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Abstract 

In this study we develop and test a strategy for selectively sizing (multiplying by an 
appropriate scalar) the approximate Hessian matrix before it is updated in the BfGS 
and DFP trust-region methods for unconstrained optimization. Our numerical results 
imply that for use with the DFP update the Oren-Luenberger sizing factor is comple~ely 
satisfactory and selective sizing is vastly superior to the alternatives of never sizing. 
or first-iteration sizing, and is slightly better than the alternative of always sizing. 
Numerical experimentation showed that the Oren-Luenberger sizing factor is not a 
satisfactory sizing factor for use with the BFGS update. Therefore, based on our newly 
acquired understanding of the situation, we propose a damped Oren-Luenberger sizing 
factor to be used with the BFGS update. Our numerical experimentation implies that 
selectively sizing the BFGS update with the damped Oren-Luenberger sizing factor is 
superior to the alternatives. These results contradict the folk-axiom that sizing should 
be done only at the first iteration. They also show that without sufficient sizing, DFP 
is vastly inferior to BFGS; however, when selectively sized, DFP is competitive v.ith 
BFGS. 
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1 Introduction 

In this note we study the effect that s1zmg (multiplying the approximate Hessian by an 
appropriate scalar before it is updated) ha.s on the performance of the BFGS a.nd DFP 
trust-region methods for unconstrained optimization. We suggest sizing strategies for both 
these updates and include considerable numerical experimentation that indicates that our 
selective sizing is superior to the alternatives of never sizing, sizing only at the first iteration, 
or sizing at every iteration. Our experimentation also supports the common belief that sizing 
is more critical when using the DFP update than it is when using the BFGS update. In fact 
we were pleasantly surprised to see that in our experiments, when the DFP algorithm was 
sized according to our strategy, it performed numerically as well a.s the BFGS algorithm. 

In the remainder of this section we present some history and preliminaries concerning 
the notion of sizing. In Section 2 we consider some interesting properties of the Oren­
Luenberger sizing factor. Our numerical studies showed that the Oren-Luenberger sizing 
factor gives satisfactory performance when used with the DFP update, but not with the 
BFGS update. Hence, in Section 3, guided by the understanding gained in Section 2 and our 
numerical experimentation, we motivate and propose the damped Oren-Luenberger sizing 
factor. In Section 4 we describe our selective sizing strategy. Our numerical results are 
presented in Section 5, and in Section 6 we make some concluding remarks. Y../e make the 
basic assumption that the reader is familiar with at least chapters 6 and 9 of Dennis and 
Schnabel [6]. 

In 1974 Oren and Luenberger [12] proposed a class of secant methods which they referred 
to as self-scaling variable metric (SSVM) methods. Soon after, Oren and Spedicato [13] 
identified a subclass of the SSVM methods that had various desirable properties. Shanno and 
Phua [15], among other things, studied the BFGS secant update and its associated scaling as 
a member of the Oren-Spedicato subclass of SSVM methods. They argued that the BFGS 
update should be scaled only at the first iteration, as opposed to every iteration as is implied 
by the self-scaling philosophy. They presented numerical evidence that showed that in general 
scaling only the initial iteration was superior to scaling at every iteration. Our numerical 
experiments corroborated their findings when the Oren-Luenberger sizing factor was used; 
however, the opposite was true when the centered Oren-Luenberger sizing factor was used. 
In 1981 Dennis, Gay and Welsch [4] proposed the now well-known NL2SOL algorithm for 
the nonlinear least-squares problem. They incorporated several novel features into their 
algorithm. The basic framework consists of a Gauss-Newton trust-region method. In order 
to handle large residual problems they ma.iota.in a structured BFGS secant approximation 
to S-10 the second-order part of the least-squares Hessian, and adaptively decide when to 
use this approximation. One of their major concerns was that since secant methods do 
not generate approximations that become arbitrarily accurate as the iteration proceeds, the 
approximation to this second-order information may impede the fast convergence for zero 
residual problems, i.e., the second-order information may be zero at the solution, but the 
approximations Sk may not converge to zero. This deficiency was overcome in the following 
clever manner. First, they observed that the Oren-Luenberger scaling for the BFGS update, 
say "'/k, had the property that the interval spectrum of ,kSk essentially overlapped the interval 
spectrum of the matrix of the exact second-order information. Hence, by scaling by "'/k one 
could guarantee that "'/kSk would converge to zero when the second-order information was 
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zero at the solution. In this application it was critical that the scaling was done at each 
iteration; unlike the Shanno-Phua applications. Very recently, Huschens [8] utilizing the 
Dennis-Martinez-Tapia BFGS structure principle [5], has given a most elegant solution to 
this problem. In order to emphasize this spectrum shifting property, Dennis, Gay and \:Velsch 
decided to call the process of multiplying S1,; by 1 1,; "sizing" as opposed to scaling. We will 
follow Dennis, Gay and Welsch in this usage and actually rigorously define what we perceive 
this notion to be. We begin with the following definitions. 

