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Analysing convergence, consistency and trajectory
of Artificial Bee Colony Algorithm
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Abstract

Recently, swarm intelligence based algorithms gained attention of the researchers due to their wide applicability
and ease of implementation. However, much research has been made on the development of swarm intelligence
algorithms but theoretical analysis of these algorithms is still a less explored area of the research. Theoretical
analyses of trajectory and convergence of potential solutions towards the equilibrium point in the search space
can help the researchers to understand the iteration-wise behaviour of the algorithms which can further help in
making them efficient. Artificial Bee Colony (ABC) optimization algorithm is swarm intelligence based algorithm.
This paper presents the convergence analysis of ABC algorithm using theory of dynamical system. Convergent
boundaries for the parameters of ABC update equation have also been proposed. Also the trajectory of potential
solutions in the search space is analysed by obtaining a partial differential equation corresponding to the position
update equation of ABC algorithm. The analysis reveals that the ABC algorithm performs better when parameters of
the update equation are in the convergent region and potential solutions movement follows 1-Dimensional advection
equation.

Index Terms

Artificial Bee Colony (ABC) Algorithm, advection equation, convergence analysis, finite difference scheme,
swarm intelligence.

I. INTRODUCTION

IN the recent past, researchers have shown interest in algorithms inspired from natural phenomena. To
name a few we have Particle Swarm Optimisation (PSO) algorithm [23] taking inspiration from birds

flocking, Artificial Bee Colony (ABC) optimization algorithm [21] inspired by foraging behaviour of honey
bees, Gravitational Search Algorithm (GSA) [28] taking inspiration from law of gravity and interaction
between the masses, Harmony Search Algorithm (HSA) [12] inspired by improvisation done by jazz
musician, Differential Evolution (DE) algorithm [30] inspired by theory of evolution and Spider Monkey
Optimization (SMO) [4] algorithm taking inspiration from foraging behaviour of spider monkeys.
Recently various variants of ABC algorithm have been proposed which includes modified global best
artificial bee colony for constrained optimization problem [3], artificial bee colony algorithm with multiple
search strategies [11], an adaptive artificial bee colony algorithm for global optimization [35], hybrid
artificial bee colony with differential evolution [18][34], simulated annealing based artificial bee colony
algorithm for global numerical optimization [6] and escalated convergent artificial bee colony [17].
Study has shown that these algorithms are considered as an efficient solver of complex optimization
problems. Artificial Bee Colony (ABC) optimization algorithm and its variants has been applied to various
optimization problems such as solving partition and scheduling problem in codesign [24][14], artificial
neural networks [25], forecasting stock markets [15], automatic software fault localization [16], parameter
identification for Van Der Pol - Duffing oscillator [10], network topology design [29] and structural
engineering [8].
Since the inception of ABC algorithm, its different characteristics have been analyzed and investigated,
numerically. However, a little work has been done in the theoretical analysis of this class of algorithms.
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Study of stability and convergence behavior of Particle Swarm Optimization (PSO) algorithm is carried out
using Z-transformation [19][26][33]. Stability analysis of Differential Evolution (DE) algorithm [7][13],
Bacterial Foraging Optimization (BFO) algorithm [5], Ant Colony Optimization (ACO) algorithm [1] and
Gravitational Search algorithm (GSA) [9] is done using von Neumann stability criteria and Lyapunov’s
stability theorem. Recently, authors’ have performed stability analysis of Artificial Bee Colony (ABC)
optimization algorithm using von Neumann stability criteria for two- level finite difference scheme [2].
One of the important aspects is to find the conditions under which the algorithm converges and to study
the propagation of potential solutions in the search space using position update equation of the algorithm.
Hence, this analysis plays a significant role in the theoretical study of the algorithm. Upto authors’
knowledge no attempt has yet been made for such kind of analysis of ABC algorithm.
In this paper, we investigate the behaviour of ABC algorithm within the convergent boundaries of the
parameters. The consistency of finite difference scheme corresponding to position update equation of ABC
algorithm with generated partial differential equation is investigated. Trajectory of potential solutions is
proposed by investigating the obtained partial differential equation. Then inferences are made by observing
the obtained partial differential equation and results obtained from numerical experiments.
Rest of the paper is organized as follows: on the backdrop of original ABC algorithm in Section II, the
paper is followed by analysis of trajectory of potential solutions in Section III. Convergence analysis of
ABC algorithm is performed in Section IV. Numerical experiments are carried out in Section V, outcomes
are discussed in Section VI and findings are concluded in Section VII.

