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Abstract 

BRCA1-associated protein-1 (BAP1) tumor predisposition syndrome (BAP1-TPDS) is a 

recently identified hereditary cancer syndrome and a rapidly developing area of medical 

research. Germline mutations in this tumor suppressor gene predispose families to the 

development of various malignancies. The molecular functions of the gene as well as the clinical 

phenotype of the syndrome are still being clarified. The aim of this study is to conduct a 

comprehensive review of all published research into BAP1-TPDS to more thoroughly delineate 

the clinical implications of germline BAP1 mutations. Current evidence suggests that germline 

BAP1 mutations predispose families to uveal melanoma, malignant mesothelioma, cutaneous 

melanoma, renal cell carcinoma, characteristic benign skin lesions, and possibly a range of other 

cancers as well. Some of these cancers tend to be more aggressive, have a propensity to 

metastasize, and onset earlier in life in patients with BAP1 mutations. Survival in these patients 

is significantly decreased. Although further research is necessary, this information can aid in the 

management, diagnoses, prognoses, and therapy of these patients and their families, and 

highlights the importance of genetic counseling. 
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CHAPTER 1: INTRODUCTION 
 Germline mutations in tumor suppressor genes are of special importance in the medical 

field as they often characterize hereditary cancer syndromes. The value in understanding the 

gene function and phenotypic spectrum of these genes lies in the ability to prevent cancer and 

improve prognoses in known high-risk families by way of additional preventative testing, early 

detection, and targeted therapy. Germline mutation in BRCA1-associated protein-1 (BAP1) 

underlies the recently identified tumor predisposition syndrome (BAP1-TPDS) OMIM 614327 

(1).  The major detective work originally identifying this hereditary cancer syndrome came 

simultaneously from three independent research groups, focused in the different disease areas of 

uveal melanoma (UM), mesothelioma (MMe), cutaneous melanoma (CM) and skin lesions (2-4).  

Shortly after this, renal cell carcinoma (RCC) was identified as a major cancer associated with 

the syndrome (5). An increasing number of patients and families with germline BAP1 mutations 

have been reported since.  

Despite the rapidly evolving literature, a complete understanding of the gene function and 

phenotypic spectrum of the gene has not yet been established. Researchers have approached the 

study of this gene from cancer-specific perspectives, rather than a collective BAP1 approach. 

Rather than studying the spectrum of cancers associated with BAP1, researchers have reported 

chance findings of BAP1 mutations in their field of study. As such, the results of this research are 

often difficult to use by clinicians. Geneticists and genetic counselors may not be on the lookout 

for the BAP1 gene when faced with characteristic BAP1 families. Further, providers may not 

have the information necessary to make management recommendations to families when faced 

with a chance finding of BAP1 mutation. The aim of this review is to compile all reported 

research into the BAP1 tumor predisposition syndrome and summarize the current evidence for 

the phenotype for the syndrome in addition to other important clinical characteristics. This will 
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help to establish counseling, testing, and management guidelines. statistics. Since there were a 

larger number of females reported in the literature, gender distribution statistics were adjusted 

based on a weighting methodology with the following equation: ((proportion of gender with 

cancer type in general population) / (proportion of gender in this cohort)) * (proportion of gender 

with cancer type out of total patients with cancer type in BAP1 carriers). 

CHAPTER 2: METHODOLOGY 

A literature review was conducted on all peer-reviewed articles on BAP1 and its 

Drosophila homolog, Calypso published through January 1, 2015. A search on PubMed was 

directed with the keywords “BRCA1 associated protein-1,” “BAP1,” and “Calypso.”  

Unpublished material was not included and selected articles were limited to English language. 

Seventy seven articles pertaining to the human BAP1 gene and its association with cancer were 

obtained. Of these, 25 articles described patients with germline BAP1 mutations. The articles 

were collated and data were extracted via an article-by-article systematic review. Online 

supplemental material was consulted if available. Data extracted from the review included 

clinical information, molecular testing results, and method of molecular analysis. All reported 

mutations were reviewed and updated to the current standard nomenclature. All data were 

analyzed and calculated by the authors to produce relevant statistics. 

CHAPTER 3: RESULTS 

3.1 Molecular Function of BAP1 

BAP1 was originally found to be a deubiquitinating protein, specifically in the carboxy-

terminus hydrolase subfamily, in 1998 (6). Ubiquitin is a small protein that has been found in 

almost all tissue types (ubiquitously) attached to proteins as a post-translational modification to 

mark them for degradation and/or suppress their expression. Deubiquitinases remove ubiquitin 
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via hydrolysis to return expression of these proteins to normal levels. When tumor suppressors 

are ubiquitinated their expression levels decrease, often-increasing cell proliferation and 

decreasing apoptosis rates, among other oncogenetic activities. Therefore, depending on their 

targets, deubiquitinases can act as tumor suppressors themselves. Although, earlier reports 

speculated that the BAP1 tumor suppressor function was through its deubiquitinating activity 

upon BRCA1, this was refuted and later studies have indicated that it is an independent tumor 

suppressor (7). Rather, BAP1 was found to interact with the BRCA1/BARD1 tumor suppressor 

heterodimer via the BRCA1 RING finger domain to regulate DNA damage response and cell 

cycle activities (8). 

 BAP1 has also been shown to be a tumor suppressor independently. Nuclear-localized 

BAP1 is upregulated and inhibits cell proliferation in BRCA1-deficient cells (7). RNAi for BAP1 

results in cell proliferation, supporting that BAP1 acts as a tumor suppressor in an independent 

fashion as well (9). Further, studies show that BAP1 acts as a coactivator of transcription by 

forming complexes with Host Cell Factor 1 (HCFC1) and Yin Yang 1 (YY1), among other 

coactivators including OGT, and FOXK1/2 (10). HCFC1 is known to advance the cell cycle at 

the G1/S phase by forming histone-modifying complexes. Given BAP1’s association with HCF1, 

it was suggested that BAP1 functions as a cell cycle regulator as well, specifically as a cell 

proliferation activator (11). A similar role for BAP1 was found with ASXL1; forming the 

Polycomb repressive deubiquitinase (PR-DUB) complex, involved in removing ubiquitin from 

H2A histones (12). This implies a wider and more nuanced role for BAP1 in cancer. Further, this 

suggests that BAP1 is itself regulated, possibly by a master regulator. BAP1 undergoes 

autodeubiquitination to avoid sequestration in the cytoplasm and enter the nucleus to regulate 

other genes, demonstrating that BAP1 regulates its own expression as well (13). 
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 BAP1 has also been implicated to function in DNA damage repair as it is phosphorylated 

and unbound from chromatin following UV-induced DNA damage and replicative stress (14). 

Eletr et al. implied three possible scenarios in its function. The first scenario involved replication 

or repair machinery being allowed access to DNA to fix the damage. The second scenario 

involved BAP1 activating transcription of DNA repair genes. Both of these scenarios repair 

DNA damage to prevent tumor formation. Lastly, it was also thought that BAP1 may be 

involved in inducing apoptotic signals in cells with severe DNA damage. This allows cells with 

heavy DNA damage that are susceptible to oncogenesis to undergo cell death before tumor 

formation. All of these scenarios show BAP1’s crucial role in cancer initiation or progression. 

BAP1 was found to be involved in DNA double stranded break repair in chicken DT40 cell lines 

through homologous recombination (15). Recently, germline mutations in BAP1 have been 

found to result in DNA double stranded break repair deficiencies (16). Thus BAP1 appears to 

play a vital and very broad role in cell proliferation and tumor suppression. 

3.2 Clinical Findings Reported in Families with Germline BAP1 Mutations 

While the full phenotype of BAP1 tumor predisposition syndrome has not been fully 

characterized, increased awareness and study involving the gene has resulted in new data. There 

have been a total of 51 families with 167 individuals reported to carry BAP1 mutations, found 

either by genetic testing or through obligate carrier status (see references below) (Table 1). Of 

the mutation carriers, 66 are male (40%), 93 are female (56%), and no gender information was 

reported for 8 patients. The data from reported cases suggests that hereditary cancers which are 

likely associated with BAP1 include UM, MMe of the pleura and peritoneum, CM, RCC, as well 

as characteristic benign cutaneous lesions referred to herein as atypical Spitz tumors (AST). UM 

is the most common cancer diagnosed in patients with germline BAP1 mutations with a total of 
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49 patients (29%) (2-5, 17-26). Fifty of the 51 families presented with one or more of the four 

main cancers (UM, MMe, CM, and RCC). In the remaining family, the proband with the 

truncating mutation, c. 214del, p. I72L*6, presented with AST and reported a family history of 

gastric cancer, but no other individual in the family was tested. It should be noted that not all 

reported cancers were confirmed by the authors. The Venn diagrams (Figure 1a, 1b, Figure 2) 

summarize the cancer histories reported in these families. While we tried to clarify the phenotype 

of BAP1-TPDS by comparing the frequency of cancers diagnosed in our cohort with the 

frequency of those cancers in the general population by the Surveillance, Epidemiology and End 

Results (SEER) database, this is an imperfect comparison as our cohort consists of patients 

reported throughout the world while SEER only tracks diagnoses in the United States. 

Tumor studies were also commonly conducted in both germline mutation carriers and in 

sporadic tumors. Biallelic inactivation in germline mutation carriers was commonly reported 

among tumors thought to be BAP1 related and is a strong indication that a particular tumor may 

have been caused by a gene mutation. Further, protein studies on tumors in mutation carriers also 

indicate lack of BAP1 protein expression, indicating loss of the wild-type allele. This also fits 

Knudson’s two hit model of tumor suppressors. Somatic BAP1 mutations and lack of BAP1 

protein expression have also been observed in sporadic tumors and implicate BAP1 involvement 

in the tumor.  

3.3 Common BAP1-TPDS Tumors 

3.31 Uveal Melanoma 

 UM, the most common ocular malignancy in adults, has been shown to be associated 

with both germline and somatic BAP1 mutations (Table 2). Forty nine (29%) of reported BAP1 

carriers have had a diagnosis of UM (2-5, 17-30). Twenty two (45%) were male, 25 (51%) were 
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female, and 2 patients did not have gender information reported. The incidence of UM in patients 

with germline BAP1 is much higher than the 5.1 diagnoses per million people in the general 

population, suggesting UM is a common feature of BAP1 (31). 

The earliest age of onset in a BAP1 carrier is reported in a UM at age 16 and there have 

been a total of 4 UMs diagnosed by age 20 (19, 21, 24, 28). In fact, the median age of onset is 

earlier in UM patients with germline BAP1 mutation (51 years, range 16 – 72) compared with the 

general population (62 years), suggesting that germline BAP1 mutations predispose to the cancer 

(32) 

Beyond epidemiologic data, there is good molecular evidence that UM is associated with 

the BAP1-TPDS. Genetic analysis of UM tumor tissue (DNA sequencing, microsatellite markers, 

or SNP analysis) has been performed in at least 7 patients with germline BAP1 mutations. This 

work showed loss-of-heterozygosity (LOH) or loss of expression of the wild type allele, adding 

further support for the inclusion of UM in the phenotypic spectrum of the BAP1-TPDS (2, 4, 17, 

19, 21, 24). 

