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Abstract

Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been
developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes
observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of
conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This
manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of
conditions that differ in temperature, pH, as well as NaCl, amino acid, and O2 levels. Samples derived from these
fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics,
e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was
constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological
characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific
fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The
fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-
phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological
variations imposed by different fermentation conditions.
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Introduction

Lactic acid bacteria (LAB) are utilized as starter cultures in food

fermentation for their spoilage-preventing and preservative effects

on raw-materials, as well as their contribution to flavor and texture

of the fermented product [1,2,3]. The wide industrial application

of LAB supports the ambition to better understand and improve

their fermentation characteristics. These include maximization of

basic physiological variables such as growth rate and biomass

production to increase fermentation efficiency [4,5], the enhanced

formation of desired metabolites and flavor profiles to optimize

taste of the fermentation end-products [2,3,6,7], as well as

optimization of survival during industrial and downstream

processing [5,8].

The current public databases contain the complete genomes of

over 30 LAB species (http://www.ncbi.nlm.nih.gov/genomes/

lproks.cgi), while genome sequences of multiple strains are

available for specific species [9,10,11]. This rapidly increasing

genetic database of this group of bacteria enables in depth

comparative genomics among strains of a species, or between

different LAB species. Genomic diversity among strains of specific

LAB species has also been assessed by DNA micro array-based

comparative genome hybridization (CGH) approaches, providing

one-directional gene absence-presence patterns [12,13,14,15].

Such datasets in combination with random forest (RF)-based

correlation [16] analysis, linking multiple-genome or CGH data to

differential functional characteristics (phenotypes), has led to the

identification of the genetic determinants important for some

strain-specific phenotypes. For example, application of this
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strategy to Lactobacillus plantarum WCFS1 [9] revealed its mannose-

specific adhesin-encoding gene [17] as well as several genetic loci

involved in the immunomodulating capacity of this strain [13,18].

Despite the successful examples of genotype-phenotype match-

ing strategies, this approach intrinsically relies on diversity among

strains at the level of their genome-content. Consequently, the

importance of differential regulation of phenotypic characteristics

that rely on expression of conserved genes cannot be assessed [8].

This limitation is clearly illustrated by the observation that closely

related Lactococcus lactis strains display distinct expression patterns

of conserved enzyme functions as a consequence of strain-specific

regulation of gene expression [19]. Moreover, there is accumu-

lating evidence that fermentation conditions may dramatically

affect functional characteristics of LAB strains [20,21]. These

findings are supporting a complementary approach in which a

specific LAB strain is grown under different fermentation

conditions to induce phenotypic variation, followed by RF-based

correlation of phenotypes and transcriptome profiles to pinpoint

the genetic determinants responsible for the observed phenotypes

(Figur 1). In addition, this approach also enables the identification

of genes important for basal physiological parameters such as

growth rate, which is not feasible with genotype-phenotype

matching strategies, as variations in these parameters are relatively

small for different strains of the same species when they are grown

in rich laboratory media [8,18].

L. plantarum is encountered in dairy, vegetable, sourdough and

meat fermentations [15,22,23]. Here, L. plantarum WCFS1 was

grown under different conditions, according to a fractional

factorial experimental design that included variations in temper-

ature, NaCl concentration, pH, as well as oxygen and amino acid

availability. Basic fermentation characteristics were monitored,

such as maximal growth rate and biomass yield, as well as the

respective transcriptome and organic acid profiles. This approach

allowed the identification of fermentation conditions that modu-

late specific physiological characteristics of L. plantarum WCFS1,

such as citrate uptake and succinate production, as well as the RF-

based association of these characteristics with specific gene

expression profiles. Moreover, our analysis revealed genetic

markers that correlated with relatively high growth rates, and

enabled regulatory network reconstruction that allowed the

identification of overrepresented functional classes that explain

the genetic response of L. plantarum to altered fermentation

conditions such as pH or oxygen availability.

Methods

Experimental Design, Fermentations and Organic Acid
Analysis

During the fermentations, L. plantarum WCFS1 [9] was grown in

2-fold concentrated chemically defined medium (26CDM) [24] of

which the composition can be found in Methods S1.To induce

differential transcriptome and metabolite profiles in L. plantarum

WCFS1 [9], a fermentation scheme was designed with 5 variable

parameters, namely temperature (28 or 37uC), pH (5.2, 5.8 or 6.4),

amino-acid concentration (1.1 or 2.06 standard amounts, see

below), oxygen availability (sparging with N2 or air), and NaCl

concentration (0 or 0.3 M). These variable fermentation condi-

tions were combined into a combinatorial fermentation scheme on

the basis of a balanced fractional factorial design (Table 1).

