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ABSTRACT

The paper presents a novel approach to real-time temporal align-
ment of motion sequences, called On-line Predictive Warping
(OPW) and considers potential uses in interactive applications.
The approach develops on the methods of aligning motions based
on least cost, used in dynamic time warping (DTW), with the
short term predictions of smoothing algorithms, in an iterative step
through approach. The approach allows a recorded motion se-
quence to be warped to align it with a users motion as it is being
captured. The paper demonstrates the potential feasibility of the
approach to support applications in MR and VR, allowing virtual
characters to perform and interact with users and live actors in a
variety of rehearsal, training, visualisation and performance sce-
narios.

Keywords: On-line time warping, character animation, virtual
production

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation

1 INTRODUCTION

Motion sequences, are motions or actions of people recorded using
a motion capture system. When working with motion sequences
in mixed reality (MR) and virtual reality (VR) applications, there
can be a need to manipulate, edit and combine them in real time,
often to allow a virtual character to interact with its environment
or the user. To accurately blend or combine motion sequences it
is first necessary to align their temporal features. For example, in
order to combine elements of two different walk sequences, the mo-
tion sequences would need to be temporally aligned, such that the
timing of both walk cycles match, with feet making contact with
the ground at the same time within each sequence. Once motion
sequences are aligned in this way, they can be blended or stitched
together to form motion sequences that are larger than the original
capture volume [11] or have stylistic features combined to create
new motion sequences [4].

A number of off-line techniques have been proposed such as dy-
namic time warping (DTW) [14] and correlation-optimized time
warping (CoTW) [6], based on the analysis of complete motion se-
quences. MR and VR applications, where there is a need to interact
with a user’s motions in real time, require an on-line approach that
works without knowledge of the users future actions. This paper
proposes a novel real time solution to temporal alignment, called
On-line Predictive Warping (OPW), that aligns pre-recorded mo-
tion sequences with user motions in real time, potentially facilitat-
ing new and novel approaches to user interaction, with virtual char-
acters being able time their performance to match a user’s actions.

A real time approach has been proposed which utilises machine
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Figure 1: Demonstration of OPW approach being used to temporally
align two handshake motions

learning techniques to interactively stylise a user’s motion as it is
being captured [18], by matching corresponding frames in a dataset.
This approach, however, does not provide a robust monotonic tem-
poral alignment of a specific motion sequence with a user’s cap-
tured motion. A more robust alignment is not only required to sup-
port manipulation techniques, but importantly may have the poten-
tial to support user interaction in virtual production and other MR
and VR applications.

Virtual production is a term within film and visual effects, which
refers to a variety of technologies, some based around VR and MR,
that allow CGI elements to be directly manipulated in real time [13].
These can be used in pre-production stages, to rehearse and visu-
alise scenes, as well as during production to visualise how CGI el-
ements will fit within a live action shot. For example, films such
as James Cameron’s Avatar utilised camera tracking and real time
rendering to place virtual elements into a camera’s view, enabling
the actors, crew and director to see how the live action and virtual
elements will fit together. Since then, the Dreamspace project has
developed a number of virtual production tools including Virtual
Production Editing Tools (VPET) which allow CGI elements to be
manipulated live as they are being viewed through the camera [16].

There is currently interest in the application of VR within pre-
production. Virtual camera systems have been developed to pro-
vide a physical manifestation of the virtual camera [1], while the
potential applications of VR for scouting locations and technical
planning of film productions is also being considered [7].

Bourville, et al [3] tested the use of VR in acting rehearsals,
either to allow actors that cannot be in the same place to rehearse
together or to allow rehearsals with virtual characters. Their system
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uses an engine called #SEVEN [5] which senses events within an
actor’s performance which are used to trigger changes in the virtual
environment.

