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Abstract 

Steepest feasible descent methods for inequality constrained optimization problems 

have commonly been plagued by short steps. The consequence of taking short steps 

is slow convergence or even convergence to non-stationary points (zigzagging). In 

linear programming, both the projective algorithm of Karmarkar (1984) and its afline

variant, originally proposed by Dikin (1967), can be viewed as steepest feasible descent 

methods. However, both of these algorithms have been demonstrated to be effective 

and seem to have overcome the problem of short steps. These algorithms share a 

common norm. It is this choice of norm, in the context of steepest feasible descent, 

that we refer to as the Dikin-Karmarkar Principle. 

This research develops mathematical theory to quantify the short step behavior of 

Euclidean norm steepest feasible descent methods and the avoidance of short steps for 

steepest feasible descent with respect to the Dikin-Karmarkar norm. While the theory 

is developed for linear programming problems with only nonnegativity constraints on 

the variables, our numerical experimentation demonstrates that this behavior occurs 

for the more general linear program with equality constraints added. Our numerical 

results also suggest that taking longer steps is not sufficient to ensure the efficiency of 

a steepest feasible descent algorithm. The uniform way in which the Dikin-Karmarkar 

norm treats every boundary is important in obtaining satisfactory convergence. 
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Chapter 1 

INTRODUCTION 

The announcement of a practical, highly-efficient polynomial-time algorithm for linear 

programming by Karmarkar (23] in 1984 created much excitement in the mathematical 

community. This single algorithm sparked a huge amount of related research-to 

verify numerical claims, to modify and extend the algorithm, to develop new interior 

point methods (both for linear and nonlinear programming). Soon after Karmarkar's 

projective algorithm was published, its affine-scaling variant was proposed by several 

researchers (for example, Barnes [5] and Vanderbei, Meketon, and Freedman[40]). It 

was later learned that the affine-scaling variant had originally been introduced by 

Dikin [13] in 1967. 

The algorithms proposed both by Dikin and Karmarkar both solve subproblems 

at each iteration which produce steepest feasible descent directions with respect to 

a common, well-chosen norm. However, steepest feasible descent methods have been 

known to produce short steps which may result in very slow convergence or con

vergence to nonstationary points. The norm used by Dikin and Karmarkar could 

be considered an optimal choice for steepest feasible descent applied to linear pro

gramming since global convergence properties have been proven and good practical 

results have been demonstrated. It is this choice of norm-in the context of solving 

problems with nonnegativity constraints-that we refer to as the Dikin-Karmarkar 

Principle. Steepest feasible descent with respect to this norm has the surprising prop

erty that the steps are bounded away from short steps as the boundary is neared, 

unlike Euclidean norm steepest feasible descent which virtually assures that as the 

solution is approached short steps will be taken. 

This thesis is organized in the following manner. Chapter 2 contains a descrip

tion of steepest descent methods for unconstrained and constrained optimization and 

an historical perspective. Chapter 3 points out the difficulty that steepest feasible 

descent methods encounter because of short steps-the so-called "zigzagging" phe

nomenon. Chapter 4 presents Karmarkar's projective algorithm and its affine-scaling 

variant. Dikin's algorithm is also presented. The relation of both the projective al-
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gorithm and the affine-scaling algorithm to steepest descent is discussed. Chapter 5 

will discuss the Dikin-Karmarkar norm along with a geometric interpretation. The 

observations concerning the behavior of steepest feasible descent with respect to the 

Euclidean norm versus the behavior of steepest feasible descent with respect to the 

Dikin-Karmarkar norm which motivated this research are discussed. Chapter 6 con

tains the theoretical results of this research. We concern ourselves with the special 

linear program in which the only constraints are nonnegativity constraints on the 

variables. We show that as the boundary is approached, the steepest feasible de

scent step with respect to the Euclidean norm must become progressively shorter and 

in fact, asymptotically approaches the shortest possible step. Whereas, for steepest 

feasible descent with respect to the Dikin-Karmarkar norm, asymptotically, as the 

boundary is approached, the step is bounded away from that shortest step. This be

havior is demonstrated numerically, in the more general linear programming problem 

with linear equality constraints, in Chapter 7. Chapter 8 gives some final remarks 

and observations. 



Chapter 2 

STEEPEST DESCENT 

2.1 Unconstrained Minimization 

We begin by considering the unconstrained minimization problem 

mmnruze J(x), 

where J : /Rn -+ IR is differentiable. 

3 

(2.1) 

A natural requirement for an iterative method to solve problem (2.1) is that the 

objective function value decrease at each iteration, i.e. f(x + ad) < J(x), for some 

a > 0. To obtain decrease, an obvious choice for d is a vector that gives the greatest 

local decrease in the objective function f. In other words, we ask for a vector that 

minimizes V f(x) T d with respect to d. Clearly, to make this minimization well

defi.ned, we must impose some type of normalization on the direction vector d. This 

notion is formalized in the following definition. 

Definition 2.1 {Steepest Descent Direction) By a steepest descent di

rection for f at x., with respect to a given norm, II · II, we mean any d 
that solves 

for some 8 > 0. 

mm1m1ze V f(x) T d 

subject to II d 11 ~ h, 
(2.2) 

Since { d 111 d II ~ 8} is a compact set, a solution to Problem (2.2) exists, though it 

may not be unique. 

Clearly, the solutions to (2.2) depend on the choice of norm. When the norm is a 

weighted Euclidean norm, i.e. 

11 · llw = 11w-l. 112, (2.3) 

where WE mnxn is a symmetric, positive definite matrix, then the steepest descent 

direction, with respect to the W-norm (2.3), is unique (for a given h > 0) and it is a 
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positive scalar multiple of 

- W 2V f(x). (2.4) 

For TV = I, the norm is the Euclidean norm, and the negative gradient is a direction 

of steepest descent. 

We formally define a method of steepest descent as follows: 

Definition 2.2 (Method of Steepest Descent} By a method of steepest 

descent for problem (2.1), we mean any iterative method of the form, 

k+I k dk 
X = X + Cltk , O'.k > 0, 

in which dk is steepest descent direction for f at xk as described in 

Definition 2.1. 

