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Abstract

We propose a novel, variational inversion methodology for the electrical impedance tomog-
raphy problem, where we seek electrical conductivity σ inside a bounded, simply connected
domain Ω, given simultaneous measurements of electric currents I and potentials V at the
boundary. Explicitly, we make use of natural, variational constraints on the space of admissible
functions σ, to obtain efficient reconstruction methods which make best use of the data. We
give a detailed analysis of the variational constraints, we propose a variety of reconstruction
algorithms and we discuss their advantages and disadvantages. We also assess the performance
of our algorithms through numerical simulations and comparisons with other, well established,
numerical reconstruction methods.

1 Introduction

Electrical properties such as the electrical conductivity σ and the electric permittivity ε, determine
the behavior of materials under the influence of external electric fields [58]. Let us consider a
bounded, simply connected set Ω ⊂ IRd, for d ≥ 2 and, at frequency ω, let γ be the complex
admittivity function

γ(x, ω) = σ(x) + iωε(x), where i =
√
−1. (1.1)

The electrical impedance is the reciprocal of γ and it measures the ratio between the electric field
and the electric current at location x ∈ Ω. Electrical Impedance Tomography (EIT) is the inverse
problem of determining the impedance in the interior of Ω, given simultaneous measurements of
direct or alternating electric currents and voltages at the boundary ∂Ω (i.e., the Neumann to
Dirichlet or Dirichlet to Neumann map).

In this paper, we consider direct electric current excitations (i.e., ω = 0) and we seek to image
the electrical conductivity function σ(x) inside Ω. Different materials display different electrical
properties (see for example [10, 65, 84]) so a map of σ(x), for x ∈ Ω, can be used to infer the internal
structure in Ω. Due to this fact, EIT is an imaging tool with important applications in fields such
as medicine, geophysics, environmental sciences and nondestructive testing of materials. Examples
of medical applications of EIT are the detection of pulmonary emboli [27, 52, 54], monitoring of
apnea [2], monitoring of heart function and blood flow [44, 56] and breast cancer detection [27].
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In geophysics and environmental sciences, EIT can be useful for locating underground mineral
deposits [77], detection of leaks in underground storage tanks [79] and for monitoring flows of
injected fluids into the earth, for the purpose of oil extraction or environmental cleaning [80].
Finally, in nondestructive testing, EIT can be used for the detection of corrosion [81] and of small
defects, such as cracks or voids, in metals [5, 6, 24, 37, 45, 83].

Electrical impedance tomography has been studied extensively in the last two decades and sub-
stantial progress has been made in the theoretical [3, 12, 18, 19, 23, 35, 57, 68, 69, 74, 76, 88, 92], nu-
merical [17, 18, 22, 27, 33, 34, 40, 50, 63, 64, 66, 82, 86, 94] and experimental [11, 27, 54, 71, 79, 87] as-
pects of the problem. Nevertheless, EIT remains an area of active research which continues to pose
a variety of challenging questions to theoreticians, numerical analysts and experimentalists alike
[18, 27, 54, 92].

In this paper, we propose a new reconstruction methodology for electrical impedance tomog-
raphy, based on two, dual to each other, variational principles for the Neumann to Dirichlet and
Dirichlet to Neumann maps, respectively. A variational, “equation-error” inversion method, based
on the algorithm of Wexler, Fry and Neumann[93], has already been analyzed by Kohn and Vogelius
[69] and implemented by Kohn and McKenney [66], where the electric current, the potential and
the conductivity inside Ω are sought as minimizers of a functional which ensures that, at the “so-
lution”, Ohm’s law is satisfied, at least for noiseless data. We consider here a different formulation
which uses the variational principles as constraints on the set of admissible conductivity functions
σ. Variational constraints have been proposed by Berryman and Kohn in [14] (see also [13, 15]).
However, they have only been partially analyzed and their role in inversion has not been entirely
understood.1 We give a detailed analysis of the variational constraints and we show how they can be
used effectively in the numerical solution of the EIT problem. We propose a variety of reconstruc-
tion algorithms and we discuss some of their advantages and disadvantages. All these algorithms
guarantee that, at least in the noiseless case, Ohm’s law is satisfied inside Ω and, consequently,
the measured boundary potential V is fit in the natural, H

1
2 (∂Ω) norm. In theory, our numerical

algorithms achieve the same objective as the variational method considered in [66, 69]. However,
due to the ill-posedness of the EIT problem, we note that, for noisy data, their numerical perfor-
mance can be different. Finally, we point out the potential benefits of variationally constrained
reconstructions over widely used imaging methods such as output least squares [18, 27, 94], where
data is fit in the weaker, L2(∂Ω) norm, at the expense of loss in resolution of the images of σ.

This paper is organized as follows: In sections 2.1 and 2.2, we define the forward and inverse
problem and we state the variational principles for the Neumann to Dirichlet and Dirichlet to
Neumann maps. The variational constraints on σ, as defined originally by Berryman and Kohn
[14], are given in section 2.3. In section 3, we motivate the use of variational constraints in the
reconstruction algorithms. A detailed analysis of the variational constraints is given in section 4.
Based on this analysis, we propose a variety of reconstruction algorithms, in section 5.1. After a
brief discussion of these algorithms, we concentrate on the constrained least squares formulation,
which is implemented as discussed in 5.2. Numerical results and comparisons with traditional least
squares and the variational algorithm in [66, 69] are given in section 6. Finally, in section 7, we
give a summary of the paper and conclusions.

1There exists a variationally constrained numerical algorithm for the travel time tomography problem, due to
Berryman [16]. However, this problem is considerably different than electrical impedance tomography, especially
because Fermat’s principle is not a minimum variational principle and, as such, it does not have a dual.
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2 The Mathematical Model

2.1 The Forward Model

We assume throughout the paper that the medium is isotropic. The electric potential and current
density φ(x) and j(x), respectively, defined in terms of the electric and magnetic fields E(x) and
H(x) as

E(x) = −∇φ(x), ∇× H(x) = j(x), (2.1)

satisfy Ohm’s law
j(x) = −σ(x)∇φ(x), (2.2)

where σ(x) is a scalar valued, strictly positive and bounded function in Ω, the closure of the domain.
By definition, j is divergence free so Ohm’s law (2.2) gives the partial differential equation

∇ · [σ(x)∇φ(x)] = 0 in Ω, (2.3)

which we take with either Dirichlet boundary conditions

φ(x) = V (x), for x ∈ ∂Ω, (2.4)

or Neumann boundary conditions

σ(x)∇φ(x) · n(x) ≡ σ(x)
∂φ(x)
∂n

= I(x) at ∂Ω, such that
∫
∂Ω
I(x)ds(x) = 0, (2.5)

where n(x) is the outer normal at x ∈ ∂Ω. It is well known that Dirichlet boundary value problem
(2.3), (2.4), for arbitrary V ∈ H

1
2 (∂Ω), has a unique solution φ(x) ∈ H1(Ω), at least in the weak

sense [43]. Neumann boundary value problem (2.3), (2.5), for I ∈ H− 1
2 (∂Ω), has a unique solution

φ(x) ∈ H1(Ω), up to an additive constant [43], which we fix by choosing the ground as∫
∂Ω
φ(x)ds(x) =

∫
∂Ω
V (x)ds(x) = 0. (2.6)

The electric current density satisfies equations

∇×
[

1
σ(x)

j(x)
]

= 0 and ∇ · j(x) = 0 in Ω, (2.7)

−j(x) · n(x) = I(x), for x ∈ ∂Ω, such that
∫
∂Ω
I(x)ds(x) = 0,

which, by (2.2), are equivalent to (2.3), (2.5). In particular, we have that (2.7) has a unique solution
j(x), with bounded norm in L2(Ω), which is related to potential φ(x) ∈ H1(Ω), a solution of (2.3),
(2.5), by Ohm’s law (2.2).