Application of this experimental design reduced the number of

Figure 1. Workflow of the fermentation genomics platform. L. plantarum WCFS1 is fermented under different conditions and samples derived
from these fermentations are assessed at the molecular level by full genome transcriptome profiling and in parallel the physiological characteristics of
the fermentations are determined. The datasets obtained are stored in FermDB and correlated. Figure adapted from [8].
doi:10.1371/journal.pone.0038720.g001
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fermentations to 24 (30 including controls, see below). Within this

design, variations in fermentation conditions are distributed in

such a way that the effects caused by the specific interaction of 2

different variable fermentation conditions can be quantified. As a

trade off for the lower number of fermentations required, different

combinations of three parameters are confounding and conse-

quently their quantification is not feasible. pH-controlled batch

fermentations were performed at 0.5 L scale in a Multifors mini-in

parallel fermentor system (Infors-HT Benelux, Doetichem, the

Netherlands). For inoculation of the fermentors, a single colony

isolate of L. plantarum WCFS1 was used to inoculate 5 mL 26
CDM [24] and grown overnight at 37uC. This full-grown culture

was used to prepare a dilution range from 1021 to 1026 in fresh

26 CDM medium, and these cultures were grown overnight.

Subsequently, the cultures were photospectrometrically assessed

and the culture with an OD600 nearest to 1.5 was used to inoculate

the fermentors at an initial OD600 of 0.1. Prior to inoculation the

26 CDM media in the fermentors were adjusted to the

appropriate pH and temperature. During fermentation the

cultures were stirred at 125 rpm, the initial pH was maintained

by the titration of 2.5 M NaOH, the OD600 was monitored

continuously, and the cultures were sparged with N2 or air at a

rate of 150 mL/min. Moreover, CO2 was mixed into these gasses

at a final concentration of 2.5% via a mass flow controller prior to

medium sparging, since this prevents the stagnation of growth of L.

plantarum WCFS1 [25]. Throughout fermentations, OD600 was

measured photospectrometrically, with the notion that when

OD600 of undiluted samples exceeded 0.7, samples were diluted

10-fold in MRS medium prior to OD600 determination. After 25 h

(stationary phase for all fermentations) 50 mL samples were

collected for quantitative, high performance liquid chromatogra-

phy (HPLC)-based organic acid analysis (pyruvate, acetate, citrate,

succinate, formate and lactate levels were determined) according

to a previously described protocol [26].

RNA Isolation and DNA Microarrays
RNA isolation from L. plantarum, subsequent cDNA synthesis

and indirect labeling, as well as DNA microarray hybridizations

were performed using routine procedures [13,27]. Briefly, 10 mL

samples derived from the fermentors at an OD600 of 1.0 were

quenched [28] prior to RNA isolation, and 5 mg of isolated RNA

was used for cDNA synthesis and indirect labeling with cyanine 5

(Cy5) or cyanine 3 (Cy3) [13,27]. The DNA microarray

hybridization scheme was designed as a connected loop that

consisted of smaller sub-loops containing all samples derived from

fermentations that were run on the same day (Figure S1). A two-

dye microarray-based gene expression analysis was performed on

a custom-made 60-mer oligonucleotide array (Agilent Biotechnol-

ogies, submitted in the Gene Expression Omnibus (GEO) [29]

under platform GPL13984) to determine genome-wide, absolute

gene transcription levels. Co-hybridization of Cy5- and Cy3-

labeled cDNA probes was performed on these oligonucleotide

arrays at 42uC for 16 h in Slidehyb#1 (Ambion, Austin, USA).

Subsequently, the slides were washed twice in 16SSC containing

0.1% sodium dodecyl sulfate and twice in 16 SSC prior to

scanning. Slides were scanned with a ScanArray Express 4000

scanner (Perkin Elmer, Wellesley, USA), and image analysis and

data extraction were performed using the ImaGene Version 7.5

software (BioDiscovery Inc., Marina Del Rey, USA). The

microarrays were scanned at different intensities and for each of

the microarrays the best scan was selected on the basis of signal

distribution (combination of a low number of saturated spots and a

low number of low signal spots). The data were normalized using

Lowess [30] normalization as available in MicroPrep [31]. The

data were corrected for inter-slide differences on the basis of total

signal intensity per slide using Postprep [31]. The median intensity

of the different probes per gene was selected as the gene expression

level. This analysis resulted in genome-wide, absolute gene

expression levels for L. plantarum WCFS1 derived from 29

fermentations. CyberT [32] was used to compare and divide the

transcriptomes in different possible classes (e.g. low vs high citrate,

different levels in fermentation parameters), taking into account

the duplicates (dye swaps) of each of the conditions. This analysis

resulted in a gene expression ratio and false discovery rate (FDR)

for each gene. Genes with FDR values ,0.05 were considered to

be statistically significant. All microarray data are MIAME

compliant and available in the GEO database (GSE31076,

http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE31076).