We refer to a problem of the form (2.2) as a steepest descent subproblem for prob

lem (2.1). 

2.2 Linearly Constrained Minimization 

Consider the optimization problem with linear equality constraints and nonnegativity 

constraints on the variables: 

rmmrmze J(x) 
subject to Ax= b 

X ~ 0, 

(2.5) 

where f : mn -+ IR, X E mn' b E mm' and A E mm xn. We say that X is strictly 

feasible for problem (2.5) if Ax = b and x > 0. 

The concept of steepest descent is generalized to the linearly constrained prob

lem (2.5) as follows: 

Definition 2.3 (Steepest Feasible Descent Direction) By a steepest fea

sible descent direction for J at x, with respect to a given norm, II· II, we 

mean any d that solves 

mm1m1ze V J(xf d 

subject to Ad = 0 

11 d II~ 8, 

for x, a strictly feasible point for problem (2.5), and some h > 0. 

(2.6) 
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REMARK: Any direction that satisfies Definition 2.3 is a feasible direction as de

scribed by Zoutendijk [42]. He described a class of solution methods for constrained 

minimization, so-called methods of feasible directions. In this class of iterative meth

ods, the starting point is feasible and all the iterates remain feasible. 

Again, the solutions to problem (2.6) depend on the norm. The steepest feasible 

descent direction with respect to the lV-norm,(2.3), is simply the projection onto 

the null space of A, in the W-norm, of the steepest descent direction for the un

constrained problem. In particular, the steepest feasible descent direction is given 

by 

(2.7) 

Note that in the case where we are minimizing f with only nonnegativity constraints 

on the variables, the steepest feasible descent direction, with respect to the W-norm, 

reduces to 

for X > 0. 

Analogous to Definition (2.2), we give the following definition. 

Definition 2.4 (Method of Steepest Feasible Descent) By a method of 

steepest feasible descent for problem (2.5), we mean any iterative method 

of the form, 

xk+i = xk + ak dk, ak > 0, 

in which dk is steepest feasible descent direction for f at xk as described 

in Definition 2.1. 

This definition ensures that the iterates remain strictly feasible.* We refer to a prob

lem of the form (2.2) as a steepest descent subproblem for problem (2.1). 

2.3 Historical Perspective 

2.3.1 Cauchy 

The gradient method was originally proposed by Cauchy (8] in 184 7 and is a method 

of steepest decent with respect to the Euclidean norm. Cauchy considered the prob

lem of minimizing a function of several variables. Using a first-order Taylor series 

*In accordance with contemporary terminology, such a method could be called and interior point 
method. 



6 

approximation he noted that taking a sufficiently small step in the direction of the 

negative gradient would guarantee decrease in the value of the objective function. 

Cauchy chose the steplength to give the global minimizer in the negative gradient 

direction, i.e. O:k solved 

minimizef(xk - o:V f(xk)). 
a>O 

(2.8) 

No convergence analysis was given in this classical paper. Cauchy simply suggested 

that since the function value would decrease at each step, eventually the minimum 

would be achieved. ( Cauchy made the remark that in order to obtain the new iterates 

quickly, one could use Newton's method or the secant method on the one dimensional 

minimization subproblem to obtain a steplength.) 

2.3.2 Curry 

In 1944, Curry [11] published perhaps the first convergence result for the gradient 

method for unconstrained optimization. For continuously differentiable functions 

in mn, he proved that with the proper choice of steplength, every limit point of 

the sequence generated by the gradient method is a stationary point of f, i.e. the 

gradient method cannot converge to a point that is not a stationary point. Curry's 

choice of steplength O:k was the first stationary point of problem (2.8). Curry's result 

also holds where the steplength ak is the first local minimizer in the negative gradient 

direction. Byrd and Tapia [7] extended Curry's theorem to arbitrary choices of norm 

and to spaces of arbitrary dimension. 

2.3.3 Rosen 

In 1957, Rosen extended the gradient method to constrained optimization. His gra

dient projection method was proposed first for linearly constrained problems [34, 35] 

and then extended to nonlinearly constrained problems [36] in 1961. Rosen's gradient 

projection method is based on a projection of the gradient of the objective function 

onto a subspace of the domain, where the subspace is defined by the intersection of 

hyperplanes that are determined by the active constraints. 

Given a feasible point x 0 , Rosen's method generates a sequence of the form 

(2.9) 

where Pk is a linear Euclidean tiorm projection operator. The steplength is taken 

to be the minimum between the value for which a new inequality constraint becomes 
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active and the value which minimizes the objective function in the current direction. 

For the linearly constrained problem (2.5), When the constraint matrix, A, has full 

rank, the steepest feasible descent with respect to the Euclidean norm is given by 

the Euclidean norm projection of V f(x) onto the null space of the constraint matrix 

A. This follows from a straightforward application of the second order necessary 

conditions to problem (2.6). 

2.3.4 Goldstein and Levitin & Poljak 

A gradient projection method for convex programming in a Hilbert space setting was 

proposed by Goldstein [19, 20] in 1964 and independently by Levitin and Poljak [27] 

in 1965. The method computes the iterative sequence as follows: 

(2.10) 

where Ps is the closest point projection operator for the Hilbert space and S is the 

convex feasible region. 

Goldstein proved that Curry's theorem holds under the assumptions: (1) the 

objective function, f, is twice continuously differentiable, (2) f is bounded below 

on the convex feasible set S, and (3) the Hessian of f is uniformly bounded on 

S. Levitin and Poljak proved Curry's theorem holds under the assumptions: (1) the 

Jacobian of f is uniformly Lipschitz continuous on the feasible region S, and (2) 

the convex feasible region is a bounded. 

