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STRATOSPHERIC SCATTERING OP RADIO WAVES 

AND THE JICAMARCA RADIO TELESCOPE 

by 

Daniel Alfred Fleisch 

ABSTRACT 

Radar backscatter from the 15 to 35 km height range 

provides information about the dynamics and turbulent mixing 

of the stratosphere. The 3-dimensional space spectrum of 

turbulent fluctuations, the mean wind velocity, and the 

root-mean-square velocity fluctuations are directly related 

to the autocorrelation function of the scattered signals. 

The theory and mechanisms of stratospheric scattering of 

radio waves is discussed. The equipment and procedures used 

in previous experiments at the Jicamarca Radio Observatory 

are examined in detail, and are found to require modifica¬ 

tion in some cases. The theory of phased arrays is pre¬ 

sented, and the correct and complete array factor pertinent 

to the Jicamarca antenna is derived. Information about the 

side lobes and precise positions of various beams is con¬ 

sidered, and three beams are selected for use in a proposed 

stratospheric backscatter experiment. The phasing cables 

needed for the implementation of two off-vertical beams are 

available at the observatory, while new phasing cables must 

be manufactured for the realization of the vertical beam. 
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INTRODUCTION 

Signals scattered from dielectric fluctuations in the 

stratosphere contain much information about the scattering 

medium. The proposed experiment represents an attempt to 

discern from various aspects of these signals three important 

features of stratospheric composition and dynamics. 

One interesting aspect of the returned signals is the 

power of the scattered radiation. The information contained 

in this quantity depends upon the primary mechanism by which 

scattering occurs. If particulate matter is present in 

sufficient quantities for the Rayleigh scattering process to 

contribute significantly to the signal, the scattered power 

is directly related to the number density of the particles. 

If eddy displacement is the primary scattering mechanism, 

the returned signal is related to the 3-dimensional space 

spectrum of the fluctuations, as discussed in Chapter 1. 

Also of interest are the Doppler shift and spectral 

width of the scattered signals. These quantities provide 

information about the mean velocity of the scattering volume 

and the root mean square of velocity fluctuations, respec¬ 

tively (Derr, 1972). These are both important parameters 

in any theory of stratospheric dynamics and mixing (Webb, 

1966) . 

The measurements will be made with the Jicamarca radio/ 

radar telescope near Lima, Peru. The telescope consists of 

two superimposed arrays having orthogonal polarizations, 

and each consisting of 9216 half-wave dipoles. The tele- 
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scope will function as a 3-beam radar which will trace 

dielectric fluctuations of 3m wavelength. One beam will 

point directly vertically, a second will point approximately 

3° off vertical to the south, and a third will be 3° off 

vertical to the west. The vertical beam will use all four 

quarters of one entire polarization, while the west and 

south beams will each utilize two adjacent quarters. The 

facilities now exist for the implementation of the two off- 

vertical beams, but the vertical beam requires the cutting 

of 56 new phase cables. Once installed, these cables will 

constitute a new pointing direction available to all users 

of the Jicamarca antenna, a direction which will be within 

0.01° of true vertical and a considerable improvement over 

the current "vertical" pointing, which is offset from the 

true vertical by more than 1/3°. 
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CHAPTER I 

1.1 Theory of Stratospheric Scattering 

Radar study of the stratosphere in the height range of 

15 to 35 km is a recent development. The initial attempt to 

detect backscatter from this region (Crane, 1970) yielded a 

signal marginally above the system sensitivity. More re¬ 

cently, workers at the Jicamarca Radio Observatory (JRO) in 

Peru have obtained signals from these heights which are 

some tens of dB above the noise level. The equipment and 

procedures used at JRO will be described later in this 

chapter. First the mechanism and theory of backscatter from 

the stratosphere will be explored. 

An electromagnetic wave passing through any medium will 

have a small fraction of its energy scattered isotropically. 

This scattering is caused by dielectric constant fluctuations 

in the medium. In the stratosphere the intensity of the 

scattered waves is enhanced over the background "thermal" 

level through a process originally discussed by H. G. Booker 

and W. E. Gordon in 1957 (Booker and Gordon, 1957 and Gordon, 

1958) . 

In that scheme, fluctuations of the dielectric constant 

occur whenever turbulence succeeds in producing eddies which 

are displaced while immersed in a dielectric constant gra¬ 

dient. Within these eddies conditions will be different 

from those of the surrounding medium, by an amount depen¬ 

dent on the vertical displacement and the gradient. 
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The refractive index "n" of a medium at radar wave¬ 

lengths is a function of the temperature "T", pressure "p", 

and water vapor pressure "e" of the medium. The relation¬ 

ship is often expressed as 

(n-1) x 106 = 
79 . . 4800e, 

+ m ) 

During the displacement process, an elementary volume within 

an eddy expands or contracts adiabatically, producing changes 

in p and T according to the formula 

dT _ y-1 dp 
T Y P 

where y = £E- . The vertical displacement dz results in a 
cv 

pressure change !Ë£ = -pg, where p is the density of air and 
dz 

g = 9.8 m/s2. Thus 

dT = _y-l pgdz 
T Y P 

or 

dT _ y-1 pg 
dz ~ y p 

But 

so 

dT = _g_ = 

dz cp a 

where Y a 
is the well-known adiabatic lapse rate. Its value 
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is approximately 10°/km. 

. dT 
Integration of ^ gives the quantity 

(8> = T + yaz 

called the potential temperature and having the desirable 

quality of invariance within a volume as the volume changes 

height adiabatically. 

Another quantity which varies as the volume expands or 

contracts is the water vapor pressure e. As the pressure p 

within the volume changes, e varies approximately as 

e = 1.62 pq 

where q is the specific humidity, defined as the ratio of 

the mass of water vapor to the mass of moist air in an 

elementary volume V. The quantity q, assuming no condensa¬ 

tion, is also invariant within V during displacements. 

We may therefore express the index of refraction n as 

(n-1) x 106 = 
7<*t> 

z 
a. 

Cl + 
7800q 

z ' 
a 

Thus N, the refractive modulus, defined as (n-1) x 106, is 

a function of z,p,®, and q, where the pressure, potential 

temperature, and specific humidity are also functions of z. 

If a parcel is displaced from zi to zz , the pressure within 

a volume changes from p(zx) to p(z2), while ®(zx) and qCzj) 
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retain their values. The difference between the refractive 

modulus within the parcel and that of the surrounding air 

is then 

AN = N[Z2, P ( Z 2 ) , ®(zi), q (z 1 ) ] - N[Z2, p(Z2), ©(Z2), q (Z2 ) ] 

The fluctuations are therefore characterized by the gradient 

3N _ 3N d & 3N dg 
3z 3^ dz + 3q dz 

m  [U - 2(78003). dB+ 7800 
( ~Ya

z) C ~Ya
z) dz 

2lE[U _ 2 (780_0q) ( (d| _ + 7800 d|j _ 

Tz 

The quantities ^ and gf- are both extremely small, allowing 

us to write 

3N = 7Tp rdT + Y -, 
3z t2 

Ldz 'aJ * 

In order to relate this expression for the fluctuation of 

the index of refraction to the signal received by a radar 

antenna illuminating a turbulent medium, it is necessary to 

understand the relationship between randomly varying functions 

and the auto-correlation or structure functions character¬ 

izing the motions. 

The space-time autocovariance function p(r,x) cor¬ 

responding to the fluctuating index of refraction n(x,t) is 

If' 
or 

5N _ 
3z 
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P(r, x) = 
.-*■ ■+ 

<n(x,t)n(x+r,t+x)> 

The radar equation may be used to determine the scattered 

field for such a medium, Wheelon (1959) gives an expression 

which, when adapted to the backscatter case, is 

it OR + exp[ix-k ]6n(: 
E (t) = (IT/Pm sinx/ll) e s /d3x     

I Rl 2 

4- \ 

where pT = transmitted power, x 
= polarization angle, \Q = 

radar wavelength, ks = Bragg vector, R = distance between 

scattering element and radar, r = distance between aribtrary 

origin within scattering volume and scattering element, 

and GT = power gain along radar direction. 

