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Abstract— The paper addresses a novel approach to assess and classify the cognitive load of subjects 

from their hemodynamic response while engaged in motor learning tasks, such as vehicle-driving. A 

set of complex motor-activity-learning stimuli for braking, steering-control and acceleration is 

prepared to experimentally measure and classify the cognitive load of the car-drivers in three distinct 

classes: High, Medium and Low. New models of General and Interval Type-2 Fuzzy classifiers are 

proposed to reduce the scope of uncertainty in cognitive load classification due to the fluctuation of 

the hemodynamic features within and across sessions. The proposed classifiers offer high 

classification accuracy over 96%, leaving behind the traditional type-1/type-2 fuzzy and other 

standard classifiers. Experiments undertaken also offer a deep biological insight concerning the shift 

of brain-activations from the orbito-frontal to the ventro-lateral prefrontal cortex during high-to-low 

transition in cognitive load. Further, the activation of the dorsolateral prefrontal cortex is also 

reduced during low cognitive load of subjects. The proposed research outcome may directly be 

utilized to identify driving learners with low cognitive load for difficult motor learning tasks, such as 

taking a U-turn in a narrow space and motion control on the top of a bridge to avoid possible 

collision with the car ahead. 

 

Index Terms— fNIRs, Motor learning, Hemodynamic Response, Cognitive load classification, Type-2 

Fuzzy classifiers.  
 

I. INTRODUCTION 

Cognitive load refers to the psychological engagement of the working memory (located in the pre-frontal 

lobe [15]) during participation of the brain in learning, reasoning and/or sensory-motor coordination tasks 

[4]. This paper aims at classifying the cognitive load in motor learning tasks with special emphasis to 

driving for its diversity and complexity in motor learning.  Driving involves several parameters of traffic 

and road conditions to accurately determine the necessary actions about steering control, braking and 

acceleration [1]. Driving learners often face extreme difficulties to accurately learn to execute the necessary 

control actions in a given traffic situation [1]-[3]. The paper aims at developing a scheme for cognitive load 

assessment and classification of driving learners for different traffic stimuli, such as bumpers ahead, the 

front car too close, changes in traffic signals, and the like using the brain activation patterns of the subject. 

The assessment of cognitive load is required to avoid overloading the subjects (driving learners) with 

excessive psychological distress, causing mental fatigue and/or trauma.  Unfortunately, absolute assessment 

of cognitive load of different subjects in the same scale is difficult as the brain activation measures have 

different ranges for different people. However, classification of cognitive load with respect to individual’s 

brain activation levels is a relatively simpler problem. Here, we assess and classify cognitive load in motor 

learning tasks based on individual subject’s brain activation patterns. 

In [8], electroencephalography (EEG) based cognitive load classification of vehicle-drivers is reported. 

There are also traces of work in cognitive learning using functional Magnetic Resonance Imaging (fMRI) 

[10], [11]. However, the poor spatial resolution of EEG due to its volumetric conductivity [9] and excessive 
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cost of the fMRI devices prohibit their use for the present application. The functional Near-Infrared 

Spectroscopy (fNIRs) being a low cost device with acceptable spatial resolution thus has been selected. 

Additionally, the provisions of mounting commercial low cost fNIRs devices over the forehead region (to 

avoid the influence of hair in the device-response), coupled with the necessity of the prefrontal region to 

detect cognitive load [5], [44], provide us an opportunity to use fNIRs for this application. Although there 

are traces of works on fNIRs based experiments on motor learning/memory [6], [13]-[18], [39]-[40], there 

is hardly any work on cognitive load analysis of subjects during the motor learning phase. 

The fNIRs device measures hemodynamic response (i.e., the oxygenated and deoxygenated blood 

response) of the brain to infrared input.  Our experience of working with cognitive load analysis using 

fNIRs device [12], [59] reveals that the features of the hemodynamic response vary widely across sessions 

on a given subject. This variation (in inter-session features) often results in an overlap between the features 

of neighborhood classes, thereby introducing uncertainty in classification of the cognitive load. Most of the 

traditional classifiers can tolerate small fluctuations in the feature space almost without any errors in 

classification. Fuzzy classifier comes into play when the degree of fluctuations is relatively wider. The 

inherent nonlinearity of the fuzzy encoders (fuzzifiers) [42] reduces the wider fluctuation of the feature 

space into narrower range of membership space. Type-2 fuzzy sets have shown promising results in 

uncertainty management in classification tasks in presence of wide fluctuations in feature space [1], [24], 

[29]. The above works inspired us to handle uncertainty in cognitive load classification of motor learning 

tasks using type-2 fuzzy sets.  

Two common variants of type-2 classifiers are popularly used in the literature. They are Interval Type-2 

Fuzzy Set (IT2FS) and General Type-2 Fuzzy Set (GT2FS) induced classifiers. Among IT2FS and GT2FS-

induced classifiers, the GT2FS classifier has more degree of freedom to capture intra- and inter-session 

variations [22], and thus is more appropriate for the present application. IT2FS classifiers, on the other 

hand, have low computational overhead and thus are more tuned to real time applications than their GT2FS 

counterpart.   We here propose both an IT2FS and a GT2FS classifier to classify cognitive load of the brain 

during driving into 3 classes: High, Medium (Med.), Low and also determine the measure of the cognitive 

load in a self- normalized scale: [0, 100]. 

There exist a few interesting works on type-2 fuzzy set induced pattern classifiers. For example, Saha et 

al. designed 2-layered IT2 as well as GT2 fuzzy neural nets using IT2/GT2 fuzzification, firing strength 

computation and Nie-Tan type reduction. Das et al. proposed an evolving IT2FS classifier by employing 

metacognitive learning algorithms to determine optimal weights of the classifier [50]. Lin et al. proposed a 

self-organizing IT2 fuzzy Neural Network in [51] by employing structural learning for fuzzy rule 

generation and parameter learning for the selection of parameters in the fuzzy rules. In [52], Das et al. 

introduced a new model of IT2 fuzzy inference system with an online adaptable and self-adaptive structure 

for motor imagery brain-machine interfaces. Pratama et al. in [29] proposed an evolving type-2 classifier 

(eT2FS) by introducing learning mechanisms to expand, prune, recall and merge rules to address the 

summarization capability of IT2FS classifier. Andreu-Perez et al. proposed a self-adaptive GT2 fuzzy 

inference system to incrementally update the parameters of the fuzzy rules in a real-time motor imagery- 

classification problem to control the navigation of a humanoid robot [37]. In [21], Nguyen et al. proposed 

an interesting technique for IT2FS induced motor imagery classification.  