Boundary value problems (2.3), (2.4); (2.3), (2.5) or, equivalently, (2.7), for a known function
σ(x) in Ω and data I(x) or V (x), given for all x ∈ ∂Ω, are referred to as forward mathematical
models for electrical impedance tomography.
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2.2 The Inverse Problem

In EIT, the conductivity function σ(x) is unknown and it is to be determined from simultaneous
measurements of boundary voltages V (x) and current densities I(x), respectively. In this section,
we define the Dirichlet to Neumann and Neumann to Dirichlet maps which relate V (x) to I(x).
These maps depend nonlinearly on the unknown σ(x) and they are data in inversion. We review
some properties of these maps and we formulate the inverse problem.

The Dirichlet to Neumann (DtN) map Λσ : H
1
2 (∂Ω) → H− 1

2 (∂Ω) is defined as

ΛσV (x) = σ(x)
∂φ(x)
∂n

for x ∈ ∂Ω, (2.8)

where V (x) is arbitrary in H
1
2 (∂Ω) and φ(x) solves forward problem (2.3), (2.4). This map is self-

adjoint and positive semidefinite with null space: N {Λσ} = {V (x) = constant} (see for example
[18, 27, 89] and the references within). Moreover, it has the Dirichlet variational formulation [28]

〈V,ΛσV 〉 = min
u|∂Ω=V

∫
Ω
σ(x) | ∇u(x) |2 dx, for arbitrary V (x) ∈ H

1
2 (∂Ω), (2.9)

where < ·, · > denotes the L2(∂Ω) inner product

〈f, g〉 =
∫
∂Ω
f(x)g(x)ds(x).

The mathematical formulation of EIT, as first posed by Calderón [23], is: Find a bounded,
strictly positive conductivity function σ(x), given the DtN map Λσ. That this problem can be
solved uniquely for a large class of functions σ is established in [35, 36, 67, 74, 88].

The generalized inverse of Λσ, the Neumann to Dirichlet (NtD) map (Λσ)
−1 : J → H

1
2 (∂Ω), is

defined on the restricted space of currents

J =
{
I(x) ∈ H− 1

2 (∂Ω) such that
∫
∂Ω
I(x)ds(x) = 0

}
(2.10)

and, for any I(x) ∈ J , (Λσ)
−1 I(x) = φ(x) at ∂Ω, where φ(x) is the solution of Neumann boundary

value problem (2.3), (2.5), (2.6). The NtD map (Λσ)
−1 is self-adjoint and positive definite [18, 27,

89], with Thomson variational formulation〈
I, (Λσ)

−1 I
〉

= min
∇ · j = 0

−j · n |∂Ω= I

∫
Ω

1
σ(x)

| j(x) |2 dx, for arbitrary I(x) ∈ J (2.11)

(see for example [28]). That (Λσ)−1 is the generalized inverse of Λσ, it can be seen from duality
relations [18, 20, 38]

〈V,ΛσV 〉 = sup
I∈J

{
2 〈I, V 〉 −

〈
I, (Λσ)

−1 I
〉}

, for any V (x) ∈ H
1
2 (∂Ω), (2.12)〈

I, (Λσ)−1 I
〉

= sup
V ∈H 1

2 (∂Ω)

{2 〈I, V 〉 − 〈V,ΛσV 〉} , for any I(x) ∈ J . (2.13)

In practice, we do not have full knowledge of maps (Λσ)
−1 or Λσ. Instead, we have a set of

N experiments, where we define an excitation pattern Ie(x) ∈ J and we measure the resulting
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voltage Ve(xp), at discrete locations xp ∈ ∂Ω of the electrodes, along the boundary. Thus, the more
realistic definition of EIT is: Find σ from partial and usually noisy knowledge of the NtD map. A
significant difficulty of the EIT problem is its severe ill-posedness which causes small perturbations
of the boundary data to be exponentially amplified in the image of σ inside Ω [4, 7, 18, 31, 32, 55, 85].
Consequently, all reconstruction methods must be stabilized by some regularization approach, which
ensures convergence by restricting σ to a compact subset of L∞(Ω) (see for example [25, 40, 41, 51,
72, 90] or the statistical, Bayesian approaches in [61–63, 75]).

2.3 Variational Feasibility Constraints

Variational constraints on the conductivity function σ have been introduced by Berryman and
Kohn [14], as follows:

Definition 1 We say that function σ is Dirichlet feasible for boundary voltage Ve ∈ H
1
2 (∂Ω), if

〈Ve,ΛσVe〉 = min
u|∂Ω=Ve

∫
Ω
σ(x) | ∇u(x) |2 dx ≥ 〈Ve,Λσ�Ve〉 , (2.14)

where σ� is the true conductivity and 〈Ve,Λσ�Ve〉 =
∫
∂Ω VeIe ds(x) = Pe is the measured power

dissipated into heat. Moreover, we say that σ is Dirichlet feasible, if (2.14) holds for all Ve ∈
H

1
2 (∂Ω), e = 1, . . . N .

The rationale behind this definition is given by variational principle (2.9), as follows: Take any
φ ∈ H1(Ω), such that φ|∂Ω = Ve and obtain by (2.9),

〈Ve,Λσ�Ve〉 ≤
∫

Ω
σ�(x) | ∇φ(x) |2 dx. (2.15)

Now, let φ = φe, the solution of Dirichlet problem (2.3), (2.4) for conductivity σ, and suppose that
σ does not satisfy (2.14). Then,

〈Ve,Λσ�Ve〉 > 〈Ve,ΛσVe〉 = min
u|∂Ω=Ve

∫
Ω
σ(x) | ∇u(x) |2 dx =

∫
Ω
σ(x) | ∇φe(x) |2 dx

and σ is deemed infeasible since it cannot be a solution according to (2.15).
Similar to Definition 1, we define the Thomson feasibility constraints as:

Definition 2 A function σ is Thomson feasible for boundary electric current Ie ∈ J , if〈
Ie, (Λσ)

−1 Ie

〉
= min

∇ · j = 0
−j · n |∂Ω= Ie

∫
Ω
σ−1(x) | j(x) |2 dx ≥

〈
Ie, (Λσ�)−1 Ie

〉
, (2.16)

where
〈
Ie, (Λσ�)−1 Ie

〉
=
∫
∂Ω VeIe ds(x) = Pe, the measured power dissipated into heat. Moreover,

σ is Thomson feasible, if (2.16) holds for all Ie ∈ J , e = 1, . . . N .