Table 1. Fermentation conditions and physiological
characteristics of L. plantarum WCFS1 recorded for the 30
fermentors performed.

Ferm. ID: [NaCl] (mM): [AA]f: T (6C): pH: O2/N2: ODmax: mmax(h21):

F1 0 2.0 37 5.2 N2 7.21 0.80

F2 300 2.0 37 5.2 N2 6.90 0.78

F3 0 1.1 37 5.2 O2 7.05 0.71

F4 300 1.1 37 5.2 O2 6.98 0.70

F5 0 2.0 28 5.2 O2 7.73 0.55

F6a 300 2.0 28 5.8 O2 6.03 0.55

F7 300 2.0 28 5.2 O2 7.35 0.44

F8b 0 1.1 28 5.2 N2 6.96 0.45

F9 300 1.1 28 5.2 N2 6.23 0.54

F10 0 2.0 37 6.4 O2 6.60 0.57

F11 300 2.0 37 6.4 O2 5.30 0.44

F12c 0 1.1 28 5.8 N2 6.60 0.48

F13 0 1.1 37 6.4 N2 6.56 0.58

F14 300 1.1 37 6.4 N2 6.07 0.53

F15 0 2.0 28 6.4 N2 5.85 0.31

F16 300 2.0 28 6.4 N2 4.16 0.23

F17 0 1.1 28 6.4 O2 7.74 0.32

F18d 0 2.0 37 5.8 N2 6.94 0.71

F19 300 1.1 28 6.4 O2 4.93 0.47

F20d 0 2.0 37 5.8 N2 5.01 0.76

F21 300 2.0 37 5.8 N2 4.68 0.75

F22 0 1.1 37 5.8 O2 5.92 0.65

F23 300 1.1 37 5.8 O2 6.07 0.60

F24b 0 1.1 28 5.2 N2 6.91 0.65

F25e 0 2.0 28 5.8 O2 6.14 0.29

F26a 300 2.0 28 5.8 O2 4.74 0.28

F27c 0 1.1 28 5.8 N2 6.23 0.24

F28 300 1.1 28 5.8 N2 4.84 0.23

F29e 0 2.0 28 5.8 O2 6.22 0.38

F30d 0 2.0 37 5.8 N2 5.94 0.71

Dotted lines separate fermentations performed on different days.
a–dduplicate fermentations on different days.
eduplicate fermentations on the same day.
famino acids were added as 1.1 or 2.06 the standard amount in 26CDM.
doi:10.1371/journal.pone.0038720.t001
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Data Storage, Visualization Tools and Correlation
Statistics

A MySQL-based storage system for data produced from the

fermentation, transcriptomics and phenotyping experiments (e.g.

the metabolite profiles presented here but also other functional

characteristics such as gastrointestinal survival; see accompanying

manuscript by van Bokhorst et al.) was developed. Moreover, the

statistical methods Mann Whitney U [33] and Random Forest

[16] were implemented for significance analysis and data

correlation, respectively. More specifically, Mann-Whitney U

[33] was used to correlate physiological characteristics of L.

plantarum (mmax, ODmax and organic acid profiles) to differential

fermentation conditions (temperature, pH, NaCl concentration, as

well as oxygen and AA availability). Results were corrected for

multiple comparisons using the false discovery rate control (FDR)

[34]. To identify genes of which the transcription level correlated

to (individual) citrate or succinate concentrations, the citrate and

succinate results were divided into two different classes per

compound (i.e. low citrate levels vs. high citrate levels, low

succinate levels vs. high succinate levels) and subjected to RF using

the transcriptome data as the predictor for the algorithm. From

this prediction, the importance values (mean decrease gini) were

used as a measure for functional correlation of the gene to the

observed phenotype (Table S1). Using a similar RF-based

approach, no clear target genes could be found on basis of

transcript levels in relation to mmax (data not shown). Therefore, a

different approach was applied to identify mmax-related genes. In

this alternative approach we grouped genes and calculated their

average expression level per fermentation. Average gene expres-

sion of these grouped genes was compared to mmax per

fermentation by calculation of the Pearson correlation coefficient

between the two. Per iteration the 300 groups that showed the best

correlation with the mmax of the fermentations were selected and

the genes encompassing these groups were used for the next

iteration step. Each subsequent iteration step differed from the

previous with respect to group size (starting with a group size of 1,

while group size increased by one gene in every consecutive

iteration). As genes important for high correlation to mmax will

appear in multiple top-300 clusters, the total number of genes used

for each next iterative step will decrease. This procedure was

iterated until the total gene set did not further reduce in the

subsequent iteration. The final gene set consisted of 47 genes. The

expression levels of the genes in this final set was averaged per

fermentation condition and correlated with the mmax. Both the

storage system and the statistical methods have been integrated

into a freely accessible, web-based platform designated FermDB

(http://www.cmbi.ru.nl/fermdb). The platform is divided into two

different Django applications termed ‘‘fermentations’’, which

includes all the storage and file handling procedures, and

‘‘analysis’’, where all statistical analysis are handled.

