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Abstract 

The most time-consuming part of the Karmarkar algorithm for linear pro­
gramming is the projection of a vector onto the nullspace of a matrix that 
changes at each iteration. We present a variant of the Karmarkar algorithm that 
uses standard variable-metric techniques in an innovative way to approximate 
this projection. In limited tests, this modification greatly reduces the number of 
matrix factorizations needed for the solution of linear programming problems. 
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1. Introduction: the Karmarkar algorithm 

Since the introduction of the polynomial time algorithm for linear program­

ming by N. Karmarkar [1Q84], there has been considerable interest in its use, and 

in developing strategies for modifying the algorithm to achieve greater computa­

tional efficiency. We present a variable-metric variant of the Karmarkar alger 

rithm. The algorithm as proposed by Karmarkar employs a projective transf or­

mation to map the feasible region of the linear program onto the intersection of a 

simplex with an affine space, and then solves the problem 

minimize c T x 

subject to Ax = 0 

eTx = n 

X > 0, 

where c ,x ,e E lR.n, A E ffim x n, and e =(1, · · · ,1 )T· We follow the suggestion 

of Shanno and Marsten [1085) in using e T x = n, rather than e T x = 1, as used 

by Karmarkar [1084). We transform a standard linear programming problem to 

the above form by commonly used strategies that do not involve a projective 

transformation. For completeness, we include these strategies in Appendix I. We 

shall also assume that the minimum value of the objective function c T x is zero, 

and that we have an initial feasible point x 0>0. A means of getting such an ini­

tial feasible point and of transforming a given objective function to an objective 

function whose minimum value is zero is also included in Appendix I. 

At each step of the Karmarkar algorithm, the current iterate (x 1, · · · ,xn f 
is mapped to the center (1, · · · ,If of the simplex by the projective transforma­

tion 

-
X -

where D = diag (x 1, · · · ,xn ), and we use x to denote the transformed variable. 



A step is taken in the transformed space in the direction of the negative pro­

jected gradient of a linear function, and the new point in the untransformed 

space is found by applying the inverse of the above projective transformation 

(restricted to {x E ffin : x > 0, e T x = n} ), 

X= n D-r X. 
e Di 

The Karmarkar algorithm is : 

given an initial feasible point x 0 > 0 

begin 

end 

X = Xo 

while c T x is too large 

do 

D = diag (x 1, · · · ,xn ), 

project De onto the nullspace of B : 

cp = (J-BT(BBTt 1B]Dc 

x= 

end do 

n Di 
eTDi 

In section 3 we discuss how the steplength parameter a is chosen at each step. 
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2. A variable-metric variant of the Karmarkar algorithm 

The most time-consuming part of the Karmarkar algorithm is the projection 

of the vector De onto the nullspace of a matrix B that changes at each iteration. 

We propose to approximate the direction so obtained, using secant updates to the 

initial matrix. The updating strategies we have adapted for use in this context 

have been used very successfully in the solution of nonlinear equations and in the 

minimization of nonlinear functions. By employing updates we reduce the 

amount of work required at each step, since we bypass the need to obtain a 

matrix factorization at every step. We shall approximate the direction 

cp = [J-BT(BBTt1B]Dc by 

cp = D-lfJ[J-iJT(iJiJTtiiJ]fJT c, (2.1) 
where 

A [ AD ] -1 A B = e T D-1 D = BD D' 

and D is a nonsingular approximation to D. The new iterate in the transformed 

space is given by 

A 

Before addressing the way we obtain the matrix D, we note that any direction cP 

computed in this manner is a feasible direction for the linear program and the 

negative of it is a descent direction for Karmarkar's potential function, 

n CTX 
J(x) = ~log-. 

i=l Xj 
(2.2) 

Feasibility of the direction cP follows from the observation that cP is in the 

nullspace of B. Karmarkar's proof of the convergence of his algorithm and his 

polynomial time bound are based on achieving at least a constant amount of 

reduction in the potential function {2.2) at each step. This potential function is 



transformable by the projective transformation to a function having the same 

form. When f is expressed in terms of the transformed variable, we have 

n C TDi 
J(x) = E log-_- + constant, 

i=l x i 

so that in the transformed space, we may consider 

(2.3) 

Now 

"v
1
J(x)= n Dc-D-1e, 

CT Di 
where D = diag (.i 1, · · · ,.i n) , 

and 

n 
T De - e, 

C Xe 

where Xe denotes the current iterate in the untransformed space. The direction 

-cP is a non-ascent direction for the potential function in the transformed space 

since 

< 0. 

