A Variable-metric Variant of the
Karmarkar Algorithm for Linear Programming

JE. Dennis, Jr.! -

A M. Morshedi®
and
Kathryn Turner®
Technical Report 86-13, June 1986

Revised July 1986, September 1986, and January 1987

IMathemati-al Sciences Department, Rice University, Houston, Texas 77251-1892. Research sponsored Ly DOE DE-
AS05-82ER13016. ARO DAAG-29-83-K-0035, AFOSR 85-0243.

2Shell Development Company, Westhollow Research Center, Houston, Texas 77001

3Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. Research sponsored by ARO
DAAG-29-83-K-0035, AFOSR 85-0243, Shell Development Company.

A Variable-metric Variant of the Karmarkar Algorithm

for Linear Programming

J.E. Dennis, Jr.!, A.M. Morshedi?, and Kathryn Turner?

Technical Report 86-13, June 1986

Revised July 1986, September 1986, and January 1987

Abstract

The most time-consuming part of the Karmarkar algorithm for linear pro-
gramming is the projection of a vector onto the nullspace of a matrix that
changes at each iteration. We present a variant of the Karmarkar algorithm that
uses standard variable-metric techniques in an innovative way to approximate
this projection. In limited tests, this modification greatly reduces the number of
matrix factorizations needed for the solution of linear programming problems.

Key words:
linear programming
Karmarkar algorithm
projective algorithm
variable-metric Karmarkar

Abbreviated title:

Variable-metric Karmarkar Algorithm

'Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. Research sponsored t v+ DOE DE-
AS05-82ER13016. ARO DAAG-29-83-K-0035, AFOSR 85-0243.

2Shell Development Company, Westhollow Research Center, Houston, Texas 77001

SMathematical Sciences Department, Rice University, Houston, Texas 77251-1892. Research sponsor¢: by ARO
DAAG-29-83-K-0035, AFOSR 85-0243, Shell Development Company.

1. Introduction: the Karmarkar algorithm

Since the introduction of the polynomial time algorithm for linear program-
ming by N. Karmarkar [1984], there has been considerable interest in its use, and
in developing strategies for modifying the algorithm to achieve greater computa-
tional efficiency. We present a variable-metric variant of the Karmarkar algo-
rithm. The algorithm as proposed by Karmarkar employs a projective transfor-
mation to map the feasible region of the linear program onto the intersection of a

simplex with an affine space, and then solves the problem

minimize cTx

subject to Az =0

eT$=n

z > 0,
where ¢,z,e € R", A € R™*", and e=(1, - - - ,l)T' We follow the suggestion
of Shanno and Marsten [1985] in using eTz = n, rather than eTz = 1, as used
by Karmarkar [1984]. We transform a standard linear programming problem to
the above form by commonly used strategies that do not involve a projective
transformation. For completeness, we include these strategies in Appendix I. We
shall also assume that the minimum value of the objective function ¢ Tz is zero,
and that we have an initial feasible point £,>0. A means of getting such an ini-
tial feasible point and of transforming a given objective function to an objective

function whose minimum value is zero is also included in Appendix I.

At each step of the Karmarkar algorithm, the current iterate (z,, - - - ,z,)7
is mapped to the center (1, - - - ,l)T of the simplex by the projective transforma-
tion

. n -1
T = ———D7'z1,
eTD 1z

where D = diag (z,, " - - ,z,), and we use z to denote the transformed variable.

A step is taken in the transformed space in the direction of the negative pro-
jected gradient of a linear function, and the new point in the untransformed
space is found by applying the inverse of the above projective transformation
(restricted to {z ER" : z > 0, ez = n}),

n

Dz .
eT D3

I ==

The Karmarkar algorithm is :

given an initial feasible point z, > 0

begin
T = 1'0
while ¢ Tz is too large
do
. D
D = diag (z,, - ,z,)), B = [’:T}
project Dc onto the nullspace of B :
¢, = [I-BT(BBT)'B|Dc
T =¢e~ac,
n .
I = ———Dz
eI D
end do
end

In section 3 we discuss how the steplength parameter « is chosen at each step.

2. A variable-metric variant of the Karmarkar algorithm

The most time-consuming part of the Karmarkar algorithm is the projection
of the vector Dc onto the nullspace of a matrix B that changes at each iteration.
We propose to approximate the direction so obtained, using secant updates to the
initial matrix. The updating strategies we have adapted for use in this context
have been used very successfully in the solution of nonlinear equations and in the
minimization of nonlinear functions. By employing updates we reduce the
amount of work required at each step, since we bypass the need to obtain a

matrix factorization at every step. We shall approximate the direction

¢, = [I-BT(BBT)'B]Dc by

¢, = D'D[I-BT(BBTY'B|D"., (2.1)
where

R AD A
B = | =
L T ol D] BD'D,
and D is a nonsingular approximation to D. The new iterate in the transformed

space is given by

Before addressing the way we obtain the matrix 13, we note that any direction ¢,

computed in this manner is a feasible direction for the linear program and the

negative of it is a descent direction for Karmarkar's potential function,

1 cTz
[(z)= Y log— . (2.2)