2.3.5 McCormick and Tapia 

In 1972, McCormick and Tapia [29] studied Goldstein's gradient projection method 

for a general objective function. They proved Curry's theorem under less stringent 

assumptions than needed by Goldstein and Levitin and Poljak. They assumed that 

(1) the objective function f is continuously Frechet differentiable on the feasible 

region S and (2) the feasible region S is closed and convex, 
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Chapter 3 

THE CURSE OF SHORT STEPS 

3.1 The Phenomenon of Zigzagging 

It is natural to ask whether Curry's theorem holds for Rosen's projected gradient 

method applied to as simple a problem as (2.5), i.e. for steepest feasible descent with 

respect to the Euclidean norm. 

3.1.1 Zoutendijk 

Zoutendijk [42] recognized that most feasible direction methods, without careful 

steplength control, may converge to a point that is not a stationary point. He pointed 

out that these methods have the potential to generate iterates that bounce between 

constraints without making adequate progress on the minimization problem. In re

quiring the iterates to be feasible, the steplength choice often emphasize feasibility 

at the expense of function decrease. He coined the term zigzagging to describe this 

phenomenon. Zigzagging occurs when the steplength is determined by the constraints 

rather than the minimization of the objective function. As a result, zigzagging can 

result in convergence of the iterates to a point which is not a solution to the mini

mization problem. 

3.1.2 Wolfe's Example 

Wolfe studied the behavior of Rosen's Gradient Projection method for a special case 

of problem (2.5) where the only constraints were nonnegativity constraints on the 

variables: 
mmnruze J ( x) 
subject to x ~ 0. 

(3.1) 

He set out to prove that, under mild conditions on the objective function, the gradient 

projection method would converge. In fact, he was able to construct an example for 

which Rosen's method produced a sequence of points that converged to a point, x, 
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that was not a stationary point. (The results are seen graphically in Figure 3.1. t) 
Hence, Rosen's gradient projection method does not satisfy Curry's theorem. 

y 

X 

z 

Figure 3.1 Wolfe's Zigzagging Example 

3.2 McCormick's Anti-zigzagging Strategy 

McCormick recognized that in Wolfe's example, the zigzagging phenomenon occurred 

because, after a finite number of iterations, the local minimization along the com

puted step direction did not occur. Instead, the steplength was based entirely on 

feasibility considerations. In his paper [30] , descriptively entitled, "Anti-zigzagging 

by Bending," McCormick sought to modify Rosen's method so that longer steps would 

be taken at each iteration and thus avoid the short steps associated with zigzagging. 

He proposed, for problem (3.1 ), to take the steepest feasible descent direction initially. 

tminimizeHx2 -xy+y2 )¾,subject to x,y,z~O. 
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However, when a boundary was encountered, instead of stopping, the step direction 

vector was "bent" to follow the newly encountered constraint. The next iterate was 

chosen to minimize the objective function along this bent vector. Of course, several 

"bendings" might be required. This approach allowed longer steps to be taken and 

prevented the problem of the steplength being dictated by the constraints and not the 

minimization. McCormick demonstrated that this strategy prevented zigzagging, i.e., 

he proved a version of Curry's theorem. McCormick and Tapia (28] noted that the 

"bending" method was equivalent to Goldstein's gradient projection method for the 

special case where the feasible region is the nonnegative orthant. Then they extended 

Curry's theorem to the general gradient projection method (29]. 

3.3 Observations 

Initially, both Goldstein's and Rosen's methods take a step in the steepest feasible 

descent direction. (See the corollary to Proposition 2 in McCormick and Tapia [29]). 

It is when a new boundary is encountered that the difference occurs. The gradient 

projection direction adaptively changes as it meets a boundary, while the projected 

gradient method stops at the boundary. It is this seemingly small distinction which 

allows one to zigzag while the other cannot. 

These observations indicate the importance of considering not only the active con

straints, but also the inactive constraints when making a choice of direction at any 

iteration. The Euclidean norm steepest feasible descent does not use information 

about the inactive constraints in determining the direction-it only considers which 
direction gives the greatest amount of local decrease. In choosing the norm in which 

decrease is measured, we believe that it is correct to include information about dis

tance from the inactive constraints. It is this property that the Dikin-Karmarkar 

norm possesses which contributes to its good convergence properties. 
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Chapter 4 

THE DIKIN & KARMARKAR ALGORITHMS 

4.1 Karmarkar's Algorithm 

In 1984, Karmarkar [23] proposed a polynomial-time method for the solution of linear 

programming problems of the form 

mmuruze c Tx 

subject to Ax = 0 

e TX= 1 

X ~ 0, 

(4.1) 

where c, x, e E m_n, e = (1, 1, ... , 1, If, A E m_mxn is of full row rank, and the 

optimal objective function value is zero. 

KARMARKAR'S ALGORITHM: Given an initial, strictly feasible 
point, x0

, for problem (4.1) and a tolerance for the objective function, 
t > 0, let k = 0. 

WHILE c Txk > t DO 
• Dk +- diag ( xk) 
• Compute x E mn as the solution to 

• Xk+-Dx/eTDx 
• k+-k+l 

END DO 

rrumm1ze c T Dx' 
subject to ADx' = 0 

e T x' = 1 
II e - x'lb::; 8 

(4.2) 

Theoretically the algorithm ~as appealing because it was a polynomial-time al

gorithm. Karmarkar's algorithm was not the first algorithm for linear programming 
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to have a theoretical polynomial-time bound. In 1979, Khachiyan (24] proposed a 

modification to the ellipsoid method which led to the first polynomial-time algo

rithm for linear programming. Unfortunately, the practical performance of the el

lipsoid method was disappointing-it was not competitive with the simplex method. 

However, Karmarkar's method was practically appealing because, in some cases, its 

performance did rival that of the simplex method. The approach of the algorithm 

was much different than that of the simplex algorithm, the iterates moving through 

the interior of the feasible region rather than along the boundaries. 

While Karmarkar's algorithm is not a straightforward steepest feasible descent 

method for problem ( 4.1), the subproblem solved at each iteration has the form of 

a steepest feasible descent subproblem with respect to a weighted Euclidean norm. 

That norm is 
. (4.3). 

where xk is the current, strictly feasible iterate. It has been shown by Morshedi and 

Tapia (31] and by Tapia and Zhang (38] that Karmarkar's algorithm is actually a 

steepest feasible descent method applied to the nonlinear program which results from 

a simple transformation of the linear program. 

