater than the "F" prediction. From a perspective 

directly above the indentation the geometry for both the plane strain 

plastic flow and the actual observed plastic flow is depicted in Figure 53. 

The deviation from the plane strain prediction of the horizontal and ver¬ 

tical forces due to the actual non - plane strain plastic flow around the 

wedge increases with indentation depth and with wedge angle. The plane 

strain analysis will always predict larger loads than are actually observed. 

If a frictional, no lip analysis is conducted the discrepancies due to the 

actual lip formation and the actual non - plane strain plastic flow tend to 
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Figure 39 Experimental and Theoretical Results 
for = ijfy = 0 (Tests 25-37) 
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“ ÿ Figure 40 Results for i|rx 
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Figure 41 Force Deflection Results, P = 3CP , i|r„ “ l|fc ■ 0 (Test 35) 
■ X 3 
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Figure 42 Experimental Results, P 15?, * 
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0 (Tests 25,31,49,50,55, 
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£ «45° 

Figure 46 Downslope Lip Formation Results, ** 0 
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0 (Test 50) 
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Figure 48 Force-Deflection Results, 8 ■ 15? » m 0, t - 15? (Test 95) 
———— x y 
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Figure 50 Force-Deflection Results, P = 3CP , i|r„ “ l^3 » * 45° (Test 87) ——. x Ty 
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Figure 51 

P« 
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increasing depth, wedge angle 

Figure 53 Deviation from Plane Strain Lip Formation 

Figure 54 Effect of Inclination on End Effects 
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offset one another. The analysis without lip formation is a closer pre¬ 

diction of experimental behavior, but the more complex lip formation slip 

line field must be considered if a true upper bound analysis is desired. 

The same plot of experimental data is shown with only the frictional/ 

lip formation prediction (Figure 40). The error analysis results are pre¬ 

sented here and in all plots to follow in the form of dashed lines to show 

theoretical tolerances and boxes to show the experimental errors for each 

coordinate, abscissa and ordinate. The validity of the theoretical pre¬ 

diction as an experimental upper bound is verified by inspection. 

The force - deflection curve for Test 35 (P = 3CP ) shown in Figure 41 

for two purposes. A true upper bound has been calculated and is shown by 

the dotted line curve. On the previous plot of bôvk vs. 3> the Test 35 

result was well below the prediction whereas in the force - deflection 

plot it is observed that one half of the test falls within the toleration 

limits. The force - deflection curve is a somewhat less efficient method 

of presenting results, but it gives a more honest portrayal of the experi¬ 

ment. It is wholly possible that a test might fall completely within tole¬ 

rance on a force - deflection curve, but the non-dimensional plot 

PV 
—— vs. 3 may indicate discrepancies beyond projected errors. 

The next four graphs depict the entire series of tests for which 

P P P V H H 
Ify = 0 by plotting ^ , and — as functions of for each 

wedge angle (Figures 42 - 45). Several observations may readily be made. 

1. The experimental upper bound characteristic of the theoretical 

predictions is verified. 

2. The deviation from predictions tends to increase with inclina¬ 

tion angle. This is partially explained by an experimental 

observation of no lip formation on the up slope side of the 

wedge for very steep inclinations. 

3. Even though the range of possible error is quite large for the 

PH — results the actual experimental points are in near agreement 
PV 
with predictions. 
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A very crude experimental measurement was made of the lip on the down 

slope side of the wedge. The errors were large and difficult to estimate, 

so the results are presented without error analysis (Figure 46). Although 

no real conclusions can be made from these measurements, the plot dçes sug¬ 

gest reasonable agreement with predictions. 

Curves for a sample test in this series are shown with the corres¬ 

ponding adjustment to the P^ plot to obtain a true upper bound prediction 

for both P.. and P (Figure 47). Verification of the upper bound is 
V xi 

readily observed. 

A number of representative curves for the more general tests where 

are presented showing the true upper bound correction to P^ (Figures 

48 - 51). The necessary upper bound adjustment is A rapidly increasing 

function of wedge angle. The experimental results seem to be in consist 

tently close agreement-with the unadjusted predictions. The experimental 

upper bound criterion for the theoretical analysis holds true for the en¬ 

tire experimental study except for one datum point — Test 93, Pu, 
n. 

= 0.0575" (Figure 51). These observations may be verified by inspec¬ 

tion of the complete series.of graphical results in Appendix F. 

The series of tests for which P = 3CP , i|r^ = 3CP , and was varied is 

plotted on a composite P^ vs. 6^ graph without an error analysis indicated 

(Figure 52). The purpose of this plot is to show that the experimental 

data exhibit the same relationships between tests as the relationships 

between theoretical predictions. If the theoretical prediction for one 

test is greater than for another, then likewise are the corresponding ex¬ 

perimental data. 

It may be observed that the tests for which seemed to be in 

closer agreement with theoretical predictions than the simpler tests for 

which i|fy=0* A possible explanation is deduced from experimental observa¬ 

tion of the lip formation. The indentation obtained in each type of test 

is diagrammed in Figure 54. The deviation from plane strain plastic flow 

is caused by the end effects of a finite wedge. For the case where i|r^ * 0, 

these end effects occur on both ends of the wedge. Generally, the wedge 

was not fully indented when so that the effects occurred on only one 
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end of the wedge. The assumption of plane strain plastic flow seems 

very nearly correct on the down slope end of the indentation. Therefore, 

the experimental deviation from theoretical predictions for -fiO should 

have been nearly half as great as when The graphical results seem 

to verify this type of behavior. 

To summarize the discussion of experimental results, the plotted 

data seem to verify the validity of the theoretical upper bound analysis. 

The experimental deviation from theoretical prediction varies from 0 - 507® 

of the theoretical value. Possible causes for the variation in error are 

known from experimental observations. The prediction curves with asso¬ 

ciated errors constitute an experimental upper bound approximation to the 

actual behavior. The necessary adjustments to obtain analytically true 

upper bounds must increase the predictions. The true upper bounds are, 

therefore, also experimentally valid upper bounds. A closer prediction of 

results can be obtained by using the non - lip forming slip line field in 

the plane strain analysis. The inherent discrepancies in this case tend 

to offset one another. This analysis cannot, however, be called a true 

upper bound even if the end effects are considered, because the slip line 

field is not a kinematically admissible velocity field for indentation 

into an initially flat surface. It would appear from these results that 

a meaningful solution has been obtained for the isotropic wedge indenta¬ 

tion problem considered herein. 
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Methods of Analysis for Transversely Isotropic Wedge Indentation 

The purpose of investigating isotropic wedge indentation was to gain 

some understanding of the problem of indentation into the flat, level sur¬ 

face of a transversely isotropic medium. It has been demonstrated how a 

rigorous true upper bound prediction of horizontal and vertical forces can 

be formulated and verified by experimental evidence. In principle the 

same sort of analysis can be developed for a transversely isotropic medium 

with arbitrary orientation of the axis of symmetry using an isotropic von 

Mises yield condition. 

The isotropic analysis developed above is an attempt to find the best 

possible upper bound approximation to experimental behavior. An upper 

bound (probably less accurate) could have been found by equating the rate 

of work done by the external loads to the power dissipation associated 

with any kinematically admissible velocity field. A similarly possible 

upper bound analysis method is presented for the transversely isotropic 

wedge indentation problem. 

Consider the plane strain velocity field for an upper bound analysis 

shown in Figure 55. It is recognized as the outset that this is not a 

kinematically admissible velocity field for indentation into an initially 

flat smooth surface. It is sufficient, however, to illustrate the method. 

The wedge is assumed rough. If the primed coordinate system refers to 

the principal axes of anisotropy, then'their arbitrary orientation in the 

medium is described by the matrix multiplication 

tail ■ Cau^j3 
where a,, is the directional cosine between the e! and e. coordinates, 
ij ~j 

The shearing force at yield varies throughout the field and is a function 

of [a^j], and 0T where is the matrix of yield strengths 

in the direction of the principal axes of anisotropy, and 0T describes the 

orientation of the shearing plane in the zx plane of strain 

T - TCCa^.Cc^y], 0T) 

In general a horizontal force P is necessary to force the wedge verti¬ 
ll 

cally. Assume for an instant that P„ * 0 (Figure 56) and the wedge is 

allowed to travel in a non-vertical direction (dashed line). The angles 
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many 
infinitesimally 
small jumps 

Figure 58 Ass timed Behavior for‘Vertical indentation Upper Bound 
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A.p and A2 
are arbitrarily assumed* The velocity hodograph (Figure 57) 

is determined from the .velocity field (Figure 56). 

cos(B - e)  
V2 = V1 sin(TT/2 - B - A2) 

cos (B - e)  
v3 V1 sin(n/2 - B - X^ 

An upper bound analysis is further developed as follows. 