Finally, we say that σ is feasible if it is both Dirichlet and Thomson feasible.
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3 Motivation for the Variational Formulation

Let us define the set of admissible conductivity functions

S =
{
σ(x) ∈ L∞(Ω), σ(x) ≥ m

}
(3.1)

where m is some positive constant. Suppose that σ� ∈ S is the conductivity function to be imaged,
such that, for a prescribed excitation current I ∈ J , the boundary voltage is V = (Λσ�)−1 I.
Ideally, we would like to image the conductivity by minimizing the operator norm

min
σ∈S

∥∥∥(Λσ)−1 − (Λσ�)−1
∥∥∥
H− 1

2 (∂Ω),H
1
2 (∂Ω)

, (3.2)

but, since only limited data is available, we can consider at best

min
σ∈S

N∑
e=1

∥∥∥[(Λσ)−1 − (Λσ�)−1
]
Ie

∥∥∥2

H
1
2 (∂Ω)

, for Ie ∈ J , 1 ≤ e ≤ N, (3.3)

for some positive integer N . Then, one could attempt to solve nonlinear problem (3.3) with an
iterative optimization algorithm, such as Newton’s method [30]. However, due to the high cost
of computing fractional order Sobolev space norms and the possible lack of differentiability of the
functional in (3.3) [26, 32, 33], no practical reconstruction algorithm uses formulation (3.3). Instead,
one uses output least squares methods,

min
σ∈S

N∑
e=1

∥∥∥[(Λσ)−1 − (Λσ�)−1
]
Ie

∥∥∥2

L2(∂Ω)
, (3.4)

where the objective function is an approximation of the Hilbert Schmidt norm of (Λσ)
−1 − (Λσ�)−1

over L2(∂Ω) [32] (the currents Ie are scaled to unit norm). Obviously, formulation (3.4) can give at
most a lower bound on (3.3) and, although numerically convenient, it could decrease the resolution
of the image [26].

We propose to use the variational constraints, defined in Definitions 1 and 2, to achieve the
minimization (3.3) in a computationally efficient manner. A possible approach is suggested by the
following lemma:

Lemma 1 Let I and V be generic boundary data for imaging σ� and let {σk(x)}k≥1 be a sequence
of functions in S such that,

lim
k→∞

〈
I, (Λσk

)−1 I
〉

= P and lim
k→∞

〈V,Λσk
V 〉 = P, (3.5)

where P = 〈I, V 〉. Then,
lim
k→∞

∥∥∥(Λσk
)−1 I − V

∥∥∥
H

1
2 (∂Ω)

= 0. (3.6)

Proof: Let us denote by φk the potential which solves forward problem (2.3), (2.4), for conductivity
σk and Dirichlet data V . Let also jk be the electric current density which solves problem (2.7) for
conductivity σk and Neumann data I. Equivalently, we have jk = −σk∇ψk, where ψk solves
Neumann boundary value problem (2.3), (2.5), (2.6). Then, integration by parts and assumption
(3.5) give〈

I, (Λσk
)−1 I

〉
+ 〈V,Λσk

V 〉 − 2P =
∫

Ω
σk(x) |∇φk(x) −∇ψk(x)|2 dx → 0, as k → ∞. (3.7)
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Moreover, by the coercivity of bilinear form a(u,w) =
∫
Ω σk∇u · ∇w dx, for u,w ∈ H1(Ω) satis-

fying
∫
∂Ω u ds =

∫
∂Ωw ds = 0 [43], limk→∞‖φk − ψk‖H1(Ω) = 0 and, by the trace theorem [43],

limk→∞‖V − (Λσk
)−1 I‖

H
1
2 (∂Ω)

= 0.

Thus, we achieve the minimization (3.3), by seeking an inversion methodology which generates
sequences {σk}k≥1 of functions in S which satisfy the feasibility constraints of Definitions 1 and 2
as equalities (or near equalities in the noisy case) in the limit k → ∞. Such inversion methods are
described in section 5.1 and they are based on the analysis of the variational constraints, which
we give in section 4. Note in particular that jk and φk are related by Ohm’s law inside Ω (except
possibly for subsets of measure zero), since by (3.7), ‖σk∇φk + jk‖L2(Ω) → 0, as k → ∞.

4 Analysis of Variational Constraints

4.1 Theory

As motivated by section 3, we wish to obtain, in a computationally efficient manner, a sequence
{σk(x)}k≥1 of conductivity functions satisfying (3.5). We begin by taking a closer look at output
least squares methods, which generate sequences {σ̃k(x)}k≥1 of conductivities such that

lim
k→∞

∥∥∥(Λ
�σk

)−1
I − V

∥∥∥
L2(∂Ω)

= 0. (4.1)

Since 〈
I,
(
Λ
�σk

)−1
I
〉
− P =

∫
∂Ω
I
[(

Λ
�σk

)−1
I − V

]
ds,

output least squares can give convergence of the Thomson constraint,

lim
k→∞

〈
I,
(
Λ
�σk

)−1
I
〉

= P,

provided that the excitation current I is taken in L2(∂Ω). Now, for the Dirichlet constraint, we
have 〈

V,Λ
�σk
V
〉
− P =

〈
V,Λ

�σk
V
〉
−
∫
∂Ω
V (x)I(x)ds(x)

=
〈
V,Λ

�σk
V
〉
−
∫
∂Ω
φ̃k(x)σ̃k(x)∂

�ψk
∂n (x)ds(x)

=
〈
V,Λ

�σk
V
〉
−
∫

Ω
∇ ·
[
σ̃k(x)φ̃k(x)∇ψ̃k(x)

]
dx

=
〈
V,Λ

�σk
V
〉
−
∫

Ω
∇ ·
[
σ̃k(x)ψ̃k(x)∇φ̃k(x)

]
dx

=
∫
∂Ω

[
V (x) −

(
Λ
�σk

)−1
I
]
Λ
�σk
V (x)ds(x),

where φ̃k and ψ̃k are the Dirichlet and Neumann potentials solving problems (2.3), (2.4) and (2.3),
(2.5), respectively, for conductivity σ̃k and data V and I. However, since Λ

�σk
V ∈ H− 1

2 (∂Ω),
convergence of the Dirichlet constraint does not follow from (4.1).

To develop algorithms which give (3.5), we examine the relationship between the two feasibility
constraints. We begin by showing that, for given data I and V , the Thomson infeasible set is
included in the Dirichlet feasible set (see Figure 1). Then, we could achieve convergence (3.5) of
both constraints, to P , by confining all iterates σk to the Dirichlet infeasible region and by letting
the Thomson constraint converge to P . The latter can be achieved, for example, with output least
squares, provided that we take I sufficiently smooth (in L2(∂Ω)) (see sections 3 and 5.1).
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Dirichlet feasible
Thompson infeasible

Dirichlet infeasible
Thompson feasible

feasible

feasible

2σ

σ 1

Figure 1: Take a planar section through the space of conductivity functions, where σ is param-
eterized in terms of two values σ1 and σ2. The Thomson infeasibility region is contained in the
Dirichlet feasible region, as stated by Lemma 2.

Lemma 2 Let σ ∈ S be a conductivity function satisfying
〈
I, (Λσ)

−1 I
〉
≤ P , for some I ∈ J and

P = 〈I, V 〉 . Then, 〈V,ΛσV 〉 ≥ P .

Proof: The proof follows from duality relation (2.12). We have

〈V,ΛσV 〉 ≥ 2 〈I, V 〉 −
〈
I, (Λσ)

−1 I
〉
≥ 2 〈I, V 〉 − P = P.

Similarly, we obtain from duality relation (2.13) that the Dirichlet infeasible set in S is included in
the Thomson feasible set, for data I and V .

