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Abstract—This paper presents a mathematical approach to
the future dynamic spectrum market, where multiple secondary
operators compete to gain radio resources. The secondary net-
work operators (SNOs) face various concurrent auctions. We
discuss techniques, which can be used to select auctions to
optimize their objectives and increase the winning probability. To
achieve these goals, a matching problem is formulated and solved,
where secondary operators are paired with auctions, which can
provide spectrum with the highest expected quality of service
(QoS). A total outlay optimization is structured for auctions with
concealed reserve prices, which are only revealed to the secondary
operators for some price upon request. More specifically, we solve
a nonlinear problem to determine the minimum set of auctions
by using the brute force algorithm. We further introduce a
surplus maximization and demonstrate an auction mechanism of
spectrum allocation by modifying the Bayesian-Nash equilibrium.
The mathematical analyses highlight that the optimal choice is
achievable through the proposed mathematical formulation.

Keywords: Auction mechanism, Hierarchical optimization
problem, Optimal spectrum purchasing.

I. INTRODUCTION

Uses of wireless communication continue to be introduced
in areas such as augmented and virtual reality, industrial
control, automated driving or flying, robotics, and tactile
internet [1], [2]. Such applications and their requirements will
demand large supply of radio resources to facilitate commu-
nications [3], [4]. With the current distribution of licensed
spectrum bandwidths combined with the scarcity of unlicensed
spectrum, operators will seek a rental approach to provide
consistent spectrum resources to connect users’ equipments
[5]. It is forecast that by 2020 there will be more than 50
billion connected devices and the majority of them will use
cellular networks for communications [6]. Clearly, to serve
such a large number of terminals, future networks will have
to dramatically increase the provided capacity compared to
present standards [7]. However, spectrum resources remain
under the ownership of governmental agencies and major
industry players and licenses to use the spectrum require large
capital outlays and are granted for many years making it
harder for new emerging technologies to develop at the desired
rate. Using current approaches to achieve the ambitious goal
of providing connectivity to billions of devices is therefore

not sustainable. The launch of the fifth-generation (5G) of
mobile cellular networks, with millions more base stations,
is envisaged to support these terminals with their applications
and diverse requirements in terms of latency and reliability
[8].

Dynamic spectrum allocation facilitates access to 5G and its
supported data network. A number of frameworks addressing
the transfer of radio resources usage rights are studied in
the literature [9]–[11]. Among techniques to trade spectrum
between operators, Gandhi et al. propose a real-time spectrum
auction framework [12]. Using auctions allows the spectrum
owners to ask for bids from potential secondary operators, to
allocate spectrum resources and to charge payments as a func-
tion of the received bids [13]–[17]. To achieve a reasonable
outcome from auctions, secondary operators must be strategic
about their bids especially when there are multiple concurrent
auctions offering similar radio resource characteristics.

However, given the discussion above, where billions of de-
vices must communicate wirelessly in the existence of millions
more base stations managed by many incumbent spectrum
holders, the challenge for an operator is to select auctions
that optimally deliver the QoS requirement and consequently
increase the winning probability. Although there are several
studies that discuss auctions in the context of dynamic spec-
trum allocation, most of these studies consider the problem
of optimal bidding within one single auction. This paper
differs from previous research that it takes into account several
other auctions running concurrently. This assumption raises a
number of problems, which to the best of our knowledge, have
not been studied earlier. In this paper, we define and propose
a solution to each problem individually.

The remainder of the paper is as follows. In Section II,
we introduce the system model. In Section III we present the
problem formulations. We give the numerical results in Section
IV. Finally, we conclude and discuss future work in Section
V.

II. SYSTEM MODEL

We consider a secondary spectrum market with multiple
primary network operators (PNOs) and SNOs for idle spec-
trum in multiple trade windows. The idle spectrum usage
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Fig. 1: Proposed system model

rights are handed over to one SNO temporarily, following
an auction, where multiple SNOs compete to acquire band-
width resources. We denote N = {1, 2, . . . , i, . . . , N} and
M = {1, 2, . . . , k, . . . , M} as the set of PNOs and SNOs,
respectively, which operate in an area R. The SNOs are
actively seeking to borrow additional spectrum, say D =