Pyvj cose = (ABCD)[V1«OS(B T e) +.v2cos(n/2 - B - ^2^TABCD + 

+ (AGHD)[v1cos(B + e) + v3cos(n/2 - B - ^^AGHD + 

+ (ÂDEF) V2TADEF + (Â3Ï5) V3TAJID + 

f 2 (ÂBG) VlTABG + 2 (Affi) V2TABG + 2 (ÂGJ) v3TAGJ 

or Py cose = F^B, b, ôy.X^A^e ^[a,^] .[CTjJ)^]) (29) 

The angle e is determined numerically by requiring Py to be a minimum. 

Assume now a horizontal force is applied to force the wedge vertically 

and the wedge travels as shown in Figure 58. 

v^ cosBcose 
v2 = sin(rr/2 - B - A2) 

cospcose 
v3 ” sin(n/2 - B - Xj) 

The upper bound principle is then formulated by including the work done 

by the horizontal force. 

PyV^cose + PjjV^sine = 

VJF2(B> b, 6y> X^> X2> 6»Ca^j3 >C^^j)y]) (30) 

Combining (29) and (30) the upper bounds for the vertical and horizontal 

forces are determined. 

Py « Fleece 

PJJ ■ (?2 “ F1)sece 
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The entire procedure is repeated assuming different angles Xj> X2 until 

least upper bound approximations to the forces P„ and P„ are obtained. 
V H 

This type of analysis cannot predict an upper bound for the hori¬ 

zontal force in the j direction (along the wedge), because there is no 

plastic flow on the end of the wedge. A slip line field analysis must 

be developed to estimate this force. In any case it is possible to 

estimate horizontal and vertical forces for transversely isotropic wedge 

indentation similar in form to the forces predicted and measured in the 

above investigation of isotropic wedge indentation. 

Once an analysis has been completed for the anisotropic von Mises 

type yield condition it may be deemed appropriate to generalize the 

analysis to include anisotropic Coulomb - type yield behavior [21] or 

even the anisotropic parabolic yield criterion of Smith [32]. 
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Summary, Conclusions, and Recommendations for Further Work 

An isotropic model has been constructed for transversely isotropic 

wedge indentation into a flat surface of a medium with arbitrary orienta¬ 

tion of the principal axes of anisotropy. The aim of the theoretical 

analysis of the isotropic model is an upper bound approximation to experi¬ 

mental brhavior. Examination of the experimental evidence shows that the 

theoretical prediction is indeed an upper bound approximation with experi¬ 

mental verification to within 0 - 50% of the theoretical prediction. De¬ 

viation from theoretical predictions is greatest for large wedge angles, 

large inclinations on the face of the wedge (4) and zero inclination on 
A 

the end of the wedge (ty - 0)• 

It is found that a closer prediction to experimental behavior could 

be obtained by using a non - lip formation slip line field for the fric¬ 

tional wedge, although a true upper bound would not be obtainable. Since 

the difficulty of calculation is greatly increased when considering a 

lip - formation slip line field, it is suggested that further work with 

the transversely isotropic model could consider only the non - lip for¬ 

mation analysis. 

Previous work on the wedge indentation problem has been focused on 

the infinite width wedge (two dimensional) simplification of the finite 

wedge. The analysis above has taken into consideration three dimensional 

aspects of the finite width wedge problem and produced a rigorous upper 

bound approximation to the external loads. The techniques of analysis 

for the horizontal and vertical loads necessary to force a wedge verti¬ 

cally into the smooth, flat, inclined surface of an isotropic medium may 

be applied to estimate analogous external loads for wedge indentation 

into the level surface of a transversely isotropic medium. 

Due to the largely unknown implications of the relaxation character¬ 

istics of the ductile medium, the uncertainties in the above experimental 

study are undesirably large. Further work needs to be done investigating 

the time dependent non - equilibrium behavior of a material which exhibits 

relaxation effects. 

The logical extension to the study above is a theoretical and experi¬ 

mental study of transversely isotropic wedge indentation. It may be ex¬ 

pected that the experimental techniques developed for the isotropic 
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problem will be of value in the design of a transversely isotropic wedge 

indentation experiment. Successful completion of this sort of study 

will lead to a fuller understanding of the causes and methods of control 

for the hole deviation problem in drilling mechanics. 
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Appendix A 

Additional Theoretical Wedge Indentation Solutions 

For purposes of brevity, the analyses herein do not contain a de¬ 

tailed explanatory text as is presented in the theoretical solution 

above. The procedure used is basically the same as is described above, 

with certain obvious simplifications. 
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Additional Theoretical Wedge Indentation Solutions 

Rough Wedge (Figures A-l, A-2) 

»>t - V 

°0A - k(2“l + l> T0A - k 

°0D " k(to2 + T0B ’ k 

P = b(OA)[oOAsinp + TQAcosP] + b(OD)[aOI>sinP + TQDcosP] 

(OA) = 6yCos\|isec(P - i|() 

(OD) = 6yCosi|;sec(P + ty) 

P = b$yCosi|;sec(P - i|r)[k(2o'^ + l)sinP + kcosP] + 

+ bôyCost|fsec(P + i|()[k(2a2 
+ l)sinP + kcosP] 

p 
(2ar^ + l)sinP + cosP (2cr2 + l)sinP + cosp 

cosi); 
b6vk cos(P - i|r) 1 cos(P + l|l) 

W = b(0A)[-O0AcosP + rising)] + b(OD)[aOI)cosP - T^sinP] 

W = b6yCosfsec(P - \|()[-k(2a^ + l)cosP + ksinP] + 

+ b6yCosi[rsec(p + t[r)Ck(2o?2 + l)cosP - ksinP] 

w (2or2 + l)cosp - sinp (2ar^ + l)cosP -sinP 
COSlJl 

bôvk cos(P + \|r) cos(P - l|() 

p < ♦ - g= 

As before, 

•Assume, 

TT 
“2 - 4 + P + ♦ » a

0D = k(2a2 + 1) TQD = k 

OTj ■ 0 . (J « T « k 
» U0A OA 

“i - 4 + P - ♦ 

a
2 

= 4 + P + * 
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£ < * - % 

Figure A-2 Extreme Inclination Rough Wedge Slip Line Field 
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♦ •P ®1 012 

P 
bôvk 

w 
b6vk 

0° 15° 60° 60° 3.658 0 

22.5° 67.5° 67.5° 4.780 0 

30° 75° 75° 6.178 0 

45° 90° 90° 10.283 0 

15° 15° 45° 75° 3.697 1.461 

22.5° 52.5° 82.5° 4.889 1.721 

30° 60° 90° 6.425 2.038 

45° 75° 105° 11.381 2.942 

30° 15° 30° 90° 3.837 3.042 

22.5° 37.5° 97.5° 5.290 3.714 

30° 45° 105° 7.403 4.637 

45° 60° 120° 17.239 8.583 

45° 15° 15° 105° 4.184 5.016 

22.5° 22.5° 112.5° 6.421 6.734 

30° 30° 120° 10.837 9.979 

45° 45° 135° 00 00 

60° 15° 0° 120° 5.326 8.682 

22.5° 7.5° 127.5° 12.416 17.331 

30° 15° 135° 00 00 

45° 30° 150° - - 

Table A-l Rough Wedge Slip Line Field Solution for Infinite Wedge 
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Smooth Wedge (Figures A-3 to A-5) 

P > ♦: 

a.. = 2k(a. + 1) T •. = 0 
OA v 1 ' OA 

O' = 2k (pt + 1 ) T =0 
OD J OD 

P = b(ÔÂ)[a0Asinp + T0AcosP] + b(ÔD)[a0DsinP + T^cosp] 