We now form the time correlation function C(x) = 

<ES(t)E*(t+x)> : 

exp [ i (x-x1 ) oic ] 
C(x) = (Tr2PTsin

2x/Xo) < //d3xd3x'  5n(x,t) 
4TTGTR

4 

6n(x',t+x)> 

Assuming that sufficient distance exists between the 

scattering element and the antenna to insure plane waves, 

the quantities GT and R may be removed from the integrals, 

giving 
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C(T) 
TT P sill2X 

C ) //d3xd3x'exp[i (x-x' ) oïc J <<5n (x, t) ôn (x',t+x) >. 
4G R4A4 s 

T o 

Letting x’ ■> x+r, this becomes 

C(T) 

. 2 
s in 
 )/Jd3xd3r exp[-ik or]<ôn(x,t) <$n(x+r,t+x) > 
R4X4 

The integral over r is simply the Fourier transform of the 

autocovariance function of 6n(x,t), since its argument is 

confined to a small volume of r-space, allowing extension 

of the limits to all space. We therefore have 

where 

P(£,T) ^ 

or 

p(k,x) ; 

TTP sin2x 
C(T) =   V p(k,x) 

4GTRX 
00 

/ d3r exp[-ikgor] <ôn(x,t) <Sn(x+r,t+x) > 
—oo 

00 

/ d3r exp[-iksor]p(r,T) . 
— 00 

Thus there is a direct connection between p(k,x), the 4-di¬ 

mensional space-time spectrum of the fluctuating index of 

refraction, and C(T), the time correlation function of the 

detected signal. The fact that p(k,x) plays a role indicates 

the dependence of the detected signal on the turbulence 

with wave numbers kg, or 3m for Jicamarca parameters. There 

may exist turbulent fluctuations at various other wave 

numbers, but only those satisfying the Bragg condition con¬ 

tribute to C(x) . 



9 

The relation of the 4-dimensional space-time spectrum 

p(ïc,t) to the previously calculated turbulence-induced 

gradient of the index of refraction is provided by Tatarski 

(1961) . Using turbulence theory presented by Obukhov (1949), 

Tatarski derives the three-dimensional space spectrum of 

the refractive index fluctuations as 

where 

$n(5c) = 0.033 k"11/3 

C- = aL n o 
Vs 3N 

3¥ 

In this equation LQ represents the largest scale size of 

the turbulent eddies, a is a constant "near unity", and 

3N 
is the expression derived above for refractive index 

fluctuations. Thus 

V*> = 0.033a2Lo
V> <|f+ va>)2 k‘'V* . Tz 

In the notation utilized above, $n0O corresponds to p(k,0), 

3N 
establishing the connection between and the scattered 

signal. Woodman and Guillen (1974) experimentally deduced 

LQ to be ^100 m, although the data does not appear to be 

entirely self-consistent. The equipment and procedures 

pertinent to the Jicamarca stratospheric backscatter 

experiments will be discussed 1.2a. 
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1.2 Description of Equipment and Procedures 

The Jicamarca radio telescope is located 25 km north¬ 

east of Lima, Peru, at latitude 11°57* south, longitude 

76°52' west. The antenna consists of 2 superimposed 

orthogonal arrays each containing 9216 half-wave dipoles, 

and operates at a wavelength of approximately 6 meters. 

The arrays are flat, square, and 291 meters on each side. 

When the telescope was constructed in 1960, one diagonal 

lay along the magnetic meridian, 6.01° east of geographic 

north. The dipole centers are separated by 3m, and are 

supported 1.8m above a reflecting plane. Each array has 

its dipoles at right angles to those of the other; inde¬ 

pendent feed lines to the two arrays allow a variety of 

polarizations to be synthesized. 

The antenna is divided into four quarters, as seen in 

Fig. 1-1. Each dashed line represents two 6-inch diameter 

feed lines which connect each quarter to the transmit- 

receive systems. Each quarter is further divided into 

16 "modules", represented by dots in Fig. 1-1. A module 

is a collection of 288 dipoles, 144 of each polarization. 

The modules are fed through equal lengths of 6-inch trans¬ 

mission line from the center of each quarter. It is at the 

connection points between these lines and each module that 

lengths of RG-17 cable may be used to achieve a phase shift 

between modules. 
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Figure 1-1 
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Transmitter and Receiver Systems 

Generation of the signal is accomplished through the 

use of a .9984 MHz master oscillator and a x50 frequency 

multiplier, producing a 49.92 MHz signal. Intermediate and 

final power amplifier tubes increase the signal to a 1.5 Mw 

maximum. A total of four such generators are available. 

The transmitter is pulsed to produce pulses of various 

lengths and periods as controlled by a digital correlator. 

Prevention of receiver and/or antenna loading during improper 

portions of the cycle is accomplished through the use of 

transmit-receive (TR) switches. 

The receiver system entails one receiver for each 

independent antenna section. The optimum configuration 

for measuring three vector wind components is shown in the 

Appendix to consist of four quarters, all of one linear 

polarization, looking along the vertical, with the other 

linear polarization divided in half along a NEm“SWm line. 

Two quarters then look south, and the other two west. The 

number of receivers required is thus 3 in this case. 

Detection and amplification of the 49.92 MHz signal 

occurs in two stages. Initially, a local oscillator 

produces a signal at 54.67 MHz which is mixed with the de¬ 

tected signal to yield 4.75+ MHz, where the + indicates 

the Doppler shift of the detected signal. Another local 

oscillator produces a 5,205 MHz signal, which, when mixed 

with 4.75+ MHz, gives a 455 + kHz output. 
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Meanwhile, the 0.9984 MHz master oscillator and the 

54.67 local are beat to produce a reference 4.75 MHz signal. 

This is mixed with the 5.205 MHz LO signal to produce a 

455 kHz reference signal. Two phase detectors are then 

used to determine the two components of the signal which 

will become the real and imaginary portions of the auto¬ 

correlation function. These are evaluated with respect 

to the 455 kHz reference signal and digitized via analog- 

to-digital converters. Block diagrams of the transmitter 

and receiver systems may be found in Rastogi (1975), upon 

which these descriptions are based. 

The autocorrelation function may be estimated through 

the following signal-processing procedure. Ni pulses are 

transmitted at a given pulse length (PL) and separated by 

some inter-pulse period (IPP). The receiver is turned on 

after some gate delay (GD) dictated by the height region to 

be studied, which is h = C- -j---- . The receiver is on for 

a period called the gate width (GW). 

If we denote the sine and cosine outputs of detectors 

for the n pulse by xn and yn, the coherent averages of 

the received pulses from the first series of transmitted 

pulses are xi and yi, where 

Ni N i 

** = sr ^ xn and = sr £ yn • 
n=l n=l 

The averaging is done in the digital correlator for a 

period of length x = Ni(IPP+GW), The samples are then put 
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in the complex form ij = xx + iy2, of these samples 

are coherently averaged to provide an estimate of the 

complex autocorrelation function for various time lags. 

The phase d> of the autocorrelation function is deter- 

mined from the real and imaginary parts of that function. 

For example, if Gj and G2 are the complex signals received 

from two pulses in the k*"*1 sample, we may write 

Gi 

and 

G2 

x 
lk - iy ik 

x 
2k 

- iy 
2k 

The imaginary part of the autocorrelation function is now 
1 N2 

aNo 
=
 NT E <xik y2k - 

x2k yik> 
k=l 

while the real part is 
N 2 

V = h 1 <X

>k V * * * * X2k - yik y2k> • 
k=l 

The phase of the autocorrelation function for these N2 

sample pairs is then just 

4>N2 = tan~
x (aN2/

bN2) 

The mean wind speed and turbulent velocity fluctuations 

are obtained through analysis of the power spectrum of the 

scattered signal. The Doppler shift of the signal is re¬ 

lated to the mean wind velocity through the relation 
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fl = -kgov 

where fl is the Doppler frequency shift and kg is the Bragg 

vector. The spectrum is broadened by, among other things, 

the random Doppler shifts of individual scattering elements. 