{d1, d2, . . . , dk, . . . , dM }, to support their users. Let

S = {(a11, a12, . . . , a1L1 ), (a21, a22, . . . , a2L2, . . . , a2L2 ),

. . . , (aN1, aN2, . . . , aNLN )} (1)

be the set of concurrent auctions, which run for a time duration
[t0, tc] where Li is the number of auctions of the ith PNO.
Each SNO has a desired bandwidth to borrow, which is in the
narrow range of [dk, dk ± δk], δk � dk , where dk is the ideal
matching and δk is the tolerance factor. Now let us make the
following assumptions for modelling purposes:
• Opening and closing time of auctions are concurrent and

SNOs make bids simultaneously.
• The quality of the auctioned spectrum blocks are identical

but with varied transmit power constraints.
• In symmetric environments, when the valuation distribu-

tion is irregular, introducing asymmetric reserve prices
can increase the PNO’s revenue compared to an optimal
common reserve price. Therefore we propose a scenario
where multiple SNOs have multiple choices of auctions
to enter their bids and where the reserve prices at these
auctions vary.

Based on the system and assumptions described above, SNOs
first select sets of closely matched feasible bids and reduce
these sets further, for which the expected cost is lower and
does not exceed a defined threshold. This is followed by the
Vickrey auction mechanism, where the SNO wins a set of bids.
The SNO then decides to select the bid with the total highest
utility (utility surplus) and pull out from other bids by paying
a predefined penalty costs.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we described the steps of matching and opti-
mizations, which precede placing bids. The auction procedure,
which describes a class of games with incomplete information,
is addressed later in the paper [18].

A. Matching procedure

In a dynamic market, SNOs seek to borrow spectrum
resources from PNOs by entering auctions. This, however,
would raise the question of which auction an SNO should be
assigned to. To formulate the problem, we assume that there
are

∑N
i=1 Li auctions running and M SNOs are bidding for a

particular duration of time [t0, tc]. However, not all auctions
are suitable for an SNO for duration of time t. Therefore, a
bidder (SNO) will find the closely matched bids S′ ⊆ S. Close
matching, measured in distance, is defined as the difference
in a number of subcarriers available and required, considering
the transmit power. Formally, the minimal distance solution to
the above minimization problem can be stated as

(P1) : mink
N∑
i=1

L∑
j=1
|

(
qai j (Wi) − dk(Wi)

)
| xi jk (2)

s.t.

qai jk
xi jk ≤ dk ± δk ∀ i, j, k (3)

Wi ≤ ψk ∀ i, k (4)

where ai j (bi j) are the jth auction (bid) of the ith PNO; xi j is
the binary ({0, 1}) decision variables to decide whether to bid
or not; qai jk

is the number of subcarrier of the ai j th auction;
Wi ∈ C

T , ∀i, is the complex weight vector transmitted from
all users of a SNO and the constraint (4) represents that the
total power is upper bounded by ψk, ∀k ∈ M.

In problem (P1), the minimization is performed over all
combinations (N ⊗ M ⊗N

i=1 Li). In this case, the optimizer
assigns the SNOs with the highest number of subcarriers
required to the auctions, satisfying constraint (3) and the power
constraint (4). The optimization problem (P1) is a nonlinear
mixed integer programming problem, which is solved using
the brute force algorithm that provides global optimum.

B. Cost and utility-based optimal set of auctions

Suppose an SNO is searching for an appropriate auction.
Each auction provides the same number of resources the SNO
is required. However, each auction has a different reserve
price (i.e. a minimum asking price). In a decentralized market,
the SNOs will not know the prices ahead for any given
trade window and it must express their interests in order to
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be informed of the reserve prices of subcarriers. The SNO
chooses the number of enquiries to make, however, each
enquiry costs c > 0. Once the minimum reserve prices are
revealed, the SNO finds more suitable auction sets based on
the quoted lowest minimum reserve price. The problem is now
to find the optimal number of enquiries n∗ for an SNO, which
minimizes the total cost (i.e. total cost = expected purchase
cost + enquiring cost). Let us assume that the minimum reserve
price pi j for an enquiry from the ith PNO and jth auction
is a random variable that follows a distribution with CDF
F(pi j) = P(P ≤ pi j). Therefore,

P(P > pi j) = 1 − F(pi j). (5)

With n independent enquiries,

P(P > pi j) =
[
1 − F(pi j)