(OA) ** ô^cos(|rsec(P - i|() 

(OD) = 6yCosi|rsec(P + i|i) 

P = bôy.cosi|fsec(P - \|r)[2k(a^ + l)sinP] + 

4- bôyCosfsecO + t(f )C 2k(ar ^ + l)sinp] 

p ■(ff]L + 1) (a2 + 1) 
b5 ^ ~ 2cos\j/sinf3 cos(P - l|f ) 1 cos(P + ) 

W - b(OA)[-aQAcosp + T0AsinP] + b(OD)[>OI)cosp - TQI)sinP] 

«i • P “ ♦ 

»2 = P + ljf 

W = bôyCosi|isec(P - i|>)[-2k(o?j + l)cosP] + 

+ bÔyCosi|fsec((3 + )C 2k (or ^ + l)cosP] 

P < ft: 

 W_ 
b6yk 2cosi|tcosP 

(<*2 + 1 ) 
cos(P + i|r ) 

(a^ + 1) 

cos(P - \jr) 

ZTBO = ZBOS 

. £ 
2 

0 » Ÿ - p 
aQA « k +(k - Ap) Ap ■ 2ksln0 

aQA = 2k(l - sin0) => aQA ■ 2k(l - sin(i|r - P)) 

T
OA-° 

P = b6yCosi(rsec(P - i|r)[2k(l - sin(i|r - p))sinp] + 

+ bôyCosi(isec(P + t|f)£2k(o?2 + l)sinP3 
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Figure A-3 Smooth Wedge Slip Line Field 

I 
Figure A-4 Extreme Inclination Smooth Wedge Slip Line Field 

r-*p H 

Figure A-5 Extreme Inclination Smooth Wedge Stress Plane 
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P 1 - 8ln(t - P) , (ûr2 + 1 
kg k “ ^ COSySinp 

COS (P - l||) COS (P + ty) 

W . , . a2 + 1 ( 1 - sinft - P))l 
kg k 2 cosÿcosp cos (P + i|r) cos( P - \|i) 
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♦ P al 012 

P 
bôv

k 
w 

b6vk 

CP 15? 15° 15° 1.352 0 

22.5? 22.5? 22.5° 2.307 0 

3<f 3CP 30P 3.519 0 

45° 45? 45° 7.142 0 

15° lÿ5 CP 3 CP 1.352 1.047 

22. ? 7.^ 37.5° 2.385 1.686 

3CP lÿ3 45° 3.701 2.039 

4^ 3GP 6CP 7.996 3.190 

3CP 15° - 45° 1.476 2.941 

22.5? - 52.5? 2.668 3.634 

3(f CP 60? 4.412 4.642 

45° 15° 75° 12.526 9.326 

45? 15° - 6CP 1.710 4.804 

22.5?. - 67.5° 3.442 6.563 

3CP - 75° 6.851 9.987 

45° CP 9CP 00 00 

6CP 15° • 75° 2.416 8.217 

22.5? - 82.5° 7.342 16.814 

30? - 90P 00 00 

45° - 105? - - 

Table A-2 Smooth Wedge Slip Line Field Solution for Infinite Wedge 
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Frictional Wedge (Figures A-6 to A-8) 

P > ♦ + 

al+Xl = 4 + P " ♦ 

°f2 + X2 = 4 + P + ’|r 
(1) 

aQA = + 1 + sin2\^) 

T0A = kcosZ*!- |aaQA = |ak(2o'1 + 1 + siitfX^ 

aQD = k (2a 2 + 1 + sin2\2) 

TQD = kcos2\2 = |ia0D = l-llc(2Qr2 + 1 + sin2^2^ 

(0A)= 6vcos\|rsec(P - f) 

(OD) = 6yCosi)isec(P + f) 

P = bôyCosi|rsec(P - i|[)[kcos2X^(jjsinP + cosP)] + 

+bôyCosi|isec(fî + f )[kcos2X2(—sinP + cosP)] 

P _ /sing cosp \ 
cos2X^ COS2\2 

bv ‘U r ♦ cos(P - i|r) * cos(j3 + ÿ) 

W = b(04»C-cr0AcosP + TQAsinp] + b(OD)[aOI)cosp - T^sinP] 
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Figure A-6 Frictional Wedge Slip Line Field 

Figure A-7 Extreme Inclination Frictional Wedge Slip Line Field 

T 

r i / >! 
^ - / ÀI ) 

-d 

— P-* 

Figure A-8 Extreme Inclination Frictional Wedge Stress Plane 
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W = bôyCosi|rsec(P - i|i)[kcos2\^(-—cosP + sinP)] + 
M1 

+bôyCosi|isec(P + f)[kcos2\2(j^cosP ” sing)] 

W /sinP - cosp\ 
" = I    J COS ill 

b6Vk \ M / L 

cos2\1 COS2\2 

cos (P - f ) cos (P + l|f) 

P < il) + TT/4; 

Sum angles about C: LloCB + + 0 + ^ 

Z.0CB + 0 = n 

0 =Z.COB +Z.CBO 

= 2rr 

(3) 

Sum angles about B: Ç +Z.CBS = i|r 

^ +Z.CBO +Z.OBS = 1 (4) 

Sum angles about 0: P + (— - X^) +Z-C0T = ^ 

Z-COB - Z.T0B = - P 

(4), (5): Using Z.T0B = Z.0BS, 

(5): Z_T0B “Z_C0B + P - Xx 

(4): ^ + Z.CB0 + Z-COB + P - \1 = \|r 

(3), (6): 5 + 0 + P-X^t 

0 - * - P + J 

Ap = 2ksin0 

p = 2k(l - sin0) 

aQA = ksin2Xj-(k-p) * k(sin2Xj-l + 2(1 - sin0)) 

aQA = k(l + sin2Xj-2sin0) 

T0A = kcOs2H^a0A 

(5) 

(6) 

(7) 

cos2Xj = |a (1 + sin2X^-2sin0) (8) 

Combine (7) , (8) : 

cos2X^ = |i Ql + sin2X^-2sin(t|i - p + Xj- ^)] 
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ROUGH: X-L " 0 “l = 4 + P ' 'l' 

^2 = 0 a2 = 4 + P + ^ 

1 - UmaxK + P - ♦> + O ' u = (5 + 1 + 2p - 2*)"1 Kmax, v2 T/ 

1 

1 * ‘Wt2<4 + S + *> + 1] _ U - (Ç + 1 + 2P + 2A)'1 Kmax2 2 T 
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♦ P max^ u 
maX2 

*1 X2 

P 
bôyk 

W 
bôyk 

CP 15° 0.323 0.323 0.169 30.2g3 30.2fP 2.542 0 

22.5° 0.298 0.298 0.169 28.64° 28.64° 3.731 0 

3CP 0.276 0.276 0.169 26.9g3 26.9g3 5.202 0 

4g> 0.241 0.241 0.169 23.38? 23.38? 9.477 0 

15? 15° 0.389 0.276 0.169 33.44° 26.9g3 2.588 1.515 

22.5° 0.353 0.258 0.169 31.8g3 25.21° 3.847 1.754 

3CP 0.323 0.241 0.169 30.28? 23.38P 5.459 2.055 

45° 0.276 0.214 0.169 26.9g3 19.3^ 10.583 2.955 

3CP 15? 0.488 0.241 0.169 36.5CP 23.3g3 2.750 3.148 

22.5? 0.433 0.227 0.169 34.98? 21.44° 4.278 3.778 

3CP 0.389 0.214 0.169 ’33.44° 19.37° 6.468 4.675 

45° 0.323 0.193 0.169 30.28? 14.58? 16.447 8.627 

45? 15° 0.656 0.214 0.169 39.52° 19.3^ 3.143 5.172 

22.5? 0.459 0.203 0.169 38.01° 17.12? 5.460 6.826 

3CP 0.488 0.193 0.169 36.5CP 14.5g3 9.943 10.043 

45? 0.389 0.175 0.169 33.44° 7.61g3 - - 

6CP 15° 1.000 0.193 0.169 42.52? 14.58? 4.366 8.872 

22. g3 0.793 0.183 0.169 41.01° 11.59? 11.506 17.458 

3CP 0.656 0.175 0.169 39.52? 7.61g3 - - 

45? 0.488 0.160 0.169 37.03? 1.922° - - 

Table A-3 Frictional Wedge Slip Line Field for Infinite Wedge 
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Rough Wedge With. Lip Formation (Figures A-9 to A-12) 