The spectrum width is related to the variance of the random 

velocity fluctuations by the formula 

i / 
2OI0<AN

3
> 

/2 

where o)Q = 50 MHz and c = 3 x 108m/x. These quantities have 

been estimated in the past through consideration of the auto¬ 

correlation function at only 3 time lags, as will be dis¬ 

cussed in the next section. 

1.3 Effect of Phase Oscillations on Data Analysis 

In previous stratospheric wind measurements (Woodman 

and Guillen, 1974), as well as many mesospheric experiments 

(Rastogi, 1975), the complex autocorrelation function and 

the phase were estimated at only three time lags. This 

follows the method of measuring vertical F-region drifts 

(Woodman and Hagfors, 1969) with a minimum of on-line compu¬ 

tation. This method relies on a Fourier transform theorem 

which relates moments of a power spectrum to derivatives 

of the autocorrelation function. For example, the Doppler 

shift of the signal is found from the first moment of the 
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power spectrum S(<*>) 

00 

fi = J ojS(a))dw 
—00 

00 

where S(co) = / C(x)e lü)Tdx. This same information is con- 
—00 

tained in the first derivative of the autocorrelation 

function, C(T), or, equivalently, the first derivative of 

the phase <j>N evaluated at x = 0 

v -ik~1{ 
e.' (o), 
c^oT"* = k %«» 

Now at some small lag 6, assuming <|> (0) = 0, we have 

4»' (0) % 
4> (<5) -4>(0) 4>(6) 
 5  = —5“ ’ 

Thus 

This approximation requires sufficiently small <5 such that 

higher orders in a Taylor expansion of <|> are negligible. 

In the simple case of scattering from a medium moving with 

velocity v, the power spectrum will be Doppler shifted by 

an amount 

Û = 4 ov 
s 

where 1c ov is the component of v in the radar direction, 
s 

The autocorrelation function C(x) may then be written 
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« f \ _ / » 1(0T C (x) = A(x) e 

thus indicating the linearity of <J>(T) with T. 

However, the actual scattering volume in the strato¬ 

sphere may not behave in this simple manner. Some experi¬ 

mental results reveal an oscillation of the phase values 

about a linear component, as illustrated in Fig. 1-2. 

This feature may indicate the presence of more than one 

component within the scattering volume, as will be discussed 

shortly. Whatever physical mechanism is responsible for 

this effect, it represents serious problems for the method 

of determining v outlined above. This is most easily seen 

by considering point 1 in Fig. 1-2. If this point, repre¬ 

senting <J>(T) at lag T, were chosen to calculate t.he slope 

at T = 0, the results would be quite different from those 

attained using the value of <(> (x) corresponding to 1'. 

Choosing larger values of a might avoid this problem, but 

this improvement is gained at the expense of the validity 

of the relation 4>(T) = 4>/ (0) x. For this reason, more points 

must be considered in evaluating the autocorrelation function 

and its phase. Apparently, the improved computing capabili¬ 

ties of the Datacraft computer now available at JRO have 

obviated the need for this time-saving approximation. 

Even if this problem in the estimation of wind 

velocities is avoided by using more complete data-taking 

procedures, the phase-osciallation phenomenon is a real 

feature of the data, and as such may contain information 
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4>M 

Figure 1-2 
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about the processes occurring within the scattering volume. 

Although this problem is largely untreated in the literature, 

those workers who do address the question generally attribute 

the non-linearity of the phase to the presence of more than 

one layer within the scattering volume (Rastogi, 1975; 

Misener, private communication). This conclusion is a 

result of an analysis of the relative contributions of two 

scattering layers, each of which produces a Gaussian power 

spectrum of the form 

F0(v) = A e 
U ff

2 

where a = half-width at half power. 

The autocorrelation function corresponding to this 

power spectrum is 

_*! 2 2 

FQ(T) = A' e ^ 

If F(v) is shifted from the origin by an amount vi, its 

Fourier transform is shifted by 

-2Triv iT 
Fvx 

(x) = F
O
Ct) e 

The autocorrelation function representing the contributions 

of two such layers is then 

- (e {Oi 2x2+2iTiv1T) - LC‘202 2T2+2iriv2T) 
PCT) = A" e + B" e 
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The behavior of this function and its phase <f>(x) is fairly 

sensitive to changes in cri, 02, vi, V2, A1' and B" . How¬ 

ever, reasonable values of these variables do indeed yield 

phase oscillations similar to those depicted in Fig. 1-2. 

The damping of the oscillations with increasing T is present 

in the 2-layer model as well as some of the experimental 

data, but it is not clear that this behavior is a permanent 

feature of all the stratospheric data. This aspect of re¬ 

mote sensing of stratospheric winds certainly deserves more 

attention in future experiments. 
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CHAPTER II 

Improvements on Previous Experiments 

In attempting to resolve three vector components of the 

stratospheric winds, it is vital to know the pointing di¬ 

rection of the various radar beams as accurately as possible. 

Knowledge of these pointing directions allows the experi¬ 

menter to analyze the contributions of various wind compo¬ 

nents to the signal detected from each beam. This chapter 

relates the results of the calculations contained in the 

Appendix to various antenna configurations currently in 

use at JRO, and considers improvements which are necessary 

and desirable for a 3-component stratospheric wind experi¬ 

ment. 

2.1 Current Antenna Beam Positions 

The position of the center of the Jicamarca beam which 

is perpendicular to the plane of the antenna (the unphased 

pointing direction) has been shown by antenna surveys and 

radio star calibration to have declination <5 = -12.88° and 

hour angle HA = 4m 37s West. The zenith distance generally 

found in the literature for this direction is z = 1.50°. 

However, using the formulae 

cosz = sin<5 sin<)> + cos<$ cos<p cosHA 

_ cos8 sinHA 
sinz 

and 
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where z is the zenith distance, 6 is the declination, <{> is 

the latitude, HA is the hour angle, and Az is the aximuth 

(proceeding west of south) , we find z = 1.46°, and Az = 

50.35°. Here <{> is -11.95°, the latitude of JRO. 

The beam is thus 1,46° away from the local zenith, and 

any attempt to look in the vertical direction must involve 

phasing the array by the proper amount to correct for this 

offset. Notice that the phasing need only be along one 

axis of the array due to (perhaps fortuitous) geometric 

considerations (see Figure 2-1). The error introduced by 

one-axis phasing toward the zenith results in an offset 

from the true zenith of approximately 0.01°. 

Using z = 1.46°, Az = 50.35° as a starting point, along 

with the array theory discussed in the Appendix, the net 

effect of the current phasing configurations as well as 

the phasing needed to bring the beam into a truly vertical 

direction may be computed. 

Two positions of extreme importance in stratospheric 

scattering experiments are those labeled ”1" and "3" in 

Rastogi (1975), reported there to have 5 = 11.78° and Ha = 

-14m19S for position 1 and 6 = -15.49°, HA = -2m20S for 3. 

In fact, the phasing schemes used by Rastogi, designated 

positions II and III in the Appendix, are shown to move 

the beam 2.31° along the magnetic (1960) EW axis, and 

1.10° along the magnetic NS axis. The results are illustrated 

in Figure 2.2. Position 1 is found to have z - 3.44°, 

Az = 92.9°, while position 3 has z = 3.46°, Az = 8.83°. 
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. — - fyeO 

e 

Figure 2-1 
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To convert this to declination and hour angle, we use the 

formulae 

sinÔ = sin<f> cosz - cos<J> sinz cosAz 

sinHA 
sinz sinAz 

cos6 

Position 1 thus has 8 = -11.75°, HA = -14mQ2s, position 3 

has 8 = -15.37°, HA = -2m12s. 