]n (6)

is the probability of minimum reserve price. Hence, the em-
pirical cumulative distribution (ECDF) of the lowest minimum
reserve price for n independent enquiries is

Fn(pi j) = 1 − [1 − F(pi j)]n. (7)

Now the expected total cost of an SNO to borrow a unit
subcarrier is

E
[
ci j(1, n)

]
=

∫ α2

α1

pi j · dFn(pi j)

=

∫ α2

α1

pi j · fn(pi j) dpi j

=

∫ α2

α1

[
1 − P(P ≤ pi j)

]
dpi j

=

∫ α2

α1

[
1 − F(pi j)

]n dpi j . (8)

Therefore, the expected total cost to borrow dk subcarriers is

E
[
ci j(dk, n)

]
= dk ·

∫ α2

α1

[
1 − F(pi j)

]n dpi j, (9)

where α1 and α2 are the lowest and highest expected reserve
price, respectively.

We now proceed to formulate the optimization problem (P2)
for S′′ ⊆ S′.

(P2) : mink
n
E
[
ci j(dk, n)

]
(10)

s.t.

ci j + dkpi j ≤ εk (11)
α1 ≤ pi j ≤ α2 (12)

where εk is the total allowed expenditure for the kth SNO. The
solution to the above nonlinear mixed integer programming
problem is obtained again by using the brute force algorithm
and lies in the closed interval

E
[
ci j(dk, n∗) − ci j(dk, n∗ + 1)

]
≤ ci j

≤ E
[
ci j(dk, n∗ − 1) − c(dk, n∗)

]
. (13)

If the price dispersion is low (α2 − α1 ≈ 0) then solving the
above problem (P2) becomes trivial, however for significant

price dispersion (α2 � α1), solving this problem could yield
large savings and indeed good return of investment. A similar
logic can be applied for dk , where as spectrum demand is
high, the SNOs find it more efficient to solve P2.

C. Vickery strategy with aborting options: selecting the final
set of auctions

In each auction, there are M potential SNOs bidding for
the spectrum, each of whom has a privately known value for
the auctioned radio resources. Each potential SNO views the
private value of competitors as a random variable V , which
represents an independent draw from the cumulative distribu-
tion function (CDF) Fk(v) that is twice continuously differen-
tiable and has a strictly positive probability density function
(PDF) fk(v) on a compact support [vmin, vmax]. To reduce
clutter, let Z denote V(1:M−1), the highest valuation of (M − 1)
bids from the Fk(v); in symbols, Z = max{V1,V2, . . . ,V(M−1)}.
The random variable Z represents the highest of a bidder’s
(M − 1) opponents at the auction. Given that valuations are
distributed independently and identically, the CDF and PDF of
Z are FZ (z) = Fk(z)M−1 and fZ (z) = (M − 1)FV (z)M−2 fk(z),
respectively.

The valuation of the kth SNO of the radio resources is
independently and identically distributed according to the CDF
Fk(·) on the interval [dkpi j, εk]. According to the proposed
auction mechanism in Algorithm 1 each SNO submits a bid
with price

Yk ∈ [dkpi j, εk), dkpi j > 0.

All bids [dkpi j, εk) are highly competitive. An SNO submitting
the highest bid wins the auction and makes a payment equal
to the second highest bid Y (b−1)

k
or the reserved price dkpi j in

the case, where there is only one submitted bid. In the case,
where two or more SNOs submit the same bid and it turns
out to be the highest, then the tie is resolved arbitrary with
a uniform randomization and the winner pay the highest bid
Y (b)
k

. Any bid Yk < dkpi j is a noncompetitive bid, equivalent
to not participating in the auction. Most importantly, an SNO
bidding Yk < dkpi j receives a payoff of zero, irrespective of
the others’ bids (and even if it is the only bid). The payoff of an
SNO, who values the radio resource as Vk and wins the auction
with bid Yk is Vk − Y (b−1)

k
. In this case, the unique Bayesian-

Nash equilibrium, where all bidders adopt the bidding strategy
is

βVk
=


Yk, if Vk < dkpi j

Vk −

∫ Vk

dk pi j

[
F(z)

F(Vk)