II. ARTIFICIAL BEE COLONY (ABC) OPTIMIZATION ALGORITHM

Artificial Bee Colony (ABC) optimization algorithm [21] is a population-based optimization algorithm
and makes use of iterative method in order to reach global optima. It consists mainly of four phases. After
initialization, exploitation of search space is done employed and onlooker bee phase while exploration
is done in scout bee phase. In Artificial Bee Colony (ABC) optimization algorithm employed bees and
onlooker bees are present in equal number.
The ABC algorithm has four phases; initialization, employed bee, onlooker bee and scout bee [2].

A. Intialization

Artificial Bee Colony (ABC) optimization algorithm initiates with randomly generated potential solu-
tions. For employed bees initial solutions are generated by using the equation:

xi,j = xmin
j + µ(xmax

j − xmin
j ), i = 1, 2, ..N, j = 1, 2, ..D (1)

where, xi,j represents jth dimension of the ith employed bee. xmax
j is the upper bound and xmin

j represents
the lower bound of the jth parameter respectively. µ represents uniform random number in the interval
[0, 1]. N represents the swarm size and D is the dimension of considered problem. Also, in this phase of
the algorithm abandonment counter (AC) is reset for each employed bee.

B. Employeed Bee Phase

A new candidate solution is generated corresponding to each employed bee in this phase. First, the
solution of the employed bee is copied to new candidate solution (vi = xi). Then, a randomly selected
parameter ‘j’ of the solution is updated by using the equation:

vi,j = xi,j + φ(xi,j − xr,j) (2)

where i, r ∈
{

1, 2, 3..., N
}
, j ∈

{
1, 2, 3..., D

}
and i 6= r. xr is randomly selected solution in the

neighbourhood of xi candidate. φ is the random number in [−1, 1]. Then fitness of the candidate solution
is calculated as follows:
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fiti =

{
1

1+gi
, if fi ≥ 0

1 + abs(gi), otherwise

}
where fiti is the fitness value and gi is the value of objective function for ith candidate solution. If better
fitness value is achieved then the candidate solution replaces the current solution and the abandonment
counter (AC) is reset to zero, otherwise incremented by one.

C. Onlooker Bee Phase

In order to get better solution each employed bee is selected by onlooker bee. The probability for the
selection of ith employed bee is calculated by:

pi =
fiti∑N
j=1 fitj

(3)

where pi is the probability of selection of ith employed bee. The updation of selected solution is done by
using equation (2). Again if better fitness is achieved then employed bee is replaced with onlooker bee
and AC is reset to zero. Otherwise AC is increased by unity.

D. Scout Bee Phase

In this phase AC of all potential solutions are checked for predefined limit.Those employed bees whose
AC has reached the predefined limit becomes scout bee. Thereafter for scout bees the solution is generated
by using equation (1) and AC is set to zero. The scout bee then becomes employed bee and hence prevents
stagnation of the algorithm.

III. TRAJECTORY OF POTENTIAL SOLUTIONS IN ARTIFICIAL BEE COLONY (ABC) ALGORITHM

A. Motivation

Nature inspired optimization algorithms are used to solve real-world optimization problems. It is not
always necessary that the potential solutions converge to equilibrium point as the iteration increases,
they may diverge from the desired equilibrium point.Therefore it is important to study the conditions
under which the potential solutions and hence the ABC algorithm converge to the desired equilibrium
point. φ and ψ are two parameters used in the position update equation of ABC algorithm. The study
of convergence will provide necessary recommendations for parameter setting of the parameters φ and
ψ. Also, it is necessary to understand how the solutions move near optimal solution in the search space.
This motivates the authors to study the iteration-wise movement of solutions, which are updated using
position update equation (2) of the ABC algorithm. Convergent region is defined as the region bounded
by parameters φ and ψ, where the algorithm converges to equilibrium point.

B. Partial Differential Equation associated with position update equation of ABC algorithm

In this section, we generate initial value problem associated with position update equation of ABC
algorithm with the help of finite difference scheme corresponding to position update equation given in
equation (2).

vi,j = xi,j + φ(xi,j − xr,j)

where i, r ∈
{

1, 2, 3..., N
}

; j ∈
{

1, 2, 3..., D
}
and i 6= r. If t represents the present iteration and the

solution got updated, then xi,j represents the solution at iteration t and vi,j represents the solution at
iteration (t+ 1). So the above equation can be written as [2]:

xi,j(t+ 1) = xi,j(t) + φ(xi,j(t)− xr,j(t)) (4)
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Fig. 1: Grid point representation of approximate solutions.

