GEOMETRIC METHOD FOR GLOBAL STABILITY AND REPULSION IN KOLMOGOROV SYSTEMS

Zhanyuan Hou
School of Computing and Digital Media, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK

Abstract

A class of autonomous Kolmogorov systems that are dissipative and competitive with the origin as a repellor are considered when each nullcline surface is either concave or convex. Geometric method is developed by using the relative positions of the upper and lower planes of the nullcline surfaces for global asymptotic stability of an interior or a boundary equilibrium point. Criteria are also established for global repulsion of an interior or a boundary equilibrium point on the carrying simplex. This method and the theorems can be viewed as a natural extension of those results for Lotka-Volterra systems in the literature.

Note. This is the paper accepted by Dynamical System (an international journal) on 27th November 2018 and it will be available at the following permanent link: https://doi.org/10.1080/14689367.2018.1554030 in late 2018 or early 2018.

1. Introduction

In this paper, we consider differential systems of the form

$$
\begin{equation*}
\dot{x}_{i}=x_{i} F_{i}(x), \quad i \in I_{N}=\{1,2, \ldots, N\} \tag{1}
\end{equation*}
$$

known as Kolmogorov systems. Since such systems typically model populations of species, genes, molecules, and so on, where each x_{i} denotes the population size and F_{i} the intrinsic growth rate of the i th species, the phase space for the study of (1) is restricted to the first orthant \mathbb{R}_{+}^{N} or an invariant subset of \mathbb{R}_{+}^{N}. We assume that $F: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}^{N}$ is at least C^{1}. Some particular class of examples include Lotka-Volterra systems where each F_{i} is an affine function,

$$
\begin{equation*}
\dot{x}_{i}=r_{i} x_{i}\left(1-a_{i 1} x_{1}-\cdots-a_{i N} x_{N}\right), \quad i \in I_{N} \tag{2}
\end{equation*}
$$

Gompertz models where each F_{i} has the form $F_{i}(y)=r_{i} \ln \frac{1}{y}$,

$$
\begin{equation*}
\dot{x}_{i}=r_{i} x_{i} \ln \frac{1}{a_{i 1} x_{1}+\cdots+a_{i N} x_{N}}, \quad i \in I_{N}, \tag{3}
\end{equation*}
$$

[^0]Leslie/Gower (or Atkinson/Allen) models where each F_{i} has the form $F_{i}(y)=c_{i}\left(\frac{1+r_{i}}{r_{i}+y}-1\right)$,

$$
\begin{equation*}
\dot{x}_{i}=c_{i} x_{i}\left(\frac{1+r_{i}}{r_{i}+a_{i 1} x_{1}+\cdots+a_{i N} x_{N}}-1\right), \quad i \in I_{N} \tag{4}
\end{equation*}
$$

Ricker models where each F_{i} has the form $F_{i}(y)=c_{i}\left(e^{r_{i}(1-y)}-1\right)$,

$$
\begin{equation*}
\dot{x}_{i}=c_{i} x_{i}\left(\exp \left[r_{i}\left(1-a_{i 1} x_{1}-\cdots-a_{i N} x_{N}\right)\right]-1\right), \quad i \in I_{N} . \tag{5}
\end{equation*}
$$

There is an extensive literature in population ecology and dynamical systems on (1) and its various particular cases. To name a few, Hirsch [2, 3, 4] investigated the dynamics of competitive and cooperative systems and Zeeman [14] studied bifurcations in competitive Lotka-Volterra systems focusing on three-dimensional cases. Hirsch [4] showed that competitive dissipative systems with the origin as a repellor has a global attractor Σ on $\mathbb{R}_{+}^{N} \backslash\{0\}$, where Σ is homeomorphic to the standard ($N-1$)-simplex Δ^{N-1} by radial projection. Zeeman [14] called Σ carrying simplex and used geometric analysis of nullclines of LotkaVolterra systems to classify three-dimensional systems with stable nullclines into 33 classes, the dynamics of each class has a clear description on Σ. Similar to [14], Jiang, Niu and Zhu [11] did a complete classification of nullcline stable competitive three-dimensional Gompertz models. Jiang and Niu [10] further extended such classification to three-dimensional competitive systems with linearly determined nullclines including (2)-(5) and more. For a wider survey, see the above articles and the references cited therein.

Here we are concerned with the asymptotic behaviour of (1) when there is an equilibrium point $p \in \mathbb{R}_{+}^{N}$ that is globally attracting or repelling. For Lotka-Volterra systems, a criteron by Lyapunov function method is known for global asymptotic stability of a boundary or interior equilibrium point (see Theorem 3.2.1 in [12]). For competitive Lotka-Volterra systems, Zeeman and Zeeman [15] developed the split Lyapunov function method and provided sufficient conditions for an interior equilibrium point to be a global attractor or a global repellor. Hou and Baigent [5, 1] further developed the split Lyapunov function method and extended the above results for global attraction or repulsion to a boundary as well as interior equilibrium point of Lotka-Volterra systems that may not be competitive. In [6], the authors applied the Lyapunov function method and the split Lyapunov function method to dissipative systems (1) with both 0 and ∞ as repellors in \mathbb{R}_{+}^{N}, and obtained criteria for global asymptotic stability or global repulsion of an equilibrium point. These results can be viewed as further extension of $[15,5,1]$ from Lotka-Volterra systems to Kolmogorov systems (1). Yu, Wang and Lu [13] obtained sufficient conditions for global stability of three-dimensional competitive Gompertz models. For Lotka-Volterra systems, there are also results for global repulsion or attraction by methods that are not using Lyapunov functions. For example, Hou used geometric method for global attraction [7, 8] and global repulsion [9].

In this paper, we are going to deal with a class of competitive dissipative systems (1) that has a carrying simplex Σ and each nullcline is a concave or convex surface. By using geometric analysis of such nullclines, we provide sufficient conditions for an equilibrium point $p \in \mathbb{R}_{+}^{N} \backslash\{0\}$ to be globally asymptotically stable or for p to be globally repelling.
The rest of the paper is organised as follows: 2. System description and notation. 3. Geometric method for global stability. 4. Proof of Theorem 3.1. 5. Geometric method for global repulsion. 6. Proof of Theorem 5.1. 7. Conclusion.

2. System description and notation

For convenience, we rewrite system (1) as

$$
\begin{equation*}
\dot{x}=f(x) \equiv D[x] F(x), \quad x \in \mathbb{R}_{+}^{N} \tag{6}
\end{equation*}
$$

where $D[x]=\operatorname{diag}\left[x_{1}, \ldots, x_{N}\right]$ and $F \in C^{1}\left(\mathbb{R}_{+}^{N}, \mathbb{R}^{N}\right)$. Let int \mathbb{R}_{+}^{N} denote the interior of \mathbb{R}_{+}^{N}. For any $x, y \in \mathbb{R}^{N}$, we write $x \ll y$ or $y \gg x$ if $y-x \in \operatorname{int} \mathbb{R}_{+}^{N}, x \leq y$ or $y \geq x$ if $y-x \in \mathbb{R}_{+}^{N}$, and $x<y$ or $y>x$ if $x \leq y$ but $x \neq y$. We view each $x \in \mathbb{R}^{N}$ as a column vector and use x^{T} as the transpose of x. With a slight abuse of notation, we shall use 0 for scalar and vector zero as well as the origin in \mathbb{R}^{N}.

Throughout the paper we assume that (6) meets the following assumptions:
(A1) $F(0) \gg 0$ so that the origin 0 is a repellor.
(A2) The system is dissipative: there is a compact invariant set that attracts uniformly each compact set of initial points.
(A3) The system is competitive: $\frac{\partial F_{i}}{\partial x_{j}} \leq 0$ for all $i, j \in I_{N}$ with $i \neq j$.
(A4) $\frac{\partial F_{i}}{\partial x_{j}}(p)<0$ for every fixed point $p \in \mathbb{R}_{+}^{N} \backslash\{0\}$ and all $i, j \in I_{N}$.
Then the basin of repulsion of 0 in $\mathbb{R}_{+}^{N}, \operatorname{Br}(0)=\left\{x \in \mathbb{R}_{+}^{N}: \alpha(x)=\{0\}\right\}$, is a bounded open set of \mathbb{R}_{+}^{N} and $\Sigma=\partial \operatorname{Br}(0) \backslash \operatorname{Br}(0)$ is known as the carrying simplex. The theorem below (see Theorem 1.7 in [4] or Theorem 2.1 in [14]) describes the dynamics of (6) in terms of Σ.

Theorem 2.1. Under the assumptions (A1)-(A4), every trajectory in $\mathbb{R}_{+}^{N} \backslash\{0\}$ is asymptotic to one in Σ, and Σ is a Lipschitz submanifold homeomorphic to the unit simplex in \mathbb{R}_{+}^{N} by radial projection.

Now we explain some concepts that will be used later. Let $G \in C^{1}\left(\mathbb{R}_{+}^{N}, \mathbb{R}\right)$ such that, for some α in the range of G,

$$
\begin{equation*}
\Gamma=\left\{x \in \mathbb{R}_{+}^{N}: G(x)=\alpha\right\} \tag{7}
\end{equation*}
$$

is a connected $(N-1)$-dimensional surface restricted to \mathbb{R}_{+}^{N}. Suppose that \mathbb{R}_{+}^{N} is divided into three mutually exclusive connected subsets Γ^{-}, Γ and Γ^{+}with $0 \in \Gamma^{-}$. Then a point
$x \in \mathbb{R}_{+}^{N}$ is said to be below (on or above) Γ if $x \in \Gamma^{-}\left(x \in \Gamma\right.$ or $\left.x \in \Gamma^{+}\right)$; a nonempty set $S \subset \mathbb{R}_{+}^{N}$ is said to be below (on or above) Γ if $S \subset \Gamma^{-} \cup \Gamma\left(S \subset \Gamma\right.$ or $\left.S \subset \Gamma^{+} \cup \Gamma\right) ; S \subset \mathbb{R}_{+}^{N}$ is said to be strictly below (above) Γ if $S \subset \Gamma^{-}\left(S \subset \Gamma^{+}\right)$.

The function G is said to be convex if $G(s x+(1-s) y) \geq s G(x)+(1-s) G(y)$ holds for any two points x, y in its domain and all $s \in[0,1]$. For a surface Γ with the division of \mathbb{R}_{+}^{N} into Γ^{-}, Γ and Γ^{+}, Γ is said to be convex (concave) if for any distinct points $x, y \in \Gamma$, the line segment $\overline{x y}=\{t x+(1-t) y: 0 \leq t \leq 1\}$ is contained in $\Gamma^{-} \cup \Gamma\left(\Gamma^{+} \cup \Gamma\right)$. Recall that a nonempty set $S \subset \mathbb{R}_{+}^{N}$ is called convex if $\overline{x y} \subset S$ for all $x, y \in S$. From these concepts we obtain some observations summarised in the following proposition.
Proposition 2.2. Assume that Γ defined by (7) divides \mathbb{R}_{+}^{N} into Γ^{-}, Γ and Γ^{+}as described above. Then the following statements are true.
(i) If Γ is a plane in $\mathbb{R}_{+}^{N} \backslash\{0\}$ then it is both convex and concave.
(ii) The surface Γ is convex if and only if the set $\Gamma^{-} \cup \Gamma$ is convex; Γ if concave if and only if $\Gamma \cup \Gamma^{+}$is convex.
(iii) If the function G is convex with $G(0)=\max _{x \in \mathbb{R}_{+}^{N}} G(x)$, then Γ is also convex for any $\alpha<G(0)$ in the range of G.
(iv) If the function $-G$ is convex with $G(0)=\min _{x \in \mathbb{R}_{+}^{N}} G(x)$, then Γ is also convex for any $\alpha>G(0)$ in the range of G.
(v) If the function G is convex with $G(0)=\min _{x \in \mathbb{R}_{+}^{N}} G(x)$, then Γ is concave for any $\alpha>G(0)$ in the range of G.
(vi) If the function $-G$ is convex with $G(0)=\max _{x \in \mathbb{R}_{+}^{N}} G(x)$, then Γ is concave for any $\alpha<G(0)$ in the range of G.