=1 Z

Feasibility of the direction ¢, follows from the observation that ¢, is in the
nullspace of B. Karmarkar's proof of the convergence of his algorithm and his
polynomial time bound are based on achieving at least a constant amount of

reduction in the potential function (2.2) at each step. This potential function is

transformable by the projective transformation to a function having the same

form. When [is expressed in terms of the transformed variable, we have

J(z) = 3 log<DE

- + constant,
=1 I,

so that in the transformed space, we may consider

i 1 cTDz
f(z)= } log——. (2.3)
1=1 T,
Now
Vif(i)= Tn~ Dc - D7'e, where D = diag (%, - ,%,),
¢’ Dz
and

V./[(e)=—]——Dc -,

where z, denotes the current iterate in the untransformed space. The direction

—¢, is a non-ascent direction for the potential function in the transformed space

since
v [(e)(-¢,) = —cT:cc Dc + ¢| ¢,
= ——cTD[I-BTBBTY'B|D ¢
CTJ?

In order to show that the direction ¢, is a descent direction for the poten-

tial function, we note that ¢, # 0, since there exists a step in the direction —¢,

that yields a reduction in the potential function, and that —¢, can fail to be a

P
descent direction only if DT¢ is orthogonal to the nullspace of B. Butif DTc is

orthogonal to the nullspace of B, then there exists y € R™ such that

BTy =DT¢
DTD BTy = DT¢, and since D is nonsingular,
BTy = De,

which contradicts the fact that ¢, 0.

Our modification of the Karmarkar algorithm requires a factorization of the
initial matrix (ADy)(AD)T only. Thereafter, as is the usual approach in compu-
tations for large problems, update vectors are stored, and the projection compu-
tation is done cheaply, requiring only solutions of linear systems from the initially

factored matrix, scalar products, and sums of vectors.

We begin with ﬁo = D,, a diagonal matrix whose diagonal elements are the
components of the initial feasible point z,. We may obtain rank-one secant
updates to this matrix through the use of one of two nonlinear functions whose
gradients and Hessians involve the matrix D. The first and simplest of these is a
logarithmic barrier function, and the second is the potential function we have

already defined. Let us first examine the logarithmic barrier function.

Applying the barrier transformation to

min cTz

z

subject to Az

(2.4)
eTe =n
z >0
gives
n
min F(z)=c¢Tz - pYlog z;
z =1
2.5
subject to Ar = (2:5)
elz =n,

the inequality constraints having been replaced by a term in the objective func-

tion. It is well known (see, for example, Gill, Murray, Saunders, Tomlin, and

Wright, [1985]) that under mild hypotheses the solution to (2.5) converges to the
solution of (2.4) as u—0. It is not our intention to solve problem (2.5) for any
value of u; we intend merely to use the logarithmic barrier function, whose gra-
dient and Hessian involve the matrix D , in order to obtain an approximation to

this matrix. We have
V,F(z)= ¢ - uD e,
where D = diag (z,, - - ,z,) ande = (1, - -,1)7; and
V2iF(z)=uD™2.

Analogous to the idea of a secant approximation to the derivative of a function of
one variable as the ratio of the change in function values to the change in the
independent variable, a secant approximation to a Hessian is obtained by requir-
ing the new approximation to the Hessian acting on the step in the independent
variable to produce the difference in gradient vectors at the new and previous
points. Using the subscript + to refer to the new iterate and the subscript ¢ to

refer to the previous (current) iterate, we may write the secant equation based on

the logarithmic barrier function as

uDF(z,-2.) = (c - uD3le) - (¢ - uD;%e) 25)
D-T—Q (:I?,,_-.'l?c) = (Dc—l - D-T—l)e'
We compute the righthand side exactly. Letting y, denote (D;/!- D:!)e and,

not wishing to require the approximation D to be symmetric, replacing D2 with

A ~

D_.D I , we require the approximation to satisfy
_z,)=D_DT
(242, +Y 49

An approximation based on the potential function (2.2) requires a very simi-

lar secant equation to be satisfied. Recall that the potential function is

f@) = $logtL,

i=1 z
so that

v.[(z)= ';, ¢ -Dle,

clz
Vif(z)= D2~ Tn = ceT,
(c”z)
and the secant equation is
D - +ccrl(z+—zc) = [Tn c —D;lc) - [: ¢ -Dle
(cTz,)? clz, c'z,

Moving the second term on the lefthand side of the equation to the righthand

side and collecting terms gives

n(cTz,—cTz,)?

T T (e Tn)

Now letting y, denote the righthand side of the above equation, and again

D (z,~z,) = (D;-D;')e (2.7)

A

replacing D E with ﬁ+ﬁ I , We require the approximation to satisfy
(24-7) = D+D1yp .