In ABC algorithm, the position update equation (4) is implemented component wise, i.e. the dimension
of a solution is updated independently. The only link between the dimensions of the problem space is
introduced via objective function. Thus, without loss of generality, for analysis purpose the algorithm
description can be reduced to the one dimension case as considered in [33][9][7]. Thus equation (4) can
be written as:

xi(t+ 1)− xi(t) = φ(xi(t)− xr(t)) (5)

where, r is randomly selected solution index different from i. If x = x(i, t) represents true solution to
a problem in an i -t computational domain. Then, xl,n = x(il, tn) represents the approximate solution on
the nodes of a uniform computational grid such that ∆i=∆t, l ∈

{
1, 2, 3..., b1

}
and n ∈

{
1, 2, 3..., b2

}
,

where ∆i and ∆t are grid spacing in the direction of i and t respectively (shown in Figure 1).

In terms of grid points the difference equation can further be written as:

x(il, tn+1)− x(il, tn) = φ(x(il, tn)− x(ir, tn)); x(il, 1) = g(il) (6)

where, l, r ∈
{

1, 2, 3..., b1

}
and n ∈

{
1, 2, 3..., b2

}
.

Since l, r ∈
{

1, 2, 3..., b1

}
, we can write r = l + a where, a ∈ Z/

{
0
}

such that r ∈
{

1, 2, 3..., b1

}
.

The above equation (6) can now be written as:

x(il, tn+1)− x(il, tn) = φ(x(il, tn)− x(il+a, tn)); x(il, 1) = g(il) (7)

As discussed earlier since we have considered uniform grid for our analysis, so the grid spacings are of
equal length i.e. ∆t = ∆i. Hence, equation (7) can be written as:

x(il, tn+1)− x(il, tn)

∆t
=
φ(x(il, tn)− x(il+a, tn))

∆i
; (8)

x(il, 1) = g(il)
Since a ∈ Z/

{
0
}

, so the above equation (8) can be written as:

x(il, tn+1)− x(il, tn)

∆t
=
aφ(x(il, tn)− x(il+a, tn))

a∆i
; (9)
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x1
l = x(il, 1) = g(il)

or
xn+1
l − xnl

∆t
=
aφ(xnl − xnl+a)

a∆i
; (10)

x1
l = x(il, 1) = g(il)

where, xnl = x(il, tn). The partial differential equation corresponding to above difference equation and
hence corresponding to position update equation of ABC algorithm with initial condition is given by:

∂x

∂t
= −aφ∂x

∂i
; x(i, 1) = g(i) (11)

or
∂x

∂t
+ v

∂x

∂i
= 0; x(i, 1) = g(i) (12)

where, ∂x
∂t

= x(il,tn+1)−x(il,tn)
∆t

, ∂x
∂i

= (x(il+a,tn)−x(il,tn))

a∆i
, v= aφ and x is the exact solution of the partial

differential equation (12).
By analyzing equation (12) we can infer that the partial differential equation corresponding to position
update equation of ABC algorithm resembles 1- Dimension advection equation [20].
In the next subsection, we will verify that the difference scheme corresponding to position update equation
of ABC algorithm given in equation (10) is consistent with the partial differential equation obtained in
equation (12).

C. Consistency

Definition: [32] Let the partial differential equation under consideration be denoted by Ly = F and the
corresponding finite difference approximation by Ln

l x
n
l = Gn

l , where Gn
l denotes whatever approximation

has been made of the source term. If we write the difference scheme as:

xn+1
l = Qxnl + ∆tGn

l (13)

where, xnl = (..., xn−1, x
n
0 , x

n
1 ...)

T , Gn
l = (..., Gn

−1, G
n
0 , G

n
1 ...)