The proof of Proposition 2.2 can be found in the Appendix at the end of this paper.
For any point $u \in \Gamma$, the tangent plane of Γ at u is

$$
\begin{equation*}
T_{u}(\Gamma)=\left\{x \in \mathbb{R}_{+}^{N}: \nabla G(u)(x-u)=0\right\} \tag{8}
\end{equation*}
$$

if $\nabla G(u) \neq 0$, where $\nabla G(u)=\left(\frac{\partial G}{\partial u_{1}}, \ldots, \frac{\partial G}{\partial u_{N}}\right)$ is viewed as a row vector. Denote the positive half x_{i}-axis by J_{i} for all $i \in I_{N}$. Next, we assume that Γ intersects at least one of the half axes J_{i}. If $\Gamma \cap J_{i} \neq \emptyset$, we assume that R_{i} is the unique intersection point, i.e. $\Gamma \cap J_{i}=\left\{R_{i}\right\}$. If $\Gamma \cap J_{i}=\emptyset$, we say that the point R_{i} does not exist. Now let $L(\Gamma)$ be the ($N-1$)-dimensional plane in \mathbb{R}_{+}^{N} determined by these intersection points: If R_{i} exists then $R_{i} \in L(\Gamma)$, if R_{i} does not exist then $L(\Gamma)$ is parallel to the half axis J_{i}. Then the relative positions of $T_{u}(\Gamma), \Gamma$ and $L(\Gamma)$ are clear from the proposition below when Γ is convex or concave.

Proposition 2.3. (a) Suppose Γ given by (7) is convex. Then Γ is above $L(\Gamma)$ but below $T_{u}(\Gamma)$ for any $u \in \Gamma$. (b) Suppose Γ is concave and, if $\Gamma \cap J_{j}=\emptyset$ for some $j \in I_{N}$, for
any point $w \in \Gamma$, the half line $L_{(w) j}$ passing through w and parallel to J_{j} is contained in $\Gamma \cup \Gamma^{+}$. Then Γ is below $L(\Gamma)$ and, for any $u \in \Gamma$ with $\nabla G(u) u \neq 0, \Gamma$ is above $T_{u}(\Gamma)$.

The proof of Proposition 2.3 is also left to the Appendix.
For each $i \in I_{N}$, the i th nullcline surface of (6) is defined by

$$
\begin{equation*}
\Gamma_{i}=\left\{x \in \mathbb{R}_{+}^{N}: F_{i}(x)=0\right\} \tag{9}
\end{equation*}
$$

If \mathbb{R}_{+}^{N} is divided into three mutually exclusive connected subsets $\Gamma_{i}^{-}, \Gamma_{i}, \Gamma_{i}^{+}$then the assumptions (A1)-(A3) imply that $\dot{x}_{i}>0$ for $x \in \Gamma_{i}^{-}$and $\dot{x}_{i}<0$ for $x \in \Gamma_{i}^{+}$. The i th coordinate plane is denoted by

$$
\begin{equation*}
\pi_{i}=\left\{x \in \mathbb{R}_{+}^{N}: x_{i}=0\right\} . \tag{10}
\end{equation*}
$$

For any $u, v \in \mathbb{R}_{+}^{N}$ with $u \leq v, i \in I_{N}$, and $I \subset I_{N}$, define

$$
\begin{align*}
{[u, v] } & =\left\{x \in \mathbb{R}_{+}^{N}: u \leq x \leq v\right\}, \tag{11}\\
\mathbb{R}_{+}^{N}(u) & =\left\{x \in \mathbb{R}_{+}^{N}: x \geq u\right\}, \tag{12}\\
\pi_{i}(u) & =\left\{x \in \mathbb{R}_{+}^{N}(u): x_{i}=u_{i}\right\}, \tag{13}\\
S\left(u, v_{i}\right) & =\left\{x \in \mathbb{R}_{+}^{N}(u): x_{i} \geq v_{i}\right\}, \tag{14}\\
S^{0}\left(u, v_{i}\right) & =\left\{x \in \mathbb{R}_{+}^{N}(u): x_{i}>v_{i}\right\}, \tag{15}\\
C_{I}^{0} & =\left\{x \in \mathbb{R}_{+}^{N}: \forall i \in I, x_{i}=0 ; \forall j \in I_{N} \backslash I, x_{j}>0\right\}, \tag{16}\\
\mathbb{R}_{I} & =\left\{x \in \mathbb{R}_{+}^{N}: \forall j \in I_{N} \backslash I, x_{j}>0\right\} . \tag{17}
\end{align*}
$$

Then $\mathbb{R}_{+}^{N}(0)=\mathbb{R}_{+}^{N}, \pi_{i}(0)=\pi_{i}, C_{I_{N}}^{0}=\{0\}, C_{\emptyset}^{0}=\operatorname{int} \mathbb{R}_{+}^{N}=\mathbb{R}_{\emptyset}$ and $\mathbb{R}_{I_{N}}=\mathbb{R}_{+}^{N}$. For any nonempty set $A \subset \mathbb{R}^{N}$ and $\varepsilon>0$, the ε-neighbourhood of A is denoted by

$$
\begin{equation*}
\mathcal{B}(A, \varepsilon)=\left\{x \in \mathbb{R}^{N}:\|x-a\|<\varepsilon \text { for some } a \in A\right\} . \tag{18}
\end{equation*}
$$

Suppose $p \in C_{I}^{0}$ with $I \neq I_{N}$ is an equilibrium point. Then $p \in \Sigma$. We say that p is globally attracting if $\lim _{t \rightarrow+\infty} x\left(x_{0}, t\right)=p$ for all $x_{0} \in \mathbb{R}_{I} ; p$ is globally repelling if for all $x_{0} \in(\Sigma \backslash\{p\}) \cap \mathbb{R}_{I}$, we have $\omega\left(x_{0}\right) \subset\left(\cup_{j \in I_{N} \backslash I} \pi_{j}\right) \cap \Sigma$ and $\alpha\left(x_{0}\right)=\{p\} ; p$ is called globally asymptotically stable if p is globally attracting and p is locally asymptotically stable in \mathbb{R}_{+}^{N}. Note that since Σ is a global attractor of (6) in $\mathbb{R}_{+}^{N} \backslash\{0\}$, if p is globally repelling, p is essentially repelling on $\Sigma \cap \mathbb{R}_{I}$. So we also say that p is globally repelling on Σ.

3. Geometric method for global stability

In this section, we assume that $p \in \mathbb{R}_{+}^{N} \backslash\{0\}$ is a nontrivial equilibrium point of (6) with support $J=\left\{j \in I_{N}: p_{j}>0\right\}$, i.e. $p \in C_{I}^{0}$ for $I=I_{N} \backslash J \neq I_{N}$. Then p is an interior equilibrium if $J=I_{N}$ or on the boundary $\partial \mathbb{R}_{+}^{N}$ if J is a proper subset of I_{N}. We call p saturated if $F_{i}(p) \leq 0$ for all $i \in I_{N}$. Then, from the fact that $F_{i}(p)$ is an eigenvalue of the

Jacobian matrix $D f(p)$ if $i \in I_{N} \backslash J$, it follows that a necessary condition for p to be stable is that p must be saturated.

Now assume that p is a saturated equilibrium point. For each $i \in I_{N}$, if $F_{i}(p)=0$ then p is on the i th nullcline surface

$$
\begin{equation*}
\Gamma_{i}=\left\{x \in \mathbb{R}_{+}^{N}: F_{i}(x)=0\right\} \tag{19}
\end{equation*}
$$

and Γ_{i} at p has a tangent plane

$$
\begin{equation*}
L_{i}(p)=\left\{x \in \mathbb{R}_{+}^{N}: \nabla F_{i}(p)(x-p)=0\right\} \tag{20}
\end{equation*}
$$

as $\nabla F_{i}(p) \neq 0$ by (A4). We assume that on each positive half x_{i}-axis, J_{i}, (6) has a unique equilibrium point R_{i}, i.e. $\Gamma_{i} \cap J_{i}=\left\{R_{i}\right\}$. Assume also that each Γ_{i} has at most one intersection point $R_{i j}$ with J_{j} for each $j \in I_{N}\left(R_{i i}=R_{i}\right)$. Let \tilde{L}_{i} be the plane in \mathbb{R}_{+}^{N} determined by the intersection points $R_{i j}$ of Γ_{i} with the coordinate axes: If Γ_{i} intersects J_{j} at a point $R_{i j}$ then $R_{i j} \in \tilde{L}_{i}$; if $R_{i j}$ does not exist then \tilde{L}_{i} is parallel to J_{j}. Note that (A4) implies that $\nabla F_{i}(p) \ll 0$ and $p>0$ so $\nabla F_{i}(p) p<0$. If $\Gamma_{i} \cap J_{j}=\emptyset$, then, for any point $w \in \Gamma_{i}$, since $F_{i}(w)=0$ and $\frac{\partial F_{i}}{\partial x_{j}} \leq 0$ by (A3), $F_{i}(x)$ is nonincreasing on $L_{(w) j}$ so $F_{i}(x) \leq F_{i}(w)=0$ for all $x \in L_{(w) j}$. Thus, $L_{(w) j} \subset \Gamma_{i} \cup \Gamma_{i}^{+}$. Then, if Γ_{i} is convex or concave, from Proposition 2.3 we see that Γ_{i} is between $L_{i}(p)$ and \tilde{L}_{i} : if Γ_{i} is convex then it is below $L_{i}(p)$ but above \tilde{L}_{i}; if Γ_{i} is concave then it is above $L_{i}(p)$ but below \tilde{L}_{i}.

Suppose $F_{i}(p)<0$ for some $i \in I_{N} \backslash J$. Then p is above Γ_{i} so the plane $L_{i}(p)$ is not tangent to Γ_{i}. If Γ_{i} is concave then it is below \tilde{L}_{i}. However, if Γ_{i} is convex, we may further assume that F_{i} is a convex function with $F_{i}(0)=\max _{x \in \mathbb{R}_{+}^{N}} F_{i}(x)$ so that, by Proposition 2.2 (iii), both Γ_{i} and the surface $\left\{x \in \mathbb{R}_{+}^{N}: F_{i}(x)=F_{i}(p)\right\}$ are convex surfaces and the former is below the latter. Note that $L_{i}(p)$ is tangent to $\left\{x \in \mathbb{R}_{+}^{N}: F_{i}(x)=F_{i}(p)\right\}$ at p so $\left\{x \in \mathbb{R}_{+}^{N}: F_{i}(x)=F_{i}(p)\right\}$ is below $L_{i}(p)$. Then Γ_{i} is also below $L_{i}(p)$. Hence, we can always find a plane above Γ_{i} if p is above Γ_{i}.

Now for each $k \in I_{N}$, define an upper plane L_{k}^{u} by $L_{k}^{u}=\tilde{L}_{k}$ if Γ_{k} is concave or $L_{k}^{u}=L_{k}(p)$ if Γ_{k} is convex and, for each $j \in J$, define a lower plane L_{j}^{l} by $L_{j}^{l}=L_{j}(p)$ if Γ_{j} is concave or $L_{j}^{l}=\tilde{L}_{j}$ if Γ_{j} if convex. Then each convex or concave Γ_{i} is below L_{i}^{u} for all $i \in I_{N}$ but is above L_{i}^{l} for all $i \in J$.

