IWAVE Implementation of Born Simulation

Dong Sun and William W Symes

ABSTRACT

The single-scattering (or Born) approximation is the most fundamental assump-
tion shared by all seismic imaging methods, and plays a crucial role in the non-
linear waveform inversion, an iterative process of linearized inversions. The Born
simulator (linearized forward map) shares a computational core with the cor-
responding simulator (forward map), which has been well implemented in the
modeling package IWAVE. This report focuses on implementing the Born simu-
lator based on IWAVE, and reviews the main adaptations we made in IWAVE to
accommodate such an implementation in C++.

Our goal is to construct a C++ wrapper of IWAVE, which fits into a general
framework for inversion. This report is the first of several describing an imple-
mentation of such a wrapper.

INTRODUCTION

A common objective of reflection seismology is to make inferences about physical
features (model) of subsurface (e.g., velocity) from data (seismogram) recorded on
or near the surface. This inverse problem is often formed as a simulation-driven
optimization problem in Hilbert space. Its implementation involves different levels
of abstraction: simulation of wave propagation requires a variety of computational
types and data structures specific to physical modeling and numerical implementa-
tion; Instead, optimization algorithms involve a more abstract layer of mathematical
constructs (vectors, functions, gradients, ...) which are independent of physics and its
numerical realization. Object-oriented programming offers a way to combine different
levels of abstraction (e.g., finite difference grids v.s. vectors in Hilbert space) while
keeping them in separate code. A concrete example is the Rice Vector Library (RVL)
(Padula et al., 2009). RVL is a collection of C++ classes to express core concepts (vec-
tors, functions,...) of calculus in Hilbert space, and provides standardized interfaces
for optimization and linear algebra algorithms. We will use the interfaces provided by
RVL to implement this inversion. First of all, we need to construct the modeling code
as an RVL operator class (for vector valued functions) with at least methods to com-
pute its value (modeling), first derivative and adjoint derivative (Born and its adjoint
modeling). This report is the first of several describing an operator implementation
for acoustics based on the modeling package IWAVE (Terentyev, 2009).

IWAVE offers many advantages: it provides a parallel framework for solving time-
dependent partial differential equations, has lots of modeling options already imple-

mented for acoustics, and is well-tested and built in C. However, IWAVE doesn’t
refer to any of the ingredients of optimization, such as vectors, operators, functions,
gradients, etc.. To embed it in inversion, we need to “view” IWAVE as defining an
operator in a vector space, and “wrap” it in an RVL operator class, with methods to
get its value, derivative and adjoint derivative.

IWAVE is a time-stepping algorithm; and derivative and adjoint derivative op-
erators for time-stepping operators share the same abstract structure for all time
stepping algorithms. This structure is encapsulated in TSOpt, which gives an ab-
stract RVL operator interface for all time-stepping algorithms (Enriquez and Symes,
2009). I will show how to embed IWAVE in a RVL operator class using TSOpt classes
as helpers. IWAVE was written to make this adaptation as straightforward as possi-
ble. This includes implementing the derivative and adjoint derivative using IWAVE
with minimal modifications. We call the resulting system of classes IWAVE++4-. This
report covers the derivative.

THE ACOUSTIC MODEL

The acoustic model connects the pressure field p(z, z, t), the particle velocity v(z, z,),

the buoyancy b(z,z) = @ (the density p(z,z)), and the bulk modulus k(z,2)

through the wave equations

10p
STV = w02, M)
10v
EEJer = 0, (2)
p=0,v=0, t < 0.

The right-hand side of (1) represents an isotropic point source radiating with
time-varying (transient) intensity w(t) (“the source wavelet”). Let m := (k,b) denote
the model (parameter vector).

The above equation system defines the forward map
F[m] := Sp, (3)

where S is a sampling operator, such as Sp := {p(«x,, z,,t)} in which (z,, z.) denotes
the coordinates of selected receivers.