In order to show that the direction -cP is a descent direction for the poten­

tial function, we note that cP -:/:, 0 , since there exists a step in the direction -cP 

that yields a reduction in the potential function, and that -cP can fail to be a 

descent direction only if D Tc is orthogonal to the nullspace of B. But if D Tc is 

orthogonal to the nullspace of B, then there exists y E IR.m such that 



iJTy =DTc 

i> 1 D-1 B 1 y = D 1 c, and since D is nonsingular, 

B 1 y = De, 

which contradicts the fact that cp =/. 0 . 

Our modification of the Karmarkar algorithm requires a factorization of the 

initial matrix (AD 0 )(AD0) 1 only. Thereafter, as is the usual approach in compu­

tations for large problems, update vectors are stored, and the projection compu­

tation is done cheaply, requiring only solutions of linear systems from the initially 

factored matrix, scalar products, and sums of vectors. 

We begin with D0 = D0 , a diagonal matrix whose diagonal elements are the 

components of the initial feasible point x 0• We may obtain rank-one secant 

updates to this matrix through the use of one of two nonlinear functions whose 

gradients and Hessians involve the matrix D. The first and simplest of these is a 

logarithmic barrier function, and the second is the potential function we have 

already defined. Let us first examine the logarithmic barrier function. 

Applying the barrier transformation to 

gives 

min CT X 
z 

subject to Ax = 0 

e 1 x = n 
x>O 

n 
min F(x) = c 1 x - µ :Elog x.-

z 

subject to Ax = 0 

e 1 x=n, 

i=l 

(2.4) 

(2.5) 

the inequality constraints having been replaced by a term in the objectiYe func­

tion. It is well known (see, for example, Gill, Murray, Saunders, Tomlin, and 



Wright, [1085)) that under mild hypotheses the solution to (2.5) converges to the 

solution of (2.4) as µ.-O. It is not our intention to solve problem (2.5) for any 

value of µ; we intend merely to use the logarithmic barrier function, whose gra­

dient and Hessian involve the matrix D , in order to obtain an approximation to 

this matrix. We have 

where D = diag (x 1, · · · ,xn) and e = (1, · · · ,1 )T; and 

'v ;F(x )=µD-2 . 

Analogous to the idea of a secant approximation to the derivative of a function of 

one variable as the ratio of the change in function values to the change in the 

independent variable, a secant approximation to a Hessian is obtained by requir­

ing the new approximation to the Hessian acting on the step in the independent 

variable to produce the difference in gradient vectors at the new and previous 

points. Using the subscript + to refer to the new iterate and the subscript c to 

ref er to the previous (current) iterate, we may write the secant equation based on 

the logarithmic barrier function as 

A 

µD:+.2 (x+-Xc) = (c - µD-:;_le) - (c - µDe-le) 

D~2 (x+-Xc) = (Dc-l - D :;.1 )e. 
(2.6) 

We compute the righthand side exactly. Letting y6 denote (De-I - D ·:;.1 )e and, 

not wishing to require the approximation /J to be symmetric, replacing DA'! with 

iJ +DI, we require the approximation to satisfy 

An approximation based on the potential function (2.2) requires a very simi­

lar secant equation to be satisfied. Recall that the potential function is 



so that 

'1 

'\1 1:f(x) = + c -D-1e , 
C X 

'\l; f ( x) = D-2 - n cc T 
(c TX )2 ' 

and the secant equation is 

Moving the second term on the lefthand side of the equation to the righthand 

side and collecting terms gives 

(2.7) 

Now letting Y-, denote the righthand side of the above equation, and again 

replacing 1>; with i> +i> I, we require the approximation to satisfy 

Recall that the matrix we are trying to approximate is a known diagonal 

matrix. A third and even simpler alternative requirement that can be imposed on 

the approximation is that it satisfy 

(2.8) 