Somatic mutations of BAP1 have also been widely reported in UM (Table 3). Seven out 

of 15 (47%) UM tumors in mouse models were found to have somatic mutations through DNA 

sequencing (33). Small interfering RNA (siRNA) knockout of BAP1 in 3 human UM cell lines 

induced a stem-cell like phenotype in melanoma cells and decreased cell proliferation, 

suggesting that BAP1 functions in a manner uncharacteristic of traditional tumor suppressors 

(34). Further, 153 out of 725 (21%) human UM tumors tested via tumor sequencing showed 

somatic mutations in BAP1 (4, 17, 35-39). Koopmans et al. showed these somatic mutations 

were also correlated with a lack of BAP1 protein expression in the tumor as 30 of 35 (86%) 

tumors with somatic mutations also lacked BAP1 staining by immunohistochemistry (38). In 
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addition, a total of 73 out of 174 (42%) other UM tumors have lacked BAP1 expression upon 

immunohistochemistry (38, 40-42). This makes UM the most firmly established cancer type in 

BAP1 tumor predisposition syndrome. 

3.32 Malignant Mesothelioma 

 MMe can be diagnosed in multiple sites, most commonly the pleural lining of the lung, 

but also in the peritoneum. Both sites have been implicated in germline BAP1 carriers. A total of 

39 patients (23%) with germline mutations have been diagnosed with MMe (2-5, 19, 22, 26, 29, 

30, 43, 44). Twenty six patients (67%) were reported to have pleural MMe, 12 patients (31%) 

had peritoneal MMe, and 1 patient had diagnoses of both pleural and peritoneal MMe. Twelve  

(31%) of these patients are male and 27 (69%) patients are female. Interestingly, all 13 patients 

reported to have diagnoses of peritoneal MMe are female, while peritoneal MMe is slightly more 

commonly diagnosed in males (45). 

Another finding in this subset of patients is the high frequency of multiple cancers. 

Excluding cases of multiple MMe, 14 patients (36%) have been diagnosed with another primary 

cancer in addition to MMe. Of the second cancers, the co-occurrence of UM and MMe is a 

strong indicator of the BAP1-TPDS. The diagnosis of UM occurred in 5/39 (13%) of the MMe 

patients with a germline BAP1 mutation. In addition, Testa et al. found only 2 of 26 tested 

sporadic MMe patients with asbestos exposure carried germline BAP1 mutations. Upon further 

analysis it was determined those were the only two patients in the cohort with prior diagnoses of 

UM (3).  

Similar to the earlier onset of UM, the median age of diagnosis for MMe among the 

germline BAP1 mutation carriers was 56 (range 34 – 85) years, which is much earlier than onset 

in the general population (74 years) (46).  
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Studies on MMe tumor tissue from patients with germline BAP1 mutation add further 

support for the cancer type to be included in the spectrum of cancers associated with BAP1 

mutations. MMe tumors from 7 germline BAP1 mutation carriers have been shown to have loss 

of the wild type BAP1 allele or its expression as seen via tumor DNA sequencing, array-

comparative genomic hybridization, and/or absent staining for BAP1 via immunohistochemistry 

(3, 44). 

Asbestos exposure is a strong predisposing factor for MMe development in the general 

population, and an interaction with germline BAP1 mutation might result in an additive or 

synergistic effect. Testa et al. detected asbestos traces in homes of all affected family members in 

both of the families they report with germline mutations (3). Interestingly, Arzt et al. found no 

statistically significant effect of asbestos exposure on BAP1 protein expression and any potential 

mechanism of how asbestos and BAP1 may interact is unknown (47).  

 Somatic BAP1 mutations have also been reported in presumably sporadic MMe (Table 

3). A total of 162 of 406 (40%) MMe tumors were found to have BAP1 mutations via tumor 

DNA sequencing (3, 48-52). Of these, 14 tumors (5%) had biallelic BAP1 mutations (49). In 

addition, 156 of 314 (50%) MMe cell lines or tumor tissues lacked BAP1 expression by 

immunohistochemistry (3, 43, 47-49, 52, 53). Sequencing of MMe cell lines and fluorescence in-

situ hybridization (FISH) analysis showed somatic mutations in BAP1 in 10 of 30 (33%) lines 

and loss of BAP1 in 6 of 25 (24%) lines tested, respectively (48, 49). 

3.33 Cutaneous Melanoma 

CM is a common skin malignancy in the general population. Although CDKN2A 

mutations are a common factor in familial CM, BAP1 is also a likely contributor to hereditary 

CM. There are 23 (14%) reported patients with CM diagnoses out of a total of 167 patients with 
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germline BAP1 mutations (2, 4, 5, 18, 21). Thirteen (57%) reported patients are male and 10 

(43%) are female. The median age of diagnosis in BAP1 patients is 46 (range 25 – 72) years, 

much earlier than in the general population which is estimated at a median of 58 years (54). 

Notably, five (22%) of these patients have had multiple diagnoses of CM with a maximum of 7 

melanomas in a single patient (5, 18, 19). Further, 11 (48%) have had CM diagnosed in addition 

to another cancer (4, 5, 18, 29, 30, 44). Tumors from 4 of these patients show LOH and/or loss of 

expression of BAP1 via DNA sequencing, array-based comparative genomic hybridization, and 

negative staining by immunohistochemistry (4, 18, 44). Njauw et al. noted three families 

carrying germline mutations had diagnoses of nevoid type CM, a particularly rare subtype. 

Follow-up of these tumors revealed they were characterized by distinctly semitransluscent 

orange-red pigmentation and had high levels of Ki67 staining. These lesions were distinct from 

traditional CMs and may be related to AST (18).  

Somatic mutations in CM have also been noted in patients without germline mutation, 

indicating BAP1 may be involved in the pathogenesis of the malignancy (Table 3). A total of 3 of 

60 (5%) tumors were found to have somatic BAP1 mutations and 11 of 238 (5%) tumors were 

found to lack BAP1 staining by immunohistochemistry (4, 55, 56). This data indicates BAP1 

may be involved in the pathogenesis of the malignancy. 

3.34 Renal Cell Carcinoma 

Clear cell RCC is the most common primary malignancy of the kidney in the general 

population. Recently strong data suggesting a correlation between RCC and BAP1 has been 

published (Table 2). Seventeen (10%) BAP1 patients have been reported with RCC out of 167 

total patients with germline BAP1 mutations (3, 5, 18, 26, 57, 58). Seven (50%) reported patients 

are male, 7 (50%) female, and 3 reported cases did not include gender. The median age of onset 
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for RCC among BAP1 carriers is 47 (range 36-72) years, which is much earlier than in the 

general population, (64 years) (54). 

Tumor tissue studies in these patients also support the inclusion of RCC in the spectrum 

of tumors caused by BAP1. A total of six tumors in five of these germline patients were tested 

via SNP arrays, tumor DNA sequencing, and/or immunohistochemistry and all were found to 

have LOH or loss of protein expression in the tumor (5, 57).  

Somatic studies on RCC tumors also support an association (Table 3). A total of 249 of 

2483 (10%) renal tumors studied by tumor DNA sequencing or whole exome sequencing were 

found to carry somatic BAP1 mutations, while 273 out of 2343 (12%) tumors studied by 

immunohistochemistry had no BAP1 expression  

3.35 Cutaneous Melanocytic Lesions 

BAP1-TPDS is associated with a distinct subset of benign skin lesions located on the skin 

of the head and neck, trunk and limbs. There has been a range of names given to these, including 

melanocytic BAP1-mutated atypical intradermal tumors (MBAITs), AST and nevi, Wiesner nevi, 

and nevoid melanoma-like melanocytic proliferations (NEMMPs), but will be referred to herein 

as AST as these lesions fit closest clinically and pathologically to this designation, though they 

constitute a distinct subgroup (18, 59-61). These lesions are well-circumscribed dome shaped, 

skin-colored or reddish-brown nodules with average size of 5 mm. They widely range in number 

in patients and in different family members. Morphologically, the lesions are mostly located 

intradermal with occasional cases of involvement of the junctional epidermis and show 

cytological features resembling atypical Spitz nevi (62). These lesions are characterized by 

biallelic inactivation of BAP1 and frequent BRAFV600E mutation and both can be reliable markers 

for aiding in the diagnosis (61). 
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The prevalence of AST in BAP1-TPDS is unclear as in the majority of reported patients, 

these lesions were not carefully assessed. Out of 43 germline BAP1 patients where these lesions 

were assessed there have been a total of 31 patients (72%) with AST (4, 18, 19, 21, 25, 27, 30, 

44, 59). At least 11/31 (35%) of these patients had multiple lesions, with a range of 2 to more 

than 50 (4, 5, 18, 27, 29, 44). The median age of diagnosis of AST in germline BAP1 carriers 

was 42 years old. However, the median age of onset may actually be much younger due to the 

difficulty of diagnosis. Although their natural history is unknown, Busam et al. found AST to be 

present since childhood in one germline BAP1 mutation carrier (27, 63). Fourteen/31 (45%) of 

these patients have been diagnosed with cancer in addition to AST (4, 5, 18, 21, 29, 30, 44). 

Loss-of heterozygosity in the tumor was confirmed in 22 neoplasms in 3 germline mutation 

carriers from one family (4).  

Lesions with similar morphological and molecular alterations were also reported in patients 

with no germline BAP1 mutation (4, 56, 61, 63-67). Given the unique clinical, morphological 

and molecular characterization of these subtype of AST and the high frequency of these lesions 

in patients with germline BAP1 mutation it is highly recommended that ASTs in particular those 

with a prominent epithelioid component be screened for BAP1 status by immunohistochemistry. 

If BAP1 loss is detected, referral for genetic counseling and germline BAP1 testing should be 

considered (55). 

3.4 Uncommon BAP1-TPDS Tumors 

3.41 Basal Cell Carcinoma 

Eleven germline BAP1 mutation carriers from seven unrelated families had BCC (7%) 

(Table 2) (3, 24, 29, 30). Seven of these 11 (64%) patients presented with more than one tumor, 

with one patient presenting with 13 tumors.  Immunostaining revealed complete or partial loss of 
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BAP1 protein in all of the 19 tested tumors from two patients with germline BAP1 mutations but 

in none of the 22 tumors from individuals with no germline BAP1 mutation (29).  Thus, although 

there is a high incidence of BCC in the general population and the strong association with sun 

exposure makes it difficult to assess a possible association, the biallelic inactivation of BAP1 in 

BCC tumors from a subset of patients with germline BAP1 mutation suggests that BCC may be a 

feature of the BAP1-TPDS phenotype.  