Lemma 3 Let σ ∈ S be a conductivity function satisfying 〈V,ΛσV 〉 ≤ P , for some V ∈ H
1
2 (∂Ω)

and P = 〈I, V 〉. Then,
〈
I, (Λσ)

−1 I
〉
≥ P .

Note that, in general, given just one set of data I, V , the interiors of the Dirichlet and Thomson
feasible sets are not disjoint. To guarantee that the two sets intersect just at the boundary, we
need all measurements, as stated below.

Lemma 4 Let D and T be the interiors of the Dirichlet and Thomson feasibility sets, respectively,

D =
{
σ ∈ S such that 〈V,ΛσV 〉 > 〈V,Λσ�V 〉 , for all V ∈ H− 1

2 (∂Ω)
}
, (4.2)

T =
{
σ ∈ S such that

〈
I, (Λσ)

−1 I
〉
>
〈
I, (Λσ�)−1 I

〉
, for all I ∈ J

}
. (4.3)

Then, D ∩ T = ∅.

Proof: Suppose that σ ∈ T , such that

2 〈I, V 〉 −
〈
I, (Λσ)

−1 I
〉
< 2 〈I, V 〉 −

〈
I, (Λσ�)−1 I

〉
,

for all I ∈ J and arbitrary V ∈ H− 1
2 (∂Ω). Taking the sup over I and using duality relation (2.12),

we have

〈V,ΛσV 〉 = sup
I∈J

{
2 〈I, V 〉 −

〈
I, (Λσ)

−1 I
〉}

≤ sup
I∈J

{
2 〈I, V 〉 −

〈
I, (Λσ�)−1 I

〉}
= 〈V,Λσ�V 〉
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and so, σ /∈ D. In fact, if all measurements are available, by the uniqueness of solution of the inverse
problem2, the intersection of the feasibility sets consists of a single point σ�, the true solution.

When using a reconstruction algorithm which confines all iterates σk inside (or outside) a
feasibility set, one needs, for example, to find an appropriate initial guess. This can be easily done
due to the monotonicity results:

Lemma 5 Let σ, σ̃ be two functions in S and suppose that σ(x) ≤ σ̃(x), for all x in Ω, with the
possible exception of subsets of measure zero. Then,

〈V,ΛσV 〉 ≤ 〈V,Λ
�σV 〉 and

〈
I, (Λσ)

−1 I
〉
≥
〈
I, (Λ

�σ)
−1 I

〉
,

for any V ∈ H
1
2 (∂Ω) and I ∈ J .

Proof: The proof is given by Berryman in [15]. We repeat it here, for completeness. From
variational principle (2.9), we have

〈V,ΛσV 〉 = min
u|∂Ω=V

∫
Ω
σ(x) | ∇u(x) |2 dx ≤

∫
Ω
σ(x) | ∇φ̃(x) |2 dx ≤

∫
Ω
σ̃(x) | ∇φ̃(x) |2 dx

= min
u|∂Ω=V

∫
Ω
σ̃(x) | ∇u(x) |2 dx = 〈V,Λ

�σV 〉 .

Similarly, from (2.11), we have〈
I, (Λ

�σ)
−1 I

〉
= min

∇ · i = 0
−i · n |∂Ω= I

∫
Ω

1
�σ(x) | i(x) |2 dx

=
∫

Ω

1
�σ(x) | j̃(x) |2 dx ≤

∫
Ω

1
�σ(x) | j(x) |2 dx ≤

∫
Ω

1
σ(x) | j(x) |2 dx

= min
∇ · i = 0

−i · n |∂Ω= I

∫
Ω

1
σ(x) | i(x) |2 dx =

〈
I, (Λσ)

−1 I
〉
.

We end this section with the well known convexity result (see for example [15, 59]):

Lemma 6 Let σ, σ̃ be two functions belonging to the Dirichlet feasible set for data I and V . Then,
linear combination λσ + (1 − λ)σ̃, for 0 ≤ λ ≤ 1, is Dirichlet feasible, as well.

Note however that the set of Thomson feasible conductivities is not convex.

4.2 Examples

We give a few examples of the feasibility regions analyzed in section 4.1, for a two-dimensional
conductivity σ(x, y) in a unit square Ω. We take σ = 1 everywhere in the domain, except for two
rectangular inclusions, where σ equals σ1 or σ2. By varying σ1 and σ2, we obtain, similar to Figure
1, a planar section through the space of conductivity functions. We calculate the Dirichlet and
Thomson feasibility regions, for various data I, V and different locations of the inhomogeneities
inside Ω.

2Uniqueness has been proven for a large class of conductivities in [21, 35, 36, 67, 74, 76, 88]. All these results require
some smoothness assumptions on σ but the result may hold for the entire set S .
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Figure 2: On the left, we plot σ as a function of x and y. On the right, we show in yellow the
feasibility region in the plane parameterized by σ1 and σ2. The conductivity distribution on the left
is not easily distinguishable by the experiment I, V , because the boundaries of the two feasibility
regions intersect along a long arc in the plane.

Let us inject unit current near the lower left corner of Ω and take it out near its right upper
corner. For such a fixed I, we study the effect of the location of the inclusions on the feasibility
regions. In Figure 2, we have two inclusions, of conductivity σ1 = 2 and σ2 = 0.5, near the center
of the domain. We show in the right picture the feasibility region (the intersection of the Dirichlet
and Thomson feasibility regions), for data I, V . Note that the feasibility region collapses to a long
arc in the part of the plane displayed in the figure. Any pair (σ1, σ2) along this arc gives an almost
perfect fit of the data and so, the conductivity distribution in Figure 2 cannot be determined by just
this experiment I, V . However, as shown in Figure 3, inclusions which are close to the boundary
are easily distinguished, because the boundaries of the Dirichlet and Thomson feasibility regions
intersect at one point, the exact conductivity.

Next, we fix the conductivity distribution to that shown in Figure 4, where we have two inclu-
sions of conductivity σ1 = 2 and σ2 = 0.5 in a background of conductivity 1, and we study the
effect of the excitation current on the feasibility set. In the middle picture of Figure 4, we take the
optimal current which distinguishes best the inclusions in Ω [26, 55], whereas in the right picture
of Figure 4, we inject and take out unit current near the upper left and lower right corners of Ω,
respectively. As seen from Figure 4, the latter is a bad excitation, which cannot distinguish the
conductivity, since the feasibility region collapses to a long arc over a large region in the plane
(σ1, σ2).

Clearly, for more general conductivity distributions, it is typically not possible to find σ with
just one experiment and so, more data is needed and one should look at the intersection of the
feasibility regions for all available current excitations. This could be useful, in particular, in special
cases where the conductivity is known a priori to be piecewise constant over M given subdomains
(i.e. σ is parameterized in terms of σ1, σ2, . . . σM )3, because we could use the feasibility constraints
to determine the error in the recovered σj, for j = 1, . . .M .

3Such problems may arise in medical imaging, where the borders of the subdomains of constant conductivity could
be determined from CAT scans [60].
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Figure 3: The conductivity distribution on the left is easily distinguishable by the experiment
I, V , because the boundaries of the two feasibility regions intersect just at one point, where the
true solution lies.
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Figure 4: The conductivity distribution in the left picture can be easily distinguished with the
optimal current excitation, but it cannot be distinguished by a bad example of a current excitation.