We shall use Yt to denote D +2 ( x + - x, ) and express this requirement as 

To obtain an updating formula based on the barrier function or on the 

potential function or on the true matrix D + (y denotes either Yb or Yp or Yt ,the 

righthand side of equation (2.6) or (2.7) or (2.8), respectively), we follow Dennis 
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and Schnabel (1gsa). For completene~, we include the development of the 

updating formula here. We expre~ the requirement (x+-xc) = D+D!y as 

(2.Q) 

for some vector v E IR" . Now we use the Broyden updating formula to obtain 

iJ + as the closest matrix to De consistent with satisfying the first part or (2.g) : 

(2.10) 

The second part of (2.Q) requires that 

(2.11) 

and this can be satisfied only if 

(2.12) 

for some K, E IR. Now substituting (2.12) into (2.11) and simplifying gives 

2 (x+-xc)Ty 

K, = yTiJeiJ'[y 

Assuming (x+ -Xe )Ty > 0, we choose the positive root, so that 

(2.13) 

For the update based on the true D , Yt = D .:;.2 ( x + - Xe), so that 

For the update based on the barrier function, y6 = (Dc-1 -D:;_.1 )e, and we have 

For the update based on the potential function, 

( T T )2 
-1 -1 n C Xc-C X+ 

Yp = (De -D+ )e - T T c ,so that 
(c x+)2(c xc) 



• 

which is not guaranteed to be positive, but is certainly positive if 

c TX+ < c T Xe . H this updating strategy is being used and the above is not 

positive at some step, we choose to use the update based on the true D , rather 

than reject the update altogether. Thus far in our computational testing, the 

situation in which (x+-Xc )T 'Yp < 0 has not arisen. 

The updating formula given by equation (2.10} was obtained as a least­

change secant update for approximating D, the matrix we are interested in, mak­

ing use of nonlinear functions whose gradients and Hessians involve the matrix 

D-1• We have also explored the use of the updating strategy that changes the 

approximation to the Hessian of the nonlinear function as little as possible (rather 

than changing the approximation to the inverse of the Hessian as little as possi­

ble) consistent with having the approximation satisfy the secant equation (2.6} or 

(2.7} or the condition (2.8). Using this approach, the approximation is required to 

satisfy 

A -1 A -T 
D+ D+ (x+-xc) = y , 

and analogous to (2.9), we express this requirement as 

(2.14) 

for some vector v E JR.n • Now the closest matrix fr;..1 to f>c-l satisfying the first 

part of (2.14} is 

A -1 T 
A _

1 
A _ 1 (y - D c v )v 

D+ = De + T ' 
V tJ 

(2.15) 

and from the second part of (2.14) we obtain 
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(2.16) 

Using the Sherman-Morrison-Woodbury formula, (2.15) is equivalent to 

(2.17) 

Use of the update given by (2.17) requires more computation and more storage 

than is required if the update given by (2.10) is used, as we shall discuss in sec­

tion 3. Furthermore, numerical experience thus far has indicated better perfor­

mance is achieved using the update given by (2.10). The modified algorithm will 

be referred to as the DMT-Karmarkar algorithm. 

3. Computational issues in the DMT-Karmarkar algorithm 

3.1 Update vectors 

The computation of cP requires the solution of a linear system with 

coefficient matrix BB T. Since 

AAT [Ma] BB = T , a c, 

need only be concerned with solving a linear system with coefficient matrix 

(AD )(AD) T. We first discuss the computation of c, using the update to D given 

by (2.10) and (2.13). Referring to the updating formula (2.10), 

Hence, 
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Now letting Mc and M+ denote (ADc)(ADcf and (AD+)(AD+f, respectively, 

and setting w = ADcv and /3 = vT v, the Sherman-Morrison-Woodbury formula 

gives 

M-1 = M -~ = M-1 + C WW C 
( 

T )-1 M-1 T M-1 

+ c /3 c /3-w T Mc-lw 

In summary, at each step of the algorithm we save four vectors and two 

scalars : v,u E Rn, w,t E Rm, and /3,, ER as follows: 

w =ADcv, 

" " T -1 t = ((ADc)(ADc) ] w , 
{3.1.1) 

The computation of cP is carried out using 

(3.1.2) 

and 

so that the only factorization needed for k steps of the algorithm is of the initial 
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matrix (AD 0 )(AD0 ) 1 . Notice also that vector or pipeline architectures are 

immediately applicable to the required computations. 