4.2 The Affine-Variant 

Subsequent to the announcement of Karmarkar's algorithm, researchers considered 

modifications to the algorithm. Motivated to simplify Karmarkar's algorithm and and 

to develop an algorithm that gave monotone decrease in the objective function, the 

affine-scaling variant was introduced. It provided a simpler scaling of the problem, 

decrease in the objective function at each iteration, and no longer required that the 

right hand side of the linear equality constraints be zero or that objective function 

be zero at the solution. 

The subproblem that is solved at each iteration is 

mm1m1ze c TDx' (4.4) 

subject to ADx' = 0 (4.5) 

e T Dx' = 1 (4.6) 

lie - x'lb ~ h. (4.7) 
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We can, via a change of variables, produce an equivalent subproblem where the the 

matrix D does not appear in (4.4), (4.5), and (4.6) and (4.7) becomes 

In this manner, we observe that the affine variant can be viewed as a method of 

steepest feasible descent with respect to the norm ( 4.3). 

4.3 Dikin 's Algorithm 

In 1967, Dikin [13] considered an extension of the method of steepest descent to 

linear and quadratic programming problems with inequality constraints-specifically 

nonnegativity of the variables. He proposed an iterative method to solve linear pro-
. . . . . . . . . ... 

gramming problems of the form 

mm1m1ze c T x 

subject to Ax= b 

X ~ 0, 

where c,x E mn, b E mm, and A E mmxn is of full row rank. 

DIKIN'S ALGORITHM: Given an initial, strictly feasible point, x 0 , 

for problem ( 4.8), let k = 0. 

1. Dk +- diag ( xk) 

2. Compute µk E mm as the solution to 

n m 

minimize L [x} (1)aiiµi - Cj)]2 (4.9) 
j=l i=l 

3. 8k +-AT µk - c 

4. <Pk +- ( xk T 8k)2 

5. WHILE <pk i= 0 DO 

• >.k - l/ v<Pk 
• xk+

1 
- xk + >..kDzl5 

• k-k+l 

• GO TO 1 

END DO 

(4.8) 



Note that problem ( 4.9) is exactly the least squares problem, 

A T 
minimize II Ak /t - c II~, 

µERm 
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(4.10) 

for A = ADk and c = Dkc. When A has full row rank, the unique solution to 

problem (4.10) is given by 

(4.11) 

Therefore, the step taken at each iteration is 

(4.12) 

which is exactly the steepest fe.asible descent directioll giveJ;). in (2..7). 

Dikin [14] proved a version of Curry's theorem for his algorithm, namely that any 

limit point of the iterative sequence is a solution of the linear programming problem 

with the only requirement being primal nondegeneracy. So we find that the weighted 

Euclidean norm chosen by Dikin and Karmarkar overcomes the zigzagging problem 

associated with Euclidean norm steepest feasible descent. We will refer to the common 

norm (4.3) as the Dikin-Karmarkar or DK-norm. 

We know that our iterates xk may have some components that are converging 

to zero. So any measurement of distance should be a relative one [38]. It is this 

relative weighting of the steps that allows us to look equally at components that 

are converging to zero that we believe contributes to making the Dikin-Karmarkar 

norm an ideal choice. We refer to the choice of the Dikin-Karmarkar norm in the 

context of steepest feasible descent for problems with nonnegativity constraints as 

the Dikin-Karmarkar principle. 
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Chapter 5 

THE DIKIN-KARMARKAR PRINCIPLE 

The choice of norm by Dikin and Karmarkar is specifically suited to problems with 

nonnegativity constraints. For this reason, as we look at the role of the norm in 

this context, we will restrict our attention to linear programming problems with 

nonnegativity constraints on all the variables: 

mmmuze cTx 

subject to x ~ 0. (5.l) 

We are specifically interested in steepest descent directions for this problem-with 

respect to the Euclidean norm and with respect to the Dikin-Karmarkar norm. 

5.1 The Choice of Norm 

y 

Dikin-Karmarkar Unit Ball 

Euclidean Unit Ball 

Figure 5.1 The Dikin-Karmarkar and Euclidean Unit Balls in IR-2 

In Figure 5.1, we illustrate the unit balls in both the Euclidean norm and the Dikin

Karmarkar norms in IR-2. The geometry of the Dikin-Karmarkar unit ball changes 

based on the distance the current iterate is from the boundaries, while the Euclidean 

ball is fixed, regardless of the boundaries. 
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5.2 The Dikin-Karmarkar Principle 

When using an iterative method to solve problems with inequality constraints, it 

is important that the direction chosen at each iteration take into account all the 

boundaries of the feasible region. When using steepest feasible descent, the choice of 

the Euclidean norm ignores the boundaries in the choice of direction-the direction 

is always the negative gradient. However, the Dikin-Karmarkar norm is such that the 

distance of the current strictly feasible iterate from each of the boundaries is taken 

into account in the norm itself. It is this choice of norm, in the context of solving 

problems with inequality constraints, that we call the Dikin-Karmarkar Principle. By 

taking all the boundaries into account, the norm allows the direction taken to not only 

focus on the amount of local decrease, but also how far we can move in the direction 

chosen before a boundary is encountered. We believe and .demonstrate i11 the theory 

and numerical results that follow, that it is this consideration of the boundary that 

results in steepest feasible descent with respect to the Dikin-Karmarkar norm being a 

more effective algorithm than steepest feasible descent with respect to the Euclidean 

norm. 

5.3 Behavior of Steepest Feasible Descent Near the Boundary 

y 

• 

• 

• 

• 
X 

Figure 5.2 Sequence Converging to the Boundary 

We have seen in Chapter 3 that steepest feasible descent methods may encounter 

problems with convergence as a r~ult of taking short steps. In particular, zigzagging 

can occur as steps are taken toward the boundary. However, in linear programming 
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problems, we know that the solution lies on the boundary; so, taking such steps is 

necessary. 