3.42 Breast Cancer 

 BAP1’s role in hereditary breast cancer has been suspected, given its interaction with the 

breast cancer tumor suppressor BRCA1. However, data are somewhat conflicting as to whether 

breast cancer is part of the BAP1 tumor predisposition syndrome (Table 1). There are a total of 

9/93 (10%) of the female patients with BAP1 germline mutations with diagnoses of breast 

cancer, including a newly tested member of a previously reported family, (FUM104, IV.1) (3, 5, 

18, 19, 26, 30). One of these patients has had bilateral breast cancer (5). This is slightly lower 

than the approximately 12.3% risk of  developing breast cancer for women in the general 

population (54). However, since this is compared to a quoted lifetime risk, the proportion of 

BAP1 carriers with breast cancer may also grow as germline BAP1 mutation carriers from our 

cohort may very well develop breast cancer in the future. The median age of onset based on ages 

reported for 5 of these patients is 58 years (range 37 – 85), while 2 of these patients (including 

the patient with bilateral breast cancer) are only reported as “early onset”. Molecular studies on 

tumor tissue were performed on two of these patients using tumor DNA sequencing and 

immunohistochemistry. These tests showed loss of the wild type allele and loss of BAP1 staining 

indicating biallelic inactivation (5). However, germline BAP1 mutations are not common in 

breast cancer despite family histories consistent with a TPDS. For example, studies have shown 
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only two synonymous, non-truncating germline BAP1 variants and no truncating mutations in a 

total of 330 breast cancer patients with high predisposition to breast cancer, including 143 

patients who tested negative for mutations in the traditional breast cancer predisposition genes, 

BRCA1 and 2 (5, 68, 69). Somatic studies have also shown a lack of association between BAP1 

and breast cancer (70) (Table 3). Je et al. found no somatic BAP1 mutations in breast cancers 

from 45 Korean patients without germline mutations. Thus, while rates of breast cancer may be 

elevated in patients with germline BAP1 mutation, the finding of BAP1 mutation in breast cancer 

is rare and more research must be conducted to clarify the association of BAP1 mutation and 

breast cancer. It should be noted that BAP1 has been recently added to some of the multigene 

panels offered by several clinical laboratories including those for breast cancers.   

3.43 Lung Carcinoma 

There have been 6 reported cases (4%) of lung adenocarcinoma in germline BAP1 

mutation carriers and no reports of small cell or squamous cell carcinoma (2, 18, 19, 24). There 

were no reports on the patients’ smoking status. Tumor testing revealed LOH in one of these 

tumors as well as lack of BAP1 staining by immunohistochemistry (2). Somatic studies of BAP1 

in unselected lung cancer found a low mutation rate as Jensen et al. found 1 somatic mutation of 

44 (2%) small-cell lung cancer tissues tested, and 1 somatic mutation of 33 (3%) non-small cell 

lung cancers tested (6). However, lung cancer cell lines in mice were found to have an increase 

in tumorigenicity after BAP1 knockout (7).  Further, immunostaining showed a high rate of 

BAP1 loss in lung adenocarcinoma compared with squamous cell carcinoma (78% vs 46%) and 

there was a significant association between BAP1 loss and histological type as well as tumor 

aggressiveness (71).  This suggests that in lung cancer, mechanisms other than direct gene 
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mutation play a crucial role in BAP1 protein loss. Further studies are needed to assess the 

possible association of BAP1-TPDS with lung adenocarcinoma.   

3.44 Cholangiocarcinoma 

 Cholangiocarcinoma is a rare, particularly aggressive form of cancer and evidence for its 

association with BAP1 is growing (Table 2). There have been only four patients (2%) with 

germline mutations diagnosed with cholangiocarcinoma (18, 25, 26, 30). However, low survival 

rates may mean patients diagnosed with cholangiocarcinoma are not tested, possibly deflating 

carrier statistics. Unfortunately, tumor studies were only done for one of these patients, which 

showed that the metastatic cholangiocarcinoma retained the wild type allele as seen by tumor 

DNA sequencing, but the tumor showed loss of nuclear localization of BAP1 (26). Among 

presumably sporadic patients, there have been a total of 32 cholangiocarcinoma tumors that were 

found to have somatic BAP1 mutations out of a total of 283 tumors studied (11%) via tumor 

DNA and Next-Generation Sequencing (72-74). This may indicate that BAP1 is involved in the 

tumorigenesis of cholangiocarcinoma (72-76) (Table 3).  

3.45 Meningioma 

Two patients presenting with meningioma were found to carry BAP1 mutations and for 

one of these patients a second-degree relative also had a meningioma, but was not tested for 

BAP1 (2, 29). Tumor studies were conducted for one of these patients and biallelic inactivation 

of BAP1 was confirmed through lack of BAP1 staining via immunohistochemistry. Though 

malignant meningiomas occur infrequently, pathological examination of a metastatic tumor from 

the other patient with a germline BAP1 mutation suggested that the primary tumor was a 

papillary meningioma (30).  

3.46 Other Tumors 
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  A number of other tumor types that have been reported in germline BAP1 mutation 

carriers; however there is a limited amount of data supporting their inclusion in BAP1-TPDS and 

continued research is needed (Table 1).  

 There have been 3 reported diagnoses (2%) of non-specific abdominal carcinomas among 

germline BAP1 mutation carriers, one of which was felt to be an ovarian cancer by the authors 

(2, 24, 26). Three patients (3% of females) with germline BAP1 mutations have been diagnosed 

with ovarian cancer, including a newly tested patient from a family previously reported by our 

group (FUM104, III.8) (2, 3, 26). There have been single patients with germline BAP1 mutations 

with diagnoses of cervical cancer, unspecified pancreatic cancer, squamous cell carcinoma, 

unspecified thyroid cancer, and urothelial (transitional cell) carcinoma; however no tumor tissue 

was available to confirm BAP1 involvement (3, 5, 25). The mutation carrier diagnosed with 

urothelial (transitional cell) carcinoma was also diagnosed with UM with liver metastasis (25). 

There have been a few germline mutation carriers diagnosed with a range of sarcomas including 

leiomyosarcoma, malignant fibrous histiocytoma, spinal bone cancer, and spindle cell type soft 

tissue sarcoma (3, 19, 26). No tumor studies were conducted on the histiocytoma; however 

metastatic tissue from the same patient did not show somatic loss of the wild type allele in the 

tissue (19). Two germline mutation carriers presented with neuroendocrine cancers, including 

paraganglioma of the pericardium. Tumor studies from the paraganglioma tissue showed LOH 

via tumor DNA Sanger sequencing (19). 

One patient with a germline BAP1 mutation was diagnosed with a colorectal cancer, but 

no tumor was available for study (26). Somatic studies of BAP1 have also been done on 

unselected colorectal cancer cases, with inconsistent results: 1/45 tumors showed a somatic 
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mutation while 5/252 tumors showed loss of BAP1 staining and 127/260 tumors showed low 

staining (70, 77).  

There has been one patient with a germline BAP1 mutation that was diagnosed with a 

prostate cancer, though no tumor testing was done (21). In a cohort of Korean patients, Je et al. 

found no somatic BAP1 mutations in 45 prostate tumors using tumor DNA sequencing (70). 

Many of these tumor types occur frequently in the general population and it is possible 

they arose coincidentally in germline BAP1 mutation carriers. As such it is difficult to be certain 

these cancers are a feature of the BAP1 phenotype. 

3.5 Germline BAP1 Mutation and Tumor Aggressiveness 

There is evidence that patients with germline BAP1 mutations tend to have more 

aggressive cancers with higher tumor staging and a greater likelihood of metastasis. Germline 

mutation results in higher rates of metastasis in UM, especially to the liver, with  Njauw et al. 

finding 4 of 50 metastatic UM patients carried germline mutations as compared to 0 of 50 in a 

non-metastatic cohort (18). 

Tumors with somatic BAP1 mutations have also demonstrated larger tumor sizes, more 

aggressive disease with poorer oncological outcomes, and higher rates of metastasis (58, 78-80). 

Somatic BAP1 mutations are observed more frequently in the more aggressive “class 2” UM 

tumors (84%) as compared with the less aggressive “class 1” tumors (4%) (17). It was suggested 

that the single “class 1” tumor with a BAP1 somatic mutation in this study was in transition to 

becoming a “class 2” tumor, implicating BAP1 mutation as a precursor event to “class 2” tumor 

status. The five “class 2” tumors not found to have somatic mutations had low levels of BAP1 

mRNA expression, suggesting epigenetic inactivation. Somatic BAP1 mutations may also define 

a separate class of MMe tumors. de Reynies et al. found that somatic BAP1 mutations in MMe 
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were strongly connected with a new subset of epithelioid MMe defined as “class 1” by molecular 

profile, which showed better prognoses and higher mutation rates than “class 2” MMe. In their 

cohort of 104 tumors, 87% of class 1 MMe harbored somatic BAP1 mutations whereas only 37% 

of class 2 MMe had BAP1 mutations (50). These findings stand in contrast to UM, tumors in 

which the more aggressive tumors, designated “class 2” by gene expression profile had high 

frequency of somatic BAP1 mutation, epithelioid cell type, and worse disease prognosis. 

Interestingly, BAP1 mutations are characteristic of epithelioid morphology in both UM and 

MMe. BAP1 mutations seem to characterize different classes of tumors in CM as well. Murali et 

al. found that absent staining for BAP1 by immunohistochemistry was seen more frequently in 

desmoplastic melanomas (22%) than in other CM subtypes (3%) (55). It is possible that BAP1 

loss is a feature inherent to desmoplastic melanomas specifically (81). Similar findings were 

reported in RCC as Pena-Llopis et al. showed RCC tissues rarely harbored coexisting somatic 

BAP1 and PBRM1 mutations, but rather there was strong histological distinction in the tumors 

depending on the mutant gene (82). RCC tumor staging in patients with germline BAP1 

mutations was variable: 3 tumors were Fuhrman grade III, 4 tumors were grade II, 3 tumors were 

grade I-II, and 1 was grade I (5, 57).Characterization of separate classes of UM, MMe, CM and 

RCC tumors by mutational profile could provide valuable diagnostic and prognostic indicators 

for clinicians.  

Studies with regard to survival have also pointed to shorter survival in patients with 

tumors exhibiting somatic BAP1 mutations or lack of BAP1 expression. Tissue microarray 

(TMA) studies of primary UM showed mean survival in patients that did not have BAP1 protein 

expression was 4.74 years as compared to 9.97 years in patients with UM tumors with BAP1 

protein expression (41). In CM, tumors with low BAP1 expression tends to have poorer 
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outcomes; however BAP1 has also been seen to play a survival role in melanoma cells as BAP1 

depletion reduces proliferation and increases apoptosis rates while resuming metabolism of 

survivin (81). Similarly, Hakimi et al. found an average of 31.2 months survival in RCC patients 

with somatic BAP1 mutations as compared to 78.2 months survival in patients whose tumor 

tested wild type for BAP1 in a cohort of 421 patients (83). Kapur et al. determined similar 

survival rates with an average of 1.9 years survival in RCC patients with tumors with somatic 

BAP1 mutations versus 5.4 years survival in patients with tumors with PBRM1 mutations in a 

cohort of 327 patients (84). A second, smaller cohort of 145 patients in the study showed 4.6 

years survival in BAP1 mutant tumors versus 10.6 years survival in PBRM1 mutant tumors. 

In contrast to the data that germline BAP1 mutation portends a worse prognosis in UM, 

CM, and RCC, survival in patients with germline BAP1 mutations developing MMe suggest that 

these patients have longer overall survival as compared with sporadic MMe patients. Baumann et 

al. found 7-fold longer survival in a cohort of 23 mesothelioma patients with germline BAP1 

mutations. Patients with germline BAP1 mutation and peritoneal mesothelioma also exhibited 

improved survival as compared to patients with pleural mesothelioma (85). Long term survival 

and well-differentiated tumor histology were also observed in one of our patients with MMe 

(FUM064, III.12). Similar findings were reported in two patients from another family. The 

mutations reported in the two families with well-differentiated MMe were truncating, c. 

758_759insA, p. Gln253fs*31 and c. 2050C>T, p. Gln684*. The c. 2050C>T, p. Gln684* 

mutation was also carried by several other family members with aggressive cancers including 

UM, bone cancer, and abdominal cancer. The molecular mechanism of such variation in 

aggressiveness between MMe and other cancers such as UM, CM, and RCC is not clear. It has 

been suggested that these cancer cells are more susceptible to therapy. 