5 Variationally Constrained Reconstruction Algorithms

In this section, we introduce several variational algorithmic approaches for the numerical solution
of the EIT problem. Then, we describe in detail our implementation of two variational algorithms
and the unconstrained output least squares algorithm.

5.1 Several Algorithmic Approaches

We assume that N experiments have been conducted with boundary excitation currents Ie ∈ J ,
that the corresponding voltages Ve at ∂Ω have been measured4 and that the power dissipated into
heat, Pe =

∫
∂Ω IeVe ds, has been estimated, for e = 1, 2, · · · , N .

4Note that, in all our reconstructions, Ie and Ve are given at discrete locations along ∂Ω. For the numerical
solution of the forward problems and for the calculation of Pe, we take piecewise linear interpolation of the data, at
the boundary, between the points of “measurement”.
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5.1.1 Constrained Least Squares Approach

As is shown in section 3, in the output least squares formulation, for Ie ∈ J
⋂
L2(∂Ω), the conver-

gence of objective function (3.4) to zero implies the convergence of the Thomson constraint, to Pe,
but not necessarily that of the Dirichlet constraint. However, in light of the results in section 4.1,
we can achieve the desired convergence (3.5) of both Dirichlet and Thomson constraints on σ, by
the constrained least squares approach:

min
σ∈S

N∑
e=1

‖(Λσ)−1Ie − Ve‖2
L2(∂Ω) s.t. 〈Ve,ΛσVe〉 ≤ Pe, e = 1, . . . , N, (5.1)

where Ie ∈ J
⋂
L2(∂Ω) and Ve = (Λσ�)−1 Ie ∈ H

1
2 (∂Ω). By requiring σ to be in the Dirichlet

infeasibility region, we ensure that, at the minimizer, both Dirichlet and Thomson constraints are
satisfied as equalities (or near equalities in the presence of noise). Equivalently, a minimizer of (5.1)
lies at the intersection between the Dirichlet and Thomson feasibility boundaries.

5.1.2 Equation Error Approach

If follows from the proof of Lemma 1 that

〈Ve,ΛσVe〉 +
〈
Ie, (Λσ)−1Ie

〉
− 2Pe =

∫
Ω
σ(x)|∇[ψe(x) − φe(x)]|2dx ≥ 0, (5.2)

where φe is the solution of Dirichlet problem (2.3) and (2.4), with data Ve = (Λσ�)−1 Ie ∈ H
1
2 (∂Ω),

and ψe is the solution of Neumann problem (2.3) and (2.5), with data Ie ∈ J . Then, a global
minimizer of

min
σ∈S

N∑
e=1

(
〈Ve,ΛσVe〉 +

〈
Ie, (Λσ)−1Ie

〉
− 2Pe

)
(5.3)

is a solution of the EIT problem, at which Ohm’s law je = −σ∇ψe = −σ∇φe is satisfied (in L2(Ω)
sense), at least for noiseless data. We note that this approach is equivalent to that of [66, 69, 93]
and, as such, we refer to it as the equation-error variational formulation.

5.1.3 Other Approaches

Since the Dirichlet infeasible region is a subset of the Thomson feasible region (see section 4.1), the
minimization of Thomson functional

〈
Ie, (Λσ)−1Ie

〉
− Pe ≥ 0, over Dirichlet infeasible σ, ensures

the desired convergence (3.5). Explicitly, we take:

min
σ∈S

N∑
e=1

(〈
Ie, (Λσ)−1Ie

〉
− Pe

)
s.t. 〈Ve,ΛσVe〉 ≤ Pe, e = 1, . . . , N, (5.4)

for Ie ∈ J and Ve = (Λσ�)−1 Ie ∈ H
1
2 (∂Ω). Similarly, we can have a “dual” formulation, where

we constrain σ to the Thomson infeasibility region and we minimize the Dirichlet functional
〈Ve,ΛσVe〉 − Pe ≥ 0:

min
σ∈S

N∑
e=1

(〈Ve,ΛσVe〉 − Pe) s.t.
〈
Ie, (Λσ)−1Ie

〉
≤ Pe, e = 1, . . . , N. (5.5)
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In addition, there exist other possibilities. For example, one may directly seek to find a con-
ductivity in the intersection of the Thomson and Dirichlet feasibility boundaries by minimizing the
distance between the two infeasibility regions:

min
σD ,σT

‖σD − σT ‖2
L2(Ω) s.t. 〈Ve,ΛσD

Ve〉 ≤ Pe,
〈
Ie, (ΛσT

)−1Ie
〉
≤ Pe, e = 1, . . . , N. (5.6)

Here, σD is in the Dirichlet infeasibility region and σT in the Thompson infeasibility region. The
reconstruction can then be given by the pointwise average of σD and σT .

Although the formulations based on variational constraints are “equivalent” in a mathematical
sense, their practical performance may differ from case to case. Our numerical experiments suggest
that approaches (5.1), (5.4) or (5.5) perform similarly in the tested cases, and that they are the
most consistent ones of all the formulations that we have considered. The equation-error approach
(5.3) performs equally well for noiseless data but it can behave differently for noisy measurements.
Finally, approach (5.6) is the least successful one. Our preliminary studies suggest that the objective
function in (5.6) has many local minima and, as such, the iterative optimization process stagnates
after just a few steps, for most initial guesses. Due to this behavior, we have have not been able to
obtain reasonable reconstructions with formulation (5.6), at least for realistic initial starting values
of σ.

5.2 Implementation

We now describe our implementation of three formulations: (1) the constrained least squares ap-
proach, (2) the equation-error approach and (3) the unconstrained output least squares approach.
We choose the constrained least squares approach to represent the newly proposed variationally
constrained formulations, and we compare it with the other two approaches.

5.2.1 The optimization method

In an attempt to achieve better scaling, we have implemented normalized versions of the three
formulation; namely, the normalized constrained least squares formulation:

min
σ∈S

N∑
e=1

‖(Λσ)−1Ie − Ve‖2
L2(∂Ω)

‖Ve‖2
L2(∂Ω)

s.t. 〈Ve,ΛσVe〉 ≤ Pe, e = 1, . . . , N, (5.7)

the normalized equation-error formulation:

min
σ∈S

N∑
e=1

〈Ve,ΛσVe〉 +
〈
Ie, (Λσ)−1Ie

〉
− 2Pe

2Pe
, (5.8)

and the normalized unconstrained output least squares formulation:

min
σ∈S

N∑
e=1

‖(Λσ)−1Ie − Ve‖2
L2(∂Ω)

‖Ve‖2
L2(∂Ω)

. (5.9)

To solve the constrained least squares problem (5.7), we approximately solve a sequence of
unconstrained logarithmic barrier subproblems:

min
σ∈S

N∑
e=1

(
‖(Λσ)−1Ie − Ve‖2

L2(∂Ω)

‖Ve‖2
L2(∂Ω)

− μ log (Pe − 〈Ve,ΛσVe〉)
)
, (5.10)
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corresponding to a sequence of positive and decreasing parameter values for μ. In this so-called
log-barrier approach, all iterates are required to be strictly feasible with respect to the constraints
in (5.7). It is known [42] that under suitable conditions,

lim
μ→0

σ(μ) = σ∗

where σ(μ) solves (5.10) for given μ > 0 and σ∗ is a solution to (5.7). In our implementation, we start
with the initial value μ = 10−4 and every time decrease μ by a factor of 2. The criterion that triggers
a reduction in μ is that the relative change of the objective value in two consecutive iterations is
less than 10−5 or that a maximum number of 1000 iterations has been reached, whichever comes
first.