While virtual production tools such as VPET allow CGI ele-
ments to be manipulated with ease in real time and #SEVEN en-
ables virtual elements to be triggered by an actor’s performance,
the actor is still for the most part, having to coordinate their perfor-
mance to correspond with virtual elements. There is a need to re-
verse or equalise this relationship and allow virtual elements, such
as the performance of a virtual character, to automatically align and
co-ordinate their performance with that of a live actor. A real time
approach to temporal alignment, would solve the temporal aspects
of this problem and potentially support real time interaction with
virtual characters in other VR and MR applications. The OPW ap-
proach proposed in this paper develops on the step-through least
cost approach of DTW, with the predictive forecasting of smooth-
ing algorithms, to align a motion sequence with a user’s captured
motion in real time.

2 RELATED WORKS

Real time approaches to temporal alignment have been proposed
which utilise machine learning algorithms. In [12], support vec-
tor machines (SVM) are used to classify different phases of a hand
shake motion. They compared the performance of SVM with K-
nearest neighbour (KNN), decision trees and naı̈ve Bayes classi-
fiers, and found that SVM performed the best with the most ac-
curate prediction rates. As the datasets are not very generalisable,
large sets of training data would have to be created and labelled for
each distinct action, making this approach impractical for use with
the unique motions typically found in film production.

Approaches have been proposed which utilise machine learning
algorithms for transferring motion styles, using linear time invari-
ant (LTI) models [9] and KNN [18]. Again large datasets are used,
although in a more generalised manner, removing the need for spe-
cific examples to be captured. As each frame or pose of the input
motion is matched to poses in a large dataset of motion sequences
with limited constraint, the resulting matching frames cannot be
used to support temporal alignment. In [9] temporal and spatial
displacement warp curves are created off-line, to produce a trans-
lation model which is used to align the two motions in real time.
While this is a real time solution it is not an on-line solution. The
need to create a translation model for each combination of motions,
using an off-line process, means it cannot be applied to a motion as
it is being captured.

DTW matches frames or samples of one motion sequence to an-
other, with the objective of minimising the differences between the
two sequences, a more detailed explanation of DTW is provided by
[14]. The difference minimisation is performed in two steps, first
the difference in the values of the two time series is determined pro-
ducing a cost matrix, then an alignment path is plotted through the
lowest values in the cost matrix, minimising the overall alignment
cost.

A path is created by stepping through the cost matrix and plotting
continuous path of aligned frames or samples, only going forward
in time. Once a path has been determined a smooth curve needs to
be plotted along the path, typically a B-spline.

Using curves to define temporal and spatial displacements was
proposed in [17], this allowed a smooth deformation of keyframed
or captured motion using curves, rather than editing each frame.
This approach has been widely implemented using piecewise
Bézier curves, often referred to as F-Curves within software doc-
umentation. In [4], DTW is used to create B-spline to temporally
align motion sequences allowing the style of a motion to be trans-
ferred from one motion to another, while [11] combines the same
technique with spatial alignment, to allow motion sequences to be
blended together to synthesise new motion sequences.

The OPW approach requires a method of predicting near future
values in a time series, as the alignment of time series Y will be
based on the predicted value of time series X. The implementa-
tion of different smoothing algorithms: dead reckoning, exponen-
tial smoothing and Holt’s double exponential smoothing, are dis-
cussed in [15], where their performance in predicting the movement
of user’s hand is compared. They showed that exponential smooth-
ing performed similarly to dead reckoning, but also proposed a new
technique called adaptive exponential smoothing, in which double
exponential smoothing parameters automatically adapt themselves.
This approach was shown to cope better with sudden twitch move-
ments than dead reckoning and exponential smoothing.

3 APPROACH

An on-line approach to temporal alignment aims to temporally align
points in a known time series A, to another time series B as it is
being captured. Therefore aligning without having knowledge of
the remaining values in the time series B.