T and Q is an operator acting on the ap-
propriate space. The difference scheme (13) is pointwise consistent with the partial differential equation
(Ly = F ) if the solution of the partial differential equation, y, satisfies

yn+1
l = Qynl + ∆tGn

l + ∆tτnl (14)

and τnl → 0 as ∆i,∆t→ 0. We refer to τnl as truncation error.
To show that the difference scheme (10) is consistent, we must write the scheme in the form of equation
(13) as:

xn+1
l = xnl + φ

a∆t

a∆i
(xnl − xnl+a) (15)

Equation (15) gives each component of an equation in the form of (13). Hence, to apply definition of
consistency, we let x to be a solution of partial differential equation (12) and write:

∆tτnl = xn+1
l − [xnl + φ

a∆t

a∆i
(xnl − xnl+a)] (16)

By expanding the components with the help of Taylor series we get:

∆tτnl =
[
xnl + (xt)

n
l ∆t+ (xtt)

n
l

∆t2

2
+ ....

]
−{

xnl + φ
a∆t

a∆i

[
xnl −

(
xnl + (xi)

n
l a∆i+ (xii)

n
l

(a∆i)2

2
− ..
)]}

(17)
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With proper rearrangement and cancellation of components in the above equation (17) we get:

∆tτnl = (xt)
n
l ∆t+ aφ(xi)

n
l ∆t+ (xtt)

n
l

∆t2

2
+ φ(xii)

n
l

a2∆t∆i

2
+ ... (18)

By dividing both sides of equation (18) by ∆t, we get the required equation as:

τnl = (xt + aφxi)
n
l + (xtt)

n
l

∆t

2
+ φ(xii)

n
l

a2∆i

2
+ ...... (19)

or
τnl = (xt + vxi)

n
l + (xtt)

n
l

∆t

2
+ φ(xii)

n
l

a2∆i

2
+ ...... (20)

Using equation (12) the above equation is modified to get the value of τnl as:

τnl = (xtt)
n
l

∆t

2
+ φ(xii)

n
l

a2∆i

2
+ ...... (21)

or
τnl = o(∆t) + o(∆i) (22)

According to the definition of consistency discussed previously, τnl → 0 as ∆i,∆t→ 0. Also, under the
assumption that higher order derivatives of x are bounded at (l∆i, n∆t) the considered difference scheme
has accuracy of order (1, 1).
Hence, the finite difference scheme given by equation (10) corresponding to position update equation of
ABC algorithm is consistent with the obtained partial differential equation given by equation (12). In the
next section, numerical experiments are done for deterministic analysis of the findings.

D. Lax Equivalence Theorem
Definition: A consistent, two level finite difference scheme for a well posed linear initial value problem

is convergent iff it is stable [32].
Authors have already proved stability of position update equation of ABC algorithm in [2]. Also, con-
sistency of the position update equation is proved in section 3.3. Since the corresponding initial value
problem depends continuously upon its initial conditions, it is well posed too. Therefore by Lax equivalence
theorem considered difference scheme corresponding to position update equation of ABC algorithm is
convergent to the obtained partial differential equation given by equation (12).
Physical meaning of convergence:
∆t → 0 indicates that distance between grid points in the direction of t tends to zero i.e., number of
iterations reaches to maximum limit. While ∆i → 0 implies that, distance between grid points in the
direction of i tends to zero i.e., distance between particles tend to zero, which means particles are getting
clustered at a particular location in the search space.
These two inferences imply that when particles get clustered in the search space as number of iterations
reaches to maximum limit, then the solutions obtained from difference equation (5) coincides with the
solutions obtained from partial differential equation (12).

IV. CONVERGENCE ANALYSIS OF ABC ALGORITHM

In this section, the conditions under which the potential solutions considered in ABC algorithm con-
verges to an equilibrium point is obtained. In order to do so, we first introduce a parameter ψ (as coefficient)
in the position update equation of ABC algorithm.

vi,j = ψxi,j + φ(xi,j − xr,j) , (23)

where i, r ∈
{

1, 2, 3..., N
}
, j ∈

{
1, 2, 3..., D

}
and i 6= r. All the parameters are same as defined in

section III. In case of original ABC algorithm the coefficient ψ is taken as unity. As explained in section



AUTHORS’ MANUSCRIPT, DECEMBER 2018 7

III, without loss of generality for analysis purpose the algorithm description can be reduced to one
dimension case as considered in [33][9][7]. Thus equation (23) can be written as (as done in section ??)

xi(t+ 1) = ψxi(t) + φ(xi(t)− xr(t)) (24)

or
xi(t+ 1) = (ψ + φ)xi(t) − φxr(t) (25)

