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ABSTRACT
ONE DIMENSIONAL SHEAR MOTIONS
IN FLUID SATURATED POROUS MEDIA

by Kyle R. Roberson

An analytic solution is presented for shear motions in
a binary mixture of a chemically inert, isothermal, elastic
isotropic solid and elastic fluid subject to a sinusoidally
varying solid displacement on one boundary and free of
tractions on the other. It is demonstrated that the
retention of inertial terms, and the resulting resonance
phenomenon, can cause solid displacements in the interior of
the region orders of magnitude greater than the exciting
solid displacement on the boundary. Displacement spectra are

presented for certain well known porous media.
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CHAPTER I

THE POROUS MEDIA MODEL

Introduction

In this thesis, the dynamic behavior of a binary
mixture of a chemically inert, isothermal, elastic isotropic
solid and elastic fluid restricted to shear motions is
presented. The porous media is assumed to be excited from
below by a sinusoidally varying displacement and bounded by
a stress free surface on top. This thesis is predicated on
the equations derived by BOWEN[1l], which are a
generalization of those obtained by BIOT[3]. The phenomenon
of resonance, due to the presence of inertial terms, is
demonstrated to be of importance in the dynamic behavior of
porous media.

The work is divided into three chapters. The present
chapter contains a statement of the field equations and
constitutive equations and a summary of the parameters
contained therein. Chapter II presents the transient and
steady-state components of the solution of the equations for
a specified set of boundary-initial conditions. Chapter III
contains a discussion of an implementation of the solution
on a computer, and results are presented for certain porous

media in the form of displacement spectra.
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Section 1.1 Field and Consitutive Equations

BOWEN[1l] shows that the field equations for a binary
mixture of a chemically inert, isothermal, elastic isotropic
solid and elastic fluid are, in the absence of body forces

and restricted to shear motions:

and
fsws = f% div gradws + s(wf - ws). 1.1.2

The constitutive equation for stress is

T = %ﬂg s® 1.1.3
Definitions of all the symbols used in this thesis may be
found preceding the Table of Contents.

If the restriction to one spatial dimension is added by

choosing .
We = (0,0,Wf(x,t)) 1.1.4
and
L (0,0,ws(x,t)), 1.1.5
the field equations become
and
(1] azws L3 .
(s¥s “Ms 2+ 5Vg = ¥y ‘ 1.1.7

The constitutive equation for stress is now

aws

T o= T, o= U —2 1.1.8
13 31 = Ms o
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The field equations 1.1.6,7 are solved in Chapter II.

Section 1.2 Wave Speeds and Characteristic Time

BOWEN[1] discusses acceleration wave speeds for porous
media. The transverse wave speed for the mixture is there
shown to be

u§ = Hs | 1.2.9

s

Another squared épeed which is important is the frozen
wave speed ug. It is called the frozen wave speed because it
arises naturally in the solution of the equations when the
drag coefficient,ﬁ , approaches infinity. For shear motions

only, ug is defined by

u? = Ls 1.2.10
Ce + es
The final parameter to be introduced is
1 1
w = cm— + P—— 1.2.11
0 g( ef es)l

which is a reciprocal time characteristic of diffusion in
the mixture. The parameter is important since it defines
what is meant by a "long-time" (with respect to diffusion)
solution. Similarly, when in the sequel a frequency ¢ is

referred to as small or low, what is meant is

K2
") < 1., 1.2.12
0



THE POROUS MEDIA MODEL page 4

Section 1.3 Elastic and Drag Coefficients

The material properties used here, apart from the
density, are taken from RICE AND CLEARY{2], which has the
properties of several porous media given in tabular form.
The necessary parameters and their notation in RICE AND
CLEARY[2] are: the shear moduluS/ks, denoted by G, the
porosity ¢f , denoted by Vor and the drag coefficient which

is calculated from

Z = ¢§Pf=vl'2)/“f

k k

14 1.3.13

where/uf is the viscosity of the fluid and k is the
permeability of the mixture.

The bulk density of the solid is taken from FARMﬁﬁ[lO]
and is denoted by ¢_. A true density, Y; or x%, must be
multiplied by the volume fraction occupied by that material .

to get the bulk density es Of Cg-

Section 1.4 Uniqueness and Initial-Boundary Conditions

Uniqueness is assured if (BOWEN[1], SCHNEIDER[5])

§ 2 0 1.4.14
and
}AS > 0. 1.4.15

The restriction on the drag coefficient is a consequence of
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the entropy inequality, and the restriction on the shear

modulus is a result of requiring the shear strain energy to

be positive definite.

The porous media is considered to be at rest at t=0,

and with initial displacements taken as zero. Thus,

wf(x,O) =0,
Wf(x,O) =0,
0

ws(x,O)
and

&s(x,O) = 0.

1.4.16
1.4.17
1.4.18

1.4.19

The boundary conditions are as follows: no shear stress at

x=0 and specification of the solid displacement at x=L.

Thus,

ow_(x,t)
ax

and

w_(L,t) = W singt.

— | =

1.4.20

1.4.21
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Section 1.5 Comparison to Classical Biot Model

The equations used herein are similar to those derived
by BIOT[3] with two exceptions, BOWEN[1l]: Biot included
virtual mass effects which are neglected here, but the
equations do include buoyancy effects which Biot's did not.
These differences are not significant in the context of this
thesis which is particularly concerned with inertial

effects. -



CHAPTER II
ONE DIMENSIONAL SHEAR MOTIONS

IN FLUID SATURATED POROUS MEDIA

Section 2.1 Method of Solution

The method used to solve equations 1.1.6,7 with the
boundary conditions 1.4.7,8 and the initial conditions
1.4.3-6 is the method of Laplace Transforms. CHURCHILL [8]

defines the Laplace Transform by

_ r -st

w(x,s) = .I.e w(x,t) dt, 2.1.22
o}

where the transform parameter s is in general complex.
Under fairly general conditions, the integral above can be
said to converge, usually in some half-plane R(s)>lx0|. In
this half-plane, the transform is analytic and of
exponential order. In the present case, the solution in the
transform space will turn out to be analytic and of
exponential order in the half-plane R(s)>0.