Definition 1. 1 By the convex spectrum of a collection of n x n matrices A1 , ... , Am denoted 
conspectrum{ Ai- ... , Am }, we mean the convex hull of the eigenvalues of A 1 , ...• Am. 

\\Then A is symmetric the convex spectrum of A is an interval, and we therefore also refer 
to it as the interval spectrum of A. 

Definition 1.2 H1e say that the scalar I sizes BE Rnxn relative to A1 , ... , Am E ~xn if 

conspectru.m(,B)nconspectrum(A1 , ••• , Am)=/: q>. 

The following proposition illustrates the notion of sizing. It is easily extended to the 
general case: 

Proposition 1.1 Let A, BE Rnxn be symmetric matrices. Then the scalar, sizes B relative 
to A if and only if there exists u., v E ~ such that 

uT Au vTv 
1 = uTu vT Ev (l.l) 

Proof. The proof follows directly from well-known properties of the Rayleigh quotient. D 

Our objective is to size the approximate Hessian relative to the true Hessian before the 
update is made in a secant method. Our formal definition of this notion requires some 
motivation. 

Recall that by a secant method for approximating the minimizer of the C 2 function 
f: Rn-+ R we mean the iterative procedure 

(1.2) 

where B1c is an approximation to v'2 f(x1c) and Bk+1 = U(s, y, B1c), the update of B1c, satisfies 
the secant equation 

(1.3) 

with s = X1c+1 - x1,; and y = v' f(x1c+1) - v' f(x1,;). 
Without evaluating additional functions or gradients, the only Hessian information we 

have is y, and this is only approximate information. Specifically, y is an approximation 
to v'2 f(x)s. Moreover, since y is a vector and the standard mean-value-theorem does not 
necessarily hold for vector-valued functions, we do not know that there exists x E Rn such 
that y = v'2 f(x)s. However, McLeod's mean-value theorem [9] for vector-valued functions 
says that there exist x1 , x 2 , ••• , Xn E ~ such that y is contained in the convex hull of 
v'2 f(x 1)s, v'2 f(x2)s, ... , v'2 f(xn)s. Hence, when our Hessian information comes only from 
y, it would be shortsighted of us to define sizing in terms of the Hessian of f at just one 
point. We therefore propose the following definition. 

3 



Definition 1.3 Consider a C2 Junction J : R'1 - R. We say that the scalar I si=es B E 
/r'xn relative to the Hessian of J if there exists X1,X2, .. ,,xm E R'1 such that 

conspectrum(,B)nconspectrum('v2 J( x 1 ), 'v2 J (x2 ), ••• , 'v2 /(xm)) =I= ¢>. ( 1.4) 

We call the integer m the degree of the sizing factor 1 . 

The Oren-Luenberger sizing factor associated with the BFGS update and used by Shanno 
and Phua and Dennis, Gay, and Welsch is 

(1.5) 

B h al h · aTv2.J(r+8•)• r y t e mean-v ue t eorem we can wnte 1 = .r8 , 1or some O < 0 < 1_: hence 1 
sizes B relative to the Hessian off, and it is of degree 1. 

It is worth noting that as a direct consequence of the secant equation ( 1.3) we have 

yTs 
= 1; ( 1.6) 

hence in any secant method all approximate Hessian approximations, except the initial ap­
proximation, are automatically sized relative to the Hessian of f. This phenomenon seem­
ingly adds credibility to the Shanno-Phua doctrine of sizing only at the initial iteration. 

Dennis and \Volkowicz [7], defer to Shanno and Phua [15], and consider some interesting 
alternatives to sizing after the first step. 