Traditional type-2 fuzzy set induced classifiers usually employ rules with interval type-2 fuzzy 

propositions in the antecedent and type-1/interval type-2 fuzzy propositions in the consequent [29], [37], 

[50]-[52]. The classifier rules employed in this paper are designed with IT2/GT2 fuzzy propositions in the 

antecedent and IT2 fuzzy propositions in the consequent. The intra- and inter-session variations in the 

hemodynamic responses are accommodated in the construction of type-2 membership functions (MFs) of 

the antecedent propositions. The interval type-2 class MF in the consequent is designed to satisfy an 

interval range of the class centroid [7]. 
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In this paper, while employing the IT2FS classifier, we compute the upper and lower strengths of rule j 

at the given measurement point. These firing strengths are then used to determine the class centroid of the 

consequent IT2 MF and the class of the input measurement point. For GT2FS based classification, we 

adopt a novel vertical-slice approach [35], where the vertical slices are placed in primary-secondary (u-) 

membership planes for distinct values of the linguistic variables. These vertical-planes are capable of 

representing the intra- and inter-session related uncertainty at each discrete value of x. The vertical-slices 

are here realized with isosceles triangular MFs, whereas the consequent IT2 MFs of the classifier rules, 

realized with flat-top approximated triangles, are trapezoidal. Although other functional form of MFs is 

feasible, triangular vertical slices and class MF are selected for simplicity in representation. We here 

introduce a novel method to compute firing strength of GT2FS-induced rules at a given measurement point 

of the linguistic variables. The firing strength is then used to determine the class centroid and hence the 

class of the input measurement point.  

The rest of the paper is structured as follows. Section II provides the principles and methodologies used 

to pre-process and filter the fNIRs signal. This section also provides an outline to feature extraction, feature 

selection and training instance generation. Section III deals with the design issues of type-2 fuzzy classifier. 

Details of experimental set-up along with experiments and results are covered in Section IV. Biological 

implications are covered in section V. Performance analysis by statistical tests is undertaken in Section VI. 

Conclusions are summarized in Section VII. 

II. PRINCIPLES AND METHODOLOGIES 

Classification of cognitive load includes five main steps: acquisition and normalization of the fNIRs 

signals, pre-processing and artifact removal, feature extraction, feature selection and classification. We use 

the pre-frontal near infra-red imagery to measure the change in concentration of the oxygenated 

haemoglobin (CHbO) and deoxygenated haemoglobin (CHbR) in each voxel of the fNIRs device. In fNIRs 

technology, the infrared source-detector connectivity at a specific brain-region is referred to as a voxel. In 

other words, the response of the brain at a given location at time t can be obtained in terms of CHbO(t) and 

CHbR(t) from a voxel. 

A. Normalization of the Raw Data 

A cognitive load measurement session contains consecutive h trials of fixed duration T (=12 seconds) with 

a time-spacing of 2 seconds between consecutive pairs of the trials (Fig. 1). The duration T of a trial is 

determined by stimulus presentation time, which in turn depends on users’ perceiving time, planning time 

and motor execution time. The sampling rate (SR) of the fNIRs device used here is 2 samples/second and is 

fixed by its hardware. Thus a trial contains T × SR =12×2 =24 samples of the fNIRs response.  The 

parameter h represents the maximum number of trials in a session for which the brain activation response 

measured from the onscreen topographic maps [19] remains unaltered. Such adoption in fixation of h is 

required to measure steady brain activations in different regions of the prefrontal lobe.  After 

experimentation on 37 healthy subjects and 3 patients, we noted that h = 3 for healthy (normal) people and 

h = 5 for Alzheimer’s patients hold in all cases. 

   Let ( )
HbO

C t


 and ( )
HbR

C t


  be the measure of change in concentrations of HbO and HbR respectively in 

mol/litre at voxel α at any time t in a session, where t [1, (h × T × SR)]. Let Max
HbOC


  and Min

HbRC


  be the 

Fig. 1. Defining trial and session for a given subject during offline training 
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maximum and minimum of ( )
HbO

C t


 and ( )
HbR

C t


  respectively in a session i.e., for all t in [1, (h × T × SR)]. 

As ( ) ( )HbO HbRC t C t
 

    for all t, the difference between ( )
HbO

C t


 and ( ),
HbR

C t


 representing a measure of 

cerebral oxygen exchange (COE) [26] by the cells in the prefrontal region is normalized in [0, 1] by 

transformation (1).  
( ) ( )

( )
HbO HbR

Max Min
HbO HbR

C t C t
diff t

C C

 

 



  


  
               (1) 

The normalization of ( ) ( )HbO HbRC t C t
 

   is here required to subsequently select uniform support [38] of the 

MFs irrespective of the sessions. The larger the normalized difference diffα(t), the higher is the activity of 

the region, resulting in a higher absorbance of the infrared radiation in that region for carrying relatively 

more COE than its neighborhood regions [20]. 

B. Pre-processing 

The pre-processing begins with Common Average Referencing to eliminate spurious pick-ups due to 

motion effects. The common average reference signal CARα(t) is obtained from diffα(t) by transformation 

(2), where ( )avgdiff t is the average of diffα(t) over all the voxels in a trial. 

( ) ( ) ( ).avgCAR t diff t diff t                        (2)              

Here, the ( ),
HbO

C t


  ( )
HbR

C t


 and the CARα(t) are obtained for α = 1 to 16 voxels (brain regions) of the 

present fNIRs device, covering the entire prefrontal lobe.  

   In the second stage of pre-processing, we pass the CARα(t) signals for α = 1 to 16 voxels through digital 

Elliptical band-pass filters of order 10, where the cut-off frequencies are set to (0.1-3) Hz to remove 

majority of the physiological artifacts [19] due to eye-blinking (0.5 - 3 Hz) [25], respiration (0.2 - 0.5 Hz), 

heart-beat (1-1.5 Hz), blood pressure fluctuations or Mayer wave (around 0.1 Hz) [26] etc.  

     In the third stage, we perform Independent Component Analysis (ICA) [27] on CARα(t) of 16 voxels to 

restore the 16 independent components of the hemodynamic response corresponding to 16 voxels of the 

fNIRs device. The artifact-free 16 ICA components from 16 voxels are then used for subsequent analysis.  

C. Feature Extraction 

For the sake of feature extraction, we need to extract minute changes on the artifact-free 16 independent 

components corresponding to 16 voxels. We noted that on an average, the changes in fNIRs response (and 

so independent component) take place approximately in every 8th sample. So, we divide the 12-second 

duration (or 24 samples) of a trial into 3 equal time-windows of 4 seconds each. This suffices our 

requirement. Next we go for extraction of 6 static features [7]: mean (m), standard deviation (sd), average 

slope (s), skewness (sk), kurtosis (ku) and average energy (Eav) in a time-window. Thus in 3 time-windows, 

we have 6  3 = 18 static features. To take into account of the changes in fNIRs (and hence ICA) response 

over pairs of consecutive time-windows, we consider the drift in the static features, hereafter referred to as 

dynamic features [28]. Thus for the transition between 2 consecutive time-windows of 4 seconds each, we 

have one set of 6 dynamic features. Considering 2 transitions in 3 successive widows, we have altogether 6 

× 2 = 12 dynamic features. Consequently, taking static and dynamic features together we have as many as 

18 static + 12 dynamic = 30 features for each voxel. Considering 16 voxels, we have 30 × 16 = 480 features 

for each learning trial.  