21 
 



3.6 Penetrance of BAP1-TPDS 

Current evidence suggests that the penetrance of BAP1 mutations is high with 153/167 

(92%) germline BAP1 mutation carriers affected with cancer (5, 18, 19, 21, 26). Although ages 

for unaffected individuals were not reported, estimates based on the pedigrees placed an average 

unaffected age in the late 50’s. However, it should be noted that several reported unaffected 

carriers are young and therefore may develop cancers in the future. One BAP1 patient (FUM036, 

III.9) previously reported to be unaffected by our group subsequently developed MMe at age 60 

and passed away (2). Additionally, two newly tested members of families previously reported by 

our group were found to carry the family mutations and remain unaffected at ages 47 and 35, 

respectively (FUM103, III.3; FUM152, III.2) (26, 28).  

It is likely, however, that these penetrance data are inflated by test bias since the patients 

and family members who get tested are generally those affected by cancer. Out of the 51 

reported families, in 25 only the affected proband was tested, and only 17 families had more than 

3 individuals tested. This selection bias inflates penetrance data and the true penetrance for BAP1 

mutations may well lie lower than that calculated from current reported cases. 

The average age of cancer onset in BAP1 mutation carriers is 50 years with a range of 16 

to 85 years. The earliest reported age was for UM (21). Benign cutaneous lesions, which are 

characterized by somatic BAP1 loss, were present since childhood in at least one patient (27, 63). 

The natural history of these lesions is unknown, however. Aside from MMe, the other BAP1 

tumors all exhibit a significantly earlier age of onset as compared to tumors arising in the general 

population, supporting BAP1’s role in cancer predisposition (Table 2). 

3.7 Genotype-Phenotype Correlation 
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Out of 51 families, 44 had unique mutations, two families had the c. 2050C>T, p. 

Gln684* mutation, 2 families had the c. 1882_1885delTCAC, p.Ser628Profs*8 mutation, while 

three families had the c. 178C>T, p. Arg60*mutation. Discussions between the authors 

concluded the families carrying the c. 2050C>T, p. Gln684*and c. 1882_1885delTCAC, p. 

Ser628Profs*8 mutations were unrelated. Discussions between the authors and further testing 

suggested that the two families from Denmark carrying the c. 178C>T, p. Arg60*mutation were 

related, whereas the family carrying the mutation from the United States was not (3, 18, 26, 30). 

This could indicate a possible founder mutation or mutational hotspots.  

The vast majority (34/48, 71%) of the reported mutations were truncating, 9 (19%) were 

missense mutations thought to be pathogenic, and 8 (17%) were splice-site variations. Five of the 

splice site variations also caused protein truncation. Thus 18% of the reported germline 

mutations are missense mutations and 76% cause protein truncation. All the truncating mutations 

were proximal to the location of the nuclear localizing regions of BAP1.  

With the exception of one patient, all reported pathogenic mutations in BAP1, including 

truncating, missense, and splice site mutations, were associated with at least one of the four 

cancers, UM, CM, RCC, and/or MMe, in the family (Figure 3). All four cancers were observed 

with all different classes of mutations. Taken together, the available data suggest no clear 

genotype-phenotype correlation between type or location of the mutation and the type of cancer 

in the patients.  

Aoude et al. reported an interesting family with seven individuals with UM and a splice 

site variant in BAP1, c.581-2A>G. The variant was predicted to cause splicing out of exon 8 

leading to a premature truncation, but the observed splice product was smaller than would be 

predicted. In addition, one of the four UM patients who were tested was negative for the variant. 
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Although the authors concluded that the BAP1 c.581-2A>G variant was deleterious and the non-

carrier member was a sporadic case of UM occurring within a hereditary family, it should be 

noted that a genome wide linkage analysis of the same family found linkage to chromosomal 

region 9q21 suggesting the existence of another candidate gene in that family (86). Hence, 

another plausible explanation of their observation is that the c.581-2A>G variant was unrelated 

or modulates the effect of an undiscovered gene predisposing to cancer in this family.  

CHAPTER 4: DISCUSSION 

4.1 Genetic Counseling and Patient Management 

 Since 125 of 167 (75%) reported patients with BAP1 mutations were diagnosed with UM, 

MMe, CM, RCC, and/or BAP1 deficient atypical Spitz tumors, and 93% of these families had at 

least two of these tumors in first or second degree relatives, we feel that genetic assessment and 

testing for BAP1 mutations should be considered in patients with personal or family histories of 

two or more of these tumors in first or second degree relatives (with the exclusion of families 

with only multiple CM cases). Though a recent article recommended BAP1 testing in families 

with 2 or more cases of CM diagnosed before age 75 in first or second degree relatives, we feel 

this is overly broad given the high frequency of CM in the general population and the low 

likelihood that these families carry BAP1 mutations (87). Further, Harbour et al. suggested 

testing guidelines be extended to include family histories of one UM and two or more primary 

cancers of any type (88). Once again, we feel this recommendation is overly broad as there is not 

sufficient evidence at this time supporting the involvement of other cancers of any type. Only 1 

out of 44 BAP1 mutation families with reports of family history presented with UM and other 

cancers that weren’t the common BAP1 tumors. Since only one family presented with only 2 
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cases of CM and no history of the other BAP1 cancers, 91% of reported families would have 

been detected with our suggested criteria.  

Families in which a germline BAP1 mutation is found should receive counseling 

regarding cancer risk management options and risks to family members. Testing of at-risk family 

members is indicated since the syndrome follows an autosomal dominant inheritance pattern and 

first degree relatives have a 50% risk of inheriting the mutation. Although evidence-based 

management recommendations have not been established, the cancer risks in these families 

cannot be ignored. As such, regular examinations to facilitate early diagnosis, and thereby 

improved prognosis, are necessary. Although the recommended ages to begin screening given 

below are based on currently reported ages of diagnoses, if an individual family has a member 

diagnosed at an even earlier age for a specific cancer, screening for that cancer should begin for 

other members of that family about five years before that age of diagnosis. 

Yearly ophthalmic screenings with dilated examination and ophthalmic imaging are 

recommended due to the high risk for development of UM. As the earliest reported case of UM 

in a BAP1 mutation carrier was diagnosed at age 16, we suggest that these ophthalmic screenings 

begin at age 11 and should be performed by an ocular oncologist. Any nevi detected should be 

monitored with imaging at least every 6 months and considered for early treatment, given the 

association of BAP1 mutation with elevated metastatic risk in UM. For patients with UM and 

germline BAP1 mutation, we recommend screening for metastasis similar to what is currently 

recommended for high-risk class 2 patients. This includes screening every 3-6 months with liver-

directed imaging (e.g., abdominal ultrasound, computed tomography (CT), or magnetic 

resonance imaging (MRI) which is most sensitive) since metastatic spread from UM is most 
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frequent to the liver. Additionally, we recommend pulmonary imaging by CT or chest X-ray 

every 6-12 months to detect pulmonary metastasis. 

Unfortunately, screening for MMe is difficult. According to the National Comprehensive 

Cancer Network (NCCN) guidelines, there is no data indicating that screening improves survival 

in MMe patients with asbestos exposure (89). Currently, it is unknown whether screening could 

impact patients with germline BAP1 mutation, particularly since nearly 1/4 of identified germline 

carriers developed MMe and since they may have lower grade disease.  Interestingly, Faig et al. 

report that survival is improving for peritoneal MMe, and possibly for pleural MMe patients to a 

lesser extent, and suggest that newer therapies play a role in this improvement (90). 

The radiological features of MMe include peritoneal/pleural thickening and effusion. 

Importantly, biomarker tests are in development to improve early detection for MMe (91, 92).   

Thus, although this field is in flux, we recommend that the risk for developing MMe 

should be discussed with patients so they are on the lookout for symptoms and they should have 

a yearly physical examination whether they have symptoms or not. It has been suggested that 

MRI exams can aid in diagnosing peritoneal MMe and it is possible that patients followed for 

our RCC screening guidelines can also be screened for any peritoneal MMe development 

simultaneously (93). CT and chest X-rays have also been used in screening programs for MMe, 

but as a word of caution, given the potential role of BAP1 in DNA repair pathways, frequent 

radiation-based imaging modalities should be avoided when possible in these patients (15, 16). 

BAP1 mutation carriers are at increased risk for the development of both CM as well as 

atypical melanocytic nevi. Thus we recommend yearly full body dermatological screenings 

beginning at age 20, which is five years before the earliest reported case of CM in a BAP1 

mutation carrier. This parallels recommendations for carriers of germline mutations in the 
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CDKN2A gene made by The International Melanoma Genetics Consortium. Carriers are also 

instructed to conduct self-skin examinations following the ABCDE characteristics of melanoma 

and to use sun protection (94, 95).  

Atypical Spitz tumors with BAP1 loss are characteristic in families with germline BAP1 

mutations and can be used as a diagnostic marker. As diagnosis of the AST found in BAP1-

TPDS cannot be made through clinical features alone, patients found to harbor atypical Spitz 

tumors upon dermatological screenings should receive immunohistochemical staining for BAP1 

and BRAF mutation testing through pathological examination, especially if the lesions carry a 

prominent epithelial component (55). Patients with atypical Spitz tumors with BAP1 loss should 

be referred for genetic counseling and germline BAP1 testing. 

Consensus screening recommendations for RCC in at-risk patients in the general 

population have not been established. However, germline mutations in the VHL gene have been 

found to contribute risk for development of RCC in patients with von Hippel-Lindau (VHL) 

disease. To manage risk for development of RCC in VHL, it has been recommended that patients 

undergo yearly abdominal ultrasound examinations as well as abdominal magnetic resonance 

imaging (MRI) every 2 years (96). Until further data are available to direct management, we 

recommend considering this screening protocol for patients with BAP1 mutations. Since the 

earliest reported RCC in BAP1-TPDS patients was at age 36 years we recommend starting the 

screening at age 31 years. 

4.2 Potential Adjuvant Therapy 

 Since BAP1 research is still in its early stages and clinical applications are only recently 

being explored, there are currently no FDA-approved targeted treatments for BAP1-driven 

malignancies. Intriguingly, however, preliminary attempts at discovering therapies have shown 
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modest success in UM. Landreville et al. performed in silico and in vitro screens for treating 

class 2 UM with BAP1 loss and found histone deacetylase (HDAC) inhibitors to have anti-tumor 

activity. Specifically, BAP1-depleted UM cell lines were found to halt proliferation and tumor 

growth when exposed to the HDAC inhibitors valproic acid (VPA), trichostatin A (TSA), and 

LBH-589. TSA and LBH-589 also increased apoptosis rates, while VPA-treated cells returned to 

a class 1 (less aggressive) gene expression profile, regaining melanocytic differentiation (97). 

Tumors that may respond to such therapy may be recognized through detection of diminished 

BAP1 protein or RNA levels in tumor tissue. Currently a phase II clinical trial (NCT01587352) 

is on-going utilizing vorinostat in treating patients with metastatic UM. It will be interesting to 

see the impact of this agent in the adjuvant setting. A recent United States provisional patent 

submission (62/014,594, SK2014-029) by the Memorial Sloan Kettering Cancer Center aims at 

adapting an EZH2 inhibitor therapy, which is being used in Phase I/II trials for non-Hodgkins 

lymphoma patients, towards patients with BAP1-deficient tumors. The rationale for this use lies 

in BAP1’s function in forming the PR-DUB complex with ASXL1 and deubiquitinating H2A. 