The linearized forward map at model m is defined as
DF[m]om := Sop = {0p(z,, 2, 1)}, (4)

where dm is a model perturbation, dp and dv are the corresponding first-order wave-

field perturbation and solve the following equation system

1 0dp 0K
EE‘FVéV = —?V‘V, (5)
106v 0b
b ot + Vip = —?Vp, (6)
op=0,0v=0, t <0.

As the above two equation systems have almost the same form other than the
right hand side terms, we are using this similarity to adapt the existing simulator
(IWAVE) to a Born simulator.

IMPLEMENTATION OF BORN SIMULATION

Before discussing the implementation of the Born simulator, I would like to briefly
introduce IWAVE. To demonstrate the idea, a staggered grid scheme with second
order in time is used to discretize the two equation systems.

Forward Simulation

Using a staggered grid scheme with second order in time, we do the simulation via
the following time stepping procedure:

pk+1/2 _ pk—l/Z YN AVAR s Rw(t)d (x — g, 2 — 25) (7)
v = R pAEVpET/2, (®)

in which p, v, k and b are grid functions, and V- and V are finite difference spatial
discretizations of differential operators, and At is the time-step.

The implementation of IWAVE is based on two major concepts: data storage and
time-stepping functions. With the current physical states (say p*~'/2 and v*) and
input data (say k, b, etc.), a time-stepping function (i.e., presented by TIMESTEP_FUN
type) is called to update the physical states p and v (to p**/2 and v**+!). All the
physical variables and input data are stored in multidimensional arrays described
by the RARR data type. The arrays defining a particular model constitute a domain
described by the RDOM data type. IWAVE provides the following type to describe a
pointer to the time-stepping function:

typedef int (*TIMESTEP_FUN) (RDOM *rdom, int iarr, void * tspars);

Here, rdom is a pointer to the RDOM struct whose RARRs represent dynamic and static
fields in the acoustic simulation. The index iarr indicates which RARR, representing a
dynamic field, is to be updated, and tspars points to a struct containing appropriate
time-stepping parameters (difference coefficients, scaled quotients of steps, etc.).

IWAVE stores all the allocated domain, the virtual computational domains, the
pointers to time-stepping functions and other additional parameters in an IMODEL
object:

typedef struct IMODEL {
TIMESTEP_FUN ts; /* pointers to time-stepping functions */
void *tspars; /* pointers to time-stepping parameters */
RDOM 1d_a, 1ld_c, 1ld_p; -

/* allocated domain and computational virtual domains */
RDOM *1d_s, *1d_r; /* receive and send virtual domains */

} IMODEL;

An IMODEL object together with parallel and other additional information constitute
an IWAVE object:

typedef struct {
PARALLELINFO pinfo; /* parallel information */
IMODEL model;
} IWAVE;
A C++ wrapper to the IWAVE struct in IWAVE++ is the class IWaveState,

which contains an IWAVE type object iwstate and provides methods to access the
information in iwstate:

class IWaveState {
protected:
mutable PARARRAY pars; /* parameter array */
mutable IWAVE iwstate;
TSIndex tsi;

/* time object indicating the current state status */

public:

We use Sim classes from the TSOpt abstract time-stepping package to implement
the time loops. Briefly speaking, the actions taken in each time loop are:

e step: the calls to time-stepping function to update the pressure and particle
velocities, and exchange information among processors in an appropriate order;

e post-step:

— the calls to insert source appropriately;
— the calls to sample and write out the results to traces;

— the calls to update state time.

IWAVE structures its time loops in exactly this way, so the TSOpt: :Sim classes are
simple wrappers around the corresponding IWAVE functions, and all of the
complicated data exchange code written into IWAVE is encapsulated and re-used.
In addition, the Sim classes may implement other functions, such as check-pointing,
needed in forward or adjoint simulation.

Born Simulation

As in the previous section, we do Born simulation via the following time stepping
procedure:

SpEHIZ = P2 ALY - 6vE — Gk ALY - vE (9)
SVEHL = vE — bALVOPFTIZ — b AL T2, (10)

where 0p, dv, k, 0k, b and 0b are grid functions, and V- and V are finite difference
spatial discretizations of differential operators. As the reference fields are used in
every time step of Born simulation, we need to create a new RDOM object to load the
perturbation fields.