TT 
P > ♦ - T: 

(OI) = 6yCos\(r + d^siny^ 

(OJ) “ 6vcosi|i + d2siny2 

(01) = (OA)cos(P - i|r) = ^d^cos (P - \];) 

(ÔJ) = (OD)cos (P + ll;)= ^|d2cos(P + i|r) 

^id^cos(p - i|[) = ôyCosiJf + d^siny^ 

^d2cos(g + \]r) = ôvcosi|; + d2sinY2 

 1 _ V?COS j; 
6y cos (P - i|f)-V2siny^ 

V2cosjf   
cos(P ♦ i|;)-V2s iny2 

(1) 

= (BG)sinY1 (BG) = dj^cosyj + (OA)sin(P - lj/) + ôvcosi|;tan(e + i|r) 

b2 = (EG)sinY2 (EG) = d2cosY2 + (OD)sin(P + i|j) - 6vcosi|;tan(e + i|() 

= [dj^cosYj^ + ^|d1sin(P - i|r) + 6vcosi|itan(e + ilOsirr^ 

b2 = ^2
COS

Y2 + ÿ|d2sin^ + ♦) ' 6vcosftan(e + ll(]sinY2 

bi r i di — = KcosYj^ + ^|sin(p -i|r))g- + cosij(tan(e + ^r) 

b
2 r i d

2 
— * (COSY2 + yÿ sin(P + f))g cosij;tan(e + i| 

siny. 

(2) 
siiiy. 

= vsin(P + e) 

v2 « vsin(P - e) 

let t = - 
V 
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Figure A-9 Rough/Lip Slip Line Field 

Figure A-10 Rough/Lip Hodograph 
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Figure A-11 Rough/Lip Stress Plane 

Figure A-12 Extreme Inclination Rough/Lip Slip Line Field 
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V V 
bl “ VT b2 = VT 

bl = sin^ + b2 = ^f'sin ^ " ®) 

b^ =^i.Hsin(g + e) b2=;i^»Ksin(i3 - e) 

K = 6^cos|sec(i|r + e) 

n 
4 

bl cosJisin(P + e) 
6v~ V2cos(i|r + e) 

b2 cosjl(sin(P - e) 
6v" V2cos(i|; + e) 

(1)»(2)> (3) to find y 

angles about A, D « 

ai + (5 - P) + t + yl 

& * + 2 (3 - P) - ♦ + Y2 

ai - 5 + P - ♦ - Yi 

012 = : 4 
+
 P 

+
 ♦ - Y2 

(3) 

°0A = k^2“l + 1‘> * T0A = k 

ff0D " k<*2 + 15 » T0D = k 

P = b(ÔÂ)[CT0Asinp + TQACOSP] + b(ÔD)[a0Dsinp + TQD cospj 

W = b(ÔÂ)[-a0AcosP + T0Asinp] + b(ÔD)[aQDcosp - T^sinP] 
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(0A) ~ yj1 II 

d K 

(°D) = ^ 

II 

bÔ 

VT + l)sinP + kcos{3 
b6v 

+ ~lf k(2or2 + l)sinP + kcosPI 

b6v
k 

J(2a1 + 1 

[cos(3 - 

l)sinP + cosP (20^2 + l)sinp + cosp 

f) -VTsinY^ cos (P + \|i)-VZsinY 2 J 
COSlJf 

■-£(*)[ ks inp - k(2c^ + l)cosp ksinP - k(2a2 + l)cosp| 

 W_ 

bôvk 

sinp - (2a + l)cosP 

cos (P - i|i) -V2sinY^ 

sinP - (2or2 + l)cosP 

cos (P + ijr ) -V2s inY2 

OA OA 
k 

<*i " Yi 0 
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* P 0 Yl Y2 al 
a 

2 

P 
bôvk 

W 
b6vk 

CP 15° cP 5.267° 5.26f 54.73° 54.73° 4.112 0 1.691 

22.5° cP 6.615° 6.615° 60.89P 60.89P 5.572 0 1.858 

3CP OP 7.321° 7.321° 67.68P 67.68P 7.428 0 2.062 

45° CP 7.209P 7.209P 82.79P 82.79P 13.06 0 2.670 

15° 15° 6.65° 7.603° 3.125° 37.4CP 71.8SP 4.151 1.494 1.680 

22.5° 13.35° 10.4CP 3.200P 42. lCf 79.3CP 5.651 1.698 1.856 

3CP 16.85° 11.56P 3.829P 48.44° 86.1/5 7.654 2.094 2.001 

45° 29.55° 12.6^ 3.380P 62.34° 101.tf3 14.22 3.141 2.457 

1^ ltf5 0 5.707° 4.762° 39.29P 70.24° 4.175 1.684 1.590 

22.5° 0 7.438P 5.701° 45.0^ 76.8CP 5.731 2.082 1.690 

3(f 0 8.552° 5.98/° 51.4^ 84.01° 7.783 2.559 1.808 

45° 0 9.215P 5.109P 65.79P 99.8SP 14.61 3.914 2.136 

30P 15° 0 6.113° 4.145P 23.89P 85.8tf* 4.394 3.550 1.502 

22.5° 0 8.22CP 4.625° 29.28P 92.88P 6.322 4.561 1.552 

30° 0 9.752° 4.455P 35.25° 100.5° 9.182 5.926 1.611 

45° 0 11.24° 2.77^ 48.70° 117.2* 22.88 11.65 1.774 

45° 15° 0 6.511° 3.333P 8.49P 101.7° 4.932 6.005 1.417 

22.5° 0 9.01CP 3.261° 13.49P 79.24° 7.030 6.262 1.424 

3CP 0 10.99P 2.56^ 19.01° 117.4° 14.08 13.205 1.436 

45° - - - - - - - - 

60P l? 0 6.93^ 2.138P 0P 117.9P 6.698 4.472 1.318 

22.5° 0 9.873° 1.348P CP 126.2° 16.57 23.21 1.284 

3CP - - - - - - - - 

45° - - - - - - - - 

Table A-4 Rough/Lip Slip Line Field Solution for Infinite Wedge 
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Smooth Wedge with Lip Formation (Figures A-13 to A-17) 

P > i|r + Yi: 

(OM) = ôyCosi|r + d^siny^ (OM) = (OA)cos(P - l|f) = d^cos(P - \|r) 

(OL) = 6yCos\|f + d^siir^ (OL) = (OE)cos(P + ty) « d^cosCP + i|r) 

d^cos(P - \|r) = 6^cosi|( + d^siny^ 

d^cosCP + l|f) = ô^cosijf + d^siny^ 

dl costlr 
6v" cos(P - iÿ)-siny^ 

d2 COSllf 

6v" cos(P + \Jr) -siny2 

(1) 

= (Bl)siny^ (BI) = d^cosy^ + (OA)sin(P - t|f) + 6^cosi(rtan(e + i|i) 

b2 = (FI)siny2 (FI) = d2Cosy2 + (OE)sin(P + i|i) - 6yCosi|itan(e + \|f) 

« [djCosy^ + djSin(p - ty) + 6yCostytan(e + i|))]siny^ 

b2 " Cd2cos^2 + d2sin^ + f) ~ 6vcosi|rtan(e + \|r)]sinY2 

r di i l(cosy^ + sin(p - + cosi|rtan(e + f)J siny^ 

M (C0SY2 + sin^ + ♦))§ cos\|ftan(e + i|t)| siny2 

>] 

(2) 

^ “ [vsin(P + e)]V7 

v2 = [ vsin(P - e)]VT 

let t - ^ 
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w 

Figure A-13 Smooth/Lip Slip Line Field 

Figure A-14 Smooth/Lip Hodograph 
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Figure A-15 Smooth/Lip Stress Plane 

Figure A-16 Extreme Inclination Smooth/Lip Slip Line Field 

Figure A-17 Extreme Inclination Smooth/Lip Stress Plane 
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b - v-£- bl " ifT 
b„ = V 