We are indebted to M.J. Todd (private communication) for pointing out to 

us that computational savings may be realized if the updates to M-1 are saved in 

factored form. To this end, suppose that (ADcXADc) 1 = LcLt. Then 

[(ADc)(ADc) 1 J-1 = L;1Lc-l = NcN{, and 

Setting q = N{ w and ; = /3 - q T q + [/3(/3 - q T q )fb, we obtain 

= N ( J + qq T ) NT 
C /3 T C - q q 

= Nc ( J + q~T ) ( 1 + q~T ) N{, 

so that the update to the Cholesky factor is given by 

Using this approach, one would save, at each step of the algorithm, three 

vectors and two scalars: v,u E Rn, q E Rm, and /3,; ER as follows: 

¼ 

I (x+-xc)
1

y l AT 

V = (D[y)1(i>;y) DC y' 

/3 - T - V V, 
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The computation or c, would be carried out using (3.1.2) and 

(3.1.4) 

where 

Saving the updates in r actored form would save storage or w , and the computa­

tion of q rather than t would save n floating point operations, where n is the 

number or nonzeros in the Cholesky factor of (AD0)(AD0)T . The computation 

(3.1.4), however, would require mk more floating point operations than (3.1.3) at 

the kth step, so that the amount of computation saved would vary, depending on 

sparsity. The implementation for which we give numerical results in section 4 

uses updates (3.1.1 ). 

If the updating formula given by (2.17) supported by (2.16) is used, the com­

putation of c, requires twice as much storage and nearly twice as much work as 

this computation using updating formula (2.10) supported by (2.13). This is 

because the use of (2.17) leads to a rank-two update to obtain (AD +XAD +)T 

from (ADc )(ADc )T at each step. At each step of the modified algorithm using 

the update (2.17), the eight vectors s,v,u,t E ]Rn and p,q,d,g E JR.m and the 

four scalars {:J,,,1/, and p are saved : 

u = v-DcY, 

A -1 
t =De u, 

p =Au, 

ST s 
d = Mc-1( q + pp), 

g = A1;;i,;. p, 



/3= yTa, 

I= VT v, 

14 

fl=f3+pTd, 

p=f3+qrg, 
A A T 

where Mc = (ADc )(ADc) , 

and 

M-1 
k-1 

I J _ d1-1Pl1 I ... 
flk-1 

[ 1- d~[I l(ADo)(ADofl-1 

M;_~ = ( J _ dk P{) ( J _ 9k-t q{__t ) ( J _ dk-1Pl-1 ) ... 
flk Pk-l flk-l 

.. · ! I - g~:11 [ 1 - d~[ I l(ADo)(ADo)TJ-I 

The approximation bk is given by 

The computation of v requires De-TB. The matrix [Jk-l is 

Using updating formula (2.17), it is still the case that the only matrix factoriza­

tion needed for k steps of the algorithm is of the initial matrix (AD 0 )(AD0f . 

3.2 Restarting strategy for the DMT-Karmarkar algorithm 

In practice, there is a limit on the number of update vectors one is willing to 

store. We have implemented two ways of proceeding when the allotted storage 

has been used. The option we recommend is to restart, treating the current point 

as the initial point. This, of course, requires another matrix factorization. In our 

implementation, the restart strategy includes restarting when the approximation 

appears not to give a direction of sufficient decrease as well as when the 
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maximum number or update vectors has been saved. We also plan to try a res­

tart strategy based on the partial reractorization suggested by Karmarkar [rn84] 

and studied by Shanno [rn85b]. A second option that we have considered but do 

not recommend is to discard all previous updates, and treat the current point as 

the first point; that is, to replace the collection or updates with a single update as 

if the current point had been reached in one step from the initial point. One 

may also combine the two strategies, electing to perform an additional matrix 

factorization only when it is determined that progress is not being made. Using 

the pure strategy of discarding updates means that only the initial matrix is fac­