We gained intuition about the geometry of steepest feasible descent with respect 

to both norms by looking at what directions would be generated by the algorithms 

at each point of a sequence converging to the boundary. In Figure 5.2, we see a 

particular sequence of points converging to the boundary. 

We choose a particular linear functional c T x. Figure 5.3 illustrates the directions 

generated when we use steepest descent with respect to the Euclidean norm at each 

point of this particular sequence. Figure 5.4 illustrates the directions generated when 

we use steepest descent with respect to the Dikin-Karmarkar norm at each point in 

this same sequence. 

Note that the directions generated using the Euclidean norm produce relatively 

shorter and shorter steps to the closest boundary; while, the directions generated 

using the Dikin-Karmarkar norm produce relatively longer steps to the boundary. 

These observations lead us to examine the phenomenon of short steps in steepest 

descent. 

y 

X 

Figure 5.3 Steepest Descent Directions 
with respect to the Euclidean Norm 



y 

Figure 5.4 Steepest Descent Directions with 
respect to the Dikin-Karmarkar Norm 
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Chapter 6 

THEORETICAL RESULTS 

Before a formal statement of theorems, we first set the stage. We begin by restricting 

our attention to linear programming problems with nonnegativity constraints: 

mmnmze c Tx 

subject to x ~ 0, 
(6.1) 

where c > 0. We are interested in well-posed problems. It is for this reason that we are 

restricting ourselves to problems in which the vector c is strictly positive, otherwise 

problem (6.1) would not have a solution. We refer to such linear functionals, where 

c > O, as valid linear functionals. With the problem we are addressing now clearly 

stated, we examine short steps in steepest descent methods applied to this problem. 

From an interior point x > O, we consider the direction of the shortest step to 

the boundary of { x Ix~ 0 }. This short step is illustrated for m2 in Figure 6.1. 

X 

d 

--+------------ Xt y 

Figure 6.1 A Short Step in JR2 

Definition 6.1 ( A Shortest Step Direction) Consider a point x > 0 . 

We say that d is a shortest step direction from x if 



where a > 0, e-; is the lh standard basis vector, and J is the index of 

the smallest component of x. 
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We would like to stay away from moving in a shortest step direction at any partic

ular iteration; in fact, we wish to stay away from a neighborhood of such undesirable 

directions. These directions are illustrated for JR3 in Figure 6.2 and are defined as 

Figure 6.2 t-Short Step Direction in JR3 

follows: 

Definition 6.2 {t-Short Step Direction) Given a point x > 0, let d = e"'} 

be a shortest step direction from x. Choose /3 > 0, so that y = x + {3d 
is on the boundary :Fi = { z : Zj = 0 }. For t > 0, let 

(6.2) 

We say that any s E !Rn is an t-short step direction if 

(6.3) 

for some a> 0. 

6.1 Tools Necessary for Proof of Theorems 

We wish to compare steepest feasible descent for problem (6.1), with respect to both 

the Euclidean norm and the Dikin-Karmarkar norm. For linear programming prob

lems of this form, it is impossible to say that at a particular iteration one norm choice 
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will always give better performance than the other. However, if we look at all valid 

linear functionals, what can we say about how these two choices of norm will effect 

our performance overall? 

At a given point x > 0, we consider the proportion of all valid linear functionals 

that will give us an c-short step direction when we use a method of steepest descent, 

1.e. we want to find 

measure of valid linear functionals giving an c-short step direction 

measure of valid linear functionals 

So we must define a measure for the set of linear functionals. 

6.1.1 Parametrization of Linear Functionals 

- valid linear functionals 

-------------xi 

Figure 6.3 Parametrization of Linear Functionals in JR-2 

We begin by parametrizing linear functionals in terms of their unit normals. Thus 

we represent a particular linear functional c T x by c, where 

C 
C = lie 1'2 

(6.4) 

This leads to a parameter space which is the unit sphere. 
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6.1.2 Measure of Linear Functionals 

Thus we will define the measure of a particular set of linear functionals to be the 

surface area of the portion of the unit sphere which represents that set of linear 

functionals. For the set of linear functionals valid for problem ( 6.1), the measure is 

the surface area of the unit sphere in the positive orthant. 

The surface area can be easily be computed using spherical coordinates and inte

grating over the representative area of the unit sphere in m,n. The angles that will 

be integrated over, 0i, will be taken from 

o < oi < 1r ;2 

rather than O < 0i < 1r since that valid linear functionals lie only in the positive 

orthant. Let S(n) denote the surface area of the unit sphere that represents the valid 

linear functionals, then 

S(n) = fo1r
12 {j dVn-2} d01, 

where dVn- 2 is the ( n - 2)-dimensional volume differential. 

(6.5) 

We will denote the surface area of the valid linear functionals for which the steepest 

feasible descent direction at x is an t:-short step direction by Se(x, n). 

Thus, the proportion of valid linear functionals in !Rn for which the steepest 

descent direction at x > 0, is an t:-short step direction is given by 

For the Euclidean Norm 

( ) - Se(x,n) 
me x - S(n) . (6.6) 

The surface area of the linear functionals that will produce t:-short step directions 

when the Euclidean norm is chosen can be seen in Figure 6.4. Consider a point x > 0. 

Without loss of generality, let 

Xn = min{a\, i = l, ... ,n}. 

For ease of notation, we will let r = Xn- View the x' axis as representing the ( n - I)

dimensional surface in m,n where Xn = 0. 

The surface area of the linear functionals for which the steepest descent direction 

with respect to the Euclidean norm is an t:-short step direction can be computed by 



i 
r 

Figure 6.4 Computing the Measure for the Euclidean Norm 

integrating On from O to 0, i.e. 