To solve the unconstrained optimization problems (5.8), (5.9) and (5.10), we apply the steepest
descent (or gradient) method along with a back-tracking line search to ensure that the Armijo
condition for sufficient decrease in the objective value (see page 118 in [30], for example) is satisfied
at every iteration. The back-tracking line search begins with a step size of λ = 1 and decreases λ
by a factor of 2 until the sufficient decrease condition has been met or until λ ≤ 2−10.

The steepest descent method is simple to implement and reliable in terms of convergence. Be-
sides its simplicity, with an appropriate step control mechanism the steepest descent method seems
to have the benefit of providing an iterative regularization effect for ill-posed problems. Although
the method requires a large number of iterations to achieve a relatively high accuracy, it is suffi-
cient for our purpose of evaluating the performance of the formulations in terms of reconstruction
quality.

For each algorithm, we stop the iterations whenever the relative change in the objective function
is less than 10−16, or a maximum number of iterations of 10000 has been reached. These stringent
stopping criteria enable us to observe the asymptotic behavior of the algorithms. Indeed, in one of
the experiments we were able to observe (see Figure 7) that the output least squares method even-
tually starts to increase the relative error in conductivity after more than two thousand iterations
of decrease, while the other two methods continue to decrease the error all the way to the end.

5.2.2 Discretization and calculation of derivatives

In our implementation, we only consider the two dimensional problem with the domain Ω being
the unit square. This simple model allows a simple implementation and manageable computational
times, while being adequate for the purpose of evaluating the strength and weakness of different
formulations. For convenience, we assume that the conductivity is known at the boundary of the
domain. In all simulations included in this paper, we discretize the conductivity in terms of its
nodal values, as a piecewise linear function, on a 16 × 16 uniform mesh of Ω. On the boundary, σ
is set to be the constant one (1.0) at each of the 64 boundary nodes. The unknowns are the values
of the conductivity at each of the 225 interior nodes. We use the first N optimal current excitation
vectors as described in [27, 46, 55]. In our experiments, we set N = 15, N = 18, and N = 19 for test
conductivity models 1, 2, and 3, illustrated in figure 5, respectively. For each experiment, we solve
the Dirichlet and Neumann problems for the current conductivity, at any iterate σ, on a 32 × 32
uniform triangularization of the domain Ω using the piecewise linear, finite elements method.

The quadrature rules for the approximation of the constraints are defined such that the im-
portant identity (5.2) is preserved as much as possible in the discrete setting. Let us denote by
G = G ∪ ∂G the grid for the numerical solution of the forward problems, where G is the set of
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interior grid points and ∂G is the set of boundary points. The Neumann potential ψ is given by:

ψ(x) =
∑
j∈G

ψjbj(x), (5.11)

where bj(x) are the usual piecewise linear basis functions for the uniform triangulation on G and
ψj are the unknown values of ψ at the grid points j ∈ G, calculated such that∫

Ω
σ(x)∇v(x) · ∇ψ(x)dx =

∫
∂Ω
I(x)v(x)ds(x), for all piecewise linear functions v(x). (5.12)

Then, by setting v(x) = ψ(x) in (5.12), we obtain for the Thomson constraint〈
I, (Λσ)

−1 I
〉
≈
∑
j∈∂G

ψj

∫
∂Ω
I(x)bj(x)ds(x) =

∫
Ω
σ(x) |∇ψ(x)|2 dx. (5.13)

The Dirichlet potential φ is given by

φ(x) =
∑
j∈∂G

Vjbj(x) +
∑
j∈G

φjbj(x), (5.14)

where Vj is the given voltage at j ∈ ∂G and where φj , for j ∈ G, are calculated such that∫
Ω
σ(x)∇v(x) · ∇φ(x)dx = 0, for all piecewise linear functions v(x) vanishing at ∂G. (5.15)

Taking v(x) = φ(x) in (5.12), we have

P = 〈I, V 〉 ≈
∑
j∈∂G

Vj

∫
∂Ω
I(x)bj(x)ds(x) =

∫
Ω
σ(x)∇ψ(x) · ∇φ(x)dx. (5.16)

Finally, from (5.15), taking v(x) = φ(x) −
∑
j∈∂G

Vjbj(x), we have

〈V,ΛσV 〉 ≈
∑
j∈∂G

Vj

∫
Ω
σ(x)∇bj(x) · ∇φ(x)dx =

∫
Ω
σ(x) |∇φ(x)|2 dx, (5.17)

where the integration in the left hand side is limited to the triangles with at least one node in ∂G.
We note that formulations (5.8) and (5.10) require the solutions of both Dirichlet and Neumann

problems, while for unconstrained output least squares (5.9), only the Neumann problems need to
be solved. Nevertheless, the stiffness matrices AD and AN that one inverts in the numerical solution
of Dirichlet and Neumann problems (5.15) and (5.12), respectively, are closely related to each other.
In fact, AD is a subblock of AN and this can be used towards reducing the computational cost5.

An important computational task in our implementation is the evaluation of the first derivatives
of the objective functionals. An efficient computation of the derivatives is given by the adjoint
method (see for example [33]). Straightforward calculations [48] give that the first derivative of
〈V,ΛσV 〉, with respect to σ, is given, pointwise for x ∈ Ω, by

(D 〈V,ΛσV 〉) (x) = |∇φ(x)|2 (5.18)
5For example, one can use a block factorization approach where, once AD has been factorized, AN can be factorized

at a small extra cost (see [47], for example).
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and it is thus based solely on the previously computed approximation of φ, the solution of the
Dirichlet problem for conductivity σ. The derivative of

〈
I, (Λσ)

−1 I
〉
, with respect to σ, is given,

pointwise for x ∈ Ω, by [48] (
D
〈
I, (Λσ)

−1 I
〉)

(x) = −|∇ψ(x)|2, (5.19)

where ψ is the Neumann potential. Finally, the derivative of the output least squares functional is(
D‖(Λσ)−1I − V ‖2

L2(∂Ω)

)
(x) = −2∇ψ(x) · ∇τ(x), (5.20)

where τ is the (piecewise linear) adjoint potential satisfying∫
Ω
σ(x)∇v(x) · ∇τ(x)dx =

∫
∂Ω

[
(Λσ)

−1 I(x) − V (x)
]
v(x)ds(x)

for all piecewise linear functions v(x). The calculation of τ and ψ require the inversion of the same
stiffness matrix AN , so (5.20) is calculated with little extra computation.

All three algorithms were implemented in Fortran 90. We use the software package SuperLU
[8, 29] to efficiently solve the sparse linear systems resulting from the finite-element discretization.

6 Numerical Results

In this section, we present numerical results and we compare the performance of the three imple-
mented algorithms (see section 5.2). We stress that the objective of our numerical comparison is
to evaluate the reconstruction quality of these algorithms. Therefore, we will not include computa-
tional time in the presented results. Although our current implementations are adequately efficient
for all three algorithms, there certainly exists ample room for further improvements.

