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Abstract

Nonlinear Waveform Inversion with Surface-Oriented Extended Modeling

by

Igor Terentyev

This thesis investigates surface-oriented model extension approach to non-

linear full waveform inversion (FWI).

Conventional least-squares (LS) approach is capable of reconstructing highly

detailed models of subsurface. Resolution requirements of the realistic problems

dictate the use of local descent methods to solve the LS optimization problem.

However, in the setting of any characteristic seismic problem, LS objective func-

tional has numerous local extrema, rendering descent methods unsuitable when

initial estimate is not kinematically accurate.

The aim of my work is to improve convexity properties of the objective

functional. I use the extended modeling approach, and construct an extended

optimization functional incorporating differential semblance condition. An im-

portant advantage of surface-oriented extensions is that they do not increase

the computational complexity of the forward modeling. This approach blends

FWI technique with migration velocity analysis (MVA) capability to recover

long scale velocity model, producing optimization problems that combine global



convergence properties of the MVA with data fitting approach of FWI. In par-

ticular, it takes into account nonlinear physical effects, such as multiple reflec-

tions. I employ variable projection approach to solve the extended optimization

problem. I validate the method on synthetic models for the constant density

acoustics problem.
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Chapter 1

Introduction

The problem of seismic inversion consists in recovering the Earth’s physical properties

or models from geophysical seismic data (seismograms). Typical physical properties

of interest are acoustic impedance, compressional and shear velocities, density, etc.

Geophysical seismic data is collected during seismic acquisition. An energy source

(air-gun array, shot-hole dynamite, seismic vibrator) excites seismic waves propagat-

ing through the Earth. Response to the excitation (observed data) is recorded by

receivers located near the surface or at the ocean bottom (OBN and OBC surveys)

and, in some cases, in boreholes.

Model-based data fitting approach to seismic inversion has been extensively stud-

ied by the geoscience community over several decades (see, for example, Bamberger

et al., 1979), and has recently coined a name full waveform inversion (FWI). Lines and

Treitel, 1984; Tarantola, 2004; Virieux and Operto, 2009 provide excellent overview

and history of the subject. Propagation of seismic waves through the Earth is sim-
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ulated by forward modeling using partial differential equations (PDE) provided by

idealized physical model, such as constant density acoustics, isotropic elasticity, etc.

The goal of FWI is to construct a model that provides the best match of the observed

and simulated data at various scales. Until last decade, FWI was mostly viewed

computationally infeasible by the oil and gas industry due to very large computa-

tional cost of solving many forward modeling problems. However, recent advances in

computer hardware and high-performance computing made the waveform inversion

practical for high resolution industry-scale problems with more and more complex

forward modeling physics (isotropic elasticity, visco-elasticity, anisotropy, and so on).

In addition to computer advances, various techniques (phase encoding, shot group-

ing, to name a few) have been developed to substantially increase the computation

efficiency of waveform inversion (Romero et al., 2000; Krebs et al., 2009; Ben-Hadj-

Ali et al., 2011; Guitton and Diaz, 2012; van Leeuwen and Herrmann, 2013). Some

examples of successful application of FWI technology can be found in Plessix et al.

(2010); Vigh et al. (2010); Ratcliffe et al. (2011); Sirgue et al. (2011); Warner et al.

(2013).

Conventional seismic migration techniques, such as reverse time and Kirchhoff

migrations, require accurate earth velocity models to produce images (reflectivity

models) with correct positions of the reflectors. A widely used and robust technique to

recover earth velocity models is traveltime tomography. However, waveform inversion

is preferable to tomography-based model building for multiple reasons. For example,

resolution of the traveltime tomography is limited to the bandwidth of the Fresnel zone

∼
√
λL (Williamson, 1991), where λ is the wavelength of the propagated wavefield,

and L is the raypath length, while resolution of waveform inversion is on the order

of half-wavelength ∼ λ/2 (Sirgue and Pratt, 2004). There are many circumstances,

10
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such as complex earth structure (with large velocity changes), in which tomography

may fail (Vigh et al., 2010). It has been shown (Vigh et al., 2010; Sirgue et al.,

2011; Warner et al., 2013) that seismic migration produces improved images (better

reflector positioning, resolution, event focusing) when provided with a velocity model

updated by FWI.

Important aspects of waveform inversion are lack of information contained in the

field seismic data (limited-frequency bandwidth, insufficient coverage), presence of

noise in the signal, discrepancy between “true” and forward modeling physics, as

well as inaccuracies in seismic source signature, etc. These aspects result in the

well-known non-uniqueness of the inverse problem solution, i.e., it is impossible to

match the observed data exactly and multiple models may provide best possible data

fit. Therefore, the general solution of the inverse problem may involve estimation

of an ensemble of models that fit observed data. In probabilistic inversion approach

(e.g., Tarantola, 2004), each model is assigned a probability p, which depends on

both the data misfit and an a-priori knowledge of the Earth in the area of interest.

Solving the inverse problem consists of finding the probability distribution function p.

Despite the attractiveness of the probabilistic inversion approach, it has no practical

application because estimating the probability distribution p is not currently feasible

for any realistic 3D problem.

Conventional deterministic FWI formulation is based on the least squares (LS)

data misfit minimization. Due to the very large problem size, carrying out LS mini-

mization is limited to iterative descent methods. Application of local descent methods

to the LS minimization in FWI context has one fundamental difficulty. In the setting

of any characteristic seismic problem, the objective functional has numerous local

11



extrema (multimodality property). See, for example, Gauthier et al. (1986); Santosa

and Symes (1989); Versteeg and Grau (1991). This phenomenon is often referred to

as cycle skipping (phase wrapping in frequency domain) or non-convexity of the LS

objective functional.

The oscillatory nature of seismic data is a primary reason for multimodal behavior

of the LS objective functional. However, it has been observed (Gauthier et al., 1986;

Cao et al., 1990; Bunks et al., 1995; Plessix et al., 1998, to name a few) that if a model

is kinematically accurate, the objective functional does not possess this undesirable

local extrema property, and FWI process can successfully converge to a desired result.

Thus, for successful FWI, the iterative process must start with a sufficiently accurate

initial estimate of the velocity model.

To overcome the local minima obstacle and enlarge the basin of attraction of the

global minima, one should construct FWI objective functionals that have improved

convexity properties. Symes (2008) presented extended modeling concept, which aims

to solve the local extrema problem by introducing additional axes to the model space.

Various realizations of this concept (Biondi and Almomin, 2014; Gao et al., 2014; Liu

et al., 2014) have been able to successfully overcome the cycle-skipping problem.

In this thesis, I employ the inversion strategy based on the extended modeling

with surface-oriented extensions, differential semblance (DS) optimization (see, for

example, Symes, 1991a; Symes and Carazzone, 1991), and low frequency extension

of data source proposed by Sun and Symes (2012). Sun (2012) presents initial in-

vestigation of this approach for plane wave model extension and simple layered 2D

examples.
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1.1 Conventional least-squares approach

General formulation of least squares inversion is given in Tarantola and Valette (1982).

In the seismic inversion setting, a modeling operator F : M → D relates space M

of all admissible models of the Earth1 to the data space D equipped with a Hilbert

norm ‖ · ‖. LS approach seeks to find a model m ∈M that minimizes the data misfit

between the observed data do ∈ D and simulated data F [m]:

min
m

JLS[m],

JLS[m] =
1

2
‖F [m]− do‖2.

(1.1)

Resolution requirements of the realistic applications lead to large dimension of

model space M . Global search approaches (Scales et al., 1991; Sen and Stoffa, 1991;

Stoffa and Sen, 1991) require too many objective functional evaluations to be feasible

for multi-dimensional seismic problems. Therefore, use of local descent methods, such

as steepest descent, nonlinear conjugate gradient, Gauss- or quasi-Newton (Nocedal

and Wright, 1999), becomes mandatory to solve the optimization problem (1.1).

Application of the local descent methods requires computation of the objective

functional gradient∇JLS[m]. This computation can be carried out efficiently (without

the Fréchet derivatives) via adjoint state method, which was introduced to the seismic

community by Bamberger et al. (1982); Lailly (1983); Tarantola (1984). Adjoint

state of a hyperbolic PDE was probably first described by Lions (1971) and used in

the context of inverse problems by Chavent (1974). Plessix (2006); Fichtner (2010)

1Typically, admissible models constitute a subset M of a functional vector space constrained by
mathematical bounds, geological and a-priory information, etc.
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provide excellent overviews of the method; Symes (2007) gives an example of discrete

adjoint derivation.

Some numerical examples (Kolb et al., 1986; Cao et al., 1990; Bunks et al., 1995)

demonstrate successful application of this technique to layered medium problems.

However, in realistic problems, least-squares objective turns out to contain numer-

ous stationary points even for synthetic noise-free data, thus, rendering local descent

methods unsuitable. Early examples of this “misbehavior” were presented by Gau-

thier et al. (1986); Kolb et al. (1986), and others. In order for local descent methods

to converge to a global solution, accurate an low-wavenumber (i.e., kinematically

accurate) initial velocity model is required (see, for example, Pica et al., 1990).

This multimodality is a fundamental mathematical property peculiar to the LS

objective under characteristic seismic acquisition conditions, in particular, absence of

low frequency signal. Santosa and Symes (1989); Symes (1990) give a comprehen-

sive analysis of the behavior of LS objective in the context of horizontally layered

medium. They show that it is extremely nonlinear and sensitive with respect to

smooth perturbations of the velocity model, while being linear with respect to oscil-

latory perturbations. Changes in slow varying components of the velocity introduce

change of phase and, thus, cycle skipping of high frequency components. As a con-

sequence, objective functional JLS[m] is extremely non-convex, gradient ∇JLS[m] is

very unstable, and Jacobian DF [m] is very ill-conditioned. Jannane et al. (1989) use

quasi-sinusoidal perturbations of the layered Earth model to determine model null

space for the isotropic elastic problem. They observe traveltime sensitivity to long

wavelengths of the velocity, impedance sensitivity to short wavelengths, and sensitiv-

ity gap with respect to middle wavelengths in case of small acquisition aperture.
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Mora (1989); Santosa and Symes (1989) show that observable wavenumber com-

ponents of the velocity model are limited from above by high frequency content of

the data and from below by acquisition aperture provided that reflector structure

is fairly complex, i.e., velocity model has dense (approximately every quarter of the

longest data wavelength) and sufficiently strong reflectors. In case of horizontally

layered medium, Symes (1991b) proves that sufficiently “rough” velocity can be re-

covered (F has continuous left inverse) from the band-limited reflection data. This is

an important conclusion, since it implies that out-of-band velocity components can

be observable for band-limited source.