The OPW approach proposed in this paper combines the stepped
and least cost approach of DTW with the near future prediction of
smoothing algorithms, creating an on-line approach in which the
temporal alignment at each time step, is based on the predicted
value of the time series being captured X and the known values
of time series being aligned Y . At each time step t, a prediction of
the time series X at the next time step xt+1, is compared with values
yt+i, i ∈ {0..2} in the time series Y . Equation 1 is used to determine
which of these values in time series Y has the smallest difference to
predicted value in time series X , and therefore is the closest match.

s = argmin
i∈{0..2}

(x̂t+1− yt+i)
2 (1)

The result of equation 1 determines if the remainder of time series
Y needs to be expanded or contracted to align it with time series X
as follows:

• s = 0: Y needs to be slowed down to align with X by expand-
ing the remaining duration of Y .

• s = 1: Y and X are in temporal alignment so the duration of Y
does not need to be changed this step.

• s = 2: Y needs to be sped-up to align with X by reducing
remaining duration of Y .

The duration of time series Y actually remains unaltered, instead
a time warp curve w is used to define a warped time that is a function
of the original time t ′ = f (t). As shown in table 1 the time warp
curve starts as a straight line in which t ′ = t. At each time step t, if
time series Y needs to be expanded or contracted, the warp curve is
split at time t, adding a new keyframe, and the warped time t ′ at the
end of the warp curve wk is updated using the following equation 2.
This process of constructing the time warp curve is demonstrated in
table 1 and its implementation can be seen in algorithm 1.

Yk′ = Yk′ − (Yk′ − xt)γ(s−1) (2)

γ is a warping parameter, which satisfies 0 < γ < 1, it determines
how much the end of the time warp curve is moved each step, the
greater the value of γ the more aggressively the warp is altered at
each step.

Piecewise Bézier curves are often used to create key-frame an-
imation curves called F-curves, with each key-frame representing
the end of one Bézier curve and the start of another. Unlike other
smooth curve plotting algorithms such as b-splines which go near
control points, a piecewise Bézier curve will plot through these
points, making it ideal for this type of application. The time warp
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Table 1: Steps in construction of time warp curve
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Figure 2: Two Bézier curves, V and W , jointed with G1 continuity.

is implemented using F-curves within Autodesk MotionBuilder, as
the software is able to interpolate these curves to time warp motion
sequences in real time.

Each Bézier curve is specified using four vectors P0...P3 and
plotted using equation 3. As shown in figure 2, P0 and P3 denote the
start and end of the curve, while P1 and P2 are control points which
influence the curve but are not plotted through.

B(t) = (1− t)3P0 +3t(1− t)2P1 +3t2(1− t)P2 + t3P3, t ∈ (0,1)
(3)

When defining F-curves in MotionBuilder it automatically places
the control points P1 and P2 for each curve, such that the curves are
smoothly joined with a G1 level of continuity as shown in figure
2. G1 continuity requires not only the positions of V3 and W0 to
match, but also their derivatives, such that V ′(1) =W ′(0). Ensuring
a smooth time warp is important, as sharp directional changes in a
warp would cause jaring and unnatural looking temporal changes
when applied to a motion sequence. To achieve G1 continuity the
slope between V2 and V3 must equal the slop between W0 and W1,
as seen in figure 2. Approaches to achieving geometric continuity
are discussed in [2].

The time warp curve must be applied to time series Y as it is be-
ing constructed. This allows transformations to the time warp curve
in one step, to impact on how time series Y is read in the proceeding
steps. Values yt ′+iω , i∈ {0..2} in time series Y are determined using
the time warp curve, with time (ω) between each step or sample.

s = argmin
i∈{0..2}

(x̂t+ω − yt ′+iω )
2 (4)

The sample period ω and warp value γ are parameters that can be
adjusted to optimise the warping process. This research aims to
test the overall feasibility of this approach and considers effective
values for ω and γ .

Algorithm 1: The OPW step-through alignment algorithm.