For theoretical analysis of ABC algorithm, the deterministic version of position update equation is
considered. Deterministic version is obtained by replacing random entity with the expected value. In
equation (25), xr is the position of randomly selected candidate solution in the neighbourhood of xi. So,
in order to obtain deterministic version of position update equation of ABC algorithm, we have to replace
the position of randomly selected candidate solution by any expected value say ‘p’, i.e. xr = p. Now
equation (25) can be written as

xi(t+ 1) = (ψ + φ)xi(t) − φp (26)

The dynamic behaviour of potential solutions in the search space can be analysed by using the study of
linear discrete-time dynamical system [33]. Equation (26) can be written in matrix form as

Yt+1 = AYt +Bp (27)

where, Yt = [xi(t)]1∗1, A = [ψ + φ]1∗1 and B = [−φ]1∗1

In accordance with the theory of dynamical systems, Yt represents the particle state, comprising of its
current position xi(t). The properties of dynamic matrix ‘A’ determines the time behaviour of the particle.
External input ‘p’ helps in moving the particle towards specified position while input matrix ‘B’ provides
the effect of external input on the particle state.

A. Equilibrium point

Definition: An equilibrium point is a state maintained by the dynamical system in the absence of
external excitation (i.e., p= constant) [33].
If any equilibrium point exists then it satisfies the condition

Y eq
t+1 = Y eq

t ; ∀ t (28)

By using the above condition in equation (26), the equilibrium point is calculated as:

xeqi =
−φp

1− ψ − φ
(29)

Without loss of generality, equation (23) can also be simplified and written as

xi(t+ 1) = ψxi(t) + φ(xr(t)− xi(t)) (30)

or
xi(t+ 1) = (ψ − φ)xi(t) + φxr(t) (31)

or
xi(t+ 1) = (ψ − φ)xi(t) + φp (32)

So, the corresponding equilibrium point is given by:

xeqi =
φp

1− ψ + φ
(33)

For ψ = 1 i.e. in case of original ABC algorithm, the equilibrium point is calculated as xeqi = p for both
the cases.
It can be clearly observed that in the presence of coefficient ψ, the equilibrium point depends upon both
parameters ψ and φ, whereas when coefficient ψ = 1 the equilibrium point is independent of both the
parameters. Hence we can say that with the introduction of coefficient ψ (ψ 6= 1), the role of parameter
φ became more significant in finding the equilibrium point as evident from equations (29) and (33).
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Fig. 2: Convergence boundary for parameters ψ and φ.

B. Convergence

In general, initially the particle state is not at equilibrium. So it is necessary to analyse whether the
particle will eventually move towards equilibrium or not i.e., the optimization algorithm will converge
or not. From the results of theory of dynamical system it can be concluded that the eigenvalues of the
dynamic matrix A plays an important role in explaining the time behaviour of the potential solutions [22].
The necessary and sufficient condition for equilibrium point to be stable is that the magnitude of eigen
values of the matrix A should be less than unity [33]. In this case the potential solutions will eventually
settle at equilibrium and the algorithm will converge. By using equation (27), the matrix A has only one
eigen value given by λ1 = ψ + φ. As discussed above for the convergence of ABC algorithm

|λ1| < 1 i.e. |ψ + φ| < 1 (34)

Without loss of generality, equation (23) can also be written as:

xi(t+ 1) = ψxi(t) + φ(xr(t)− xi(t)) (35)

or
xi(t+ 1) = (ψ − φ)xi(t) + φxr(t) (36)

The corresponding eigen value will be given by λ2 = ψ − φ and hence the condition for convergence of
ABC algorithm will be given by:

|λ2| < 1 i.e. |ψ − φ| < 1 (37)

By combining results from equation (34) and (37) the condition for convergence of ABC algorithm with
coefficient ψ is:

|ψ + φ| < 1 and |ψ − φ| < 1 (38)

The convergence boundary for the parameters ψ and φ is shown in Figure 2. In Figure 2, the shaded
region (A1) is termed as convergent region and (A2) as outside convergent region. Convergent region
signifies that, if the values of parameters φ and ψ lie within region (A1) then the potential solutions will
converge to equilibrium point. In next section, obtained conditions are verified numerically by testing
them on benchmark test problems.
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TABLE I: List of Test Problems (AE: Acceptable Error, U: Uni-modal, M: Multi-modal, S: Separable,
N: Non-separable ) [27] [31]

Name of the problem Search
Range

Optimum Value Dim
(n)