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $N \times N$ matrices with real entries such that

$$
\begin{align*}
L_{i}^{u} & =\left\{x \in \mathbb{R}_{+}^{N}:(A x)_{i}=1\right\}, & i \in I_{N}, \tag{21}\\
L_{i}^{l} & =\left\{x \in \mathbb{R}_{+}^{N}:(B x)_{i}=1\right\}, & i \in J . \tag{22}
\end{align*}
$$

Then the entries of A and B can be determined as follows. First, suppose Γ_{i} is concave, so we have $L_{i}^{u}=\tilde{L}_{i}$ and $L_{i}^{l}=L_{i}(p)$. If Γ_{i} intersects the half axis J_{j} at the point $R_{i j}$ with $r_{i j}>0$ as its j th component, then $a_{i j} r_{i j}=1$ so $a_{i j}=\frac{1}{r_{i j}}$; if Γ_{i} does not intersect J_{j} then
$a_{i j}=0$. So $a_{i j}$ is defined by

$$
a_{i j}= \begin{cases}0 & \text { if } \Gamma_{i} \text { does not intersect } J_{j}, \tag{23}\\ \frac{1}{r_{i j}} & \text { if the } j \text { th component of } R_{i j} \text { is } r_{i j} .\end{cases}
$$

Since $L_{i}(p)$ has the equation $\nabla F_{i}(p)(x-p)=0$, we have $\nabla F_{i}(p) x=\nabla F_{i}(p) p$ so $(B x)_{i}=1$ with

$$
\begin{equation*}
(B x)_{i}=\left(\nabla F_{i}(p) p\right)^{-1} \nabla F_{i}(p) x \tag{24}
\end{equation*}
$$

i.e. $\left(\nabla F_{i}(p) p\right)^{-1} \nabla F_{i}(p)$ is taken to be the i th row of B. If Γ_{i} is convex then $L_{i}^{u}=L_{i}(p)$ and $L_{i}^{l}=\tilde{L}_{i}$. In this case, we have

$$
\begin{equation*}
(A x)_{i}=\left(\nabla F_{i}(p) p\right)^{-1} \nabla F_{i}(p) x \tag{25}
\end{equation*}
$$

i.e. $\left(\nabla F_{i}(p) p\right)^{-1} \nabla F_{i}(p)$ is taken to be the i th row of A, and $b_{i j}$ is given by

$$
b_{i j}= \begin{cases}0 & \text { if } \Gamma_{i} \text { does not intersect } J_{j}, \tag{26}\\ \frac{1}{r_{i j}} & \text { if the } j \text { th component of } R_{i j} \text { is } r_{i j} .\end{cases}
$$

Note from (A4) that $\frac{\partial F_{i}}{\partial x_{j}}(p)<0$ for all $i, j \in I_{N}$ so that $\nabla F_{i}(p) p=\sum_{j=1}^{N} \frac{\partial F_{i}}{\partial x_{j}}(p) p_{j}<0$. Thus, $\left(\nabla F_{i}(p) p\right)^{-1} \nabla F_{i}(p) \gg 0$. Then, from (A1)-(A4), (23)-(26) and the assumptions we see that

$$
\begin{equation*}
\forall i, j \in I_{N}, a_{i i}>0 \text { and } a_{i j} \geq 0 \tag{27}
\end{equation*}
$$

Let

$$
\begin{equation*}
Y=\left(\frac{1}{a_{11}}, \ldots, \frac{1}{a_{N N}}\right)^{T} \tag{28}
\end{equation*}
$$

For any subset $K \subset I_{N}$ and $u \in \mathbb{R}^{N}$, the point $u^{K} \in \mathbb{R}^{N}$ is defined by

$$
u_{i}^{K}= \begin{cases}u_{i} & \text { if } i \in K, \tag{29}\\ 0 & \text { if } i \in I_{N} \backslash K\end{cases}
$$

We are now in a position to state the main result of this section in geometric terms.
Theorem 3.1. Assume that the following conditions hold.
(a) System (6) has a saturated equilibrium point $p \in \mathbb{R}_{+}^{N} \backslash\{0\}$ with support $J \subset I_{N}$.
(b) For each $i \in I_{N}$, the nullcline surface Γ_{i} is either concave or convex, and if $F_{i}(p)<$ 0 with Γ_{i} convex, the function F_{i} is also convex with $F_{i}(0)=\max _{x \in \mathbb{R}_{+}^{N}} F_{i}(x)$.
(c) For each $i \in J$, either the point $Y^{I_{N} \backslash\{i\}}$ is below L_{i}^{l} or the set $L_{i}^{l} \cap\left[0, Y^{I_{N} \backslash\{i\}}\right]$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$.
Then p is globally attracting. If, in addition, all eigenvalues of the Jacobian matrix $D f(p)$ have negative real parts, then p is globally asymptotically stable.

Remark 1. If p is a boundary equilibrium point with $F_{i}(p)<0$ for some $i \in I_{N} \backslash J$ and Γ_{i} is convex, p is above Γ_{i}. As $F_{i}(0)>0$ and F_{i} is continuous, there is a number $s_{i} \in(0,1)$ such that $F_{i}\left(s_{i} p\right)=0$. Since $s_{i} p \in \Gamma_{i}, L_{i}\left(s_{i} p\right)$ is a tangent plane of Γ_{i} at $s_{i} p$. By the convexity of Γ_{i}, Γ_{i} is below $L_{i}\left(s_{i} p\right)$. Thus, as an alternative to the part of the condition (b) in Theorem 3.1, instead of requiring F_{i} to be a convex function, we may define $L_{i}^{u}=L_{i}\left(s_{i} p\right)$ with

$$
(A x)_{i}=\left(\nabla F_{i}\left(s_{i} p\right) s_{i} p\right)^{-1} \nabla F_{i}\left(s_{i} p\right) x
$$

and require the inequalities in (27) hold.
Remark 2. Since L_{i}^{l} is described by the equation $(B x)_{i}=1$ and L_{j}^{u} by the equation $(A x)_{j}=1$, condition (c) in Theorem 3.1 is ensured by the following inequalities: For each $i \in J$, either

$$
\begin{equation*}
\left(B Y^{I_{N} \backslash\{i\}}\right)_{i}<1 \tag{30}
\end{equation*}
$$

or

$$
\begin{equation*}
\forall j \in I_{N} \backslash\{i\}, \max \left\{0, \frac{b_{i j}}{a_{j j}}\left(1-\left(A Y^{I_{N} \backslash\{i, j\}}\right)_{j}\right)\right\}<1-\left(B Y^{I_{N} \backslash\{i, j\}}\right)_{i} \tag{31}
\end{equation*}
$$

Indeed, it is obvious that (30) holds if and only if $Y^{I_{N} \backslash\{i\}}$ is below L_{i}^{l}. Since L_{i}^{u} and L_{i}^{l} have equations

$$
\begin{aligned}
(A x)_{i} \equiv a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i N} x_{N} & =1 \\
(B x)_{i} \equiv b_{i 1} x_{1}+b_{i 2} x_{2}+\cdots+b_{i N} x_{N} & =1
\end{aligned}
$$

respectively and L_{i}^{l} is below L_{i}^{u}, we must have

$$
\forall i, j \in I_{N}, a_{i j} \leq b_{i j}
$$

If $Y^{I_{N} \backslash\{i\}}$ is not below L_{i}^{l}, then $Y^{I_{N} \backslash\{i\}}$ is on or above L_{i}^{l} so $\left(B Y^{I_{N} \backslash\{i\}}\right)_{i} \geq 1$. If (31) holds, then

$$
\left(A Y^{I_{N} \backslash\{i, j\}}\right)_{i} \leq\left(B Y^{I_{N} \backslash\{i, j\}}\right)_{i}<1
$$

so $Y^{I_{N} \backslash\{i, j\}}$ is below L_{i}^{l} for all $j \in I_{N} \backslash\{i\}$. Thus, the line segment $\left[Y^{I_{N} \backslash\{i, j\}}, Y^{I_{N} \backslash\{i\}}\right]$ and the plane L_{i}^{l} have a unique intersection point Q_{j} with $\frac{1}{b_{i j}}\left(1-\left(B Y^{I_{N} \backslash\{i, j\}}\right)_{i}\right)$ as its j th component. From (31) we obtain

$$
\frac{1}{a_{j j}}\left(1-\left(A Y^{I_{N} \backslash\{i, j\}}\right)_{j}\right)<\frac{1}{b_{i j}}\left(1-\left(B Y^{I_{N} \backslash\{i, j\}}\right)_{i}\right)
$$

If the expression on the left-hand side of the above inequality is negative, then $\left[Y^{I_{N} \backslash\{i, j\}}, Y^{I_{N} \backslash\{i\}}\right]$ is strictly above L_{j}^{u} so Q_{j} is above L_{j}^{u}. Otherwise, since the expression on the left-hand side of the above inequality is the j th component of the intersection point of the plane L_{j}^{u} with the line segment $\left[Y^{I_{N} \backslash\{i, j\}}, Y^{I_{N} \backslash\{i\}}\right]$, the above inequality shows that Q_{j} is above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$. In particular, $Y^{I_{N} \backslash\{i\}}$ is above L_{j}^{u} for every $j \in I_{N} \backslash\{i\}$. For each $k \in I_{N} \backslash\{i, j\}$,

$$
\left(A Y^{I_{N} \backslash\{i, j\}}\right)_{k} \geq a_{k k} Y_{k}=1
$$

so $Y^{I_{N} \backslash\{i, j\}}$ is on or above L_{k}^{u}. Thus, $t Y^{I_{N} \backslash\{i, j\}}+(1-t) Y^{I_{N} \backslash\{i\}}$ is above L_{k}^{u} for all $t \in[0,1)$ and $k \in I_{N} \backslash\{i, j\}$. Therefore, for all $j, k \in I_{N} \backslash\{i\}, Q_{j}$ is above L_{k}^{u}. Since $\left[0, Y^{I_{N} \backslash\{i\}}\right] \cap L_{i}^{l}$ is the convex hull determined by Q_{j} for all $j \in I_{N} \backslash\{i\},\left[0, Y^{I_{N} \backslash\{i\}}\right] \cap L_{i}^{l}$ is strictly above L_{k}^{u} for all $k \in I_{N} \backslash\{i\}$.

For a particular class of systems (6) when each Γ_{i} is a plane, condition (b) in Theorem 3.1 is met as Γ_{i} is both concave and convex. Since $\Gamma_{i}, \tilde{L}_{i}$ (and $L_{i}(p)$ if $p \in \Gamma_{i}$) will coincide, in condition (c) we shall use Γ_{i} instead of L_{i}^{u} and L_{i}^{l}.
Corollary 3.2. Assume that the following conditions hold.
(a) System (6) has a saturated equilibrium point $p \in \mathbb{R}_{+}^{N} \backslash\{0\}$ with support $J \subset I_{N}$.
(b) For each $i \in I_{N}$, the nullcline surface Γ_{i} is a plane.
(c) For each $i \in J$, either the point $Y^{I_{N} \backslash\{i\}}$ is below Γ_{i} or the set $\Gamma_{i} \cap\left[0, Y^{I_{N} \backslash\{i\}}\right]$ is strictly above Γ_{j} for all $j \in I_{N} \backslash\{i\}$.
Then p is globally attracting. If, in addition, all eigenvalues of the Jacobian matrix $D f(p)$ have negative real parts, then p is globally asymptotically stable.
Remark 3. When each Γ_{i} is a plane in \mathbb{R}_{+}^{N} with equation $(A x)_{i}=1$, from Remark 2 we see that condition (c) in Corollary 3.2 is guaranteed by the following inequalities: For each $i \in J$, either

$$
\begin{equation*}
\left(A Y^{I_{N} \backslash\{i\}}\right)_{i}<1 \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
\forall j \in I_{N} \backslash\{i\}, \max \left\{0, \frac{a_{i j}}{a_{j j}}\left(1-\left(A Y^{I_{N} \backslash\{i, j\}}\right)_{j}\right)\right\}<1-\left(A Y^{I_{N} \backslash\{i, j\}}\right)_{i} . \tag{33}
\end{equation*}
$$

Example 3.3. Consider the Ricker model (5) with $N=3, r_{i}>0, c_{i}>0$ and

$$
A=\left(\begin{array}{ccc}
1 & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right) .
$$

It has an interior equilibrium $p=\left(\frac{4}{7}, \frac{4}{7}, \frac{4}{7}\right)^{T}$ and $Y=(1,1,1)^{T}$. Since $\left(A Y^{\{2,3\}}\right)_{1}=\frac{1}{4}+\frac{1}{2}=$ $\frac{3}{4}<1,\left(A Y^{\{1,3\}}\right)_{2}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}<1$ and $\left(A Y^{\{1,2\}}\right)_{3}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}<1$, (32) holds. Then, from Corollary 3.2 and Remark 3, p is globally attracting. In addition, if each eigenvalue of $D f(p)$ has a negative real part, then p is globally asymptotically stable.