Recall that the matrix we are trying to approximate is a known diagonal
matrix. A third and even simpler alternative requirement that can be imposed on

the approximation is that it satisfy
D;2(I+—1'c)=D;2(I+—IC). (2'8)

We shall use y; to denote D;2 (z,—z.) and express this requirement as

A

(z4-2.) =D Dy .

To obtain an updating formula based on the barrier function or on the
potential function or on the true matrix D, (y denotes either y, or y, or y,,the

righthand side of equation (2.6) or (2.7) or (2.8), respectively), we follow Dennis

and Schnabel [1983]. For completeness, we include the development of the

updating formula here. We express the requirement (z,-z.) = D +ﬁfy as

(z4-2.) = D+v
o 2.9
ey (2.9)

for some vector v € R" . Now we use the Broyden updating formula to obtain

D 4+ as the closest matrix to Dc consistent with satisfying the first part of (2.9):

. . z,~z,~D,v)vT
D+=Dc+(+ ‘T‘) (2.10)
viv
The second part of (2.9) requires that
AT AT ($+“$c_bc”)Ty
v=D,y=Diy + — v, (2.11)
vTy
and this can be satisfied only if
=, pT
v=«kD.y (2.12)
for some k& € IR. Now substituting (2.12) into (2.11) and simplifying gives
2 ($+-—$c)Ty
K™= T A AT -
y TDC Dy
Assuming (z,-z,)Ty > 0, we choose the positive root, so that
T
z.-z,)'y .
[ty N g, -
(D y) (D)

For the update based on the true D, y, = D;?(z,~z.), so that
' ($+‘zc)T!/t = ($+_Ic)TD;2($+‘$c) >0.

For the update based on the barrier function, y, = (D;'~D}!)e, and we have
(x+_$c)T!/b = (z+—xc)TDc'1D;1 (z,-2)>0.

For the update based on the potential function,

n(cTz,—cTz,)?

T T

) T T T

¢ , so that

nlef(z, -2

(z,-2.)Ty, = (2,-2.)TD;'D7 (2, -12,) - ,
+ c 4 + c ¢ + + ¢ (CT1+)2(CT$C)

which is not guaranteed to be positive, but is certainly positive if

Tz+ < cT:z:c . If this updating strategy is being used and the above is not

¢
positive at some step, we choose to use the update based on the true D, rather
than reject the update altogether. Thus far in our computational testing, the

situation in which (z+-zc)ryp < 0 has not arisen.

The updating formula given by equation (2.10) was obtained as a least-
change secant update for approximating D, the matrix we are interested in, mak-
ing use of nonlinear functions whose gradients and Hessians involve the matrix
D!, We have also explored the use of the ﬁpdating strategy that changes the
approximation to the Hessian of the nonlinear function as little as possible (rather
than changing the approximation to the inverse of the Hessian as little as possi-
ble) consistent with having the approximation satisfy the secant equation (2.6) or

(2.7) or the condition (2.8). Using this approach, the approximation is required to
satisfy

DD M(as-z) =,
and analogous to (2.9), we express this requirement as
g’
-T
F(zy-zc)

for some vector v € R® . Now the closest matrix 13;1 to 13;1 satisfying the first

y
v

Il
SHIC

(2.14)

part of (2.14) is

(y-D v)o”

’
UTU

b;l = ﬁc-l + (2.15)

and from the second part of (2.14) we obtain

10

v = _ yT(x+" c) *
(ﬁc—T(x+— T))T(ﬁc-r(x+ — T))

ﬁc’T(x+—zc) . (2.16)

Using the Sherman-Morrison-Woodbury formula, (2.15) is equivalent to

(v—‘bcy)(x+_xc)T .

D,=D, +
* ‘ yT(x+'—xc)

(2.17)

Use of the update given by (2.17) requires more computation and more storage
than is required if the update given by (2.10) is used, as we shall discuss in sec-
tion 3. Furthermore, numerical experience thus far has indicated better perfor-
mance is achieved using the update given by (2.10). The modified algorithm will

be referred to as the DMT-Karmarkar algorithm.

3. Computational issues in the DMT-Karmarkar algorithm

3.1 Update vectors

The computation of ¢, requires the solution of a linear system with

coefficient matrix BBT . Since

where M = (AD)(AD)T, & = ADDTD'e, and o= eTD'DDTD e, we
need only be concerned with solving a linear system with coefficient matrix
(AD)(Aﬁ)T We first discuss the computation of ¢, using the update to D given
by (2.10) and (2.13). Referring to the updating formula (2.10),

. . AD_v)oT . T
AD+=ADC-(—‘Tl——=ADc [1- =]
vTv vTv

Hence,

11

L. . Ty, .
(AD XAD,)T = AD, [1 - -"-'-’T—] (AD)T
v v
(AD.v)(AD, v)T

vTv

= (Abc)(Abc)T -

Now letting M, and M, denote (AD,)(AD,)T and (AD,)(AD,)T, respectively,

and setting w = Aﬁcv and 8 = vT v, the Sherman-Morrison-Woodbury formula
gives
- Tas-
M lwwTM
B-wT M w