tored. This can yield the solution to the problem at modest expense and using 

very limited storage, but convergence in this case is not guaranteed. We recom­

mend the restarting strategy over the discarding strategy, both for its sound 

theoretical basis and for its superior performance in practice. Use of the restart­

ing strategy results in an algorithm that retains the polynomial worst case time 

bound of the Karmarkar algorithm, since our step acceptance criterion, to be dis­

cussed below, requires reduction of the potential function by at least the constant 

amount at each step that is guaranteed for the Karmarkar algorithm, and clearly 

one can always get this reduction by restarting. 

A natural question to ask is whether it is advantageous to use update vec­

tors at all in the DMT-Karmarkar algorithm. A reasonable alternative strategy 

within the framework we have established in (2.1) is, as mentioned by Gill, Mur­

ray, Saunders, and Wright [1Q86], to retain the same approximation to D for 

several iterations before recomputing a factorization. In an algorithm with 

periodic restarts, one would have D; = D 0 for O < i < k-1 for some k, and 

then treat the kth iterate as the initial point. We have also explored the use of 

this strategy. 
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3.3 Linesearcb and step acceptance criterion 

Our implementation of the DMT-Karmarkar algorithm includes a linesearch 

with a three faceted step acceptance criterion as a way of selecting the 

steplength. The step acceptance criterion ensures that our algorithm with res­

tarts retains the polynomial time bound of the unmodified Karmarkar algorithm 

but, rather than restricting steps to have a predetermined fixed length, allows 

taking longer steps when it appears advantageous to do so. We interpret failure 

to find an acceptable step after a specified number of trial steps as an indication 

that a restart is needed. Our first trial steplength is _gg of the distance to the 

edge of the simplex; our third trial steplength is _gg of the radius of the largest 

sphere that can be inscribed in the simplex, and our second trial steplength is 

midway between the first and third. Beginning with the fourth trial step, each is 

half as long as the previous trial step. Our step acceptance criterion is a combi­

nation of the Karmarkar criterion, the Goldstein-Armijo condition, and reduction 

of the linear objective function. The Karmarkar criterion, which is used to prove 

convergence of the algorithm in polynomial time, requires at least a constant 

amount of reduction in the potential function (2.3) at every step: 

J ( e -o:cP) < J ( e) - 6 

= n log c T Xe - fl, 
(3.3.1) 

where 6 is the minimum reduction in the potential function that is guaranteed for 

each step of the Karmarkar algorithm. The Goldstein-Armijo condition (see, for 

example, Dennis and Schnabel [1083]), requires that the average rate of decrease 

in the potential function from x c to x + be at least a prescribed fraction (A) of 

the initial rate of decrease in that direction: 

that is, 
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(3.3.2) 

In order to determine whether the trial step would result in a reduction or the 

linear function c T x , we consider the objective value or the image of the trial 

step in the untransformed space, and determine whether the trial step satisfies 

C TX+ -- n c TDx- < c Tx 
T - + C e Dx+ 

(3.3.3) 

The lower bound 6 on reduction in the potential function obtained by Karmarkar 

is dependent on the size of the problem as well as the steplength, and ensures 

reduction of the potential function at each step by at least .1 for a step in the 

direction -cP of length equal to one-fourth the radius of the largest sphere that 

can be inscribed in the simplex, provided the number or variables in the problem 

is at least 21. Since our test problems are larger than that, we use 6 = .1 . 

Our real objective is minimization of the linear function c T x . While the 

linear function is not transformed to a linear function under projective transfor­

mation, straight lines do map to straight lines under projective transformation, so 

that the level sets of the linear function are mapped to flats in the transformed 

space. Therefore, if the direction we are considering gives descent on the linear 

function, it seems sensible to take the longest pos.sible step in that direction that 

satisfies (3.3.1 ). In the event our direction is not a descent direction for the linear 

function, we guard against taking a step too long relative to the amount of 

reduction achieved in the potential function by requiring our step to satisfy 

(3.3.2) as well as (3.3.1 ). That is to say, we accept the step as soon as the trial 

step satisfies (3.3.1) and either (3.3.2) or (3.3.3). For an iteration at which a res­

tart has been done, if a longer step does not satisfy (3.3.1) and either (3.3.2) or 