AE Characteristic

Ackley [−30, 30] f(~0) = 0 30 1.0E − 05 M, S

Alpine [−10, 10] f(~0) = 0 30 1.0E − 05 M, S

Salomon [−100, 100] f(~0) = 0 30 2.0E − 01 M, N

Pathological [−100, 100] f(~0) = 0 30 1.05E − 01 M, N

Inverted Cosine wave [−5, 5] f(~0) = −n+ 1 10 1.0E − 05 M, S

Shifted Rosenbrock [−100, 100] f(o) = f(~0) =
390

10 1.0E − 01 M, N

De Jong [−5.12, 5.12] f(~0) = 0 30 1.0E − 05 U, S

Moved axis parallel hyper-ellipsoid [−5.12, 5.12] f(~0) = 0 30 1.0E − 15 U, S

Shifted Rotated and expanded uneven
minima

[−100, 100] f(~0) = 500 30 1913.0 M, N

Composition function 3 [−100, 100] f(~0) = 1100 30 325.0 M, N

V. NUMERICAL EXPERIMENT

In order to justify our theoretical findings for convergence analysis of ABC algorithm, numerical testing
is carried out on a set of 10 benchmark problems. The benchmark problems considered have objective
function with properties which includes unimodal, multimodal, separable and non-separable functions.
In addition to that few have optimal point at origin and others have optimal point away from origin as
explained in Table I. While doing numerical experiments to verify the findings of convergence analysis,
two cases are considered. Firstly, when parameters φ and ψ lie within convergence region and secondly
when they lie outside convergence region.
Following three types of numerical experiments are performed:

1) In subsection (V-A), movement of potential solution in the search space is analysed.
2) In subsection (V-B), efficiency of the algorithm is tested by calculating average number of function

evaluations.
3) In subsection (V-C), accuracy of the algorithm is checked by analysing the mean error of considered

test problems.

A. Movement of potential solution in the search space

In order to justify our finding that movement of solutions in ABC algorithm follows advection equation,
numerical analysis is done with usual parameter settings. The general solution of the partial differential
equation (11) can be written as [Appendix A]:

x(i, t) = g(i− aφ(t− 1)) (39)

While, the position update equation of ABC algorithm along with initial solution xi(1) is given by:

xi(t+ 1) = xi(t) + φ(xi(t)− xr(t)); xi(1) = g(i) (40)

Following parameter settings are considered for the numerical experiment:
1) Since in the position update equation of ABC algorithm, the updated position depends upon the

previous solution and a randomly selected solution, therefore for analysis purpose, minimum number
of required solutions are two. So, we will consider a swarm size of 2 for the numerical analysis.
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Fig. 3: Positions of solutions obtained from ABC update equation and solution of PDE.

TABLE II: Comparision of numerical results with random initialization (i.e., g(i) = 0.84147)” (PDE:
Partial differential equation)

S.No. Value of pa-
rameter φ

Position of random
particle

Position obtained from
ABC update equation

Position obtained from
solution of PDE

Absolute Error

1 0.50 (Initialization) 0.84147 0.84147 0

2 -0.45 0.77027 0.87351 0.99271 0.11920

3 0.22 -0.85826 0.49252 0.53118 0.03866

4 -0.67 1.05796 0.11367 0.13121 0.01754

5 -0.89 1.25168 -0.89916 -0.98841 0.08925

6 0.36 -0.63818 -0.80521 -0.71735 0.08786

7 0.98 0.88709 0.85325 0.98598 0.13273

8 -0.23 2.59738 0.45210 0.50690 0.05480

9 0.95 -0.26859 -0.23256 -0.31154 0.07898

10 -0.71 -1.88736 0.94235 0.89427 0.04808

2) Since we are performing numerical analysis and swarm size is fixed to two solutions, so the random
solution index (r) will be taken as r = 2, (r 6= i ).

3) In order to follow the phenomena of exploration and exploitation, some random values of parameter
φ are considered in the range [-1, 1], given in Table II.

4) The concept of greedy selection is used while choosing the position of a random solution in the
neighbourhood of the candidate solution.

5) Initialization function g(i) is selected randomly (given in Table II) for performing the numerical
analysis.

Now we will compare the numerical results obtained by solving equation (39) and (40), simultaneously
the outcome of the numerical results is listed in Table II and shown graphically in Figure 3.

B. Efficiency of the algorithm

In order to check the efficiency of ABC algorithm, numerical experiments are performed when param-
eters are considered within and outside convergent region. Following parameter settings are considered
while doing the numerical experiment.