D. Training Instance Generation for offline Training 

Here, we have 3 classes of cognitive load: High, Med. and Low. Given a class, for each subject we 

prepared 3 sessions per stimulus for a set of 10 stimuli. Again, for each session, we have 3 trials for normal 

(healthy) subject and 5 trials for brain-diseased subjects. Consequently, for 37 healthy subjects we have 37 

× 10 stimuli × 3 session/stimulus × 3 trials/session = 3330 training instances. Again, for 3 brain-diseased 

subjects, we have 3 × 10 stimuli × 3 session/stimulus × 5 trials/session = 450 training instances. Thus 

altogether we have 3330 + 450 = 3780 training instances for each class. For 3 classes, we have 3780 × 3 = 
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11340 training instances [69], each having 480 dimensional features. Although we have 11340 training 

instances, because of significant inter-subjective variations, we train the classifier with only one subject’s 

training instances at a time. A calculation shown that for each class, we have 10 stimuli × 3 

sessions/stimulus × 3 trials/session = 90 training instances per healthy subject and 10 stimuli × 3 

sessions/stimulus × 5 trials/session = 150 training instances per brain-diseased subjects.  

E.  Feature Selection using Evolutionary algorithm 

High dimensional features unusually enhance the training time of the classifiers [63]. In addition, because 

of the possible influence of measurement noise on the features, training with high dimensional features 

does not often guarantee good classification accuracy in the test phase [64]. Feature selection attempts to 

optimally select a few independent features from the high dimensional features, capable of sufficiently 

discriminate the classes (here three classes, representing High, Med. and Low cognitive load). Among the 

feature selection algorithms, sequential forward selection (SFS) and sequential backward selection (SBS) 

are well-known in the literature [2]. The SFS (SBS) algorithm iteratively adds (deletes) one feature at a 

time to an empty (complete) feature set with an aim to select the best m out of  M (>>m) features. 

However, SFS/SBS algorithm suffers from one common limitation, called the “nesting effect” [2], which 

prohibits the deletion (addition) of a feature once added (excluded).  

    One approach to overcome the nesting effect is to randomly select m out of M features simultaneously by 

an iterative algorithm with the intent to improve the relative quality of features over the iterations with 

respect to their ability to discriminate the classes. Evolutionary algorithms (EAs) utilize population-based 

search of trial solutions in a high dimensional space to obtain an optimal solution of a well-defined 

objective function for a given problem.  In the present context, EAs would provide optimal solution to the 

feature selection problem, if the search is carried out to find the optimal set of m features that jointly 

minimize the distance between each pair of points in a class (intra-class separation distance) and maximize 

the distance between each pair of class centroids (inter-class separation distance).  

     Let ,1 ,[ ,..., ]c c c
i i i Mx x x  be the ith data point, describing a feature vector, falling in class c, where each class c 

contains  P number of data points, i.e., i = 1 to P for  c = 1 to N classes. Further, let c

k
b  and d

k
b respectively 

denote the k-th component of the class centroids for class c and d for k = 1 to M. The aim of the proposed 

evolutionary based feature selection algorithm is to optimally select m out of M features simultaneously to 

maximize inter-class separation distance and minimize intra-class separation distance.  We intuitively 

design two objective functions (3) and (4) to reduce intra-class separation and enhance inter-class 

separation. In (3) and (4), we consider city block distance, rather than conventional Euclidean distance to 

reduce the additional overhead in computing square and square-root in Euclidean distance.   

    It may be noted that the increase in inter-class separation distance and decrease in intra-class separation 

distance are no way conflicting [65]. So, we plan to go for single objective, rather than multi-objective (bi-

objective) optimization.  To formulate the problem in the settings of single objective optimization, we 

combine (3) and (4) to obtain (5), which needs to be minimized in order to minimize (3) and maximize (4). 

In (5) one parameter is introduced to avoid a possible division by zero, particularly when obj2 assumes a 

zero value in the denominator in (5). We prefer a small positive value of   to minimally disturb the ratio 

obj1/obj2. For optimal choice of   along with other parameters of the classifiers, we used a meta-heuristic 

optimization algorithm. The optimal value obtained in the selected range [0.001, 0.5] is 0.0028. Details of 

selection of  are discussed in the experiment section. 


  


N

c

P

i

m

k

c

k

c

ki
bxobj

1 1 1
,1

||                            (3) 
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     Among the well-known meta-heuristic algorithms, Differential Evolution (DE) algorithm has shown 

remarkable performance in single-objective multi-modal optimization problems [61]. DE is said to 

outperform its competitors with respect to its small code-length, a fewer control parameters and low 

computational overhead [62]. Apart from these, we select it for the present application for our familiarity 

with it for several years [32], [49]. Although quite a few variants of DE are available, we here employ one 

of its widely used versions, called DE/rand/1/bin. In this version of DE, we have 3 parameters, the scale 

factor F, the crossover rate CR and a uniform population size NP. In our realization, both F and CR are 

selected as 0.7 and NP is selected as 20. The trial solutions (parameter vectors) of length m = 8 are used to 

select 8 best features from a given list of M = 480 features.  

F. Classifier Training and Testing 

Before proceeding for our proposed classifier design we trained a typical Linear Support Vector Machine 

(LSVM) [55] and a SVM with Radial Basis Function as the kernel (SVM-RBF) [56] classifier. While 

undertaking training, we set aside 10% of the training instances per class/per subject for subsequent testing. 

Thus for normal subjects, we have 90% of 90 = 81 training instances/per subject/class, and similarly for 

brain-patients we have 135 instances/subject/class. After the training is over, we test the classifier 

performance and we found 99.98% classification accuracy for each class for each subject. Next we go for 

testing on real instances by instantiation with actual traffic stimuli. It is found that the classifier accuracy 

falls off drastically to 89% for LSVM and to 92% for SVM-RBF. This inspired us to think of designing a 

type-2 fuzzy classifier for possible improvement in classification accuracy. 

III. CLASSIFIER DESIGN 

This section provides a detailed design of IT2FS and GT2FS induced classifiers for classification of 

cognitive load. 

A.  Preliminaries on IT2FS and GT2FS 

Definition 1: A classical/type-1 fuzzy set S [38], defined on the universe of discourse X of a linguistic 

variable a, is a two-tuple, given by 

}|))(,{( XaaaS
S

                             (6) 

where, ( )S a is the membership of a in S. ( )S a  is a crisp number in the closed interval [0, 1] for any .a X  

Definition 2: A General Type-2 Fuzzy Set (GT2FS) S
~

is a three-tuple [60], given by 

]}1,0[)(,|)},(),(,{
~

~~ 
aSS

JauXauaauaS         (7) 

where, (a)u
S
~ , known as primary membership, is a crisp number in [0, 1] and ]1,0[),( ua  is the secondary or 

type-2 MF. 