Substantial amount of work is devoted to inverse seismic problem with full band-

width (i.e., impulsive) source. Symes (1986a) considers 1D variable impedance im-

pulse response problem and proves that impedance is continuously invertible. A

number of numerical examples (Sacks and Santosa, 1987; Bunks et al., 1995) indicate

solvability of the inversion problem with impulsive source in multiple dimensions.

Bunks et al. (1995) present a multiscale technique based on frequency continuation

that allows them to convexify LS objective functional and converge to the global

minimum from kinematically incorrect initial guess.

While originally developed in the time domain, FWI can be also carried out in the

frequency domain (see Pratt, 1999; Sirgue and Pratt, 2004, for example). The domain

choice is based on particular techniques used in the inversion, capabilities of forward

solvers, etc. Frequency domain allows, in particular, inversion at selected frequencies

and, thus, is naturally suited for multiscale inversion strategies. Time windowing,

on the other hand, requires time representation of the data. If all frequencies are
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used simultaneously, frequency domain and time domain approaches are equivalent2.

Pros and cons of time-domain versus frequency-domain FWI are discussed in Vigh

and Starr (2008). Brenders et al. (2012) employ hybrid approach with time-domain

forward modeling while carrying out inversion in frequency domain.

Shin and Cha (2008) show that FWI carried out in the Laplace domain is capable

of recovering a long-scale velocity model starting from kinematically incorrect initial

guess. Their approach is equivalent to matching zero frequency component of damped

in time domain seismograms (Shin and Cha, 2009). Laplace domain FWI, however,

is less sensitive to mid-scale components of the velocity model and fails to recover

short-scale model details. The method is also very sensitive to the values of the

damping parameters and maximum data offset (requires transmission data). Smooth

velocity model produced by Laplace domain FWI can be used as an initial guess for

subsequent frequency domain inversion. This approach coined the name Laplace-

Fourier inversion (Shin and Cha, 2008; Ha and Shin, 2012; Kim et al., 2013).

The underlying assumption of the LS inversion is Gaussian distribution of data

errors (Tarantola and Valette, 1982). Violation of this assumption, such as large out-

liers, may negatively affect the results of the LS inversion. A number of publications

show that “robust” norms (e.g., Cauchy, Huber, Hybrid, or Student’s) are less sensi-

tive to noise, while allowing same gradient-based optimization machinery as L2 norm.

Crase et al. (1990); Guitton and Symes (2003); Bube and Nemeth (2007); Aravkin

et al. (2011) provide examples of improved inversion robustness with such norms. van

Leeuwen et al. (2013) note that in order for robust norms to be efficient the outliers

have to be localized in some sense, and construct misfit functions in domains that

2Not considering efficiency and computational requirements of forward solvers.
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localize noise.

Seismic inversion can be carried out with different misfit measures. The following

several functionals emphasize fitting of phase and can be less sensitive to amplitude

mismatch.

Logarithmic misfit (Shin and Min, 2006) is defined in frequency or Laplace domain:

E = ln
ds(ω)

do(ω)
,

where ds and do denote simulated and observed data, respectively, and ω denotes

complex frequency. It allows for separating amplitude and phase of the data misfit,

or combining them in simultaneous phase and amplitude inversion:

J = ‖ReE‖2 + α‖ ImE‖2,

where α is a weighting parameter.

van Leeuwen and Mulder (2010) propose LS objective functional based on weighted

cross-correlation of the observed and simulated data:

J = ‖T (t)c(t)‖2,

where c(t) is the cross-correlation:

c(t) =
∑
ω

ds(ω)do(ω)e2iωt,
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and function T (t) penalizes energy at nonzero timelags, for example:

T (t) =


t if |t| ≤ t0 (maximum considered lag),

0 otherwise.

(1.2)

Warner and Guasch (2014) construct convolutional matching filter w(t) between

observed and simulated data and minimize the difference between w(t) and zero-lag

filter (δ-function):

J = ‖T (t)w(t)‖2, (1.3)

where T (t) penalizes filter coefficients away from zero-lag, similarly to expression (1.2).

Essentially same approach was proposed by Luo and Sava (2011). They construct

deconvolution w(t) in Fourier domain:

w(t) =
∑
ω

do(ω)ds(ω)e−2iωt

do(ω)do(ω) + ε2
,

and minimize analogous to (1.3) objective function.

Modifications of the inversion algorithm described in this section, as well as various

other practical techniques (see Virieux and Operto, 2009), aim to increase efficiency

and robustness, and alleviate the issues of the LS approach. While capable of enlarg-

ing the basin of attraction of local descent methods in certain situations, they cannot

resolve the fundamental problem of the multimodality of the least-squares objective

and subsequent convergence difficulties of the local descent approach.

In practice, FWI is typically used jointly with other approaches that provide ac-

curate initial models. Commonly used methods to construct starting models for FWI
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include reflection tomography, first arrival traveltime tomography (FATT), stereoto-

mography, etc. Brenders and Pratt (2007b,a); Pratt and Brenders (2004) success-

fully employ joint FATT-FWI approach to both hydrocarbon-exploration scale and

lithospheric-scale problems (blind tests).

1.2 Extended modeling approach

The overall seismic inversion problem can be cast as a problem of finding (1) state

variables u (pressure, displacement, etc.), and (2) control variables m (Earth model,

source, etc.) satisfying the following two constraints:

H[m,u] = 0, (1.4)

G[u, do] = 0, (1.5)

in which H is a wave operator, and G is a “misfit” operator3.

In the conventional FWI approach described in the previous section, forward equa-

tion (1.4) is satisfied at all stages (iterations) of the inversion process, and the goal

of iterative optimization process is to find a model m that satisfies data fitting con-

straint (1.5).

Extended modeling approach recasts the problem by introducing extra degrees

of freedom to the model4. The goal of model extension is to make data fitting con-

straint (1.5) easily satisfied at all stages of optimization (“data is always fit”), thus,

3Typically, G[u, do] = S[u]− do, where S is a sampling operator.
4Term model is used here in a broad sense: properties of the Earth, energy source, initial

conditions, acquisition parameters, etc.
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avoiding cycle skipping problem altogether. Extended models m̄ in general are not

physical. An additional constraint is introduced to recover physically plausible mod-

els:

A[m̄] = 0,

where annihilator A is an operator whose null space consists of non-extended models.

A number of methods utilizing extended modeling concept have shown to be

able to converge to a global minimum from (kinematically) inaccurate initial models.

In this section, I review a number of inversion approaches that employ extended

modeling.

1.2.1 Full space optimization

van Leeuwen and Herrmann (2013); Peters et al. (2014) consider optimization in full

space, i.e., over both control variables m and state variables u:

min
m,u

J [m,u],

J [m,u] = ‖H[m,u]‖2 + α‖G[u, do]‖2,

(1.6)

where α is a weighting parameter.

They recast problem (1.6) using variable projection method and numerically vali-

date improved convexity properties of the objective functional. Decoupling variables

m and u leads to one important advantage of the method: simplicity of the compu-

tation of the gradient and Hessian of J . Computational (especially memory) require-

ments present the main drawback of this approach currently rendering it inapplicable
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to industrial problems.

It should be noted that full space optimization approach fits into the extended

modeling framework with extended model m̄ = {m, sv}, where sv denotes distributed

virtual sources. Forward equation (1.4) then becomes H[m,u] = sv. Correspondingly,

annihilator A[m̄] = sv penalizes non-zero virtual sources.

1.2.2 Earth model extensions and differential semblance

Earth model extensions are based on extending Earth model (such as velocity, reflec-

tivity, etc.) by introducing additional dimension h: m̄ = m̄(x, h). Symes (2008) dis-

cusses two kinds of Earth model extensions: surface-oriented extensions and subsurface-

oriented extensions.

For surface-oriented extensions, h represents a surface acquisition parameter: shot

coordinate, plane wave slowness, surface offset, etc. Thus, surface-oriented extension

allows the model to depend on experiment. Data is binned accordingly: d = d(·, h).

In many cases, inverse problem F [m̄(·, h)] = d(·, h) is under-determined for any fixed

h, and allows exact (up to a noise level) data fit solution. Obviously, extended model

is physically plausible if and only if it does not depend on acquisition parameter h

(“same Earth”). Symes (1986b) introduced differential semblance annihilator:

A[m̄] =
∂m̄

∂h
. (1.7)

This is essentially the only kind of annihilator that leads to smooth objective func-

tion (Stolk and Symes, 2003).
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In a subsurface-oriented extension approach, Earth model (coefficients of wave

equation) m(x) is generalized by a positive self-adjoint operator. Non-extended mod-

els constitute a subspace, such as diagonal operators (see example in Symes, 2008,

p. 775) with physical models focused at h = 0: m̄(x, h) = m(x)δ(h) (Rickett and

Sava, 2002).

Symes (2008) compares advantages and disadvantages of two kinds of Earth model

extensions. Important advantage of surface extensions is that they do not increase the

computational complexity of the forward modeling. In case of subsurface extensions,

timestepping-based forward modeling may require substantially higher computational

effort than non-extended forward modeling.

1.2.3 Linearized problem with differential semblance

optimization

DS optimization approach was first applied to a linearized scattering (Born) problem

with horizontally layered acoustic model and plane-wave data. Symes (1990, 1991a);

Symes and Carazzone (1991) present detailed analysis of the problem. They show that

under certain conditions (reflector-rich model, sufficient aperture): (1) DS objective

functional is regular and, thus, much better suited for local descent methods then

conventional LS functional; (2) solution of the DS optimization problem is stable

with respect to noise.

Symes (1993); Symes and Kern (1994) further develop this technique for hori-

zontally heterogeneous acoustic model and shot-gather data. The authors consider

variable projection approach and show that it results in a smooth and convex objec-
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tive functional, and optimization problem is stable. Recent results on this approach

can be found in Huang and Symes (2015); Huang (2016).

Biondi and Almomin (2012); Almomin and Biondi (2012); Liu et al. (2014) use

subsurface extensions of the reflectivity and demonstrate on numerical examples that

this method is capable of recovering both high- and low-wavenumber components of

the velocity model.