(3.3.3), we accept a step in the direction -cp of length equal to one-fourth the 

radius of the largest inscribed sphere. It will always satisfy (3.3.1). 
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4. Numerical results 

Preliminary testing using an experimental implementation of the DMT­

Karmarkar algorithm has given very encouraging computational results. We 

have used eight test problems. The first is a problem with one hundred seven 

variables and sixty-seven constraints that we obtained from She)) Development 

Company; the second through eighth are test problems from the Systems Optimi­

zation Laboratory at Stanford University that we obtained through netlib (see 

Gay [1985b]). The number of variables shown for each problem includes slack 

variables introduced to transform inequality constraints to equalities, but does 

not include the two additional slack variables discussed in Appendix I. Results 

obtained solving these problems using various options in the DMT-Karmarkar 

algorithm are summarized in tables 4.1 through 4.8. For each problem, a feasible 

starting point x0 was obtained using the technique advocated by Karmarkar, 

which we include in Appendix I, from the initial point ( 1, · · · ,1 f . All options 

were then run from the same feasible starting point. The number of steps to con­

vergence shown in the tables does not include steps required to obtain the start­

ing point. The first option shown for each problem is restarting every step, 

which means that the Karmarkar algorithm, modified only by the incorporation 

of a linesearch, is used. In each instance, restart after k updates really means 

that a restart is done after saving at most k updates; that is, at least as often 

as every k + 1 steps. A new factorization is done earlier whenever the linesearch 

is unsuccessful. Similarly, restart after k steps (using no updates, but retaining 

the same approximation to D between factorizations) means restart after at 

most k steps. To test the DMT-Karmarkar algorithm against the Karmarkar 

algorithm, we solved the test problems to only limited accuracy. We expect that 

relative times needed to compute more accurate solutions would be similar to 

those given in tables 4.1 through 4.8. For all problems, the stopping criterion 
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was c T x < 10-.,ac T x0 • This gave three to four digits of accuracy in the optima) 

objective values for aJI of the test problems except ISRAEL, where only one digit 

of accuracy in the optima) objective value was obtained. Subsequently, we con­

tinued the solution of ISRAEL. We obtained four digits of accuracy in the 

optimal objective value at the cost of twelve additional steps and factorizations 

using the Karmarkar algorithm, seventeen steps with nine factorizations restart­

ing after one update, twenty-eight steps with seven factorizations restarting after 

three updates, and thirty-four steps with six factorizations restarting after five 

updates. 

In tables 4.1 through 4.8 the update used is identified as follows : 

update number updating formula righthand side of 
secant ec uation 

1 2.10 !'6 of 2.6 
2 2.17' y6 of 2.6 
3 2.17' 'Yp of 2.7 
4 >2.10 'Yp of >2.7 
5 2.10' 'Yt of 2.8 
6 2.17 v. of 2.8' 

For options involving the use of updates, we show only the results obtained 

using the most successful updating formula. In general, better performance was 

achieved using updating formulas 1, 4 and 5, the least change updates to D 

based on the barrier function, the potential function, and on the true D, respec­

tively, than was achieved using updating formulas 2, 3 and 6, the updates that 

result from the strategy of least change to the Hessians (i.e. least change to fr1
) 

of the functions used to obtain the approximations. The most successful updat­

ing formula was the simplest, the least change update to iJ based on the true D, 

identified as update 5. In cases where two or more updating formulas produced 

identical results in number of steps and factorizations needed to obtain the solu-
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tions, times given are for updating r ormula 5. 

We have obtained timings solving the test problems on a Pyramid QOx, using 

the Unix operating system OSx version 2.5. Times are the sum of CPU times 

attributed to the user and to the operating system in seconds, rounded to the 

nearest second. The last column of each table contains normalized times, the 

ratio of the time required to obtain the solution using the given option to the 

time required using the Karmarkar algorithm (with linesearch). 