W 

b^ = vtsin(p + e) b2 * vtsin^ " e) 

b^ = Hsin(P + e) = Ksin(P - e) 

K = 6yCos\|rsec(i|( + e) 

bl_ costfrsin(8 + e) 
6v" 

cos(i|; + c) 

b2_ cost];sin(P - e) 

6V 
cos(l|f + e) 

(3) 

Combine (1), (2), (3) to find y 

Summing angles about A, E: 

4+al + 4+(2'P) + ’l, + Yl=TT 

S + «2 
+ 4+ <5- p) - * + Y: TT 

°0A ‘ 2k<“l + 2> ’ TOA - ° 

O0E'2k(O2+1> *T0E‘° 

P = b(OA)[aOAsinP + T^cosp] + b(OE)[0OEsin£ + T^cosp] 

W = b(OA)[-CTQAcosP + T0Asing] + b(OE)[0OE;cosP - T
0E

sinP3 

(OA) 
- di - 6v(\) 

(°E) = d2 = 6vM 

P = bÔ, r|i-j[2k(ai + l)sinp] + bôv^][2k(c*2 + l)sin3] 
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p otx +1 a2 + 1 

b6 k - 2cos\|isinP 
V 

cos(P - ^-sinYj^ 1 cos(p + i|r)-sinY2 

W = bô C‘2k(a1 + l)cosP] + bô [2k(a2 + l)cosP] 

W <*2 + 1 + 1 

b6vk 2cost|fcosP £ cos^g 4. i|f)-siny2 cos(P - i|r)-sinY^ 

P < ♦ - Yr 

Z.TBO =Z.BOS 

£ _ [ * - ('ll - y )] = — 
2 ^ ^4 VJ 2 

- P _ TT _ £ 

0 = i|r - p + YX 

Ap = 2ksin0 

AP - k = k - c0A 

ff0A = W-sW) > T0A = ° 

 P_ 
bôvk 

 w_ 
bôvk 

= 2 costysinP 

= 2 costycosP 

1 - sin(i|( - P + Yj) «2 + 1 

cos(P - i|r) - siny^ + cos(P + ilO-sirv^ 

û?2 + 1 (1 - sinO|j - P + Yj^)) 

cos(P + f)-sinY2 cos(P - i|r)-sinY^ 
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e = 0 

♦ P Yl Y2 

a 
1 

Qt 
2 

P 
b6vk 

W 
b6yK 

dl 
6v 

OP 15° 9.57CP 9.57CP 5.43CP 5.43CP 1.417 0 1.251 

22.5? 11.69? 11.69? 10.81° 10.81° 2.523 0 1.368 

3CP 12.66? 12.6^ 17.34° 17.34° 4.028 0 1.546 

45° 12-Otf5 12.0^ 32.94° 32.94° 8.942 0 2.007 

1^ 15° 10.5CP 8.52S? - 21.47° 1.458 1.708 1.181 

22.5° 13.33° 9.925° - 27.58? 2.636 2.150 1.269 

3CP 15.0CP 10.20° OP 34.8CP 4.295 2.708 1.366 

45° 15.62° 8.444° 14.38? 51.56° 10.212 4.485 1.619 

30P 15° 11.37° 7.30CP - 37.7CP 1.605 3.573 1.126 

22.5° 14.92° 7.914° - 44.59? 3.061 4.692 1.180 

3CP 17.34° 7.46^ - 52.53° 5.352 6.270 1.234 

45° 19.3CP 4.53CP - 70.4 ? 16.97 13.40 1.363 

45° 15° 12.22° 5.748? - 54.25° 1.966 5.966 1.081 

22.5° 16.54° 5.469? - 62.03° 4.235 8.712 1.106 

3CP 19.8CP 4.223° - 70.78? 9.020 13.95 1.127 

45° - - - - - - - 

6CP 15° 13.08? 3.587° - 71.41° 3.044 10.75 1.040 

22.5? 18.26? 2.205? - 80.30P 10.12 23.77 1.042 

30P - - - - - - - 

45? • - • - - - - 

Table A-5 Smooth/Lip Slip Line Field Solution for Infinite Wedge 

(HO) 



Appendix B 

Design and Stress Analysis of Experimental Equipment 

The loading rod assembly was designed to maximize the strain 

reading from the load cell while minimizing the horizontal flexibility. 

The load cell was designed for a factor of safety of two. To calcu¬ 

late the load cell stresses a combination of pure bending and uniaxial 

compression was assumed. The only stress, then, is the axial normal 

stress. Energy methods are used to estimate the horizontal flexibili¬ 

ties of the loading rod assembly as a whole. The most important con¬ 

clusion from the flexibility calculations is the estimate of errors in 

horizontal deflection measurements (6., Ô ) due to the location of 
'0 1 

measurement at a distance x. above the wedge. 
o 

error (e^) = 9.6x^% x^ in inches 

The flexibility estimation is below the actual flexibility of the 

assembly due to simplifications which had to be made to obtain an 

estimate using available methods. 

The jack rack assembly was designed to be able to apply a horizon¬ 

tal load to the wedge in order to force vertical wedge travel. A stress 

analysis is conducted for a maximum jack force of 1000 lbf to show that 

all stresses are below yield. 

The remaining components of experimental equipment are listed at 

the end of this appendix. 
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testing 
machine 
base 

Figure B-l General Experimental Set-Up 
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Design and Stress Analysis of Experimental Equipment 

Loading Rod Assembly (Figures B-2, B-3) 

Stress Analysis of Load Cell (Figure B-4) 

bending 

CT 
max 

PHL0R2 
1 -? <R24-R14) 

CT = ~ P„L- —r 
max rr H 0 „ 4 

R, 

-.Jt, 

compression 

CT 
max 

P 
V 

) 

combined 

a 
max 

4L0R2 
n(R2

A ' Rp 
4v PH + 

n(R2
2 ‘ Rp 

— P 
2. V 

LQ - 10.9" 

Rx - 1.108" 

R2 -= 1.171" 

CT = 40,000psi 
yp 

F.S. * 2 

CT <20,000psi 
max 

Table B-l shows the maximum allowable P„ for a given P 
ii V 

CT - 43.6P + 2.22P 
max H V 

such that CT <20,000psi 
max r 

Horizontal Flexibility of Loading Rod Assembly (Figure B-5) 

6^ due to bending of 3 and 5: 

U = strain energy 

6 
1 

L ^1 1 2 
8U r _M ÔM , p M 8M . p M ÔM 
SP
H'
J

O
EISP

H i.ViiP. 11 J
h V2 

8P« 
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Gages I*3 : M~M CEA - oe-250uw -120 

R * 120 1 0.3 % 

F * 2.065 ±0.5 % (<?75*F) 

Gages 2, 4 : M“M CEA-06-25OUW-120 

R C 120 ±0.3 % 

F * 2.105 ±0.5 % (@75°F) 

Figure B-3 Load Cell Strain Gages 
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Figure B-4 Stress Analysis of Load Cell 

Pv(lb-f) max, allow. P^(lbf) 

100 454 

500 433 

1000 408 

1500 382 

Table B-l Maximum Allowable Horizontal Loads on Load Cell 
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= 7.9" Rx = 0.686" 

L2 = 6" R2 = 1.108" 

E1 = 30 X 106psi R3 = 1.171" 

E2 - 20 X 106psi 

"Rl4 4 
I- = —-,— = 0.174 inches 
1 4 

I2 = \ - R^) * inches^ 

M = P„x for x £ L. 
ri 1 

M - PRx + [PH)v](x - Lx) for x S L^but PR)y = 0) 

6= 0.000156P„ 
1 £1 

Calculation of error in 6., 6 measurements due to location 
0 X 

of measurement at x^ above wedge : 

Ll + L2 
. _ SU 

2 " ôVv 
I 

PRx(x - Lj) 

E2X2 
dx 

P ) is a virtual load 
H 

Ô 2 
H 

E2I2 

Ll + L2 

error (e^) 

0.000037P„ 
XL 

6y due to deformation of 2([28], p. 368, #21) 

6 a = 0.031 

E * 30 X 106psi 

6 

M 

1 

Ô 1 

~ L^6 

PHLI 

= P. 
H El3 

t 

=4.13 X 10_6PR 

0.25" 
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8y due to deformation of 4, 5, 6 ([28], p. 368, #21): 

