
For example, factoring 2x2 - 7x - 4. The graph of y = 2x2 - 7x - 4 is shown 
in Figure 4. The roots occur at -1/2 and +4. The factors are (x - (-1/2))(x - ( +4)) 
= (x + 1/2)(x - 4) ; 2x2 - 7x - 4. However, if we clear (x + 1/2) of the fraction 
by multiplying by 2, we get 2(x + 1/2) = (2x + 1). Substituting this for (x + 1/2) 
gives (2x + l)(x - 4) = 2x2 - 7x - 4. It is appropriate to multiply through by 2 (or 
any number) since the roots occur at y = 0. In fact, we are multiplying both sides 
of the equation (x + 1/2)(x - 4) = 0 by 2. 

Graphing also helps students understand 
why some expressions do not factor - because 
they do not have x-intercepts. For example, 
x2 + 2x + 2. Examining the graph of 
y = x2 + 2x + 2 (Figure 5) shows that the 
function is located entirely above the x-axis, 
has no x-intercepts, and does not factor. 

x2+ 2x + 2 

Figure 5 

The graphic approach to factoring is not meant to replace all of the old 
techniques. The factoring rules, guess methods, and quadratic formula still have 
their place. The graphic approach is taught to add clarity to the process. 

Conclusion 

The introduction of low cost graphing software and hand-held graphing 
calculators invites many new approaches to old mathematics. The key is to allow 
the technology to help us find ways to reinforce mathematical concepts. Factoring 
is the one area that is greatly aided by the use of graphing. Students learn in depth 
concepts relating the abstract equation or expression to a concrete picture - the 
graph. 

MORE PENTOMINOES 

College Corner 5th graders reported 60 solutions 
to their pentomino puzzle in the Summer, 1989 issue of 
this Journal. That class, this year's 5th graders, and 
puzzling readers have boosted the total to 215! One of 
Christy's is shown. If you have solutions send them to 
Bethel Hooven, Union School, College Corner, OH 45003. 
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MISUSING MEDICAL PERCENTS 

David R. Duncan and Bonnie H. Litwiller 
University of Northern Iowa 
Cedar Falls, IA 50614 

Teachers are constantly looking for ways to assist their students to 
understand the concept of percent and to apply this concept to real world situations. 
The need for this instruction is evident when one hears many adults mangle percent 
information. 

We recently heard a case of misusing percent on a local radio station. The 
announcer was describing a process for detecting a specific type of cancer. Medical 
researchers had become concerned that there was a significant number of "false 
negatives" resulting from the detection process previously used; that is, on occasion 
a person for whom the detecting process had identified no cancer would suddenly 
have symptoms of the cancer, leading researchers to suspect that the cancer had 
actually been present at the time of the original negative test. To address this 
problem, researchers developed a more comprehensive detection process. This new 
detection process appeared to be more successful, since the number of positive tests 
(apparent detection of cancer) increased by 25%. 

So far, there is nothing wrong with the announcer's description. But he then 
said something that got our "mathematical attention". Specifically, he said, "in 
other words, 25% of the people who had negative tests with the previous detection 
process actually had this specific cancer." Is this statement correct? 

To examine this statement let us make a preliminary assumption about the 
prevalence of this type of cancer. Let us suppose that the previous detection process 
yields positive results for 4% of the population tested; the new process would detect 
25% more than this. A 25% increase would raise this 4% of the population testing 
positive to 5% testing positive. How many people would have negative tests with 
each process? (Recall that a negative test is one in which no cancer is detected.) 

The original detection process identified 96% as having negative results. The 
new improved process identified 95% as having negative results. If this were applied 
to a typical group of 100 people, one person of the original 96 found to be negative 
by the original process is now identified by the new process as apparently having 
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this specific cancer. This one person represents 1.04% of the 96, not 25% as the 
announcer thought. 

We performed this computation with the assumption that 4% tested positive 

using the original process. How would our computations change if this 4% were 
altered? 

To symbolize this, let us assume that x percent of the population tests 

positive for this cancer using the original process. The new process then yields 

positive tests for x + .25x or l.25x percent of the population. The original process 

shows negative results for 100 - x percent of those tested, while the new test shows 

negative results for 100 - l.25x percent of those tested. The percent decrease (in 

those testing negative) from 100 - x to 100 - l.25x is 

) ~x ~x (100 x) - (100 - l.25x . 100 = · · 100 = rm,:: x 
100 - X 100 - X 

The following table displays the decreases in those testing negative from the 

original process to the newer process for various values of x. 

The first column, x, is the percent testing positive for this cancer using the 

original test. The second column, 1055: x , is the percent of those testing negative 
using the original test who test positive using the new test. 