To make a fair comparison, we use the same simulated data for all three methods, and we start
each algorithm from the same initial guess, conductivity σ0 ≡ 1 at all nodes. However, for the
constrained least squares formulation, such an initial guess may not be feasible with respect to
the constraints 〈Ve,ΛσVe〉 ≤ Pe for e = 1, 2, · · · , N . In this case, invoking the monotonicity of the
Dirichlet constraint (Lemma 5), we decrease the value of σ0 at all the interior nodes of Ω until the
constraints are strictly satisfied.

We test the three algorithms on three conductivity models as illustrated in figure 5. All three
models have the background conductivity equal to 1. The first model contains a single inclusion
with conductivity value equal to 2; the second contains two inclusions with conductivity values
equal to 2 and 1/2, respectively; and the third contains two inclusions, both with conductivity
values equal to 2.

6.1 Noiseless Data

We first consider noiseless data. Figure 6 displays an overhead view of the reconstructed images
obtained for test conductivity 1. In this test, the variational methods are able to produce images
with superior resolution. The error plots associated with these reconstructions are shown in figure
7. They illustrate the progress of the relative error in σ, calculated in the Euclidean norm as

‖σ∗ − σk‖2

‖σ∗‖2
(6.1)
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Figure 5: The three conductivities models used in the numerical study.
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Figure 6: Reconstructions of test conductivity 1 for noiseless data.

where σ∗ is the true conductivity and σk is the computed conductivity at the k-th iteration, and
the progress of the relative fit of the boundary data

N∑
e=1

‖(Λσk )−1Ie − Ve‖2
L2(∂Ω)

‖Ve‖2
L2(∂Ω)

(6.2)

In the case of the output least squares algorithm, the relative error eventually begins to increase
despite the fact that the relative fit of the boundary data continues to decrease. In contrast, the
variational algorithms continually reduce both the relative error and the relative fit of the boundary
data. This fact seems to indicate that while devising a good stopping criterion for the output least
squares algorithm is challenging, it may be less so for the variational algorithms. Finally, we note
that for this test, the constrained least squares and equation-error methods perform equally well.
We also note that the equation-error approach stops earlier than the other methods because it can
no longer achieve the required relative change in its objective function. In contrast, the objective
functions of the output least squares and constrained least squares algorithms continue to change
and thus, these algorithms do not stop until they reach a maximum number of iterations.
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Figure 7: The graph on the left plots the relative error in σ, calculated as (6.1), and the graph on
the right plots the relative fit of the boundary data, calculated as (6.2), for the reconstructions of
test conductivity 1 shown in figure 6. Note that as the output least squares algorithm progresses,
the relative error of σ, in blue on the left, increases despite the fact that the fit of the boundary
data, in blue on the right, is still decreasing.

6.2 Regularization

The variational constraints restrict the space of admissible conductivity functions and, as such,
they may introduce some natural regularization to the problem. However, the ill posedness is not
eliminated by the variational constraints, as one can see easily from well known counter examples
(see for example [3]). Although the optimization algorithms that we have used provide some
iterative regularization (through the choice of the step lengths), it is clear from the initial results that
further regularization is needed for better performance6. We take a Tikhonov type regularization
[91], where we add to each objective function the regularization term

α‖∇σ‖2
L2(Ω), (6.3)

for a small, positive parameter α. This ensures that σ − σ0 ∈ H1
0 (Ω), where σ0 is the initial guess.

Then, by the compact embedding H1
0 (Ω) ⊂⊂ L2(Ω) [1], we have that any sequence

{
σk
}

of iterates,
contains at least a subsequence

{
σkl
}

which converges strongly in L2(Ω), to σα, a minimizer of the
regularized objective function.

Clearly, there are many other possible regularization methods (see for example [9, 39, 40, 49,
51, 70, 73, 91] and the references therein). Our investigation focuses on the performance of the
variational formulations, rather than on the choice of regularization. Thus, we take a convenient
regularization method, which is inexpensive and easy to implement.

The parameter α is chosen with the Morozov discrepancy principle [40, 73, 78], implemented
numerically via the practical procedure suggested in [9]. We begin with a relatively large value
for α and, as the algorithm progresses, we gradually decrease α until the value of the objective

6For example, if we examine the objective function near the computed solution, we observe the following manifes-
tation of the ill-posedness of the EIT problem: Without additional regularization, the objective function appears to
be very flat so that two conductivity distributions may attain approximately the same objective function value, but
differ significantly from one another. The addition of a regularization term makes the function appear more “curved”
and it thus reduces the severity of ill-conditioning.
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function is less than some specified tolerance ε. In the case of noiseless data, ε reflects numerical
error. When noise is present, the tolerance is chosen so as to avoid fitting the noise in the data. For
both the output least squares and constrained least squares methods, the inequality to be satisfied
is

N∑
e=1

‖(Λσ)−1Ie − Ve‖2
L2(∂Ω)

‖Ve‖2
L2(∂Ω)

≤ ε. (6.4)

Since the stopping criterion is the same for these two methods, we choose the same regularization
parameter for both methods. For the equation-error method, α is reduced until

N∑
e=1

(
〈Ve,ΛσVe〉 +

〈
Ie, (Λσ)−1Ie

〉
− 2Pe

)
2Pe

≤ ε. (6.5)

Because the equation-error method has a very different objective functional, its regularization
parameter α may differ from that of the output least squares and constrained least squares methods.
Furthermore, it is unclear how to choose the tolerance ε for the equation-error method. For the
purposes of our comparison study, we compute the ε in (6.5) by calculating the left hand side of
(6.5) with both noiseless and noisy data for a known conductivity. Although this way of choosing
the tolerance works only in simulation studies, we use it to ensure that we do our best to choose
the parameter ε for the equation-error method, in order to have a fair comparison.

We first consider the regularized formulations with noiseless data. The images of test conduc-
tivity 1 produced by each of the three algorithms are shown in figure 8. Note that as expected, the
output least squares algorithm is vastly improved. However, the inclusion is still relatively spread
out. Both the constrained least squares and equation-error methods show some improvement as
well. Their images are smoother and of better resolution and magnitude.
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Figure 8: Reconstructions of test conductivity 1 with the regularized methods for noiseless data.

We reiterate that the output least squares and the constrained least squares algorithms use
the same regularization parameter α. For this test, we begin with α = 10−4 and reduce by a
factor of 2 until it is approximately 10−6. The equation-error method begins with α = 10−6 which
is progressively reduced by two orders of magnitude. The relative error and relative fit of the
boundary data plots are given in figure 9. With regularization, the relative error in σ for the
output least squares algorithm no longer increases. However, it is still significantly higher than the
relative errors achieved by the variational methods despite the fact that all three methods fit the
data on the boundary equally well.
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Figure 9: The plot on the left is the relative error in σ, as described in equation (6.1), achieved
by the three regularized methods in reconstructing test conductivity 1 with noiseless data. The
plot on the right shows the relative fit of the boundary data, calculated using equation (6.2) for
the same test. Note that the relative error in the least squares algorithm is significantly higher
than those of the variational methods despite the fact that all three methods fit the boundary data
equally well.