The update to dp is the sum of —kAtV - 6v¥ and —dx AtV - v¥. Both of the two
terms have the same form as —xAt V - v¥, which is the update to p computed via a
call to the time-stepping function in the forward simulation. So we want to reuse the
time-stepping functions in IWAVE to update the perturbed wave-field.

To compute —xAtV - vF, a time-stepping function needs the reference arrays
r and v, which are contained in the same RDOM object. As a contrast, to compute
—kAtV-6vF and —0k At V-vF, a time-stepping function needs both the perturbation
arrays (0v and dx) and the reference arrays (k and v), which are contained in different
RDOM objects. Thus, we change the signature of time-stepping functions to

int gts(RDOM *dom, RDOM *rdom, RDOM *cdom, int iarr, void *pars);

so that we are able to use the same time-stepping functions in both the forward and
Born simulation. Here, dom, rdom and cdom are pointers to the RDOM objects that
respectively hold the dynamic fields to be updated, the reference and perturbation
fields. When these three pointers point to the same RDOM object that holds the
reference fields, these time-stepping functions work in the same way as the previous
ones do.

To maintain the information for both the reference and perturbation states, the
IWavelLinState class is derived from the class IWaveState:

class IWaveLinState: public IWaveState {
private:
mutable IWAVE linstate; /* perturbation state */
mutable IMODEL dmod;
/* store pointers to the non-dynamic perturbation fields*/
TSIndex 1ltsi;
/* time object indicating the current pert-state status */

public:

};

I ref state I lin state

Figure 1: Diagram of IWaveLinState: Arrows represent pointer copies. Mem-
ory is originated and managed by the ref state IWaveState: :iwstate and lin state
linstate. The dmod consists of virtual arrays and holds pointers to the data of
non-dynamic perturbation fields. No memory leaks created.

The reference state, contained in the base class IWaveState, is used to supply non-
dynamic fields (e.g., k) for updating the perturbation state (e.g., —kAtV - jv¥)
and dynamic fields (e.g., v*) for computing the born source (e.g., —dx AtV - vF),
whose non-dynamic fields (e.g., dx) is supplied by an IMODEL object dmod. This
is accomplished by copying the pointers to the data for non-dynamic fields from

the reference state domain to the perturbation state domain. The pointers to non-
dynamic fields originally supplied in the perturbation state domain are assigned to
an IMODEL object dmod. Figure 1 shows this idea.

We use Sim classes from TSOpt to implement the time loops. The working flow of
each time loop looks like:

e step: the calls to run time-stepping functions to update the perturbation fields
and exchange information among processors in an appropriate order;

e post-step:

— the calls to insert born source appropriately;
— the calls to record and sample the perturbation fields in traces;
— update the lin-state time;

— sync-step: march the forward simulation one step further to catch up
with the linearized simulation.

NUMERICAL EXAMPLES

In this section, I will demonstrate the correct behavior of the Born simulator via three
numerical examples.

Example I

This example is done for a simple model shown in Figure 2, which consists of a
homogeneous background (x = 11109 MPa, p = 2100 kg/m?3 = acoustic velocity
¢ =23 km/s) and a line perturbation (6k = 2641 Mpa, dp = 100 kg/m3 =
dc=10.2 km/s). A point source is located at the position (3000,40) m, and receivers
are placed at positions (3100 + 7 % 10,80) m for i = 0,...,99.

Figure 3 shows the full seismogram computed via IWAVE, which contains primary
and multiple reflections; Figure 4 shows the first order pressure perturbation com-
puted via the Born simulator; Figure 5 shows the difference between DF[m]ém and
(F(m+0.16m) — F(m — 0.16m)) /0.2. Table 1 shows the results from a derivative
test, which compares (F(m + hdm) — F(m — hom)) /(2h) with DEF[m]ém.