1 p←{0,0,0} // set total costs to zero;

2 T ′ ← {t ′ −ω, t ′, t ′+ω, t ′+ω2} // get warped sample times;

3 t ∈ T ← f (t ′ ∈ T ′) // unwarp sample times ;
4 for j ∈ Joints do
5 x← Xj,y← Yj // load joints ;
6 b1 = xT ′1 ,b2 = xT ′2 // get current and previous samples of

motion X in warped time;
7 b3 = b2 +(b2−b1) // forecast motion X in the next

sample ;
8 a1 = yT2

,a2 = xT3
,a3 = xT4

// get the current and future
time samples of motion Y in unwarped time ;

9 cn = b3−an,n ∈ {1..3} // calculate distance between
forecast of motion X and current and future samples of
motion Y;

10 pn = pn + cn // add joint distances to total costs;

11 end
12 if p1 > p2 and p1 > p3 then
13 wk−1←{t ′, t} // add new key to warp curve at current

time;
14 wk ←{wk + γ,Yk} // move last key to expand the time

warp curve;
15 else if p3 > p1 and p3 > p2 then
16 wk−1←{t ′, t} // add new key to warp curve at current

time;
17 wk ←{wk− γ,Yk} // move last key to shrink the time

warp curve;

4 METHOD

The approach was implemented using the dead reckoning method
for predicting values and the Euclidean distance for measuring the
alignment cost. This implementation has the least computational
cost and is in line with the implementation of DTW in [4] and [9].

In this case the values in time series X and Y represent motion se-
quences plotted onto a control rig, with 16 skeletal joints in a three
dimensional space. The alignment cost was measured using the po-
sition of the following 16 joints in three dimensional space: head,
center hip, right hip, left hip, middle chest, upper chest, left shoul-
der, right shoulder, left elbow, right elbow, left wrist, right wrist,
left knee, right knee, left ankle, right ankle. The cost is based on
the sum of straight line distance between the corresponding joints
in each motion sequence. Equation 5 determines the total alignment
cost between motion sequence A at time t ′ and sequence B at time t
based on k joints in 3 dimensional space.

c(At ′ ,Bt) =
k

∑
n=1

√√√√ 3

∑
m=1

(A[t ′,n]m−B[t,n]m)2 (5)

The motion sequences used in the test were downloaded from
the Carnegie Mellon University mocap database, also used by
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Figure 3: Building a smooth Piecewise Bézier curve through a DTW
path aligning A to B.

[18]. Three contrasting motions were used which involved differ-
ent forms of opposing two character interaction: Hand Gestures, a
non-contact conversational interaction with hand gestures and eye
contact; Hand Shake with approach, contact and separation phases
of interaction and Arm Wrestle with a prolonged period of contact.
To focus on how our OPW approach performed with each style of
interaction, the motion sequences were cropped at 2.5 seconds to
eliminate any impact of variations in temporal length.

The motion sequences were imported into Autodesk Motion-
Builder and the plotted onto a control rig. As this approach would
need to be implemented on a control rig, to support spatial align-
ment using inverse kinematics (IK), it was felt more appropriate to
implement the tests this way rather then directly onto skeleton.

During all tests, the predictive algorithm was run at 25 steps or
iterations per second. This is representative of the capture rates of
commercial devices such as the Microsoft Kinect, which are often
used in interactive MR and VR applications.

The accuracy of the OPW approach was assessed by warping a
motion sequence (A) using a predefined example time warp curve,
resulting in a warped motion (B). OPW will be used to warp the
original motion (A) to temporally align it with the warped motion
sequence (B). The accuracy of the time warp curve produced by
the real time approach will be measured by comparing it against
the predefined example time warp curve. This approach allows the
temporal difference between the two motions being aligned to be
controlled and adjusted for different tests. As temporal errors of
more than 150ms are acceptable to viewers less than 50% of the
time[8], this will be used a benchmark for evaluating the perfor-
mance of OPW.