] [M−1]
dz, if Vk ≥ dkpi j

(14)

where F(Vk) is the CDF of the valuation of the kth SNO. The
assumption that the SNOs may place multiple bids in multiple
auctions to increase their chances of gaining spectrum access
raises the need to consider aborted bids and hence the second
case of equation (14) can be written as

βVk
= Vk −

∫ Vk

dk pi j

[
F(z)

F(Vk)

] [M−M′−1]
dz, if Vk ≥ dkpi j (15)

where M ′ is the number of aborted SNOs from the auction i j.
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D. Selection of the best auction

Consider an SNO k ∈ M, which is distinguished by features
divided into two vectors σ and λ. PNO provides the service to
the kth SNO after winning an auction. The vector σ describes
any SNO features that affect the cost of the PNO. The vector
λ contains all other SNOs features relevant to its requirements
and constraints, such as number of channels and cost.

The auctions available S′′ are described by reserve prices p
and plan features φ, where φ includes taxes, types of penalty
and so on. Uncertain information of the future characteristics
(e.g. traffic, leasing agreement) and strategies of the network
(e.g. security, regulation) in various states s ∈ S, where the
probability distribution over the strategy of the kth SNO is
Gk = G(s |σk). The expected utility of winning an auction
(pi j, φi j) to a SNO (λk, σk) is

v(pi j, φi j, λk, σk) =

∫
u(s, pi j, φi j, λk, σk) · G(s |σk)ds. (16)

With the expected utility defined as above, an SNO chooses
to bid in an auction that generate the highest expected utility

v(pi j, φi j, λk, σk) ≥ v(plm, φlm, λk, σk) ∀l,m ∈ S′′. (17)

There are also costs to the PNOs due to refund to the SNO in
case the SNO will not get the full expected services. Suppose
c(φi j, λk) is expected cost to the ith PNO providing the jth
auction

c(φi j, λk) =
∫

η(s, φi j, σk) · G(s |σk)ds. (18)

where η is the state-specific cost of the ith PNO providing
the jth auction. The expected cost of the PNO depends on the
SNO that determines the distribution G(s |σk), but not on σk .
Adding the interference parameter δk , we now define the total
utility surplus (TUS) as

W =
∑
k∈M

∑
i j∈S′′

I(ki j) ·
[
v(pi j, φi j, λk, σk) − c(φi j, λk)

]
, (19)

where I(ki j) is an indicator function for the set of auctions
bid by the SNO k. After winning a set of bids, the choice of
bids can further be reduced by maximizing utility discussed
above. We now want to obtain W which is the standard
unconstrained efficiency condition for each SNO by sorting
auctions according to their TUS value.

E. Auction design under account balance and penalty with
optimal sets

There are penalties involved for pulling out after winning
an auction. The winner, which decides to abort after winning,
pays an initial fixed penalty in form of monetary value plus
additional amount based on the volume of resources in the
bid. In the simplest case, it can be written mathematically as

Yp = c0 +

p−1∑
i=1

ci xi, (20)

where p (≤ n) is the number of bids won, c0 is the fixed
penalty, ci is the variable penalty per unit and xi is the amount

Algorithm 1: Vickrey auction algorithm with refund
mechanism.

1 Initialization: Let a = {a1, a2, . . . , aN } set of auctions for
N PNOs; Number of bidders 1, 2, . . . , M; Starting and
closing auction time [t0, tc]; Minimum price matrix Pl ,
Y (b)
k
← best price; Pl , Y (b−1)

k
← second best price; Yk ←

value of the jth bid
2 while tc , 0 do
3 Index ← matrix[N, Li] % To track winner (bidder)
4 Counter ← matrix[N, Li] % To track winner SNO
5 for i = 1 : N do
6 for j = 1 : L do
7 for k = 1 : M do
8 Y← Vector of all bids received Pi ≥ Pm

9 Y (b)
k
← best price for i, jth bid

10 Y (b−1)
k

← second best price for (i, j)th bid
11 Index[i, j] = identity(a)
12 Counter[i, j] = sum(index)

13 for j = 1 : M do
14 if Counter[ j] = 0 then
15 Do not Proceed

16 else if Counter[ j] = 1 then
17 Proceed

18 else
19 Proceed with max W
20 Abort with penalty cost Yp

21 Refund to Auction Winner = Y (b)
k

- Y (b−1)
k

.
22 % Calculating the refund to Auction winner.
23 for k = 1 : M (%refund to the losing bidders) do
24 if k , Winner then
25 kth SNO receives the bidding price.