Note that the conditions (32) and (33) can be applied to any one of the systems (2)-(5). In particular, for Lotka-Volterra system (2), these are consistent with the conditions given in [7].
Example 3.4. Consider the system

$$
\dot{x}_{i}=x_{i}\left[1-a_{1} \ln \left(1+x_{i}\right)-a_{2} \ln \left(1+x_{i+1}\right)-\cdots-a_{N} \ln \left(1+x_{i+N-1}\right)\right]=x_{i} F_{i}(x),
$$

for $i \in I_{N}$ and $x \in \mathbb{R}_{+}^{N}$, where the a_{j} are positive constants and $x_{j+N}=x_{j}$. The system has an interior equilibrium point $p=p_{0}(1, \ldots, 1)^{T}$ with

$$
p_{0}=e^{1 /\left(a_{1}+\cdots+a_{N}\right)}-1 .
$$

Since $\ln (1+s u+(1-s) v) \geq s \ln (1+u)+(1-s) \ln (1+v)$ for $u \geq 0, v \geq 0$ and $0 \leq s \leq 1$, each F_{i} satisfies

$$
\forall x, y \in \mathbb{R}_{+}^{N}, \quad F_{i}(s x+(1-s) y) \leq s F_{i}(x)+(1-s) F_{i}(y) .
$$

This shows that $\Gamma_{i}=\left\{x \in \mathbb{R}_{+}^{N}: F_{i}(x)=0\right\}$ is concave. Then

$$
\frac{\partial F}{\partial x}(p)=-\frac{1}{1+p_{0}}\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{N} \\
a_{N} & a_{1} & \cdots & a_{N-1} \\
\cdots & \cdots & \cdots & \cdots \\
a_{2} & a_{3} & \cdots & a_{1}
\end{array}\right)
$$

By (24),

$$
B=\left(D\left[\frac{\partial F}{\partial x}(p) p\right]\right)^{-1} \frac{\partial F}{\partial x}(p)=p_{0}^{-1}\left(\sum_{i=1}^{N} a_{i}\right)^{-1}\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{N} \\
a_{N} & a_{1} & \cdots & a_{N-1} \\
\cdots & \cdots & \cdots & \cdots \\
a_{2} & a_{3} & \cdots & a_{1}
\end{array}\right) .
$$

The intersection points of Γ_{1} with the coordinate axes are

$$
\left(e^{1 / a_{1}}-1,0, \ldots, 0\right)^{T},\left(0, e^{1 / a_{2}}-1, \ldots, 0\right)^{T}, \ldots,\left(0, \ldots, 0, e^{1 / a_{N}}-1\right)^{T}
$$

Thus, from (23),

$$
A=\left(\begin{array}{llll}
a_{1}^{\prime} & a_{2}^{\prime} & \cdots & a_{N}^{\prime} \\
a_{N}^{\prime} & a_{1}^{\prime} & \cdots & a_{N-1}^{\prime} \\
\cdots & \cdots & \cdots & \cdots \\
a_{2}^{\prime} & a_{3}^{\prime} & \cdots & a_{1}^{\prime}
\end{array}\right), \quad a_{i}^{\prime}=\frac{1}{e^{1 / a_{i}}-1}>0
$$

Clearly, $a_{i j}>0$ for all $i, j \in I_{N}$ so (27) holds. By (28), $Y=\left(e^{1 / a_{1}}-1\right)(1, \ldots, 1)^{T}$. Note that A and B are both circulant matrices. Then (30) becomes

$$
\begin{equation*}
\left(\sum_{i=2}^{N} a_{i}\right)\left(e^{1 / a_{1}}-1\right)<\left(\sum_{i=1}^{N} a_{i}\right)\left(e^{1 /\left(a_{1}+\cdots+a_{N}\right)}-1\right) \tag{34}
\end{equation*}
$$

and (31) becomes

$$
\begin{align*}
& \max \left\{0, p_{0}^{-1}\left(\sum_{i=1}^{N} a_{i}\right)^{-1} a_{j}\left(e^{1 / a_{1}}-1\right)\left[1-\left(e^{1 / a_{1}}-1\right) \sum_{k \in I_{N} \backslash\{1, j\}} a_{k}^{\prime}\right]\right\} \\
< & 1-\left(e^{1 / a_{1}}-1\right) p_{0}^{-1}\left(\sum_{i=1}^{N} a_{i}\right)^{-1} \sum_{k \in I_{N} \backslash\{1, j\}} a_{k}, \quad \forall j \in I_{N} \backslash\{1\} . \tag{35}
\end{align*}
$$

By Remark 2 and Theorem 3.1, if either (34) or (35) holds, then p is globally attracting. We observe that for fixed $a_{1}>0,(34)$ holds when a_{2}, \ldots, a_{N} are small enough.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into three steps.

Proof of Theorem 3.1. Step 1. We first show that $\omega\left(x_{0}\right) \subset[0, Y]$ for all $x_{0} \in \mathbb{R}_{+}^{N}$. For each $i \in I_{N}$ and every $x \in \mathbb{R}_{+}^{N}$ with $x_{i}>Y_{i}, x$ is above L_{i}^{u}. Since L_{i}^{u} is above Γ_{i}, we have $x \in \Gamma_{i}^{+}$so $\dot{x}_{i}=x_{i} F_{i}(x)<0$ due to $F_{i}(0)>0$ by (A1). Thus, for any $\delta>0$, the flow of the system will be transversal to the plane $x_{i}=Y_{i}+\delta$ downwardly, so $\omega\left(x_{0}\right)$ is strictly below the plane $x_{i}=Y_{i}+\delta$ for all $x_{0} \in \mathbb{R}_{+}^{N}$. Therefore, $\omega\left(x_{0}\right) \subset[0, Y]$ for all $x_{0} \in \mathbb{R}_{+}^{N}$.

Step 2. Assume that $\omega\left(x_{0}\right) \subset[u, v] \subset[0, Y]$ for all $x_{0} \in \mathbb{R}_{I}$. If for v^{\prime} with $v_{i}^{\prime}=u_{i}$ for some $i \in J$ and $v_{j}^{\prime}=v_{j}$ for all $j \in I_{N} \backslash\{i\}$, either v^{\prime} is below L_{i}^{l} or $\left[u, v^{\prime}\right] \cap L_{i}^{l}$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$, we show the existence of $\delta>0$ such that $\omega\left(x_{0}\right) \subset[\tilde{u}, v]$ for all $x_{0} \in \mathbb{R}_{I}$, where $\tilde{u}_{i}=u_{i}+\delta \leq v_{i}$ and $\tilde{u}_{j}=u_{j}$ for all $j \in I_{N} \backslash\{i\}$.

If v^{\prime} is below L_{i}^{l}, then $\left[u, v^{\prime}\right]$ is strictly below L_{i}^{l}. By the compactness of $\left[u, v^{\prime}\right]$, there is a $\delta>0$ such that the set $\mathcal{B}\left(\left[u, v^{\prime}\right], 2 \delta\right) \cap \mathbb{R}_{+}^{N}$ is strictly below L_{i}^{l}. As L_{i}^{l} is below Γ_{i}, $\mathcal{B}\left(\left[u, v^{\prime}\right], 2 \delta\right) \cap \mathbb{R}_{+}^{N}$ is strictly below Γ_{i} so any solution in $\mathcal{B}\left(\left[u, v^{\prime}\right], 2 \delta\right) \cap \mathbb{R}_{+}^{N} \backslash \pi_{i}$ satisfies $x_{i}^{\prime}(t)=x_{i}(t) F_{i}(x(t))>0$, i.e. $x_{i}(t) \uparrow$. We show that, for \tilde{u} with $\tilde{u}_{i}=u_{i}+\delta$ and $\tilde{u}_{j}=u_{j}$ for all $j \in I_{N} \backslash\{i\}$,

$$
\begin{equation*}
\omega\left(x_{0}\right) \subset[\tilde{u}, v], \quad \forall x_{0} \in \mathbb{R}_{I} . \tag{36}
\end{equation*}
$$

Suppose (36) is not true so $\omega\left(x_{0}\right) \cap\left[u, v^{\prime \prime}\right] \neq \emptyset$ for some $x_{0} \in \mathbb{R}_{I}$, where $v_{i}^{\prime \prime}=v_{i}^{\prime}+\delta=u_{i}+\delta$ and $v_{j}^{\prime \prime}=v_{j}$ for all $j \in I_{N} \backslash\{i\}$. As $\omega\left(x_{0}\right) \subset[u, v]$ and $\omega\left(x_{0}\right)$ is compact, there is a $y^{0} \in \omega\left(x_{0}\right)$ such that $y_{i} \geq y_{i}^{0}$ for all $y \in \omega\left(x_{0}\right)$. If $y_{i}^{0}>0$ then $y^{0} \in \mathcal{B}\left(\left[u, v^{\prime}\right], 2 \delta\right) \cap \mathbb{R}_{+}^{N} \backslash \pi_{i}$ so $x_{i}\left(y^{0}, t\right)$ is increasing for $|t|$ small enough. Thus, $x_{i}\left(y^{0}, t\right)<y_{i}^{0}$ for t close to 0 from left. As the whole orbit $\gamma\left(y^{0}\right)$ is contained in $\omega\left(x_{0}\right)$, this contradicts $y_{i} \geq y_{i}^{0}$ for all $y \in \omega\left(x_{0}\right)$. Hence, we must have $y_{i}^{0}=0$, so $u_{i}=0$ and $y^{0} \in \omega\left(x_{0}\right) \cap\left[u, v^{\prime}\right] \subset \pi_{i}$. But $x_{i}(t) \uparrow$ in $\mathcal{B}\left(\left[u, v^{\prime}\right], 2 \delta\right) \cap \mathbb{R}_{+}^{N} \backslash \pi_{i}$ means that $\left[u, v^{\prime}\right]$ repels the solutions away so $\left[u, v^{\prime}\right] \cap \omega\left(x_{0}\right)=\emptyset$, a contradiction to $y^{0} \in \omega\left(x_{0}\right) \cap\left[u, v^{\prime}\right]$. Therefore, we must have (36).

Now suppose $\left[u, v^{\prime}\right] \cap L_{i}^{l}$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$ (see Figure 1 (a) for illustration). Consider the plane

$$
L_{i}^{\prime}=\left\{x \in \mathbb{R}_{+}^{N}: \sum_{j \in I_{N} \backslash\{i\}} b_{i j} x_{j}+b_{i i}\left(u_{i}+\delta\right)=1\right\} .
$$

Then L_{i}^{\prime} is parallel to the x_{i}-axis and passes through $L_{i}^{l} \cap\left\{x \in \mathbb{R}_{+}^{N}: x_{i}=u_{i}+\delta\right\}$. Note that for each $x \in L_{i}^{l} \cap\left[u, v^{\prime \prime}\right]$,

$$
\sum_{j \in I_{N} \backslash\{i\}} b_{i j} x_{j}+b_{i i}\left(u_{i}+\delta\right) \geq(B x)_{i}=1,
$$

Figure 1. (a) Illustration of condition (c) in theorem 3.1 for $N=3$ and distinct i, j, k in $\{1,2,3\}$. (b) Illustration of L_{i}^{l} and L_{i}^{\prime} for $N=3$.
so x is on or above L_{i}^{\prime}. Thus, $L_{i}^{l} \cap\left[u, v^{\prime \prime}\right]$ is above L_{i}^{\prime} (see Figure 1 (b) for illustration). Also, we have

$$
\lim _{\delta \rightarrow 0} \sup _{x \in L_{i}^{\prime} \cap\left[u, v^{\prime \prime}\right]}\left\{\inf _{y \in L_{i}^{l} \cap\left[u, v^{\prime}\right]}\|y-x\|\right\}=0 .
$$

Hence, $\forall \varepsilon>0, \exists \delta_{0}>0$ such that $\forall \delta \in\left(0, \delta_{0}\right]$,

$$
\sup _{x \in L_{i}^{\prime} \cap\left[u, v^{\prime \prime}\right]}\left\{\inf _{y \in L_{i}^{\cap} \cap\left[u, v^{\prime}\right]}\|y-x\|\right\}<\varepsilon .
$$

So $\forall x \in L_{i}^{\prime} \cap\left[u, v^{\prime \prime}\right], \exists y \in L_{i}^{l} \cap\left[u, v^{\prime}\right]$ such that $\|y-x\|<\varepsilon$. Therefore, for any $\varepsilon>0$, there is $\delta_{0}>0$ such that for $\delta \in\left(0, \delta_{0}\right]$,

$$
L_{i}^{\prime} \cap\left[u, v^{\prime \prime}\right] \subset \mathcal{B}\left(L_{i}^{l} \cap\left[u, v^{\prime}\right], \varepsilon\right) .
$$