T
M;l=‘M,_.—"";] =M1+

Setting t = M, 'w and y= - wIMw , this is

T
= [I + —“—”——]M;l .
v

In summary, at each step of the algorithm we save four vectors and two

scalars : v,u € R*, w,t € R™, and A,y € R as follows:

T
T,-Z . .
= ‘(_;i‘i')‘_-f‘y— bly, w=4Dyv,
(Dc y) (Déy)
A A A 3.1.1
v =12,-2 -Dv, t = [(ADc)(ADc)T]_lw ’ ()
ﬂ_—_vTv, Fy=ﬂ-—th.
The computation of ¢, is carried out using
T T
. u,v uv
Dy =Dg+ —+ + -+ 4+ 22 (3.1.2)
B B

and

Liw

. towd T
[(ADg (ADy)T]! = [1 + 22] - [1 + =][(ADO)(ADO)T]",(3.1.3)

Yk "

so that the only factorization needed for k steps of the algorithm is of the initial

13

matrix (ADo ADy)T . Notice also that vector or pipeline architectures are

immediately applicable to the required computations.

We are indebted to M.J. Todd (private communication) for pointing out to
us that computational savings may be realized if the updates to M~! are saved in
factored form. To this end, suppose that (AD,YAD,)T = L,LI Then
(ADYAD)T ' = L;TL ' = N,NT, and

N, NTwwTN, NT

M' =N, NT +
* o B-wIN,NTw

Setting ¢ = NJw andy=fg-¢Tq + [B(8 - qTq)]", we obtain

N,q¢TNT

M} =NNT+
+ ct'c ﬂ—qTq

T
=Nc I+—qLT—]NCT
P-49¢

T T
=N, 1+—‘”l—] [1+-‘-"l—] NT,
9 9

so that the update to the Cholesky factor is given by

T
N+=Nc[1+-‘1‘{—
i

Using this approach, one would save, at each step of the algorithm, three
vectors and two scalars : v,u € R", ¢ € R™, and ﬂ,:y € IR as follows :

)

(I+_Ic)Ty AT N
Dy, q = NCTADCv ,

BIy)T(Dly)

B=vTv, y=P8-q¢Tq¢+8(B-qTq) .

13

The computation of ¢, would be carried out using (3.1.2) and

[(AD)(AD,)T = N NT (3.1.4)
where
Nk _ No I+ 9191 ” 9292 I+ qqu
Tk

Saving the updates in factored form would save storage of w , and the computa-
tion of ¢ rather than ¢ would save n floating point operations, where n is the
number of nonzeros in the Cholesky factor of (ADo)(ADy)T . The computation
(3.1.4), however, would require mk more floating point operations than (3.1.3) at
the kth step, so that the amount of computation saved would vary, depending on
sparsity. The implementation for which we give numerical results in section 4

uses updates (3.1.1).

If the updating formula given by (2.17) supported by (2.16) is used, the com-
putation of ¢, requires twice as much storage and nearly twice as much work as
this computation using updating formula (2.10) supported by (2.13). This is
because the use of (2.17) leads to a rank-two update to obtain (AD_ YAD,)T
from (AD,)(AD,)T at each step. At each step of the modified algorithm using
the update (2.17), the eight vectors s,v,u,t € R® and p,q,d,g € R™ and the

four scalars 8,v,m, and p are saved :

§ =1z, -1, p = Au,
y's Y, ;
P BTG Ty) e T A
. T
s =v-D,y, d = Mg + sﬂsp),

t =D lu, g =M1, »p,

14

B=1yTs, n=p+pT4d,
y=vTy, p=p+q7yg,

where M, = (AD,)(AD.)T,

d
Mk'—11=l1'g“q“]ll‘ klpkl]”_
Pi-1 'Ikl

9191 1P1

l [ADO AD)T].-)
and

d T
M:_l%=[1— kPk)[I_gkl‘Ikl] lI_ k—lpkq)“.
Pbl Ne-1

919 p
. [JERALE) dipf T)-1
The approximation 15,: is given by
T T
~ U181 U Sk
Dk = Do + + - +
ﬂl ﬂk
The computation of v requires ﬁ,"Ts. The matrix ﬁk'l is
R t,vl vl
Dk-l=D61" ll___._kk
) B/}

