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to help the student identify the key mathematical tasks that will 

be on the test. We need to help the student to develop a plan of 

attack when taking the test, such as to first work all the prob-

lems which seem easiest. Finally, we need to help the student 

develop an image of successfully coping with the mathematics test. 

Simply put, the student should verbalize a statement such as, "I 

can perform well on this test." 

The stage of confronting the mathematics test would involve 

these activities by the student: 

1. answering one question at a time, not being overwhelmed 

by the entire test; 

2. solving first the questions which are easiest; 

3. and taking a deep, slow breath in order to pause for a 

moment. 

The stage of coping with the feeling of being overwhelmed 

involves these activities: 1) remembering the test will be over 

before too long; 2) pausing for a moment before a difficult ques-

tion; 3) labeling fear from Oto 10 and watching it change. Here, 

the emphasis is on monitoring the flood of anxiety during the 

test. 

Reinforcing statements are vital. After the test, the stu-

dent should be praised for having taken it (and surviving it!) • 

The student should verbalize a statement such as, "I am really 

pleased with the progress I am making." 

In short, these coping skills need to be practiced and re-

fined. Many of the ideas seem to relate to the student developing 

a sense of confidence with mathematics, a positive feeling which 

can be extended to the studying of other mathematical concepts. 

In summary, this article has tried to develop some under-

standing of the term "mathematical anxiety." An examination of 

some of the characteristics of mathematics anxiety has been ex-

plored. Also, suggestions for modifying teacher behaviors and 

teaching strategies have been developed. Finally, strategies for 

coping with mathematics tests have been developed. Hopefully, 

these suggestions may help some students to feel more emotionally 

secure with mathematics. 
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SINGLE AND DOUBLE INTEGRALS FOR AREA 
IN ADVANCED PLACEMENT CALCULUS 

T. Michael Flick 
Purcell Marian High School 

Cincinnati, Ohio 

One of the most fascinating and useful applications of ele-

mentary integral calculus is its application to area. It is at 

the time of applying integration to area that calculus students 

begin to see the power of integration. It is the area application 

that first destroys the myth that integration is simply antidif-

ferentiation or reversing the derivative process. Indeed, the 

geometric interpretation of the integral is light years from the 

geometric interpretation of the derivative. This fact should be 

strongly emphasized in the calculus classroom. 

A firm understanding of just how the area between a curve 

f(x) and an axis is computed can best be demonstrated using the 

Riemann integration technique of inscribing 'n' rectangles having 

equal length bases, finding the sum of their areas, and then 

letting the number of rectangles approach infinity as a limit. In 

this way exact areas can be computed and confidence in the funda-

mental theorem of integral calculus, 

b 
lim L f(x) AX = 

Ax-+0 a 
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is developed. This intuitive approach is especially needed in 

Advanced Placement High School calculus before a more rigorous 

proof of the fundamental theorem is attempted. The student needs 

to have a feeling for the theorem before formal proof. In this 

way, a better understanding of the topic is developed. 

It is easy to build a sound foundation in the student's 

understanding of this concept. In general, the approach is to 

take a given function, y = f(x), and inscribe n-rectangles between 

it and the x-axis (see figure 1). 

~.! 

'1 

(a+2t.x,f(a+2Ax) 

a+Ax,f(a+t.x)) l,. . \t 
(alf(a))~ , . , 

1 = f(x) 

I 
A:ic 1 ,t.x, 1- I ~x 

a b 

Then 

that 

b-a t,x is n where n is~ the total number of rectangles. Note 

t,x remains constant and is the base of all n of the rectan-
b-a gles. Further, emphasis is needed that Ax. n is a function of 

n and that as n approaches infinity, Ax approaches zero, Con-

stants a and bare fixed and not equal. 

The approximate area, Aa, between f(x) and the x-axis is 

given by the sum of the areas of then-rectangles drawn under the 

curve. 