With the use of the initial conditions 1.4.3-6,

equations 1.1.6,7 are transformed to

eewes? = ~Es(ig - W) 2.1.23
and a2z
- 2 ws - -
C¥sS™ = Mg 7 + Es(wf - w). 2.1.24
dx

The first equation may be solved for Gf in terms of Gs.

\
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The result is

.= —% __§ = “s 2.1.25
f (’fs+§ S u2 ' e
3|l s_+1
uqf wo

where equations 1.2.9-11 have been used.
Substitution of equation 2.1.25 into equation 2.1.24

results in the following ordinary differential equation for

ws:
a%, |, [s +u>0] )
= S —— | Wy 2.1026
ax 2 ;3 S tWw, | s
where
ug 2
U>*= _l'l_' u)oo 201.27

The solution of the above ordinary differential
equation is straight forward. The transformed solid

displacement is

+ W + w
w_ = A cosh -x—-s\J-s——o- + B sinh _x_s\J_s__O 2.1.28
+ W, u s +w, |[° i

s uy s 3
Application of the transform of the boundary conditions

1.4.7,8 reduces equation 2.1.28 to the following result

X
= Wé cosh[ﬁgg(s)] ’
S s2+¢2 cosh['ﬁ}g(sﬂ 2.1.29
3
where
’s + W,
g(s) = s m . 2.1.30

Since the actual value of We is of little practical
value, it is not calculated explicitly. It may, however, be

expressed as a convolution integral of the solution We
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-, (t-u) '
We = fa)* e ws(x,u) du, 2.1.31
0
where the convolution theorem for Laplace Transforms and
equation 2.1.25 have been used.

From the point of view of inversion of the Laplace
Transform, the most important aspect of the solution 2.1.29
is that despite the appearance of the radical g(s) as an
argument in the hyperbolic functions, the solutions are
analytic everywhere except at a countable number of poles.
These poles are first order. Thus the Residue Theorem may be
readily applied to invert ﬁs(x,s) to obtain ws(x,t).

To demonstrate that there are no branch cuts in the
solution 2.1.29, the series representation of coshx is used

2 4

COth = l + % + - + e e e 2.1-32

Note that coshx contains only even powers of the argument,

and since

2 8 +9,

2

2.1.33
is single valued, there is no branch cut involved. Finally,
since the quotient of two convergent power series in s is
analytic except where the denominator vanishes, the solution

2.1.29 is analytic everywhere except at the zeros of the

denominator.
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Section 2.2 Calculation of the Poles

In order to use the Residue Theorem, it will be
necessary to obtain the zeros of the associated cosh
function
cosh [kg(s)] = 0. 2.2.34

Y3
The zeros are calculated easily from the following identity
cosh(iz)=cos(z). . 2.2.35

Therefore, the zeros of equation 2.2.34 are

g(s) = ii{Z%:}J%}u3 = :iY£u3, n=1,2,3,... 2.2.36
One must, therefore, solve an equation of the form
3 o) <2 2y2 2 2 _
s + wWs‘ + u3¥ns + Yn“O“% =0 2.2.37

to obtain s. Equation 2.2.37 is derived from equation
2.2.36 by squaring both sides and clearing fractions. These
manipulations preserve the solutions of the original
equations, but extraneous solutions could be introduced. In
the following it is shown that such roots are not
introduced.
Assume that a solution n of equation 2.2.37 is found
such that
gin). =k # iy u,. 2.2.38
It follows from 2.2.38 that n also satisfies
Vl3 + “’o'lz - n2n - szb* = 0. 2.2.39
Because n is also a solution of 2.2.37, if 2.2.39 is

subtracted from 2.2.37 it follows that
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(w22 42 (n + 0, = 0. © 2.2.40
Obviously,
n A -u, 2.2.41

by inspection of either equation 2.2.36 or 2.2.37. Hence,
= #i¥ u, 2.2.42
which contradicts the original assumption. Consequently, all
solutions of the associated cubic equation 2.2.37 are

solutions of 2.2.36.

Section 2.3 Residue Theorem

CHURCHILL [8] defines the inverse Laplace Transform as

Y+ise
1 st _
ws(x,t) = 731 e ws(x,s) ds 2.3.43
Y =ice

where the function ﬁs(x,s) is analytic everywhere in the
half-plane R(s)> ¥. Further, it can be shown that if w, is

of exponential order then
1 st _ . .
wo(x,t) = 502 e w_(x,s)ds = ) residues inside C. 2.3.44
C

The contour C is chosen such that it is the limiting curve
of Cm in figure 2.1 as Rm > o , and so that Cm does not

intersect any of the poles.
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Y
¥+ (R,
0D -
£ - B
A
F X
A
Cm - A
c >
H ¥Ry
S=X+iy

Contour Used in Inverting Transform

Figure 2.1
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In the next section, by use of a standard result from
the theory of equations, any solution of equation 2.2.37
will be shown to have negative real part. Thus the poles of
the hyperbolic functions will lie in the half-plane R(s)<0
(with.Yi >0) , and the residues of these poles will represent
transieqt, exponentially decaying components of ws(x,t). The
poles of 1/(sz+¢2) lie on the line R(s)=0. Therefore, ¥ as

defined in figure 2.1 is any number x0>0.