S((x, n) - fo
0 {j dVn-2} d01 

- 8 {j dVn-2}-

The angle 0 is determined by t and r: 

0 = arctan(t/xn), 

x' 
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(6.7) 

(6.8) 

(6.9) 

Thus, for x > 0 for which Xi = min{ x;, j = 1, ... , n }., the proportion we are 

interested in is given by 

S((x,n) 
S(n) 

For the Dikin-Karmarkar Norm 

arctan ( t/xi) 
7r /2 (6.10) 

The problem that we need to solve is as follows-given a strictly positive point x E JRn 

and t > 0, find the set of all linear functionals for which steepest descent with respect 

to the Dikin-Karmarkar norm will produce an t-short step at x. 



r 

I 2 
'• s =-DC 
\ 

\ 

\ 

-c 

(x', -r) 

Figure 6.5 Computing the Measure for the Dikin-Karmarkar Norm 

Without loss of generality, suppose that 

Xn = min{x;, j = l, ... ,n}. 
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Let r = Xn. Consider a unit sphere centered at x. We make a change of coordinate 

systems by translating the entire space by x so that our sphere is now centered at the 

origin. We will denote all points x E m_n as 

X = (x', Xn), 

where x' = (x1 , x 2 , ••• , Xn-t) E mn-t. Our closest face Fn is now the surface at which 

Xn = -r. The center of our nt: region is (0', -r). See Figure 6.5. 

Every £-short step direction from x produced by steepest descent with respect to 

the norm can be written 

where D = diag ( x). Since x + s = -D2c E Sl, then 11(0', -r) - D2 c 11 2 < £ and 

(D2c)n = r. Thus 

{(x',xn) I IID12x'II ~£and Xn = r }. (6.11) 
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where D' = diag ( £ 1 , x2 , ••. , Xn-i). The linear functionals that give rise to !"le are 

described by 

F = {(x',xn) I IID'2x'II::; r 2 E and Xn = r }. (6.12) 

Let (x', -r) E Fx. With the unit sphere expressed as 

S = { t ( x', r) I 11 ( x', r) I I 2 = 1}, 
t = Jllx'II~ + r2' 

1 
(6.13) 

the surface of the unit sphere that describes the set of all linear functionals that will 

give rise to E-short step is 

Xe = { (x', r) 111D'x'll2 ::; r2E} . 
Jllx'II~ + r2 

We make the change of variables y = x/llxll 2: 

y' 

Yn = 

x' 

Jllx'll2 + r2 
r 

}llx'll2 + r2 

From (6.15), (6.16), and since lly'II + y~ = 1, we have 

ry' 
x' = ---;::::=== J1 - IIY'll 2 

Thus our surface of interest, (6.14), can be described by 

The surface increment we wish to integrate over is 

dS = dy'/Yn· 

So our surface area is given by 

j dy' 
Se(x, n) = -.=====· 

y J1 - lly'll 2 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 



Let 

Now, we consider Y that we are integrating over. From (6.18) we have 

n-1 (d1 + r2c2) ~ ' ,2 < 1 
~ 2 2 Yi - . 
i=l r c 

2 = (d1 + r
2
c

2
) 

.\ 2 2 • r c 

Note that A; > 1. 
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(6.22) 

(6.23) 

We make a final change of variables, z = Ay', where A= diag ( Ai)- From (6.21), 

our surface integral is now 

1 / dz 

A1A2 · .. An-1 Jz J1 - (zi/ ,\i)2 - (z2 / ,\2)2 - ... - (zn-i/ ,\n_i)2' 
(6.24) 

where Z = { II z 11 2 ~ 1 }. Note that the integrand is bounded on Z. 

1 1 

1 < V 1 - II A -1 z 112 ~ V 1 - II z' 112. 
(6.25) 

So ( 6.24) can be bounded. 

6.1.3 Converging Sequence Described 

With this concept of how to measure the effect of a particular norm choice, we again 

consider a sequence of points { xk} which converge to the boundary; in particular, 

we look at { xk } for which 

where 

for some 1 ::; j ::; n. 

x: = 0, i = J 

x: > 0, i-/= j. 
(6.26) 

6.2 Euclidean Steepest Feasible Descent Gives Short Steps 

We consider the performance of steepest descent with respect to the Euclidean norm 

and the Dikin-Karmarkar norm for this sequence converging to the boundary. 

Finally, we give a formal statement of our theoretical results for steepest feasible 

descent, with respect to the Euclidean norm, for problem (6.1). 



Theorem 6.1 Given a sequence { xk}, which converges to a point x* 

satisfying (6.26) and an f. > 0, for steepest descent with respect to the 

Euclidean norm, 

lim m,(x\n) = 1. 
k-+oo 

(6.27) 

Therefore, for the Euclidean norm, the proportion of linear functionals for 

which the steepest descent direction is an €-short step direction is one in 

the limit. 
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Proof Without loss of generality, assume that xk --+ x* for which xi = 0. From 

( 6. 7) we see that 

Letting k --+ oo, 

f_ 

0 = arctan ( -d
X 1 

f_ 

0 = arctan (--;;) --+ 1r /2. 
X1 

So from (6.6) and (6.7), we see that 

(6.28) 

(6.29) 

(6.30) 

D 

6.3 Dikin-Karmarkar Steepest Feasible Descent Avoids Short 

Steps 

We consider the same sequence { xk } converging to a point on the boundary and 

look at m, for the Dikin-Karmarkar norm. 

Theorem 6.2 Given a sequence { xk}, which converges to a point x* 

satisfying (6.26) and an f. > 0, for steepest descent with respect to the 

Dikin-Karmarkar norm, 

lim m,(x\ n) = 0. 
k-+oo 

(6.31) 

Therefore, for the Dikin-Karmarkar norm, the proportion of linear func

tionals for which the steepest descent direction is an t-short step direction 

is zero in the limit. 
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Proof Consider (6.24). Note that the integral is bounded so that 

(6.32) 

However, we consider the quantity multiplying the integral: 

1 
(6.33) 

So for xk such that x~ -+ 0, letting r-+ 0, we see that (6.33) converges to zero. D 

Thus we find that as our iterates approach the boundary, we are assured that our 

iterates will be bounded away from a region of short steps. 
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Chapter 7 

NUMERICAL RESULTS 

Our theory gives an explanation of the behavior of steepest feasible descent with 

respect to to the Euclidean and the Dikin-Karmarkar norms for the simplified case 

with only nonnegativity constraints. We wanted to discover whether this behavior 

extended to linear programming problems with linear constraints added. We found 

in our numerical experimentation that, indeed, the behavior described in our theory 

occurred in this more general case. 