X 

1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 
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25x 
IOU - X 

.2524 

.5102 

.7732 
1.0417 
1.3158 
1.5957 
1.8817 
2.1739 
2.4725 
2.7778 
6.2500 

10.7143 
16.6667 
25.0000 
37.5000 
58.3333 

100.0000 

Having students see that the x-intercepts of the graph of their equation yield 

the factors of the equation gives added meaning to the factoring process. It is for 

this reason that the graphic relationship should be taught first - prior to factoring 

rules or trial-and-error factoring. For most students, factoring will have much more 

meaning because a graph will come to mind when equations are factored. 

By using this approach, students can be taught to graphically factor more 

difficult expressions like x3 - x2 - 6x, x3 - x2 - 9x + 9, and x4 - 10x2 + 9. When 

the graphic approach is used, these expressions are as easy to factor as the quadratic 

expressions. 

Discussion 

It is important to note that although a graph can be used to determine the 

factors of an equation, the converse is not as easily achieved. For example, given an 

equation with roots of -3 and +2 says little about the actual graph or equation. 

Figure 3 shows three graphs with roots -3 and +2. In fact, there are infinitely many 

functions with roots -3 and +2. 

-3 /' ·-3 

Figure 3 

It is not necessary to explore all aspects of graphing with a class while 

introducing factoring. Graphing is a simple tool to help give meaning to factoring. 

It is not necessary initially to explore 
all of the unusual cases - non-integer 
real roots or irrational roots. You do 
not have to tell the students everything 
you know about graphing to use it 
effectively in the introduction of 
factoring. The unusual cases can be 
introduced later as needed. 
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y = 2x2- 7x - 4 

Figure 4 



this knowledge. Further, the early integration of computer graphing software or a 
graphing calculator like the HP-28S or the Casio fx-7000G is strongly recommended. 
This approach to factoring makes excellent use of available technology. 

The graphic approach is a great introduction to factoring. Begin by having 
the students plot a graph of an equation, like y = x2 - x - 6, by hand using an 
appropriate domain like from -5 to +5 (see 
Figure 1). After the students have their 
graphs, the teacher could also graph the 
function at the chalkboard followed by having 
the computer or calculator draw the graph. 
If students are already familiar with the 
computer or calculator, graphing by hand 
might be eliminated. 

Y = x2- X - 6 

Figure 1 

Ask the students to state the x-intercepts. In this case, they are -2 and +3. 
Write the factors (x - (-2))(x - ( +3)) = (x + 2)(x - 3) on the chalkboard. Point 
out the form of the factors: 

(x -(intercept))(x - (intercept)). 
Now distribute the example to obtain 

(x + 2)(x - 3) = x2 - x - 6, 
the original equation! Thus we have shown that y = x2 - x - 6 = (x + 2)(x - 3) 
and that x2 + x - 6 factors to (x + 2)(x - 3). This process clearly shows the 
relationship between the x-intercepts, or roots, and the factors of the polynomial 
part of the original equation. Try repeating the graphic approach with several other 
simple polynomial equations like y = x2 + 2x - 8 and y = x2 + 3x - 4. 

After working with such problems for a day or so, try factoring the 
expression x2 - 4x + 4 by graphing. The sketch of y = x2 - 4x + 4 is shown in 
Figure 2. In this case, the vertex of the 
parabola is the x-intercept, x=2. This yields 
a double root. That is, the factor (x - 2) 
occurs twice and x2 - 4x + 4 = (x - 2)(x - 2). 
A vertex on the x-axis yields a repeated 
factor. In the initial discussion with a class, 
it is not necessary to go into greater depth 
regarding repeated roots. 
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y x2- 4x + 4 

2 
Figure 2 

The table cannot continue since 100% represents the entire population which 
tested negative by the original process. 

The radio announcer would have been correct if 50% of the population tested 
positive for this cancer using the original process. This is extremely unlikely. The 
actual incidence of cancer is probably nearer the small values of x at the beginning 
of the table. 

Could the value of x which yielded a second column value of 25% (as stated 
by the announcer) be found without building the entire table? 

Write the equation: , x~5x = 25 

Solve the equation: 25x = 25(100-x) 
25x = 2500 - 25x 
50x= 2500 

X = 50 

Challenges for you and your class. 

1) What would happen if the original increase in positive tests 
had been different from the 25% which began the problem? 

2) Have your class find and report on other misuses and abuses of 
percent in the "real world". 

SOFTWARE OFFER 

Gerhard S. Plessinger, 4021 22nd St. NW, Canton, OH 44708 has written a 
computer program for Apple Ile which will create several systems of two or three 
linear equations all with the same solution set, or, if you prefer, with different 
solutions sets. 

Gerhard is willing to share - please contact him directly to make your 
in-class practice more "systematic"! 
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