Knowing the true positions of beams produced by phase 

maps II and III would allow us to compute the necessary 

phasing to put the beams exactly on the West and South 

axes. The azimuth of position 1 is within 3° of the West 

axis, and position 3 is within 9° of the South axis. The 

horizontal winds may be accurately resolved with current 

phase schemes? however, there exist important considerations 

on behalf of aligning the "vertical" radar beam exactly 

with the true vertical, as will be discussed in the re¬ 

mainder of this chapter. 

2.2 Improvement of the Vertical Pointing 

A very important position in stratospheric wind experi¬ 

ments is the so-called "vertical" pointing, corresponding 

to phase map I of the Appendix, In 1965, Ochs determined 

this position to have 6 = 12.13°, HA = 0ra55s West, having 

used an unphased zenith distance of 1,50° and the simplified 

"uniform phase gradient" calculation. This left the beam 
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Figure 2-2 
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center 0.31° from the local zenith. In 1975 Rastogi used 

a closer value of 1.48° for the zenith distance of the 

unphased pointing direction, leaving 0.29° as the zenith 

distance of the phased "vertical" pointing. However, the 

complete array calculation, as presented in the Appendix, 

shows that the beam moves only 1.10° using phase map I, 

leaving the beam with zenith distance z = 0.36°. The unde¬ 

sirability of such a tilt will be demonstrated below. 

In order to correct the vertical pointing to z = 0.0°, 

additional phasing is necessary. The most obvious method 

of accomplishing the desired correction is to simply increase 

the cable insertions in the current scheme by a factor of 

desired beam shift _ 1.461 _ -, ^21 
current beam shift 1.101 

The phase map resulting from this addition is given as 

Phase Map IV at the end of this chapter. 

Computer evaluation of the array factor with this 

phasing configuration shows the maximum is indeed shifted 

by 1.46° from the unphased direction. Thus the beam maxi¬ 

mum is within 0.01° of the true zenith, the slight offset 

being due to the azimuthal difference between the direction 

the beam is moving and the direction directly toward the 

zenith (see Figure 2-1). This is one possible solution to 

the vertical offset problem. 

Another simple method of increasing the beam shift from 

1.10° to the desired 1,46° is the insertion of additional 
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cable length at the level of antenna quarters, each of 

which is a square array of 16 modules (Figure A-5). In 

this configuration, the relative phase between modules is 

identical to that currently used, but additional cable is 

inserted in the feed lines to the various quarters of the 

array. In essence, this method alters only the "quarter" 

array sub-factors discussed in the Appendix, rather than 

both the "quarter" and "module" sub-factors as in the 

previous case. 

The additional cable insertions may no longer be com¬ 

puted by the simple "desired/achieved" ratio as above, 

since the "achieved" portion of that fraction was accomp¬ 

lished through phasing at a lower level, i.e., the modules. 

Trial and error reveals the correct factor for increased 

cable insertions at the "quarter" level to be 1.41. The 

phase map is therefore unchanged from the current "vertical" 

case, but now the signal from the North and East quarters 

traverses cables which are longer than those leading to the 

South and West quarters by a factor of 1.41. 

Evaluation of the new array factor reveals a maximum 

at 1.46°. However, as might be expected when phasing is 

performed at a higher level, side-lobe problems must be 

considered. As noted in the Appendix, the sub-factors 

which multiply to make up the complete array factor may 

combine in curious ways. An examination of these combina¬ 

tions reveals side-lobe information. 
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The side lobes of interest are those on the axis along 

which the phasing is done. On this axis, the side lobe 

"beyond" the main beam (i.e,, the lobe farther from the 

starting point) is generally found to be suppressed. For 

example, if the additional phasing is done by increasing 

the current phasing as described above, this lobe is 

34 dB* below the main lobe. In the case of phasing at the 

"quarter" level, the lobe is more pronouncedly suppressed, 

and is 48 dB below the main lobe. 

The side lobes on the opposite side of the main lobe 

display the opposite behavior, and it is the first lobe on 

this side that is enhanced by higher-level phasing. In the 

case of increasing current phasing, that is, phasing at 

successive pairs of modules, this lobe is 20 dB below the 

main lobe. However, if the phasing is performed at the 

level of the quarters, this lobe is only 9 dB below the 

main lobe. In both cases, the next appreciable lobe on 

this side of the main lobe is 10-11 dB below the main. 

These lobes are located 4.36° away from beam center, however, 

and are therefore less troublesome than those previously 

discussed. It may be noted that this lobe is actually 

larger than the first side lobe in one case, a consequence 

of the peculiar results attainable in multiplication of the 

subfactors. 

*All dB are radar decibels. 
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Thus, the greatest effect of phasing at the level of 

the quarters rather than the pairs of modules is the enhance¬ 

ment of the first side lobe on one side of the main lobe 

by 11 dB, leaving it only 9 dB below the main lobe. At 

1.48° from beam center, this represents a large enough 

contribution to the signal to warrant its avoidance. The 

advantage of phasing at the "quarter" level is that addi¬ 

tional cable need only be inserted at 2 points, both within 

the switchyard near the control building. Additional phasing 

performed at the level of module pairs requires cable 

insertions at each of 56 modules, with successive modules 

receiving equal lengths of extra cable. 

However, as long as each module requires extra cable, 

there is no justification for continuing the practice of 

combining pairs of modules as depicted by phase map IV. 

A preferable procedure would be to increase the cable in¬ 

sertions between each module, with cable lengths correspond¬ 

ing to phase map V. The advantages of this scheme may be 

seen by considering Antenna Beam Maps 1 through 3. These 

maps show the array-factor amplitudes for the main beam 

and important side lobes for the three methods of achieving 

true vertical outlined above. Maps 1 and 2 depict the lobe 

information for additional phasing done at the module pair 

and quarter level, respectively, while map 3 gives the values 

achieved when a phase gradient is inaugurated between each 

module and the next. This method clearly provides the 

most desirable main-to-side lobe ratio, although the same 
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number of cable insertions (56) is required as in the module 

pair method. 

It should be noted that all of the procedures just 

discussed for correction of the vertical pointing have 

involved addition of extra cable to the existing phasing 

schemes. An alternative procedure would consist of 

deletion of sections of cables in proper amounts to achieve 

the same result. The phase map required for this configura¬ 

tion is designated phase map VI at the end of this chapter. 

2.3 Error Due to Vertical Offset 

The current offset of 0.36° of the "vertical" pointing 

from the true vertical may not seem, at first glance, to 

warrant the time and expense involved in implementing the 

corrections discussed above. However, an examination of 

the geometry pertinent to the stratospheric scattering 

experiments reveals that even so small an offset as 0.36° 

may result in considerable error in the estimation of 

various wind components. The geometry is illustrated in 

Figure 2.3. 

The wind vector, V, is given by 

A A A 

V = ux + vy + wz 

while the radar vector, R, is 

A 

R = sinÿ cosa x + sinip sina y + cos^ 
A 

Z . 



34 

2 

♦ / 

> 

Figure 2-3 



35 

The component of the wind in the radar direction is then 

= u simp cosa + v simp sina + w cosip . 

For the existing "vertical" pointing, ip = 0.36° and a = 

50.4°, which gives 

V*R = u sin(0,36°)cosC50.4°) + v sin(0,36°)sin(50.4°) + 

w cos(0.36°) 

= .0040u + .0048v + l.OOw 

If we assume typical values of u'v-v'^lO m/s and w ^ 0.1 m/s, 

V»R = 4.0 + 4.8 + 10 (x 10“2 m/s) . 

~y -y 

This value of V*R is approximately 88% in error if 

used as an estimation of the vertical component of the wind. 