Since $L_{i}^{l} \cap\left[u, v^{\prime}\right]$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$, for $\varepsilon>0$ small enough the set $\mathcal{B}\left(L_{i}^{l} \cap\left[u, v^{\prime}\right], \varepsilon\right)$ is also strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$. Thus, for $\delta \in\left(0, \delta_{0}\right], L_{i}^{\prime} \cap\left[u, v^{\prime \prime}\right]$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$. As L_{i}^{\prime} is parallel to the x_{i}-axis and $a_{j i} \geq 0$ in the equation $(A x)_{j}=1$ for L_{j}^{u}, if $(A x)_{j}>1$ then $\left(A x^{\prime}\right)_{j}>1$ for x^{\prime} with $x_{i}^{\prime} \geq x_{i}$ and $x_{k}^{\prime}=x_{k}$ for $k \in I_{N} \backslash\{i\}$. Hence, $L_{i}^{\prime} \cap[u, v]$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$. This shows that each solution $x(t)$ in $[u, v]$ satisfies $x_{j}(t) \downarrow$ for all $j \in I_{N} \backslash\{i\}$ as long as $x(t)$ is on or above L_{i}^{\prime} and $x_{j}(t) \not \equiv 0$. Therefore, for any solution $x(t)$ staying in a very small vicinity of $[u, v]$, for $t \geq T$, once it goes below L_{i}^{\prime} it will stay below L_{i}^{\prime} forever. Since $\omega\left(x_{0}\right) \subset[u, v]$ for all $x_{0} \in \mathbb{R}_{I}, \omega\left(x_{0}\right)$ must be strictly below L_{i}^{\prime}. The subset of $\left[u, v^{\prime \prime}\right]$ strictly below L_{i}^{\prime} is also strictly below L_{i}^{l}.
We show that (36) holds. Suppose (36) is not true. Then $\omega\left(x_{0}\right) \cap\left[u, v^{\prime \prime}\right] \neq \emptyset$ for some $x_{0} \in \mathbb{R}_{I}$. Since $\omega\left(x_{0}\right) \subset[u, v]$, there is $y^{0} \in \omega\left(x_{0}\right) \cap\left[u, v^{\prime \prime}\right]$ such that $y_{i} \geq y_{i}^{0}$ for all $y \in \omega\left(x_{0}\right)$. If $u_{i}=0$, as the subset of $\left[u, v^{\prime}\right] \subset \pi_{i}$ below L_{i}^{\prime} is strictly below Γ_{i}, this set

Figure 2. Illustration of $L_{i}^{u}, L_{i}^{l}, L_{i}^{u}(\delta)$ and $L_{i}^{l}(\delta)$ for $N=2$.
repels the solutions in \mathbb{R}_{I} away from π_{i}. Since $\omega\left(x_{0}\right)$ is strictly below L_{i}^{\prime}, we must have $\omega\left(x_{0}\right) \cap \pi_{i}=\emptyset$, so $y_{i}^{0}>0$. Then, since y^{0} is below $\Gamma_{i}, x_{i}\left(y^{0}, t\right)<y_{i}^{0}$ for $t<0$ close enough to 0 . As $\gamma\left(y^{0}\right) \subset \omega\left(x_{0}\right)$, this contradicts $y_{i} \geq y_{i}^{0}$ for all $y \in \omega\left(x_{0}\right)$. Therefore, (36) holds.

Step 3. Let $u(s)=s p$ and $v(s)=s p+(1-s) Y$ for $s \in[0,1]$. We show that $\omega\left(x_{0}\right) \subset$ $[u(s), v(s)]$ for all $x_{0} \in \mathbb{R}_{I}$ and all $s \in[0,1]$. Thus, $\omega\left(x_{0}\right)=[u(1), v(1)]=\{p\}$ for all $x_{0} \in \mathbb{R}_{I}$ and the conclusion of Theorem 3.1 holds.

From step 1 we know that $\omega\left(x_{0}\right) \subset[0, Y]=[u(0), v(0)]$ for all $x_{0} \in \mathbb{R}_{+}^{N}$. By step 2 and condition (c), there is a $\delta \in(0,1)$ such that $\omega\left(x_{0}\right) \subset[u(\delta), Y]$ for all $x_{0} \in \mathbb{R}_{I}$. Now define an affine map $m_{\delta}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}^{N}(u(\delta))$ by $m_{\delta}(x)=\delta p+(1-\delta) x$. Then $m_{\delta}(p)=p$ and $m_{\delta}(x)-p=(1-\delta)(x-p)$. Thus, m_{δ} maps the line segment $\overline{x p}$ to $(1-\delta) \overline{x p},[0, Y]$ to [u($\delta), v(\delta)]$, and each $L_{i}(p)$ to $L_{i}(p) \cap \mathbb{R}_{+}^{N}(u(\delta))$. Now consider the set

$$
C_{j}=\left\{s p+(1-s) y: \forall y \in\left(\partial \mathbb{R}_{+}^{N}\right) \cap \tilde{L}_{j}, \forall s \in[0,1]\right\}
$$

Then C_{j} is a cone surface with p as the vertex and \tilde{L}_{j} as its base. The map m_{δ} maps C_{j} to $C_{j} \cap \mathbb{R}_{+}^{N}(u(\delta))$ and \tilde{L}_{j} in \mathbb{R}_{+}^{N} to a plane \hat{L}_{j} in $\mathbb{R}_{+}^{N}(u(\delta))$. Note that $C_{j} \cap \mathbb{R}_{+}^{N}(u(\delta))$ is a cone with p as its vertex and \hat{L}_{j} as its base (see Figure 2 for illustration). Thus, if Γ_{j} is concave (convex) then both \tilde{L}_{j} and \hat{L}_{j} are above (below) Γ_{j}. Hence, m_{δ} maps L_{i}^{l} and L_{j}^{u} in \mathbb{R}_{+}^{N} to planes $L_{i}^{l}(\delta)$ and $L_{j}^{u}(\delta)$ in $\mathbb{R}_{+}^{N}(u(\delta))$ for each $i \in J$ and all $j \in I_{N} \backslash\{i\}$. Due to the nature of the map m_{δ} projecting points along straight lines towards p, the relative positions of L_{i}^{l} and L_{j}^{u} in \mathbb{R}_{+}^{N} are preserved for the planes $L_{i}^{l}(\delta)$ and $L_{j}^{u}(\delta)$ in $\mathbb{R}_{+}^{N}(u(\delta))$ for each $i \in J$ and all $j \in I_{N} \backslash\{i\}$.

For each $i \in I_{N}, \Gamma_{i}$ in $\mathbb{R}_{+}^{N}(u(\delta))$ is below $L_{i}^{u}(\delta)$. The intersection point $R_{i i}$ of L_{i}^{u} with the x_{i}-axis has $\frac{1}{a_{i i}}$ as its i th component and 0 as other components. The point $R_{i i}$ is
mapped to $m_{\delta}\left(R_{i i}\right)=\delta p+(1-\delta) R_{i i}$, which has $\delta p_{i}+\frac{1-\delta}{a_{i i}}$ as its i th component and δp_{j} as the j th component for $j \neq i$. Since $L_{i}^{u}(\delta)$ is below the plane $x_{i}=\delta p_{i}+\frac{1-\delta}{a_{i i}}$, by the reasoning similar to that in step 1 we see that $\omega\left(x_{0}\right)$ is below this plane for all $x_{0} \in \mathbb{R}_{I}$. As $v(\delta)=m_{\delta}(Y)=\delta p+(1-\delta) Y$ with $v_{i}(\delta)=\delta p_{i}+\frac{1-\delta}{a_{i i}}$, we have $\omega\left(x_{0}\right) \subset[u(\delta), v(\delta)]$ for all $x_{0} \in \mathbb{R}_{I}$.

For each $i \in J$, let $v_{i}(\delta)^{\prime}=u_{i}(\delta)$ and $v_{j}(\delta)^{\prime}=v_{j}(\delta)$ for $j \in I_{N} \backslash\{i\}$. Then condition (c) and the nature of m_{δ} imply that either $v(\delta)^{\prime}$ is below $L_{i}^{l}(\delta)$ or $L_{i}^{l}(\delta) \cap\left[u(\delta), v(\delta)^{\prime}\right]$ is strictly above $L_{j}^{u}(\delta)$ for all $j \in I_{N} \backslash\{i\}$. From step 2 again, we can always replace $\delta \in(0,1)$ by a larger one. Repetition of the above process shows that $\omega\left(x_{0}\right) \subset[u(\delta), v(\delta)]$ holds for all $x_{0} \in \mathbb{R}_{I}$ and all $\delta \in(0,1)$. Taking the limit $\delta \rightarrow 1^{-}$, we obtain $\omega\left(x_{0}\right)=\{p\}$.

5. Geometric method for global repulsion

In this section, we assume that p is an interior equilibrium point, so $p \in \operatorname{int} \mathbb{R}_{+}^{N}$. When each nullcline surface Γ_{i} is concave or convex, we define the planes L_{i}^{u} and L_{i}^{l} in the same way as in section 3 for $i \in I_{N}$. Then each Γ_{i} is below L_{i}^{u} but above L_{i}^{l},

$$
L_{i}^{l}=\left\{x \in \mathbb{R}_{+}^{N}:(B x)_{i}=1\right\}, \quad L_{i}^{u}=\left\{x \in \mathbb{R}_{+}^{N}:(A x)_{i}=1\right\} .
$$

Thus,

$$
\begin{equation*}
\forall i, j \in I_{N}, a_{i j} \leq b_{i j} \tag{37}
\end{equation*}
$$

We also assume that for each $i \in I_{N}$, the intersection point of L_{i}^{l} with the positive half x_{i}-axis is above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$. Then $a_{j i} / b_{i i}>1$ so

$$
\begin{equation*}
\forall i \in I_{N}, \forall j \in I_{N} \backslash\{i\}, a_{j i}>b_{i i}>0 . \tag{38}
\end{equation*}
$$

From (37) and (38) we have

$$
a_{j j} \leq b_{j j}<a_{i j} \leq b_{i j}(i \neq j)
$$

For any $k \in I_{N} \backslash\{i\}$, as $b_{i i}<a_{j i}$, if $b_{i k}>a_{j k}$ then the system of simultaneous equations

$$
\begin{equation*}
b_{i i} x_{i}+b_{i k} x_{k}=1, a_{j i} x_{i}+a_{j k} x_{k}=1 \tag{39}
\end{equation*}
$$

has a solution

$$
x_{i}=\frac{a_{j k}-b_{i k}}{b_{i i} a_{j k}-b_{i k} a_{j i}}>0, x_{j}=\frac{b_{i i}-a_{j i}}{b_{i i} a_{j k}-b_{i k} a_{j i}}>0 .
$$

This shows that L_{j}^{u} and L_{i}^{l} restricted to $\cap_{m \in I_{N} \backslash\{i, k\}} \pi_{m}$ has a unique intersection point. This is obviously true for $k=j$ as $b_{i j}>a_{j j}$. If $b_{i k} \leq a_{j k}$ then (39) has no solution with $x_{i}>0$. Thus, the largest possible i th component of the points in $L_{i}^{l} \cap L_{j}^{u}$ is

$$
\max \left\{\frac{b_{i k}-a_{j k}}{a_{j i} b_{i k}-a_{j k} b_{i i}}: k \in I_{N} \backslash\{i\} \text { if } b_{i k}>a_{j k}\right\} .
$$

Now define $U \gg 0$ by

$$
\begin{equation*}
U_{i}=\max \left\{\frac{b_{i k}-a_{j k}}{a_{j i} b_{i k}-a_{j k} b_{i i}}: j, k \in I_{N} \backslash\{i\} \text { if } b_{i k}>a_{j k}\right\}, i \in I_{N} \tag{40}
\end{equation*}
$$

For a surface Γ in \mathbb{R}_{+}^{N}, we call it strongly balanced if for all distinct points $u, v \in \Gamma$, neither $u-v$ nor $v-u$ is in \mathbb{R}_{+}^{N}.

Theorem 5.1. Assume that the following conditions hold.
(a) System (6) has an interior equilibrium point $p \in \operatorname{int} \mathbb{R}_{+}^{N}$.
(b) For each $i \in I_{N}$, the nullcline surface Γ_{i} is strongly balanced and either convex or concave.
(c) For each $i \in I_{N}$, the intersection point of L_{i}^{l} with the positive half x_{i}-axis is above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$.
(d) For each $i \in I_{N}$, either $\pi_{i} \cap[0, U]$ or $L_{i}^{u} \cap \pi_{i} \cap[0, U]$ is strictly below L_{j}^{l} for all $j \in I_{N} \backslash\{i\}$, where U is defined by (40).
Then p is globally repelling.
Remark 4. Let $D \subset \mathbb{R}_{+}^{N}$ be a bounded region such that $\Gamma_{i} \subset D$ for all $i \in I_{N}$. Then, by Proposition 2.2 (iii) and (vi), the requirement of each Γ_{i} to be concave or convex in part of condition (b) in Theorem 5.1 is guaranteed if each function F_{i} or $-F_{i}$ is a convex function in D with $F_{i}(0)=\max _{x \in \mathbb{R}_{+}^{N}} F_{i}(x)$. The requirement that each Γ_{i} is strongly balanced is ensured by the following:

$$
\begin{equation*}
\forall i, j \in I_{N}, \forall u \in D, \frac{\partial F_{i}}{\partial x_{j}}(u)<0 \tag{41}
\end{equation*}
$$

Indeed, (41) implies that $F_{i}(x)$ is strictly increasing in each x_{j} for $x \in D$. Thus, for any $u, v \in D$ with $u<v$, we have $F_{i}(u)>F_{i}(v)$, so it is impossible to have both $u \in \Gamma_{i}$ and $v \in \Gamma_{i}$.