Section 2.4 Determination of the Poles

USPENSKY[4] contains a proof of the following theorem,
called the Routh-Hurwitz Theorem: A polynomial
P(x)= Py + DX + Pyx> + ... + px" = 0 2.4.45
has roots with negative real part, provided that the
coefficients are real (if necessary, the constant term is
made positive by multiplying through by minus one before

beginning) , if and only if the n determinants which follow

are positive definite.

D;= p; > O, 2.4.46
P, P
D.= 1700 5, 2.4.47
2
P3 Py
.= |B1Bo? 0 2.4.48
3— p3 pz pl > 7 o0 o0 . .
P5 Py P3
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and

_ |Py Py e 0
Dn-'—- p3 pz e oo 0 > 0. 2.4.49

Pan-1°°* Pn

For a cubic, one obtains
Py > 0, A 2.4.50
P, > 0, 2.4.51
PP, ~ PgP3 > 0 2.4.52
and
From equation 2.2.37, the necessary conditions are

2
Xnuodb > 0, 2.4.54
u2¢Z > 0 2.4.55
and

2 uy2

‘DOYn(l - u—3 ) > 0. B 2.4.56

The above inequalities are all satisfied provided'Yﬁ#O. This
assertion is true because, from equations 1.2.9-11,‘00>0,
u0>0 and u3>u0.

If'Yﬁ =0, then s=0 or s=- , where the root s=0 has
multiplicity 2. This possibility occurs only in the case n=0
which is not encountered here. Therefore, all non-trivial
roots have negative real part.

Notice that equation 2.2.36 evaluates to a real number
if s is real. Thus, if s is real and a solution of 2.2.37,

then from equation 2.2.36
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s +t00

m—*' < 0. 2.4.57

Therefore, any real root to equation 2.2.37 must lie in the
range

-u)o < s < =W, . 2.4.58
Bounds for the real part of the complex solutions are

derived in Section 2.7.

Section 2.5 Closed Form Solution for the Poles

The exact solution of equation 2.2.37 can be obtained
by formula. In almost any handbook or algebra text, one can

find the following formulae or their equivalent. Let

_93 ¥y (030) , 2.5.59
=3 3
1 2,21 (Y 2 (030 3
r =-§(u)0u3 )’n(§- - ('11_3) )) - T) ' 2.5.60

s.= (r +Vg3 + r2)1/3 2.5.61

3 2 )1/3

SzE (r - V@~ +r . 2.5.62

It is shown in the sequel that, except for the trivial

case Yi =0, the quantity q3+r2 (called the discriminant) is

always positive. Thus, there is one real root and one
complex conjugate pair. The roots are (regardless of the
sign of q3+r2):
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_ 1 .13
and
s, = -X(s. +5.) ~w/3 - i3> (s, - 5.) 2.5.65
3 = ~3(8, + 85 -4 7 (8; - 8,). -3.

It must be pointed out that in the present application
these formulae require the addition and subtraction of
numbers quite different in magnitude. To avoid
round-off-errors which can swamp the actual solutions, a
numerical solution is employed. There are several methods
adequate for this pufpose, and one of the simpler methods is
the Lin-Bairstow Algorithm, HOVANESSIAN AND PIPES[1ll]. This
method calculates the complex roots without explicitly
carrying out complex arithmetic. The Lin-Bairstow Algorithm
is used in Chapter III to calculate the roots of equation

2.2.37.

Section 2.6 Proof that the Discriminant is > 0

The character of the solutions of any cubic equation
can be determined by examining the discriminant q3+r2. If it
is greater than zero, then there is one real and one complex
conjugate pair. If it is equal to zero, then all roots are
real and at least two are equal. In the last remaining case,
the discriminant is less than zero, and there are three real

and distinct roots. With dh, ug, and u, fixed, q3

+r2 is a

function of Yﬁ. The discriminant at Yﬁ=0 is
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6 6
(@ + r?)(0) = - ¢§9) + G§9> = 0. 2.6.66

The derivative of the discriminant with respect to Yﬁ

at Yg =0 yields

2

d 3, 2 _ 22 2,1 _ .Eg)
_z(q +r ) = q 1.13 + r(“)ou3(3 (u )) ’ 2.6.67
ayy 3

2 _
and at Yn =0

J 3

a 3 2, _ 2 [wo

n

Hence, at b’ﬁ =0+ (where the superscript + means

2

slightly greater than zero), q3+r is greater than zero and

increasing. It will now be shown that the other roots of
@ +r2=0 2.6.69
have negative real part. Thus for )’ﬁ)O, equation 2.2.37 will

have one real root and one complex conjugate pair.

Equation 2.2.37 can be written as
3 2 _2,.2 2

x” + x7 a"b“x + b = 0, 2.6.70
where
X = s/a)o, 2.6.71
as u:,’/u0 2.6.72
and
b..=. B—O—(—r}- . . 206073
w
0

The quantities q and r are then

q = gébz _(%)2 2.6.74
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and
2,2 b a3
~1,a™™ _ .2, (1
r=1332 -vh - (§) . 2.6.75
The discriminant is now set equal to zero, and the resulting

equation can be factored as

4
b2 (bt - -Z—Z—(l - %az - -%é)bz +1—6) = 0. 2.6.76
a a

The roots of the above equation will have negative real
part, apart from the trivial root b2=0, if, by the results

of Section 2.4,

6
(%) > 0 2.6.77
and
4
-27 2_2 a

The first inequality is satisfied by definition, the second
is satisfied if

a4 + 24a2

- 108 > 0. ° . 2.6.79
The above equation can be solved to yield a2> -6 or -18.
This is clearly always the case, therefore, there are no
zeros of the discriminant for b2>0 which implies there are
none for ¥i>0. Thus, the discriminant is positive definite

as a function of Yi.
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Section 2.7 Approximations to the Roots

Given equation 2.2.37, the following two dimensionless

equations can be formed

3 2 u,\ 2

s s 3 2 /s 2

= + [ + (_) e (—-—) + e =0 2.7.80
(“’0) (‘*’o) R n
and

3 2 U, \2
s 1 (\s ) ( 3) (‘s ) 1 _ .