Carter [3] in a very interesting work presented three procedures for safeguarding Hessian 
approximations. All three procedures selectively made changes to the Hessian approxima­
tions. One of these procedures (the one he liked least) is quite similar to ours. For the BFGS 
update he uses a.s the sizing factor for Bk 

yTs gT 9+ i - -= ..... + __ 
- sTsg{Bk9+ 

(1. 7) 

where s = XJc+i - XJc, y = 'v /(xJc+1 ) - 'v J(x1c) and 9+ = 'v J(x1c+d . Moreover, he 
sizes whenever i in (1.7) is less than 1. He stated that this choice of sizing for the BFGS 
method performed relatively poorly on large dimensional problems. We experienced a similar 
phenomenon with the Oren-Luenberger sizing factor (1.5); more will be said about this issue 
in Section 3. Observe that Carter's choice (1.7) sizes BJc relative to the Hessian of J and it 
is of degree 1. 

Al-Baali [1] also considered selective scaling for the BFGS update using various scaling 
strategies. 

2 Oren-Luenberger Sizing 

The following proposition and its corollary played a major motivational role in our original 
plan to selectively size both the DFP and the BFGS update with the Oren-Luenberger sizing 
factor (1.5). In the proposition we assume the standard assumptions for secant method 
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theory, see Dennis and Schnabel [6] for details, and we consider a secant method of the form 
(1.2)-(1.3) which generates symmetric and positive definite updates, e.g. the DFP or the 
BFGS secant method. 

Proposition 2.1 If the secant method (1.2)-(1.3) with steplength 1 converges q-superlinearly, 
T 

then the Oren-Luenberger sizing factory 'Yk = ~B converges to 1. 
•1c 1ca1c 

Proof: Suppose that {xk} converges to the minimizer x •. From the standard assumptions 
we know that 'v2 f(x.) is positive definite. Let,\* > 0 be the smallest, eigenvalue of 'v2 f(x.). 
In what follows the quantities s, y, and B should all be viewed with a subscript k. We have 

l

yTs _ sT Bs I< IIY - Bsll = ll'v2 
f(x.)s - Bsll + O(llsll). 

sT s sT s - 11s11 llsll (2.1) 

Also, 
llsTv2J(x.)s - sTBsll < 11v2J(x.)x -Bsll. 

sT s sT s - llsll (2.2) 

The Dennis More characterization of q-superlinear convergence (Theorem 8.2.4 of Dennis 
and Schnabel [6]) implies that the right-hand sides of (2.1) and (2.2) converge to zero. From 
(2.2) and properties of the Rayleigh quotient we have that lim inf a;.f/ ~ >. •. Let us write 

(2.3) 

The proof now follows from (2.1) and (2.3) since we have established that //~
6 

is uniformly 
bounded in k. D 

Corollary 2.1 Proposition 2.1 holds for the BFGS secant method without the assumption 
that the convergence is q-superlinear. 

Proof: Very recently Byrd, Tapia and Zhang [2] have demonstrated that under the standard 
assumptions if the BFGS secant method with steplength 1 converges, then the convergence 
is q-superlinear. D 

Armed with this encouragement we initially set out to selectively size both the BFGS 
and DFP secant trust-region methods using the Oren-Luenberger sizing factor. From the 
very beginning our success for DFP was immediate and significant. Even in the case when 
we sized at every iteration, the sizing factor seemed to be converging to 1. Initially we 
also experienced good success for the BFGS trust-region method. Only when we tried large 
dimensional problems, e.g. problems of dimension greater than 20, did we conclude that 
the Oren-Luenberger sizing and the bFGS secant update were a bad fit. For these larger 
problems sizing often hurt the performance; yet it often helped the performance, we could 
not determine when it would help or when it would hurt. It is interesting to note that Carter 
(3) mentioned that he also experienced poor performance for the larger dimensional problems 
when he selectively applied his sizing factor (1.7) to the BFGS secant method. \Ve noticed 
that in several examples the Oren-Luenberger sizing factor did not converge to 1. However, 

5 



in these examples the trust-region was active in some of the final iterations; hence Corollary 
2.1 did not seem to be violated. 

In a very interesting recent work Nocedal and Yuan [11] have studied the asymptotic 
behavior of the BFGS secant method using Oren-Luenberger sizing. Their theory implies 
that the sizing factor need not converge to 1 even if steplength 1 is taken. Hence, according 
to Proposition 2.1, Oren-Luenberger sizing may impede superlinear convergence. \Vhether 
such a theory exists for the DFP secant update is perhaps an interesting open question. 