EZH2 is upregulated when H2A is aberrantly hyperubiquitinated, as is the case in BAP1 

mutation (98). EZH2 inhibitor therapy may restore EZH2 expression to normal levels. No data 

for the use of this therapy in BAP1-driven tumors have been published, however. 

4.3 Conclusions 

 UM, MMe, CM, RCC, and atypical Spitz tumors are clearly established as part of the 

phenotypic spectrum associated with germline BAP1 mutations. Although other cancers, in 

particular breast cancer, lung adenocarcinoma, and cholangiocarcinoma might be associated at 

low frequency, further studies are needed to fully define the clinical phenotype of the BAP1-

TPDS. Although UM, CM, and RCC tumors in patients with germline BAP1 mutations tend to 
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be more aggressive and have poorer oncologic outcomes, for unknown reasons patients with 

diagnoses of MMe tend to have longer survival. There appears to be no genotype-phenotype 

correlation with this syndrome, as mutations in all domains of the BAP1 gene have been seen in 

patients. Penetrance for the gene appears to be high, but ascertainment bias makes it difficult 

currently to establish accurate estimates of cancer risk. Nonetheless, increased screening is 

indicated, particularly for skin and eye cancers.
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CHAPTER 5: TABLES AND FIGURES 

5.1 Table 1 

Table 1: Personal and family cancer histories of all reported families with BAP1 mutations. 
Family/ 
Case 

Cancers in patients with 
BAP1 mutation (Age of 
diagnosis) 

Mutation Mutation 
Classification 

Other Reported 
Cancers/Features in 
untested family members 

Reference 

MM087 UM (53) c. 1318_1319insA 
p. Glu402fs*2 

Frameshift - 
Truncating 

N/A Harbour et al., 2010 (17) 

SP-002 MMe (55), UM, 
leiomyosarcoma 

c. 1717delC 
p. Leu573Trpfs*3  

Frameshift - 
Truncating 

N/A Testa et al., 2011 (3) 

SP-008 MMe (63), UM c. 1882_1885delTCAC 
p. Ser628Profs*8  

Frameshift - 
Truncating 

N/A Testa et al., 2011 (3) 

Family L MMe (50, 59, 63), UM, 
Non-melanoma Skin Ca, 
Pancreatic Ca  

c. 2050C>T 
p. Gln684* 

Truncating MMe, UM, Prostate Testa et al., 2011 (3) 
Carbone at al., 2012 (99) 

Family W  MMe (36, 44, 50, 58, 58), 
Ovarian Ca (59), RCC 
(57), Breast Ca (37) 

c. 438-2 A>G 
p. Pro147fs*48 

Splice Site – 
Frameshift - 
Truncating 

None Testa et al., 2011 (3) 
Carbone at al., 2012 (99) 

Family 1 UM (72), CM, AST (36, 
42) 

c. 1305delG 
p. Gln436Asnfs*135 

Frameshift - 
Truncating 

AST, Cervical Ca, Multiple 
Myeloma 

Weisner et al., 2011 (4) 
Weisner et al., 2012 (61) 

Family 2 UM (44), CM (38, 39, 
50), AST (31, 40, 62), 
Peritoneal MMe 

c. 2057-2A>G 
p. Met687Glufs*28 

Splice Site – 
Frameshift - 
Truncating 

AST Weisner et al, 2011 (4) 
Weisner et al., 2012 (61) 

Family 
FUM036 
 
 

UM (50, 52), CM (72), 
MMe (55, 75), 
Meningioma, Lung Ca 
(56), Neuroendocrine Ca 
(52), Abdominal 
Adenocarcinoma/Ovarian 
Ca? (69) 

c. 799C>T 
p. Gln267* 
 

Truncating UM, CM x2, MMe x2, 
RCC, Meningioma, 
Testicular Ca, Abdominal 
Ca x3, Esophagus Ca, 
Adrenal Gland Ca, CaSU 

Abdel-Rahman et al., 2011 (2) 
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2734 UM (58) c. 1899_1900ins5 
p. Ala634Glyfs*5 

Frameshift - 
Truncating 

CM, Bladder Ca Njauw  et al., 2012 (18) 

3101 UM (53) c. 1975A>G 
p. Lys659* 

Truncating UM, RCC Njauw  et al., 2012 (18) 

3123 UM (37) c. 1831_1834del4 
p. Glu611Argfs*5 

Frameshift - 
Truncating 

Uterine Ca Njauw  et al., 2012 (18) 

Fam562 CM (31, 37, 37, 34, 35, 
35, 38, 45), UM (62), 
RCC (46), Lung Ca (49), 
AST x11 

c. 706_707insG 
p. Asp236Glyfs*7 

Frameshift - 
Truncating 

None Njauw  et al., 2012 (18) 

Fam714 CM (45), AST c. 178C>T 
p. Arg60* 

Truncating CM, Lung Ca, CNS Tumor Njauw  et al., 2012 (18) 
Wadt et al., 2014 (30) 

Fam729 UM (51, 55, 57, 59), CM 
(36, 60), Lung Ca (57), 
AST, Cholangiocarcinoma 
(47), Breast Ca x2 

c. 1153C>T 
p. Arg385* 

Truncating Breast Ca Njauw  et al., 2012 (18) 

Family 3 MMe (34, 44), Peritoneal 
MMe (34, 63), AST 

c. 79delG  
p. Val27Cysfs*45 

Frameshift - 
Truncating 

MMe Weisner et al., 2012 (44) 

 RCC (70) c. 121G>A 
p. Gly41Ser 

Truncating RCC x3, Parotid Gland 
Carcinoma, Breast Ca x2, 
Lung Ca, Sarcoma x2, 
Adenocortical Carcinoma 

Pena-Llopis et al., 2012 (82) 

 UM (18, 46, 62), CM (27, 
27, 33), MMe (47), 
Peritoneal MMe (84), 
Lung Ca (46), 
Paraganglioma (42), 
Breast Ca (75), MFH (45) 

c. 1708C>G 
p. Leu570Val 

Missense 
(Cryptic 
Splice Site 
Donor) 

Prolactinoma Wadt et al., 2012 (100) 

 UM c. 1480_1481delGA 
p. D494fs 

Frameshift - 
Truncating 

N/A Aoude et al., 2012 (20) 

 UM c. 1806G>C 
p. E602D 

Missense N/A Aoude et al., 2012 (20) 

 UM (16, 39, 44), CM, c. 75insG Frameshift - None Hoiom et al., 2013 (21) 
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Prostate Ca (67), AST p. Lys25fs*43 Truncating 
 AST (21) c. 214del 

p. I72L*6 
Frameshift - 
Truncating 

Gastric Ca Busam et al., 2013 (27) 

 UM (57), Peritoneal MMe 
(44, 56) 

c. 758_759insA 
p. Gln253fs*31 

Frameshift - 
Truncating 

Peritoneal MMe Ribeiro et al., 2013 (22) 

A Adenocarcinoma of 
Unknown Primitive 
Tumor, Breast Ca x3, 
RCC (37, 39, 40, 47, 47), 
Cervical Ca, CaSU 

c. 277A>G 
p. Thr93Ala 

Missense 
(Splice Site 
Donor) 

Esophagus Ca x2, Head 
and Neck Carcinoma, Lung 
Ca, Breast Ca 

Popova et al., 2013 (5) 

B UM (35), RCC (36) c. 629dupT 
p. Met211Hisfs*32 

Frameshift - 
Truncating 

RCC x2, UM x2, Bone Ca Popova et al., 2013 (5) 

C UM (52, 53), MMe (41, 
59), RCC (50), Digestive 
Tract Ca (45) 

c. 1654delG 
p. Asp552Ilefs*19 

Frameshift - 
Truncating 

MMe, CaSU Popova et al., 2013 (5) 

D UM (48), CM (34), BCC 
(51) 

c. 437+1G>A Splice Site Lung Ca, RCC, UM x2 Popova et al., 2013 (5) 

E UM (44), Thyroid Ca (34) c. 219delT 
p. Asp73Glufs*5 

Frameshift - 
Truncating 

MMe x2, Thyroid Ca, 
Bladder Ca 

Popova et al., 2013 (5) 

F MMe (44) c. 670dupC 
p. His224Profs*19 

Frameshift - 
Truncating 

MMe Popova et al., 2013 (5) 

G UM (57), CM (29, 31, 34, 
49), RCC (36)  

c. 37+1delG Splice Site MMe Popova et al., 2013 (5) 

H MMe (62) c. 1647delT 
p. Val550Serfs*21 

Frameshift - 
Truncating 

MMe Popova et al., 2013 (5) 

I UM (44) c. 1846delG 
p. Val616* 

Truncating CM Popova et al., 2013 (5) 

J UM (53), RCC (53) c. 78_79delG 
p. Val27Alafs*41 

Frameshift - 
Truncating 

RCC, MMe Popova et al., 2013 (5) 

K CM (47, 52), BCC (50) 
 

c. 660-11T>A Splice Site CM x2, MMe, RCC, UM Popova et al., 2013 (5) 
de la Fouchardier et al., 2014 
(29) 

L CM (47) c. 588G>A Splice Site - UM, Prostate Ca Popova et al., 2013 (5) 
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p. Trp196* Truncating 
NCI-1326 RCC (40, 44, 46, 54, 57) c. 41T>A 

p. L14H 
Missense RCC Farley et al., 2013 (57) 

 UM (40) c. 723T>G 
p. 241* 

Truncating UM, CM x3, MMe, Lung 
Ca x3, Colon Ca, Ovarian 
Ca, Gastric Ca x2 

Cheung et al., 2013 (23) 

 UM (20, 57, 69), CM 
(35), Lung Ca (59), 
Abdominal Ca (64), BCC 
x3 

c. 581-2A>G Splice Site UM x4, Breast Ca x2, 
Colon Ca, Non-melanoma 
Skin Ca, Lung Ca, 
Neuroendocrine Rectal Ca 

Aoude et al., 2013 (24) 

F4 RCC (56) c. 1946G>A 
p. C649Y 

Missense N/A Gossage et al., 2014 (58) 

A8 RCC (72) c. 851A>G 
p. E284G 

Missense N/A Gossage et al., 2014 (58) 

 UM (45, 56), 
Cholangiocarcinoma (71), 
Urothelial Carcinoma (48) 

c. 299T>C 
p. L100P 

Missense RCC, Brain Ca, Leukemia, 
Uterine Ca 

Maerker et al., 2014 (25) 

FUM064 UM (41, 49), Peritoneal 
MMe (48), Abdominal Ca 
(57), Bone Ca (64), Soft 
Tissue Carcinoma (42) 

c. 2050C>T 
p. Gln684* 
 

Truncating UM, MMe x2, RCC, 
CaSU, Pancreatic Ca, 
Papillary Thyroid Ca, 
Colorectal Ca, Breast Ca 

Pilarski et al., 2014 (26) 

FUM103 Cholangiocarcinoma c. 1182C>G 
p. Tyr394* 

Truncating Pancreactic Ca, Ovarian 
Ca, MMe, CaSU x2, Non-
melanoma Skin Ca 

Pilarski et al., 2014 (26) 