For purposes of calculation, model plate 6 as circular 

with outer radius R_ = 0.844" (R_ = 0.438") 
/ o 

(A gross misapplication of the solution is understood, but a 

more accurate method was unavailable). 

plates 4, 5 : 6, _ = 
4-3 ET 

a - 0.373 

rTJ 5 

•r  = 2.10 X 10 = k. c a "spring constant" 
®4-5 4-5 

plate 6 : ©_ = 
6 ET3 

a = 0.05 

7^ B 5 X 106 = L 
6 6 6 

k - [k. ~1 + k/1] = 2 x 105 
T 4-5 6 

a total "spring" constant 

6, - 149 - 147s * 0.00007P„ 1 kT H 

Summation of contributions to 6^ calculated above gives: 

6, * C.00023P„ 
1 « 

Check with the results of the calibration test (Table C-l): 

P„ = 10 lb, 6. ■ 0.0023 calculated 
il 1 

6^ = 0.0040 actual 

Jack Rack Assembly (Figures B-6 to B-14) 

The system was designed to be safe for horizontal jack loads in ex¬ 

cess of 1000 lb, it was tested at 750 lb, and use was restricted to loads 

less than 500 lb. The entire assembly was fabricated from 1018 H.R. steel 

with = 40,000 psi. The vise holding the indentation sample was de¬ 

signed to be bolted to the base. 

(1) Base (Figure B-8) 

Assume a maximum wedge load of P^ » 2000 lbf. The area of the vise 

is approximately 240 in.^ Then P9 — * 8.3psi. For a maximum 
Z 240 in. 
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Figure B-6 Hydraulic Jack Rack Assembly 

Figure B-7 Jack Rack Assembly Components 
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Figure B-8 Design and Stress Analysis of Base (1) 

Figure B-9 Design and Stress Analysis of Brace (2) 
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J 

Figure B-10 Design and Stress Analysis of Stanchion (3) 

L.v JFS 
12" fa, 

15“ ■ 

II 

'A 

Figure B-ll Design and Stress Analysis of Jack Stand (4) 

Figufe B-12 Design of Jack Support (5) 
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Figure B-13- Design of Jack Cap (6) 

H 

* aircraft 
1700** 

cable 
breaking strength 

Figure B-14 Design of Wedge Collar (7) and Cable (8) 

Figure B-15 Design of Hydraulic Pressure System 
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700 lbf, jack load of 1000 lbf applied to the top of the rack, F. 

— -500 lbf, Fg — 0 lbf, and F^ (horizontal load on bolts) — 500 lbf. 

The maximum stress in the base will be at point A. At this point, 

a = 
x 

F^cos45? 

(area) x 

500 lbf  r = 133 psi 
3.75in 

and O 
y 

F^cos4^ 

(area) + ^2 
y 

500 lbf 

7.5 in2 
+ 8.3psi. 75psi. 

These stresses are well below yield. 

(2) Brace (Figure B-9) 

The worst stress situation will occur when a horizontal load of 500 

lbf is supported at the top of the brace. For this case, 

F^ = F^ “ F^ * 500 lbf and the maximum normal axial stress can be cal¬ 

culated, 

max 

<F2 + F3)COS45° 700 lb£ _ 

 1/s m 5600psi 

This stress is well below yield. 

(3) Stanchion (Figure B-10) 

The worst stress situation occurs at the base for a horizontal load 

of 500 lbf applied at the brace. The stresses are, 

, 500 lbf ^ 500 lbf 
z ~ (area) . , 2 v 'z 1 in. 

500 psi 

CT = x 
700 lbfcos45P ^ 500 lbf 

(area) 
= lOOOpsi. 

x 1/2 in 

These stresses are well below yield. 

(4) Jack Stand (Figure B-ll) 

Pure bending is considered for the beam consisting of one angle plus 

1/2 of the plate. 
M C _ max Q as ■ ■ 

max 1 

The slot is 12" long and the jack is 2" in diameter which gives a maximum 

moment arm of 1/2(12" - 2") =5" when jack is in the center of the stand. 

For P = 1000 lbf, the maximum moment in the beam (1/4 of the jack 

stand) is M = -°°^/— (5 in.) = 1250 in.-lbf. 
max 4 v 7 

The position of the centroid (and neutral axis) for the beam cross section 
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can be calculated to be 0.244" from the back of the plate. The moment 

of inertia (I) and C can then be calculated as 

I = 0.0251 in.4 

C = 0.756" 

The maximum stress then is readily found. 

= (1250(0.756) 
max (0.0251) 

37,600psi. 

This stress is below yield with a factor of safety of, 

F.S a max 

40,000 
37,600 1.06 

Welds 

The most critical weld joins the brace to the base. The area of the 
2 

weld is estimated as A = 0.75 in . For an axial force in the brace of 

F = 700 lbf, the maximum shear stress in the weld can be estimated. 

T 
F 
A 

700 lbf 

0.75 in2 
930psi. 

This stress is well below yield. 

Jack Pressure System (Figure B-15) 

Pump 1: Enerpac, Model #F39, 10000 psi capacity 

Pump 2: Ruska, Model #2260, 25000'psi capacity 

Gauge: Ashcraft, 30 psi, 5psi per division, can be read to 

± 0.5psi. 

Jack: Enerpac, 2" displacement 

Pressure fittings all high pressure capacity 

Strain Gage Instrumentation 

BLH Digital Strain Indicator, Model #1200, can be read to 

± l|_i inches/inches 

BLH Switching and Balancing Unit, Model #1225 

Displacement Instrumentation 

Lufkin Dial Indicators -- Model #J380-1, 1" displacement 

— Model #J380-2, 2" displacement 
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Testing Machine 

Riehle FS-60 60,000 lb universal screw power testing machine 

Variable Inclination Vise 

Palmgren, Model #3, Type H-D 

(125) 



Appendix C 

Preliminary Studies for the Wedge Indentation Tests 

Load Cell Calibration 

The loading rod assembly was fitted into the testing machine (as 

shown in Appendix B) and a dead weight - pulley apparatus assembled as 

in (Figure C-l). The horizontal deflection was measured with a dial in¬ 

dicator mounted as close as possible to the wedge. 

t = distance from strain gages 

to point of applied force 

C = strain - moment proportionality 

constant 

It was assumed that applied forces P^ and P^ would not be perfectly aligned 

with JL and so the following correction scheme was devised (Figure C-2). 

e « M = P„L 
H 

PH = °Î 

13 
Px - 

C13t 

24 
Py = C2Ut 

P 
x 

i 
» P ' 

y 
are the actual applied forces 

e 
13 

tan 
-1 

'24 
tan 

-1 e 

e 
13 

24 

cos e 
13 

“ P COS e . r y 24 

0, and P - P \ P_ In every calibration test, e,0 — e0/ , , J
 * 13 24 x x ' y y 

To conduct a test a load was hung across the pulley in 5 lb. increments 

to 50 lb and readings recorded for 6v (or 6„), 
e
24> an<* • Table C-l 

'31' 

shows a sample set of calibration data. Readings for 6x (or 6^) are taken 

to directly measure the flexibility of the loading rod assembly and are 

used later in the experiment to adjust data and evaluate errors, x^ is 

significant because the deflection measured is less than the deflection at 

the wedge by 9.6 x^% (Appendix B). Note = C^, £££ ■ 

To be as accurate as possible, a calibration would have to be con¬ 

ducted immediately preceding each session of testing. However, strain 

gage readings were not of primary importance in the wedge indentation 
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tests and calibrations were conducted only at the beginning of the ex¬ 

perimental study. 
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////////s. 