3 Centered Oren-Luenberger Sizing 

We have argued that Oren-Luenberger sizing (1.5) and the BFGS update are not an effective 
combination. iw·e also feel that the same is probably true for Carter (1. 7) sizing and the BFGS 
update. Since in trust-region methods one does not have access to B-1 we do not have the 
option of using so-called "inverse sizing", i.e., multiplying B by 1 = 'IIT Jr,~ 1

Y. It is of some 
interest to note that according to our formal notion of sizing (Definition 1.3), "inverse sizing" 
is not a sizing of B. 

At this juncture it is our considered opinion that for the BFGS trust-region method 
there is no truly effective sizing factor of degree 1. Essentially we believe that a sizing 
factor of degree 1 does not carry enough information to consistently improve the oYerlap of 
the respective spectra for large dimensional problems. Therefore, in the following we will 
attempt to construct an effective sizing factor of degree greater than 1 for the BFGS update. 

Let us recall that the objective of sizing is to overlap the respective spectra. An ideal 
overlap would match the center of the interval spectrum of B with the center of the interval 
spectrum of v'2 J(x). Of course the centers of these interval spectra are not known. How­
ever, given various points in the interval spectrum, a convex combination, in particular the 
arithmetic mean (average), of these points serves as an approximation to the center of the 
interval spectrum. This is the central idea behind the sizing factor we are about to construct. 

In what follows we use the notations= Xk+i -xk, s_ = Xk-Xk-1, y = v' f(xk+ 1 )-v' f(xk), 
Y- = v' f(xk) - v' f(xk- 1). By the centered Oren-Luenberger sizing factor we mean 

• (J (l - Ok)(y!._s_)/(S!_s_) + (Ok)(y7 s)/(sT s) ,( k) - ____,; _ ____.;....;..______,.;..;....;...._...;..__.....;...__...;..__.....;.._ ____ _ 
- (1- Ok)(s:Bks-)/(s'!_s_) + (Ok)(sTBks)/(sTs) 

(3.1) 

where O :5 Ok :5 1. Clearly for Ok = l we obtain the Oren-Luenberger sizing factor, and for 
Ok = 0 we obtain the constant 1. To see this recall the secant equation Bks- = Y-. Our 
intuition tells us that we should be particularly interested in 1( Ok) for Ok = 1/2. 

The following proposition shows that -y(Ok) is also a "softening" or "dampening" of the 
Oren-Luenberger factor 'Yk· Recall that in standard implementations of the DFP and BFGS 
secant updates we don't update if yT s :5 0, and we are guaranteed that yT s > 0 near the 
solution. These concerns guarantee that Bk will be positive definite. Hence, no generality is 
lost by assuming that yT s, y!_s_, a.nd sT Bs a.re a.11 positive for the purpose of the following 
proposition. 

Proposition 3.1 The following statements are equivalent: 

(i) ik < 1; 
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(ii) 1(611:) < 1; 

(iii) 1k < 1((h). 

Proof: The proof is straightforward once we recall that B1i:s- = Y-. D 

Proposition 3.2 The scalar i((h) sizes B1i: relative to the Hessian off and is oj degree 2. 

Proof: The proof is straightforward. D 

It should be clear that a centered Oren-Luenberger s1Z1ng factor of degree m could 
be defined analogously to (3.1) by employing the quantities Sk, s1i:- 1 , ••• ,sk-m+l and Yk, 
Yk-1, ... , Yk-m+I · Since the centered Oren-Luenberger sizing factor of degree 2 gave satis­
factory numerical results we did not experiment with those of larger degree. 

4 Selective Sizing Strategy 

Our strategies, for both the BFGS and DFP, are to size at the first iteration using the Oren­
Luenberger sizing factor (1.5), and then selectively size at other iterations using the Oren­
Luenberger for the BFGS update. Recall that 1(611:) denotes the centered Oren-Luenberger 
sizing factor (3.1) and ik denotes the Oren-Luenberger sizing factor (B11

• Also t 1 and t2 are 
II I 

small positive constants and r1 and r2 are nonnegative constants. 
General Sizing Strategy 
Fork= 0 size Bo by max(t2, ,o). 
Fork= 1,2, ... let 011: = min(r1,r2lls11:II). 
If 1(611:) ~ 1 - t 1 , then size B1i: by max(t2,1(B11:)). 
DFP Sizing Strategy 
Choose r1 = 1 a.nd r2 large. 
BFGS Sizing Strategy 
Choose r1 = 1 /2 and r2 large. 