Remark 5. The algebraic condition equivalent to condition (c) in Theorem 5.1 is (38). Then from (40) we see that conditions (a)-(c) guarantee the existence of $U \gg 0$: U_{i} is the maximum of the i th components of all the possible intersection points of L_{i}^{l} with $\cup_{j \in I_{N} \backslash\{i\}} L_{j}^{u}$. Note that each set $L_{i}^{u} \cap \pi_{i} \cap[0, U]$ in condition (d), if not empty, is a convex hull which is determined by linear combinations of a finite number of vertices $v_{i 1}, \ldots, v_{i m}$. Thus, $L_{i}^{u} \cap \pi_{i} \cap[0, U]$ is strictly below L_{j}^{l} for all $j \in I_{N} \backslash\{i\}$ if and only if each vertex $v_{i k}$ is below L_{j}^{l} for all $j \in I_{N} \backslash\{i\}$. This will be clear from Figure 3 in Example 5.4 later.
Remark 6. Under the conditions of Theorem 5.1, from Theorem 2.1 we see that p is a saddle point with a one-dimensional stable manifold $W^{s}(p)$ and $(N-1)$-dimensional unstable manifold $W^{u}(p)=\operatorname{int} \Sigma \backslash\{p\}$. Thus, for each $x_{0} \gg 0$, we have $\omega\left(x_{0}\right)=\{p\}$ if $x_{0} \in W^{s}(p)$ and $\omega\left(x_{0}\right) \subset \partial \Sigma$ if $x_{0} \notin W^{s}(p)$. For each $x_{0} \in \operatorname{int} \Sigma \backslash\{p\}$, we have $\omega\left(x_{0}\right) \subset \partial \Sigma$ and $\alpha\left(x_{0}\right)=\{p\}$.

For a particular class of systems (6) when each Γ_{i} is a plane, so $\Gamma_{i}=L_{i}^{u}=L_{i}^{l}$, it is both concave and convex. Then condition (c) of Theorem 5.1 guarantees that each Γ_{i} is strongly balanced. Thus, condition (b) is redundant and Theorem 5.1 is simplified as follows.

Corollary 5.2. Assume that the following conditions hold.
(a) System (6) has an equilibrium point $p \in \operatorname{int} \mathbb{R}_{+}^{N}$.
(b) For each $i \in I_{N}$, the nullcline surface Γ_{i} is a plane.
(c) Each axial equilibrium point R_{i} is above Γ_{j} for all $j \in I_{N} \backslash\{i\}$.
(d) For each $i \in I_{N}$, either $\pi_{i} \cap[0, U]$ or $\Gamma_{i} \cap \pi_{i} \cap[0, U]$ is strictly below Γ_{j} for all $j \in I_{N} \backslash\{i\}$, where U is given by (40) with $L_{i}^{l}=L_{i}^{u}=\Gamma_{i}$.

Then p is globally repelling.
Example 5.3. Consider the system (4) with $r_{i}>0, c_{i}>0$ and $a_{i j}>0$ for all $i, j \in I_{N}$. Suppose $p \in \operatorname{int} \mathbb{R}_{+}^{N}$ is an interior equilibrium point. Then each Γ_{i} is a plane,

$$
\forall i \in I_{N}, \Gamma_{i}=L_{i}^{l}=L_{i}^{u}=\left\{x \in \mathbb{R}_{+}^{N}: a_{i 1} x_{1}+\cdots+a_{i N} x_{N}=1\right\} .
$$

Assume that each axial equilibrium R_{i} is above Γ_{j} for all $j \in I_{N} \backslash\{i\}$, i.e.

$$
\forall i, j \in I_{N}(i \neq j), a_{j i}>a_{i i}>0
$$

Define $U \gg 0$ by

$$
\forall i \in I_{N}, U_{i}=\max \left\{\frac{a_{i k}-a_{j k}}{a_{j i} a_{i k}-a_{j k} a_{i i}}: j, k \in I_{N} \backslash\{i\} \text { if } a_{i k}>a_{j k}\right\} .
$$

Then, by Corollary $5.2, p$ is globally repelling if either $\pi_{i} \cap[0, U]$ or $\Gamma_{i} \cap \pi_{i} \cap[0, U]$ is strictly below Γ_{j} for all $i \in I_{N}$ and $j \in I_{N} \backslash\{i\}$.

Note that the above result for (4) is also true for other systems in (2)-(5). In particular, for Lotka-Volterra system (2), this result is consistent with [9].

Example 5.4. Consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{1}\left(1-2 a x_{1}-a x_{1}^{2}-x_{2}-x_{3}\right)=x_{1} F_{1}(x), \\
& \dot{x}_{2}=x_{2}\left(1-x_{1}-2 a x_{2}-a x_{2}^{2}-x_{3}\right)=x_{2} F_{2}(x), \tag{42}\\
& \dot{x}_{3}=x_{3}\left(1-x_{1}-x_{2}-2 a x_{3}-a x_{3}^{2}\right)=x_{3} F_{3}(x),
\end{align*}
$$

where $a>0$ is a constant. The system has an interior equilibrium point $p=p_{0}(1,1,1)^{T}$ with p_{0} satisfying $a p_{0}^{2}+2(a+1) p_{0}=1$, so

$$
p_{0}=\frac{1}{a}\left[\sqrt{a+(a+1)^{2}}-(a+1)\right]=\frac{1}{\sqrt{a^{2}+3 a+1}+a+1} .
$$

Then

$$
\begin{aligned}
\Gamma_{1} & =\left\{x \in \mathbb{R}_{+}^{3}: 2 a x_{1}+a x_{1}^{2}+x_{2}+x_{3}=1\right\} \\
\Gamma_{2} & =\left\{x \in \mathbb{R}_{+}^{3}: x_{1}+2 a x_{2}+a x_{2}^{2}+x_{3}=1\right\}, \\
\Gamma_{1} & =\left\{x \in \mathbb{R}_{+}^{3}: x_{1}+x_{2}+2 a x_{3}+a x_{3}^{2}=1\right\}, \\
L_{1}(p) & =2 a\left(1+p_{0}\right) x_{1}+x_{2}+x_{3}=1+a p_{0}^{2}, \\
L_{2}(p) & =x_{1}+2 a\left(1+p_{0}\right) x_{2}+x_{3}=1+a p_{0}^{2}, \\
L_{3}(p) & =x_{1}+x_{2}+2 a\left(1+p_{0}\right) x_{3}=1+a p_{0}^{2} .
\end{aligned}
$$

As Γ_{1} intersects the axes at $\left(\sqrt{1+\frac{1}{a}}-1,0,0\right)^{T},(0,1,0)^{T},(0,0,1)^{T}$ respectively and $\left(\sqrt{1+\frac{1}{a}}-1\right)^{-1}=a\left(\sqrt{1+\frac{1}{a}}+1\right)$, we have

$$
\tilde{L}_{1}=\left\{x \in \mathbb{R}_{+}^{3}: a\left(\sqrt{1+\frac{1}{a}}+1\right) x_{1}+x_{2}+x_{3}=1\right\} .
$$

Similarly,

$$
\begin{aligned}
& \tilde{L}_{2}=\left\{x \in \mathbb{R}_{+}^{3}: x_{1}+a\left(\sqrt{1+\frac{1}{a}}+1\right) x_{2}+x_{3}=1\right\}, \\
& \tilde{L}_{3}=\left\{x \in \mathbb{R}_{+}^{3}: x_{1}+x_{2}+a\left(\sqrt{1+\frac{1}{a}}+1\right) x_{3}=1\right\}
\end{aligned}
$$

Note that

$$
\forall i \in I_{3}, \forall x, y \in \mathbb{R}_{+}^{3}, F_{i}(s x+(1-s) y) \geq s F_{i}(x)+(1-s) F_{i}(y)
$$

so F_{1}, F_{2} and F_{3} are convex functions with $F_{i}(0)=\max _{x \in \mathbb{R}_{+}^{3}} F_{i}(x)$ for $i \in I_{3}$. By Proposation 2.2 (iii), Γ_{1}, Γ_{2} and Γ_{3} are convex. Then $L_{i}^{l}=\tilde{L}_{i}$ and $L_{i}^{u}=L_{i}(p)$ for $i \in I_{3}$. Since $\frac{\partial F_{i}}{\partial x_{i}}=-2 a-2 a x_{i}<0$ and $\frac{\partial F_{i}}{\partial x_{j}}=-1<0$ for $i, j \in I_{3}(i \neq j)$, by Remark 4 each Γ_{i} is strongly balanced. Thus, conditions (a) and (b) of Theorem 5.1 are fulfilled.
If $a \in(0,0.3]$, then we have $p_{0}<\frac{1}{2}$ so $p_{0}^{2}<\frac{1}{4}$ and

$$
\sqrt{1+\frac{1}{a}}-1 \geq \sqrt{\frac{1.3}{0.3}}-1>\frac{4.3}{4} \geq 1+\frac{1}{4} a>1+a p_{0}^{2}
$$

Thus, the equilibrium point $\left(\sqrt{1+\frac{1}{a}}-1,0,0\right)^{T}$, which is the intersection point of L_{1}^{l} with the positive half x_{1}-axis, is above L_{2}^{u} and L_{3}^{u}. By symmetry, condition (c) of Theorem 5.1 is met.

To check condition (d), we need to find $U \gg 0$ given by (40). The point in $L_{1}^{l} \cap L_{2}^{u} \cap \pi_{3}$ is given by the solution of

$$
a\left(\sqrt{1+\frac{1}{a}}+1\right) x_{1}+x_{2}=1, x_{1}+2 a\left(1+p_{0}\right) x_{2}=1+a p_{0}^{2}
$$

which has the components

$$
x_{1}=\frac{1+a p_{0}^{2}-2 a\left(1+p_{0}\right)}{1-2 a^{2}\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+p_{0}\right)}, x_{2}=\frac{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+a p_{0}^{2}\right)}{1-2 a^{2}\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+p_{0}\right)}, x_{3}=0 .
$$

The point in $L_{1}^{l} \cap L_{3}^{u} \cap \pi_{3}$ is given by the solution of

$$
a\left(\sqrt{1+\frac{1}{a}}+1\right) x_{1}+x_{2}=1, x_{1}+x_{2}=1+a p_{0}^{2},
$$

which has the components

$$
x_{1}=\frac{a p_{0}^{2}}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)}, x_{2}=\frac{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+a p_{0}^{2}\right)}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)}, x_{3}=0
$$

The point in $L_{1}^{l} \cap L_{2}^{u} \cap \pi_{2}$ is the same as that in $L_{1}^{l} \cap L_{3}^{u} \cap \pi_{3}$ with the swap of x_{2} and x_{3}, and the point in $L_{1}^{l} \cap L_{3}^{u} \cap \pi_{2}$ is the same as that in $L_{1}^{l} \cap L_{2}^{u} \cap \pi_{3}$ with the swap of x_{2} and x_{3}. We can easily check that the function

$$
f(s)=\frac{a p_{0}^{2}+s}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)+a\left(\sqrt{1+\frac{1}{a}}+1\right) s}
$$

is increasing in s, so

$$
\frac{1+a p_{0}^{2}-2 a\left(1+p_{0}\right)}{1-2 a^{2}\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+p_{0}\right)}=f\left(1-2 a\left(1+p_{0}\right)\right)>f(0)=\frac{a p_{0}^{2}}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)} .
$$

Then, by (40), U_{1} is the maximum of the first component of the points in $L_{1}^{l} \cap L_{2}^{u} \cap \pi_{3}$, $L_{1}^{l} \cap L_{3}^{u} \cap \pi_{3}, L_{1}^{l} \cap L_{2}^{u} \cap \pi_{2}$ and $L_{1}^{l} \cap L_{3}^{u} \cap \pi_{2}$. Thus,

$$
U_{1}=\frac{1+a p_{0}^{2}-2 a\left(1+p_{0}\right)}{1-2 a^{2}\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+p_{0}\right)}
$$

and by symmetry, $U_{2}=U_{3}=U_{1}$.
Next, we derive a condition on a so that condition (d) of Theorem 5.1 is satisfied. The set $L_{1}^{u} \cap \pi_{1} \cap[0, U]$ is the line segment $\overline{A B}$ (see Figure 3) on the plane $x_{1}=0$ with $A\left(u_{0}, U_{3}\right)$ and $B\left(U_{2}, u_{0}\right)$, where

$$
u_{0}=1+a p_{0}^{2}-U_{3}=\frac{2 a\left(1+p_{0}\right)\left[1-a\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+a p_{0}^{2}\right)\right]}{1-2 a^{2}\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+p_{0}\right)} .
$$