26 return

of bid resources. The mathematical form can also have the
following exponential form

Yp = c0 exp

(
p−1∑
i=1

ci xi

)
. (21)

Once an auction is complete, the winner is allowed to
use the spectrum for the specified time and within the area
boundaries. This approach simplifies the mechanisms within
the spectrum market, allowing exchange of radio resources
between operators (or between users and operators with some
adjustments) and facilitating transactions. The following steps
summarize the methods involved in the spectrum auction
management under oligopoly market structure

1) select a feasible set of bids S′ ⊆ S, using (P1)
2) select the number of the optimal auctions n∗ using (P2)
3) run Algorithm 1 to identify auctions’ winners and losers;

the outcome of bidding in n∗ auctions: win → 0, win
→ 1 or win → p, p ≤ n

4) if an SNO loses all auctions (0), do not proceed and
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the SNO obtains all his bidding payments as a form of
refund

5) if an SNO wins (1), proceed by allocating the subcarriers
to the SNO

6) if an SNO wins (p); run (P3) to sort bids based on
maximum utility (utility surplus); abort from (p − 1)
keeping the auction won with highest utility (W).

7) proceed by allocating the subcarriers to the SNO

IV. NUMERICAL RESULTS

In this section, we show the results of our numerical study,
which validate and verify our proposed model and algorithm.
We will discuss the performances of the model formulation of
bidding in auctions under various parameter settings.
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One of the main goals of the model formulation and
proposed algorithm is to choose the optimal bid and increase
the probability of winning while satisfying some constraints. It
is customary to show that heuristic method cannot guarantee
the higher probability of winning with increased cost when
bidding all auctions. Figure 2 shows that the cost of the SNOs
remains, on an average, constant when a bid is made for all
auctions. Therefore, it is interesting to see how the optimal
choice of the proposed method reduces cost while ensuring

the chosen set of auctions are most suitable (ensured via the
constraints).
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The PNOs disclose the number of available subcarriers to
the SNOs while the reserve prices for each auction remain
concealed. The SNOs, upon matching optimization algorithm,
determine the number and auctions to request reserve prices.
This allows the SNOs to reduce its level of uncertainty as well
as reduce the processing time of requests (bids). In Figure 3,
we show that for price dispersion in the range between 10 and
50, the SNO is able to reduce its costs by requesting prices
from more auctions, however, we can see from the figure that
at some point on the curve, the effect of increasing the number
of requests does not change the costs of the SNO. Finding
the optimal point (n∗) at which the costs are not reduced is
achieved by following the second-order condition which is
presented in equation (13).

As expected, the average reserve cost decreases with higher
number bids since more bidding options are available with
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the higher number of bids, which allows bidding the cheaper
ones (Figure 3 and 4). Figure 4 show sensitivity of the aver-
age reserve cost for various assumed empirical distributions
(uniform, exponential and Gaussian). On the contrary, the
higher number of biddings incur higher bid request costs.
Therefore, an optimal solution is required, which will allow
an SNO (bidder) to choose an optimal number of bids with
a fixed amount spending on ‘requests’ to reveal bidding
costs. Simulation experiments reveal that the expected reserve
cost is an exponential decay function (decreasing) while the
bid request cost is an exponential function (increasing). The
equilibrium state is the point where both lines cross. With
the set of chosen parameters, our simulation results show that
the optimal number of bids is six (Figure 5), which is further
reduced by using the total utility surplus function.

V. CONCLUSION

Our main contribution in the paper is that we formulated a
spectrum sharing problem under the competition of multiple
SNOs while a number of primary operators are willing to lease
their secondary radio resources through multiple concurrent
auctions. We found that the choice for the secondary spectrum
purchase is vast and requires the solution of a number of
smaller optimization problems, for instance, choice of the
appropriate amount of spectrum available from a number of
sellers (PNOs), number of auctions to bid, auction mechanism,
utility-based choice of an auction.