STRAIN 
INDICATOR 

*24, «31 

7.9" 

Ji 
0.07' 

7777777777; 
/ 
/ 
/ 

Figure C-l Load Cell Calibration Set 

Figure C-2 Inaccuracies in Load Cell Calibration Set-Up 
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'(lbf) -6 (in) 
X e24 e31 e13 

P (lbs) 
x' C31 

0 0 0 0 - 0 - 

5 0.0020 1 42 0.0238 5 1.306 

10 0.0040 1 85 negligible 10 1.291 

15 0.0063 1 128 - 15 1.286 

20 0.0090 1 171 - 20 1.283 

25 0.0120 2 214 - 25 1.282 

30 0.0150 2 257 - 30 1.281 

35 0.0180 3 301 - 35 1.276 

40 0.0210 4 340 - 40 1.291 

45 0.0243 4 382 - 45 1.292 

50 0.0285 5 426 - 50 1.288 

0 0.0017 3 1 - 0 

l = 10.97” X6 
1.34" C31 = 

1.288 ± 0.008 

Table C-l Sample Load Cell Calibration 
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Hydraulic Jack Calibration 

The jack with pressure connections in place was set upright in the 

testing machine as shown on the calibration graph (Figure C-3). 

F = calibration force 
c 
p = jack pressure 

XQ = jack displacement 

Each test was conducted by adjusting the jack pressure with the testing 

machine off (constant displacement). The pressure was always increasing 

during the first half of the test and solely decreasing throughout the 

latter portion of the test. Four tests were run, for XQ — 0.01", 0.5", 

1.0", and 1.5". Actually, x^changed ± ~ during each test due to system 

flexibilities. For a given pressure, the force was always greater upon 

unloading than when loading. It was assumed the difference was due to 

frictional effects in the jack. Since only increasing loads were of con¬ 

cern in the wedge indentation tests, the data for increasing pressure 

was used exclusively. Each test yielded a linear relationship of p to 

Fc and the results are presented in the form of a calibration graph 

(Figure C-3). 

Coefficient of Friction Test 

The coefficient of friction (|j) for the interface of two materials 

can be determined, in principle, by placing a block of one material on a 

plate made from the second material and inclining the plate either until 

slippage initiates (static test) or until a constant velocity of the block 

is observed (kinetic). The coefficient of friction is just the tangent of 

the inclination angle. 

For this test a steel plate, oiled and wiped clean, was selected to 

model the oiled steel wedge (oiled to prevent corrosion) and the block was 

an antimonial lead indentation test specimen (50 lb ingot). The inclina¬ 

tion was gradually adjusted by a vise as shown (Figure C-4), and a 

machinist's level - protractor was used to measure the slope. Only the 

kinetic friction coefficient was required for the plasticity analysis. As 

the result of four tests, 

\JL » 0.169 ± 0.009 

Methods of Determining Equilibrium Compressive Strength of Lead 

The first method is to find the best fit curve of the following form, 

to satisfy the boundary conditions: 
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Test No. 
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^-TAN e 

Figure C-4 Coefficient of Friction Test 

Figure C-5 Assumed Relaxation Curve, Method 1 

Figure C-6 Approximation to Relaxation Curve, Method 2 
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DATA: Test #23, 6 = 0.3017 

t (min) L(lbf) 

0 13880 

% 12770 

% 12470 

1 12130 

2 11730 

3 11490 

Table C-2 Sample Compression Test Data 

Assumed L (lbf) 00 n from graph (lbf) 

11500 0.95 10480 

9000 0.29 6880 

7000 0.22 3880 

5000 0.19 3380 

3000 0.17 2580 

1000 0.15 0 

0 0.146 0 

Table C-3 Determination of ,Method 1 
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Figure C-7 Graphical Determination of L , Method 1 
  m 
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DATA: Test #12, ô = 0.500" (Presented in graphical form, 
Figure 37) 

L(lbf) t (min) b’1 b’2 

3430 0 - - 

3370 k 4.00 16.0 

3310 % 2.00 4.00 

3240 1 1.00 1.00 

3160 2 0.500 0.250 

3110 3 • 0.333 0.111 

3070 4 0.250 0.0625 

3040 5 0.200 0.0400 

3010 6 0.167 0.0278 

2990 7 0.143 0.0204 

2970 8 0.125 0.0156 

2955 9 0.111 0.0123 

2940 10 0.100 0.0100 

2925 11 0.0909 0.00826 

2910 12 0.0833 0.00694 

2895 13 0.0769 0.00592 

2890 14 0.0714 0.00510 

Results of linear regression: 

Lœ 2978 3014 

Table C-4 Determination of L . Method 2 
00 

7 
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L = LQ at t = o, L -* Lm as t — o> (Figure C-5). 

L o 
L 

-L 

- L 
O oo 

Take logarythms twice. 

10 
-ct -n 

n > o, c = constant 

= Loge - nLogt 

n is determined by a linear regression analysis of 

Log vs. Logt 

using an assumed value of L . Then a plot is made of Log(L oo O L) vs. 

t n. LQ - Lœ is read off the graph at t n » o and compared with the 

assumed value. Tables C-2, C-3 and the resulting curves in Figure C-7 

illustrate the procedure for sample data. The only conclusions which can 

be made are either that the material can support no significant load in 

compression for an indefinite period of time, or that the method is un¬ 

successful . 

The second attempt at finding the load is to use an inverse relation¬ 

ship curve to approximate the relaxation curve (Figure C-6). A linear re¬ 

gression analysis of L vs. t n is conducted to determine L^ for a sample 

set of data, the results presented in Table C-4. This method is obviously 

unsuccessful, for the predicted Lo is greater than the load at t * 14 

min. 
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Appendix D 

Error Analysis 

Significant Errors 

k ± 1100 psi 

Ôv ± 0.002" , ± 0.005" on Test #83 

Pv ± (6 + 0.05(|e24| + |e31|>) lbf 

b ± 0.001 

PR ± (14 + 0.05|ex| + 100(|60| + |6j) + + e2> lbf 

e^ = change due to XQ -* 0.75 XQ (Tests 25 - 72) 

e2 = change due to p -* 0.95p (Tests 49 - 83) 

e = component of e_., e_, in e direction 
x 24 31 —x 

P ± 0.05° 

f ± l.CP 
t ± l.cP 
y 

n ± 0.01° 

Insignificant Errors 

C ± 0.02 
mn 
t ± (up to 5 sec for several tests) 

6^ ± (0.004 in + 10% 6^) ditto for 6^ 

h ± 0.01" 

Sources of Errors 

k ± 1100 psi 

6y ± 0.0002: 

± 0.002 

± 0.005 

Py ± 1 lbf 

± 5 lbf 

± 0.05(|C24| + 

PH ± 2.5 lbf 

± 4 lbf 

± 5 lbf 

: errors in compression tests, relaxation properties, 

and rigid ~ plastic model 

: reading accuracy 

: zero adjustment (wedge partially indented at 6^ = 0) 

: zero adjustment (Test 83) 

: reading accuracy 

: final "zero" readings in error (machine error) 

631!): estimate of behavior for non-vertical indentation 

: error in jack calibration 

: due to x ±0.1" 
o 

: due to relaxation, control difficulties for p 
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PH± S1 
: change due to XQ -• 0.75 XQ (Tests 25 - 72) 

* e2 
: change due to p -* 0.95p (Tests (49 - 83) 

± 2 lbf : due to e ± 15n in/in 
mn ^ 

± 0.05|eJ : estimate of behavior for non-vertical 

indentation 

± 100(16^1 + |ôj) 

b ± 0.001 : measurement 

P ± 0.5? 

t ± 1.0P Yx 

: measurement 

Ilf ± l.cP 
Ty J 

: measurement, sample surface not exactly level 

(a ± 0.01 

C ± 0.02 
mn 

: standard deviation of friction test data 

: deviation in calibration tests 

h ± 0.01" : measurement 

6 . ± 0.0002" 
0 
± 0.0040 

: measurement 

: final "zero" readings in error 

± 10%6 . 
0 

: due to xc^0 
0 

6 ± 0.0002" 
X 

± 0.0040 

: measurement 

: final "zero" readings in error 

± 10%6 
X 

: due to x^0 

t ± 1 sec : measurement 

± < 5 sec : measurement (various tests) 

x ±0.1 
o 

: measurement 

e ± 15|j in/in 
mn 

: final "zero" readings in error 

Py ± 20 lbf : measurement (Test 36, 6^ « 0.10) 

Basic Calculation Method: 

F = F(x1,x2>...xn) 

|AF| ^ S |ff | |Ax 
i=l ° i 
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Tests ! 1- 7 

Tests ; 8- 12, 14, 16-11 

Test 13 

Test 15 

Test 19 

Test 20 

Test 21 

Test 28: 6V = 
0.0275 

Tests ! 29 -30 

Test 31: 6v“ 0.1017 
Test 32 

Tests ; 39 -48 

Tests i 51 -54 

Test 57: 6V = 
0.0951 

Test 64 

Test 68: 6v- 0.1391 

Test 71 

Test 74 

Test 76: 6v> 0.09 

Test 77 

Test 78: 6v> 0.05 
Test 79: \> 0.07 

Test 80: 
*V> 0.07 

Test 83: 
\> 

0.145 

Test 84: 6V = 
0.1868 

Test 85: 6v> 0.05 

Test 86: *v> 0.06 

Appendix E 

Data Deletions 

(faulty procedure - max. forces recorded) 

(compression tests on lead) 

(friction test, lead - steel) 

(test on rock samples) 

(indentation w/pure lead - good test) 

(compressor test, another testing machine 

(friction test, PbSn - steel) 

(sample non-uniformity) 

(indentation tests w/comp. test samples - 

to obtain strain-haedening props.) 