Definition 3: For a given a a the 2D plane comprising u and ( , )
S

a u  is referred as vertical slice 

on ( , )
S

a u [35].  

Definition 4: For a given universe of discourse X of a 

linguistic variable a, if ( , ) 1,
S

a u a X     and [0,1],au J    then the type-2 fuzzy set S
~

is called an Interval Type-

2 Fuzzy Set (IT2FS) [43]. 

Definition 5: An IT2FS comprises infinite number of embedded type-1 fuzzy sets [43].  Let eS be an 

embedded fuzzy set in the IT2FS, then the Lower MF (LMF) of an IT2FS is computed as 

aaMina
e

S
e

S




)),(()(~                       (8) 

Similarly the upper MF (UMF) of an IT2FS is computed as  
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                             aaMaxa
e

S
eS




)),(()(~                       (9) 

Thus an IT2FS is always bounded by 2 curves: the UMF and the LMF. The bounded region of the IT2FS is 

called the Footprint of Uncertainty (FOU) [43], which is defined by the union of all the embedded type-1 

fuzzy sets in an IT2FS. 

B. IT2FS Induced Classifier Design 

In the present learning problem, we propose a fuzzy classifier using interval type 2 fuzzy sets (IT2FS) [23] 

to classify the data points with reduced dimension into three classes: High, Med. and Low. Let 
ki

x
,  be a 

selected fNIRs feature having f experimental instances 
kfkk

xxx
,,2,1

...,,,  taken on the same day on the same 

subject. Let the instances of 
k

x have a mean km and variance .
k

  We construct a type-1 isosceles triangular 

MF with the centre of its base located at 
k

x = km  and the two end points of the base located at 

k
x = 3  and x 3 .k k k k km m     The peak values of the isosceles triangular MFs are unity to maintain the 

normality condition. This triangular type-1 MF represents that the instances of 
k

x  are close enough to the 

mean value of the points and is referred to as ),(
( kmeantoCLOSE

x


 abbreviated as ).(
kC

x  

Now suppose the experiments are repeated for s days (D1, D2, …, Ds)  on the same subject. Then for s 

days, we would have s isosceles triangular MFs ( )
Dz
C kx for z = 1 to s. We take the min and max of these 

type-1 MFs to obtain the UMF and the LMF [22] of an IT2FS, where 

))(()()(
1

~ k
zD

C

s

zkCk
xMaxxxUMF 


                (10) 

Fig. 2. Construction of Flat-top IT2FS: (a) type-1 MFs, (b) IT2FS 
representation of (a), (c) flat-top approximated IT2FS 
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))(()()(
1

~
k

zD

C

s

zkCk
xMinxxLMF 


                (11) 

 Thus for m features, we have m IT2FS given by )],(),([ ~~ kCkC
xx   k = 1 to m. To ensure convexity of the 

constructed IT2FS, we go for flat-top approximation [34] of the obtained IT2FS by joining the peaks of the 

individual type-1 MFs by a straight line of zero slope [33] (Fig. 2(c)). 

Type-2 Fuzzy Inference Generation: Consider a set of type-2 classifier rules, where the format of an 

arbitrary rule j, is presented below: 

Rule j: IF x1 is ,
~

1,j
A  x2 is ,

~
2,j

A  ......, xm is
mj

A
,

~ , THEN class-centroid y of )(~ y
jB

  lies in ].[ Y
r

Y
l CC   Here, 

k
x is a 

linguistic variable in universe ,
k

X  
kj

A
,

~
is a trapezoidal IT2 MF representing that

k
x is CLOSE-to-the-Centre 

of the support [38] of ,
k

x for k =1 to m;  )(~ y
jB

  is a isosceles triangular IT2FS (Fig. 3(a))  representing that 

the class centroid y is Close-to-the-Centre of the bases of the UMF and the LMF. The UMF and the LMF of 

)(~ y
jB

  are symmetric around a hypothetical vertical line passing through the centre of the base. Each )(~ y
jB

  

is associated with an interval ],[ Y
r

Y
l CC where Y

lC  and Y
rC  are called the left and the right end point class 

centroids [43] of class Y, which denote the possible range of the IT2 centroid of the consequent )(~ y
jB 

  after 

firing of the rule j.  The following considerations are used in the optimal settings of the class boundaries 
Y
lC  and .Y

rC  

1. The range of possible class centroids of individual classes should not have any overlap. 
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2.  There should not be any spacing between the upper bound of one class centroid and the lower bound of 

the adjacent class centroid. Here, the 3 class boundaries should be [ ),  [ ) and [ ].Low Low Low Med Med High
l r r r r rC C C C C C   

3. The optimal setting of ][ Y
r

Y
l CC for any class Y should maximize classification and minimize 

misclassification for each class. 

4. The least value of class-centroid of the Low class should be 0, indicating no cognitive load, and the 

largest value of class-centroid of class High should be 100, indicating maximum cognitive load. In other 

words, we assign a scale of [0, 100] for the cognitive load. 

An evolutionary optimization realized with DE is used here for optimal setting of class boundaries (along 

with ) satisfying the above criteria. The structure of the IT2FS used for the 3 classes are shown in Fig.4 

(a) for convenience. 

The )(~ y
jB

 is constructed with the centre of its base located at ( ) / 2Y Y
l rC C and is symmetric around the 

vertical axis passing through the centre. The UMF of the consequent IT2FS is considered normal (i.e., the 

peak membership = 1). The LMF of the consequent IT2FS is constructed as a relatively smaller isosceles 

Fig. 4 (a). Consequent IT2 MF for 3 classes: Low, Med. and High cognitive loads with initial class centroid positions , (b) defuzzified output C falls in 

Low cognitive load class after firing of rule 2, 3 and 7,   (c) defuzzified output C falls in High cognitive load class after firing of rule 10, 8 and 5. 
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triangle with intuitively chosen base-width = 40% of the base-width of the UMF and height = 80% of the 

height of the UMF. This in other words offers a large tolerance to Y
lC  and Y

rC  to improve classification 

accuracy. 

Let 
mm

xxxxxx  ..,,,
2211

 be a measurement point. We obtain the lower firing strength (LFSj) and 

upper firing strength (UFSj) at the measurement point for rule j by (12) and (13). 

)))((,(
,

~
1

kA

m

k
jj xMinwMinLFS

kj



                    (12) 

)))((,(
,

~
1

kA

m

k
jj xMinwMaxUFS

kj



                   (13) 

Here, 
j

w and ,
j

w  lying in [0, 1], are respectively the upper limit of 
,1

( ( ))
m

kAj kk

Min x


 and lower limit of 

,
1

( ( )).
m

kAj k
k

Min x


  The introduction of the 
j

w and jw in (12) and (13) provides a mechanism to control the area 

under the consequent FOU, thereby controlling the location of the centroid of the resulting consequent IT2 

MF. The optimal values of 
j

w and jw are determined by an evolutionary algorithm with an aim to maximize 

the classification accuracy for individual classes. Although any evolutionary algorithm could serve the 

purpose, we selected the well-known DE algorithm [49] for its simplicity in coding, fewer control 

parameters and above all our familiarity with the algorithm [32]. The optimal selection of 
j

w and jw is 

undertaken in the experiment section. 