The point in $L_{2}^{l} \cap L_{1}^{u} \cap \pi_{1}$ is given by the solution of

$$
a\left(\sqrt{1+\frac{1}{a}}+1\right) x_{2}+x_{3}=1, x_{2}+x_{3}=1+a p_{0}^{2}
$$

Figure 3. Illustration of $L_{1}^{u} \cap \pi_{1} \cap[0, U], L_{2}^{l} \cap \pi_{1}$ and $L_{3}^{l} \cap \pi_{1}$.
which has the components

$$
x_{1}=0, x_{2}=\frac{a p_{0}^{2}}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)}, x_{3}=\frac{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+a p_{0}^{2}\right)}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)} .
$$

As the axial fixed point $\left(0, \sqrt{1+\frac{1}{a}}-1,0\right)^{T}$, which is the intersection point of L_{2}^{l} with the positive half x_{2}-axis, is above L_{1}^{u}, any point in $L_{2}^{l} \cap \pi_{1}$ with $\frac{a p_{0}^{2}}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)}<x_{2} \leq \sqrt{1+\frac{1}{a}}-1$ is above L_{1}^{u}. Thus, $L_{1}^{u} \cap \pi_{1} \cap[0, U]$ is strictly below L_{2}^{l} if $u_{0}>\frac{a p_{0}^{2}}{1-a\left(\sqrt{1+\frac{1}{a}}+1\right)}$ (see Figure 3). Note that $p_{0}<\frac{1}{2}$ so $\frac{1+p_{0}}{p_{0}^{2}}>6$. Then, if $a \in(0,0.3]$ is small enough to satisfy

$$
\begin{equation*}
12\left[1-a\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+a p_{0}^{2}\right)\right]\left[1-a\left(\sqrt{1+\frac{1}{a}}+1\right)\right]+2 a^{2}\left(\sqrt{1+\frac{1}{a}}+1\right)\left(1+p_{0}\right) \geq 1 \tag{43}
\end{equation*}
$$

$L_{1}^{u} \cap \pi_{1} \cap[0, U]$ is strictly below L_{2}^{l}. Similarly, (43) also ensures that $L_{1}^{u} \cap \pi_{1} \cap[0, U]$ is strictly below L_{3}^{l}. By symmetry, (43) guarantees condition (d) of Theorem 5.1. Therefore, p is a global repellor if $a \leq 0.3$ and satisfies (43).

6. Proof of Theorem 5.1

To prepare for the proof of Theorem 5.1, we present five lemmas below, of which the first three reveal some general properties of (6) under certain conditions and the last two are closely related to the conditions of Theorem 5.1.

Lemma 6.1. If the i th axial fixed point R_{i} is above (below) Γ_{j} for all $j \in I_{N} \backslash\{i\}$, then R_{i} is an attractor in \mathbb{R}_{+}^{N} (a repellor in Σ).

Proof. Note that $\left.\nabla\left(x_{i} F_{i}(x)\right)\right|_{x=R_{i}} \ll 0$ by (A4),

$$
\left.\frac{\partial x_{j} F_{j}(x)}{\partial x_{k}}\right|_{x=R_{i}}=0,\left.\frac{\partial x_{j} F_{j}(x)}{\partial x_{j}}\right|_{x=R_{i}}=F_{j}\left(R_{i}\right), k \neq j \neq i .
$$

Thus, the eigenvalue of $\left.\frac{\partial D[x] F(x)}{\partial x}\right|_{x=R_{i}}$ with an eigenvector on x_{i}-axis is negative and the $F_{j}\left(R_{i}\right)$ are eigenvalues of $\left.\frac{\partial D[x] F(x)}{\partial x}\right|_{x=R_{i}}$ with an eigenvector transversal to the x_{i}-axis. If R_{i} is above (below) Γ_{j} for all $j \in I_{N} \backslash\{i\}$, then $\left.\frac{\partial D[x] F(x)}{\partial x}\right|_{x=R_{i}}$ has N negative eigenvalues ($N-1$ positive eigenvalues with eigenvectors transversal to the x_{i}-axis) so R_{i} is an attractor in \mathbb{R}_{+}^{N} (a repellor in Σ).

Lemma 6.2. Assume that each Γ_{i} is strongly balanced. For any $u \in \mathbb{R}_{+}^{N} \backslash\{0\}$ with support $I \subset I_{N}$, if there is a nonempty $I_{0} \subset I$ such that u is below Γ_{j} for all $j \in I_{0}$ but is on Γ_{k} for all $k \in I \backslash I_{0}$, then $u \in \operatorname{Br}(0)$.

Proof. If $I_{0}=I$, then $x(u, t)$ is below Γ_{j} for all $j \in I$ and sufficiently small $|t|$. Since each Γ_{j} is strongly balanced, by the monotone property of competitive systems, we have $x\left(u, t_{2}\right)<x\left(u, t_{1}\right)<u$ for all $t_{2}<t_{1}<0$. Then there is a $q \in \mathbb{R}_{+}^{N}$ with $q<u$ such that $\alpha(u)=\{q\}$ so q is an equilibrium point. We show that $q=0$ so that $u \in \operatorname{Br}(0)$.
For each $i \in I$, since $u_{i}>0, F_{i}(u)>0, F_{i}(0)>0$ by (A1), and $F_{i}(v)<0$ for sufficiently large $|v|$ by (A3), if $F_{i}(q) \leq 0$, then the continuity of F_{i} ensures the existence of $q^{\prime}, u^{\prime} \in \Gamma_{i}$ satisfying $q \leq q^{\prime}<u<u^{\prime}$. This contradicts the assumption that Γ_{i} is strongly balanced. Therefore, we must have $F_{i}(q)>0$. Since q is an equilibrium point, we have $D[q] F(q)=0$ so $q=0$ and $u \in \operatorname{Br}(0)$.

If $I_{0} \neq I$, let $u(\varepsilon)>0$ be defined by

$$
u_{j}(\varepsilon)=u_{j} \text { for } j \notin I \backslash I_{0}, u_{k}(\varepsilon)=u_{k}-\varepsilon \text { for } k \in I \backslash I_{0}
$$

for sufficiently small $\varepsilon>0$. Then $u(\varepsilon)<u$. As each Γ_{i} is strongly balanced, we have $F_{i}(u(\varepsilon))>0$ so $u(\varepsilon)$ is below Γ_{i} for all $i \in I$. Thus, from the case of $I_{0}=I$, we have

$$
u(\varepsilon) \in \operatorname{Br}(0) \text { and } F_{i}(x(u(\varepsilon), t))>0, \quad \forall t<0, \forall i \in I
$$

for each sufficiently small $\varepsilon>0$. Then, by continuous dependence on initial values, we have $F_{i}(x(u, t)) \geq 0$ for all $t<0$ and $i \in I$. But $\dot{x}_{j}(u, 0)=u_{j} F_{j}(u)>0$ for $j \in I_{0}$, so $x_{j}(u, t)<u_{j}$ for all $t<0$ and $j \in I_{0}$. Then $x(u, t)<u$ for all $t<0$. Since each Γ_{i} is strongly balanced, we have $F_{i}(x(u, t))>0$ for all $t<0$ and $i \in I$. Hence, $x(u, t) \in \operatorname{Br}(0)$ for all $t<0$ so $u \in \operatorname{Br}(0)$.

Lemma 6.3. Assume that each Γ_{i} is strongly balanced. For any $u \in \mathbb{R}_{+}^{N} \backslash\{0\}$ with support $I \subset I_{N}$, if there is a nonempty $I_{0} \subset I$ such that u is above Γ_{j} for all $j \in I_{0}$ but is on Γ_{k} for all $k \in I \backslash I_{0}$, then $u \in \operatorname{Br}(\infty)$.

The proof of Lemma 6.3 is similar to that of Lemma 6.2 so we omit it here.
Lemma 6.4. Assume that each Γ_{i} is strongly balanced. Assume the existence of $u \in \mathbb{R}_{+}^{N}$, $i \in I_{N}$ and $v_{i}>u_{i}$ such that either $S^{0}\left(u, v_{i}\right)$ or $\Gamma_{i} \cap S^{0}\left(u, v_{i}\right)$ is strictly above Γ_{j} for all $j \in I_{N} \backslash\{i\}$. Then, for each $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$, if $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u)$ then either $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u) \backslash$ $S^{0}\left(u, v_{i}\right)$ or $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$ (so $R_{i} \in \mathbb{R}_{+}^{N}(u)$). Moreover, if the whole trajectory $\gamma\left(x_{0}\right)$ is in $\Sigma \cap \mathbb{R}_{+}^{N}(u)$ for some $x_{0} \in \operatorname{int} \Sigma$, then either $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$ and $\alpha\left(x_{0}\right) \subset \Sigma \cap\left(\mathbb{R}_{+}^{N}(u) \backslash S^{0}\left(u, v_{i}\right)\right)$ or $\gamma\left(x_{0}\right) \subset \Sigma \cap\left(\mathbb{R}_{+}^{N}(u) \backslash S^{0}\left(u, v_{i}\right)\right)$.

Proof. If $S^{0}\left(u, v_{i}\right)$ is strictly above Γ_{i} then it is strictly above Γ_{j} for all $j \in I_{N}$. By Lemma $6.3, S^{0}\left(u, v_{i}\right) \subset B r(\infty)$ so $\Sigma \cap S^{0}\left(u, v_{i}\right)=\emptyset$. If $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u)$ for some $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$, as $\omega\left(x_{0}\right) \subset \Sigma$ by Theorem 2.1, we have $\omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right)=\emptyset$ so $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u) \backslash S^{0}\left(u, v_{i}\right)$.
Now suppose $\Gamma_{i} \cap S^{0}\left(u, v_{i}\right) \neq \emptyset$. Since this set is strictly above Γ_{j} for all $j \in I_{N} \backslash\{i\}$, either $S^{0}\left(u, v_{i}\right)$ contains no equilibrium point or, if $R_{i} \in S^{0}\left(u, v_{i}\right)$, the axial equilibrium point R_{i} is the unique equilibrium point in $S^{0}\left(u, v_{i}\right)$ and, by Lemma 6.1, R_{i} is an attractor. By Lemma 6.3, any point on or above Γ_{i} in $S^{0}\left(u, v_{i}\right) \backslash\left\{R_{i}\right\}$ belongs to $\operatorname{Br}(\infty)$, so it can be neither an ω-limit point nor an α-limit point.
For any $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$, if $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u)$ with $\omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right) \neq \emptyset$, we show that $\omega\left(x_{0}\right)=$ $\left\{R_{i}\right\}$. Indeed, if $R_{i} \in \omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right)$, then R_{i} is the unique ω-limit point in $B a\left(R_{i}\right)$. As $\omega\left(x_{0}\right)$ is connected, we must have $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$. Now suppose $R_{i} \notin \omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right)$. Then $\omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right)$ is strictly below Γ_{i} so it contains no equilibrium point. For any point $q \in \omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right), x(q, t) \in \omega\left(x_{0}\right)$ for all $t \in \mathbb{R}$ and $x_{i}(q, t)$ is increasing as long as $x(q, t) \in \omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right)$. Thus,

$$
x(q, t) \in \omega\left(x_{0}\right) \cap S\left(u, q_{i}\right) \subset \omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right)
$$

and $x_{i}(q, t)$ is increasing for all $t \geq 0$. Since $\omega\left(x_{0}\right) \cap S\left(u, q_{i}\right)$ is compact and strictly below Γ_{i}, we have
so

$$
\begin{equation*}
\delta_{0}=\min \left\{F_{i}(x): x \in \omega\left(x_{0}\right) \cap S\left(u, q_{i}\right)\right\}>0 \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}(q, t)=q_{i} \exp \left(\int_{0}^{t} F_{i}(x(q, s)) d s\right) \geq q_{i} e^{\delta_{0} t}, \forall t \geq 0 . \tag{45}
\end{equation*}
$$