Using updating formula (2.17), it is still the case that the only matrix factoriza-

tion needed for k steps of the algorithm is of the initial matrix (ADg)(ADg)T

3.2 Restarting strategy for the DMT-Karmarkar algorithm

In practice, there is a limit on the number of update vectors one is willing to
store. We have implemented two ways of proceeding when the allotted storage
has been used. The option we recommend is to restart, treating the current point
as the initial point. This, of course, requires another matrix factorization. In our
implementation, the restart strategy includes restarting when the approximation

appears not to give a direction of sufficient decrease as well as when the

16

maximum number of update vectors has been saved. We also plan to try a res-
tart strategy based on the partial refactorization suggested by Karmarkar [1984]
and studied by Shanno [1985b]. A second option that we have considered but do
not recommend is to discard all previous updates, and treat the current point as
the first point; that is, to replace the collection of updates with a single update as
if the current point had been reached in one step from the initial point. One
may also combine the two strategies, electing to perform an additional matrix
factorization only when it is determined that progress is not being made. Using
the pure strategy of discarding updates means that only the initial matrix is fac-
tored. This can yield the solution to the problem at modest expense and using
very limited storage, but convergence in this case is not guaranteed. We recom-
mend the restarting strategy over the discarding strategy, both for its sound
theoretical basis and for its superior performance in practice. Use of the restart-
ing strategy results in an algorithm that retains the polynomial worst case time
bound of the Karmarkar algorithm, since our step acceptance criterion, to be dis-
cussed below, requires reduction of the potential function by at least the constant
amount at each step that is guaranteed for the Karmarkar algorithm, and clearly

one can always get this reduction by restarting.

A natural question to ask is whether it is advantageous to use update vec-
tors at all in the DMT-Karmarkar algorithm. A reasonable alternative strategy
within the framework we have established in (2.1) is, as mentioned by Gill, Mur-
ray, Saunders, and Wright [1986], to retain the same approximation to D for
several iterations before recomputing a factorization. In an algorithm with
periodic restarts, one would have D; = Dy for 0 < ¢ < k-1 for some k, and
then treat the kth iterate as the initial point. We have also explored the use of

this strategy.

16

3.3 Linesearch and step acceptance criterion

Our implementation of the DMT-Karmarkar algorithm includes a linesearch
with a three faceted step acceptance criterion as a way of selecting the
steplength. The step acceptance criterion ensures that our algorithm with res-
tarts retains the polynomial time bound of the unmodified Karmarkar algorithm
but, rather than restricting steps to have a predetermined fixed length, allows
taking longer steps when it appears advantageous to do so. We interpret failure
to find an acceptable step after a specified number of trial steps as an indication
that a restart is needed. Our first trial steplength is .99 of the distance to the
edge of the simplex; our third trial steplength is .99 of the radius of the largest
sphere that can be inscribed in the simplex, and our second trial steplength is
midway between the first and third. Beginning with the fourth trial step, each is
half as long as the previous trial step. Our step acceptance criterion is a combi-
nation of the Karmarkar criterion, the Goldstein-Armijo condition, and reduction
of the linear objective function. The Karmarkar criterion, which is used to prove
convergence of the algorithm in polynomial time, requires at least a constant
amount of reduction in the potential function (2.3) at every step:

j(e"aép) S](e)_5

3.3.1
=nlogeTz, -6 (8:3.1)

where § is the minimum reduction in the potential function that is guaranteed for

each step of the Karmarkar algorithm. The Goldstein-Armijo condition (see, for

example, Dennis and Schnabel [1983]), requires that the average rate of decrease

in the potential function from z . to Z , be at least a prescribed fraction (\) of

the initial rate of decrease in that direction:
fESTEI)HINVIEN(EL-7,);

that is,

17

= . An .
f(e-ai) < nlog cTz, - a T, (Dc)TcP . (3.3.2)
[4
In order to determine whether the trial step would result in a reduction of the

T

linear function ¢“ z , we consider the objective value of the image of the trial

step in the untransformed space, and determine whether the trial step satisfies

T n Tpnx T
cls, =——c'Dz < c'z, .

+ 7Dz, + ¢ (3.3.3)
The lower bound & on reduction in the potential function obtained by Karmarkar
is dependent on the size of the problem as well as the steplength, and ensures
reduction of the potential function at each step by at least .1 for a step in the
direction —c¢, of length equal to one-fourth the radius of the largest sphere that

can be inscribed in the simplex, provided the number of variables in the problem

is at least 21. Since our test problems are larger than that, we use 6§ = .1 .

Our real objective is minimization of the linear function ¢Tz . While the
linear function is not transformed to a linear function under projective transfor-
mation, straight lines do map to straight lines under projective transformation, so
that the level sets of the linear function are mapped to flats in the transformed
space. Therefore, if the direction we are considering gives descent on the linear
function, it seems sensible to take the longest possible step in that direction that
satisfies (3.3.1). In the event our direction is not a descent direction for the linear
function, we guard against taking a step too long relative to the amount of
reduction achieved in the potential function by requiring our step to satisfy
(3.3.2) as well as (3.3.1). That is to say, we accept the step as soon as the trial
step satisfies (3.3.1) and either (3.3.2) or (3.3.3). For an iteration at which a res-
tart has been done, if a longer step does not satisfy (3.3.1) and either (3.3.2) or
(3.3.3), we accept a step in the direction —c, of length equal to one-fourth the

radius of the largest inscribed sphere. It will always satisfy (3.3.1).