(sample non-uniformity) 

(chip formation, possible variations in sample 

props.) 

(faulty procedure, must force wedge vertically, 

redesign exp.) 

(vise slipping, bolt to base) 

(abrupt drop in while loading) 

(high speed loading) 

(collar touching sample) 

(faulty dial indicator) 

(initial indentation depth too great for valid 

test) 

(wedge slipped in machine jaws) 

(collar touching sample) 

(sample slipped in vise) 

(sample slipped in vise) 

(collar touching sample) 

(collar touching sample) 

(collar touching sample) 

(sample slipped in vise) 

(sample slipped in vise) 
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Te^t 87: 6^ > 0.196 

Test 88: ôy > 0.17 

Test 91: > 0.14 

(collar touching sample) 

(collar touching sample) 

(collar touching sample) 
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Appendix F 

Complete Force - Deflection Wedge Indentation Results 

Test 

Wedge Indentation Tests 

8 *x *y 

25 15° 0 0 

31 15® 0 0 

37 15° 0 0 

26 22.5° 0 0 

33 22.5° 0 0 

34 22.5° 0 0 

27 300 0 0 

35 300 0 0 

28 45° 0 0 

36 450 0 0 

49 150 15° 0 

50 150 300 0 

96 15? 3CP 0 

55 15° 45° 0 

56 15® 540 0 

57 22.50 150 0 

59 22.50 300 0 

58 22.50 450 0 

60 22.5° 540 0 

61 3CP 15® 0 

62 300 300 0 

63 300 450 0 

65 450 150 0 

66 450 300 0 

97 450 300 0 

67 150 0 150 

95 150 0 150 

68 150 0 300 

69 150 0 450 

70 150 0 540 

75 22.50 0 50 
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Test   e 
t Tx ♦ Yy 

72 22.5° 0 15° 

73 22.5° 0 15° 

76 15° 3CP 5° 

88 15° 30P 20P 
89 15° 45° 20° 

90 22,5° 3CP 2CP 

91 22.5° 30° 45° 

84 3CP 15° 20° 

87 30P 15° 45° 

78 30° 3CP 5° 

94 3CP 3CP 5? 

79 30P 30P 1CP 

80 30P 30P 2CP 

81 30P 30° 30P 

82 30P 3CP 45° 

83 30P 3CP 55? 

86 3CP 45° 20° 

85 3CP 45° 45° 

92 45° 3CP 20° 

93 45° 3CP 45° 

(142) 



KEY FOR ALL GRAPHS 

UNITS 

THEORETICAL CURVE 

LIMIT TO THEORETICAL 
PREDICTION UNCERTAINTY 

EXPERIMENTAL DATA 

EXPERIMENTAL 
ERROR LIMITS 

Chart F-l Interpretation Key for Force-Deflection Plots 

(143) 



Figure F-l Force-Deflection, Test .25 , P = .15° - , - 0 , i(r_ = 0 
■ x y 

(144) 



iy VS. iy 

(145) 



Figure F-5 Force-Deflection, Test 33 , P = .22.5? » 0 » “ 0 
 - ■■ —- * y 
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(147) 



Py VS. 8V 

(148) 



(149) 



R VS. 8y 

(150) 



Figure F-13 Force-Deflection, Test 96 , P = 15° , <rx - 3CP , f = 0 

(151) 



(152) 



(153) 



H rH vs. ov 

FvVS.Sv 

Figure F-16 Force-Deflection, Test 57 , P = 22.5? , 

(154) 



H IH VS. Oy 

Fy Fy VS.8y 

Figure..F-17 Force-Deflection, Test 59 , 0 * .22.5° , ÿx = 3CP 

(155) 



(156) 



/ Fu VS. Su 

0.01 0.02 0.03 OJ04 

Figure F-19 Force-Deflection, Test 60 , P - 22»ÿ) , “ .54°,, i|r^ 
■ x y 

(157) 



(158) 



0.01 0.02 0.03 0.04 0.05 0.06 

Figure F-21 Force-Deflection, Test 62 , P = 3CP » i(f = 3CP , \|r 
(159) 



(160) 



0 



Figure F-24 Force-Deflection, Test 66 , p * 45° . t 
m 3CP , ^ ■ ■ — x y 
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0 



"*v ] 
0.9- 

\ 5 CS 

15 vs. Ov - «y 

- 
— -L 

1—i—i— I I I i I r*i “î1 M 1 1 liJ 'i i i 
1 m 

0.05 0.10 0.15 0.20 Oy 

Bv 
Figure- F.-26 Force-Deflection, Test 67 , P “ l^3 , * “ 0-, I « 15? 
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(167) 

0 , dr = 45°. » Ty 



Figure F-30 Force-Deflection, Test 70. , P = l^5 , ljr = 0 , t|( “ 54° 

(168) 



(169) 



Figure F-32 Force-Deflection, Test 72 , P = .22.5? , * = 0,4* 15° 
— — x y 

(170) 



vs- 8V 

Figure F-33 Force-Deflection, Test 73 , P = 22.5? , i|r„ 
11 " ~ 1 ni  n X 

(171) 

0 , t “ » fy 
15° 



Figure F-34 Force-Deflection, Test 

(172) 

.76. , P .15° » 



Figure F-35 Force-Deflection, Test 88. , P = 15°. , \|r « 3(f , ÿ 

(173) X : 
- 2CP 



Figure F-36 Force-Deflection, Test 89 , P * 15? > ÿ * 4^ , f 
  (174) 

= 2 OP 



Figure F*37 Force-Deflection, Test 90 , P * 22.5° , 4 = 3CP , t - 2CP 
' "* 1 " x y 

(175) 



®v 

Figure F-38 Force-Deflection, Test 91 , P * 22.^. , *= -.3CP , = 45s 

■“ x y 
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Figure F-39 Force-Deflection, Test 84' , P = 3CP , i|j„ = L5? , i|i„ - 2CP 
~~“~ „ x y 

(177) 



(178) 
15° , ty - '4* 



500 

Figure F-41 Force-Deflection, Test .78. , P = 3CP , i|r « 3CP , 4 = 5° 
— x y 

(179) 



Figure F-42 Force-Deflection, Test 94 , P * 3CP » tx 
= 3CP , Jr - 5° 

(180) 



a v 

Figure F-43 Force-Deflection, Test 79 , P = '3CP , ijfv * 3CP , “ 1CP. _ x y 
(181) 





s V 

Figure F-45 Force-Deflection, Test 81 , P * 3CP , \|r„ =* 3CP , i|r_ = '3CP 
■ x y 

(183) 



Figure F-46 Force-Deflection, Test 82 , g = 3CP , 4 = 3CP , ÿ * 45° 

(184) 



Figure F-47 Force-Deflection, Test 83! , P - 3(f , <Jr_. = 3CP , 1. - 
* x y 

(185) 
55° 



Figure F-48 Force-Deflection, Test 86 , P « 30P , 4 = 45? , tji = 2CP 

  (186) 7 



V 

(187) 



Figure F-50 Force-Deflection, Test .92 , P = 45° » t|f = 3CP , i|r ■ 

(188) 7 

2CP 
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