DNA microarray data was visualized on the L. plantarum-specific

metabolic model [35] using the Simpheny software package (www.

genomatica.com). Functional overrepresentation was assessed

using Biological Network Gene Ontology (BiNGO) [36] with the

functional classification as proposed in [14] instead of GO

annotation. To identify regulatory networks, the complete DNA

microarray data set was grouped per individual fermentation

parameter using CyberT. Genes with a significant change in

expression (FDR ,0.05) and a ratio change .1.5 fold were

selected. A regulatory network was built that links variations in

fermentation conditions to the significantly changed genes and

visualized in Cytoscape. Within this network, genes were

organized according to their association with specific fermentation

conditions, as either single or shared responses towards certain

fermentation conditions.

Results

Functional-fermentation Genomics Platform for L.
plantarum

Lactobacillus plantarum WCFS1 was grown under a variety of

conditions that differed in temperature, pH, as well as NaCl,

amino acid, and O2 levels (Figure 1 and Table 1). The

fermentations were performed on 5 separate days, whereas 1

and 4 control fermentations were included to investigate inter- and

intra-day variability, respectively. Moreover, a triplicate fermen-

tation for one of the intra-day controls (F18 and F20) was

performed (F30) from which no samples were derived in the

logarithmic phase of growth, confirming that sampling had no

effect on growth parameters such as the maximum OD600 reached

(ODmax) and the maximum growth rate (mmax, Table 1).These

three fermentations resulted in the highest ODmax and mmax range

observed in the complete fermentation scheme and appeared

highly reproducible (ODmax = 5.9426.94 and mmax = 0.6520.71).

However, the other inter- and intra-day controls displayed distinct

differences in ODmax and mmax, in particular when fermentation

conditions were applied that induced suboptimal growth. There-

fore, correlation analyses were performed on basis of the

individual fermentations and their corresponding transcriptomes

and organic acid profiles (see below).

The fermentation scheme resulted in an overall variation of the

ODmax from 4.16 to 7.73 and a mmax range from 0.23 to 0.80 h21

(Table 1). The highest mmax was achieved in fermentor F1 which

was performed at pH 5.2 and 37uC, whereas the lowest mmax was

measured for fermentor F28 which was run at pH 5.8 and 28uC.

The variations in these and other basic physiological character-

istics such as lag phase (Figure S2A-E) strongly suggest that the

fermentation scheme applied here will induce differential tran-

scriptomes and corresponding phenotypes such as organic acid

profiles, which were the variables measured for all samples derived

from fermentors F1–F29. The transcriptome and phenotypic data

were stored in fermDB which was specifically developed for this

purpose (see Materials and Methods for details, accessible at

http://www.cmbi.ru.nl/fermdb).

Correlation of Physiological Characteristics to Specific
Fermentation Conditions

Significant correlations were not found between AA availability

and any of the physiological characteristics examined here

(Table 2). Notably, glucose was not detected in any of the 29

fermentations after the cultures had reached the stationary phase

of growth (data not shown), suggesting that in these carbon-limited

fermentations the influence of the addition of surplus amounts of

amino acids may only have a minor effect on the physiological

characteristics of L. plantarum WCFS1.

Not surprisingly, as it is well documented that L. plantarum grows

well at 37uC [37], the average mmax at this temperature was

significantly higher than that recorded in the fermentations

performed at 28uC (Table 2 and Figure 2A). Analogously, acetate

concentrations were significantly higher in the aerobic fermenta-

tions. This might be explained by the fact that it is well established

that only during aerobic growth lactate-to-acetate conversion can

occur, with lactate remaining the major end product of carbon

fermentation [38,39,40]. Notably, the lactate concentrations could

not be associated with oxygen levels. This absence of a clear lactate

effect might be due to the specific setup of this study. Considering

the combinatorial nature of the fermentations performed, only

A Fermentation Genomics Platform for L. plantarum
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fermentation variable-specific changes are anticipated to be

identified. Lactate production, however, is probably influenced

by many different fermentation variables and will therefore not be

specifically linked to the availability of oxygen.