Previous calculations performed ignoring this offset are 

therefore considerably in error. 

Another consideration in the correcting of the "vertical" 

beam to true vertical is the elimination of the dependence 

of the vertical component value on the values measured for 

the horizontal components. In other words, if ip = 0°, 
■> ~y 

the equation for V»R, and therefore the vertical component 

w, no longer depends on u and v. This is an important con¬ 

sideration, for it decouples the scattering volume in which 

the vertical component is measured from the two scattering 
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volumes in which horizontal wind components are measured. 

At stratospheric heights, these latter volumes are typically 

separated from the former by 1.5 km, and an assumption must 

be made concerning the similarity of the horizontal compo¬ 

nents in the various volumes. A truly vertical beam 

eliminates the need for such an assumption. 
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Phase Maps which correct the vertical 

Method 1: Addition of cable to module pairs 

Each column must have the following insertions 
in units of X/4: 

4+(3 x 1.327) 
4+(3 x 1.327) 
4+(2 x 1.327) 
4+(2 x 1.327) Phase Map IV 

4+ (1 x 1.327) 
4+(1 x 1.327) 
4 
4 

Method 2 : Addition of cable to each successive module : 

Each column must have the following insertions 
in units of X/4: 

4+(3.5 x 1.259) 
4+(3.0 x 1.259) 
4+C2.5 x 1.259) 
4+(2.0 x 1.259) 

Phase Map V 

4+((1.5 x 1.259) 
4+(1.0 x 1.259) 
4+(0.5 x 1.259) 
4 

Method 3: Deletion of cable from each successive module 

Each column must have the following insertions 
in units of X/4: 

3 
3-(0,5 x 1.259) 
3-C1.Q x 1.259) 
3-(1.5 x 1.259) 

3-C2.Q x 1,259) 
3-C2.5 x 1,259) 
3-(3,0 x 1.259) 
3-C3.5 x 1.259) 

Phase Map VI 
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APPENDIX 

Theory of Phased Arrays and Application 

to the Jicamarca Radio Telescope 

A radio/radar telescope such as the intrument at 

Jicamarca would have limited potential if the beam pattern 

were as fixed as the antenna. While providing an inexpensive 

method of constructing instruments with large collecting 

areas, fixed antenna design necessitates the inclusion in 

the design of the ability to shift the beam pattern. One 

manner of accomplishing this shift is to incorporate a 

phase gradient in the transmitters (or receivers) or trans¬ 

mission cables of the array. 

One-Dimensional Arrays (Unphased) 

In the one dimensional array, the geometry is as shown 

in Figure A-l. An incoming plane wave, originating at 

source S, is received at progressively later times at 

elements 1,2,3,4, and 5, The amount of phase difference 

seen at various elements is thus dependent on the spacing 

between elements, "a", the zenith angle of the source, 

"\J, and the wavelength X. For example, the path difference 

ri between the source and element 1 and the source and 

element 1 and the source and element 2 is simply a* simp. 

Thus the far field seen by the first two elements of the 

array is 

E = Ei + E2exp[ik»a»simp] 
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Figure A-l 
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where the phase reference is at element 1, and the elements 

are spaced by the separation a. 

The path difference between element 1 and element 3 

is r2 = 2a*siniJ>, between 1 and 4 r3 = 3a*simp, and so forth. 

Thus the generalization of the equation given above to an 

"n" element array gives the far field as 

E = Ei + E2exp[ik*a* sini|>] + E3exp [ik* 2a* sinij>] + 

• •• + ERexp[ik(n-1) *a*sinif>] . 

This may also be written as 

p - V F ik (s-1) a* sinifi lu — ) û_6 f oirf assuming 
“ t s 

s=l 

El =E2= ••• = ER 5 EQ, 

E = E l eik(s-l)a.Sint _ 

It is easily shown that this may be expressed as 

^ _ eik*na*simJ> 
E ~ Eo ~ ik*a • sini|> 

1 - e 

_ 1 - cos (kna* sin^) - i sin (kna • sin\|j) 
~ Eo 1 - cos(ka*sinÿ) - i sin(ka*sinÿ) 

Rationalizing by squaring, 

_i2_ „ 2 [1 - cos (kna» simjQ - i sin (kna *simJQ j 2 

Ei 1 
[1 - cos (ka * sinij;) - i sin(ka*sinÿ)]2 

- E 2 II ~ cos (kna«simp) ] + sin (kna*sim|j) 
° II - cos (ka« sinif)) J + sin (ka*simp) 

_ 2 1-2 cos (kna » sinij;) + 1 

° 1-2 cos (ka «sinij;) + 1 
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_ E 2 1 - cos (Jena ♦ simp) 
° 1 - cos (ka*'sini|j) 

Using the double-angle formula sin2 (|-) = l-oos 6 ^ 

this becomes 
sin2 (iS^.sinÿ) 

|E| 
2
= E 

2 ?  . 
sin4 (p'-sini))) 

In field strength, the array factor for an n-element one 

dimensional array of spacing "a" is therefore 

. ,kna . .. 
sxn [—'Sxmfi] 

ACtp) 
sin [j^.sinijj] 

Two-Dimensional Arrays (Unphased) 

The geometry of the two-dimensional array is shown 

in Figure A-2. S is again a source of plane waves which 

arrive at various antenna elements at different times. 

The phase of the signal received at any element (relative, 

say, to element (1,1)}, is a function of the path length 

difference between the elements and the source. The path 

difference between S and (1,1) and S and (v^v^) is,from 

Figure A-2, 

r = (v -l)ai sin^cosa + (v -1) a2sini|>sina 
x y 

assuming parallel plane waves. Here aj is the element 

separation in the x-direction, and a2 is the y-direction 

spacing. 
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Figure A-2 
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If Ei is the electric field amplitude at (1,1) and 

E2 is the amplitude at (v„rv„), the total field seen by 
-*• y 

both elements is 

„ „ L _ ikl(v -Daisintpcosa + (v -1)a2sin^sina] E=Ei+E2ex y 

Considering an nxm array consisting of n elements in the 

x-direction and m elements in the y-direction, and assuming 

the electric field amplitude is equal at all elements, the 

total field seen is 

E = E l ^eik [ (vx~l) a 1 sinijjcosa + (vy-l) a2sini|>sina] 

v =1 v =1 
x y 

Proceeding as in the one-dimensional case, 

E E 
1-e 

o 

ikna1sin^cosa 

ika sin^cosa 
1-3 

ikna2 sinifjsina 
1-e  

ikna sinif/sina 
1-e 

The array factor in power density is now 

knai kna2 

sin2 [——sinÿcosa] sin2 [——sin^sinqt] 

[A(ÿ,a)]2 = kai * kâi 
sin2[—J- sin^cosa] sin2[—j—sin^sina] 
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Phased Arrays 

The arrays described above have maxima normal to the 

arrays, since the array factors A(i|0 or A(if>,a) reach a maxi¬ 

mum at = 0°, At this point, the array factors become 

A(^) = n (one-dimensional case) 

A(iJ>,a) = n x m (two-dimensional case) 

by L'Hospitals rule. 

If the beam pattern is to be shifted in order to maxi¬ 

mize the pattern at a zenith angle different from zero, 

a phase gradient must be established along the elements 

of the array. This may be accomplished by the inclusion of 

additional path lengths in the cable network feeding the 

array, as illustrated by the curly lines in Figure A-3. 

Obviously, maximization of the beam pattern at the 

zenith angle of the source requires 

rQ + lj = rj + 12 = r2 + 13 = r3 + 14 = constant 

which is satisfied if 

li = r3 12 = r3 - r! 13 = r3 - r2 1„ = r0 (=0). 

In this manner, a signal originating at zenith angle ip 

traverses identical path lengths to all four receivers, 

thus equalizing the phase and maximizing the observed 

field. 