    We now compute the consequent IT2 MF ( )
jB

y 
with UMF and LMF obtained by (14) and (15). 

( ) ( ( )), )
j j

jB B
y Min y UFS                      (14) 

( ) ( ( )), )
j j

jB B
y Min y LFS 


                   (15) 

In case more than one rule with same or different class labels at the consequent are fired by instantiation 

of the antecedent linguistic variables, then we obtain the final inference B by taking union of the individual 

inference ,  jB  for all j. 

                            j
j

B B


                                                 

= [ j
j

B



     j

j

B


 ]
                       (16)

 

Here, B  refers to an IT2FS, whose LMF and UMF are the maximum of the constituent jB  s’ LMF and 

UMF respectively. We next obtain the left and the right end point centroids Cl and Cr respectively of the 

resulting IT2MF B by using the well-known Karnik Mendel (KM) Algorithm [31], and hence determine the 

centroid C of the resulting IT2Fs using (17). The centroid C here represents the cognitive load of the 

subject.                              

               
2

rl
CC

C


                                    (17) 

The KM algorithm aims at finding the left (right) switch point from the UMF (LMF) to the LMF (UMF) 

in an iterative manner, such that the centroid of one embedded fuzzy set, following the UMF (LMF) up to 

the switch point and following the LMF (UMF) after the switch point, is equal to the switch point. The left 

(right) end switch point is defined as left (right) end point centroid.  

   Lastly we determine the class Y of the input measurement by determining the class interval ],[ Y
r

Y
l CC  that 

includes the class centroid C.  Since the class boundaries for each class is non-overlapped and distinct, the 

class Y can be correctly identified, if C falls in the above interval. Several extensions to KM algorithm have 

been reported in the literature with a main motive to reduce computational overhead [66] and to suit real-

time applications by approximating in centroid computation [67]. We here used Enhanced KM (EKM) [30] 

algorithm for its low computational overhead and high popularity. 
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 In Fig. 4, we schematically demonstrate the computation of B from 
j

B 
~

for all j, and next show results of 

computation of Cl and Cr and the centroid C of  B  for firing of 2 sets of rules. For the first set of rules, the 

centroid C is found to lie in [ ],Low Low
l rC C whereas for the latter set of rules, the centroid falls in [ ],High High

rlC C  

indicating Low and High classes as the resulting classifier outputs in Fig. 4(b) and (c) respectively. 

C. GT2FS Induced Classifier Design 

A GT2FS [35] is a three tuple  u)μ(x,(x),ux,
A
~ , where x is a linguistic variable (here, feature value), )(~ xu

A
 is 

the primary MF and ),( ux is the secondary MF. Both the primary and the secondary MFs lie in [0, 1]. Here, 

we present a GT2FS in vertical slice form [35] (Fig. 5), where each vertical slice represents secondary MF 

with respect to primary membership at a given ,x x  say. Given a GT2FS classifier rule j: If x1 is ,1Aj , x2 is 

,2Aj , ......, xm is mjA ,
~

Then class centroid y of )(~ y
jB

  lies in ].[ Y
r

Y
l CC  Here, 

k
x  is 

kj
A

,

~
for k = 1 to m are GT2FS-

induced propositions and )(~ y
jB

 denotes an IT2FS consequent MF.   

Definition 1: We define the t-norm (denoted by X
t

) between  two vertical planes )(
,)(,

~ lp
pxpjAp

uG


   and 

)(
,)(,

~ vq
qxqjAq

uG


   of 
pj

A
,

~
  and 

qj
A

,

~
 respectively by (18). 

]}.,1[,|)(t)({X
,)(,

~,)(,
~ nvluuGG

vq
qxqjAlp

pxpjAq

t

p



   (18) 

Here, we take t = min. For any three vertical planes Gp, Gq and Gr taken from ,
~

, pj
A  ,j qA and , ,j rA  the 

cumulative t- norm is defined by 

X X ( X ) X .
t t t t

p q r p q rG G G G G G  In general, the cumulative t-norms of G1, G2, … , Gm, taken from m distinct 

GT2FS, is evaluated in the fixed order of occurrence of Gk, k = 1 to m. 

Fig. 5. Secondary Membership Assignment 
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Definition 2: To compute the s-norm between two vertical slices Gp and Gq introduced above, we simply 

replace t by s in (18), where we take s = max. The cumulative s-norm is computed by replacing t by s 

(=max) in cumulative t-norm. 

Given a measurement point: 
kk

xx  for k = 1 to m, we obtain the firing strength of rule j by the following 

five steps (Fig. 6). 

 

1. Let )(
,1)1(1,

~1
uG

xjA 
  , )(

2)2(2,
~2

uG
xjA 

  ,…,  Gm = ).(
,)(,

~ m
mxmjA

u


 We compute
m

ttt

GGGG  ...
21

 by (18) to obtain 

mn  terms in G. 

2. We evaluate the largest of the mn  terms in G and call it ,
j

LFS i.e., 

)}(...)()({
)(,

~2)2(2,
~1)1(1,

~ m
mxmjAxjAxjAj

uttutuMaxLFS


   

(19) 

3. Similarly we compute 1 2 ... .
s s s

mH G G G     

4. We evaluate the smallest of the mn  terms in H and call it ,
j

UFS i.e., 

)}(...)()({
)(,

~2)2(2,
~1)1(1,

~ m
mxmjAxjAxjAj

ussusuMinUFS


   

  (20) 

Fig. 6. GT2FS Classifier Design 
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It can be easily verified that UFSj ≥ LFSj. Further, UFSj and LFSj provide the Least Upper bound (LUB) 

and the Greatest Lower Bound (GLB) of the constituent secondary MFs, each contributed by one vertical 

plane of m antecedent GT2FS. 

5. Compute the consequent IT2 MF ( )
jB

y 
with UMF and LMF obtained by (14) and (15). 

6. If multiple rules fire for ,jB  then we need to take the union of all the type-2 inferences as indicated in 

(16). 

7. Next we decode (defuzzify) the type-2 inference class using EKM Defuzzification technique [30] and 

obtain left and right end point centroids Cl and Cr. We finally evaluate the class centroid C by (17). 

Now, identify the pre-defined class by defining the class interval ],[ Y
r

Y
l CC that includes the class centroid C.  