Interestingly, the NaCl concentration and pH in the fermen-

tations could both be correlated with high significance to 3

physiological phenotypes of the cultures. When a pH of 5.2 was

applied during fermentation, significantly lower amounts of

formate were produced by L. plantarum when compared to

fermentations at a pH of 6.4 (Table 2). A similar trend was found

comparing fermentations at pH 5.2 and 5.8 (p = 0.062), suggesting

an overall correlation between pH and formate concentrations

(Figure 2B). Secondly, fermentation at pH 5.2 resulted in

significantly higher mmax and ODmax relative to the fermentations

which were maintained at the other two pH values. The ODmax

reached by L. plantarum WCFS1 was consistently and significantly

lower in fermentations to which NaCl was added (Table 2 and

Figure 2C). Thirdly, NaCl addition also yielded decreased and

increased concentrations of succinate and citrate, respectively.

Overall, our data corroborate and expand earlier described

correlations between physiological characteristics and fermenta-

tion conditions, despite the fact that multiple variables were

changed concomitantly, confirming the feasibility of our approach.

Transcriptome Correlation to Physiological Parameters
The citrate and succinate concentrations determined in the 29

fermentations appeared to anti-correlate (R2 = 20.77). Compar-

ison of the citrate concentrations at the start and after 25 h of

incubation indicate that citrate is taken up by the cells and

subsequently converted to succinate, particularly in fermentations

with low NaCl concentrations (Figure 3). A RF-based identifica-

tion of transcripts that are associated with citrate or succinate

concentration revealed that among the 10 most important genes

for the classification of citrate and succinate, 5 genes were found

shared between the two predictions (lp_0603, lp_1112, lp_1562,

lp_2451 and lp_2825). In addition to the RF classification, the

same class distribution (low vs high) was used to assess the gene

expression (Table S1). Out of the 3099 genes represented on the

DNA microarray, 415 showed to have a significant up/down

regulation (p,0.05) in both class distributions. Out of these 415

genes, 407 showed to be expressed in the same direction (e.g.

upregulated at high citrate uptake and high succinate production),

again confirming the highly inter-connectiveness of these two

metabolites. Among these significantly changed genes were all 5

shared top-10 genes resulting from the RF, each showing a ratio of

expression above 1, indicating a higher expression of these genes

in the case of citrate to succinate conversion. Among these genes

only one was directly related to the conversion of citrate to

succinate (lp_1112, encoding a fumarate hydratase). For the other

genes this relation is less clear (e.g. lp_0603, coding for a putative

acetyltransferase). Interestingly, among these five genes two appear

to be involved in nucleotide biosynthesis, more specifically in the

conversion of (preferably) uridine.

The transcriptome data and the RF importances were averaged

for the two classifications (taking the average gene expression

ratio/importance from both the citrate and succinate classes) and

plotted on the genome scale metabolic map in Simpheny (see

methods and Table S1). Apart from the genes described earlier, we

identified additional genes in the metabolic vicinity of citrate to

succinate conversion and nucleotide biosynthesis to be altered in

expression and/or important for RF classification (Figure 4). In

addition to these regions in the metabolic map, changes were

observed in teichoic acid biosynthesis.

Using a similar RF-based approach, no clear target genes could

be found on basis of transcript levels in relation to mmax (data not

shown), most probably due to the relative low signal to noise ratio

within the transcriptome data. An alternative approach using

groups of genes rather than single genes (see Methods) resulted in a

highly significant correlation (R2 = 0.95) of the average expression

level of 47 genes and mmax (Figure 5 and Table S2). The encoded

functions of these genes include 8 regulators from diverse families,

13 hypothetical and 4 transport-related proteins, 8 functions

involved in energy and central intermediary metabolism, and 5

genes that play a role in cell envelope functionalities.

Overall, these analyses demonstrate the suitability of our

genomics fermentation platform to identify genetic biomarkers

for highly (industrially) relevant physiological characteristics of the

corresponding cultures, such as growth rate and organic acid

profiles.

Identification of Regulatory Networks
Construction of regulatory networks revealed that, in line with

the fact that amino acid concentrations had no impact on the

physiological characteristics of L. plantarum (see above), virtually no

transcriptome responses were observed for this fermentation-

variable (Figure 6). For the other 4 fermentation-variables,

significant transcriptome responses (response clouds) were ob-

served in both directions (e.g. up- and down-regulation of genes).

The largest response clouds were observed for temperature and

pH, including a significant proportion of shared responses.