= _ + = (== + (—) (= + =0 2.7.81
(“o)'n) €n \Uofn Yo Uan ®n '
where .
. = us¥n . 2.7.82
n uh

Thus in the case e, <<1, the solution to 2.2.80 can be

written as the power series

s \_ «— m
(TO—O)- Z amen' 2.7.83
m=0
and when e, >>1 the solution to 2.7.81 can be written as
s \_ <« m
m=0

Typically, the two solutions correspond to n small and n
large.
Substitution of the series 2.7.83 into equation 2.7.80

yields the following restrictions on a_:

m
0, .2 _
(ef) ajay(3ay + 2) = 0, 2.7.86
and
2 2 2 2
(eq) 33g7ay+3agaj+2ajayra+(uy/ug) ®ap+l = 0. 2.7.87
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Solving the first equation for a, gives a0=0,0, or -1. If

a0=0, then
a; = #i 2.7.88
and
a, =3(1- (u3/u0)2). 2.7.89
Thus the solution for s is
2 2

_ 1Y% " Y 2 . 3

$,,3°3 —_Z:;_ Xn + 1Xhu0 + O(e ). 2.7.90

If a0=-l, then a1=0 and

- 2 _
So the solution for s in this case is
2 2
u; - u
3 0 2 3
sy = —u% + = Yn + O(ep) . 2.7.92

Wy
Therefore, the roots of equation 2.2.37 are
approximated by 2.7.90 and 2.7.92 when e, <L1.

When e, >>1, substitution of the series 2.7.84 into

equation 2.7.81 yields the following set of restrictions on

am3
(1/¢%) a,(a? + (us/un)?) = 0 2.7.93
n 0'“0 3770 ’ oo
1 2 2 2 _
(l/en) a0 + 3a0al + (u3/u0) §1 + 1 =20 2.7.94
and

2 2 2
(l/en) (u3/u0) a, + 2a0a1 + (a0(2a0a2 + al)
+ a;(2aga;) + ajad) = 0. 2.7.948

Solving the first equation for a gives a0=0, ii(u3/u0). If
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a0=0, then a1=—(u0/u3)2 and a2=0. Therefore, the solution

for s is
3
If ap= ti(uz/uy), then
a; = -3(1 - (uy/up?). 2.7.96
So the solution for s is
- 1 _ 2 . 2
85,3 = =3(1 = (ug/uy) YWy iy uy + 0(1/ef). 2.7.97

The error in the real part of 2.7.97 is third order. These

approximations to the roots when e_ >>1 can be used to give

n
bounds on the roots as n» o . The real root approximated by
2.7.95 approaches -cih, the upper bound of the range derived
earlier for the real root. The real part of the

approximation 2.7.97 is bounded below by the midpoint of the

same range. The imaginary part of 2.7.97 is unbounded as n

becomes infinitely large.

Section 2.8 Principle of Reflection

It will be necessary later to use the fact that the
function g(s) , defined by equation 2.1.30, has the

following property

g(s) = g(s) 2.8.98
and
g'(s) =g'(s). 2.8.99

Most textbooks on complex variables contain a proof of the

following theorem (see for example CHURCHILL, BROWN AND
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VERHEY[9]) .

Let a function f be analytic in some domain D that
includes a segment of the real axis and is symmetric to the
real axis. If f(x) is real whenever x is a point on that

segment, then

f£(z) = £(2) 2.8.100
whenever z is a point in D.

To satisfy these conditions, define the domain as the
complex plane with a branch cut along the real axis. A point
x is on the branch cut if
- < x & =0, 2.8.101

See figure 2.2, for an illustration of the domain and

location of the branch cut.
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z=x+i3

The Domain for the Function g(s) and Its Derivatives

Figure 2.2
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Now g(s) and its derivatives are analytic in D, real
and well defined for xg -4% and x> —LD*, and the domain is
certainly symmetric about the real axis. Thus,

g(s) = g(s) 2.8.102
and so on.

Define z by

z =x + iy, 2.8.103
and then it can be shown that

coshz = coshx cosy + i sinhx siny, 2.8.104
where the hyperbolic double angle formula and 2.2.35 have
been used. From the definition above, it is obvious that

coshz = coshz. 2.8.105

Section 2.9 Complete Solution to Equation 2.1.29

Data collected during earthquakes are often presented
in a form where the motion of the rock underlying sediment
deposits is specified, see for example BOGDANOFF, GOLDBERG
AND BERNARD{6] or ZEEVAERT[7]. On the assumption that the
motion of the bottom of the sediment layer is identical with
the motion of the bedrock (or that it can be completely
specified if different) and ﬁhat the surface of a
homogeneous layer atop the bedrock is free of tractions, one
obtains equation 2.1.29 for the transformed solid
displacement. Equation 2.1.29 is inverted by use of the

Residue Theorem, and the solution ws(x,t) is determined in
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the following sections.
The poles of equation 2.1.29 are s= ii¢ and the
solutions (sl 2 3) of equation 2.2.37.
14 14
Since n is never zero, there is one real and one
complex conjugate root given by equations 2.5.63 or by the

approximations of Section 2.7.