18

4. Numerical results

Preliminary testing using an experimental implementation of the DMT-
Karmarkar algorithm has given very encouraging computational results. We
have used eight test problems. The first is a problem with one hundred seven
variables and sixty-seven constraints that we obtained from Shell Development
Company; the second through eighth are test problems from the Systems Optimi-
zation Laboratory at Stanford University that we obtained through netlib (see
Gay [1985b]). The number of variables shown for each problem includes slack
variables introduced to transform inequality constraints to equalities, but does
not include the two additional slack variables discussed in Appendix I. Results
obtained solving these problems using various options in the DMT-Karmarkar
algorithm are summarized in tables 4.1 through 4.8. For each problem, a feasible
starting point r, was obtained using the technique advocated by Karmarkar,
which we include in Appendix I, from the initial point (1, - - - ,1)T . All options
were then run from the same feasible starting point. The number of steps to con-
vergence shown in the tables does not include steps required to obtain the start-
ing point. The first option shown for each problem is restarting every step,
which means that the Karmarkar algorithm, modified only by the incorporation
of a linesearch, is used. In each instance, restart after k updates really means
that a restart is done after saving at most k updates; that is, at least as often
as every k + 1 steps. A new factorization is done earlier whenever the linesearch
is unsuccessful. Similarly, restart after k steps (using no updates, but retaining
the same approximation to D between factorizations) means restart after at
most k steps. To test the DMT-Karmarkar algorithm against the Karmarkar
algorithm, we solved the test problems to only limited accuracy. We expect that
relative times needed to compute more accurate solutions would be similar to

those given in tables 4.1 through 4.8. For all problems, the stopping criterion

19

was ¢z < 103¢ Tzo . This gave three to four digits of accuracy in the optimal
objective values for all of the test problems except ISRAEL, where only one digit
of accuracy in the optimal objective value was obtained. Subsequently, we con-
tinued the solution of ISRAEL. We obtained four digits of accuracy in the
optimal objective value at the cost of twelve additional steps and factorizations
using the Karmarkar algorithm, seventeen steps with nine factorizations restart-
ing after one update, twenty-eight steps with seven factorizations restarting after

three updates, and thirty-four steps with six factorizations restarting after five

updates.

In tables 4.1 through 4.8 the update used is identified as follows :

update number updating formula righthand side of
secant equation

1 2.10 y; of (2.6

2 2.17 v, of (2.6

3 2.17 y, of (2.7

4 2.10 y, of (2.7

5 2.10 y, of (2.8

6 2.17 1y, of (2.8

For options involving the use of updates, we show only the results obtained
using the most successful updating formula. In general, better performance was
achieved using updating formulas 1, 4 and 5, the least change updates to D
based on the barrier function, the potential function, and on the true D, respec-
tively, than was achieved using updating formulas 2, 3 and 6, the updates that
result from the strategy of least change to the Hessians (1.e. least change to ﬁ'l)
of the functions used to obtain the approximations. The most successful updat-
ing formula was the simplest, the least change update to D based on the true D,
identified as update 5. In cases where two or more updating formulas produced

identical results in number of steps and factorizations needed to obtain the solu-

tions, times given are for updating formula 5.

We have obtained timings solving the test problems on a Pyramid 90x, using
the Unix operating system OSx version 2.5. Times are the sum of CPU times
attributed to the user and to the operating system in seconds, rounded to the
nearest second. The last column of each table contains normalized times, the
ratio of the time required to obtain the solution using the given option to the

time required using the Karmarkar algorithm (with linesearch).

For each of the test problems, use of the DMT-Karmarkar algorithm with
periodic restarts, and using rank-one updates to approximate D at each step,
results in obtaining the solution with (generally but not monotonically) progres-
sively fewer matrix factorizations as the number of updates allowed between fac-
torizations increases. Of course, the number of iterations required to obtain the
solution increases as the number of factorizations decreases. Timings on the test
problems indicate an overall reduction in the amount of work can be achieved
using the DMT-Karmarkar algorithm, compared to the Karmarkar algorithm, for
all problems except our smallest test problem, AFIRO (Table 4.2). Timings are
accurate only to within about one second, so that little significance should be
given to relative times for solving this very small problem that takes only two to
three seconds. The largest percentages of savings in computational effort appear,

as one would expect, in the larger problems, ISRAEL (Table 4.7) and BRANDY
(Table 4.8).

The strategy of periodic restarts with no updates used may be advantageous
if only a few steps are taken between restarts. The increase in number of steps

required is generally greater, and the number of factorizations saved is generally
smaller, than occurs when update vectors are used, but the computation of steps

that require neither factorizations nor updates is very inexpensive.