A very closely related group of methods, differential semblance velocity analy-

sis (DSVA), is based on minimization of the DS of extended image (image volume).

DSVA has been used with a number of extensions, such as surface offset, subsurface

offset, common scattering angle, etc. Symes (2008) provides an excellent overview of

the subject of migration velocity analysis (MVA), pros and cons of different types of

model extensions, connection between MVA and LS inversion, and extensive list of

references. For recent results, see Shen and Symes (2008, 2015); Fei and Williamson

(2010); Li et al. (2014); Weibull and Arntsen (2014a,b); Maciel et al. (2011).

1.2.4 Time-lag axis extension

Biondi and Almomin (2014) consider a multiple scattering problem:

(
∂2

∂t2
− v2

0∇2
x

)
p0 = f,(

∂2

∂t2
− v2∇2

x

)
δp = δv2∇2

xp0,

(1.8)

where v0 and δv denote background velocity and velocity perturbation respectively,

and v2 = v2
0 + δ2

v . They introduce time-lag extension of velocity perturbation δv̄(x, t)
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and replace second equation in (1.8) by

(
∂2

∂t2
− v̄2|t=0∇2

x

)
δp = δv̄2 t∗∇2

xp0,

where v̄2 = v2
0 + δv̄2.

The objective function is a compromise of data-fitting term and zero-lag focusing

of the extended model:

J [v̄] = ‖F̄ [v̄]− do‖2 + α‖tδv̄‖2. (1.9)

Numerical examples show that this approach can converge to a global minimum from

kinematically wrong initial models. However, convergence rates are too low to apply

this method to industrial 3D problems.
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Chapter 2

Theory

In this chapter, I provide an abstract formulation of the extended modeling algorithm.

Application of this approach to constant density acoustics with plane wave source

extension is described in Chapter 3.

2.1 Extended inverse problem

In an abstract inversion setting, a modeling operator F : M → D relates a physical

model space M to a data space D. The inversion problem of finding a model m ∈M

that predicts the observed data do ∈ D,

F [m] ≈ do, (2.1)
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is solved by least squares optimization:

min
m

JLS[m],

JLS[m] =
1

2
‖F [m]− do‖2

D.

(2.2)

Extended modeling approach introduces extended model space M̄ . Physical model

space M is an embedded linear subspace of M̄ via a linear extension map E : M → M̄ .

Image E[M ] is sometimes called “physical models”. Spaces M , M̄ , and D are Hilbert

spaces with inner products denoted by 〈·, ·〉M , 〈·, ·〉M̄ , and 〈·, ·〉D respectively.

Modeling operator F is extended by F̄ : M̄ → D so that

F̄
[
E[m]

]
= F [m]. (2.3)

As discussed in Chapter 1.2, physically consistent extended models constitute a

kernel of a linear operator (annihilator) A : M̄ → N , where N denotes another Hilbert

space:

Am̄ = 0 ⇐⇒ m̄ = E[m]. (2.4)

The extended inversion problem consists of finding an extended model1 m̄ ∈ M̄

so that

F̄ [m̄] ≈ do,

Am̄ ≈ 0.

(2.5)

If a model m ∈ M solves original problem (2.1), then from 2.3 and 2.4 follows that

1Extraction of the physical model m from extended solution m̄ of (2.5) is assumed to be a trivial
operation.
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extended model m̄ = E[m] solves problem (2.5). Conversely, for solution m̄ of prob-

lem (2.5) condition (2.4) implies that there exists model m, such that E[m] = m̄,

hence F [m] = F̄ [E[m]] ≈ do.

Motivated by solvability of the least squares optimization problem for impulsive

source2, Sun (2012) introduces control model mc to problem (2.5):

F̄ [m̄] + F̄c[m̄] ≈ Fc[mc] + do,

Am̄ ≈ 0,

(2.6)

where F̄c denotes modeling operator with complimentary low-frequency source.

Denoting modeling operator with a full bandwidth source (full bandwidth opera-

tor) by

F̄f [m̄] = F̄ [m̄] + F̄c[m̄], (2.7)

I obtain the following extended optimization problem: find a pair {mc ∈M, m̄ ∈ M̄},

such that

F̄f [m̄] ≈ Fc[mc] + do,

Am̄ ≈ 0.

(2.8)

For a low-frequency complimentary source, control data generated by Fc[mc] is not

sensitive to short-scale perturbations of the control model mc, hence solution of prob-

lem (2.8) is not unique. When solving (2.8) numerically, regularization needs to be

applied to control model mc. The goal of the regularization is to enforce smoothness

of the control model. A suitable choice of the regularizer is the following operator

Λ = (I − L)−p, (2.9)

2See Appendix B for numerical validation of this fact for a simple 2D problem.
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where p > 0, and anisotropic Laplace operator

L = ωz
∂2

∂z2
+ ωx

∂2

∂x2
+ ωy

∂2

∂y2
. (2.10)

See (Symes and Kern, 1994) for analysis and (Huang, 2016) for implementation de-

tails.

2.2 Nested optimization

To solve problem (2.8), I introduce a compromise functional

J [mc, m̄;α] =
1− α

2
‖F̄f [m̄]− (Fc[mc] + do)‖2

D +
α

2
‖Am̄‖2

M̄ , (2.11)

where weight α ∈ [0, 1] represents a compromise between data fit and physicality of

the extended model.

Objective functional J will suffer the same multimodality problem as the con-

ventional FWI functional JLS (2.2), if optimized jointly over mc and m̄. For the

extended Born waveform inversion, Huang (2016) attempted to optimize compromise

functional simultaneously over the control (background) model and extended (reflec-

tivity) model and observed no kinematic correction of the background model, thus

keeping reflectors at initial incorrect positions. On the contrary, nested (in particular,

variable projection) approach produced useful kinematic updates of the model.

Nested optimization approach introduces a reduced objective functional, which
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essentially re-parametrizes extended model m̄ with the control model mc:

Jr[mc;α] = min
m̄

(
J [mc, m̄;α] +R(m̄)

)
, (2.12)

where R denotes possible regularization term. Solvability of the impulsive response

problem suggests that in case of full bandwidth operator F̄ , reduced (also referred to

as inner) problem (2.12) can be efficiently solved (can converge to a global minimizer)

with local descent methods. Minimizer of the inner problem is denoted by

µ̄ = argmin
m̄

J [mc, m̄;α]. (2.13)

The outer optimization is performed over control model mc:

min
mc

J [mc],

J [mc] = J [mc, µ̄; α̃],

(2.14)

with a possibly different weight α̃.

Various approaches to choosing compromise weights α and α̃ can be considered.

Sun (2012) uses a compromise functional for the inner problem: 0 < α < 1, while

only penalizing non-physicality of the extended model in the outer problem: α̃ = 1.

Another possibility is a “pure data fitting” inner problem: α = 0. Thus, for each

extended model m̄(·, h), a decoupled conventional FWI problem is solved. The outer

optimization functional penalizes non-physicality of the extended model: α̃ = 1.

I my work, I consider a variable projection (VP) method (Golub and Pereyra,

2003) described in Section 2.4 of this chapter.
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2.3 Gradients

Gradient for the inner problem (2.12) is

∇m̄J [mc, m̄;α] = (1− α)DF̄f [m̄]
∗(
F̄f [m̄]− (Fc[mc] + do)

)
+ αA∗Am̄. (2.15)

Necessary condition for a stationary point µ̄ is

∇m̄J [mc, µ̄;α] = 0, (2.16)

i.e.,

(1− α)DF̄f [µ̄]
∗(
F̄f [µ̄]− (Fc[mc] + do)

)
+ αA∗Aµ̄ = 0. (2.17)

To derive a gradient for the outer problem (2.14), consider perturbation mc +

δmc of the control model and corresponding perturbed solution µ̄ + δµ̄ of the inner

problem (2.12). Necessary condition (2.16) for perturbed solution gives

(1− α)DF̄f [µ̄+ δµ̄]
∗(
F̄f [µ̄+ δµ̄]− (Fc[mc + δmc] + do)

)
+ αA∗A(µ̄+ δµ̄) = 0.

(2.18)

Expansion of this equation to the first order yields:

(1− α)(DF̄f [µ̄] +D2F̄f [µ̄]δµ̄)
∗

(
F̄f [µ̄] +DF̄f [µ̄]δµ̄− (Fc[mc] +DFc[mc]δmc + do)

)
+ αA∗A(µ̄+ δµ̄) = 0.

(2.19)
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After regrouping terms, we have

(1− α)DF̄f [µ̄]
∗(
F̄f [µ̄]− (Fc[mc] + do)

)
+ αA∗Aµ̄

+ (1− α)
{
DF̄f [µ̄]

∗
DF̄f [µ̄]δµ̄+ (D2F̄f [µ̄]δµ̄)

∗(
F̄f [µ̄]− (Fc[mc] + do)

)}
+ αA∗Aδµ̄

= (1− α)
{
DF̄f [µ̄]

∗
DFc[mc]δmc

}
+ (1− α)

{
(D2F̄f [µ̄]δµ̄)

∗
(DFc[mc]δmc −DF̄f [µ̄]δµ̄)

}
.

(2.20)

First line of the above equation is zero due to (2.17). Dropping higher-order terms

on the right-hand side, we obtain

Q
[
µ̄, F̄f [µ̄]− (Fc[mc] + do)

]
δµ̄ = DF̄f [µ̄]

∗
DFc[mc]δmc, (2.21)

where self-adjoint linear (of argument δm̄) operator Q is defined by

Q[µ̄, d] δµ̄ =
{
N [µ̄] +W [µ̄, d] +

α

1− α
A∗A

}
δµ̄, (2.22)

normal operator N is given by

N [µ̄] δµ̄ = DF̄f [µ̄]
∗
DF̄f [µ̄] δµ̄, (2.23)

and a so-called tomographic operator W (Biondi and Sava, 2004; Biondi and Al-

momin, 2012) is defined by

W [µ̄, d] δµ̄ = (D2F̄f [µ̄] δµ̄)
∗
d. (2.24)
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From equation (2.21) follows

Dµ̄ = Q
[
µ̄, F̄f [µ̄]− (Fc[mc] + do)

]−1
DF̄f [µ̄]

∗
DFc[mc]. (2.25)

Since operator Q is self-adjoint, gradient for the outer problem (2.14) is

∇J [mc] = −(1− α̃)DFc[mc]
∗(F̄f [µ̄]− (Fc[mc] + do)

)
+DFc[mc]

∗DF̄f [µ̄]Q
[
µ̄, F̄f [µ̄]− (Fc[mc] + do)

]−1∇m̄J [mc, µ̄; α̃].