Section 2.10 Steady State Component

In the following, it is convenient to make the

following definition

cosh[%%g(zﬂ
cosh [%‘—39( z)]

The parameters a and b are obtained from equation 2.10.106

F(z)=

= a + ib. 2.10.106

by multiplying the numerator and denominator by the
conjugate of the denominator, and then separating real and
imaginary parts. The result is

coshxlcosylcoshxzcosy2+sinhxlsinylsinhxzsiny2

a = —— 2.10.107
sinh Xo 4 coszyz
and
sinhx,siny,coshx,cosy,-coshx,cosy,sinhx,siny
b = 1 1 2 2 1 1 2 2 2.10.108
B s 4 2 2 roessT
sinh X, + cos Y,
where
x.=2 X <), v,= X ah 2.10.109
1= u, rI1= u, e

and
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L @ y25-3—3 ) . 2.10.110

clb

X2
Also, g(i¢) is assumed to have been decomposed into real and
imaginary parts as
g(ig) = c(¢) + id(¢). 2.10.111
Since the poles at the points s= +i¢ are pure
imaginary numbers, the function ‘eti¢t is, by Euler's
Formula, periodic and does not decay. Hence, the residues
from these poles constitute the steady-state component of
the solution.

The residue at s=-i¢ is

Residue =
. : t -i¢t
Lim | (s+i#)e® We s
120 s>-i¢ s+ I (5=1F) F(® —; F(-ié). 2.10.112
Similarly, the residue at s=i¢ is
. Wei¢t : '
Residue = >3 F(i¢) . 2.10.113

Summation of the residues results in the following for the

steady-state component

W
Gfg = b cosét + a sindt, 2.10.114
ss

where 2.10.106, the Reflection Principle and Euler's Formula
have been used.
The functions c($#) and d(¢) are calculated as follows:

1/4
0%*952 O.Si(tan-1¢/d)0-tan"1¢/u3*)
g(ig) = ig 1> e 2.10.115
2,4
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where 2.1.27 has been used.

By use of Euler's Formula, c(¢) and d(¢) are found to be

2. 27/4
Wyt ¢ -1 -1
c(¢) = -¢ sin(0.5(tan” "$/Q,-tan” " ¢/«)) 2.10.116
92,42
* -
and
174
D+’ -1 -1
d(g) = cos(0.5(tan” g/ ~tan” $/)) . 2.10.117
02442

When the magnitude of the displacement has a local
maximum for some frequency ¢ , this maximum is referred to
as .a resonance, and the frequency ¢ y @S a resonant
frequency. Resonances in the steady state occur when
cos [ﬁ;d(¢)] = 0. 2.10.118
Equation 2.10.118 is obtained by manipulating 2.10.114 into
the form

Vs .
(W_)ss = M sin(¢t +«), 2.10.119

where M is the magnitude and is given by

M= Va2 + b2 . 2.10.120

The sinh is not zero for ¢ >0, therefore, M is maximized
when 2.10.118 vanishes. Equation 2.10.118 is transcendental,
and must be solved numerically for the resonant frequencies.
If ¢/dh and ¢/, are small compared to 1, then
tan"lg/y = ¢ /0y 4 tan P, = ¢/, 2.10.121
cos(0.5(¢th - ¢/0)) =1 2.10.122
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and
%) u
d(ﬂan—f =¢G§ . 2.10.123

Substitution of the approximation for d4( ) into equation

2.,10.118 gives
L "3
cos [33‘#?6] = 0. | 2.10.124

Therefofe, the resonant frequencies are approximated by
broc ™ B T uy = Y ug, n=l,2,... 2.10.125
Note that these resonance frequency approximations are
equal to the approximation of the natural frequencies from
equation 2.7.90 for e, <L1.
In summary, the steady-state component is
w

(359 = b cos¢t + a sin¢gt, 2.10.114
ss .

where a and b are defined by equations 2.10.107 and

2.10.108.

Section 2.11 The Monotonic-Decaying Component

The component which arises from the residue of the real
root S of equation 2.5.63 is computed as follows. Let

The residue is then
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Residue =
st X
Wée coshEﬁ-g(s) 1
Lim 3 Lim _ - / 2.11.128
s>=%, s2 +¢2 s>-%, sinh[é-g(s)]iig'(s
43 k!

where L'Hospital's Rule has been used on the term in the
bracket on the right hand side. By the use of equations
2.2.36, 2.2.30 and 2.2.35, one can calculate, for each value

of the index n,

w - E n+l X .2n-1
(Wg) - —235-—2 e n uz (-1) °°S[T.“_2 2.11.129

md g +¢ L ig*(-&) ’

| W, =W

_ 1,1 * "0 . 2.11.130
g9'(s) = g(s) { s t2 (s+wy) (s+u>*)}
and
c2n-1.93 -1 01 We — } '
g' (- ) = =1 —"""_ {‘— + = — — . 2011.131
&n 2 "L %, "7 G 0,

Summation of all the terms of 2.11.129 over n, and factoring

out a g(s) in the denominator gives

@ - &

n=1
-t
2(_1)n+1 ¢ © ®n cos[%ﬂ’g-%-:-1 .
_ Dx - W 2.11.132
2n-1ﬂ.€,2+ 2 {—l + L }
( ) n ¢ En 2 (9=, (We=F)

The term UJb-En), which appears as a divisor, is likely to
be zero when calculated by use of finite precision
arithmetic until n becomes quite large, as may be seen by

inspection of equation 2.7.92. To prevent division by zero,
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the approximation 2.7.92 for S should be used when e <1

Section 2.12 Cyclic-Decaying Component

The final component is that due to the residue of the
complex conjugate root, s, and sj. Let
92’35 -zn + mn, 2.12.133
and the cyclic-decaying component is given, for each n, by

the sum of the residue due to s=s,

Residue =
.- st X
Lim $e COSh[ﬁ39(s)] Lim S-S,
s-)s2 s-)*s2 2.12.134

s? + ¢2 cosh[-g-3g(s)] ’

and the residue due to s=s; (which will be the conjugate of
2.12.134) . The term in the left hand side bracket of

2.12..134 (for s=sz) when evaluated is

Lim pe®* °°Sh[%3g(s)]
s>s -
2 s2+¢2
- t it -
e n tn i — cos[%ﬂ-z—g-::—l ] 2.12.135
(-qn+1uon) +¢