FUM104 UM (49, 67), RCC (47, 
49),  MMe (44), 
Peritoneal MMe (85), 
Breast Ca (58, 85), Colon 
Ca (71), Ovarian Ca (34) 

c. 1882_1885delTCA 
p. Ser628Profs*8 

Frameshift - 
Truncating 

RCC x3, MMe x2, Lung 
Ca x2, Breast Ca x2, 
Hematological Ca, Bladder 
Ca, Pancreatic Ca 

Pilarski et al., 2014 (26) 

Family 1 CM (60), Breast Ca (54), 
CaSU (pathologies point 
to Cholangiocarcinoma 
and Meningioma) (52, 55, 

c. 1209_1210dupT 
p. D404* 

Truncating CaSU, CM, Breast Ca Wadt et al., 2014 (30) 
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66), MMe (51, 62), 
Peritoneal MMe (46), 
Basal Cell Carcinoma 
(50), AST (32) 

Family 2 CM (55), Peritoneal MMe 
(56), AST (45) 

c. 838C>T 
p. Q280* 

Truncating UM, CM x2, RCC, Brain 
Ca 

Wadt et al., 2014 (30) 

Family 3 UM (54), BCC (43, 43, 
65, 65-80), CM (25), AST 
(24) 

c. 178C>T 
p. R60* 

Truncating Ovarian Ca, Granulosa 
Cell Tumor, UM x2, CM 

Wadt et al., 2014 (30) 

Family 4 UM (50, 59), BCC (46, 
50) 

c. 178C>T 
p. R60* 

Truncating BCC, MMe Wadt et al., 2014 (30) 

Family A Peritoneal MMe (63),  
MMe (79), 
Mucoepidermoid 
carcinoma (36) 

c. 46_47insA 
p. Thr16fs*52 
 

Frameshift - 
Truncating 

Hepatic Carcinoma,  MMe Betti et al., 2015 (43) 

FUM152 UM (18) c. 1717delC 
p. L573fs*3 

Frameshift - 
Truncating 

UM, CaSU Cebulla et al., 2015 (28)  

FUM124 UM (60), CM (72), MMe 
(71), BCC (56, 65, 68) 

c. 539T>C 
p. Leu180Pro 

Missense Breast Ca x2, BCC x6, 
SCC, Non-melanoma Skin 
Ca, CM x2, Prostate Ca, 
Uterine Ca, Liposarcoma, 
Melanoma (meningeal), 
Cervical Ca, CaSU x3, 
MMe, GI Tract Cancer 

Previously Unpublished OSU 
Family 

FUM128  Peritoneal MMe (60) c. 256-4_256-2del Splice Site – 
Frameshift - 
Truncating 

UM, MMe x3, Pancreatic 
Ca, Bladder Ca, 
Abdominal Ca, Ovarian Ca 

Previously Unpublished OSU 
Family 

UM, uveal melanoma; MMe, malignant mesothelioma; CM, cutaneous melanoma; RCC, renal cell carcinoma; AST, typical Spitz 
tumors; BCC, basal cell carcinoma; CaSU, cancer site unknown; CNS, central nervous system; MFH, malignant fibrocystic 
histiocytoma
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5.2 Table 2 
Table 2: Summary of cancers reported more than once in patients with germline BAP1 mutations. 

Tumor Type Frequency in germline 
BAP1 patients 

Lifetime 
risk of 

diagnosis in 
general 

population 
(percent) 

SEER+ (54) 

Median age of 
onset in 

germline BAP1 
patients (range) 

Median age of 
onset in 
general 

population 
(54)# 

Sex 
ratio 
M:F 

Biallelic inactivation 
shown in tumor* 

Uveal Melanoma 49/167 (2-5, 17-30) 0.00051% 
(31) 

51 (16-72) 62 (32) 22:25 Yes, 7 
(2, 4, 17, 19, 21, 24) 

Mesothelioma 39/167 
(2-5, 19, 22, 26, 29, 30, 

43, 44) 

0.13% 56 (34-85) 74 (46) 12:26 Yes, 7 (3, 44) 

Cutaneous 
Melanoma 

23/167 
(2, 4, 5, 18, 19, 21, 24, 29, 

30, 44) 

3.25% 46 (25-72) 58 12:10 Yes, 4 (4, 18, 44) 

Renal Cell 
Carcinoma 

17/167 
(3, 5, 18, 26, 57, 58, 82) 

1.60% 47 (36-72) 64 7:7 Yes, 5 (5, 57) 

Basal Cell 
Carcinoma 

11/167 
(3, 5, 24, 29, 30) 

- 50 (42-65) - 4:3 Yes, 3 (30) 

Breast Cancer 9/93 
(3, 5, 18, 19, 26, 30) 

12.33% 58 (37-85) 61 9 Yes, 2 (5) 

Lung Cancer 6/167 (2, 18, 19, 24) 6.99% 56 (46-59) 70 3:3 Yes, 1 (2) 
Cholangiocarcinoma 4/167 (18, 25, 26, 30) 0.89% 66 (47-71) 50 (101) 2:2 N/A 

Ovarian Cancer 3/93 (2, 3) 1.12% 59 (34-69) 63 3 N/A 
Meningioma 2/167 (2, 30) - 52    65 (102) 0:2 Yes, 1 (2) 

Abdominal Cancer 2/167 (24, 26) 0.86% 64 (57-64) 71 0:2 N/A 
*In patients with BAP1 germline mutation. 
+Age-adjusted SEER data from 2007-2011. 
#Age-adjusted SEER data from 2011. 
-SEER does not track epidemiological data for basal cell carcinoma and age of onset is generally not estimated in the literature. 

35 
 



5.3 Table 3 

Table 3: Studies demonstrating somatic BAP1 mutations and/or loss of expression in tumor cells.  
Tumor Type Cell Lines 

DNA  
Sequencing 

Cell Lines 
Fluorescence 
In-Situ 
Hybridization 
(FISH) 

Cell 
Lines 
IHC 

IHC Tumor DNA 
Sequencing 

Array 
Comparative 
Genomic 
Hybridization 

COSMIC 
Gene 
Expression 
(103) 

COSMIC 
Point 
Mutations 
(103) 

Uveal Melanoma    103/209 (38, 
40-42) 

153/725 (4, 17, 35-
39) 

  75/198 

Renal Cell 
Carcinoma 

   273/2343 (79, 
82, 104, 105) 

249/2483 (58, 78, 
80, 82-84, 106-109) 

 7/503 117/1673 

Cutaneous 
Melanoma 

   11/238 (55, 
56) 

3/60 (4)  2/336 34/904 

Mesothelioma 10/30     
(48, 49) 

6/25 (48) 8/13 
(3, 49) 

148/301 (43, 
47-49, 52, 53) 

162/406 (3, 48-52)   81/260 

Atypical Spitz 
Tumors 

   71/208 (56, 
61, 63-65, 67) 

15/104 (4, 63, 64, 
66, 67) 

29/436 (67)   

Bladder Cancer     8/54 (110)    
Breast Cancer     0/45 (70)  73/989 11/1653 
Cholangiocarcinoma     44/502 (72-76)  13/579 12/1154 
Gallbladder Cancer     2/42 (72, 74)    
Gastric Cancer     0/45 (70)  8/285 11/420 
Lung Cancer     2/77 (6)  51/865 13/1741 
Colorectal Cancer    5/252 (77) 1/45 (70)    
Pancreatic Cancer     1/23 (111)  2/70 5/1734 
Prostate Cancer     0/45 (70)  2/198 5/631 
Thymic Cancer     9/106 (112, 113)  2/494 2/529 
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5.4 Figure 1 

Figure 1. Venn diagram of the cancers identified in BAP1 patients and families 
A) Individuals with BAP1 mutations diagnosed with UM, RCC, CM, and/or MMe. Twenty eight individuals were 
only diagnosed with another cancer uncertain to be BAP1 related. Twelve individuals were diagnosed with atypical 
Spitz tumors only. Fourteen individuals were unaffected.  
B) Families with BAP1 mutations with mutation-positive members diagnosed with UM, RCC, CM, and MMe. One 
family presented with only atypical Spitz tumors and another cancer uncertain to be BAP1 related. One family did not 
have any members with UM, RCC, CM, or MMe tested. 
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5.5 Figure 2 
 
Figure 2: Families with germline BAP1 mutations with reported family histories of UM, RCC, CM, and MMe without being proven 
mutation carriers. One family is reported with only atypical Spitz tumors and another cancer uncertain to be BAP1 related. 
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5.6 Figure 3 
 
Figure 3: Gene location and mutation type of the reported germline pathogenic variants in BAP1 in the four main cancers associated 
with BAP1-TPDS. No genotype/phenotype correlation was observed. One family mutation (c. 214del, p. I72L*6) was found in a 
family not reporting a UM, RCC, CM, or MMe. One family mutation (c. 1182C>G, p. Tyr394*) was not tested in a member with a 
personal history of UM, RCC, CM, or MMe. 
UCH – Ubiquitin C-terminal hydrolase, BARD1 – BARD1 binding domain, HCF1 – HCF1 binding motif, BRCA1 – BRCA1 binding 
domain, N – Nuclear localization signal. 
[Red arrow – splice-site mutation;   Black arrow – truncating mutation;   Green arrow – missense mutation] 
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5.7 Figure 4 
 
Figure 4: Percentage of germline BAP1 mutation families with reported family history of UM, MMe, CM, or RCC. 

40 
 



References 
 
1. Online Mendelian Inheritance in Man, OMIM®. Baltimore, MD: Johns Hopkins 
University, 2014: MIM Number: 614327. 
2. Abdel-Rahman MH, Pilarski R, Cebulla CM et al. Germline BAP1 mutation predisposes 
to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 2011: 
48: 856-859. 
3. Testa JR, Cheung M, Pei J et al. Germline BAP1 mutations predispose to malignant 
mesothelioma. Nat Genet 2011: 43: 1022-1025. 
4. Wiesner T, Obenauf AC, Murali R et al. Germline mutations in BAP1 predispose to 
melanocytic tumors. Nat Genet 2011: 43: 1018-1021. 
5. Popova T, Hebert L, Jacquemin V et al. Germline BAP1 mutations predispose to renal 
cell carcinomas. Am J Hum Genet 2013: 92: 974-980. 
6. Jensen DE, Proctor M, Marquis ST et al. BAP1: a novel ubiquitin hydrolase which binds 
to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 
1998: 16: 1097-1112. 
7. Ventii KH, Devi NS, Friedrich KL et al. BRCA1-associated protein-1 is a tumor 
suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 2008: 68: 
6953-6962. 
8. Nishikawa H, Wu W, Koike A et al. BRCA1-associated protein 1 interferes with 
BRCA1/BARD1 RING heterodimer activity. Cancer Res 2009: 69: 111-119. 
9. Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A. The deubiquitinating 
enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem 2009: 284: 34179-
34188. 
10. Yu H, Mashtalir N, Daou S et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary 
complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 2010: 
30: 5071-5085. 
11. Eletr ZM, Wilkinson KD. An emerging model for BAP1's role in regulating cell cycle 
progression. Cell Biochem Biophys 2011: 60: 3-11. 
12. Scheuermann JC, de Ayala Alonso AG, Oktaba K et al. Histone H2A deubiquitinase 
activity of the Polycomb repressive complex PR-DUB. Nature 2010: 465: 243-247. 
13. Mashtalir N, Daou S, Barbour H et al. Autodeubiquitination protects the tumor 
suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase 
UBE2O. Mol Cell 2014: 54: 392-406. 
14. Eletr ZM, Yin L, Wilkinson KD. BAP1 is phosphorylated at serine 592 in S-phase 
following DNA damage. FEBS Lett 2013: 587: 3906-3911. 
15. Yu H, Pak H, Hammond-Martel I et al. Tumor suppressor and deubiquitinase BAP1 
promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 2014: 111: 285-290. 
16. Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations 
in BAP1 impair its function in DNA double-strand break repair. Cancer Res 2014: 74: 4282-
4294. 
17. Harbour JW, Onken MD, Roberson ED et al. Frequent mutation of BAP1 in 
metastasizing uveal melanomas. Science 2010: 330: 1410-1413. 
18. Njauw CN, Kim I, Piris A et al. Germline BAP1 inactivation is preferentially associated 
with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 2012: 7: 
e35295. 