If C falls in the above interval, then class = Y. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Set-up 

Experiments are undertaken with a Logitech driving simulator, comprising one steering wheel, one brake 

and one accelerator foot pedal and a monitor to drive the simulated car (Fig. 7(a)) and an fNIRs device, 

manufactured by BIOPAC, with 4 infrared (IR) sources and 10 infrared detectors, placed in an array for 

mounting on the forehead (Fig. 7(b)). The IR sources are triggered by short duration electrical pulses in a 

time-multiplexed manner to ensure activation of only one source at a time. On triggering of a selected 

source, the infrared signal penetrates the pre-frontal region below the source, and the received energy is 

partially absorbed by the brain and partially reflected back to the four detectors mounted around each 

source (Fig. 7(c)). The sampling rate of the fNIRs device being 2 Hz, the sampling intervals are of 0.5 

seconds. The sampling interval constitutes four equal time-slices of 0.125 seconds, where each time-slice is 

utilized to receive oxygenated (HbO) and deoxygenated (HbR) blood response (Fig. 7(d)) by one of four 

detectors around each source. Thus for 4 sources, we obtain 16 oxygenated and 16 deoxygenated blood 

response of 16 voxels (brain regions) in 0.5 seconds.  It is important to note that the penetration depth of 

the IR signals is 1.25 cm from the surface of the scalp. The signal acquisition is performed using (Cognitive 

Optical Brain Imaging) COBI studio software, supplied by the manufacturer. 

B. Participants 

Forty right-handed volunteers (driving learners), in the age group: 20-55 years with normal/corrected vision 

participated in this experiment. The participants include 37 healthy subjects (20 male and 17 female) and 3 

male patients suffering from the Alzheimer’s disease. 

C. Stimulus Presentation for online classification  

During online cognitive load classification, each subject is instructed to perform driving on a selected road 

map containing multiple occurrences of the 10 stimuli (Table I) in a random order. Each visual stimulus is 

of 12 seconds duration. The list of stimuli along with the motor actions required in response to the 

respective stimulus is given in Table-I. The structure of the stimulus is given in Fig. 8. 
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TABLE I 

 LIST OF STIMULI AND REQUIRED ACTIONS  

S. 

No

. 

Type of stimulus 
Required 

action 

1 Making Right Turn 
Steering 

Right 

2 Making Left Turn 
Steering 

Left 

3 Bumper ahead Brake 

 
 

(c) 

Voxels 

(b) 

(d) 

Fig. 7 (a) Experimental set-up with fNIRs data acquisition  

(b) IR penetration into the brain and its detection by the fNIRs 
device, (c) Structure of the fNIRs device (d) HbO and HbR 

concentration plot of a voxel  

 

Accelerator (Right 

foot) and Brake (Left 

foot) pedal 

Steering Wheel 

fNIRs 

device 

(a) 
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4 
Side-car is too wide/ 

too close 

Steering 

control 

5 
Front car speed 

decreases 
Brake 

6 
Change in traffic 

signal 

Accelerati

on/ Brake 

7 
Front car speed 

increases 

Accelerati

on 

8 Sharp turn in front 
Steering 

control 

9 U-turn 
Steering 

control 

10 
Speed Control over 

bridge 

Steering 

control 

 

D. Experiment 1: Demonstration of decreasing Cognitive Load with increasing Learning Epochs for 

similar stimulus  

The motivation of the present experiment is to estimate the cognitive load in motor-learning from the 

prefrontal activation. We here estimate and classify the cognitive load in 3 classes. It is noted that with 

increased learning epochs the cognitive load is decreasing. The same observation also follows from the 

measure of diffavg and also the topographic maps produced by the COBI studio software [41].  

   The above estimation is carried out over different learning epochs (LEs) for each of the 10 stimuli 

indicated above. Fig. 9 provides the diffavg, the topographic maps and cognitive load classes obtained in 

three different LEs of making right and left turns (stimuli 1 and 2). Here, we confirm that the subject is able 

to learn to take left/right turns (LT/RT)  efficiently from the gradual decrease in turning-angle Ɵ. 

Simultaneously, the peak of the diffavg along with computed cognitive load falls off gradually with repeated 

left/right turning and/or LEs. It is apparent from Fig. 9 that the first trial of learning incurs high cognitive 

load (symbolized in yellow), whereas the fifth trial for the same motor task yields medium cognitive load 

(symbolized in red). Lastly, the lowest activity (marked in blue) appears in the eighth trial of learning 

+ 
Generation 

of visual 

stimulus 1 

2s 

Cognitive Load 

Detection 

Generation 

of visual 

stimulus 10 

Cognitive Load 

Detection 

12s 200ms 12s 200ms 

......

.. 

Fig. 8. Structure of the stimulus used with timing for online cognitive 

load detection 
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resulting in low cognitive load. The decrease in 

cognitive load with increased learning epochs that follows up from this experiment is also supported by 

existing works [44]. 

E. Experiment 2: Automatic Extraction of discriminating fNIRs Features 

We adopt two approaches for feature selection. First we obtain the 8 features out of 480 with an aim to 

maximize inter-class separation and minimize intra-class separation, which is done by minimizing (5). A 

cross-check of these 8 optimal features is also evident from the feature value plot (Fig. 10) for three classes. 

It is clear from the plot that the features F51 (Mean HbO conc. of voxel 3), F120 (Mean HbO conc. of voxel 

6), F123 (Mean HbO conc. of voxel 8), F207 (Mean HbO conc. of voxel 16), F300 (avg. energy of voxel 5), 

F372 (avg. energy of voxel 12), F417 (avg. slope of voxel 5) and F471 (skewness of voxel 14) offer maximal 

inter-class separation. 

 

F. Experiment 3: Optimal Parameter Setting of Feature Selection and Classifier Units 

Here, we use 2 DE-based optimizers, working in double loops. The inner loop is maintained by the left-

cornered DE in Fig. 11, whereas the outer loop is maintained by the central DE. The left cornered DE is 

used to select the optimal features by minimizing (5) with a given value of  produced by the right DE 
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Fig. 10. Extracted fNIRs features to discriminate cognitive load of 3 classes. 

(The eight features, shown by the dotted line are most discriminating) 
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Fig. 9. The cognitive load, diffavg and the topographic maps obtained 
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optimizer, used for parameter selection. For a given , the left cornered DE on convergence produces the 

(tentative)  best 8 out of 480 features by minimizing (5). These features are used by the GT2FS/IT2FS 

classifier for initializing the classifier parameters to produce class iY. The DE-based parameter selection 

then attempts to minimize   

,)( 2




i

i
a

i YYJ                                (21) 

subject to 

.100and

0

,

,

,5.0001.0

.

.











High
r

High
l

Low
r

Low
l

High
l

Med
r

Med
l

Low
r

CC

CC

CC

CC



                            (22) 

Here, a
iY = actual class label of the i-the training instance and   

            Yi = GT2FS classifier produced class label of the i-the training instance. 
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Fig. 11. Parameter selection of the GT2FS classifier for each healthy subject’s 81 data-points of 480 dimensions 

 

Fig. 12. Parameter selection of the IT2FS classifier for each healthy subject’s 81 data-points of 480 dimension 

i 
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The process explained above is repeated until both the DEs converge. Once converged, the η and classifier 

parameters )and,,,,( .. High
r

High
l

Med
r

Med
l

Low
r

Low
l CCCCCC  are selected for online feature selection and classification. 