When s=S3, the result is the conjugate of

2.12.135 since sz+gf2 also obeys the conditions required by
the Reflection Principle. For convenience, the following
definition is made

— i 2 2 _ .
G,= (-3, +i9)° +¢° =C_ + iD . 2.12.136
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By use of L'Hospital's Rule, the term in the right hand
side bracket of 2.,12.134 is

. s-s . 1

Lim 2 _ Lim

s>s cosh[£ (s)] —s->s L '(s)sinh[—I"-g(s)] ' 2-12.137
2 u3g 2 u3g u,
where
sinb[2 g(s)] = sinn[+inZ3=1] = +(-1)"*, 2.12.138
3
and
o1 Y31 L1 O* T

! S = +i1"— < by + = . 20120139

g’ (sy) -0 2 L {52 2 (sz+¢b)(sz+¢;)}

Given the following definition

_ 1 ! Wy = WDy
FnT IS I A0 0 (g, tig )

= An+1Bn, 2.12.140

the cyclic~decaying component for each n can be written as

‘20120141

-z t _ ot -iwt

(ws) _ 2¢e ® (-l)ncos[%‘n’zg 1] fe n + 8 n

W - - = = =
ed_ (Zn-Lyrv l,F, T,F

The term (GF);1 is given by,

1 (AC, -BD) -iDA +BCH .,
GnFn (AnCn - BnDn) + (DnAn + BnCn)

where equations 2.12.140 and 2.12.136 have been used.
Now finally, with the use of Euler's Formula, the bracketed

term in equation 2.12.141 is found to be
iV t -it
e " e 7 ' cos ' sind
= 2an cos nt + an sin nt. 2.12,143

+
nn n?n

Q
r
2

Summation of 2.12.141 over n gives the cyclic-decaying term
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0, S

Znt _..n
4de T (-1) x,2n=17 , _° '
Gt cos[3187] (e cosiye + b, sinugt)} , 2.12.144

where

' (A_C_ - B D)
a, = — = 2.12.145
(A, C, - BD)" + (DA + BC)

(DA + B_C)
by, = --—=1 , 2.12.146

2 2
(Ancn - BnDn) + (DnAn + B C))
a2 _ 42 2
Ch = (¢7 =) +50, 2.12.147
D, = -2W3, 2.12.148
2

A = n + 0.5, - “‘)0)((00-§n) (% - Ln) _On) 2.12.149
° 4,2,*'01.2, ((«~>o-a;n)2 +o§) ((.o*-r,n)z + a)rzl)

and
B = “n 050y - phn(0 + 9% = 25) 2.12.150
n

gﬁ 'I-(l:)l_z1 ((OO-CI;I) 2 + Oi) ( (\D*-Kn) 2 + Qﬁ)
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Section 2.13 Total Response

The total solid displacement is the superposition of

the three components

w w w w
(WS) _ (Ws) N (_W_S> N (Wf') 2.13.151
ss md cd

given by equations 2.10.114,2.11.132 and 2.12.144.
This solution is evaluated numerically for two

materials and the results are given in the next chapter.



CHAPTER III

NUMERICAL RESULTS

Introduction

Numerical results serve at least two purposes:

i. exposing heretofore unnoticed errors in deriving a
particular solution and ii. establishing the importance of
various effects present in the solution. Thus if for
instance, fluid viscosity terms are added to a model and the
numbers flowing out of the computer do not change,:then
viscosity effects are probably not important enough to worry
about. Wiﬁh this observation as a prelude, the present
chapter examines the relative importance of including
inertial terms in the model described in Chapter I.

It is sometimes difficult to make the transition from
an analytic formulation of a solution to a computer program
to evaluate the solution. The main reason for this
difficulty is that arithmetic on a computer is carried out
with finite precision. So, for example, arithmetic is not
necessarily associative, and the order in which the terms
are evaluated makes a big difference. The form of the
solution in Chapter II reflects the ordering of terms found
to be acceptable to the computer.

A listing of the FORTRAN IV program used to evaluate
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the solution and print out maximum displacements may be
found in the appendix. A list of computer notation and a
list of the subroutines used follows in the next two

sections.
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Section 3.1 List of Computer Notation

Variable Name Description Text Symbol Equation

XID DRAG COEFFICIENT ' 1.3.13

OMEGAO0 CHAR. FREQ. u% 1.2.11

OMEGA1l CHAR. FREQ. wQ 2.1.27

Ul - ACCEL. WAVE SPEED uy 1.2.9

uo FROZ. WAVE SPEED ug 1.2.10

SRU1UO RATIO OF ABOVE

RHOF FLUID BULK DENS. €e 1.1.6

RHOS SOLID BULK DENS. es 1.1.7

PHIF POROSITY Be 1.3.13

GAMMAF TRUE FLUID DENS. ¥¢

GAMMAS TRUE SOLID DENS. Yo

MUS SHEAR MODULUS Fs 1.1.7

GAMMAN 1/LENGTH USED FOR Yn . 2.2.36
CALCULATING POLES

XIN | REAL ROOT| &, 2.11.127

ZETAN | REAL PART OF 5 2.12.133
COMP. CONJ. ROOT|

OMEGAN | IMAG. PART OF W, 2.12.133
COMP. CONJ. ROOT|

PHIR RES. FREQ. OF WSS Pres 2.10.125

L DEPTH OF FORMATION L 1.4.21

X POSITION IN FORM. X 1.1.7

N INDEX n 2.10.125

C REAL PART OF g(s) c(d) 2.10.111

D IMAG. PART OF g(s) d(¢) 2.10.111

MCDA,B MAGNITUDES OF WCD
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Variable Name Description Text Symbol Equation
MMD MAGNITUDE OF WMD
MSA,B - MAGNITUDES OF WSS
NUMPHI NUM. OF RESONANCES
OF SS AND CD COMP
NUMCYC NUMBER OF CYCLES
PI oA
DT TIME STEP
T TIME t .
WSS STEADY-STATE COMP. ()ss 2,10.114
WMD MONOTONIC-DECAYING ()md 2.11.132
) COMPONENT
WCD CYCLIC-DECAYING ()cd 2.12.145
COMPONENT
WS TOTAL RESPONSE ws 2.13.151
DMAX MAXIMUM TIME SERIES
OF WS
DSSMAX MAXIMUM WSS VALUE
RMSMAX ROOT MEAN SQUARE OF

SS TERM AND ALL SIG.
TERMS OF WMD AND

WCD.