The inclusion of the features t 1 , f 2 and r2 serve as safeguards for our sizing strategy. The 
use of t 2 prevents us from inadvertently creating a nearly singular matrix by sizing with 
an excessively small constant. On rare occasions this feature was selected in our numerical 
experiments. The use of t 1 > 0 a.nd r2 > 0 ensures that sizing will eventually be shut off. 
To see this observe that with r2 > 0 we have that 011:-+ 0, so 1(611:)-+ 1, i.e., we have forced 
the sizing factor to converge to 1; in contrast to depending on, as yet, not fully understood 
theory. However, in our numerical experiments described in the following section we did not 
use this feature and always sized with 011: = 1 for DFP and 011: = 1/2 for BFGS. 

The choice r1 = 1 is extremely important for the DFP method. It has been our experience 
that DFP loves to be sized by the Oren-Luenberger sizing factor. On the other hand the 
choice r1 = 1/2 seems to be extremely important for the BFGS method. It seems as if sizing 
the BFGS method is a delicate issue especially for large dimensional problems, and using 2 
pieces of approximate Hessian information is significantly better than using just 1. 
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5 Numerical Results 

The sizing procedures of Section 4 were adapted to the secant trust-region algorithm in the 
Dennis-Schnabel code [6]. This code uses the locally constrained optimal step, or "Hook 
step", of Hebden (1973) and More [10] to obtain an approximate solution to the trust-region 
subproblem. The code allows only the BFGS secant update; so we added the option of using 
the DFP secant update. 

Six test functions plus Oren's Power Function were selected from the standard test set of 
More, Garbow and Hillstrom [10]. In the following table we use the notation f(d). Here f is 
an integer running from 1 to 7 and d denotes the number of variables or function arguments. 
We use J = 1 to signify the Helical Valley Function, J = 2 signifies the Penalty Function, 
J = 3 signifies the Extended Powell Singular Function., f = 4 signifies Oren's Power Func­
tion, f = 5 signifies the Extended Rosenbrock Function, f = 6 signifies the Trigonometric 
Function, and finally J = 7 signifies the \Vood Function. All of the above functions can 
be found in More, Gar bow, and Hillstrom [10]. except for Oren's Power Function, and this 
latter function is 

f(x) = (xT Ax)2 

where A= [aii], with aii = i8ij and 8ij denotes the Dirac delta function. 
To test the effectiveness of our sizing strategy, we modified the Dennis-Schnabel optimiza­

tion code to accept an arbitrary initial matrix B0 , in its unmodified form it always takes 
Bo = I and sizes only at the first iteration. \Ve chose several very ill-conditioned initial 
matrices as well as Bo = I. The notation D( a) denotes the diagonal matrix with all diagonal 
elements set equal to a. The notation D( a, b) means the diagonal matrix which alternates 
a and b along its diagonal. Initial matrix BTZ, q = n means the Byrd-Tapia-Zhang matrix, 
Bo = diagonal( o 1 , ... , an) +I, where ai = ( 1 - ( !-=:. i ) ) ( lOq - 1). The starting point is denoted 
by xo, We have chosen several nonstandard starting points, as well as the standard starting 
points that can also be found in More, Garbow, and Hillstrom. In all our experiments we 
allowed a maximum of 300 iterations. The letter F means failure, i.e., lack of convergence 
in 300 iterations. The stopping criterion used is the one used by the Dennis-Schnabel opti­
mization code, i.e., we define convergence when the relative gradient is less than or equal to 
1.0 x 10-5

• The machine used to obtain these numerical results was a Sun 3/160. 
In Table 2, the letters "n.s." mean we never size B1,; before updating; "a.s." means we 

always size B1,; when updating; "f.i.s." means we size only on the first iteration. "S.S(n.l.s)" 
means two things: the S.S. part denotes the number of iterations it took the algorithm to 
converge when we sized B1,; as described in Section 4, and the {n.l.s) part means out of the 
number of iterations it took to converge, how many times we sized. The symbol F· means the 
algorithm stopped very close to the answer after 300 iterations. Finally ( x 1 , x2 , x 3 , x 4 , ••• t· 
means repeat this set of numbers until the dimension of the problem. 