In our numerical testing, steepest feasible descent with respect to the Dikin

Karmarkar norm was compared to steepest feasible descent with respect to the Euclidean 

norm. With the goal of discovering how this choice of norm in a steepest feasible de

scent method affected length of the step to the boundary, we made the following 

comparisons. For each linear programming problem tested, we applied the steepest 

feasible descent method as described in Section 2.2, for both the Dikin-Karmarkar 

norm and the Euclidean norm. The steps were taken a fixed fraction of the distance 

to the boundary. At each iteration, a comparison was made of the length of the 

steepest feasible descent step to the boundary for the solution method being applied, 

and length of the steepest feasible descent step to the boundary for the other norm; a 

comparison was also made between the amount of decrease in the objective function 

given by each steepest feasible descent step to the boundary. 

The tables contain the following notation and information. The step taken to 

the boundary in the steepest feasible descent direction with respect to the Euclidean 

norm is denoted by S£. Likewise, Sdk denotes the step taken to the boundary in 

the steepest feasible descent direction with respect to the Dikin-Karmarkar norm. 

The new iterate The step was taken a fixed fraction ( 0 < a < 1) of the distance 

to the boundary. In each table, the first column gives the iteration count ITN. The 

second column is the ratio of the length of the Dikin-Karmarkar step, Sdk, to the 

length of the Euclidean step, SE- Thus, a ratio greater than one indicates that the 

Dikin-Karmarkar step is longer. The second column compares the amount of decrease 

in the objective function given by taking the Dikin-Karmarkar step to the amount 
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of decrease possible by taking the Euclidean step. Again, a value greater than one 

indicates that the Dikin-Karmarkar step provided the greater decrease. 

Two types of problems were used in our testing. First, small, randomly gener

ated problems were tested. Second, a subset of the Netlib linear programming test 

problems were tested. 

7.1 Small Dense Problems 

The random problems generated had from 3 to 10 variables. The linear constraint 

matrices were full rank and dense. The random problems tested were run with 

the steplength parameter a varying from 0.8 to 0.99. There was not a signifi

cant difference in the results for the different parameter values. As could be ex

pected, with a smaller steplength the number of iterations was slightly greater than 

with a longer steplength. The stopping criterion utilized was that the relative error, 

JI y - x*lb/11 x*ll2 < 10-6
• Representative results are for five problems are given in 

Tables 7.1 through 7.5, with a summary in Table 7.6. In Table 7.1, we see that for 

ITN CTSdk/CTSE llsdkll/llsEII 

1 1.4677 2.5484 
2 5.7968 10.6109 
3 2.7673 5.8767 
4 1.5890 2.4118 
5 2.7354 4.9937 
6 1.6597 2.3401 
7 3.3348 6.8309 
8 1.9356 2.8371 
9 1.7056 3.4690 

10 1.7358 2.4666 
11 3.4036 7.0678 
12 1.8937 2.7170 
13 1.8691 3.8283 

Table 7.1 Comparison DK step and Euclidean step for RAND0l 

RAND0l, at every iteration, the Dikin-Karmarkar step is longer and gives greater 

decrease. Likewise, for RAND02 and RAND03, (Tables 7.2 and 7.3). Note that in 
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ITN C TSdk/c TSE llsdkll/llsEII 
1 1.0217 1.0287 
2 6.2182 32.2994 
3 1.9711 5.7909 
4 1.7690 4.5970 
5 2.2801 9.6942 
6 1.1108 1.2678 

Table 7.2 Comparison DK step and Euclidean step for RAND02 

RAND03, at iteration 7, the Dikin-Karmarkar steplength is over 2,000 times greater 

than the Euclidean steplength and the function decrease at that iteration is more 

that 150 times greater. In both RAND04 and RAND05, within the first iterations, 

the Euclidean norm step is longer and gives greater decrease, but as the solution 

( and thus the boundary) is approached, in both problems, the Dikin-Karmarkar step 

becomes longer and gives greater decrease. 

Table 7.6 gives a summary of these five problems. The first two columns give 

problem dimensions. The next two columns give the average function decrease ratios 

and step length ratios for each problem. Note that on all problems, on the average, 

the Dikin-Karmarkar step was longer and gave greater decrease. 

7.2 Netlib Test Problems 

A subset of the smaller Netlib linear programming test set was tested. The problems 

are large and sparse. The results for AFIRO are shown in Table 7. 7 and are rep

resentative of that obtained for this test set. (For this particular example, the step 

taken was 0.9 of the distance to the boundary.) We see that the relative decrease 

in the objective function is superior for the Dikin-Karmarkar norm and the lengths 

of the steps that can be taken are significantly longer than those for the Euclidean 

norm. On the average, the amount of objective function decrease possible from the 

Dikin-Karmarkar step was more that 22 times that possible from the Euclidean step; 

and the Dikin-Karmarkar steplength to the boundary was on the average more than 

300 times that of the Euclidean steplength to the boundary. 
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ITN CT Sdk/c TSE llsdkll/llsEII 

1 3.3816 5.1067 
2 1.2347 2.0131 
3 5.6713 35.6394 
4 3.0492 32.2240 
5 2.1973 5.0041 
6 7.2994 66.6234 
7 156.2428 2132.7605 
8 16.1168 217.8787 
9 3.4182 25.2341 

10 2.9379 7.6070 
11 3.3591 11.9794 
12 4.8396 15.6913 
13 3.5877 15.4935 
14 3.6922 9.7217 
15 3.7458 13.8619 
16 4.5560 15.0198 
17 3.5331 14.6335 

Table 7 .3 Comparison DK step and Euclidean step for RAND03 

ITN C TSdk/c TSE llsdkll/llsEII 
1 0.9027 0.9073 
2 2.7223 3.4063 
3 0.9370 0.9389 
4 1.6543 2.0211 
5 1.2457 1.3742 
6 1.6943 2.0838 
7 1.2348 1.3599 
8 1. 7011 2.0941 
9 1.2326 1.3570 