TMAX TIME AT WHICH DMAX
OCCURS

PHICYC DUMMY
cYC DUMMY
PARTI1, "o
DUM, ETC DUMMY
PHI FREQ. APPLIED TO @ 1.4.21

THE BOUNDARY
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Section 3.2 List of Subroutines

INPUT Reads in the material parameters from a disk file.

PROP Calculates the necessary quantities from those read

in through INPUT.

PRINTP Prints out the values read in and the ones

calculated by PROP.

ROOTS Calculates the values XIN, ZETAN and OMEGAN which

are the components of the poles.

PHIRES Calculates a resonant frequency of the steady-state

component.

CDPHI Computes the functions c(¢) and d(¢).

CALMCD Calculates the time invariant part of the
non-dimensional magnitudes (a'and b') of the cyclic-decaying

component.

CALMMD Calculates the time invariant part of the
non-dimensional magnitude of the monotonic-decaying

component.
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SSCOMP Calculates the non-dimensional magnitude (a and b)

of the steady-state component.

DISPM Adds the time dependence to the various magnitudes
and calculates the sinusoidal terms. Calculates the total
response and stores the time series maximum over a specified
range with a specified number of time divisions. Calculates
the root mean square of all the magnitudes (time dependent),
stores the maximum, and calculates the magnitude of the

steady-state.

CALPHI Returns a vector PHIRS with the first NUMPHI natural
frequencies and then the first NUMPHI steady-state

frequencies.
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Section 3.3 Flow Chart for Program RESO

( START )
/CALL INPUT / INPUT CONSOLE:
n for u)n

i

l
CALL PROP
INPUT CONSOLE:
I cycle range, NUMDT

/::LL PRINTP / |
A
/INPUT CONSOLE: / I

CALL DISPM

I
/(;LLL PRINT /

loop >
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Section 3.4 Displacement Spectra

The almost ceaseless spewing forth of data that
computers are capable of has been distilled here into
displacement spectra. These graphs relate the maximum
displacement which occurs in the formation, at a certain
value of x for all time, to the forcing frequency applied on
the boundary. Of course, important information is left out
by the use of displacement spectra. For example, the time
the maximum occurs is not available. Also there is no
indication of the how large the displacements were which
preceded the maximum. The time at which the maximum occurs
is shown for five input frequencies in figures 3.2 and 3.5.
Here, the purpose is to demonstrate the importance of the
inertial terms, and the spectra are ideal for this purpose
since any dependence on the forcing frequency is a
consequence of including their effects. Also, spectra are
typically used by engineers for design purposes, and the
time a maximum occurs is usually less important than the
numerical value of the maximum displacement.

There are three estimates of the maximum which are
calculated by RESO:

i. Time Series Estimate (DMAX). The output is
sampled at discrete points as time goes on, keeping the
maximum.

ii. Steady-State Maximum (DSSMAX). The magnitude
of the steady-state component is computed so that the
relative effect of the transient components may be
calculated.

iii. Root Mean Square (RMSMAX). The square root of
the sum of the squares of all the terms used in computing
DMAX, apart from the sinusoidal terms, is computed. In the
materials considered, the natural frequencies are relatively
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high so that many cycles occur within the 180 second search
limit. In this case, the maximum is very near the sum of the
absolute magnitudes, which can be estimated by multiplying
RMSMAX by the square root of 2 . This gives DSMAX to such
accuracy that DSMAX could be omitted if the time at which it
occurs is not important.

For the materials considered, the cyclic-decaying
component decays very slowly, as may be inferred from the
magnitude of ZETAN given in the next two sub-sections. The
monotonic-decaying component on the other hand barely exists
at all. Besides having, for the material used, a very small
magnitude, it decays extremely rapidly in time, as is
indicated by the magnitude of XIN.

Spectra are presented for two materials, Berea
Sandstone and Ruhr Sandstone, the properties of which are
taken from the table given in RICE AND CLEARY[2] and the
densities are taken from FARMER[10]. The points plotted were
obtained interactively using the program RESO. Intelligence
is difficult to encode in a program, and it was easier to
leave the decision, with regard to whether a maximum had
been reached and when, to the operator. A value was chosen
as a maximum if over the next two cycles of the nearest
fundamental frequency (an), the value was not exceeded.
Usually in about a half to two thirds the time it took to
reach maximum, values as high as 80-90% of maximum had
occured.