41 
 



19. Wadt K, Choi J, Chung JY et al. A cryptic BAP1 splice mutation in a family with uveal 
and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res 2012: 25: 815-818. 
20. Aoude LG, Vajdic CM, Kricker A, Armstrong B, Hayward NK. Prevalence of germline 
BAP1 mutation in a population-based sample of uveal melanoma cases. Pigment Cell Melanoma 
Res 2013: 26: 278-279. 
21. Hoiom V, Edsgard D, Helgadottir H et al. Hereditary uveal melanoma: a report of a 
germline mutation in BAP1. Genes Chromosomes Cancer 2013: 52: 378-384. 
22. Ribeiro C, Campelos S, Moura CS, Machado JC, Justino A, Parente B. Well-
differentiated papillary mesothelioma: clustering in a Portuguese family with a germline BAP1 
mutation. Ann Oncol 2013: 24: 2147-2150. 
23. Cheung M, Talarchek J, Schindeler K et al. Further evidence for germline BAP1 
mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet 2013: 206: 
206-210. 
24. Aoude LG, Wadt K, Bojesen A et al. A BAP1 mutation in a Danish family predisposes to 
uveal melanoma and other cancers. PLoS One 2013: 8: e72144. 
25. Maerker DA, Zeschnigk M, Nelles J et al. BAP1 germline mutation in two first grade 
family members with uveal melanoma. Br J Ophthalmol 2014: 98: 224-227. 
26. Pilarski R, Cebulla CM, Massengill JB et al. Expanding the clinical phenotype of 
hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes 
Chromosomes Cancer 2014: 53: 177-182. 
27. Busam KJ, Wanna M, Wiesner T. Multiple epithelioid Spitz nevi or tumors with loss of 
BAP1 expression: a clue to a hereditary tumor syndrome. JAMA Dermatol 2013: 149: 335-339. 
28. Cebulla CM, Binkley EM, Pilarski R et al. Analysis of BAP1 Germline Gene Mutation in 
Young Uveal Melanoma Patients. Ophthalmic Genet 2015: 1-6. 
29. de la Fouchardiere A, Cabaret O, Savin L et al. Germline BAP1 mutations predispose 
also to multiple basal cell carcinomas. Clin Genet 2014. 
30. Wadt KA, Aoude LG, Johansson P et al. A recurrent germline BAP1 mutation and 
extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma. Clin 
Genet 2014. 
31. Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and 
survival. Ophthalmology 2011: 118: 1881-1885. 
32. Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973-1997. 
Ophthalmology 2003: 110: 956-961. 
33. Laurent C, Gentien D, Piperno-Neumann S et al. Patient-derived xenografts recapitulate 
molecular features of human uveal melanomas. Mol Oncol 2013: 7: 625-636. 
34. Matatall KA, Agapova OA, Onken MD, Worley LA, Bowcock AM, Harbour JW. BAP1 
deficiency causes loss of melanocytic cell identity in uveal melanoma. BMC Cancer 2013: 13: 
371. 
35. Dono M, Angelini G, Cecconi M et al. Mutation frequencies of GNAQ, GNA11, BAP1, 
SF3B1, EIF1AX and TERT in uveal melanoma: detection of an activating mutation in the TERT 
gene promoter in a single case of uveal melanoma. Br J Cancer 2014: 110: 1058-1065. 
36. Ewens KG, Kanetsky PA, Richards-Yutz J et al. Chromosome 3 status combined with 
BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Invest 
Ophthalmol Vis Sci 2014: 55: 5160-5167. 
37. Furney SJ, Pedersen M, Gentien D et al. SF3B1 mutations are associated with alternative 
splicing in uveal melanoma. Cancer Discov 2013: 3: 1122-1129. 

42 
 



38. Koopmans AE, Verdijk RM, Brouwer RW et al. Clinical significance of 
immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol 2014: 
27: 1321-1330. 
39. Luscan A, Just PA, Briand A et al. Uveal melanoma hepatic metastases mutation 
spectrum analysis using targeted next-generation sequencing of 400 cancer genes. Br J 
Ophthalmol 2014. 
40. Shah AA, Bourne TD, Murali R. BAP1 protein loss by immunohistochemistry: a 
potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology 
2013: 45: 651-656. 
41. Kalirai H, Dodson A, Faqir S, Damato BE, Coupland SE. Lack of BAP1 protein 
expression in uveal melanoma is associated with increased metastatic risk and has utility in 
routine prognostic testing. Br J Cancer 2014: 111: 1373-1380. 
42. van Essen TH, van Pelt SI, Versluis M et al. Prognostic parameters in uveal melanoma 
and their association with BAP1 expression. Br J Ophthalmol 2014: 98: 1738-1743. 
43. Betti M, Casalone E, Ferrante D et al. Inference on germline BAP1 mutations and 
asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area. 
Genes Chromosomes Cancer 2015: 54: 51-62. 
44. Wiesner T, Fried I, Ulz P et al. Toward an improved definition of the tumor spectrum 
associated with BAP1 germline mutations. J Clin Oncol 2012: 30: e337-340. 
45. Boffetta P. Epidemiology of peritoneal mesothelioma: a review. Ann Oncol 2007: 18: 
985-990. 
46. Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and 
multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) 
Program. Oncologist 2007: 12: 20-37. 
47. Arzt L, Quehenberger F, Halbwedl I, Mairinger T, Popper HH. BAP1 protein is a 
progression factor in malignant pleural mesothelioma. Pathol Oncol Res 2014: 20: 145-151. 
48. Bott M, Brevet M, Taylor BS et al. The nuclear deubiquitinase BAP1 is commonly 
inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat 
Genet 2011: 43: 668-672. 
49. Yoshikawa Y, Sato A, Tsujimura T et al. Frequent inactivation of the BAP1 gene in 
epithelioid-type malignant mesothelioma. Cancer Sci 2012: 103: 868-874. 
50. de Reynies A, Jaurand MC, Renier A et al. Molecular classification of malignant pleural 
mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-
mesenchymal transition. Clin Cancer Res 2014: 20: 1323-1334. 
51. Guo G, Chmielecki J, Goparaju C et al. Whole-Exome Sequencing Reveals Frequent 
Genetic Alterations in BAP1, NF2, CDKN2A, and CUL1 in Malignant Pleural Mesothelioma. 
Cancer Res 2015: 75: 264-269. 
52. Lo Iacono M, Monica V, Righi L et al. Targeted next-generation sequencing of cancer 
genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol 
2015: 10: 492-499. 
53. Taylor S, Carpentieri D, Williams J, Acosta J, Southard R. Malignant Peritoneal 
Mesothelioma in an Adolescent Male With BAP1 Deletion. J Pediatr Hematol Oncol 2014. 
54. Surveillance, Epidemiology, and End Results (SEER) Program. In: National Cancer 
Institute D, Surveillance Research Program, Surveillance Systems Branch, ed., 2013. 
55. Murali R, Wilmott JS, Jakrot V et al. BAP1 expression in cutaneous melanoma: a pilot 
study. Pathology 2013: 45: 606-609. 

43 
 



56. Piris A, Mihm MC, Jr., Hoang MP. BAP1 and BRAFV600E expression in benign and 
malignant melanocytic proliferations. Hum Pathol 2015: 46: 239-245. 
57. Farley MN, Schmidt LS, Mester JL et al. A novel germline mutation in BAP1 
predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res 2013: 11: 1061-1071. 
58. Gossage L, Murtaza M, Slatter AF et al. Clinical and pathological impact of VHL, 
PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes 
Chromosomes Cancer 2014: 53: 38-51. 
59. Carbone M, Ferris LK, Baumann F et al. BAP1 cancer syndrome: malignant 
mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med 2012: 10: 179. 
60. Llamas-Velasco M, Perez-Gonzalez YC, Requena L, Kutzner H. Histopathologic clues 
for the diagnosis of Wiesner nevus. J Am Acad Dermatol 2014: 70: 549-554. 
61. Wiesner T, Murali R, Fried I et al. A distinct subset of atypical Spitz tumors is 
characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol 2012: 36: 818-
830. 
62. Martorano LM, Winkelmann RR, Cebulla CM, Abdel-Rahman MH, Campbell SM. 
Ocular melanoma and the BAP1 hereditary cancer syndrome: implications for the dermatologist. 
Int J Dermatol 2014: 53: 657-663. 
63. Busam KJ, Sung J, Wiesner T, von Deimling A, Jungbluth A. Combined BRAF(V600E)-
positive melanocytic lesions with large epithelioid cells lacking BAP1 expression and 
conventional nevomelanocytes. Am J Surg Pathol 2013: 37: 193-199. 
64. Blokx WA, Rabold K, Bovenschen HJ et al. NRAS-mutated melanocytic BAP1-
associated intradermal tumor (MBAIT): a case report. Virchows Arch 2015: 466: 117-121. 
65. Gammon B, Traczyk TN, Gerami P. Clumped perinuclear BAP1 expression is a frequent 
finding in sporadic epithelioid Spitz tumors. J Cutan Pathol 2013: 40: 538-542. 
66. Ross JS, Wang K, Rand JV et al. Comprehensive genomic profiling of relapsed and 
metastatic adenoid cystic carcinomas by next-generation sequencing reveals potential new routes 
to targeted therapies. Am J Surg Pathol 2014: 38: 235-238. 
67. Yeh I, Mully TW, Wiesner T et al. Ambiguous melanocytic tumors with loss of 3p21. 
Am J Surg Pathol 2014: 38: 1088-1095. 
68. Coupier I, Cousin PY, Hughes D et al. BAP1 and breast cancer risk. Fam Cancer 2005: 4: 
273-277. 
69. Guenard F, Labrie Y, Ouellette G, Beauparlant CJ, Durocher F, BRCAs I. Genetic 
sequence variations of BRCA1-interacting genes AURKA, BAP1, BARD1 and DHX9 in French 
Canadian families with high risk of breast cancer. J Hum Genet 2009: 54: 152-161. 
70. Je EM, Lee SH, Yoo NJ. Somatic mutation of a tumor suppressor gene BAP1 is rare in 
breast, prostate, gastric and colorectal cancers. APMIS 2012: 120: 855-856. 
71. Fan LH, Tang LN, Yue L, Yang Y, Gao ZL, Shen Z. BAP1 is a good prognostic factor in 
advanced non-small cell lung cancer. Clin Invest Med 2012: 35: E182. 
72. Jiao Y, Pawlik TM, Anders RA et al. Exome sequencing identifies frequent inactivating 
mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 2013: 
45: 1470-1473. 
73. Chan-On W, Nairismagi ML, Ong CK et al. Exome sequencing identifies distinct 
mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 
2013: 45: 1474-1478. 
74. Simbolo M, Fassan M, Ruzzenente A et al. Multigene mutational profiling of 
cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget 2014: 5: 2839-2852. 