As we can see, the first-order perturbation is correctly achieved by the Born
simulator. And the derivative test demonstrates that the action of the Born map on
vector dm does yield the directional derivative of the forward map F[m] along dm.

norm of difference | relative error | convergence rate
1 150.12201 0.063421488 —
0.9 120.2859 0.050816741 2.1030352
0.8 94.127052 0.039765507 2.0820141
0.7 71.458405 0.030188767 2.0634089
0.6 52.117603 0.022017932 2.0474308
0.5 35.970844 0.01519647 2.0337362
0.4 22.905241 0.0096766921 2.0226574
0.3 12.833994 0.00542193 2.0135708
0.2 5.6885972 0.0024032407 2.0066679
0.1 1.4168549 0.00059857342 2.0053811

Table 1: norm of difference = , relative error =

F(m+hom)—F(m—hdém)
| = ~ DF

[m]om

| Pt _rtmtim)]| /D Ffm)om|

Offset (M)
(o] 2000 4000 6000
1 L 1

5004

Depth (m)

1000

1500

Figure 2: Homogeneous Model with Line Perturbation: homogeneous background x =
11109 MPa, p = 2100 kg/m? = acoustic velocity ¢ = 2.3 km/s; line perturbation
dk = 2641 Mpa, dp = 100 kg/m>® = dc = 0.2 km/s

Offset (M)
o 3200 3400 3600 3800 4000

Figure 3: Full Seismogram: primary reflections around 0.4s; multiple reflections
around 0.8 s, 1.2 s, etc..

Offset (M)
o 3200 3400 3600 3800 4000
0.2
0.4
0.6
=
£
= 0.8
1.0
1.2
1.4

Figure 4: First Order Pressure Perturbation: only primary reflections around 0.4 s.

10

Offset (M)
3200 3400 3600 3800 4000

F(m+0.16m)—F(m—0.16m) DF

Figure 5: Difference 0.0

[m]dm

Example 11

This example is done for a layered model shown in Figure 6, which consists of a
homogeneous background (x = 11109 MPa, p = 2100 kg/m?® = acoustic velocity
¢ = 2.3 km/s) and a block perturbation (dx = 2641 Mpa, dp = 100 kg/m? =
dc = 0.2 km/s). A point source and receivers are located at the same locations as
those in the first example.

Figure 7 shows the full seismogram computed via IWAVE; Figure 8 shows the
corresponding first order pressure perturbation computed via the Born simulator;
Figure 9 presents the difference between (F'(m 4+ 0.010m) — F(m — 0.01dm)) /0.02
and DF|m]dm. Table 2 shows the results from a derivative test.

Obviously, the first-order perturbation is correctly achieved by the Born simulator.
And the derivative test demonstrates that the action of the Born map on vector dm
does yield the directional derivative of the forward map F|m] along dm.

11

h | norm of difference | relative error | convergence rate
0.1 110.67387 0.02450726 —
0.09 89.866638 0.019899776 1.9766518
0.08 71.166061 0.015758781 1.9808515
0.07 54.597832 0.012089966 1.9847171
0.06 40.183228 0.0088980431 1.9886029
0.05 27.947681 0.0061886436 1.9916205
0.04 17.913837 0.0039667818 1.9931601
0.03 10.074574 0.0022308808 2.0006759
0.02 4.5133157 0.0009994139 1.9803987
0.01 1.6904721 0.00037433265 1.4167614

Table 2: norm of difference =

H E(mthom)=F(m=hém) _ relative error =

o [m]om

| FlmstomiEnztim))i /| DF ()|

Offset (M)
(o] 2000 4000 6000
1 L 1

500_

1000

Depth (m)

1500

Figure 6: Homogeneous Model with Block Perturbation: homogeneous background
k = 11109 MPa, p = 2100 kg/m?® = acoustic velocity ¢ = 2.3 km/s; line perturba-
tion dk = 2641 Mpa, dp = 100 kg/m>® = dc = 0.2 km/s

12

Offset (M)
3200 3400 3600 3800 4000
0.2
0.4
0.6
=
=
= 0.8
1.0
1.2
1.4

Figure 7: Full Seismogram: primary reflections around 0.4s, 0.6s; multiple reflections
around 0.8 s, 1.0s, 1.2 s, 1.4s, etc..