(2.26)

2.4 Variable projection

The VP method differs from other nested optimization methods by using same penalty

weight α̃ = α for both the inner (2.12) and outer (2.14) optimization problems. Huang

(2016); Xu et al. (2012); van Leeuwen and Mulder (2009); Symes and Kern (1994)

utilize VP optimization for linearized (Born) and extended Born waveform inversions.

To reduce notation, I drop (1−α) weight from the data-fitting term of the extended

objective functional:

J [mc, m̄] =
1

2
‖F̄f [m̄]− (Fc[mc] + do)‖2

D +
α

2
‖Am̄‖2

M̄ . (2.27)

Gradient (2.15) for the inner problem then becomes

∇m̄J [mc, m̄] = DF̄f [m̄]
∗(
F̄f [m̄]− Fc[mc] + do)

)
+ αA∗Am̄. (2.28)

One of the advantages of the VP method is significant simplification of the outer
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gradient. If the necessary condition (2.17) is satisfied, the second term in the outer

gradient expression (2.26) vanishes:

∇J [mc] = −DFc[mc]
∗(F̄f [µ̄]− (Fc[mc] + do)

)
. (2.29)

However, in order for this method to work, the inner problem has to be solved very

accurately. Since the second term in the outer gradient (2.26) contains an unbounded

operator, deviation of the inner gradient (2.28) from zero at the solution µ̄ of the

inner problem may result in large error in the outer gradient. For the extended Born

waveform inversion, Symes and Kern (1994) indicate that the accuracy of the solution

of the inner problem is critical for the accuracy in the background model gradient

computation. Huang (2016) quantifies their suggestion.
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Chapter 3

Model problem

This chapter presents the wave propagation PDE, model parametrization, and model

extension type, considered in this study.

3.1 Wave propagation model

I adopt the simplest wave propagation model, constant density acoustics, based on

the second-order wave equation

(
1

c2(x)

∂2

∂t2
−∇2

)
u(x, t) = f(x, t),

u(x, t) ≡ 0, t < 0 (casual field),

(3.1)

where position x ∈ Ω for a domain of interest Ω, and time t ∈ [0, T ] for some

simulation time T . Here
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– c(x) is an acoustic velocity,

– u(x, t) is an acoustic potential,

– f(x, t) is a causal source representing a body force.

I apply absorbing boundary condition on three sides of the domain Ω, and absorb-

ing or zero Dirichlet (free surface) boundary condition on the remaining top side.

Acoustic velocity is restricted to an a-priory known range of velocities c ∈ (cmin, cmax).

In order to satisfy this restriction, I introduce a model parameter m(x) defined by

m = tanh−1

{(
cγ − cγmax + cγmin

2

)
2

cγmax − cγmin

}
, (3.2)

where γ is some non-zero power. Equation (3.2) monotonically maps range of veloc-

ities (cmin, cmax) to (−∞,∞), thus “soft-clipping” velocities to a desired range.

Inversion problem is solved in terms of the model m defined by equation (3.2). To

avoid notation clutter, I will keep using c(x) in the equation (3.1) and its derivatives,

implying c(x) = c[m(x)].

3.2 Plane wave model extension and differential

semblance

In this thesis, I consider surface-oriented extension with respect to plane wave sources.

Extended models are parameterized by an acquisition parameter h, which encodes

plane wave source. For two-dimensional problems, h is a one-dimensional parameter,
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such as plane wave incidence angle or slowness.

Data d(t,xr;h) ∈ D is a collection of traces at discrete receiver positions xr ∈

Σr ⊂ Ω for a range of the acquisition parameter h. Modeling operator F : M → D is

defined by

F [m](xr, t;h) = u(xr, t;h), (3.3)

where u(x, t;h) solves equation (3.1) with a plane wave source f(. . . ;h).

Extended model space M̄ = {m̄(x;h)} is a set of models of position x and acqui-

sition parameter h.

Modeling operator F trivially extends to F̄ : M̄ → D by

F̄ [m̄](xr, t;h) = F [m̄(·;h)](xr, t;h), (3.4)

leading to a wave equation with a separate model for each plane wave source:

(
1

c2(x;h)

∂2

∂t2
−∇2

)
u(x, t;h) = f(x, t;h), (3.5)

Such model extension allows to fit observed data for plane wave shot f(. . . ;h) with

data predicted by a separate model m̄(x;h).

As described in Section 1.2.2, differential semblance operator is the only appro-

priate choice of annihilator for surface-oriented extension considered in this thesis.

Annihilator A from equation (2.11) is given by

Am̄ =
∂m̄

∂h
. (3.6)
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Operator A∗A used in gradient computation (2.15) takes the following form:

A∗Am̄ = −∂
2m̄

∂h2
+
∂m̄

∂h

∣∣∣h1
h0
, (3.7)

where h ∈ [h0, h1].
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Chapter 4

Numerical experiments

In this chapter, I present numerical examples with two synthetic two-dimensional

models: Dome model and Marmousi (Bourgeois et al., 1991) model. For the Dome

model, I consider two boundary condition cases: absorbing and free surface.

4.1 Numerical simulations

I use conventional regular grid finite difference (FD) scheme to solve equation (3.1)

numerically.

Computational rectangular domain Ω is discretized with a uniform grid xij =

(i∆x, j∆x). Spatial sampling ∆x is chosen based on effective source bandwidth and

velocity range (cmin, cmax) from equation (3.2) in order to have insignificant numer-

ical dispersion (Cohen, 2001; Gustafsson, 2008). For numerical experiments with
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synthetic models, I subsample true models to a computational sub-grid via mass

lumping (Symes and Terentyev, 2009).

Time axis discretization is tn = n∆t. Time sampling ∆t is fixed during entire

inversion process, and is chosen based on maximum velocity cmax from equation (3.2)

in order to satisfy CFL stability conditions (Cohen, 2001).

I use second-order in time and eighth-order in space (2-8) FD scheme given by

un+1 = 2un − un−1 + ∆t2c2[m]Lun + ∆t2fn, (4.1)

where un = u(xij, t
n), L is an eighth-order discrete Laplacian, and fn = f(xij, t

n).

Absorbing boundary conditions are implemented using convolutional perfectly

matched layer (PML) approach (Komatitsch and Martin, 2007) adopted to a second

order acoustic wave equation. The computational domain is extended in order to

include the absorbing layers.

Discretized Born and adjoint approximations for the wave propagation and PML

equations are generated using automatic differentiation (AD) software Tapenade

(Hascoet and Pascual, 2013). To validate and simplify code produced by AD tools,

it is useful to have continuous Born operators DF , D2F and adjoint operators DF ∗,

D2F ∗, which are derived in Appendix A. Discrete adjoint DF ∗ used in the inner gra-

dient computation of the VP method requires the following FD scheme propagated

backwards in time:

vn−1 = 2vn − vn+1 + ∆t2L(c2[m]vn) + rn−1, (4.2)
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where vn = v(xij, t
n) is back-propagated wavefield, rn = r(xij, t

n) denotes residuals.

Annihilator (3.6) is discretized by a 1-st order one-sided finite difference scheme.

Operator A∗A (3.7) is discretized using a 3-point finite difference method respectively.

Plane wave source with source wavelet ω(t) is implemented by placing isotropic

point sources with the same wavelet at each grid point at the top of the computational

grid and activating them with a delay proportional to source position. For a plane

wave with an incidence angle α, the delay for point source with an index j is

τj =
j∆x sinα

c
, (4.3)

where c is homogeneous velocity at the top of a model (water velocity).

4.2 Source wavelet

The (main) source wavelet ωm employed in all the numerical experiments is 8 Hz peak

frequency Ricker (1940) passed through a low-cut (4-6 Hz) trapezoidal filter. Source

wavelet and its spectrum are shown in Figure 4.1.

For a complimentary source ωc, I use a Gaussian wavelet (ωc = exp {−π2f 2t2})

with f = 8 Hz passed through a high-cut (4-6 Hz) trapezoidal filter. Complimentary

source wavelet and its spectrum are shown in Figure 4.2.

Full source ω is a linear combination of the main source and the complimentary
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source with weight wc:

ω = ωm + wcωc. (4.4)

Full source with wc = 0.5 and its spectrum are shown in Figure 4.3.
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Figure 4.1: Source: Ricker wavelet with 8 Hz peak frequency passed through a low-cut
(4-6 Hz) trapezoidal filter. Left: source wavelet. Right: source spectrum (normalized
amplitude).
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Figure 4.2: Complimentary source: Gaussian wavelet (ωc = exp {−π2f 2t2}) with
f = 8 Hz passed through a high-cut (4-6 Hz) trapezoidal filter. Left: source wavelet.
Right: source spectrum (normalized amplitude).
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Figure 4.3: Full source: linear combination of main source and complimentary source
with weight 0.5. Left: source wavelet. Right: source spectrum (normalized ampli-
tude).

Numerical experiments showed that choice of complimentary source weight wc is

crucial for extended FWI algorithm. If complimentary source weight wc is too large,
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the inner problem is dominated by low frequency control data Fc[mc], which is fixed

during each inner optimization. This allows to solve inner problem faster and more

robustly, in particular, it eliminates the need in frequency continuation technique or

allows for less accurate initial guess for the inner problem. However, the rest of the

data (observed data do and predicted data F [m̄]) can be considered “noise” compared

to the data generated by the control source. Thus, control model mc behaves as an

attractor for extended models, which are updated during the inner optimization.

Since the initial guess for the first iteration of the outer problem is a constant “water

model” for both mc and m̄, the algorithm is unable to improve these models. In

absence of numerical and data noise and if the inner problem is solved accurately

enough to produce reliable control model gradient, increasing control source weight

wc should result in slower convergence of the algorithm. However, in my numerical

experiments choosing large wc resulted in algorithm failure.

Border case wc = 0 obviously produces zero control data F̄c[m̄] and Fc[mc] re-

gardless of models m̄,mc and results in zero gradient of the control model gradient.

Similarly, if wc is too small the control model gradient is not computed accurately

and the inversion fails.