This is schematically illustrated in Fig. 11. The optimal parameters of GT2FS classifier and  are obtained 

as follows. 

 = 0.0028, 
Low
lC =7.16, ,22.24.  Med

l
Low
r CC  28.62. 

High
l

Med
r CC  

and High
rC =98.6. 

In Fig. 12, we do the same for the IT2FS classifier. Here, we need to optimize jj
ww and along with other 

classifier parameters )and,,,,( .. High

r

High

l

Med

r

Med

l

Low

r

Low

l
CCCCCC and η. Here, we attempt to optimize (21), 

              subject to 
0 1,jj

w w    

other classifier parameter constraints, 

                    and constraints on η, given in (22). 

Fig. 12 explains the mechanism of the parameter selection for the IT2FS classifier and feature selection 

unit. After the parameters are obtained, we go for online classification of unknown input instances to 

classify the cognitive load into three classes: Low, Med. and High. The optimal values for the parameters 

of IT2FS classifier are listed below: 

 = 0.00281, 
Low
lC = 7.72, ,01.24.  Med

l
Low
r CC  63.62. 

High
l

Med
r CC  

and High
rC = 98.12, 

,86.01 w ,20.0
1
w ,78.02 w ,12.0

2
w ,84.03 w ,12.0

3
w ,68.04 w ,42.0

4
w ,78.05 w ,32.0

5
w ,91.06 w ,18.0

6
w

,84.07 w ,23.0
7
w 8 0.97,w  ,20.0

8
w ,86.09 w ,22.0

9
w  

10 0.90w  and 
10

0.12.w   

V. BIOLOGICAL IMPLICATIONS 

The cognitive load distribution in prefrontal cortex (PFC) over the LEs is presented here by a voxel plot 

using MATLAB 2016 version. The mean of CARα(t) for α = 1 to 16 voxels are plotted as a 2 × 8 voxel plot 

demonstrating the 16 channels of the fNIRs system as shown in Fig. 13. The voxel plots indicate that 37 

healthy subjects yield similar behavior in the activation pattern of PFC, irrespective of their age and gender. 

However, reduced dorsolateral PFC (DLPFC) activation associated with low learning ability is possibly 

related to improper growth/partial damage of the brain lobes [48], which we noticed in three Alzheimer’s 

patients.  

      The following biological implications directly follow from the voxel plot of Fig. 13. 

1.  The left PFC has relatively higher activation than the right PFC when the subject experiences cognitive 

load in motor learning stimuli. 

2. Fig. 13, depicting the regional response of the PFC, demonstrates that cognitive load shifts from the 

orbitofrontal cortex (OFC) to the ventro-lateral PFC (VLPFC) with increased LEs for healthy subjects. The 

brain anatomy responsible for OFC activation is associated with Broadmann area 11 (BA11), which has a 

significant involvement in reasoning, complex decision making, planning, and encoding new information 

into memory [45]-[47]. 

3. A significant reduction in the DLPFC activation is observed when cognitive load shifts from High to 

Low for the healthy subjects.  

4. The OFC activation is reduced when the driving learner becomes an expert to drive safely in all road and 

traffic conditions. Thus, we conclude that initial learning trials need higher executive function and it is 

related to high cognitive load. 
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The graph shown in Fig. 14 also indicates that the cognitive load value (CLV) has a similar behavior with 

OFC activation for 3 different cognitive loads for the healthy subjects. The rest of the graphs are apparent 

and thus need no explanation.  

 

 

VI. PERFORMANCE ANALYSIS 

This section provides experimental basis for performance analysis and comparison of the proposed   

classifiers   with traditional/existing ones. 

A. Performance Analysis of the proposed IT2FS and GT2FS classifier 

To study the relative performance, we undertake three levels of analysis: i) classification accuracy, ii) run-

time complexity of the classifiers and ii) joint occurrence of true (T)/false (F) and positive (P)/negative (N) 

cases.  Table II contains the mean percentage classification accuracies of the proposed type-2 fuzzy 

classifiers against traditional fuzzy and non-fuzzy ones, including two existing GT2FS models [1] and [37],  

four existing IT2FS models [1], [50]-[52], evolving Type-2 Fuzzy Classifier (eT2Class) [29], Type-1 Fuzzy 

Neural Network [57], traditional type-1 Fuzzy set, SVM-RBF, LSVM, Linear Discriminant Analysis 

(LDA) [54] and k-Nearest Neighbor (kNN) [53]. In Table II, the percentage accuracy of each classifier is 

evaluated using (22), where TP, TN, FP and FN are the numbers of true positives, true negatives, false 

positives and false negatives respectively [37]. 

Fig.14. CLV variations in the prefrontal lobe with decreasing cognitive 

load  
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The experiment is accomplished with 11340 training instances for 37 healthy subjects and 3 brain-diseased 

subjects. Table II indicates that the proposed IT2FS and GT2FS classifiers outperform their nearest 

competitors by an average classification accuracy of ~ 1% and ~2% respectively.  

 

TABLE II 

 MEAN PERCENTAGE CLASSIFICATION ACCURACY (STANDARD DEVIATION) OF PROPOSED CLASSIFIERS 

AGAINST STANDARD CLASSIFIERS FOR COGNITIVE LOAD DETECTION OF DRIVING LEARNERS 

Classifier

s 

 

No. of 

free 

parame

ters 

Mean classifier 

accuracy in % 

(standard deviation) 

HIG

H 

MED

. 
LOW 

Proposed 

GT2FS  
7 

97.76 

(0.03

11) 

95.94 

(0.01

23) 

96.29 

(0.0113) 

Proposed 

IT2FS  
27 

96.29 

(0.01

04) 

94.93 

(0.00

12) 

95.23 

(0.0127) 

SA-

GT2FGG 

[37] 

17 

88.10 

(0.01

67) 

85.14 

(0.02

31) 

88.91 

(0.1239) 

GT2FS-

NN [1] 
1 

93.16 

(0.09

21) 

90.16 

(0.02

13) 

91.26 

(0.0134) 

eT2Class 

[29] 
33 

94.12 

(0.01

21) 

91.12 

(0.01

01) 

93.12 

(0.0211) 

IT2FS-NN 

[1] 
10 

96.12 

(0.01

01) 

94.16 

(0.02

16) 

93.13 

(0.0114) 

McIT2FIS 

[50] 
210 

93.42 

(0.01

46) 

90.89 

(0.02

15) 

91.34 

(0.0121) 

ST2FNN 

[51] 
172 

91.95 

(0.01

12) 

88.01 

(0.01

21) 

88.17 

(0.0129) 

McIT2NF

IS-RBE 

[52] 

16 

82.03 

(0.02

17) 