To assess which functional classes are overrepresented in the

observed response clouds, a BiNGO analysis was performed

(Table S3). For the low-temperature response cloud only a single

functional class was found to be overrepresented (p = 0.042),

Table 2. Mann-Whitney U-based correlation of fermentation parameters and physiological characteristics.

Parameter: [lactate]: [pyruvate]: [acetate]: [formate]: [succinate]: [citrate]: ODmax: mmax (h21):

T 0.151 0.506 0.244 0.336 0.484 0.394 0.481 0.022

[AA] 0.321 0.337 0.331 0.491 0.505 0.432 0.242 0.260

O2 0.519 0.329 0.022 0.402 0.314 0.530 0.311 0.511

pH5.2 vs. 5.8 0.409 0.376 0.193 0.062 0.315 0.326 0.014 0.016

pH5.2 vs. 6.4 0.248 0.376 0.355 0.016 0.497 0.513 0.062 0.061

pH5.8 vs. 6.4 0.193 0.509 0.311 0.330 0.316 0.326 0.355 0.329

[NaCl] 0.326 0.506 0.245 0.505 0.007 0.015 0.042 0.349

Significant differences (p,0.05) are presented as italicized and bold, depending on the direction of the correlation (positive and negative, respectively).
doi:10.1371/journal.pone.0038720.t002
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PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e38720



encompassing the regulatory functions. The functional class found

as most significantly overrepresented (p = 5.6610235) in the high-

temperature response cloud encompasses phage- and prophage-

related functions, whereas TCA cycle and fermentation were also

overrepresented significantly. Despite the fact that the above

mentioned functional classes are significantly overrepresented, it is

hard to assess their role in the determination of the functional

properties and adaptation of L. plantarum to the altered fermen-

tation conditions.

The functional classes found overrepresented in the salt-

response clouds include several sub-classes associated with amino

acid and nucleotide biosynthesis and transport (Table S3),

reiterating our earlier observations that the addition of salt to

the fermentation media correlates with increased citrate uptake

and succinate production, which according to our Simpheny

analyses involved several amino acid- and nucleotide-related

processes (see above).

Interestingly, among the two individual oxygen response clouds

(up- and down-regulated) nucleotide biosynthesis was identified as

an overrepresented class. Detailed analyses of these two response

clouds pinpointed that, although the class was shared, the clouds

consisted of different genes. Manual inspection of these genes

revealed that under conditions that lacked oxygen, lp_2931 and

lp_2932 were consistently upregulated. These genes code for NrdD

and NrdG, which are class III ribonucleotide reductases, a class of

ribonucleotide reductases that only function under anaerobic

conditions [41,42]. Furthermore, it was shown in different

organisms, including LAB, that these genes are essential for

growth under anaerobic conditions [42,43]. Reduction of these

ribonucleotides under anaerobic conditions could function as a

source for deoxyribonucleoside triphosphates for DNA sysnthesis.

This could also explain why under aerobic conditions, parts of the

nucleotide biosynthesis pathways (i.e. purL (lp_2724), purS

Figure 2. Box plots of the significant correlations in Table 2.
doi:10.1371/journal.pone.0038720.g002
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(lp_2726), purC (lp_2727) and pyrAA (lp_2701)) were found to be

induced.

In addition to the nucleotide biosynthesis, we also found other

genes that were clearly either negatively or positively correlated to

differences in the availability of oxygen during fermentation.

Among these genes, we identified several typical functions involved

in oxygen metabolism in L. plantarum that appeared to be

consistently induced in presence of oxygen, e.g., pyruvate oxidases

(pox3 (lp_2629), pox5 (lp_3589)) and NADH oxidases (nox5

(lp_3449)) as well as members of the oxygen-stress regulon like

catalase (kat (lp_3589), NADH peroxidase (npr2 (lp_2544)), protein

methionine S-oxide reductase (msrA2 and mrsB (lp_1835 and

lp_1836)) and a glutathione reductase (gshR2 (lp_1253). Conversely,

several genes involved in fermentation appeared to be expressed at

a lower level in the presence of oxygen, like alcohol dehydrogenase

(adhE; lp_3662) and acetaldehyde dehydrogenase (acdH; lp_0329),

which may very well relate to their role in maintenance of the

redox balance during anaerobic fermentation [44].

Detailed analysis of the upstream regions of the genes in the O2

response cloud revealed the presence of a putative transcription

factor (TF) binding site with a clear inverted repeat consensus

sequence (59-agTTGTGCACAAtttaatt-39) upstream of a large

number of genes elevated in expression under the O2-rich

condition (Figure 6). This TF binding site was previously identified

in a study that compared a large number of different microarray

experiments in L. plantarum [45], but was not linked to presence of

O2 under these conditions, likely caused by the fact that the

dataset used lacked sufficient description of the experimental

setup. These results clearly establish that the approach chosen

enables the generic modulation of multiple genes and pathways by

the variation of fermentation conditions, and that genomic

methodologies enable their molecular recoding as well as the

comprehensive mining of their inter-relations.