In my numerical experiments, weight of the control source was chosen on the basis

of trial and error for each experiment.
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4.3 Optimization

I solve the inner optimization problem with Polak-Ribière variation of the nonlinear

CG method (Nocedal and Wright, 1999) with quadratic fit line search. The main

stopping criteria is small reduction of the objective functional (with respect to a pre-

vious iteration) during several consecutive CG iterations. In all numerical examples,

inner optimization process stopped when reduction of the objective functional was

less than 1% in 8 consecutive CG iterations.

At k-th iteration of the outer optimization loop, inner optimization problems are

solved for trial control models mk
c = mk−1

c + αsk−1
c , where α is a step size and sk−1

c is

a search direction. To solve inner optimization problem, the extended model initial

guess µ̄k0 must be chosen. Choice of extended model initial guess played an important

role in successful application of the extended modeling algorithm. I considered the

following options:

(1) trial control model as initial guess: µ̄k0 = mk
c ,

(2) previous control model as initial guess: µ̄k0 = mk−1
c ,

(3) solution of the inner problem for previous control model: µ̄k0 = µ̄k−1,

(4) solution of the inner problem for previous control model averaged over exten-

sion parameter h: µ̄k0 = H[µ̄k−1], where H is an averaging operator over the

acquisition parameter h.

Options (1) and (2) resulted in algorithm failure even in numerical tests with sim-

plest models. Option (4) resulted in successful application of the algorithm in more
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complicated numerical examples, such as Dome and Marmousi tests presented in this

section. In my tests, I averaged squared slowness:

s2
ave =

∑N
i=1 s

2
i

N
, (4.5)

where N denotes number of extended models, si = 1/ci[m̄i] denotes i-th slowness

computed using inverse of equation (3.2). Averaged model is then computed by

H[m̄] = m[1/save] via equation (3.2).

To accelerate the convergence of the outer problem, the following ad hoc modifi-

cation of the option (4) can be used:

µ̄k0 = (1− γ)H[µ̄k−1] + γmax
h

µ̄k−1(·;h), (4.6)

where γ ∈ (0, 1) is a weight parameter. Using small weight (γ ≈ 0.05 ∼ 0.1) signif-

icantly improved convergence during first iterations of the outer optimization loop.

In my numerical tests, if γ was not reduced or set to zero at later iterations, the

algorithm failed as the velocity models became too fast. Obviously, this modifica-

tion works only if I start from slow-velocity initial guess (water) and the models get

“faster” during optimization.

To solve the outer optimization problem, I considered Polak-Ribière CG and steep-

est descent methods. CG method did not show any advantage over the steepest de-

scent, which might be due to inaccuracy of the solution of the inner problem and outer

gradient calculation. A typical line search involves a sequence of step lengths, accept-

ing the first that satisfies certain conditions. Numerical tests showed that choosing a

very large step length can still lead to a sufficient decrease of the VP functional, thus,
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eventually producing models with very high velocities and failing the inversion pro-

cess. Typically (when starting optimization process from slow-velocity initial guess,

such as water), extended models tend to be faster than the control model. A practical

way to limit the step length α in the outer optimization problem is to bound it by a

distance to the average extended model:

αmax‖Λ∇gk‖ < ‖mk
c − ΛH(µ̄k)‖, (4.7)

where mk
c is the control model at k-th iteration, µ̄k denotes a corresponding solution

of the inner problem, and gk denotes the outer gradient at {mk
c , µ̄

k}.

In numerical tests presented in this thesis, I observed that the control model

gradient tends to point in the direction of averaged extended model at first iterations

of the VP method. Figure 4.35 shows the normalized dot product (angle cosine) of

the negative outer gradient (−Λ∇J [mc]) and the difference of the averaged extended

model and the control model (ΛH(µ̄) − mc). With more iterations this quantity

decreases and and becomes less stable, which usually corresponds to stagnation of

the optimization process.

4.4 Algorithm

The algorithm for extended FWI integrated with variable projection optimization

approach used in this thesis is listed below. The algorithm is implemented in C++

with OpenMP-based parallelization (OpenMP, 2017). I use FFTW software package

(Frigo and Johnson, 2005) to compute Fourier transforms used in filtering procedures.
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Algorithm 1 Extended FWI with VP optimization

1: Setup. Major parameters listed below:

2: Choose starting model mstart

3: Choose regularization term and its weight
4: Choose annihhilator weight

5: Solve inner problem at 0-th iteration:

6: m0
c ← mstart

7: Prepare extended initial guess: m̄(h)← mstart

8: CG with initial guess m̄(h): J0 ← Jr[m
0
c ] with minimizer µ̄0

9: for k := 0, 1, . . . do
10: Compute outer gradient: gk ← ∇J at {mk

c , µ̄
k} using equation (2.29)

11: Smooth outer gradient: sk ← Λgk using equation (2.9)
12: Prepare extended initial guess: m̄(h)← H[µ̄k]
13: Estimate initial step α according to (4.7)
14: loop backtracking line search
15: mk+1

c ← mk
c + αsk

16: Solve inner problem:

17: CG with initial guess m̄(h): Jk+1 ← Jr[m
k+1
c ] with minimizer µ̄k+1

18: if Jk+1 < Jk then
19: Accept mk+1

c , µ̄k+1, and Jk+1

20: break
21: else
22: reduce step α

23: end if
24: if α too small then
25: Resume inner solver & solve inner problem more accurately:

26: Prepare extended initial guess: m̄(h)← µ̄k(h)
27: CG with initial guess m̄(h): Jk ← Jr[m

k
c ] with updated minimizer µ̄k

28: goto 10
29: end if
30: end loop
31: end for
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4.5 Dome model

This section shows two numerical experiments (absorbing top boundary and free

surface top boundary) with Dome model. Both experiments have identical setup

(acquisition parameters, optimization parameters and strategy, etc.) described below.

The Dome model shown in Figure 4.4 is resampled to a 23.35 m × 23.35 m sim-

ulation grid (49 × 213 grid points) and padded with an extra 100 m water layer on

top. The model velocity range is 1500–4000 m/s.
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Figure 4.4: Dome acoustic velocity model. Horizontal layers: 1500, 3000, 3500, 4000,
and 2600 m/s. Dome layers: 1800, 2100, and 2600 m/s.

I use 27 plane wave shots with plane wave incidence angle α ranging from −25◦

to 25◦. Acquisition parameter h = sgnα sin2 α represents squared slowness, and is

uniformly gridded between its end values. In all experiments, complimentary weight

wc = 0.2 (see Section 4.2 and equation (4.4) for its description). This value of wc is

chosen on the basis of trial and error.
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213 receivers are placed at grid points at the top of the domain. All traces for

all shots are 1.5 s long. I use reduced-time shot records: each trace (for each shot)

is recorded starting from its first arrival time. Therefore, each shot has different

simulation time, increasing with shot incidence angle.

For initial guess (initial control and extended models in the first outer iteration

of VP method), I use a homogeneous “water model” c = 1500 m/s. Top 200 meter

layer of control and extended models is fixed to water velocity at all inner and outer

iterations (all gradients are muted).

I add total variation (TV) regularization term to the objective functional of the

inner problem. TV regularization promotes sparsity of the model spatial gradient

(Aster et al., 2012) and works well for “blocky” models such as Dome model. Weight of

the TV regularization term is chosen on the basis of trial and error for each numerical

experiment and is same for all iterations of the outer optimization problem.

4.5.1 Conventional inversion experiment

Here, I present results of two conventional inversion experiments: (1) — with kine-

matically correct initial guess, and (2) — with initial guess that does not provide

accurate enough long-scale velocity structure.

Conventional optimization problem is solved with Polak-Ribière CG method, sim-

ilarly to the inner problem of the VP method for the extended modeling approach.

Top row of Figure 4.5 shows initial velocity models for conventional experiments:

initial model (1) is produced by smoothing the true slowness with a moving 500 m
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box average. Initial model (2) is a vertical velocity gradient model.

Bottom row of Figure 4.5 shows conventional FWI results. Inversion (1) is capable

of recovering the model very precisely. However, in case of inaccurate initial guess,

which is still better than constant initial “water model” used in extended approach

investigated in this thesis, the conventional inversion (2) fails.

Relative objective functional values are 0.2% and 41% for experiments (1) and (2)

respectively. Recovered model for experiment (1) has a noticeable model error at the

bottom under the dome (bottom-left model in Figure 4.5). Nevertheless, data is fitted

very accurately (0.2% relative error), which indicates that the model error “belongs”

to the null space of the objective functional.
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Figure 4.5: Dome with absorbing surface example: conventional FWI; initial mod-
els (top), and recovered models (bottom). Left: inversion with kinematically correct
initial model. Right: inversion with inaccurate long-scale structure of initial model.
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4.5.2 Absorbing boundary experiment

In this section, I present numerical test results for the Dome model with absorbing

boundary conditions on all four sides of the model.

Figure 4.6 shows observed data (with direct arrival removed) for two shots: 0◦

incidence angle (horizontal plane-wave) and 20◦ incidence angle.

incidence angle 0◦

trace index
0 100 200

ti
m
e
(s
)

-0.5

0

0.5

1

1.5 -6

-4

-2

0

2

4

6

incidence angle 20◦

trace index
0 100 200

ti
m
e
(s
)

-0.5

0

0.5

1

1.5

-10

-5

0

5

10

Figure 4.6: Dome with absorbing surface example: shot records (direct arrivals re-
moved). Left: plane wave with 0 degrees incidence angle. Right: plane wave with 20
degrees incidence angle.

Figure 4.7 shows intermediate results of the inversion process at outer iterations

1, 2, 4, 8, 16, and 32. Left column presents averaged (over extension axis) extended

models. Right column shows the control models. Data misfit history, shown in

Figure 4.8, indicates that there is little improvement in the error after 25 iterations.

As shown, after 32 iterations, the model is recovered quite accurately (less than 1%

data fitting error). After 20 or so iterations, the model has sufficiently accurate
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long-scale information to switch to a conventional FWI, presented in Section 4.5.1.

As expected, control model does not contain short-scale information and resembles

smoothed version of the extended model.

Figures 4.9 and 4.10 show shot records (direct arrivals removed) of observed data

(left column) and data residuals (right column) after 32 iterations for shots with 0◦

and 20◦ incidence angles respectively.