10 1.7024 2.0962 
11 1.2322 1.3564 

Table 7.4 Comparison DK step and Euclidean step for RAND04 
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ITN T I T C Sdk C SE llsdkll/llsEII 
1 0.9134 0.9523 
2 2.6809 6.9676 
3 14.4369 52.8578 
4 3.6554 60.7037 
5 2.6453 96.2155 
6 2.1560 13.9415 
7 4.3167 114.4900 
8 1.7907 11.9714 
9 5.0727 133.9721 

10 1.9639 12.1541 
11 3.0697 67.0537 
12 1.9113 22.2856 
13 5.2271 140.1575 
14 2.1218 12.7265 

Table 7.5 Comparison DK step and Euclidean step for RAND05 

NUMBER NUMBER AVERAGE AVERAGE 
PROBLEM of of FUNCTION STEP 

VARIABLES CONSTRAINTS RATIO RATIO 
RAND0l 9 3 2.6528 4.8332 
RAND02 5 3 1.8583 5.8985 
RAND03 9 1 13.2515 153.1547 
RAND04 6 4 1.4 781 1.4131 
RAND05 10 6 3.7116 52.4497 

Table 7.6 RANDOM PROBLEM SUMMARIES (a= 0.9) 



ITN CTSdk/cTSE llsdkll/llsEII 

1 11.5739 175.4462 
2 19.8760 282.9671 
3 24.3338 356.0513 
4 20.5237 291.9174 
5 37.8911 567.2736 
6 22.6763 318.1621 
7 19.0612 275.0813 
8 22.7428 321.0754 
9 24.5948 356.2554 

j AVG j 22.5860 327.1366 

Table 7.7 Comparison DK step and 
Euclidean step for AFIRO; (n = 51; m = 27) 
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Chapter 8 

CONCLUDING REMARKS 

We have developed mathematical theory that describes both the asymptotic short 

step behavior of steepest feasible descent with respect to the Euclidean norm and 

the avoidance of short steps in steepest feasible descent with respect to the Dikin

Karmarkar norm as the boundary is approached. This theoretical behavior is borne 

out in practice on problems with linear equality constraints added. 

We conjectured that if information about all the boundaries is incorporated into 

the norm, then finding such a norm that would also give us the longest step possible, 

might give even better numerical results for steepest feasible descent than with the 

Dikin-Karmarkar norm. 

As we developed the theory, we restricted our attention to problems with only 

nonnegativi ty constraints: 
mm1m1ze c T x 

subject to x ~ 0, 
(8.1) 

where c > 0. Observe that x* = 0 solves this simple problem. Hence, the step s 

that would solve the problem in one iteration from a strictly feasible point x would 

be s = x and this is also the longest step that can be taken among all steps that 

maintain feasibility and give descent. Furthermore, this is the steepest descent step 

for the weighted e(X) norm: 

(8.2) 

where D:r: = diag ( x ). 

We might expect long steps and good convergence behavior if we were to use a 

steepest feasible descent method with respect to this weighted norm to solve the more 

general problem (8.3): 
mm1m1ze c T x 

subject to Ax= b 

X ~ 0, 

where c, XE mn, A E mmxn, and b E mm. 

(8.3) 
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However, if we use this norm in a steepest feasible descent method for prob

lem (8.3) it is not clear how the steepest descent subproblem should be solved. (The 

obvious approach would require the solution of a linear programming problems and 

this would not lead to an efficient algorithm.) We therefore restricted our attention 

to weighted Euclidean norms so that the steepest feasible descent direction can be 

computed by evaluating a linear projection, i.e. solving a system of linear equations. 

We therefore considered a weighted Euclidean norm. Interestingly, we discovered that 

it was possible to use a weighted Euclidean norm that would give us the same "ideal" 

direction as our weighted infinity norm (8.2). 

We consider the following weighted Euclidean norm: 

II· II = lllv-1 
· 1'2, (8.4) 

where 

(8.5) 

for C = diag ( c) and Dx = diag ( x ). The vector, -x, is a steepest feasible descent 

direction with respect to this norm. In other words, the steepest feasible descent 

direction will reach the solution in one step, as does the weighted infinity norm (8.2). 

Utilizing this norm, the computational effort to solve the steepest feasible descent 

subproblem involves a matrix factorization versus the solution to a complete linear 

programming problem as in the case of a weighted infinity norm. We will refer to 

then norm satisfying defined by (8.5) as the long-step norm. It is clear that steepest 

feasible descent with respect to the long-step norm satisfies Theorem 6.2. 

Using the same set of test problems discussed in Chapter 7, we ran steepest feasible 

descent with respect to the long-step norm. Comparisons were made between the 

behavior of steepest feasible descent with respect to the long-step norm and steepest 

feasible descent with respect to the Euclidean norm; and between the behavior for the 

long-step norm and the Dikin-Karmarkar norm. As expected, when comparison was 

made with Euclidean norm steepest feasible descent the long-step norm gave steps 

that were significantly longer, and also greater decrease in the objective function than 

was possible possible by using the Euclidean norm. However, in half of the problems 

tested, the long-step norm steepest feasible descent was unable to converge to the 

solution. 

\~hen compared to steepest feasible descent with respect to the Dikin-Karmarkar 

norm, when the long-step norm steepest feasible descent was able to find the solution, 
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the long-step norm took longer steps and had greater function decrease. However, it 

took on the average 46% more iterations. 

The major obstacle that the implementation of steepest feasible descent with 

respect to the long-step norm encountered was that the weighting matrix (8.5) tended 

to become numerically singular before a solution could be found. 

Our experience with this long-step norm leads us to believe that the good conver

gence behavior exhibited when using the Dikin-Karmarkar norm is not solely due to 

the fact that it takes longer steps than the Euclidean norm. Neither can the behavior 

be attributed to only the fact that boundary information is incorporated into the 

norm. We believe that an important factor in the success of the Dikin-Karmarkar 

norm is the fact that all components are scaled uniformly, including those components 

that are zero at the solution [3]. 
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