44 
 



75. Churi CR, Shroff R, Wang Y et al. Mutation profiling in cholangiocarcinoma: prognostic 
and therapeutic implications. PLoS One 2014: 9: e115383. 
76. Jhunjhunwala S, Jiang Z, Stawiski EW et al. Diverse modes of genomic alteration in 
hepatocellular carcinoma. Genome Biol 2014: 15: 436. 
77. Tang J, Xi S, Wang G et al. Prognostic significance of BRCA1-associated protein 1 in 
colorectal cancer. Med Oncol 2013: 30: 541. 
78. Hakimi AA, Chen YB, Wren J et al. Clinical and pathologic impact of select chromatin-
modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 2013: 63: 848-854. 
79. Kapur P, Christie A, Raman JD et al. BAP1 immunohistochemistry predicts outcomes in 
a multi-institutional cohort with clear cell renal cell carcinoma. J Urol 2014: 191: 603-610. 
80. Karlo CA, Di Paolo PL, Chaim J et al. Radiogenomics of clear cell renal cell carcinoma: 
associations between CT imaging features and mutations. Radiology 2014: 270: 464-471. 
81. Kumar R, Taylor M, Miao B et al. BAP1 Has a Survival Role in Cutaneous Melanoma. J 
Invest Dermatol 2015: 135: 1089-1097. 
82. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A et al. BAP1 loss defines a new class of 
renal cell carcinoma. Nat Genet 2012: 44: 751-759. 
83. Hakimi AA, Ostrovnaya I, Reva B et al. Adverse outcomes in clear cell renal cell 
carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC 
and the KIRC TCGA research network. Clin Cancer Res 2013: 19: 3259-3267. 
84. Kapur P, Pena-Llopis S, Christie A et al. Effects on survival of BAP1 and PBRM1 
mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent 
validation. Lancet Oncol 2013: 14: 159-167. 
85. Baumann F, Flores E, Napolitano A et al. Mesothelioma patients with germline BAP1 
mutations have 7-fold improved long-term survival. Carcinogenesis 2015: 36: 76-81. 
86. Jonsson G, Bendahl PO, Sandberg T et al. Mapping of a novel ocular and cutaneous 
malignant melanoma susceptibility locus to chromosome 9q21.32. J Natl Cancer Inst 2005: 97: 
1377-1382. 
87. Avril MF, Bahadoran P, Cabaret O et al. [Recommendations for genetic testing and 
management of individuals genetically at-risk of cutaneous melanoma]. Ann Dermatol Venereol 
2015: 142: 26-36. 
88. Harbour JW, Chao DL. A molecular revolution in uveal melanoma: implications for 
patient care and targeted therapy. Ophthalmology 2014: 121: 1281-1288. 
89. Wolff H, Vehmas T, Oksa P, Rantanen J, Vainio H. Asbestos, asbestosis, and cancer, the 
Helsinki criteria for diagnosis and attribution 2014: recommendations. Scand J Work Environ 
Health 2015: 41: 5-15. 
90. Faig J, Howard S, Levine EA, Casselman G, Hesdorffer M, Ohar JA. Changing pattern in 
malignant mesothelioma survival. Transl Oncol 2015: 8: 35-39. 
91. Kaya H, Demir M, Taylan M et al. Fibulin-3 as a diagnostic biomarker in patients with 
malignant mesothelioma. Asian Pac J Cancer Prev 2015: 16: 1403-1407. 
92. Weber DG, Casjens S, Johnen G et al. Combination of MiR-103a-3p and mesothelin 
improves the biomarker performance of malignant mesothelioma diagnosis. PLoS One 2014: 9: 
e114483. 
93. Mirarabshahii P, Pillai K, Chua TC, Pourgholami MH, Morris DL. Diffuse malignant 
peritoneal mesothelioma--an update on treatment. Cancer Treat Rev 2012: 38: 605-612. 
94. Kefford R, Bishop JN, Tucker M et al. Genetic testing for melanoma. Lancet Oncol 2002: 
3: 653-654. 

45 
 



95. Kefford RF, Newton Bishop JA, Bergman W, Tucker MA. Counseling and DNA testing 
for individuals perceived to be genetically predisposed to melanoma: A consensus statement of 
the Melanoma Genetics Consortium. J Clin Oncol 1999: 17: 3245-3251. 
96. Lonser RR, Glenn GM, Walther M et al. von Hippel-Lindau disease. The Lancet 2003: 
361: 2059-2067. 
97. Landreville S, Agapova OA, Matatall KA et al. Histone deacetylase inhibitors induce 
growth arrest and differentiation in uveal melanoma. Clin Cancer Res 2012: 18: 408-416. 
98. Carbone M, Yang H, Pass H, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nature 
Reviews Cancer 2013: 13: 153-159. 
99. Carbone M, Korb Ferris L, Baumann F et al. BAP1 cancer syndrome: malignant 
mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med 2012: 10: 179. 
100. Wadt K, Choi J, Chung JY et al. A cryptic BAP1 splice mutation in a family with uveal 
and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res 2012. 
101. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004: 
24: 115-125. 
102. Ostrom QT, Gittleman H, Liao P et al. CBTRUS statistical report: primary brain and 
central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 2014: 
16 Suppl 4: iv1-63. 
103. Forbes SA, Bindal N, Bamford S et al. COSMIC: mining complete cancer genomes in the 
Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011: 39: D945-950. 
104. Joseph RW, Kapur P, Serie DJ et al. Loss of BAP1 protein expression is an independent 
marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 2014: 
120: 1059-1067. 
105. Ho TH, Kapur P, Joseph RW et al. Loss of PBRM1 and BAP1 expression is less common 
in non-clear cell renal cell carcinoma than in clear cell renal cell carcinoma. Urol Oncol 2015: 
33: 23 e29-14. 
106. Duns G, Hofstra RM, Sietzema JG et al. Targeted exome sequencing in clear cell renal 
cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC 
development. Hum Mutat 2012: 33: 1059-1062. 
107. Gerlinger M, Horswell S, Larkin J et al. Genomic architecture and evolution of clear cell 
renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014: 46: 225-233. 
108. Sankin A, Hakimi AA, Mikkilineni N et al. The impact of genetic heterogeneity on 
biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med 2014: 
3: 1485-1492. 
109. Malouf GG, Zhang J, Yuan Y et al. Characterization of long non-coding RNA 
transcriptome in clear-cell renal cell carcinoma by next-generation deep sequencing. Mol Oncol 
2015: 9: 32-43. 
110. Nickerson ML, Dancik GM, Im KM et al. Concurrent alterations in TERT, KDM6A, and 
the BRCA pathway in bladder cancer. Clin Cancer Res 2014: 20: 4935-4948. 
111. Jiao Y, Yonescu R, Offerhaus GJ et al. Whole-exome sequencing of pancreatic 
neoplasms with acinar differentiation. J Pathol 2014: 232: 428-435. 
112. Petrini I, Meltzer PS, Kim IK et al. A specific missense mutation in GTF2I occurs at high 
frequency in thymic epithelial tumors. Nat Genet 2014: 46: 844-849. 
113. Wang Y, Thomas A, Lau C et al. Mutations of epigenetic regulatory genes are common 
in thymic carcinomas. Sci Rep 2014: 4: 7336. 

 

46 
 



Acknowledgements 
  

First, I am thankful for all the support my advisor, Robert Pilarski, has offered during my 
time at the Division of Human Genetics at The Ohio State University Wexner Medical Center. 
Your help throughout this process has been essential. Thank you for your wisdom and effort in 
making my research experience complete. Your dedicated involvement in my development as an 
undergraduate student and a young medical scientist has been fundamentally important. Your 
enthusiasm for medicine and science is contagious and inspirational. I hope to carry this passion 
with me throughout my lifetime. 
 I’d like to thank the College of Arts and Sciences at The Ohio State University for 
supporting my research. I appreciate the commitment to supporting undergraduate research. 
 I’d also like to thank my thesis committee members, Drs. Mohamed Abdel-Rahman and 
Amanda Toland. Thank you to Dr. Abdel-Rahman for approaching me with the initial idea for 
this project and allowing me the opportunity to conduct research in an independent fashion. Also, 
thank you for your wisdom throughout this project and all your suggestions during the writing 
and editing process. Thank you to Dr. Toland for taking the time to review my research and 
serving as my thesis committee member. 

Traversing the journey of my collegiate years required more than just academic support. 
First and foremost I’d like to thank my parents and family for providing me the opportunity to 
follow my passions. Without their constant support of my pursuits, I could not even begin to 
think about where I am today. I am forever grateful for their sacrifices. I’d also like to thank 
Jenna Hartmann for her unconditional love and support, without which life simply wouldn’t be 
as bright. I am also immensely appreciative for the humor and support my close friends have 
offered during my years in college. I will never forget the experiences we had together and I 
hope to continue our friendships into the future. 

Finally, I’d like to thank all those who are not explicitly mentioned in this 
acknowledgement section. My successes are a reflection of your investment of time and energy 
and your contribution is not unnoted and your impact on my life is significant 

47 
 


	Comprehensive Review of BAP1 Tumor Predisposition Syndrome
	Research Thesis
	Presented in Partial Fulfillment of the Requirements for graduation with research distinction in Molecular Genetics in the undergraduate colleges of The Ohio State University
	By
	Karan Rai
	Department of Molecular Genetics, The Ohio State University
	April 2015
	Project Advisors: Robert Pilarski, Department of Internal Medicine, CCC
	Dr. Amanda Toland, Department of MVIMG, Internal Medicine, CCC
	Dr. Mohamed H. Abdel-Rahman, Department of Ophthalmology and Visual Sciences, Internal Medicine
	Abstract
	Keywords
	mutation, cancer, genetics, hereditary, germline
	Table of Contents
	CHAPTER 2: METHODOLOGY
	3.1 Molecular Function of BAP1
	3.2 Clinical Findings Reported in Families with Germline BAP1 Mutations
	3.31 Uveal Melanoma
	3.32 Malignant Mesothelioma
	Somatic BAP1 mutations have also been reported in presumably sporadic MMe (Table 3). A total of 162 of 406 (40%) MMe tumors were found to have BAP1 mutations via tumor DNA sequencing (3, 48-52). Of these, 14 tumors (5%) had biallelic BAP1 mutations (...
	3.33 Cutaneous Melanoma
	3.34 Renal Cell Carcinoma
	3.35 Cutaneous Melanocytic Lesions
	Eleven germline BAP1 mutation carriers from seven unrelated families had BCC (7%) (Table 2) (3, 24, 29, 30). Seven of these 11 (64%) patients presented with more than one tumor, with one patient presenting with 13 tumors.  Immunostaining revealed comp...
	3.42 Breast Cancer
	3.43 Lung Carcinoma
	3.44 Cholangiocarcinoma
	3.45 Meningioma
	3.46 Other Tumors
	3.7 Genotype-Phenotype Correlation
	4.1 Genetic Counseling and Patient Management
	4.2 Potential Adjuvant Therapy
	4.3 Conclusions