Offset (M)
o 3200 3400 3600 3800 4000
0.2
0.4

Figure 8: First Order Pressure Perturbation
0.61s.

only primary reflections around 0.4 s,

13

Offset (M)
3200 3400 3600 3800 4000

F(m+0.016m)—F(m—0.016m) DF

Figure 9: Difference 0.02

[m]ém

Example 111

This example uses a similar model to the one in the previous example, which consists
of the same homogeneous background and a block perturbation at the same location
but with much bigger perturbation value (dx = 12849 Mpa, dp = 100 kg/m?® =
dc=1.0 km/s). All settings are the same as those in the previous examples.

Figure 7 shows the full seismogram computed via IWAVE; Figure 11 shows the
corresponding first order pressure perturbation computed via the Born simulator;
Figure 12 shows the difference between (F(m + 0.01dm) — F(m — 0.016m)) /0.02 and
DF[m]ém. Table 3 shows the results from a derivative test.

Note that the Born simulator works as expected. The first-order perturbation is
correctly achieved; and the derivative test demonstrates that the action of the Born
map on vector dm does yield the directional derivative of the forward map F[m)]
along om. But for this model, the perturbation is not small with respect to the
homogeneous background, and does affect the travel-time so that we do see obvious
phase-shitting besides multiple reflections, comparing Figure 10 and Figure 11.

14

h | norm of difference | relative error | convergence rate
0.1 9701.1377 0.4383547 -

0.09 8310.4307 0.37551433 1.468593
0.08 6906.1387 0.31206012 1.5715401
0.07 5529.8013 0.24986908 1.6644682
0.06 4224.4155 0.19088404 1.7468039
0.05 3032.552 0.1370286 1.8180863
0.04 1994.4301 0.090120129 1.8779219
0.03 1145.9557 0.051781043 1.9261518
0.02 517.10992 0.023366081 1.9625334
0.01 130.47507 0.0058956342 1.9866968

Table 3: norm of difference = HF(erh(sm)_F(m_h‘Sm) — DF [m]émH, relative error =

2h

H Flm-thom)F(m-hém) _ DF[m]5MH [DF [m]ém]|

Offset (M)
3200 3400 3600 3800 4000

Figure 10: Full Seismogram (from 3100 m to 4100 m): point-source located at
(3000,40), receivers placed at depth 80 m; primary reflections around 0.4s, 0.55s;
multiple reflections around 0.8 s, 0.95s, 1.2 s, etc..

Offset (M)
o 3200 3400 3600 3800 4000
0.2
0.4
0.6
=
=
= 0.8
1.0
1.2
1.4

Figure 11: First Order Pressure Perturbation at receivers (from 3100 m to 4100 m)
only primary reflections around 0.4 s, 0.61s.

Offset (M)
o 3200 3400 3600 3800 4000
0.2
0.4
0.6
=
S
= 0.8
1.0
1.2
1.4
Figure 12: Difference

F(m+0.016m)—F(m—0.016m)
0.02 DF

[m]om

15

16

SUMMARY

In this report, I present a way to implement the Born simulation based on IWAVE.
The implementation achieves the desired results. More importantly, we have wrapped
the modeling package IWAVE as an RVL operator class, which regards the Born sim-
ulator as one of its three basic methods. The next report will focus on implementing
another basic method, i.e., the adjoint action of Born map. After that, it becomes
much more straightforward to embed such a RVL operator into a general optimization
framework for inversion.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation under grant
DMS 0620821, and by the sponsors of The Rice Inversion Project.

REFERENCES

Enriquez, M. and Symes, W. W., 2009, An overview of time-stepping classes for
optimization (tsopt): Technical Report TR09-33, Department of Computational
and Applied Mathematics, Rice University, Houston, Texas, USA.

Padula, A. D., Symes, W. W., and Scott, S. D., 2009, A software framework for the
abstract expression of coordinate-free linear algebra and optimization algorithms:
ACM Transactions on Mathematical Software, 36, 8:1-8:36.

Terentyev, 1., 2009, A software framework for finite difference simulation: Technical
Report TR09-07, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas, USA.

