

One More Talk About Multiplexing

PDV Workshop May 15–18, 2018

Ed Daykin, Martin Burk, Carlos Perez, Michael Pena

This work was done by Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with the U.S. Department of Energy and supported by the Site-Directed Research and Development Program. DOE/NV/03624--0126.

The Nevada National Security Site is managed and operated by MSTS under contract number DE-NA0003624.

iMPDV for Focused Experiments

Outline

- Motivation
- Design Approach & Capabilities
- Modularization
- Performance Analysis
- Operations
- Complexity & Cost
- Summary

Motivation for iMPDV: Focused Experiments

Small Focused Experiments: 1 – 12 CH	Intermediate Focused Experiments: 12 – 24 CH	Integrated Experiments: 32 - 64 64 - 128 > 128
Gas Gun: elastic, EOS, Phase Materials: recompre AP	Shockwave Experiments ssion, grain (mesoscale), spall	
	Integrated Experiments	L, NTS/U1A, LLNL/S300
Very high velocity (NIF, Z)	Pulsed Power Explosive ICE	
Ejec	NWL Hydro, SDRD & WFO ta, detonics, deflagration hanical (e.g. NASA)	

Our Design Approach

- ► iMPDV is "best of" from lessons learned and MPDV fielding experiences
- Modularize for improved serviceability
 - Standardized electrical and fiber-optic connections
- Minimize "number of moving parts" complexity
- User-friendly operation
 - Minimize learning curve intuitive operation similar to traditional PDV
- New multiplexing architecture (neither Gen-1, 2 or 3)
 - Mode 1: Time multiplexing (1×6) for optimal photometric sensitivity
 - Mode 2: Frequency multiplexing (4×1) for maximum record length
- Provide built-in capabilities
 - Cross-timing: Internal, "built-in" system that also has external timing marks
 - Self-check mode: Automated optical signal flow verification
 - Health mode: Electrical power, temperature, and communications
 - Shot mode information: OBR values and signal-to-noise ratio (SNR) calculator for each data channel

Innovative! A new approach for stockpile E-O diagnostics that leverages 3-D printing

- Serviceable by non-SME (module replacement)
- Portable ½ rack
- Internal health monitor (temperature, communications, power)
- Provide self-contained cross-timing system
 - Optical cross-timing mark onto each data window
 - Allow for internal and/or external optical cross-timing
- ► Self-contained system → no external fiber cross-connects
- ► Autonomous operations via internal FPGA → no PC required
- Laser modes: Class I & Class IV (key control and interlocks included)

Measurement Capabilities

- ► Two multiplexing modes (frequency × time) are selectable
 - 1×6 time mux'd to maximize SNR
 - 4×1 frequency mux'd for long data records
- Time mux window $\tau = 50$, 100, or 200 µs (*configurable*)
- Photometric sensitivity (a.k.a. SNR): P_{min} ≈ PDV or MPDV-3 (≈ −60 dBm)
- One-fiber and two-fiber probes (selectable, able to mix and match)
- Selectable laser power
 - Gated or CW high power, P ≥ 200 mW
 - CW low power, P < 10 mW (eye safe)
- Homodyne- and heterodyne-capable (selectable)
- Built-in cross-timing accounts for variability from fiber delay temperature

- → 24-channel capability
- ➔ 16-channel capability

Operational (Fielding) Capabilities

Two Operating Modes

- 1. Remote operations: LabView VI via e-net
 - Bunker controls, including Run Ready and Fire Ready closures
 - SIS laser safety interlocks
 - Emergency stop
- 2. Local "manual" operation
 - No PC required
 - Bunker permissive and external delay generator NOT required
- Plug-n-play: No external interconnects, only connections are fiber-optic probes
- Self-check: Mode verifies internal optical signal path
- LUNA (or "blink test") capable
- ► OBR capable: Measure during operations; sensitivity P_{min} ~ -60 dBm

A Design Requirement: Serviceability

... move away from fully integrated chassis with very complex electro-optic systems that require SME to troubleshoot and/or repair

NEVADA NATIONAL NINSSON SECURITY SITE Managed and operated by Mission Support and Teel Services

Modular Approach Leverages 3-D Printing

A 3-D printed pre-amp module. Design is specific to components and fiber-optic routing requirements.

Performance Analysis: SNR Modeling

First, choose optical amplifiers appropriate to insertion losses (IL) inherent to time multiplexing

Channels 1 - 16Estimated Insertion Loss = $16 \pm 3 \text{ dB}$

→ Choose EDFA with Gain ≅ 23 dB (Lightwave 2020)

Channels 17 - 24Estimated Insertion Loss = 22 to 24 dB

Choose EDFA with Gain ≅ 33 dB (OptiLab)

Model parameters: P(sig) = -40 dBm, P(LocOsc @ PD) = -4 dBm

SNR Modeling: Calculate SNR = f(IL)

Model parameters: P(sig) = -40 dBm, P(LocOsc @ PD) = -4 dBm

Operations Part 1a: User Controls

Operations Part 1b: User Controls

Operations Part 2: Fiber-Optic Connections

One-Fiber Probe -Patch-Panel

> SIS Interlock Run Control Run Status

PC Comm

System Complexity & Cost

M & S Cost

• \$450k → \$19k per data channel

Number of Modules

•	MPDV	6
•	Pre-Amp EDFA	6
•	High-Power EDFA	3
•	MEMS Switching	1
•	Nano Switching	5
•	Front End	1
•	Optical Cross-Connect	2
•	Polarization Control	1
•	Cross-timing	1

Labor Estimate ~1¹⁄₄ FTE

Summary

We've designed and built a multi-functional, robust, self-contained, portable, 24-channel MPDV system for focused experiments

- Optimized (shot noise limited) SNR performance
- ► Time or frequency multiplexed
- Heterodyne or homodyne operation
- Class I or Class IV operations
- Single-fiber or two-fiber probes
- Manual control (including touch panel) or remote control (LabView)
- Modular architecture for robustness
- Built-in cross-timing (each data window)
- Built-in self-check mode
- Cost per channel comparable to PDV

NOTE: This page of the template is to be used as a section divider.