Figure 4.11 compares leftmost (receiver at the left model edge) and central (re-

ceiver over dome top) traces of predicted and true data for 0◦ incidence angle plane

wave shot. Figure 4.12 gives similar comparison for 20◦ incidence angle plane wave

shot. These two figures show that data is fitted very well for both offsets.
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Figure 4.7: Dome with absorbing surface example: averaged extended (left) and
control (right) models. Inverted models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), and
32 (f) outer iterations of the VP method.
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Figure 4.8: Dome with absorbing surface example: normalized data misfit conver-
gence curve of steepest descent method for outer optimization.
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Figure 4.9: Dome with absorbing surface example: data residual after 32 outer iter-
ations of the VP method. Left: shot record for plane wave with 0 degrees incidence
angle. Right: data residual.
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observed data
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Figure 4.10: Dome with absorbing surface example: data residual after 32 outer
iterations of the VP method. Left: shot record for plane wave with 20 degrees
incidence angle. Right: data residual.
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Figure 4.11: Dome with absorbing surface example: trace comparison of true
data (red) and predicted data after 8 iterations (green) and after 32 iterations (blue).
0◦ incidence angle plane wave shot. Top: leftmost receiver. Bottom: central receiver.
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Figure 4.12: Dome with absorbing surface example: trace comparison of true
data (red) and predicted data after 8 iterations (green) and after 32 iterations (blue).
20◦ incidence angle plane wave shot. Top: leftmost receiver. Bottom: central receiver.
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Figures 4.14–4.17 present model gathers at gather locations shown on Figure 4.13.

Model gathers are flattened after 32 iterations.
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Figure 4.13: Dome acoustic velocity model: gather locations. Location (1) at x =
2500 m, (2) at x = 2854 m, (3) at x = 2948 m, and (4) at x = 3774 m.

For this experiment, the surface-oriented extended FWI approach is capable of

recovering an accurate velocity model (both long- and short-scale structure) and

achieving a very small data fitting error, while starting from a kinematically wrong

initial model. Such results could not be achieved with a conventional FWI approach.
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model gathers, location (1)
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Figure 4.14: Dome with absorbing surface example: model gathers at location (1).
Inverted models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), and 32 (f) outer iterations of
the VP method.
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model gathers, location (2)
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Figure 4.15: Dome with absorbing surface example: model gathers at location (2).
Inverted models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), and 32 (f) outer iterations of
the VP method.
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model gathers, location (3)
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Figure 4.16: Dome with absorbing surface example: model gathers at location (3).
Inverted models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), and 32 (f) outer iterations of
the VP method.
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model gathers, location (4)
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Figure 4.17: Dome with absorbing surface example: model gathers at location (4).
Inverted models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), and 32 (f) outer iterations of
the VP method.
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4.5.3 Free surface experiment

In this section, I present numerical test results for the Dome model with free surface

boundary condition on top of the model (absorbing boundary conditions on three

other sides).

Figure 4.18 shows observed data (with direct arrival removed) for two shots: 0◦

incidence angle (horizontal plane-wave) and 20◦ incidence angle. Significant multiple

reflections (multiples) due to the free surface are present.
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Figure 4.18: Dome with free surface example: shot records (direct arrivals removed).
Left: plane wave with 0 degrees incidence angle. Right: plane wave with 20 degrees
incidence angle.

Figure 4.19 shows intermediate results of the inversion process at outer iterations

1, 2, 4, 8, 16, 32, and 44. Left column presents averaged (over extension axis) extended

models. Right column shows the control models.
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averaged extended models

0 1000 2000 3000 4000 5000

(a)

0

500

1000

control models

0 1000 2000 3000 4000 5000

0

500

1000

0 1000 2000 3000 4000 5000

(b)

0

500

1000

0 1000 2000 3000 4000 5000

0

500

1000

0 1000 2000 3000 4000 5000

(c)

0

500

1000

0 1000 2000 3000 4000 5000

0

500

1000

0 1000 2000 3000 4000 5000

(d)

0

500

1000

0 1000 2000 3000 4000 5000

0

500

1000

0 1000 2000 3000 4000 5000

(e)

0

500

1000

0 1000 2000 3000 4000 5000

0

500

1000

0 1000 2000 3000 4000 5000

(f)

0

500

1000

0 1000 2000 3000 4000 5000

0

500

1000

0 1000 2000 3000 4000 5000

(g)

0

500

1000

0 1000 2000 3000 4000 5000

0

500

1000

Figure 4.19: Dome with free surface example: averaged extended (left) and con-
trol (right) models. Inverted models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), 32 (f), and
44 (g) outer iterations of the VP method.
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Data misfit history, shown in Figure 4.20, indicates that there is little improvement

in the error after 30 iterations. As shown, after 44 iterations, the model is recovered

quite accurately (1% data fitting error). After 30 or so iterations, the model has

sufficiently accurate long-scale information to switch to a conventional FWI, presented

in Section 4.5.1.
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Figure 4.20: Dome with free surface example: normalized data misfit convergence
curve of steepest descent method for outer optimization.

Figures 4.21 and 4.22 show shot records (direct arrivals removed) of observed data

(left column) and data residuals (right column) after 32 iterations for shots with 0◦

and 20◦ incidence angles respectively.

Figures 4.23–4.26 present model gathers at gather locations shown on Figure 4.13.

Model gathers are flattened after 44 iterations.
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observed data
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Figure 4.21: Dome with free surface example: data residual after 32 outer iterations
of the VP method. Left: shot record for plane wave with 0 degrees incidence angle.
Right: data residual.
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Figure 4.22: Dome with free surface example: data residual after 32 outer iterations
of the VP method. Left: shot record for plane wave with 20 degrees incidence angle.
Right: data residual.
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model gathers, location (1)

-20 -15 -10 -5 0 5 10 15 20

(a)

0

500

1000

-20 -15 -10 -5 0 5 10 15 20

(b)

0

500

1000

-20 -15 -10 -5 0 5 10 15 20

(c)

0

500

1000

-20 -15 -10 -5 0 5 10 15 20

(d)

0

500

1000

-20 -15 -10 -5 0 5 10 15 20

(e)

0

500

1000

-20 -15 -10 -5 0 5 10 15 20

(f)

0

500

1000

-20 -15 -10 -5 0 5 10 15 20

(g)

0

500

1000

Figure 4.23: Dome with free surface example: model gathers at location (1). Inverted
models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), 32 (f), and 44 (g) outer iterations of the
VP method.
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model gathers, location (2)
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Figure 4.24: Dome with free surface example: model gathers at location (2). Inverted
models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), 32 (f), and 44 (g) outer iterations of the
VP method.
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model gathers, location (3)
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Figure 4.25: Dome with free surface example: model gathers at location (3). Inverted
models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), 32 (f), and 44 (g) outer iterations of the
VP method.
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model gathers, location (4)
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Figure 4.26: Dome with free surface example: model gathers at location (4). Inverted
models after 1 (a), 2 (b), 4 (c), 8 (d), 16 (e), 32 (f), and 44 (g) outer iterations of the
VP method.
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In current state of FWI practice, multiples present significant obstacle to a suc-

cessful inversion process. Typically, multiples are treated as noise and are removed

from the data during the pre-processing stage of the inversion. Thus, presence of

strong free surface related multiples would make this experiment much more difficult

for conventional FWI. Nevretheless, extended FWI is capable of recovering an accu-

rate velocity model resulting in a small data misfit (∼ 1%). Results of this numerical

tests are comparable to the results of the absorbing surface test. However, slower

convergence of the method is observed in presence of the multiples.
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4.6 Marmousi model

This section shows numerical experiment with the Marmousi model (Bourgeois et al.,

1991).

The Marmousi model shown in Figure 4.27 is resampled to a 23.41 m × 23.41 m

simulation grid (94 × 411 grid points) and padded with an extra 100 m water layer

on top. The model velocity range is 1500–4450 m/s.

Marmousi model
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Figure 4.27: Marmousi acoustic velocity model.

I use 29 plane wave shots with plane wave incidence angle α ranging from −30◦

to 30◦. Acquisition parameter h = sgnα sin2 α represents squared slowness, and is

uniformly gridded between its end values. In all experiments, complimentary weight

wc = 0.1 (see Section 4.2 and equation (4.4) for its description). This value of wc is

chosen on the basis of trial and error.

213 receivers are placed at grid points at the top of the domain. All traces for all
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shots are 2 s long. As with the Dome experiment, I use reduced-time shot records.

For initial guess (initial control and extended models in the first outer iteration

of VP method), I use a homogeneous “water model” c = 1500 m/s. Top 360 meter

layer of control and extended models is fixed to water velocity at all inner and outer

iterations (all gradients are muted).

I add Tikhonov regularization term to the objective functional of the inner prob-

lem. Weight of the Tikhonov regularization term is chosen on the basis of trial and

error for each numerical experiment and is same for all iterations of the outer opti-

mization problem.

Figure 4.28 shows observed data (with direct arrival removed) for three shots:

0◦ incidence angle (horizontal plane-wave), 30◦ incidence angle, and −30◦ incidence

angle.
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Figure 4.28: Marmousi with absorbing surface example: shot records (direct arrivals
removed). Left: plane wave with 0 degrees incidence angle. Center: plane wave with
30 degrees incidence angle. Right: plane wave with -30 degrees incidence angle.
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Figure 4.29 shows inversion result after 70 outer iterations of the VP method (top)

and true resampled model (bottom). Overall, the Marmousi model is recovered suf-

ficiently accurately. Significant errors in positions of interface (2) and high-velocity

layer (3), in the left part of the model are due to low-reflective overburden area (1),

whose recovered velocity is slower than exact velocity. Right part of the model

with stronger reflectors is recovered much better; for example, high-velocity areas (4)

and (5) are positioned correctly.

Figures 4.30 and 4.31 show shot records (direct arrivals removed) of observed data

(left column) and data residuals (right column) after 70 iterations for shots with 0◦

and 30◦ incidence angles respectively.