The additional cables make the total field seen by a 

two-element array with spacing "a” and cable insertion 

equal to 

E = Ej + E2explik(a*sinÿ-Jl) ] 

where as before, is the zenith angle of the source, and 
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Figure A-3 
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the phase reference is the farthest element from the source. 

Similarly, if an additional cable of length Ü, 21, 31, 

etc, is attached to each successive element of an n-element 

array, the field seen is 

E = Ei + E2explik(a,*sini^-i) + E3explik C2a«sim|;-2Jl) ] + 

E4exp [ik (3a* sinÿ-3£) ] + ••• + E^exp [ik (n-1) (a»sim|;-&) ] . 

As before, this may be written 

E = Y E e
ik(s“1) Ca-sin^-i) 

s=l s 

A calculation similar to that, in the unphased case yields 

the array factor 

. rkna . . kn.. 
sin[-ÿ-sxni|) - 

A(\J>) = ~ Jci ; ' kIT~" 
sin [y- smÿ - ] 

This expression is easily extended to the two-dimensional 

array. Assuming n elements in the x-directiofi, spaced 

by amount alf and with progressive cable insertions of 

length lj, and m elements spaced by a2 and with cable in¬ 

sertions of length 12 in they-direction, the far field seen 

at the receivers is 

E 
v 

ro ik[(v -2) (aisinipoosa-Ai) + (v -1) (a2sini|;sinoHl2) I e x Y 

=1 
x y 

Thus the array factor is 
V Jç V 

sin [n-^aisin^cosa-n—sinlimra2sinif>sina-m;r&2] 
A(ip,a) =      •       

sin[^aisin^cosa- sinljazsinifjsina—j&a] 
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This is the array factor for a two-dimensional array (Kraus, 

1950 and Jasik , 1961), but its validity requires 3 assump¬ 

tions : 

1. Along either axis of the array, the spacing aj 

(or a2 ) between elements remains constant. 

2. Along either axis the additional cable insertions 

(or 5,2) between elements remain constant. 

3. The source is far enough away to insure plane waves. 

The first two assumptions are tantamount to the approxima¬ 

tion of a "uniform phase gradient" across the array, i.e., 

the phase difference between any two elements is equal to 

the phase difference between any other consecutive elements 

(Wolff, 1966). 

This expression neglects, then, two features of the 

actual instrument at Jicamarca, namely, an extra i-n 

separation between quarters of the array, and, more impor¬ 

tantly, the fact that clusters of 144 dipoles form each 

module, and no phasing is inserted between dipoles of a 

given module. These characteristics have been neglected 

in previous calculation (Ochs, 1965 and Rastogi, 1975) 

which simply applied the expression derived above for a 

uniform phase gradient array. Calculations of this kind 

will be illustrated first, followed by the calculation which 

accounts for the particularities of the telescope at 

Jicamarca. 

An explicit determination of the array factor as applied 

at Jicamarca, even in the simplified calculation, requires 



48 

some knowledge of the characteristics of the antenna. In 

the "uniform phase gradient" approximation, the following 

values will be (and have been) used: 

Wavelength: A = 6m 

Spacing Between Elements: a: = a2 = A/2 

Wavenumber: k = 2T/A = 2ir/6m 

Number of Elements Along Axis: n = m = 96 

The remaining parameter necessary for the evaluation of the 

array factor, the length of cable insertions, is provided 

by a "phase map", of which the following is an example: 

N (1960) 
m 

E 
m 

3333 3333 
3333 3333 
2222 2222 
2222 2222 

5555 5555 
5555 5555 
4444 4444 
4444 4444 

Phase Map I 

The map is interpreted as follows: each number represents 

a cable insertion to one module, which consists of 144 

cophased dipoles. The number is the length, in quarter 

wavelengths, of the insertion. Thus "4" represents 4 

quarter wavelengths, or one full wavelength of cable in¬ 

serted. Similarly, "3" refers to ,75A inserted, "2" = 

,5A, and "5" (the equivalent of "1") means 1.25A inserted. 

Obviously, a factor of 4 may be added or subtracted from 

the maps at random, since a pathlength difference of an 

integral number of wavelengths has no effect on the phase 
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of the signal seen by various elements. The usage of "4" 

and "5" rather than "0” and "l” stems only from physical 

considerations and availability of insertions of lengths 

of .5, .75, 1.0, and 1.25 wavelengths. 

The uniform phase gradient calculation, as applied 

to the dipoles of the antenna, dictates an even division 

of the phase change among the dipoles in a line. Thus if 

a total change across the antenna of 1 wavelength is evenly 

divided among 96 dipoles, the result is an equivalent cable 

insertion at each dipole of A/96 along the x-axis. As 

shown by the map, there is no phase gradient in the y- 

direction, making &2
= 0* The two-dimensional array factor 

is now 
sin[96«y*^sin^cosa- 96»i»^g-] 

A(iJ>,a) =  r    
sinllL^sinÿcosa- 

sin [48ïïsin\[jsina] 

sin [jsinipsina] 

The beam pattern resulting from such a factor may be 

discerned by considering the behavior of A(iJ>,a) for 

a = 0.0° (i.e,, along the NE-SW axis). This gives 

sin[48TtsinifJ-7r] 

sinljsin^-^j-] 

sin [96*^-*^-siniJjsina] 

sin [IL*isin*J;sina] 
A 

or 

A(i|>,a) 
sin [48Trsinif)COsa-iT] 

. r*n . TT , 
sin L^-sin^cosa^gg*] 

A OJJ ,0 ) 
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This exhibits the well-known behavior of s.-i-n- nx. , that is, 
sm x 

a maximum occurs whenever the numerator maximizes, or when 

both numerator and denominator are zero, while a minimum 

occurs when only the numerator approaches zero. Thus in 

the above case a maximum occurs when 

48TT sini|> - ir = 0 

sin \p = 1/48 

ÿ = 1.19 ° . 

This is the position of the first maximum, and corresponds 

to the offset of the beam from the direction perpendicular 

to the array. The first minima occur at 

48IT sini{> - TT = —rr 

sin ij> = 0 

ip = 0.0° 

and 

48^ sinÿ - TT = IT 

sin ÿ = l/2f 

ÿ = 2.39° . 

The positions of the secondary maxima corresponding to the 

first side lobes are equally spaced in sinijj, and occur at 

ÿ = 2.98° and \p = -0.59°. These lobes are 27dB below the 

main beam. A plot of A(i|>,a) for this case is given in 

Figure A—4, 

The preceding calculations, based upon the "uniform 

phase gradient" assumption, are inaccurate when applied to 

the instrument at Jicamarca for the two reasons mentioned 

above: 
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1. Within each, module, the 12 dipoles along either 

axis are cophased, i.e., have equal length feed 

cables. 

2. The spacing between modules is not uniform, due to 

the presence of a A/2 gap between quarters. 

For these reasons, the array factor for the Jicamarca 

antenna is more complex than A(^,a) as calculated above, and 

is in fact the product of three such factors. They are: 

Ai - A factor representing 144 dipoles, separated by 

A/2 and cophased. These 144 dipoles make up one 

module, 

A2 - A factor representing 16 modules, phased with 

cable insertions of lengths 1^ and separated 

by 6A. These 16 modules make up one quarter. 

A3 - A factor representing 4 quarters, phased by module 

cable insertion or directly at the switchyard, 

and separated by 24.5A. 

A schematic view of the antenna illustrating the groups of 

elements just described is given in Figure A-5. 

The rationale for the grouping as depicted in Figure 

A-5 is simple. Within each group, the requirements of the 

"uniform phase gradient" assumption are satisfied. For 

example, within each module, the dipoles are separated by 

uniform distance andphased by cable insertions of a constant 

length CO in this case), Within each quarter, the modules 

are also equidistant and phased with a uniform gradient. 