1

R

Option

A S

Update | Steps

Factorizations

Time

Test problem: SHELL: 107 variables, 67 constraints

Time/Time(K)

I D

Restart
every step 8 8 17 1.00
after 1 update 5 12 6 16 94
after 2 updates 5 14 5 15 .88
after 4 updates 5 18 4 16 94
after 9 updates 5 28 3 21 1.24
after 1 step 13 7 17 1.00
after 2 steps 19 7 19 1.12
after 3 steps 21 7 20 1.18
Table 4.1
Test problem: AFIRO: 51 variables, 27 constraints
Option Update | Steps | Factorizations | Time | Time/Time(K)
L-- =-—T=—
Restart
every step 7 7 2 1.00
after 1 update 1,4,5 11 6 3 1.50
after 2 updates 5 12 5 3 1.50
after 3 updates 5 16 4 3 1.50
after 7 updates 5 24 _ 3 5 2.50
after 1 step 11 6 3 1.50
after 2 steps 16 6 3 1.50
after 3 steps 21 6 4 2.00

Table 4.2

Steps

Factorizations

Test problem: ADLITTLE: 138 variables, 56 constraints

W
Time/Time(K)

Time

Restart
every step 12 12 22 1.00
after 1 update 1 15 8 19 .86
after 2 updates 5 18 6 17 77
after 4 updates 5 23 5 20 91
after 7 updates 5 30 4 22 1.00
after 1 step 15 8 17 77
after 2 steps 23 8 19 .86
after 3 steps 30 8 21 .95
Table 4.3
Test problem: SHARE2B: 162 variables, 96 constraints
Option Update | Steps | Factorizations | Time | Time/Time(K)
Restart
every step
after 1 update
after 3 updates
after 6 updates ||
after 1 step
after 2 steps
after 5 steps

Table 4.4

Test problem: SHARE1B: 253 variables, 117 constraints

—

Option Update | Steps | Factorizations | Time | Time/Time(K)
Restart
every step 19 19 248 1.00
after 1 update 5 25 13 198 .80
after 2 updates 5 31 11 175 71
after 3 updates 5 34 9 158 .64
after 4 updates 5 39 8 155 .63
after 5 updates 5 61 11 222 90
after 6 updates 5 49 7 163 - .66
after @ updates 5 58 (5] 166 .87
after 1 step 28 14 193 .78
after 2 steps 37 13 192 77
after 3 steps 44 12 190 a7

Table 4.5

Test problem: BEACONFD: 295 variables, 173 constraints

R
m

Option Update | Steps | Factorizations | Time | Time/Time(K)
Restart
every step 9 9 273 1.00
after 1 update 1,4,5 13 7 227 .83
after 2 updates 5 17] 215 .79
after 4 updates 5 24 5 200 73
after 10 updates 5 38 4 212 .78
after 20 updates 5 47 3 227 .83
after 1 step 13 7 222 - 81
after 2 steps 19 7 232 .85
after 3 steps 24 7 241 .88
Table 4.6
Test problem: ISRAEL: 316 variables, 174 constraints
Option Update | Steps | Factorizations | Time | Time/Time(K)
Restart
every step 11 11 398 1.00
after 1 update 5 15 8 323 .81
after 2 updates 5 17 6 259 .85
after 3 updates 5 19 5 232 .58
after 7 updates 5 31 4 228 57
after 15 updates 5 41 3 248 .62
after 1 step 16 8 326 .82
after 2 steps 22 8 332 .83
after 4 steps 30 7 312 78

Table 4.7

Test problem: BRANDY: 292 variables, 182 constraints
Option Update | Steps | Factorizations | Time | Time/Time(K)
Restart
every step 12 12 276 1.00
after 1 update 1,5 17 9 223 .81
after 2 updates 5 20 7 189 .68
after 3 updates 5 24 6 176 .64
after 6 updates 5 32 5 175 .64
after 10 updates 5 41 4 179 .65
after 1 step 20 10 244 .88
after 2 steps 25 9 229 .83
after 3 steps 33 9 240 87

Table 4.8

Appendix I

The standard linear programming problem

minimize o

subject to AT
3

I
O o 8l

2

’

where €, € R*2%, b € IR™ !, and 4 € R(™-1)X(n-2) can be transformed into the

linear programming problem

minimize ¢Tz
subject to Az =0
Al
ez =n (A1)
z >0,

where ¢,z,e € R", A € R™*", and e=(1, - - -,1)T as follows. First, add a

slack variable 7,,_, , express the requirement AT

b as AT = T, _,b , and add
a constraint requiring 7,_; = 1 . The equality constraints can now be stated as

[11z1 [o]
A ~b

511-2 0

0. . .0 1]]z | Ll_

Now assume we have a bound B on the sum of the variables :

IA

n-1
Y% < B
=1

and introduce a second slack variable so that

I ™=

I, =h.