Figure 4.32 compares leftmost and central traces of predicted and true data for

0◦ incidence angle plane wave shot. Figure 4.33 gives similar comparison for 30◦

incidence angle plane wave shot. These two figures show that data is fitted very well

for both offsets.
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Figure 4.29: Marmousi with absorbing surface example: inversion result. Top: aver-
aged extended model after 70 outer iterations. Bottom: true model resampled to the
computational grid.
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observed data
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Figure 4.30: Marmousi with absorbing surface example: data residual after 70 outer
iterations of the VP method. Left: shot record for plane wave with 0 degrees incidence
angle. Right: data residual.
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Figure 4.31: Marmousi with absorbing surface example: data residual after 70 outer
iterations of the VP method. Left: shot record for plane wave with 30 degrees
incidence angle. Right: data residual.
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Figure 4.32: Marmousi with absorbing surface example: trace comparison of true
data (red) and predicted data after 70 iterations (blue). 0◦ incidence angle plane
wave shot. Top: leftmost receiver. Bottom: central receiver.
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Figure 4.33: Marmousi with absorbing surface example: trace comparison of true
data (red) and predicted data after 70 iterations (blue). 30◦ incidence angle plane
wave shot. Top: leftmost receiver. Bottom: central receiver.
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In order to improve Marmousi results, layer stripping approach can be used. This

approach consists of updating the model in a top-to bottom manner by using, for

instance, truncated or damped data. Figure 4.34 shows inversion result for the up-

per third of Marmousi model and truncated data (1 s) in comparison to the same

area of the inverted model from full-model inversion. Significant improvement of the

overthrust area in the left of the model is observed.

Figure 4.35 shows the normalized dot product of the negative gradient (−Λ∇J [mc])

and the difference of the averaged extended model and the control model (ΛH(µ̄)−

mc). See step length limit formula eq:maxstep in Section 4.3. The control model

gradient tends to point in the direction of averaged extended model. As the iteration

process proceeds, the normalized dot product values decrease, and eventually “ran-

domly oscillate” around zero. This behavior corresponds to stagnation and eventual

failure of the descent process.
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Top layer Marmousi inversion
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Figure 4.34: Marmousi with absorbing surface example: inversion of the upper part.
Top: top layer of recovered model in full-model inversion (same as apper part of recov-
ered model in Figure 4.29). Middle: inversion result for the top layer and truncated
data. Bottom: true model top layer.
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Figure 4.35: Marmousi with absorbing surface example: gradient QC. Normalized
dot product of control model gradient and direction from current model to smoothed
averaged extended model.
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Marmousi: layer-stripped EFWI + FWI

In this section, I show final inversion result of layer-stripped extended FWI followed by

conventional FWI. Extended FWI consisted of three layer-stripping stages: top 1/3 of

the domain, traces truncated to 1 second; top 1/2 of the domain, traces truncated to

1.5 seconds; and full domain. Inversion result of each stage was extended downward

and used as initial guess for the next stage.

Figure 4.36 shows final recovered model (top) and true model (bottom). Veloci-

ties in overburden area (1) and positions of interface (2) and high-velocity layer (3)

improved significantly.

Figures 4.37, 4.38, and 4.38 present shot record of observed (left) data and data

residuals (right) for 0◦, 30◦ and −30◦ plane wave incidence angle shots respectively.
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Figure 4.36: Marmousi with absorbing surface example: inversion result. Top: model
recovered by layer-stripped EFWI + FWI. Bottom: true model resampled to the
computational grid.
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Figure 4.37: Marmousi with absorbing surface example: final data residual. Left:
shot record for plane wave with 0 degrees incidence angle. Right: data residual.

observed data

trace index
0 100 200

ti
m
e
(s
)

-0.5

0

0.5

1

1.5

2

-30

-20

-10

0

10

20

30

data residual

trace index
0 100 200

ti
m
e
(s
)

-0.5

0

0.5

1

1.5

2

-30

-20

-10

0

10

20

30

Figure 4.38: Marmousi with absorbing surface example: final data residual. Left:
shot record for plane wave with 30 degrees incidence angle. Right: data residual.
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Figure 4.39: Marmousi with absorbing surface example: final data residual. Left:
shot record for plane wave with -30 degrees incidence angle. Right: data residual.
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Figures 4.40, 4.42 and 4.41 compare leftmost, central and rightmost traces of

predicted and true data for 0◦, 30◦ and −30◦ plane wave incidence angle shots respec-

tively.
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Figure 4.40: Marmousi with absorbing surface example: trace comparison of true
data (red) and final predicted data (blue). 0◦ incidence angle plane wave shot. Top:
leftmost receiver. Center: central receiver. Bottom: rightmost receiver.
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Figure 4.41: Marmousi with absorbing surface example: trace comparison of true
data (red) and final predicted data (blue). 30◦ incidence angle plane wave shot. Top:
leftmost receiver. Center: central receiver. Bottom: rightmost receiver.
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Figure 4.42: Marmousi with absorbing surface example: trace comparison of true
data (red) and final predicted data (blue). −30◦ incidence angle plane wave shot.
Top: leftmost receiver. Center: central receiver. Bottom: rightmost receiver.
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4.7 Discussion

The examples provided in this chapter possess some of the most important charac-

teristics of a realistic waveform inversion problem, such as absence of low-frequency

signal in the data, strong surface multiples (Dome example), complex earth structure

(Marmousi example). Conventional FWI, based on local descent methods, cannot

recover long- and medium-scale model structure due to numerous local extrema of

the objective function.

Numerical tests presented above show that extended waveform inversion coupled

with variable projection optimization approach is capable of recovering accurate ve-

locity models and achieving small data misfit while starting from kinematically in-

correct initial models. The main drawback of this approach is its high computational

cost, due to 1) model extension, 2) necessity to solve inner optimization problem very

precisely in order to obtain reliable gradient of the VP method. Certain ad hoc or

heuristic strategies (choice of initial guess for the inner problem, choice of step length)

used for successful application of the method to the considered examples might not

work as well in other problem settings.
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Chapter 5

Conclusion

This thesis examines a modification of nonlinear full waveform inversion (FWI) method

that allows to recover long- and medium-scale earth structure from reflection seismic

data. Conventional FWI is based on least squares data misfit optimization approach.

Resolution requirements of realistic applications lead to huge model space dimension,

hence making local gradient-based methods mandatory for solving the problem nu-

merically. Main characteristic of the reflection seismic data is absence of low-frequency

content as well as transmission energy typically present in wide- or full-azimuth acqui-

sition surveys, which results in multiple local extrema of the least squares objective

function. This multimodality property makes local descent methods unusable, unless

the initial guess is kinematically accurate.

Migration velocity analysis (MVA) uses image-gather flattening concept. An im-

age is an approximation of a reflectivity model for a given (smooth) background and

is produced by applying an adjoint of the Born operator to the data. Typically, seis-
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mic data is redundant with respect to acquisition parameters, such as shot records,

and can be is divided into bins. MVA produces separate image for each bin, resulting

in a so-called image volume. It then measures discrepancy between images, which

is minimized to update the background model. Differential semblance (DS) MVA

objective measures image discrepancy using differential operators. MVA approach

is widely used in the industry as is not prone to local extrema issue an is capable

of recovering long-scale structure of background velocity model. Based on the Born

(single-scattering) modeling, MVA does not account for non-linear effects (multiples),

and requires scale separation and simple kinematics.

Surface-oriented extended full waveform inversion (EFWI) approach investigated

in this thesis combines MVA global convergence properties with FWI data fitting

capabilities that take into account non-linear effects, such as multiples. Similarly to

MVA, EFWI divides data into subsets. For each subset, EFWI produces a separate

model based on non-linear forward modeling, resulting in a model volume. DS is

used to measure model volume discrepancy. Sun (2012) introduces low frequency

source and control model to parametrize set of extended models satisfying data fitting

constraint. Solvability of the least squares optimization problem for impulsive source

suggests that this parametrization can be computed robustly by solving conventional

FWI problems with full bandwidth source. This control model plays similar role to

a background model in the extended Born waveform inversion (Huang, 2016).

I combine EWFI with the variable projection (VP) method: VP functional is a

compromise of the conventional data fitting term and DS term, which penalizes ex-

tended model non-physicality. The inner optimization problem consists of optimizing

over the extended model given a control model; the outer optimization problem con-
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sists of optimizing over the control model. In addition, the DS term in the inner

problem serves as a regularizer, making model gathers less noisy, which allows to

compute the outer gradient more reliably.

In Chapter 2, I present an abstract formulation of the extended modeling algo-

rithm and re-parametrization by a control model. I describe a nested optimization

approach (Section 2.2) and provide gradient derivation for inner and outer optimiza-

tion problems (Section 2.3). For the numerical experiments, I adopt the simplest

wave propagation model, constant density acoustics, with plane wave surface exten-

sion. Chapter 3 describes concrete formulation of the EFWI for this model.

The examples in Chapter 4 present some important features of a realistic seismic

inversion problem: strong surface multiples (Dome with free surface example), com-

plex earth structure (Marmousi example). Numerical tests show that EFWI coupled

with variable projection optimization approach is capable of recovering long-scale ve-

locity model and achieving small data misfit starting from kinematically incorrect

initial models.

At the same time, model extension approach significantly increases the computa-

tional cost of the inversion. For surface-oriented extensions, one inner problem solve

is equivalent to conventional FWI in terms of the computational cost. Numerical tests

in this work showed that the inner problem has to be solved very precisely in order

to produce reasonable control model gradient. Various approaches may be used to

improve convergence of the inner problem and reduce the computation cost: second-

order methods (l-BFGS, Gauss-Newton, Newton), preconditioners, various practical

techniques: layer stripping, frequency descent, different misfit functions (e.g., con-

volution filter based, envelop residual functionals). However, theoretically, the error
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of the outer gradient is not controlled by the inner problem solution accuracy. Mar-

mousi experiment, for instance, required much more accurate solution of the inner

problem, with many more iterations of the CG method. One of the most important

questions left for the further research is: how accurately does the inner problem need

to be solved in order to produce reliable outer gradient, and to control outer gradi-

ent accuracy? In my work, I used a simple ad hoc “brute force” approach: if the

outer gradient does not result in desired/sufficient descent during outer iteration, I

resume inner problem optimization process in order to solve the inner problem more

accurately.

It is known (Stolk and Symes, 2004; Symes, 2008) that for MVA, image gathers

based on surface-oriented data binning may not be flat in case of comlex kinematics

(subtantial multi-pathing), even for correct migration velocity. This is a fundamental

limitation of the surface-oriented extensions. In such cases, subsurface extensions

may be more appropriate. However, they are much more computationally expensive

than surface extensions.
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Appendix A

Adjoint state method

In this chapter, I provide derivations for continuous first- and second-order Born

approximations and adjoints.

A.1 General derivation

To derive Born and adjoint equations, denote wave operator by H : M × U → V .