The reconstructions of test conductivity 2 obtained with the regularized methods are displayed
in figure 10. Here, both the output and constrained least squares methods begin with a regulariza-
tion parameter of α = 10−5. This is subsequently reduced approximately three orders of magnitude.
The equation-error method reduces α to 10−9. Figure 11 depicts a three dimensional view of the
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Figure 10: Reconstructions of test conductivity 2 with the regularized methods for noiseless data.

reconstructed images of test conductivity 3 achieved with the regularized formulations. Again, the
constrained least squares and equation-error methods produce comparable images, but the relative
error in σ is much higher for the regularized output least squares algorithm. For this test, all three
methods are able to fit the data so that

N∑
e=1

‖(Λσ)−1Ie − Ve‖2
L2(∂Ω)

‖Ve‖2
L2(∂Ω)

∼ O(10−8).
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Figure 11: Reconstructions of test conductivity 3 with the regularized methods for noiseless data.

Note that all images can be improved by starting with a better initial guess σ0, than the constant
σ0 = 1 that we have considered here. See for example the results in [17, 48], where σ0 is estimated
by a multigrid approach.

6.3 Noisy Data

In practice, EIT data is contaminated with noise. Hence we test the three algorithms using noisy
data at a 1% noise level and a 3% noise level. Past studies have considered data with noise levels
as high as 20% (see for example [53, 94]). However, most algorithms tend to perform very poorly
with such inaccurate data. Furthermore, with today’s technology, it is expected that the noise level
in EIT data be small7.

We add uniformly distributed, multiplicative random noise to each of the vectors of boundary
potentials, Ve, for e = 1, . . . , N . Thus, for each experiment e, the voltage data is now

Ve(i) = Ve(i) +
ξ

100
ϕi |Ve(i)| (6.6)

where Ve(i) is the i-th component of vector Ve, corresponding to the ith boundary point, ξ is the
strength of the noise, and ϕi is a random number generated by function RANDOM_NUMBER intrinsic
to Fortran 90.

6.3.1 Numerical Results with 1% Noise

Figure 12 shows the reconstructions of test conductivity 1 obtained with data at a 1% noise level.
As expected, these results are not as good as the noiseless ones. However, all three methods are
still able to distinguish the inclusion. The image produced by the output least squares algorithm
contains some spurious artifacts. Despite this, the resolution and magnitude of the inclusion are
still quite good. The equation-error method also introduces some artifacts, but they are not as
significant or as numerous. However, the magnitude of the inclusion is lower than that of the
other two methods. Therefore, we can conclude that the image recovered by the constrained least

7A discussion of measurement accuracy in real data gathering experiments can be found, for example, in [79].
Given the present modern equipment, the noise level expected is around 1%. Nevertheless, the number 1% is not
always accurate and it may be site and application dependent. In particular, measurements for medical imaging
applications [54] are usually more accurate than those in geophysics.
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Figure 12: Reconstructions of test conductivity 1. Noise level: 1%.

squares method is superior in this case. It has good resolution and magnitude, it is smooth,
and it contains fewer artifacts. Although the constrained and output least squares methods use the
same regularization parameters, the constrained least squares algorithm produces a much smoother
image.

Intuitively, we can better understand why the constrained least squares methods is superior in
the presence of noise by examining the iterative process of the three methods. The output least
squares and equation-error methods have no explicit restrictions on σ. Thus, the iterates are allowed
to move freely. We observe that they exhibit a sort of “zig-zag” behavior pattern and do not stay
in the same feasibility region from one iteration to the next. Thus, the iterates jump in and out
of the Dirichlet and Thomson feasibility regions. This behavior can make the methods unstable,
particularly in the presence of noise. In contrast, the constrained least squares method restricts
the iterates to the Dirichlet infeasibility region. Hence, the constraint controls the change in σ and
does not allow the “zig-zag” behavior to occur and the feasibility constraint prevents the kind of
instability present in other two methods.

The recovered images of test conductivity 2 are displayed in figure 13. All three methods achieve
comparable resolution. However, the magnitudes obtained by the variational methods are better
than those of the output least squares algorithm. Both the output least squares and equation-error
methods show a few spurious artifacts while the constrained least squares method is smoother and
contains only one major artifact. Again, we see that the two least squares methods use the same
regularization parameter with different results.

The reconstructed images of test conductivity 3 are given in figure 14.

6.3.2 Numerical Results with 3% Noise

We repeat the reconstructions using regularization and the coarse grid initial guess with data
containing 3% noise. Figure 15 shows the reconstructed images of test conductivity 1. Here, the
output least squares is quite unsuccessful. The inclusion is very blurry and numerous artifacts are
introduced, particularly near the boundary. This sort of behavior usually indicates the need for
more regularization. However, with the same regularization, the constrained least squares method
produces a smooth reconstruction without significant artifacts. The inclusion is still of reasonable
resolution and magnitude. The constrained least squares method also outperforms the equation-
error method in terms of resolution.

The images recovered for test conductivity 2 are displayed in figure 16. In this case, the
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Figure 13: Reconstructions of test conductivity 2. Noise level: 1%.
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Figure 14: Reconstructions of test conductivity 3. Noise level: 1%.

output least squares method produces a relatively smooth image, but the magnitudes are very
low. The equation-error method achieves much better magnitudes but introduces many artifacts
near the boundary. The constrained least squares combines the best features of the other two
reconstructions. It produces an image that is quite smooth and of reasonable magnitude without
introducing many artifacts.

6.4 Summary of the Numerical Results

Based on the presented numerical results, we make the following observations on the performance
of the three methods on the set of test cases.

• The constrained least squares and equation-error variational methods are superior to output
least squares. Without noise in the data, the equation-error and constrained least squares
methods perform equally well. In the presence of noise, the constrained least squares method
appears to be better.

• The output least squares method fits the boundary data in the L2 norm as well as, or better
than the constrained least squares and equation-error methods. However, the variational
methods produce better images.

23



0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Output least squares (b) Equation-error (c) Constrained least squares

Figure 15: Reconstructions of test conductivity 3. Noise level: 3%
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Figure 16: Reconstructions of test conductivity 2. Noise level: 3%

• In the presence of noise and with the same regularization parameter, the constrained least
squares method is able to produce smoother images with less spurious artifacts than the
output least squares is.

7 Summary

We have introduced a set of variationally constrained reconstruction methods for electrical impedance
tomography. The Dirichlet and Thomson variational constraints on the conductivity function σ
have been previously introduced by Berryman and Kohn in [14]. In this paper, we analyze the con-
straints and show how to used them efficiently in inversion. We discuss a variety of algorithms and
describe in detail the implementation and the performance of one of them – the constrained least
squares approach. Comparisons with two well-known methods, the unconstrained least squares (see
for example [94]) and the equation-error [66, 93], are given. Traditionally, the unconstrained least
squares approach has been the method of choice, due to its simplicity and relatively low computa-
tional cost. However, the unconstrained least squares approach does not make the best use of the
measured data (i.e., boundary voltage V = (Λσ�)−1 I) because it fits the data in the convenient
L2(∂Ω)-norm, instead of the more natural and stronger H1/2(∂Ω)-norm. We have shown that vari-
ational constraints can be used efficiently to achieve a better fit and that at the reconstructed σ
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the current density j, satisfying the Neumann boundary conditions −j · n|∂Ω = I, and the poten-
tial φ, satisfying the Dirichlet boundary conditions φ|∂Ω = V , are correctly related by Ohm’s law
j = −σ∇φ. We show that achieving such a data fit can be done with acceptable computational cost
and that the resulting images of σ can have better resolution than those generated by conventional,
unconstrained least squares methods.
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