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INTRODUCTION

e Lignhocellulosic biomass: abundant, renewable feedstock
for biofuels production?t, but highly recalcitrant.

v Miscanthus: perennial grass with high biomass yield and low
nutrients and water requirements. Can grow on marginal land.

* Pretreatment: reduces recalcitrance of lignocellulosic
biomass, enhances enzymatic saccharification

e Traditional pretreatment: thermo-chemical methods that
use harsh conditions (high temperature and pressure),
strong chemicals, and large amounts of water?.

 Fungal pretreatment: alternative process that uses white
rot fungi to enhance enzymatic digestibility of
lignocellulosic feedstockss.

v Fungal pretreatment generally requires prior sterilization of the
feedstocks to eliminate indigenous microorganisms.

Pros:

Performed in solid-state (no
wastewater, no mixing)

Near room temperature and
atmospheric pressure

No added chemicals

No inhibitors: no washing/detoxification
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Fig. 1 Miscanthus conversion to biofuels and
bioproducts (simplified)

AIM

Investigate the performance and cost-effectiveness of fungal
pretreatment of miscanthus, a model lignocellulosic
feedstock, for the production of fermentable sugars in a
biorefinery context.

METHODS

* Feedstock: Miscanthus x giganteus from Zanesville, OH.
Dried at 40°C and milled.

o Strain: Ceriporiopsis subvermispora ATCC 96608.

 Fungal pretreatment experiments: 1 L reactors. Sterile
pretreatment inoculated with pure fungal culture grown in
2% malt extract (positive control). Non-sterile
pretreatment inoculated with finished material of previous
generation (50% w/w). Negative control: Unsterilized
miscanthus incubated along treatments. Treatments
performed In triplicate.

e Characterization methods: Compositional analysis and
enzymatic digestibility according to NREL protocols*»>.

o Data analysis: Statistical significance evaluated by one
way ANOVA (a=0.05), and mean comparisons by Tukey-
Kramer test. Software JMP®.

« Techno-economic analysis: Software SuperPro
Desigher® v.9.5.
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Fig. 2 Methods for sequential fungal pretreatment of miscanthus,
enzymatic saccharification and techno-economic analysis

RESULTS AND DISCUSSION
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Fig. 3 Enzymatic digestibility and component degradation after fungal
pretreatment of miscanthus

* No difference between the enzymatic digestibility of
sterile (positive control) and first generation unsterilized
pretreatment.

e Second and third generation pretreatments did not
Improve enzymatic digestibility.

« Low holocellulose degradation: C. subvermispora lacks
a strong cellulolytic system®.
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Fig. 4 SEM images of raw and fungal pretreated miscanthus

« Evident increase in porosity and cell wall disruption in
accordance with previous research’.

 More extensive cell wall degradation in the unsterilized
pretreatment.

Fungal community composition
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Fig.5 Fungal community - relative abundance at the genus level.
UN: unidentified

« Ceriporiopsis subvermispora relative abundance
decreased from over 99% in the sterilized pretreatment
(positive control) to 11% in the first unsterilized
generation.

e C. subvermispora was out-colonized by other fungi in
unsterilized pretreatments.

* Feedstock sterilization is necessary for fungal
pretreatment of miscanthus.

Sugar yield
Table 1 Sugar yield after enzymatic saccharification of pretreated
miscanthus
Sugar yield (%)

Pretreatment Glucose Xylose it
ield  yield °U9%S

y yield

Fungal — sterilized (positive control)  76.3 40.9 66.2

Liquid hot water 94.4 59.3 84.4

Alkaline 83.8 68.9 79.5

Sugar yield: g of sugar solubilized by enzymatic saccharification/ g of sugar in raw miscanthus

e Fungal pretreatment of miscanthus produced sugar
yields comparable to those reported before for
pretreatment with C. subvermispora®?°.

e Sugar yield obtained after fungal pretreatment was lower
than that of traditional pretreatments.

Techno-economic analysis
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Fig. 6 Overview of the fungal pretreatment process
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Fig. 7 Fermentable sugar production cost with fungal pretreatment at
biorefinery scale

 70% of the sugar production cost was facility-related, due
to the long pretreatment time, low feedstock bulk density,
and low yield, that increase need of bioreactor capacity.

e Sugar cost was ~10x that of traditional pretreatments
($0.26/kg)1°.

CONCLUSIONS

* Fungal pretreatment with C. subvermispora enhanced the
enzymatic digestibility and sugar yield of miscanthus.

* Fungal pretreatment of first generation unsterilized miscanthus
(using fungal colonized miscanthus as inoculum) yielded similar
results than pretreatment of sterile miscanthus.

* Sequential fungal pretreatment of unsterilized miscanthus
(using pretreated miscanthus from previous generation as
Inoculum) was not feasible: sterilization is necessary.

* Fungal pretreatment of miscanthus is cost-prohibitive at the
current state of the technology.

« Future work should focus on increasing the sugar yield and
reducing the fungal pretreatment time.
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