The performance of the OPW approach was compared against
an off-line DTW approach, applied to align the same motion se-
quences. The time warp curve produced by this method will be
measured against the same predefined time warp curve, allowing
the accuracy of both techniques to be directly compared. The
curves were sampled at 50Hz and exported from (MotionBuilder)
and analysed using Python.

To support an accurate comparison all time warp curves are con-
structed using piecewise Bézier curves, therefore, there is a need
to construct smooth piecewise Bézier curve based on the least cost
path determined by the off-line DTW algorithm. As discussed ear-
lier the piecewise Bézier curve is constructed by specifying a series
of (x,y) points, each of which define the start and end of a Bézier
curve. Setting an alignment point at each step would result in a
jerky and not particularly useful time warp curve. A novel approach
was devised to create an accurate and smooth curve, by only align-
ing time steps after 1 or 2 consecutive steps have resulted in either
a sample being inserted or deleted and where the next time step is a
sequential substitution as describe in figure 3.

5 RESULTS

Figure 4 shows how the OPW approach performed when applied to
the three different motions: hand gestures, non-contact; hand shake,
momentary contact and arm wrestle continuous contact). The top
row of graphs show the example curve used in the test along with
the resulting warp curves produced using DTW and OPW. The ex-
ample curve is a straight line, from 0 to 2.5 in both axis, with the
middle offset by 0.25 seconds, creating a warp curve that starts
steep, speeding up time and ends shallow, slowing down time. The
middle of the curve represents the maximum warping of time, with
1.5 seconds being warped to 1.25 seconds. The result is a temporal
difference of 250ms between the original and warped motions in the
middle of the motion sequence, but no temporal difference between
them at the start and end of the sequence. The γ warp parameter
was set to 5% for all tests in figures 4 and 5.

The middle row of graphs in figure 4 show the deviation of the
warp curves produced using the DTW and OPW approaches, from
the example warp curve. This shows the potential misalignment of
the timing of any interaction based on these techniques in millisec-
onds. The OPW approach performed consistently when applied to
all three different motions, but as expected it did not perform as well
as the off-line DTW process. The maximum deviation was 121ms
is less than the 150ms suggested as acceptable by Hoyet [8]. The
average deviation of the OPW approach was between 79 and 69ms.

The bottom row of graphs in figure 4 show the change in the
slope of the warp curves between subsequent samples, as a percent-
age gradient, where a 100% change represents a 90 degree change
in angle. This shows the potential smoothness of any motion se-
quence warped using these curves, as a large change would result
in an undesirable jittery playback of the sequence. The OPW ap-
proach produces smoother curves as a result of applying a consis-
tent amount of warp at each step.

Figure 5 shows the performance of the DTW and OPW ap-
proaches when aligning motions with varying amounts of temporal
difference between them. The example warp curve is the same, fast
then slow curve, used in the figure 4 tests, but offset in the middle by
varying amounts. Each offset value was applied to all three motions
and the results combined. The results show that the amount of tem-
poral difference between the two motions has a significant impact
on the performance of the OPW approach, which performed worse
as the temporal difference increased. The off-line DTW technique
was able to perform more consistently.

Figure 6 shows the performance of the OPW approach, with dif-
ferent values for the γ warp parameter. This parameter adjusts the
percentage by which the remaining motion being aligned is warped
during each step if required. The test were performed using the
same example motion used in the tests for figure 4. In these tests
the on-line algorithm performed best with γ = 15%, this should not
be treated as conclusive as there needs to be a greater understanding
of this relates to the motion sequences themselves.