We found that when updating B1,; using the BFGS update effective choices for <:1 and 
<:2 were <:1 = .05 and <:2 = .1, and for the DFP update effective choices were <:1 = .001 
and <:2 = .1. Our results were not particularly sensitive to these choices. Our choice for 
r2 was 1.0 x 106

; hence our shut-off feature was never activated and we selectively sized 
until convergence. Table 1 is self explanatory and summarizes our numerical results for the 
various approaches applied to our 27 problem configurations. 
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Update Never Sizing Always Sizing lat Iteration Sizing Selective Sizing 
BFGS 12/27 20/27 15/27 27/27 
DFP 2/27 24/2, 0/27 26/27 

TABLE 1: Summary of Success Ratios 

6 Summary and Concluding Remarks 

In this note we studied the effect that sizing the approximate Hessian has on the BFGS and 
DFP trust-region methods. We accomplished this objective by adapting the Dennis-Schnabel 
BFGS trust-region code [6] to accept a user supplied initial Hessian approximation (they al­
ways use the identity) and to allow the user the option of the DFP secant update as well as 
the BFGS. We then ran the code on several standard test problems from the optimization 
literature using various starting points and various initial Hessian approximations. In or­
der to seriously challenge the algorithms studied we considered many nonstandard starting 
points which were quite far from the solution ( as well as the standard starting points) and 
several extremely ill-conditioned initial Hessian approximations. While our initial Hessian 
approximations were all diagonal matrices, some had condition numbers as large as 1024 • 

This numerical study led us to the following opinions. 
The DFP update desperately needs to be sized and the Oren-Luenberger sizing factor 

(1.5) is an excellent sizing factor for this update. In our study sizing at each iteration was 
only slightly inferior to our selective sizing strategy, and at this point we are not prepared 
to recommend one over the other. Without sizing, the DFP update is vastly inferior to the 
BFGS update. However, when properly sized it is superior to the unsized BFGS update and 
competitive with the selectively sized BFGS update. Our numerical experience has led us 
to the intuition that when sizing is working, the sizing factor is converging to 1. Moreover, 
always sizing seemed to demonstrate this behavior somewhat more consistently than our 
selective sizing did for the DFP update. 

We learned that sizing the BFGS update is a delicate issue for large dimensional problems. 
Our experience led us to the belief that sizing the BFGS update with a factor based on 
approximate Hessian information only at one point would not be completely effective. For 
this reason we developed what we call the centered Oren-Luenberger sizing factor to be used 
with the BFGS update. It uses approximate Hessian information gained at the current point 
and at the previous point to approximate the centers of the respective interval spectra, and 
both intuitively and experimentally seems to do a better job of overlapping the spectrum 
of the approximate Hessian with the spectrum of the Hessian. While more research and 
experimentation is needed in this direction, we believe that we have presented a convincing 
case that it is a viable alternative to traditional sizing. Indeed with this new form of sizing 
we obtained a success rate of 100% for the problems we tried. 

For both the BFGS and the DFP trust-region methods we found that, in general, we 
should size when our sizing factor was less than 1, and not size when it was greater than 1. 
These findings are clearly reflected in our sizing strategy described in Section 4, and we offer 

9 



f(d) Zo Bo Upd n.s. a.s. f.1.s. S.S.(n.t.s) 
1(3) (-10,1,10) D(I0", 10 '"') bfgs F F F 78(1 l) 

dfp T 54 T 64 36) 
1(3) (-1000,0,0) BTZ, q = 12 bfgs F 78 F 82(20) 

dfp F 92 F 85 43) 
2(4) ( 1,2,3,4) I bfgs 170 F 167 166(62) 

dfp F F F 235 142) 
2(4) {-1000,2000,3,4) I bfgs F F F 192(53) 

dfp F 275 F 222(94) 
2(20) (1,2,3, ... ,20) BTZ, q = 12 bfgs F F F 104(49) 

dfp F 78 F 93 62) 
2(20) (1,2,3, ... ,20) I bfgs 117 177 138 145(55) 

dfp F 265 F 188(114) 
3(4) (30000,-10,0,10) I bfgs 98 108 153 91(62) 

dfp F 95 F 98(70) 
3(4) (30000,-10,0.10) D(1on, 10-12 ) bfgs F 95 F 84(50) 

dfp t 101 F 93 68) 
3(24) (30000, -10, 0, 10, ... ) .. I bfgs F 231 F 187(77) 

dfp F 261 r 197173) 
3(24) (3, -1,0, l, ... ) .. I bfgs 61 68 49 48(20) 

afp t 63 F 83 29) 
3(24) (30000,-10, 0, 10, ... )** D(l012 , 10-12 ) bfgs F F F F* 

dfp F F F 241 102) 
4(4) (80000,1,1,1) I bfgs 100 74 F 75(64) 

dfp F 53 F 53(52) 
4(4) (1,1,1,1) I bfgs 35 26 56 26(25) 

dfp 168 19 F 19(18) 
4(20) (1,1,1, ... ,1) I bfgs 145 40 232 40(39) 

dfp F 26 F 26(25) 