Our proposed approach is a general scheme that obtains
the optimal bids and wins a set of most feasible bids from a
set of auctions while minimizing cost and maximizing utility.
The time complexity of the entire algorithm is polynomial. We
also evaluated the performance of the proposed algorithm via
numerical studies with various number of auctions from a set
of PNOs. Numerical results provide insight into the selection
of maximum matched, choice of the optimal number of bids
and the maximal utility bid selection under different spectrum
demands. In our future work, we plan to extend our unified
framework of secondary resource allocation through auctions
among the SNOs with consideration to the sensitivity of the
constraints, such as, latency, security, capacity, throughput and
scalability.

REFERENCES

[1] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia,
O. Queseth, M. Schellmann, H. Schotten, H. Taoka et al., “Scenarios
for 5G mobile and wireless communications: the vision of the metis
project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35,
2014.

[2] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[3] V. Petrov, M. A. Lema, M. Gapeyenko, K. Antonakoglou,
D. Moltchanov, F. Sardis, A. Samuylov, S. Andreev, Y. Koucheryavy,
and M. Dohler, “Achieving end-to-end reliability of mission-critical
traffic in softwarized 5G networks,” IEEE Journal on Selected Areas in
Communications, vol. PP, no. 99, pp. 1–1, 2018.

[4] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,
and L. Ladid, “Internet of things in the 5G era: Enablers, architecture,
and business models,” IEEE Journal on Selected Areas in Communica-
tions, vol. 34, no. 3, pp. 510–527, 2016.

[5] T. W. Hazlett, “A law & (and) economics approach to spectrum property
rights: A response to weiser and hatfield,” Geo. Mason L. Rev., vol. 15,
p. 975, 2007.

[6] S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone,
“A survey of energy-efficient techniques for 5G networks and challenges
ahead,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 4, pp. 697–709, 2016.

[7] M. Hawa, A. AlAmmouri, A. Alhiary, and N. Alhamad, “Distributed op-
portunistic spectrum sharing in cognitive radio networks,” international
journal of communication systems, vol. 30, no. 7, 2017.

[8] M. Mirahsan, R. Schoenen, and H. Yanikomeroglu, “Hethetnets: Hetero-
geneous traffic distribution in heterogeneous wireless cellular networks,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp.
2252–2265, Oct 2015.

[9] A. Chandra, M. Sammour, and J. Wang, “Dynamic resource allocation,
scheduling and signaling for variable data rate service in LTE,” Jan. 18
2018, uS Patent App. 15/678,934.

[10] C. S. Hyder, T. D. Jeitschko, and L. Xiao, “Bid and time truthful online
auctions in dynamic spectrum markets,” IEEE Transactions on Cognitive
Communications and Networking, vol. 3, no. 1, pp. 82–96, 2017.

[11] Z. Liu and C. Li, “On spectrum allocation in cognitive radio networks:
a double auction-based methodology,” Wireless Networks, vol. 23, no. 2,
pp. 453–466, 2017.

[12] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, “A gen-
eral framework for wireless spectrum auctions,” in New Frontiers in
Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE
International Symposium on. IEEE, 2007, pp. 22–33.

[13] X. Chen, L. Xing, T. Qiu, and Z. Li, “An auction-based spectrum leasing
mechanism for mobile macro-femtocell networks of IoT,” Sensors,
vol. 17, no. 2, p. 380, 2017.

[14] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing Amazon EC2 spot instance pricing,” ACM Transactions
on Economics and Computation, vol. 1, no. 3, p. 16, 2013.

[15] M. A. Islam, X. Ren, S. Ren, A. Wierman, and X. Wang, “A market
approach for handling power emergencies in multi-tenant data center,”
in High Performance Computer Architecture (HPCA), 2016 IEEE Inter-
national Symposium on. IEEE, 2016, pp. 432–443.

[16] F. Teng and F. Magoules, “Resource pricing and equilibrium allocation
policy in cloud computing,” in Computer and information technology
(CIT), 2010 IEEE 10th international conference on. IEEE, 2010, pp.
195–202.

[17] J. N. Tsitsiklis and Y. Xu, “Efficiency loss in a cournot oligopoly with
convex market demand,” Journal of Mathematical Economics, vol. 53,
pp. 46–58, 2014.

[18] J. C. Harsanyi, “Games with incomplete information played by bayesian
players, i–iii part i. the basic model,” Management science, vol. 14, no. 3,
pp. 159–182, 1967.