80.03 

(0.02

15) 

81.12 

(0.0192) 

Type 2 

Fuzzy Set 

induced 

Classifier 

[22] 

5 

92.34 

(0.01

21) 

91.56 

(0.01

09) 

93.32 

(0.0231) 

Type 1 

Fuzzy Set 

induced 

3 

90.17 

(0.01

12) 

89.23 

(0.01

18) 

90.71 

(0.0121) 
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Classifier 

SVM-

RBF 
4 

92.31 

(0.02

15) 

91.19 

(0.02

91) 

92.14 

(0.0216) 

LSVM 3 

89.25 

(0.02

19) 

86.93 

(0.02

14) 

87.19 

(0.0198) 

LDA 3 

89.72 

(0.02

11) 

87.00 

(0.02

11) 

80.11 

(0.0181) 

kNN 2 

91.12 

(0.02

17) 

90.11 

(0.02

01) 

92.13 

(0.0215) 

 

Table III contains the run-times of the proposed type-2 classifiers against the traditional ones. The run-

time complexity analysis of table III shows that our proposed IT2FS classifier algorithm requires the 

smallest run- time (~34 milliseconds) among all the classifiers and the proposed GT2FS classifier takes 

94.23 milliseconds, which is also comparable to the run-time of the existing IT2FS classifiers, proposed in 

[50], [52]. 

TABLE III 

 RUN-TIME OF THE PROPOSED CLASSIFIERS AND OTHER COMPETITIVE CLASSIFIERS  

Classifiers 

Run-time in HP 

Dual-core 

machine 

Proposed GT2FS 94.23 ms 

Proposed IT2FS  33.72 ms 

SA-GT2FGG [37] 98.18 ms 

GT2FS-NN [1] 96.12 ms 

eT2Class [29] 45.15  ms 

IT2FS-NN [1] 38.22 ms 

McIT2FIS [50] 95.18 ms 

ST2FNN [51] 92.00 ms 

McIT2NFIS-RBE [52] 100.4 ms 

Type 2 Fuzzy Set 

induced Classifier [22] 
48.94 ms 

Type 1 Fuzzy Set 

induced Classifier 
51.42 ms 

SVM-RBF 40.12 ms 

LSVM 35.98 ms 

LDA 48.25 ms 

kNN 35.11 ms 

 

Finally, the relative performance of all the type-2 fuzzy classifiers, listed in Table IV, is compared by 

considering the 2 distinct classifier performance metrics: True Positive rate (TPR), and True Negative Rate 

(TNR) [37], given by (23) and (24).  Here, GT2FS is found to outperform all existing and the proposed 

IT2FS classifier algorithm by around 1-3% of TPR value.  

%100



FNTP

TP
TPR                         (23) 
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%100



FNTP

TN
TNR                         (24) 

 

TABLE IV 

 COMPARATIVE STUDY OF PERCENTAGE TPR AND TNR OF THE PROPOSED CLASSIFIERS WITH EXISTING 

GT2FS AND IT2FS CLASSIFIERS 

Classifier 
Performance Metrics 

TPR% TNR% 

GT2FS 

(proposed) 
98 96 

IT2FS (proposed) 97 95 

SA-GT2FGG [37] 89 87 

GT2FS-NN [1] 91.13 87.24 

IT2FS-NN [1] 89.87 84.15 

McIT2FS [50] 92.82 1.88 

ST2FNN [51] 92.13 90.97 

McIT2NFIS-RBE 

[52] 
77.79 72.98 

B. Statistical Validation of the classifier using McNemar’s Test 

We select McNemar’s test [36] to compare the relative performance of the proposed DE-based feature 

selection induced GT2FS classifier with the other standard classifiers (Table VI). The statistical validation 

is performed with only one database prepared at Brain Imaging Laboratory of Jadavpur University. Most of 

the statistical tests [68] undertaken to compare classifier-performance require a large number of databases 

to determine the z-score metric used to accept/reject the null hypothesis (that all classifiers are equally 

good). Unfortunately, for the present experiment we prepared a single database, and so we use the 

McNemar’s test, which requires a single database for statistical validation of the classifiers [36]. 

In Table V, Z indicates the probability of accepting/rejecting the null hypothesis, which indicates that all 

the classifiers are equally good. Table V confirms that the proposed GT2FS classifier is comparable with 

the proposed IT2FS classifier only.  

 

TABLE V 

 STATISTICAL VALIDATION OF THE CLASSIFIERS USING MCNAMER'S TEST 

Reference Algorithm: Proposed GT2FS 

Induced Classifier 

Classifier 

algorithm 

used for 

comparison 

using the 20 

optimal 

features 

Parameter

s used for 

McNemar

’s Test Z 

Comments 

on 

acceptance

/ 

rejection 

of 

hypothesis 

m n 

Proposed 

IT2FS 
5 14 

3.68

4 
Accept 

SA-GT2FGG 

[37] 
20 49 

11.3

6 
Reject 

GT2FS-NN [1] 12 57 
28.0

6 
Reject 
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eT2Class [29] 13 36 
9.87

7 
Reject 

IT2FS-NN [1] 22 45 
7.22

3 
Reject 

McIT2FS [50] 7 18 
4.O

O 
Reject 

ST2FNN [51] 16 33 
5.22

4 
Reject 

McIT2NFIS-

RBE [52] 
18 35 4.83 Reject 

Type 2 Fuzzy 

Set induced 

Classifier 

20 65 
10.1

2 
Reject 

Type 1 Fuzzy 

Set induced 

Classifier 

29 73 
18.1

3 
Reject 

SVM-RBF 22 39 
4.19

7 
Reject 

LSVM 15 33 
6.02

1 
Reject 

LDA 17 67 
28.5

8 
Reject 

kNN 19 39 
6.22

4 
Reject 

VII. CONCLUSIONS 

The paper proposes a novel approach to cognitive load assessment and classification of driving learners 

using an fNIRs device. A GT2FS induced classifier has been developed and tested over 37 healthy subjects 

and 3 brain patients using a laboratory model of a driving set-up. Experiments undertaken reveal that the 

proposed classifier outperforms its competitors by a large margin.  A statistical test undertaken confirms 

the better classifying ability of the proposed GT2FS classifier over its competitors. The proposed system 

would have applications to identify people with high cognitive load for moderate/low traffic conditions, 

thereby saving people from having a psychological set-back/trauma due to tremendous mental pressure in 

high cognitive load. Biological implication of the research results is also narrated briefly here. It is apparent 

from the voxel plots that DLPFC and OFC are primarily engaged in HIGH cognitive load tasks. They are 

less influenced when the cognitive load is reduced. Determining the cognitive pathways in the brain during 

the learning phase of driving is another interesting and open problem. A detailed study of this using fNIRs 

alone is almost next to impossible. One approach to solve it perhaps is to compositely utilize both cortical 

signals by EEG or otherwise along with brain activation results obtained from fMRI and/or fNIRs devices.  
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