And, within the entire antenna, the quarters also satisfy 
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Figure A-5 
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these requirements. The full array factor for the Jicamarca 

antenna is therefore 

AT(ÿ,a) = Ax (ip,ot) »A2 0|>,a) »A3 01>,<X) 

Sin[nD|aaDsin*cosa-nD|j.1D) sin [m^^sinfsina-m^^] 
 '    "-I IL    ■             f ' »■— ‘   ■ —— ' ■ - ! 

k k k k 
sin [-^a^sin^cosa-^&^j-j] sin l2^a2Dsini|;sina-2'Jl2D] 

x 
sln[n^x sin|),cosa-^|iiM] sin[m^^sin^sina-m^^l 

Sin I2al«sln'l’COS“'l<‘l«1 Sin [Ia2MSlnl|'sin“'7*'2M] 

sin[nQ|a1Qsin.|»cosa- nQ|i1Q] _ sintmjn^sinfsina-m^g] 
X k k k k 

sin [^-a^gSin^cosa-^^Q] sin [^a2Qsini(;sina-2-A2Ql 

where 

nn 
M) 

Q 

= numbers of rdipolesi 
"■modules* 
quarters 

in x-direction per 

antenna 

mD 
__ 11 It If H y-direction " " 

(g) 

aiD = spacing of 
,dipoles, 
*• module s* in x-direction 

$ 

quarters 

a2
D 

- H H w VI y-direction 

(g> 

Sj 1 TN 
(M) 

Q 

= cable insertions between {modulesin x-direction 

quarters 

&2D 

(g> 

= !» II n 
” " y-direction 

Inserting the values pertinent to Jicamarca, the complete 

array factor becomes 
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A (ÿ,a) = sin[6Trsin^cosa3 , sin [6Trsim|;sina] 
T 

x 

sin[^-sini(»cosa] 

sinI24Trsini|;cosa^4lLjl, J 
 A 1AA _ 

sinl 67rsint|jcosa''Ei J 
A 1M 

sin [497rsin4»cosa-2Y-il ] 
x  j-g A 

sin [4^-irsini|)cosa-—] 

s in I^sinÿsinaJ 

sin [24TTsinif)sina-4^i_A. J 
 A 

sinI67rsin^cosa-^-i2Ml 

sin [49TTsin^sina-2^-i2Q] 

A Q nr 
sin [ j=-irsini(jsina-—iori] 

X '2« 

A.l 

All that remains undetermined in this expression (aside, 

naturally, from ij> and a) are the lengths of the cable 

insertions it2^ ^IQ' an<* ^2Q* 0nce these have been 

specified, the beam pattern of the antenna may be determined 

at all points by evaluating AT(\|;,a). 

However, in certain cases, including the current 

"vertical" phasing as shown in Phase Map I, the phasing 

cables may be inserted in such a manner as to alter slightly 

the expression derived above. It will be noted that the 

"uniform phase gradient" assumption is not applicable to 

the modules as phased in this case, since, along the 

NE-SW^ axis, equal cable lengths are inserted in each 

successive pair of modules rather than each module. How¬ 

ever, the expression derived for AT(i|;,a) may be salvaged 

if the first term, formerly representing 144 cophased di¬ 

poles (12 along each axis) is expanded to include 576 

cophased dipoles (24 per axis). Furthermore, the second 

term, instead of representing the 16 modules in a quarter, 
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is made to account for the four ''module pairs” now existing 

per quarter. Insertion of the values = A/4, J&2M 
= 0/ 

= A/2, and i^Q = 0 used in the "vertical" phase scheme, 

the expression for ATC^ra) becomes 

Arp ( lj^ , 01 ) 
sin [12TTsinif>cosa] 

sin [^-sin^cosa] 

sin [12iTsimfjsina] 

sin[^sinif»sina] 

TT 
sin [24iTsinTpcosa-^-] 

TT 
sin [12Trsin^cosa-2-] 

sin[49Trsin^cosa-ir] 

sin [^.irsin^cosa-j] 

sin [247rsini|>sina] 

sin [12irsin^sina] 

sin I49TTsimf)sina] 

sin [^JLirsin^sina] 

It is the product of these "subfactors" representing Ax, 

Az, and A3 which determines the beam pattern of the array. 

Suppression, distortion, or enhancement of various side 

lobes may result from the combination of these subfactors. 

This is most easily seen by considering, again, the behavior 

of each subfactor, as well as their product AT(^,a) along 

the NE-SW axis (a=0). Then 
m 

A a sinI12iTsin^] 

sin [jSim|)J 

sin[24irsin^-y] 
A2a  — 

sin{12TrsinTj>-^-] 

* „ sin [49trsini{)--n'] 
A3«  -Tg ■ 

sinl^iirsintp-^] 

Each of these subfactors is displayed in Figure A-6 for 

the range ^ = -4.0° to ÿ = +8.0°. The reader is cautioned 



57 

/ 

/ 

N 
\ 
\ 

: A 

: / • • 
;/ 

:/ 

/ / 
j / 
:/ 

V \ 

\ 

/ 

\ 
\ 

;< 
/: \ 

i 
i 
/ 

\ /, 

\ 
V 

r \ 
i 

/ 
/ 

/ 

VD 
I 
< 

<0 
U 

& 
•H 
P* 

• I 
I 

I 
I 
I ♦ 



58 

against drawing conclusions from the relative sizes of the 

subfactors, since the scaling factor in the plotting 

routine changes between subfactors. Naturally, within 

Ai, A2, or A3, the relative sizes of maxima and minima are 

significant, since the scaling factor is constant within 

each such subfactor. 

One of the more obvious, and more important aspects 

of Figure A-6 concerns subfactor Ax which represents one 

module pair of cophased dipoles. Since the elements within 

this group are cophased, the array subfactor maximizes 

directly overhead at = 0°, as opposed to A2 and A3 which 

maximize at > 1°. Also important is the position of the 

maximum of subfactor A3, which occurs at 1.17°, 0.02° away 

from the maximum of A2 at 1.19°. This coincides with that 

computed using the "uniform phase gradient" assumption 

applied to the dipoles. 

The effect of the various locations of subfactor 

maxima may be seen in Figure A-7, which shows the product 

AT as well as the subfactors Ai, A2, and A3. The maximum 

value of AT occurs at 1.10°, nearly one-tenth of a degree 

removed from the value predicted by the simplified calcula¬ 

tion. As indicated by Figure A-7, the effect of the array 

subfactor representing the clusters of cophased dipoles 

is to displace the main lobe maximum toward the overhead 

direction (ijj = 0°) . The array subfactor for the quarters, 

while maximizing nearer 0° than that of the module pairs, 

serves to lessen the effect of the Ax subfactor. 
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Figure A-8 displays the array factor for the "vertical" 

beam in terms of power density rather than electric field, 

making the side lobes more apparent. The first side 

lobe beyond the main lobe (from the origin) is 21 dB 

below the main beam, which is lower than expected from the 

simplified calculation. The first side lobe on the origin 

side of the main beam is 31 dB below the main lobe. 

In this manner, beam patterns may be calculated for 

the Jicamarca antenna in a variety of configurations. 

Those utilizing the full antenna simploy employ expression 

A.l with relevant values of cable lengths inserted. Two 

examples of this are the "West" and "South"-looking phase 

schemes represented by the phase maps 

5432 5432 2345 2345 
5432 5432 2345 2345 
2543 2543 3452 3452 
2543 2543 3452 3452 

3254 3254 4523 4523 
3254 3254 4523 4523 
4325 4325 5234 5234 
4325 4325 5234 5234 

L Sm W "m 

Phase Map II Phase Map III 

Expression A.l may be used to find the beam patterns for 

these cable insertions, provided correct values for the 

number of elements and spacing along each axis are utilized. 