1) Swarm size: 50
2) Maximum number of runs: 51
3) Maximum number of iterations: 6000
4) Acceptable error: Table I
The average number of function evaluations (AFEs) are calculated and reported in Table III for both

the cases, i.e. when parameters lie within the convergent region A1 (as shown in Figure 2) and outside
convergent region A2 (shown in Figure 2). The algorithm is stopped when either acceptable error is reached
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TABLE III: Average number of Function Evaluations (AFEs) for region A1 and A2 (see Figure 2) (TP:
Test Problem, A1: Parameters within convergence region, A2: Parameters outside convergence region)

TP AFEs for A1 AFEs for A2

f1 22698 198610

f2 27900 200026

f3 198305 200030

f4 156353 200028

f5 14538 199371

f6 75 75

f7 5022 27805

f8 28573 200025

f9 261833 300050

f10 168729 299221

Parameters Within Convergent Region Parameters Outside Convergent Region
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Fig. 4: Boxplot comparison of AFEs for region A1 and A2 (A1: Parameters within convergent region, A2:
Parameters outside convergent region).

or maximum number of function evaluation is attained whichever is earlier. From the experimental results
it is clear that ABC algorithm is efficient when parameters lie within A1. The difference of results when
parameters lie in A1 and A2 can be seen from the boxplot shown in Figure 4.

C. Accuracy of the algorithm

To check the accuracy of ABC algorithm, numerical experiments have been carried out by considering
parameters within and outside convergent region. Parameter setting and test problems are same as con-
sidered in section V-B. Mean Error (ME) is calculated for considered test problems and numerical results
are presented in Table IV. The improvement of accuracy of ABC algorithm with parameters within region
A1 and A2 can be observed from the boxplot shown in Figure 5. Numerical results are again verified
by performing non parametric test namely, Wilcoxon signed rank test and presented in Table V. If the
obtained data sets have significant difference then we say that null hypothesis is rejected and ‘+’ sign
appears otherwise null hypothesis is accepted and ‘=’ sign appears. In Table V, ‘+’ sign appears 9 times
out of 10. Thus the accuracy of ABC algorithm is better when parameters φ and ψ are considered in
convergent region A1.

VI. DISCUSSION

The above theoretical and numerical results of convergence analysis of ABC algorithm reveals that
the algorithm performs efficiently and accurately when parameters φ and ψ lie within convergent region.
Presence of coefficient ψ (ψ 6= 1) in the position update equation of ABC algorithm makes the equilibrium
point to be dependent upon both the parameters φ and ψ. Whereas, when parameter ψ = 1 (i.e., in case of
original ABC algorithm) the equilibrium point becomes independent of both the parameters as explained in
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TABLE IV: Mean Error (ME) for region A1 and A2 (TP: Test Problem, A1: Parameters within convergent
region, A2: Parameters outside convergent region)

TP ME for A1 ME for A2

f1 8.42E-06 2.72E-05

f2 7.48E-06 0.127836

f3 0.57 1.61

f4 0.097 13.837

f5 6.17E-06 0.348546

f6 8.32E05 1.04E06

f7 4.47E-06 4.72E-06

f8 8.6E-16 2.04E-13

f9 2117.71 2509.26

f10 325.47 360.76

Parameters Within Convergent Region Parameters Outside Convergent Region
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Fig. 5: Boxplot comparison of ME for region A1 and A2 (A1: Parameters within convergent region, A2:
Parameters outside convergent region).

TABLE V: Comparision of Mean Error (ME) for region A1 and A2 using Wilcoxon Sign Rank test(TP:
Test Problem, A1: Parameters within convergent region, A2: Parameters outside convergent region)