A relative large number of genes in the response cloud identified

for lower pH levels represent the main functional class ‘‘transport

and binding’’ (10 out of 29 genes, p = 0.04). Among these genes,

many different subclasses of transport and binding were found

(amino acid, organic acids, cations, anions and unknown

substrates) and did not represent any single cellular pathways

with clear relation among the proteins. However, the response

clouds to the combination of pH with other fermentation

parameters; salt (downregulated), and temperature (down- and

up-regulated) all show a clear overrepresentation of different

functional subclasses of the ‘‘transport and binding’’ class (cations,

anions, and amino acids, respectively). These findings suggest that

multiple pH-adaptation mechanisms exist in L. plantarum WCFS1,

and that the executed pH adaptation depends on other

fermentation conditions besides the pH, whereas membrane

potential alterations appear to correlate to metabolite transport.

In conclusion, these regulatory networks provide insight into the

genetic factors underlying correlations between (combinations of)

Figure 3. Citrate (dark bars) and succinate (light bars) concentrations in the 29 fermentations. Fermentors marked with an asterisk
represent fermentations to which 0.3 M NaCl was added.
doi:10.1371/journal.pone.0038720.g003
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fermentation conditions and physiological characteristics of L.

plantarum.

Discussion

This study reports an integrated approach in which L. plantarum

WCFS1 was fermented under different conditions, followed by

assessment of the physiological characteristics of the cells and full-

genome transcriptomes (Figure 1). All data obtained were stored in

a correlation database that is freely accessible, in a web-based

platform designated FermDB. The fermentation scheme used here

was based on a balanced fractional, factorial design whereby

multiple parameters were varied in between fermentations. This

design reduced the number of fermentations required (24

excluding controls) compared to 1 by 1 variation of these

parameters (32 fermentations excluding controls). Yet, even with

this reduced scheme, the effect of varying combinations of two

parameters in the fermentations could still be clearly established.

Moreover, the fact that single fermentative parameters could be

readily associated with physiological parameters in the background

of multiple variables between fermentations enhances the likeli-

hood that the data generated here can be extrapolated to other

fermentation media and/or conditions, including industrially

relevant fermentation settings. Correlation analysis of the data

pinpointed the fermentation conditions that are of importance for

the discrimination of particular physiological characteristics, such

as maximum growth rate, biomass yield, and organic acid profiles.

Furthermore, the expression levels of specific genes could be

associated with physiological characteristics, providing insight into

the molecular mechanisms involved.

Our approach readily revealed that physiological characteristics

of L. plantarum are dramatically influenced by the fermentation

conditions. For example, the capacity to convert citrate to

succinate depended on the salt concentration applied during

fermentation and had a clear effect on the maximum OD600

reached in the fermentation. Citrate to succinate conversion by L.

plantarum and several other LAB has been documented previously

and was demonstrated to be coupled to the degradation of lactic

Figure 4. Simpheny-based visualization of the metabolic map of L. plantarum WCFS1 reveals the interconnectivity of the pentose
phosphate pathway, and teichoic acid and nucleotide biosynthesis to citrate and succinate levels. Arrows indicate reaction and their up-
or downregulation (p,0.05 in green and red, respectively) in the increased citrate uptake and succinate production conditions. Marked with boxes
next to the reaction names is the average importance per gene involved in the reaction for the two classifications (citrate and succinate). Bar heights
correspond to importance levels.
doi:10.1371/journal.pone.0038720.g004
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acid [46,47]. In this process, lactate is degraded to acetate via a

pyruvate formate lyase, where oxaloacetate (formed from citrate) is

used as an electron acceptor, resulting in the production of

succinate, formic acid and CO2. Degradation of lactate into

acetate yields an additional ATP from the original carbon source

[26,46] and could therefore explain the increased yield observed in

the fermentations without added salt. Unfortunately, we did not

observe an increase in acetate and formic acid production and

lactate utilization, probably due to the interference of other

fermentation variables (formic acid production was significantly

different between fermentations at different pH levels, while

acetate production was significantly different between aerobic vs

anaerobic conditions). Although citrate to succinate conversion has

been previously studied in Lactobacillus plantarum, no fermentation

conditions were identified that influence the utilization of citrate.