For example, the first configuration requires 
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alD = A/2 a2D = A/2 nD 24 mD = 12 

alM 
12A a2M ~ 6A nM = 2 mM = 4 

alQ = 
24.5A a2Q = 

24,5A nQ = 
2 mQ = 2 

‘in 
= —A/4 

*2n- 
A/4 

*1Q 
= -A/2 

*2Q = 
A 

The expression for AT(i|>,a) is now 

A a) — sm [12irsinif)cosa] # __ sin [6Trsin^sina] 

sin [Jsin^cosa] 

sin [24irsini|)COSa+^-] 
       - • 

sin [12Trsini|)COsa+j] 

sin [49TTsin^cosa+ir] 
! 4 9 ! 1 TT * sin [TJ—irsintycosa+^r] 

sin [^-sintysina] 

sin [24-rrsin^sina—n-] 

sin [12irsin^sina-j] 

sin [49irsim()sina-2ir] 

sin [^iTsin^sina-iT] 

This is somewhat more complex than previous expressions and 

substantial computation is required to reveal the beam 

pattern in two dimensions. The results indicate the beam 

moves 1.10° along the magnetic SW-axis, and 2.31° along 

the magnetic NW-axis. The new position, along with the 

position of the "South"-looking beam are shown in Figure 

2.2 
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Partial Antenna Patterns 

The patterns computed above result when the entire 

antenna is utilized with various cable insertions. In 

practice, however, one or two quarters of the antenna may 

be used for one purpose, and the remaining sections for 

another. For example, the north and west quarters may 

be phased so as to achieve the ."West” pointing while the 

south and east quarters look toward the South. In this 

way, simultaneous measurement of different horizontal 

wind components may be accomplished. 

Naturally, the patterns will be somewhat altered 

from those using the full antenna, depending upon which 

configuration is used. Three possible combinations are 

considered. 

1. One Quarter 

In this case, one quarter of the antenna is pointed 

in some direction, independent of the other three quarters. 

The effect is simply the removal of subfactor A3, the 

"quarter" subfactor, leaving the total array factor 

AT(ÿ,a) = Aj (Tp,ot) • A2(ÿ,a) 

or 

A = s:*-nI67rsim|)cosa] „ sin [6TTsimjjsinaj 
sin [î-sinÿcosa] sin[ jsin^sina] 

sinI24Trsin^cosa-4^A^n] 
x 

s in 12 4 ir s inÿ s ina-4Ï-& 2 nJ 

s in 16 IT s ini{> s ina’-jJt 2nl sin [67rsin^cosa^^X^nJ 

which is expression A,1 with n = m = 1 
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The effect of the deletion of the third subfactor is 

dependent upon the phasing being used. For an example, 

the west-looking configuration, previously found to move 

the beam 2.31° and 1.10° along the magnetic NW and SW axes, 

respectively, now requires an array factor 

AT(ÿ,a) sin [12Trsimjjcosg] 

sin [^sinijjcosa] 

sin [6Trsini|;sina] 

sin [Jsinif/sina] 

sin [24irsin^cosa+j] 

sin [12irsini|jcosa+^-] 

s in [ 2 4ir s in^ s ina—ir ] 

sin[6irsinÿsina-j] 

which moves the beam only 2.24°NW and 0.89°SWm. It is 

apprent that the tendency of the groups of cophased 

dipoles to look directly overhead has a greater effect in 

the absence of the "quarter" subfactor. 

A further effect, a consequence of reducing the 

aperture, is the increasing of the beamwidth. The half¬ 

power beamwidth for a rectangular aperture may be shown to 

be (Kraus, 1966) 

where A. is the linear dimension of the array in units of 
A 

X. Thus halving A. serves to double the half-power width 
À 

of the beam. The Jicamarca beam, ordinarly 1.06°, is there¬ 

fore 2.12° when one quarter is utilized. 
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2. Two Adjacent Quarters: 
□ 
□ or □□ 

An array composed of two adjacent quarters is most 

easily understood as a combination of the "one quarter only" 

case along one axis and the "full antenna" case along the 

other. As expected, the beam shift along the axis on 

which the quarters lie is identical to that accomplished 

by the full antenna for the same axis. The beam shift along 

the axis perpendicular to that along which the quarters lie 

is that of one quarter. Expression A.l is readily adaptable 

to this case, provided the correct values for n^ and m^ are 

used (either n^ = 1, m^ = 2, or = 2, mQ = ^* T^e s^aPe 

of the beam in this case becomes elliptical, since the 

aperture along one axis is twice that of the other. The 

beamwidth along the major axis is 1.06°, along the minor 

axis 2.12°. Antenna Beam Maps 4 and 5 display array 

factor amplitudes for the main and side lobes of the two 

possible "adjacent quarter" divisions of the antenna. 

Division along a NE^-SW^ axis is clearly preferable in 

terns of relative side lobe amplitudes. 
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3. Diagonal Quarters ; or 

The expression derived for the full antenna array 

factor must be modified more seriously for this configura 

tion. Clearly, the summing process in the equation 

n n 
E = E £ J exp{ik[(v -1) (aisirajjoosa-il^ + tv -l)a2siniJJsina-&2)]} 
T °v =1 v =1 

x y 

x y 

must'ise carried, out in a very special way, retaining only 

the terms corresponding to the two desired quarters. The 

"quarter" subfactor is then 

sin [N y (a. sini|>cosa+a0 sinÿsina-ü. n-Ln) ] 

A3 a) —  p:    
sin [^-(a^ Qsini(»cosa+a2Qsim|>sina-J!.Q_Q-Jt2Q) 1 

where all variables are identical to those defined in the 

full antenna case, with the addition of "N^" — represent¬ 

ing the number of elements along the diagonal line. 

is always 2 for the Jicamarca antenna, making the complete 

array factor for the bow-tie geometry 

AT(<J>,a) = 
_ sin[6irsin^cosa] 

x 

TT 
sin [jsiniJ;cosa] 

sin [24irsin^cosa-4^-i^n] 

sin [6irsinipcosa-^-i^n] 

sinI6TTsinijJsina] 

sin I^-sin^sina] 

sin[24irsin^sina-4v^o 3  A zn 

sinI6irsiniJ>sina-^. £ ] 

2TT 
sinI49ir (sinijicosa+sin^sina) (A-LQ+A^Q) J 

49 TT 
sin [ 2~TT Csini(;cosa+sim()sinal-^'CA1Q+i2Q) 3 

x 



• m 
(sMe) 

t 3* 

(-n&B) 

to firry 

in 3?*? W C2(, 
fa?i/0 C-*sM) (-3W) (-3M8) 

• >33 
(-roJIB) 

• 13? 
(-*?£8) 

* JOS' 
C-cUô) 

Antenna Beam Map 4 



68 

•—a#—' 

* 1516 
(-16dB) 

• 84-1 
(-26&B) 

» 

© Zenith 

• 1126 
(-21dB) 0 Normal to Array 

566 
(-33 JB) 

3800 
(OdB) 

• * 
1116 890 
(-21dB) (-25d3) 

* 624- 
C-31dB) 

* 167 
(-^dB) 

• 753 
(-28dB) 

Antenna Beam Map 5 



69 

The beam pattern may then be calculated once the cable 

insertions have been specified. The phase scheme 

N. 
m m 

4325 
3254 
2543 
5432 

W. 

5432 
4325 
3254 
2543 

m m 

is often used in ionospheric scattering experiments, and is 

found to move the beam 2.33° along each axis. This is very 

close to the 2.31° shift along each axis achieved by the 

full antenna with comparable cable insertions. The ad¬ 

vantage of this diagonal configuration is the narrow beam 

which results on the diagonal along which the quarters lie, 

and the availability of the remaining two quarters for a 

complementary measurement. Antenna Beam Map 6 reveals the 

fundamental problem with such a configuration, the large 

(-9dB) side lobe 1.4° away from the main lobe. A side lobe 

of this amplitude represents a substantial contribution to 

the returned signal from an unwanted scattering volume. 

This renders the "bow-tie" antenna unsuitable for use in 

stratospheric wind experiments. 
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