Considering that temporal misalignments of over 150ms are un-
desirable [8], initial test show that OPW was able to cope with
a temporal difference of 300ms between two 2500ms motion se-
quences. This is a conservative analysis of the approaches perfor-
mance, as figure 6 shows that parameters can be adjusted to further
optimise it. If the average deviation was considered rather than the
maximum, the approach could be considered to cope with temporal
differences of up to 500ms. There needs to be further study of how
the ratio between the length of the motion sequences being aligned
and amount of temporal difference between them, impacts the per-
formance of OPW. The configuration tested in figure 5 consistently
reduced the temporal difference between the motion sequences by
approximately 70%. Figure 6 shows that this could be increased
to approximately 77% by optimising the γ warp parameter. The γ
warp parameter has an optimal setting as setting it too high results
in over compensation and suboptimal alignment.
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Figure 4: A comparison of predictive and DTW warping methods applied to different motion sequences. Top row shows the resulting time warp
curves; middle row shows the deviation of both DTW and OPW warp curves from the example warp curve; bottom shows the percentage of
change in the slope of the curves between samples.

Figure 5: Performance of DTW and OPW warping algorithms when
aligning motions with different amounts of temporal deviation

Figure 6: Performance of OPW warping algorithm, when applying
different warp γ percentages.

6 CONCLUSION

This paper presents a method for on-line predictive time warping,
demonstrating potential to align deviations between two motions.
The OPW approach performs consistently which applied to differ-
ent motions, giving an average deviation between 69 and 79ms, be-
low the 150ms perceptual suggested by [8].

A potential weakness with OPW, is its dependence on consis-
tent movement in the motion sequences to accurately evaluate their
alignment. It may not work consistently if there are periods of
standing still. There may also be a need to combine this approach
with motion classification, to recognise when a motion has started
or which motion has started.

When implemented in MR and VR, the OPW approach will have
to cope with additional factors not simulated within these tests. Ex-
amples include: spatial as well as temporal differences between mo-
tion sequences, different temporal and spatial differences between
each pair of corresponding joints in the two motion sequences,
aligning motion sequences applied to different size rigs or skele-
tons. How much each of these factors effects the performance of the
OPW approach needs to be evaluated. Basing the alignment cost on
the difference between the derivatives of joint positions, rather than
the actual joint positions [10] may cope better with these issues.

On-line temporal alignment of a recorded motion sequence with
a user’s motion, has the potential to allow virtual characters to
closely interact with users or performing alongside them. The ap-
proach could also be used to evaluate a user’s motion against a
pre-recorded one, for use in training scenarios. When a recorded
motion sequence is temporally aligned with a user, that alignment
information can be applied to any other motion sequence that was
recorded at the same time. For example, if the hi-five motion of
two people is captured at the same time, when one of the motions is
aligned with that of a user, the alignment information can be used
to align the opposing motion. There are a number of potential ap-
plications of this approach in MR and VR including: visualizing
and aligning the performance of a virtual character during the pro-
duction of film visual effects, interaction between real and virtual
performers in live performances, real time evaluation of the timing
of user’s performance in training or rehearsals and creating closer
more constant interaction between users and virtual characters in
gaming or training scenarios. While a motion capture studio may
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be used to record motion sequences, it is expected that markerless
motion capture solutions, such as Microsoft Kinect would be used
to implement on-line user interaction.

The tests in this paper demonstrate that the approach is feasible
and able to align motions to within 150ms, considered acceptable
in [8]. There are questions regarding the amount of difference be-
tween motion sequenced, both temporal and spatial, that this ap-
proach is able to cope with, particularly in relation to the spatial
and temporal differences it would typically have to deal with when
implemented in the example applications discussed.

There is a need for further understanding of the nature and size of
the temporal and spatial differences that are likely to occur within
the different applications discussed above.

Within this paper the OPW approach has been implemented in
a straightforward manner, there is potential to utilise more suitable
techniques for measuring alignment costs and forecasting. The ap-
proach could be further optimised by automatically adjusting the γ
warp parameter and ω sample periods, perhaps based on a feedback
loop that measures the accuracy of the alignment as the temporal
warp is being constructed and applied in real time.
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