For each of the test problems, use of the DMT-Karmarkar algorithm with 

periodic restarts, and using rank-one updates to approximate D at each step, 

results in obtaining the solution with (generally but not monotonically) progres­

sively fewer matrix factorizations as the number of updates allowed between fac­

torizations increases. Of course, the number of iterations required to obtain the 

solution increases as the number of factorizations decreases. Timings on the test 

problems indicate an overall reduction in the amount of work can be achieved 

using the DMT-Karmarkar algorithm, compared to the Karmarkar algorithm, for 

all problems except our smallest test problem, AFIRO (Table 4.2). Timings are 

accurate only to within about one second, so that little significance should be 

given to relative times for solving this very small problem that takes only two to 

three seconds. The largest percentages of savings in computational effort appear, 

as one would expect, in the larger problems, ISRAEL (Table 4.7) and BRANDY 

(Table 4.8). 

The strategy of periodic restarts with no updates used may be advantageous 

if only a few steps are taken between restarts. The increase in number of steps 

required is generally greater, and the number of factorizations saved is generally 

smaller, than occurs when update vectors are used, but the computation of steps 

that require neither factorizations nor updates is very inexpensive. 
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Test problem: SHELL: 107 variables, 67 constraints 

Option Update Steps Factorizations Time Time/Time(K) 

Restart 

everv step 8 8 17 1.00 
after 1 update 5 12 6 16 .Q4 
after 2 updates 5 14 5 15 .88 
after 4 updates 5 18 4 16 .Q4 
after g uodates 5 28 3 21 1.24 
after 1 step 13 7 17 1.00 
after 2 steps IQ 7 IQ 1.12 
after 3 steps 21 7 20 1.18 

Table 4.1 

Test problem: AFIRO: 51 variables, 27 constraints 

Option Update Steps Factorizations Time Time/Time(K) 

Restart 

every step 7 7 2 1.00 
after 1 update 1,4,5 11 6 3 1.50 

after 2 updates 5 12 5 3 1.50 
after 3 updates 5 16 4 3 1.50 

after 7 uodates 5 24 3 5 2.50 
after 1 step 11 6 3 1.50 

after 2 steps 16 6 3 1.50 

after 3 steps 21 6 4 2.00 

Table 4.2 
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Test problem: ADLITTLE: 138 variables, 56 constraints 

Option Update Steps Factorizations Time Time/Tirne(K) 

Restart 

everv step 12 12 22 1.00 

after 1 update 1 15 8 19 .86 
after 2 updates 5 18 6 17 .77 
after 4 updates 5 23 5 20 .91 
after 7 updates 5 30 4 22 1.00 

after 1 step 15 8 17 .77 
after 2 steps 23 8 19 .86 
after 3 steps 30 8 21 .95 

Table 4.3 

Test problem: SHARE2B: 162 variables, 96 constraints 

Option Update Steps Factorizations Time Time/Time(K) 

Restart 

every step g g 26 1.00 

after 1 update 5 14 7 24 _g2 

after 3 updates 5 22 6 28 1.08 

after 6 updates 5 33 5 36 1.38 
after 1 step 16 8 27 1.04 

after 2 steps 22 8 29 1.12 

after 5 steps 41 7 35 1.35 

Table 4.4 
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Test problem: SHARElB: 253 variables, 117 constraints 

Option Update Steps Factorizations Time Time/Time(K) 

Restart 

every step 10 10 248 1.00 

after 1 update 5 25 13 108 .80 
after 2 updates 5 31 11 175 .71 
after 3 updates 5 34 0 158 .64 

after 4 updates 5 30 8 155 .63 
after 5 updates 5 61 11 222 .QO 

--
after 6 updates 5 40 7 163 .66 
after g uodates 5 58 6 166 .67 
after 1 step 28 14 103 .78 
after 2 steps 37 13 102 .77 
after 3 steps 44 12 mo .77 

Table 4.5 



Test problem: BEACONFD: 2Q5 variables, 173 constraints 

Option Update Steps Factorizations Time Time/Time(K) 