1

Using this condition, the constraint equation we have added can be written as

27

- 1 &
Iﬂ—l = —B" EI" .
i=1

Hence, the equality constraints have been put into homogeneous form:

0 r 51 - o 0 T
A -b
AT = =
0 En—l
1. . .1Q0-B)1f |z 0|
Now scale the variables so that their sumis n: z = % T . Since the number

of variables has been increased by two, two zero components are appended to T

to obtain ¢ .

If the optimal value of the objective function is not zero, but is known to be
[*, the objective function can easily be transformed to an objective function
whose minimum value is zero. Minimizing ¢Tz is equivalent to minimizing

éTr - /* , and this second objective function is equivalent to

AT f* &
z-— Yz,
n 2
so that
*
c=é—l—e. (A.2)
n

For our test problems, the optimal value of the objective function was
known, so that only the shift in ¢ as above was necessary. If the minimum value
of the objective function is not known, Karmarkar [1984] suggests the use of

what he calls a sliding objective function. This involves attempting to solve the

~

/

Tz with ¢ = é — + e, where f is an estimate
n

problem with objective function ¢

of f* that is refined as the solution progresses. Todd and Burrell [1985] have

suggested using the dual of problem (A.1) to obtain an estimate f that is a lower

bound on f* and that is refined at each iteration.

As noted by Karmarkar [1984], given any initial point £ € R" , # > 0, and
assuming the linear programming problem is feasible, an initial feasible point for
the linear programming problem (A.1) can be obtained by solving (for z € R**!)
the problem

minimize A
subject to Az =0
T (A.3)
c'z=n+1
z 20,

where A € R™ X(*+1) has as its first n columns the matrix A and as its last
column the vector —A% . A feasible starting point for problem (A.3) is

(ilv""iml)T'

REFERENCES

Kurt M. Anstreicher, ‘A monotonic projective algorithm for fractional linear programming,” Yale
School of Management (New Haven, CT, 1985, revised 1986). To appear in Algorithmica .

T.M. Cavalier and A.L. Soyster, ‘“Some computational experience and a modification of the Kar-
markar algorithm,” Department of Industrial and Management Systems Engineering, The
Pennsylvania State University (University Park, PA, 1985).

A. Charnes, T. Song, and M. Wolfe, “An explicit solution sequence and convergence of
Karmarkar’s algorithm,”” Center for Cybernetic Studies, The University of Texas at Austin,
Research Report CCS 501 (Austin, TX, 1984).

J.E. Dennis, Jr. and Robert B. Schnabel, Numerical Methods for Unconastrained Optimszation and
Nonlinear Equations. (Prentice-Hall, Englewood Cliffs, NJ, 1983).

David M. Gay, “A variant of Karmarkar’s linear programming algorithm for problems in standard
form,” A T & T Bell Laboratories Numerical Analysis Manuscript 85-10 (Murray Hill, NJ, 1985).
To appear in Mathematical Programming.

David M. Gay, “Electronic mail distribution of linear programming test problems,” Committee on
Algorithms Newsletter, Mathematical Programming Society 13 (December, 1985).

Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H. Wright, “On
projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s
projective method,” Systems Optimization Laboratory, Stanford University, Technical Report
SOL 85-11 (Stanford, CA, 1985). To appear in Mathematical Programming.

Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright, “A note on non-

linear approaches to linear programming,” Systems Optimization Laboratory, Stanford Univer-
sity, Technical Report SOL 86-7 (Stanford, CA, 1986).

Donald Goldfarb and Sanjay Mehrotra, ‘A relaxed version of Karmarkar’s method,” Department
of Industrial Engineering and Operations Research, Columbia University in the City of New York
(New York, NY, 1985, revised 1986).

N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica 4,
(1984) 373-395.

Irvin J. Lustig, “A practical approach to Karmarkar’s algorithm,” Systems Optimization Labora-
tory, Stanford University, Technical Report SOL 85-5 (Stanford, CA, 1985).

D.F. Shanno, “A reduced gradient variant of Karmarkar’s algorithm,” Graduate School of
Administration, University of California, Davis, Working Paper 85-01 (Davis, CA, 1985).

David F. Shanno, ‘“‘Computing Karmarkar projections quickly,” Graduate School of Administra-
tion, University of California, Davis, Working Paper 85-10 (Davis, CA, 1985).

David F. Shanno and Roy E. Marsten, “On implementing Karmarkar’s method,” Graduate
School of Administration, University of California, Davis, Working Paper 85-01 (Davis, CA, 1985).

Michael J. Todd and Bruce P. Burrell, “An extension of Karmarkar’s algorithm for linear pro-
gramming using dual variables,”’ School of Operations Research and Industrial Engineering, Cor-
nell University, Technical Report No. 848 (Ithaca, NY, 1985). To appear in Algorithmica .

Michael J. Todd, Private communication (July, 1986).

JA. Tomlin, “An experimental approach to Karmarkar’s projective method for linear program-

ming,” Ketron, Inc. (Mountain View, CA, 1985). To appear in a Mathematical Programming
Study on Computational Mathematical Programming.