TP Based on ME forA1 VsA2

f1 +

f2 +

f3 +

f4 +

f5 +

f6 +

f7 =

f8 +

f9 +

f10 +

Number of +
signs

9
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section IV. From the numerical experiments (Table III) it can be easily seen that the AFEs are minimum for
test problems in convergent region which shows that the test problems are converging towards equilibrium
point in less number of iterations when parameters are in the convergent region. Results are further verified
statistically by boxplot analysis of AFEs and ME. Again it can be seen that better results are obtained
when parameters are within convergent region. The mean error for test problems in convergent region is
also minimum as compared to the case when parameters lie outside convergent region which shows that
the accuracy is better within convergent region. The results are verified by non parametric test, namely
wilcoxon signed rank test. It can be inferred that result are significantly better when parameters are within
convergent region.
Also, theoretical and numerical analyses of ABC position update equation reveals that the difference
scheme (10) corresponding to position update equation (III-B) of ABC algorithm is consistent with the
partial differential equation (12). The obtained partial differential equation infact resembles 1-Dimensional
advection equation. The general solution of the partial differential equation obtained in equation (12) is
given by x(i, t)=f(i − vt). Where ‘f ’ is an arbitrary function depending upon the initial condition and
v= aφ. The solution obtained describes an arbitrary shaped pulse which is swept along by the flow at
constant speed ‘v’ without changing shape. Since a ∈ Z/

{
0
}

and φ ∈ [−1, 1], speed ‘v’ can be either
positive or negative. Hence, the arbitrary shaped pulse generated can move in either forward direction
or backward which explains that ABC algorithm can explore the entire search space. The analysis also
explains a significant result that the propagation of particles depends upon the initial condition, i.e. the
initialization phase of ABC algorithm plays an important role in the movement of solutions in the search
space.

VII. CONCLUSION

Analysis of finding the conditions under which an algorithm converges to an equilibrium point plays
a very vital role in making the algorithm efficient, reliable and accurate. For nature inspired algorithms,
the solution update process depends upon the guided random search, which makes algorithm’s nature
probabilistic. This probabilistic nature of these algorithms makes the convergence analysis a difficult task.
Convergence analysis of ABC algorithm is performed using the results from the theory of dynamical
systems. Also condition of convergence of algorithm to equilibrium point is derived, which depends upon
the parameters φ and ψ. Numerical experiments are performed to verify the findings and a convergent
region is recommended for the values of φ and ψ. It can be concluded that the algorithm performs better
when parameters are considered from the convergent region.
Also, study of the movement of solutions in the search space is important to analyse the search behaviour
of ABC algorithm. In order to carry out this study, partial differential equation associated with position
update equation of ABC algorithm is obtained. The obtained partial differential equation resembles 1-
Dimensional advection equation. It was also proved that the finite difference scheme corresponding to
position update equation of ABC algorithm is consistent with the obtained partial differential equation.
So, from the general solution of the partial differential equation, it can be concluded that the solutions
obtained by ABC algorithm propagate in an arbitrary shaped pulse which is swept along the flow at
constant speed without changing shape.
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APPENDIX A
GENERAL SOLUTION OF PDE

The general solution of partial differential equation (12) is given by:

x(i, t) = f(i− aφt) (41)
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TABLE VI: List of Test Problems considered for numerical experiments [27] [31]

Name of the problem Objective function

Ackley Minf1(x) = −20 + e+ exp(−0.2
n

√∑n
i=1 xi

3)

Alpine Minf2(x) =
∑n

i=1 |xi sinxi + (0.1)xi|
Salomon Minf3(x) = 1− cos(2π

√∑n
i=1 x

2
i ) + 0.1(

√∑n
i=1 x

2
i )

Pathological Minf4(x) =
∑n−1

i=1

(
sin2(
√

x2
i+1+100x2

i )−0.5

0.001(x2
i+1−2xi+1xi+x2

i )2+1.0
+ 0.5

)
Inverted Cosine wave Minf5(x) = −

∑n−1
i=1

(
exp

(
−(x2

i +x2
i+1+0.5xixi+1)

8

)
× i
)

Shifted Rosenbrock Minf6(x) =
∑n−1

i=1 (100(z2
i − zi+1)2 + (zi − 1)2) + fbias, z =

x− o+ 1, x = [x1, x2, ....xn], o = [o1, o2, ...on]

De Jong Minf7(x) =
∑n

i=1 i.(xi)
4

Moved axis parallel hyper-ellipsoid Minf8(x) =
∑n

i=1 5i× x2
i

Shifted Rotated and expanded uneven
minima

Minf9(x) = (CEC2015)

Composition function 3 Minf10(x) = (CEC2015)

with initial condition given as:

x(1, t) = g(i) (42)

By using equation (43) and (44) we get

x(1, t) = f(i− aφ) = g(i) (43)

or
f(I) = g(I + aφ), where I = i− aφ (44)

By using equation (41) and (44) we get the final solution of partial differential equation as

x(i, t) = g(i− aφt+ aφ) (45)

or
x(i, t) = g(i− aφ(t− 1)) (46)
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