In this study we show that the addition of NaCl to the

fermentation significantly affects citrate to succinate conversion

independent of other fermentation variables. As this change in

citrate to succinate conversion was coupled to a decreased

maximum OD600, it is likely that the complete lactate degradation

cascade is not functional anymore when NaCl is added to the

medium. Most likely, this decrease in citrate utilization is coupled

to changes in the capacity of the cells to efficiently transport citrate

across the membrane, due to the changes in osmolarity caused by

the addition of NaCl to the medium. Notably, the concomitant

transcriptome profiles obtained also pinpointed to the effect of salt

on cell envelop associated functions, including teichoic acid

biosynthesis.

Besides the correlation of physiological characteristics and

fermentation discussed above, our fermentation genomics platform

enables the association of fermentation conditions and transcrip-

tome profiles, e.g. the O2 response cloud as presented in Figure 6.

Detailed analyses of the genes in the O2 response cloud showed the

presence of only a single gene annotated as a transcriptional

regulator (lp_0889). This regulator is annotated as a member of the

MarR family, a family of proteins involved in the regulation of

virulence factor production, catabolism of environmental aromatic

compounds and response to antibiotic and oxidative stresses [48].

In Bacillus subtilis OhrR, a member of the MarR family, was shown

to be involved in the regulation of the expression of ohrA, a gene

involved in the protection against different reactive oxygen species

[49]. In this study, the binding site for OhrR was determined as an

inverted repeat with the sequence TACAATT-AATTGTA.

Comparison of the B. subtilis inverted repeat with the predicted

binding site of the L. plantarum genes in the O2 response cloud

showed a high resemblance of these two sequences; the first part of

the inverted repeat upstream of genes in the O2 response cloud

resembles the second part of the OhrR bindingsite (TTGTG

versus AATTGTA) and vice versa (CACAA versus TACAATT).

Figure 5. Scatterplot of the mmax and expression level of the highly correlated genes. Each diamond symbol in the plot corresponds to a
single fermentation or which both mmax and microarray data was determined. Expression levels were normalized (see methods) and averaged.
Correlation of mmax and transcriptome data is 0.95 (Spearman rank).
doi:10.1371/journal.pone.0038720.g005
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Figure 6. Reconstruction of the transcriptome response clouds to (combinations of) different fermentation parameters. Nodes in the
network correspond to the fermentation parameters (in blue) and the genes with significant (p,0.05) altered (ratio change .2) expression level (light
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Considering these observations, we hypothesize that Lp_0889 is a

regulator of O2 response in Lactobacillus plantarum WCFS1.

The majority of the transcript-phenotype correlations identified

involve genes that are conserved within the species L. plantarum,

which prevents them from being identified by gene-trait matching

approaches [14]. This observation exemplifies the complementar-

ity of the transcriptome-trait matching approach presented here.

Moreover, genetic biomarkers identified by gene-trait matching

are not necessarily present in industrially applied strains [15],

which hampers the gene-based improvement of strain perfor-

mance. Industrial strains are generally selected on basis of a

combination of traits, e.g. acidification rate [50], phage resistance

[51], flavor-formation [2,3,6,7] or probiotic functionality [1,52], in

combination with robustness under industrial processing condi-

tions, e.g. freeze- or spray-drying procedures [8,53]. Therefore,

our transcriptome-trait matching results seem to have a broader

applicability as compared to gene-trait matching approaches, since

transcriptome-trait matching allows fermentation-enhanced im-

provement of a specific trait whilst applying the same strain.

Conversely, the industrial implementation of gene-trait matching

results might require tedious selection of alternative strains on

basis of identified functional markers whilst attempting to maintain

other functionalities.

This paper exemplifies the feasibility of FermDB to correlate

transcriptome profiles to physiological characteristics or fermen-

tative parameters of L. plantarum. However, this bioinformatic suite

is currently implemented for broader exploitation. For instance,

the availability of transcriptomics data under a plethora of

conditions can facilitate the selection of engineered gene deletion

derivatives by applying growth conditions that do not require the

targeted gene to be expressed. Moreover, this strategy has recently

led to the successful reversion of phenotypes initially observed in L.

plantarum cell-envelope mutants by modification of the fermenta-

tion medium utilized [54]. FermDB has also been expanded with

new functional L. plantarum WCFS1 datasets such as gastrointes-

tinal survival (see accompanying manuscript by van Bokhorst et

al.), resulting in the identification of fermentation conditions and

genetic markers for these industrially relevant characteristics as

well. Notably, the fermentation genomics strategy can be readily

applied for other LAB species. Ultimately, these approaches

enable the linkage between genes and functions which will further

improve genome annotations. In parallel, it will provide a

knowledge platform that can enable the rational design of

industrial fermentation and process conditions for the production

of LAB with improved functional characteristics.
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