Unconventional PDV applications: detecting plasma and radiation

D. H. Dolan, K. Bell, B. Fox, S. C. Jones, P. Knapp, M. R. Gomez, M. Martin, A. Porwitzky, and G. Laity

SAND2018-5286 C

Exceptional

service

in the

national

interest

PDV Workshop

May 16, 2018

Sandia National Laboratories is a multi- mission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-NA0003525.

Jia Z machine produces many things

- In less than 500 ns:
 - I > 20 mega amp
 - P > 1 million bar
 - T > 1000 to 10⁵ K
- Radiation
 - Photons (usually)
 - Neutrons (sometimes)
- All sorts of plasma

PDV has been very successful for measuring pressure and in inferring current. Can we build on this success?

What does PDV measure?

Apparent velocity:

$$v^* = -\frac{d}{dt} \int n(x,t) \ dx \approx -L \frac{d\hat{n}}{dt}$$

- Apparent velocity comes from:
 - Actual motion
 - Dynamic compression of optical windows
 - Other refractive index changes

Plasma detection

Several interpretations

- Local density gradients may deflect the beam
 - Less likely with retroreflective tape
- Local density may reach/exceed critical value
 - We can only measure path average
- Ions and neutral atoms may also play a role
 - Precise materials and ionization states unknown
- Fast density increases may exceed the measurement bandwidth
 - In any event, PDV senses something that should not be there (according to most simulations)

Detecting radiation

- Negative velocity occurs too soon to be actual motion
- Effect only observed when radiation is produced

Radiation drive experiment

Sandia National Laboratories

Feature shows up in shielded/capped probes

Apparent velocity (m/s)

Possible explanations

- Irradiated silica collapses to higher density
 - Index goes up, apparent velocity < 0</p>
- Radiation creates color centers
 - Visible absorption accompanied by infrared index changes (Kramers Kronig relations)
 - More likely for Ge-doped silica than pure material

Testing the role of Ge doping

- Photo-sensitive fiber
 - 30-40% more than SMF-28
 - Different doping profiles
- Z ride along test
 - 2-3 ns pulse
- achine time (ns)
 - 5-16 keV
 - 830 mm distance

Summary

- PDV can detect anything the modifies refractive index
 - Apparent direction is the inverse of the dn/dt
- Plasma detection is easy
 - Density calculation relies on several assumptions
- Radiation sensing needs to be calibrated
 - Type/energy discrimination
 - Material sensitivity (Ge concentration, ...)
- Potentially fast response (< 1 ns)</p>

Dolan et al., J. Appl. Phys **123**, 034502 (2018).

Acknowledgements

- Sheri Payne and Darrell Ramsey (MSTS)
- Tom Avila, Ed Scoglietti, and Gary Chantler