Restart 

every step g g 273 1.00 
after 1 update 1,4,5 13 7 227 .83 
after 2 updates 5 17 6 215 .7Q 

after 4 updates 5 24 5 200 .73 
after 10 updates 5 38 4 212 .78 
after 20 uodates 5 47 3 227 .83 
after 1 step 13 7 222 .81 
after 2 steps IQ 7 232 .85 
after 3 steps 24 7 241 .88 

Table 4.6 

Test problem: ISRAEL: 316 variables, 174 constraints 

Option Update Steps Factorizations Time Time/Time(K) 

Restart 

every step 11 11 3Q8 1.00 

after 1 update 5 15 8 323 .81 
after 2 updates 5 17 6 25Q .65 

after 3 updates 5 IQ 5 232 .58 
after 7 updates 5 31 4 228 .57 
after 15 uodates 5 41 3 248 .62 

after 1 step 16 8 326 .82 

after 2 steps 22 8 332 .83 

after 4 steps 30 7 312 .78 

Table 4.7 



Test problem: BRANDY: 2Q2 variables, 182 constraints 

Option Update Steps Factorizations Time Time/Time{K) 

Restart 

every step 12 12 276 1.00 

after 1 update 1,5 17 g 223 .81 
after 2 updates 5 20 7 18Q .68 
after 3 updates 5 24 6 176 .64 
after 6 updates 5 32 5 175 .64 
after 10 uodates 5 41 4 17Q .65 
after 1 step 20 10 244 .88 
after 2 steps 25 g 22g .83 
after 3 steps 33 g 240 .87 

Table 4.8 
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Appendix I 

The standard linear programming problem 

minimize 

subject to 

-T­c X 

Ax= b 

x > 0, 

where c,x E nr-2, b E JRm-l, and A E ni(m-l)x(n-2) can be transformed into the 

linear programming problem 

minimize c T x 

subject to Ax = 0 

eTx = n 

X > 0, 

(A.1) 

where c,x,e ElR",A ElRmxn, and e=(l,· ··,If as follows. First, add a 

slack variable Xn-l , express the requirement Ax = b as Ax = Xn-l b , and add 

a constraint requiring x11 _ 1 = 1 . The equality constraints can now be stated as 

A -b 

0 ... 0 1 

0 

0 

1 

Now assume we have a bound B on the sum of the variables : 

n-1 
E Xj < B 
i=l 

and introduce a second slack variable so that 

n 

Ex,-=B. 
i=l 

Using this condition, the constraint equation we have added can be written as 
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- 1 " x,._1 = B E xi . 
i=l 

Hence, the equality constraints have been put into homogeneous form: 

0 x"1 0 

A -b 
Ax= -

0 Xn-1 0 

1 1 (1-B) 1 Xn 0 

Now scale the variables so that their sum is n : x = ; x. Since the number 

of variables has been increased by two, two zero components are appended to c 

to obtain c . 

If the optimal value of the objective function is not zero, but is known to be 

f • , the objective function can easily be transformed to an objective function 

whose minimum value is zero. Minimizing c T x is equivalent to minimizing 

c T x - f • , and this second objective function is equivalent to 

so that 

,.T f' n 
C X - - ~X-LJ I t 

n i=I 

,. I• 
c=c--e 

n 
(A.2) 

For our test problems, the optimal value of the objective function was 

known, so that only the shift in c as above was necessary. If the minimum value 

of the objective function is not known, Karmarkar [1984] suggests the use of 

what he calls a sliding objective function. This involves attempting to solve the 

problem with objective function c T x with c = c - L e , where J is an estimate 
n 

of f * that is refined as the solution progresses. Todd and Burrell [1985] have 

suggested using the dual of problem (A.I) to obtain an estimate J that is a lower 
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bound on / • and that is refined at each iteration. 

As noted by Karmarkar (1Q84], given any initial point x E R" , x > 0, and 

assuming the linear programming problem is feasible, an initial feasible point for 

the linear programming problem (A.I) can be obtained by solving (for x E R"+ 1) 

the problem 

minimize Xn+l 

subject to Ax = 0 

eTx=n+l 

X > 0, 

(A.3) 

where A E Rm x (n+l) has as its first n columns the matrix A and as its last 

column the vector -Ax . A feasible starting point for problem (A.3) is 

( X 1, . . . ' .i" ' 1) T . 
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