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Maximizing the Area of a Sector 
With Fixed Perimeter

Historically, many maxima and minima were found long before Newton and Leibniz developed calculus. Ivan 
Niven’s (1981) classic Maxima and Minima Without Calculus provides a systematic and thorough account 
of solving extreme-value problems using elementary algebra, geometry, and trigonometry. Niven devotes a 
chapter to isoperimetric problems: problems that ask “for the region of largest area in a given class of regions 
. . . of a specifi ed perimeter” (p. 77). We use technology as a tool to solve the isoperimetric problem for the 
sector of a circle—an investigation inspired by a project in Farrell and Boyd (2007).

Introduction
Th e thoughtful use of technology can 

enhance the mathematical understanding 
of advanced concepts and big ideas in school 
mathematics. According to the National 
Council of Teachers of Mathematics 
(NCTM, 2000), “Teachers need to 
understand the big ideas of mathematics 
and be able to represent mathematics as 
a coherent and connected enterprise” (p. 
17). Moreover, “Technology is essential 
in teaching and learning mathematics; 
it infl uences the mathematics that is 
taught and enhances students’ learning” 
(NCTM, p. 24). Th is article is about using 
technology to explore isoperimetric sectors 
of circles and explains some connections 
that may help foster students’ mathematical 
understanding.

Polygons, Regular Polygons, 
and Circles

Before considering the areas of sectors 
of circles, we review some related theorems 
about polygons, regular polygons, and 
circles. Each of these could be turned into 
an exploration all its own. Background 
information and proofs of these 
theorems can be found in Niven (1981). 

1. Regular polygons enclose larger areas 
than the corresponding irregular 
polygons with the same perimeter. 
For example, when we consider 
quadrilaterals with a fi xed perimeter 
of 20 ft, the square with 5-ft side 
lengths will have the maximum area. 
In general, for n-sided polygons 
with a fi xed perimeter, the regular 
n-gon encloses the maximum area.

2. For any two isoperimetric regular 
polygons with n and n+1 sides, the 
(n+1)-sided polygon encloses a larger 
area. For example, as shown in Figure 
1, a square with a 12-cm perimeter 
encloses a larger area than an equilateral 
triangle with a 12-cm perimeter.

3. A circle of a given perimeter 
(circumference) encloses a greater 
area than any polygon with the 
same perimeter. Because a circle can 
be interpreted as a polygon with 
infi nitely many sides, this can be 
seen as an extension of Th eorem 2.

As a combined illustration of 
Th eorems 2 and 3, Figure 1 shows an 
equilateral triangle, a square, and a 
circle—all with the same perimeter. 
Notice that their areas diff er substantially.
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provides a 
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without 

knowledge 
of 

calculus, 
even to 

students in 
the middle 

grades.

of π, the formula for the circumference, 
or both. Using prior or newly developed 
knowledge, they should be able to express 
the perimeter of sector BOD as the sum 
of the lengths of the radii OB and OD 
and the arc length BD (minor or major).  

Sector of Circles
Th e isoperimetric problem for the sector 

of a circle is especially intriguing because 
it involves two variables: the radius of the 
circle and the measure of the central angle. 
In Appendix A, we give a standard calculus 
solution to this problem. But technology 
provides a compelling alternative available 
to students without knowledge of calculus, 
even to students in the middle grades.

We can explore a sector for any fi xed 
perimeter. Suppose we have a circular sec-
tor with perimeter p = 100 ft. We wish to 
determine the greatest area that the sector 
can enclose and discuss the mathematics 
associated with this process. We use the 
Geometer’s Sketchpad, TI-nspire CAS, and 
Microsoft Excel as tools for the investigation, 
but the methods shown can be adapted to 
many other tools. Readers who wish to 
implement these ideas should use the tools 
they know and have available to them.

First, students should be introduced 
to, or reminded of, the ideas of an arc of 
a circle (both minor and major) and the 
associated sectors. A quick and easy Geom-
eter’s Sketchpad construction can illustrate 
the two possible sectors associated with a 
central angle, such as BOD in Figure 2. 
At this stage, the students might suspect 
that a major sector will yield the maximum 
area for a sector with fi xed perimeter.

Students can be reminded that the 
perimeter of a circle is its circumference, 
and they can be reminded of, or guided 
through activities to determine, the value 

Fig 1 Three plane fi gures with a common perimeter of 12 cm.

Fig 2 The central angle of a circle determines 
two arcs and two associated sectors.

Dynamic Construction of a 
Sector With Fixed Perimeter

Th e construction in Figure 3 uses a 
horizontal line segment of length 100 ft 
to represent the fi xed perimeter. We use 
the control point T on this line segment 
to distribute lengths to the two radii and 
the arc length of a sector that is constructed 
using the Circle and Measurement transfer 
features of a TI-nspire Geometry page. 
Because the TI-nspire Geometry software 
does not measure refl ex angles, the central 
angle θ is calculated from the arc length s 
and radius r as shown on the screen shots 
in Figure 3. Th e values of θ and A are 
automatically updated as the user moves 
the position of T along the horizontal 
segment.
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Suppressing the units (feet and degrees) 
and solving for r in this equation yields

r = 18000
πθ+360 .

Lastly, we observe that the area A of the 
sector is a fraction of the area πr2 enclosed 
by the corresponding circle:

A = πr2 · θ
360 = πr2θ

360

In Table 1, these formulas are entered into 
a spreadsheet. Th is allows us to combine 
the problem-solving strategy of guess and 
check with using a systematic list. Th e 
sector areas vary substantially even though 
they all have the same perimeter—100 ft. 
Note that we are obtaining values for the 
same variables investigated in Figure 3, but 
without any possible measurement errors. 
Again, we are led to explore θ values in the 
neighborhood 120° to seek the maximum 
possible area for the sector.