Aa = f(a) Ax + f(a+ t,x) Ax + f(a+2 Ax) Ax+ ••• + f(a+(n-1) Ax) Ax 

n-1 n 
~ ~ f(a+k•AX) t,x = L f(a+(k-l)•Ax) Ax. 

1c=o k=l 

Of course, as the number of rectangles is increased between a and 

b, the value of Ax gets smaller, and the value of Aa becomes a 

better approximation to the exact area 
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A exact· In other words, 

n-1 n 
A • lim L f(a+k•t.x) ,h"' lim .L f(a+(k-1) Ax) Ax. 

exact n-,.o0 k=O n~• k=l 

However, it is by working specific examples that student 

confidence in the fundamental theorem can be established. Specif-

ic examples will require a knowledge of sigma notation properties 

(see table 1). The properties are usually proven using mathemati-

cal induction in a precalculus course and can be repeated for 

emphasis in a lecture on this material. 

TABLE 1 
PROPERTIES OF THE SIGMA NOTATION 

n 
}: c = en 
k=l 

n 
~ 

k = n(n + 1) 
k=l 2 

n 

~ 
k2= n(n + 1)(2n + 12 

6 

n 
k3=M2 ~ 

k=l 
. 2 

As a specific example, consider the area between the graph of 

f(x) = x
2 

+ 1 and the x-axis on the interval l .S, x .S, 4 (see fig-
ure 2). 
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is developed. This intuitive approach is especially needed in 

Advanced Placement High School calculus before a more rigorous 

proof of the fundamental theorem is at tempted. The student needs 

to have a feeling for the theorem before formal proof. In this 

way, a better understanding of the topic is developed. 

It is easy to build a sound foundation in the student's 

understanding of this concept. In general, the approach is to 

take a given function, y = f(x), and inscribe n-rectangles between 

it and the x-axis (see figure 1). 
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n and that as n approaches infinity, Ax approaches zero. Con-

stants a and bare fixed and not equal. 

The approximate area, Aa, between f(x) and the x-axis is 

given by the sum of the areas of then-rectangles drawn under the 

curve. 
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better approximation to the exact area 
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However, it is by working specific examples that student 

confidence in the fundamental theorem can be established. Specif-

ic examples will require a knowledge of sigma notation properties 

(see table 1). The properties are usually proven using mathemati-

cal induction in a precalculus course and can be repeated for 

emphasis in a lecture on this material. 

TABLE 1 
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As a specific example, consider the area between the graph of 

f(x) = x
2 

+ 1 and the x-axis on the interval l ,S. x ,S. 4 (see fig-
ure 2). 
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3 3 3 ( 3 3 f(l)(-) + f(l + -)(-) + ••• + f 1 + (n-1)-) (-) 
n n n n n 

3 n-1 3 
= - ":> f(l + k(-)) 

n M n 

Since f(x) 2 
X + 1, 

then f(l + k(i)) (1 + 3k)2 + l 
n 

2 + 6k + 9t
2 

.n 2 n 

3 f 6k ~
2 

3 A = - ( 2 +- + ) = - ( 
a n K::O n n n 

)1-1 i' )I-/ Y 2 + i k + 1k L k
2 > 

(=-O n 1<:0 n J(.:o 

l {z(n-l) + 6(n-l)(n) + 9(n-l)(n)(2n-l)) 
n 2n 60 

= 48n2 - 57n + 9 
2n2 

Now since A represents 
a 

2 the approximate area under x + 1 from 1 
to 4 with n rectangles, taking the limit as n approaches infinity 

gives the exact area. 

2 
4. = lim 48n - 57n + 9 = ~ 
nexact ~"° 2 n 2n 

J4 2 3 14 and (x + 1) dx = .!.._ + x 
1 3 1 

= 24. -
Although this is just one example, it is strong evidence for the 

truth of the fundamental theorem. After several examples of this 

technique have been given with their integral counterpart, a 

formal proof of the fundamental theorem may be attempted. 