Forward map F : M → U satisfies

H(m,F [m]) = f.

Application of the chain rule to the identity DH(m,F [m]) = 0 leads to

∂mH(m,F [m])δm+ ∂uH(m,F [m])DF [m]δm = 0,
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where δm is a model perturbation. Linearity of H with respect to u simplifies previous

equation:

∂mH(m,F [m])δm+H(m,DF [m]δm) = 0. (A.1)

Differentiating equation (A.1) yields

∂2
mmH(m,F [m])(m1, δm) + ∂mH(m,DF [m]m1)δm

+ ∂mH(m,DF [m]δm)m1 +H
(
m,D2F [m](m1, δm)

)
= 0,

(A.2)

where m1 is another model perturbation.

Equation for the first-order Born approximation δu = DF [m]δm follows from

equation (A.1):

H(m, δu) = −∂mH(m,F [m])δm. (A.3)

Equation for the second-order Born approximation δ2u = D2F [m](m1, δm) follows

from equation (A.2):

H(m, δ2u) =−∂2
mmH(m,F [m])(m1, δm)

− ∂mH(m,u1)δm− ∂mH(m, δu)m1,

(A.4)

where another Born approximation u1 = DF [m]m1.

Taking adjoint of equation (A.1) gives adjoint of DF [m]:

DF [m]∗δu = −∂mH(m,F [m])∗v,

H(m, ·)∗v = δu.

(A.5)
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Taking adjoint of equation (A.2) gives adjoint of D2F [m]m1:

(D2F [m]m1)∗δu = −(∂2
mmH(m,F [m])m1)∗v

− ∂mH(m,u1)∗v −DF [m]∗(∂mH(m, ·)m1)∗v,

H(m, ·)∗v = δu,

which I rewrite by introducing secondary adjoint variable v1:

(D2F [m]m1)∗δu = −(∂2
mmH(m,F [m])m1)∗v

− ∂mH(m,u1)∗v + ∂mH(m,F [m])∗v1,

H(m, ·)∗v = δu,

H(m, ·)∗v1 = (∂mH(m, ·)m1)∗v.

(A.6)

Modeling operator F : M → D is usually defined as F [m] = SF [m], where linear

operator S is a sampling operator. In this case, first–order Born approximation δd

and second-order Born approximation δ2d are given by

δd = Sδu,

δ2d = Sδ2u,

where δu and δ2u solve (A.3) and (A.4) respectively.

Adjoint of DF [m] follows directly from (A.5):

DF [m]∗δd = −∂mH(m,F [m])∗v,

H(m, ·)∗v = S∗δd.
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Adjoint of D2F [m]m1 follows directly from (A.6):

(D2F [m]m1)∗δd = −(∂2
mmH(m,F [m])m1)∗v

− ∂mH(m,u1)∗v + ∂mH(m,F [m])∗v1,

H(m, ·)∗v = S∗δd,

H(m, ·)∗v1 = (∂mH(m, ·)m1)∗v.

In case when (Su)(xr, t) = δ(x−xr) ∗u(x, t) at discrete receiver positions xr ∈ Σr,

adjoint of S is

(S∗δd)(x, t) =
∑

xr∈Σr

δd(xr, t)δ(x− xr).

A.2 Constant density acoustics

In case of constant density acoustics, equation (3.1) defines operator H as

H(m,u) = ∂2
ttu− p(m)∇2

xu, (A.7)

where p(m) is a function of m.

For simplicity, I assume Ω = Rn. Space U is a space of appropriate class of

functions with zero initial conditions: U = {u : u(x, 0) = ∂tu(x, 0) = 0 }. Spaces

U , V , and M are equipped with L2 inner products.

For the rest of this section, I denote by u the solution of the wave equation
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H(m,u) = f , i.e.,

∂2
ttu− p(m)∇2

xu = f,

u(x, 0) = ∂tu(x, 0) = 0.

Substituting (A.7) into equation (A.3) yields first-order Born approximation:

∂2
ttδu− p(m)∇2

xδu = p′(m)δm∇2
xu,

δu(x, 0) = ∂tδu(x, 0) = 0.

(A.8)

Substituting (A.7) into equation (A.4) yields second-order Born approximation:

∂2
ttδ

2u− p(m)∇2
xδ

2u = p′′(m)m1δm∇2
xu

+ p′(m)δm∇2
xu1 + p′(m)m1∇2

xδu,

δ2u(x, 0) = ∂tδ
2u(x, 0) = 0.

(A.9)

Adjoint of ∂mH(m,u) follows from the following equality:

〈
∂mH(m,u)δm, v

〉
=

∫ T

0

dt

∫
dx
(
−p′(m)δm∇2

xu
)
v

=

∫
dx δm

(
−p′(m)

∫ T

0

dt (∇2
xu)v

)
=

〈
δm,−p′(m)

∫ T

0

dt (∇2
xu)v

〉
.

Therefore, adjoint of ∂mH(m,u) is given by

∂mH(m,u)∗v = −p′(m)

∫ T

0

dt (∇2
xu)v. (A.10)
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Similarly, adjoint of ∂2
mmH(m,u)m1 is given by

(∂2
mmH(m,u)m1)∗v = −p′′(m)m1

∫ T

0

dt (∇2
xu)v. (A.11)

To derive adjoint of H(m, ·) consider the following equality:

〈
H(m, ·)δu, v

〉
=

∫ T

0

dt

∫
dx (∂2

ttδu− p(m)∇2
xδu) v

=

∫ T

0

dt

∫
dx
(
∂2
ttv −∇2

x(p(m)v)
)
δu+

∫
dx (∂tδu v − δu ∂tv)|t=T

=
〈
δu, H̃(m, v)

〉
+

∫
dx p(m) (∂tδu v − δu ∂tv)|t=T ,

Where

H̃(m, v) = ∂2
ttv −∇2

x(p(m)v).

Therefore, if v(x, T ) = ∂tv(x, T ) = 0, then

H(m, ·)∗v = H̃(m, v). (A.12)

Similarly, adjoint of ∂mH(m, ·)m1 is given by

(∂mH(m, ·)m1)∗v = −∇2
x(p′(m)m1v). (A.13)

Substituting equations (A.10) and (A.12) into equation (A.5) yields adjoint of
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DF [m]:

DF [m]∗δu = p′(m)

∫ T

0

dt (∇2
xu)v,

where v solves reverse-time equation:

∂2
ttv −∇2

x(p(m)v) = δu,

v(x, T ) = ∂tv(x, T ) = 0.

(A.14)

Substituting equations (A.10)–(A.13) into equation (A.6) yields adjoint ofD2F [m]m1:

(D2F [m]m1)∗δu = p′′(m)m1

∫ T

0

dt (∇2
xu)v

+ p′(m)

∫ T

0

dt (∇2
xu1)v − p′(m)

∫ T

0

dt (∇2
xu)v1,

where u1 solves Born equation:

∂2
ttu1 − p(m)∇2

xu1 = p′(m)m1∇2
xu,

u1(x, 0) = ∂tu1(x, 0) = 0,

v solves primary reverse-time equation:

∂2
ttv −∇2

x(p(m)v) = δu,

v(x, T ) = ∂tv(x, T ) = 0,

and v1 solves secondary reverse-time equation:

∂2
ttv1 −∇2

x(p(m)v1) = −∇2
x(p′(m)m1v),

v1(x, T ) = ∂tv1(x, T ) = 0.

(A.15)
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For a model defined by equation 3.2, I have

p(m) =
(cγmax + cγmin

2
+
cγmax − c

γ
min

2
tanhm(x)

)2/γ

,

p′(m) =
(cγmax + cγmin

2
+
cγmax − c

γ
min

2
tanhm(x)

)(2/γ)−1 cγmax − c
γ
min

γ

(
1− tanh2m(x)

)
.
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Appendix B

Full bandwidth inversion

This appendix shows an inversion exercise on a Dome model (Figure 4.4) and full

bandwidth plane wave source. The experiment setup is similar to the Dome with

absorbing boundary setup described in Section 4.5. For a full bandwidth wavelet, I

use Ormsby (Ryan, 1994) with 0-0-15-22 Hz frequencies.

The exercise consists of a number of independent conventional LS data fitting

inversions with different plane wave incidence angles. All inversions start with homo-

geneous “water model” c = 1500 m/s.

I employ frequency continuation technique (Bunks et al., 1995). The method

consists of running multiple inversions with increasing frequency range of the source

wavelet and the observed data. Resulting model of each previous inversion is used as

an initial guess for the next one.

Optimization problems are solved with Polak-Ribière conjugate gradient (CG)
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method. No preprocessing (muting, tapering, etc.) or preconditioning is used in

this test example. Number of CG iterations at each frequency continuation stage is

limited by 80.

Figures B.1–B.3 show inversion results for plane waves with 0◦, 10◦, and 20◦

incidence angles. For a full bandwidth source, the model is recovered accurately

starting from initial guess that does not contain long-scale information.
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3000

3500

4000

Figure B.1: Dome with absorbing surface example: full bandwidth source. Inversion
result for horizontal plane wave source.
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Figure B.2: Dome with absorbing surface example: full bandwidth source. Inversion
result for 10◦ incidence angle plane wave source.
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Figure B.3: Dome with absorbing surface example: full bandwidth source. Inversion
result for 20◦ incidence angle plane wave source.
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Appendix C

Envelope residual operator

Envelope residual operator E : D → D is defined by

E [d] = d2 + (Hd)2, (C.1)

where H denotes Hilbert transform.

Given observed data do and denoting simulated data by ds = F [m], envelope

inversion is defined as

min
m

JE [m],

JE [m] =
1

2
‖E [ds]− E [do]‖2.
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Gradient computation

Gradient of the objective function JE is computed following the adjoint equations (A.14)

with new residual

δu = DE [ds]
∗(E [ds]− E [do]). (C.2)

Differentiating equation (C.1) yields

DE [d] δd = 2 d δd+ 2 (Hd)(Hδd).

First term in the above equation is self-adjoint. Adjoint of the second term follows

from the skew-adjointness property of the Hilbert transform:

〈
(Hd) (Hδd), v

〉
=
〈
δd,−H(v Hd)

〉
.

Therefore, equation (C.2) becomes

δu = 2
{
ds(E

[
ds
]
− E [do])−H

[
H[ds](E

[
ds
]
− E [do])

]}
.
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