4(20) (1,1,1, ... ,1) D(1012 , 10-12 ) bfgs F 215 F 155(44) 
dfp F 82 F 89(64) 

5(4) (-1.2,1,-1.2,1) I bfgs 51 64 147 55(18) 
dfp F 85 F 63 32) 

5(4) (-40000,1,-1.2,1) BTZ, q = 12 bfgs F 187 F 132(61) 
dfp F 137 F 1231 77) 

5(20) (-4()(X)(), 1, -1.2, 1)** BTZ, q = 12 bfgs F F F 244 72) 
dfp F 203 F 172 81) 

5(20) (-100.5,40, -100.5,40, ... )** I bfgs F 210 243 186(50) 
dfp F 296 F 263(86) 

5(20) (-1.2, 1, -1.2, 1)** D(1012 , 10-12 ) bfgs F 183 172 104(18) 
dfp F 170 F 170(58) 

5(20) (-40, -20, 20, 20, ... )·· D(l0", 10 "") bfgs F F 215 F* 
dfp F F F F 

5(20) (-1.2, 1, -1.2, 1, ... )** I bfgs 136 84 44 135(20) 
dfp T 146 T 125/38) 

6(4) ( .5,.5,.58,.5) BTZ, q = 11 bfgs F F 47 68(11) 
dfp F 70 T 59124\ 

6(30) (.5, .5, .58,5, ... ) .. BTZ, q = 12 bfgs F 122 F 129( 46) 
dfp T 86 T 84(40} 

6(33) ( .5, .5, .58, .5, ... ) •• I bfgs 39 34 138 34(15) 
afp 191 52 T 36(10} 

7(4) (-3,-1,-3,-1) I bfgs 50 133 38 115 28) 
dfp F 178 F 121168) 

7(4) (-300,-100,-300,-100) 0(99999) bfgs 100 71 152 75(39) 
dfp F 135 F 90(58} 

TABLE 2: Numerical Results 
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the following plausible explanation. 
When the sizing factor is greater than 1, Bk is "small"' relative to the Hessian in some 

(as yet undefined) sense; hence sk = -B; 1 V f(x1c) will be "large". However, the trust 
region strategy can compensate for a "large" sk; it merely reduces the trust-region radius 
and resolves the subproblem. On the other hand when our sizing factor is less than 1, Bk 
is "large" in this undefined sense; hence Sk is "small". The trust-region strategy accepts s1c, 

since it is "small" and contained in the trust region. This could continue for several iterations; 
producing very slow progress towards convergence, since the steps would be excessively 
"small". In this case sizing would help by making Bk+i "smaller" and the resulting sk+ 1 

"larger". 
We believe that it is appropriate to end this section with a discussion which demonstrates 

the value, the beauty, and the subtlety of sizing. Let us consider the application of the 
gradient method to the strictly convex quadratic functions f ( x) with Hessian A. The gradient 
method with steplength o:1c is the iterative procedure 

( 6.1) 

By rewriting (6.1) as 
(6.2) 

we can view the gradient method with steplength o:1c as a quasi-Newton method which 
employs steplength 1, but sizes the approximate Hessian (the identity matrix) with the sizing 
factor ,k = o:; 1

. The standard gradient method chooses the steplength by a I-dimensional 
minimization and in this case would give ,k = g[ Agk/ g[ 9k where 9k = V f(xk)- This is 
clearly a sizing factor for I and has some of the flavor of the Carter sizing factor ( 1. 7). 
Recently, in a very elegant and interesting work Raydan [14] demonstrated that if instead 

one chooses the steplength by choosing the sizing factor ik+i = •f7As,., where s1. = Xk+i - Xk, .,. .,. 
then superior convergence behavior is obtained and superlinear convergence results for a 
subclass of problems. Notice that this choice of steplength is equivalent to applying Oren­
Luenberger sizing. Raydan 's theory demonstrates that while two Rayleigh quotients may 
both give points in the interval spectrum of A, one may have hidden properties which make 
it particularly effective for the application in question. 
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