Section 3.4.1 Berea Sandstone

In this sub-section, results for Berea Sandstone are
presented. First, there is output from the program RESO
showing the input to the program and some important values
calculated from the input. The decay exponents and natural
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and steady-state resonant frequencies are also shown.
Second, there is a bar graph showing the peaks in the
spectra at 99.9% of the first five natural frequencies and
the times at which they occur. A cut off time of 180 seconds
was applied, this is about the duration of the larger
earthquakes. The peak of the spectra is very sharply
pointed, and the evaluation of the solution itself shows
some problems because of finite precision truncation. Near
the peak though, the solution still converges to the initial
conditions and is well behaved. Third, a plot of the
displacehent spectrum is given where the actual values of
DMAX calculated are marked with X's, and the solid line is
72 *RMSMAX.
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Section 3.4.2 Ruhr Sandstone

In this sub-section, results for Ruhr Sandstone are
presented. First, there is output from the program RESO
showing the input to the program and some important values
calculated from the input. The decay exponents and natural
and steady-state resonant frequencies are also shown.
Second, there is a bar graph showing the peaks in the
spectra at 99.9% of the first five natural frequencies and
the times at which they occur. A cut off time of 180 seconds
was applied, this is about the duration of the larger
earthquakes. The peak of the spectra is very sharply
pointed, and the evaluation of the solution itself shows
some problems because of finite precision truncation. Near
the peak though, the solution still converges to the initial
conditions and is well behaved. Third, a plot of the
displacement spectrum is given where the actual values of
DMAX calculated are marked with X's, and the solid line is
72 *RMSMAX.
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Section 3.5 Conclusions

An analytic solution for shear motions in a binary
mixture of a chemically inert, isothermal, elastic isotropic
solid and elastic fluid subject to a sinusoidally varying
solid displacement on one boundary and traction free on the
other was obtained. This solution was evaluated with the aid
of a computer program for two materials. The results were
plotted in the form of displacement spectra. Resonances or
peaks in these‘spectra were found indicating the influence
of inertial terms. Enhancement on the order of hundreds of
times the exciting displacement was found near the resonant
frequencies. Significant enhancement also extended to either
side of the peak for a range of 10-20% of the normalized
frequency (¢/u%). Depending on the geometry, material, or
location in the formation, the enhancements could be larger
still.

The conclusion is that inertial effects are very
important when studying the effects of time varying boundary
conditions on porous media, and may not be neglected as is
commonly done.
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0n/X% (S 0« ((TYDINO’X) TNVIY- (QVDAWO’ X) ZNVIV) ) SOD x«
ST xx ((Txx (TVDAWO/X)+°T)/ (Txx (0OVDIWO/X)+°T) ) =(X)d
1 TVay
(JIHA‘N‘T1/00’ TYDIWO‘ OVYDIWO) STYIHA ANIINOYENS

24S/avyd TV9AWO

J4S /WD NOISNAJIA YOd FWIL °*¥VHD TVIINAIDIY FIHL SI 0VDHIAWO
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WNa-=Wna (0°AN° (Z’N)AOKW)dI

Id/ (T-NxZ)IY¥0Td/(1/°2/1dx (I-NxZ)IVOTd xX)SO0D»IHdA " ¥=KNA
G9Z6STP1°€=1d

ZLAYd/ (D x9+Y A ) =9ADKH

ZL9VA/ (A x9-D x¥ ) =¥AONW

TIYVd+ZI9Vd=2Lyvd

Txx (Dx9+4V+0) =2IYYd

Txx (Ax9-Dx¥)=TIYYd

NWNA/NYOINO-g9=9

gTIWNA/90WNA/ (NYLIZ »°* Z-0VOTWO+IVOIWO) xWHNA %S * xNYDIWO-=9
NWNA/NVIAZ-V=Y
gIWNA/90WNA/ (Z % ¥ (NYDIWO) -TWAA xOWNA ) xWKWNA xS * =¥
NVOTWOxNVIIZ x°* Z-=a

CxxNYLIZ+D=D

(Zxx (NVUDOIWO) -Zx+IHA)=D

CxxNVDIWO+Z »»TWNA=9TWNA

T »xNVDINO+Z »x»0WNA=A0WNA

CxxNYIAZ+Z »xNVOIWO=NKNA

NYIIZ-TVOIWO=THAA

NYI3Z-0YOIW0=0WNAd

0YOINO-TYOINO=HWNA

gadOW ‘' YaoW‘ T I¥a"d

(9AOW‘VYAOW‘ IHA TYOINO »
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andg
NYNLIY

(0NTNYS) IY0S« (ZWNA) SOD +TWNAxIHd=A

(0NTNYS) T¥0S* (ZWNA)NISxTWAAxIHd-=D
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6 » ((X~-)axa+(X)daxd)=(X)HSOD
T/dSH’VYSH TVaY

(ASW/VYSH’/T/X’ TVOIWO‘0YOIWO‘ TN 0NTNUS ‘ IHA)dKWODSS ANIINOYENS

(ORSRONS)

8TIT°C NOILVNO3 J0 FANLINOVW FHIL
Nk
NINLIY
AWW-=AWW (0°03° (Z‘N)QOW)JI
CI¥Vd/TIEVd=AWKH
THNA/0WNA/°*Z /WANAxIHd xIHd+ZIUVd=2I8Vd
NIX/IHdxIHd-ZIYY¥d=ZI¥v¥d
NIX-ZI¥V¥d=Z1¥Vd
THNA/0WNA/*Z/NIX«NIXxWHWAA=ZIIVd
(T-NxZ)IVY0T1d/1Id/ (D99YWNA) SO +IHd x* Z=TIUVd
T/°C/Xx (I-NxZ)IVOTd xI1d=D9VYKNA
G9Z6STVI"€=1d
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ang
NINIIA
WAL NIS €9SW WJ3L SO0D SI WSKW O
WONHA/ (A 9+D x¥ ) =€SK
WONIA/ (A x¥-D x€) =VSKH
Txx((ZX)S0D)+Tx+ ((ZX)HNIS)=WONEA
(ZX)NISx (ZX)HNIS=a
(ZX)S00x (ZX)HS0D=D
(TX)NISx (IX)HNIS=9
(TX)S0Dx (IX)HSOO=¥Y
I0/dxT=2X
I0/2%1=2X
In/asX=1X
T0/D+X=TX
(@O0’ TYDIWO’ O¥OIWO‘ 0NTNIS‘ IHA) IHAAD TIVD
G°x ((X-)dxda-(X)dxd)=(X)HNIS