After several steps of systematic 
numerical investigation, we could obtain 
values in our spreadsheet as shown in Table 
2. In this case, all of the sector areas appear 
to be the same for all six θ values in the 
table because the diff erences in the areas 
are beyond the decimal accuracy shown. 
Actually, the greatest area occurs for θ 
≈114.591559°, shown in boldface type in 
the table. Notice in this case that r ≈ 25 ft 
= p / 4 and s ≈ 50 ft = p / 2.  Moreover, this 
result implies that the maximum area of the 
sector occurs when the arc length is twice the 
radius. Th is supports and refi nes what we 
observed in Figure 3c.

Students can observe that, in the 
PacMan-like major sector (Fig. 3a), the 
large amount of perimeter used by the arc 
length portion reduces the radius of the 
circle and yields a relatively small sector 
area A. Further exploration reveals that 
an obtuse angle between 110° and 120° is 
maximal (Fig. 3c).

Figure 3c suggests that the maximum 
area of a sector with a perimeter of 100 
ft is about 627 ft2, but this is a fairly 
rough approximation. Although the TI-
nspire computations are done with great 
precision, the scaling and measurements 
on a Geometry page are approximations 
that are limited by the number of pixels on 
the screen. Moreover, all of the displayed 
values are rounded. Making students aware 
of these limitations can be used to motivate 
the need for a more accurate solution.

An Algebraically Driven Nu-
merical Exploration

To obtain further precision, algebraic and 
numerical representations can be used in 
combination with a spreadsheet. To begin 
this process, as in Figure 3, let r be the radi-
us of the (dynamic) circle, and let θ be the 
measure of the related central angle BOD. 
If s is the associated arc length, then it can be 
expressed as a fraction of the circumference: 

s = 2πr · θ
360◦ = πrθ

180◦

Th us, the perimeter of the sector 
p = 2r + s is 

2r + πrθ
180◦ = 100ft.

To obtain 
further 
precision, 
algebraic and 
numerical 
representa-
tions can 
be used in 
combina-
tion with a 
spreadsheet. 

Fig 3 Three possible circular sectors with a perimeter of 100 ft.
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A Revealing Visual Representation
Figure 4 depicts the isoperimetric sector of maximum area, partitioned 

into numerous congruent subsectors. Figure 5 rearranges these subsec-
tors to form a region that is nearly a quadrilateral in shape. Indeed, Figure 5 
is nearly a square, the quadrilateral with maximum area for a given perimeter.

 Compelling 
numerical and 

visual 
evidence 

should give 
students 

confi dence 
that the 
maximum 
area of a 

sector 
occurs 

when the 
arc length 

is twice the 
radius.   

Table 2 The Radius, Arc Length, and Sector Area as Functions of the Central Angle

Table 1 The Radius, Arc Length, and Sector Area as Functions of the Central Angle

Fig 4 Maximal sector BOD divided into 
subsectors.

Fig 5 The subsectors of sector BOD 
rearranged to form a fi gure approximating a 

square.
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A Proof Using Elementary 
Algebra

Th e compelling numerical and visual 
evidence should give students confi dence 
that the maximum area of a sector occurs 
when the arc length is twice the radius. Yet, 
this is still merely a conjecture. To complete 
the mathematical reasoning process, a proof 
is called for, and one is well within reach of 
high school students.

To this point, we have expressed 
A as a function of θ. Now ask the 
students to express A as a function of r: 
A(r) = pr

2 − r2, or in our particular case, 
A(r) = 50r − r2.

Th en ask: What kind of function 
is this? Does it fi t the data in Table 1? 
What are the properties of this function? 
Does it have a maximum value? If so, 
what is the maximum, and for what 
value of r does it occur? Figure 6 shows 
a scatter plot of an extension of Table 1 
with a graph of A(r)= 50r − r overlaid.  

Fig 6 The graph of f(x)=50x−x2 appears to fi t 
the (r,A) data pairs from the spreadsheet in 

Table 1.
From earlier work with quadratic functions 
of the form f(x) = ax2 + bx+ c,

students should have established that 
x = −b

2a

produces an extreme value for f(x).  In 
this case, that means 

 r = −50
2(−1) = 25ft.

produces the sector with maximum area, 
which is exactly what we wanted to prove.  

Th is can readily be generalized to the case
A(r) = pr

2 − r2.

Concluding Remarks
Th e NCTM’s (2009) Focus in High 

School Mathematics: Reasoning and Sense 
Making calls for “all students in every 
high school mathematics classroom [to be 
held] accountable for personally engaging 
in reasoning and sense making” (p. 6).  
Th e recently released Common Core State 
Standards for Mathematics (2010) includes 
reasoning and sense making as standards for 
mathematical practice and asks students to 
“construct viable arguments,” “model with 
mathematics,” and “attend to precision” 
(pp. 6, 7).  

Our approach allows students to 
engage in these mathematical practices 
and to explore deep connections among 
several representations of a rich and 
classic problem—without the need for 
calculus.  Th e process ultimately leads to an 
elementary proof of a surprising result:  Th e 
maximum area of a sector equals the area 
of a square with the same perimeter.  Th is 
investigation, which is based on multiple 
uses of technology, is intended to develop 
the students’ mathematical profi ciency, 
that is, the blending and interweaving of 
conceptual understanding, procedural 
fl uency, strategic competence, adaptive 
reasoning, and productive disposition 
(National Research Council, 2001).  Th e 
innovative use of technology can provide 
learners the mathematical power to 
confront and make sense of the big ideas of 
mathematics in practical and meaningful 
ways.X
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