Once the fundamental theorem has been established and the 

students are convinced of its truth, the teacher could take the 

opportunity to show the double-integral representation of area and 

its equivalence to the single integral and the fundamental theorem 

(see figure 3). 
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l b rf(x) lb lf(x) ib 
a Jo dy dx = a y 

O 
dx = a f(x) dx. 

The single integral approach can be thought of as the in-

scription of infinitely many rectangles under f(x) and above the 

x-axis on a_s: x .S: b. However, the double integral represents a 

summation of the area of infinitely many rectangles packed under 

f(x) and above the x-axis (see figure 4). 
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Each of the 'typical I rec tangles has a length Ii x and a width fi y. 

In fact, the logic is analogous to that used in the Riemann In te-

gration approach. It is by summing the rectangle areas that we 

can approximate the exact area. 
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Although this is just one example, it is strong evidence for the 

truth of the fundamental theorem. After several examples of this 

technique have been given with their integral counterpart, a 

formal proof of the fundamental theorem may be attempted. 

Once the fundamental theorem has been established and the 

students are convinced of its truth, the teacher could take the 

opportunity to show the double-integral representation of area and 

its equivalence to the single integral and the fundamental theorem 

(see figure 3). 
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For convenience let 6A = fly t:.x. Now intuition leads the student 

to believe the true result that 

t:.A1:!;0 LL t:.A 
('b f(x) JS j a Jo dA ~ dy dx. 

The point here is that by developing the student's intuition 

one can build insight that can lead to understanding rather than 
memorization and frustration. It is after a concept is understood 

that formal proof should fit into advanced placement calculus. 
Rigor is important in mathematics and must not be totally omitted. 
However, a rigorous approach without a foundation in understanding 

is time wasted for most students. 

WORD PROCESSING: A TEACHER'S AIDE 

Roger W. Carlson 
Ohio University 
Athens, Ohio 

With the growing presence of microcomputers in colleges 
and schools, used both administratively and for computer-
assisted instruction(CAI), their use outside the classroom by 
teachers becomes more common. Whether the micro is at home or 
at school, it can be of considerable assistance, especially 
when the amount of work to be done exceeds the time in which 
to do it. 

Many teachers, particularly in ma.thematics, are already 
acquainted with the value of computers for teaching ma.thematics 
and for student use in writing programs, entering formulas and 
solving problems. What is important, however, is to know that 
there are other microcomputer applications which .make the 
teacher's work faster, more accurate, more uniform and much 
easier. 

JO 

Some have argued that this large amount of teacher-talk is appro-

priate for mathematics instruction, where students "must be told 

what to do." Others; however, have countered that mathematics 
should be more oriented toward student participation and discovery 

if mathematics is to be meaningful. 
Perhaps of even more importance are these ideas: 

Better teachers devote about half of the instructional 
time to lecture, demonstration, and discussion, and some-

what less than half the time to individual seatwork for 

practice. 
Less effective teachers devote about one-fourth of the 

instructional time to lectures, etc., and over half the 
time to seatwork. (Evertsen et al., 1980b) 

This recent research evidence supports findings by Shipp and Deer 
and others in the 1960's. There appears to be a connection be-

tween the amount of time devoted to developing mathematical ideas, 

and student achievement. 
What is the typical pattern of mathematics classes? Several 

recent studies have indicated that the following is the most usual 

plan: 

Opening activities - 5 minutes 
Checking/grading homework - 10 minutes 

Lecture/discussion - 10 minutes 

Seatwork - 20-30 minutes 
Closing activity - 5 minutes 

Good and Grouws (1979) have proposed an alternative model that has 
been demonstrated to promote achievement: 

Daily review - 8 minutes 

Development - 20 minutes 
Seatwork - 15 minutes 
Homework - daily 

Special reviews (of all content) - once a week 
With this model, a greater amount of time is spent on developing 

mathematical content. Moreover, it incorporates systematic re-
view, an ingredient that has been missing from some mathematics 
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