This leads to the unboundedness of $x(q, t)$ for $t \geq 0$, a contradiction to $x(q, t) \in \omega\left(x_{0}\right) \cap$ $S\left(u, q_{i}\right)$. Hence, we have shown that the case $R_{i} \notin \omega\left(x_{0}\right) \cap S^{0}\left(u, v_{i}\right) \neq \emptyset$ does not exist. Therefore, for any $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$ with $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u)$, we have either $\omega\left(x_{0}\right) \subset \mathbb{R}_{+}^{N}(u) \backslash$ $S^{0}\left(u, v_{i}\right)$ or $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$ so $R_{i} \in \mathbb{R}_{+}^{N}(u)$.
Next, we suppose $\gamma\left(x_{0}\right) \subset \Sigma \cap \mathbb{R}_{+}^{N}(u)$ for some $x_{0} \in \operatorname{int} \Sigma$. If $\gamma\left(x_{0}\right) \cap \Sigma \cap S^{0}\left(u, v_{i}\right) \neq \emptyset$, as any point on or above Γ_{i} (except R_{i}) belongs to $\operatorname{Br}(\infty)$ and $R_{i} \notin \gamma\left(x_{0}\right), \gamma\left(x_{0}\right) \cap \Sigma \cap$ $S^{0}\left(u, v_{i}\right)$ is strictly below Γ_{i}. Thus, $x_{i}\left(x_{0}, t\right)$ is increasing as long as $x\left(x_{0}, t\right) \in S^{0}\left(u, v_{i}\right)$. By $\gamma\left(x_{0}\right) \subset \Sigma \cap \mathbb{R}_{+}^{N}(u)$, there is a $t_{1} \in \mathbb{R}$ such that $x\left(x_{0}, t\right) \in S^{0}\left(u, v_{i}\right)$ for $t>t_{1}$ but $x\left(x_{0}, t\right) \in \mathbb{R}_{+}^{N}(u) \backslash S^{0}\left(u, v_{i}\right)$ for $t \leq t_{1}$. Thus, $\alpha\left(x_{0}\right) \subset \Sigma \cap\left(\mathbb{R}_{+}^{N}(u) \backslash S^{0}\left(u, v_{i}\right)\right)$ and, as $x_{i}\left(x_{0}, t\right)$
is increasing for $t>t_{1}, \omega\left(x_{0}\right) \subset S^{0}\left(u, v_{i}\right)$. It then follows from the previous paragraph that $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$. If $\gamma\left(x_{0}\right) \cap \Sigma \cap S^{0}\left(u, v_{i}\right)=\emptyset$ then $\gamma\left(x_{0}\right) \subset \Sigma \cap\left(\mathbb{R}_{+}^{N}(u) \backslash S^{0}\left(u, v_{i}\right)\right)$.
Lemma 6.5. Under the conditions of Theorem 5.1, assume the existence of $u \in \mathbb{R}_{+}^{N}, i \in I_{N}$ and $v>u$ with $v_{i}>u_{i}$ such that u is below Γ_{i} and either $\pi_{i}(u) \cap[u, v]$ or $\Gamma_{i} \cap \pi_{i}(u) \cap[u, v]$ is below Γ_{j} for all $j \in I_{N} \backslash\{i\}$ and $R_{i} \notin[u, v]$. Then there is a $\delta \in\left(0, v_{i}-u_{i}\right)$ such that if $\omega\left(x_{0}\right) \subset[u, v]$ for some $x_{0} \gg 0$, then either $\omega\left(x_{0}\right) \subset \pi_{i}$ (and $u_{i}=0$) or $\omega\left(x_{0}\right) \subset\left[u^{\prime}, v\right]$, where $u_{i}^{\prime}=u_{i}+\delta$ and $u_{j}^{\prime}=u_{j}$ for all $j \in I_{N} \backslash\{i\}$. Moreover, if $\gamma\left(x_{0}\right) \subset \Sigma \cap[u, v]$ for some $x_{0} \in \operatorname{int} \Sigma$, then either $\omega\left(x_{0}\right) \subset \pi_{i}$ and $\alpha\left(x_{0}\right) \subset \Sigma \cap\left[u^{\prime}, v\right]$ or $\gamma\left(x_{0}\right) \subset \Sigma \cap\left[u^{\prime}, v\right]$.

Proof. Let $D=\left\{x \in \pi_{i}(u) \cap[u, v]: F_{i}(x) \geq 0\right\}$. Since u is below Γ_{i}, we have $F_{i}(u)>0$ so $u \in D$ and $D \neq \emptyset$. By the assumption, D is strictly below Γ_{j} for all $j \in I_{N} \backslash\{i\}$, so R_{i} is the only possible nontrivial equilibrium in D. But $D \subset[u, v]$ and $R_{i} \notin[u, v]$. Hence, $R_{i} \notin D$ so D conatins no nontrivial equilibrium point. Since each point in D is on or below Γ_{i}, by Lemma 6.2 $D \subset \operatorname{Br}(0)$. Since $\operatorname{Br}(0)$ is open in \mathbb{R}_{+}^{N}, D is compact, and F_{i} is continuous, there is a small $\delta \in\left(0, v_{i}-u_{i}\right)$ such that the set

$$
S=\left\{x \in[u, v]: x_{i} \leq u_{i}+\delta, F_{i}(x) \geq-\delta\right\}
$$

is a subset of $\operatorname{Br}(0)$. Thus, any nontrivial point in S is neither an ω-limit point nor an α-limit point. So $\omega\left(x_{0}\right) \cap S=\emptyset$ if $x_{0} \neq 0$. Now suppose $\omega\left(x_{0}\right) \subset[u, v]$ and $\omega\left(x_{0}\right) \cap$ $\left([u, v] \backslash\left[u^{\prime}, v\right]\right) \neq \emptyset$ for some $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$. We show that $\omega\left(x_{0}\right) \subset \pi_{i}$ so $u_{i}=0$. Since $y \in \omega\left(x_{0}\right) \cap\left([u, v] \backslash\left[u^{\prime}, v\right]\right)$ implies $y \notin S$ so $F_{i}(y)<-\delta$, by the compactness of $\omega\left(x_{0}\right)$ and the continuity of F_{i}, there is an $\varepsilon>0$ such that

$$
\begin{equation*}
\forall z \in \mathcal{B}\left(\omega\left(x_{0}\right), \varepsilon\right) \text { with } z_{i} \leq u_{i}+\delta+\varepsilon, F_{i}(z) \leq-\delta / 2 \tag{46}
\end{equation*}
$$

By definition of $\omega\left(x_{0}\right)$ and the assumption $\omega\left(x_{0}\right) \cap\left([u, v] \backslash\left[u^{\prime}, v\right]\right) \neq \emptyset$, there is a $T>0$ such that $x_{i}\left(x_{0}, T\right)<u_{i}+\delta+\varepsilon$ and $x\left(x_{0}, t\right) \in \mathcal{B}\left(\omega\left(x_{0}\right), \varepsilon\right)$ for all $t \geq T$. Then, by (46),

$$
\begin{equation*}
x_{i}\left(x_{0}, t\right)=x_{i}\left(x_{0}, T\right) \exp \left(\int_{T}^{t} F_{i}\left(x\left(x_{0}, s\right)\right) d s\right) \leq x_{i}\left(x_{0}, T\right) e^{-\delta(t-T) / 2} \tag{47}
\end{equation*}
$$

for $t>T$ as long as $x_{i}\left(x_{0}, t\right)<u_{i}+\delta+\varepsilon$. This shows that $\lim _{t \rightarrow+\infty} x_{i}\left(x_{0}, t\right)=0$, so $\omega\left(x_{0}\right) \subset \pi_{i}$ and $u_{i}=0$.
Finally, suppose $\gamma\left(x_{0}\right) \subset \Sigma \cap[u, v]$ for some $x_{0} \in \operatorname{int} \Sigma$. If $\gamma\left(x_{0}\right) \cap \Sigma \cap\left([u, v] \backslash\left[u^{\prime}, v\right]\right) \neq \emptyset$, then, as $\Sigma \cap \operatorname{Br}(0)=\emptyset$ so $\gamma\left(x_{0}\right) \cap S=\emptyset$, from the definition of S we see that $F_{i}\left(x\left(x_{0}, t\right)\right)<-\delta$ so $x_{i}\left(x_{0}, t\right)$ is decreasing as long as $x_{i}\left(x_{0}, t\right) \leq u_{i}^{\prime}$. This shows the existence of $T \in \mathbb{R}$ such that $x_{i}\left(x_{0}, t\right) \leq u_{i}^{\prime}$ and $F_{i}\left(x\left(x_{0}, t\right)\right)<-\delta$ for all $t \geq T$ but $x_{i}\left(x_{0}, t\right)>u_{i}^{\prime}$ for $t<T$. Therefore, $\alpha\left(x_{0}\right) \subset \Sigma \cap\left[u^{\prime}, v\right]$ and, from (47), $\omega\left(x_{0}\right) \subset \pi_{i}$ and $u_{i}=0$. If $\gamma\left(x_{0}\right) \cap \Sigma \cap\left([u, v] \backslash\left[u^{\prime}, v\right]\right)=\emptyset$ then $\gamma\left(x_{0}\right) \subset \Sigma \cap\left[u^{\prime}, v\right]$.

With the help of Lemmas 6.1-6.5, we are now in a position to prove Theorem 5.1.
Proof of Thorem 5.1. For each $i \in I_{N}$, by condition (c) and (40) we see that $L_{i}^{l} \cap S^{0}\left(0, U_{i}\right)$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{i\}$. From condition (b) we know that Γ_{i} is above L_{i}^{l}
and Γ_{j} is below L_{j}^{u}. So $\Gamma_{i} \cap S^{0}\left(0, U_{i}\right)$ is strictly above Γ_{j} for all $j \in I_{N} \backslash\{i\}$. By Lemma 6.4 with $u=0$ and $v_{i}=U_{i}$, for each $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$ we have either $\omega\left(x_{0}\right) \subset[0, U]$ or $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$ for some $i \in I_{N}$. Moreover, for each $x_{0} \in \operatorname{int} \Sigma$, we have either $\omega\left(x_{0}\right)=\left\{R_{i}\right\}$ and $\alpha\left(x_{0}\right) \subset \Sigma \cap[0, U]$ for some $i \in I_{N}$ or $\gamma\left(x_{0}\right) \subset \Sigma \cap[0, U]$.

By condition (d), for each $i \in I_{N}$, either $\pi_{i} \cap[0, U]$ or $L_{i}^{u} \cap \pi_{i} \cap[0, U]$ is strictly below L_{j}^{l} for all $j \in I_{N} \backslash\{i\}$ so either $\pi_{i} \cap[0, U]$ or $\Gamma_{i} \cap \pi_{i} \cap[0, U]$ is strictly below Γ_{j} for all $j \in I_{N} \backslash\{i\}$. Note that 0 is below Γ_{i} by (A1). From (40) and condition (c) we know that the intersection point $R_{i i}$ of L_{i}^{l} with the positive half x_{i}-axis satisfies $R_{i i} \notin[0, U]$. As the i th axial equilibrium R_{i} is on or above L_{i}^{l} whereas $R_{i i} \in L_{i}^{l}$, we must have $R_{i} \notin[0, U]$. Then, by Lemma 6.5 with $[u, v]=[0, U]$, there is a $\delta \in(0,1)$ such that for all $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$ we have either $\omega\left(x_{0}\right) \subset \pi_{i}$ for some $i \in I_{N}$ or $\omega\left(x_{0}\right) \subset[\delta p, U]$. Further, for all $x_{0} \in \operatorname{int} \Sigma$, we have either $\omega\left(x_{0}\right) \subset \pi_{i} \cap \Sigma$ and $\alpha\left(x_{0}\right) \subset[\delta p, U] \cap \Sigma$ for some $i \in I_{N}$ or $\gamma\left(x_{0}\right) \subset[\delta p, U] \cap \Sigma$.
Now define an affine map $m_{\delta}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}^{N}(\delta p)$ by

$$
m_{\delta}(x)=\delta p+(1-\delta) x
$$

Then $m_{\delta}(0)=\delta p, m_{\delta}(p)=p, m_{\delta}(U)=\delta p+(1-\delta) U$. Let $[u(\delta), v(\delta)]=\left[m_{\delta}(0), m_{\delta}(U)\right]$. Then m_{δ} maps $[0, U]$ to $[u(\delta), v(\delta)]$, each $L_{i}(p)$ to $L_{i}(p) \cap \mathbb{R}_{+}^{N}(u(\delta))$, and each \tilde{L}_{j} to a plane \hat{L}_{j} in $\mathbb{R}_{+}^{N}(u(\delta))$. Note that \tilde{L}_{j} is the convex hull of the vertex set $\left\{V_{j 1}, \ldots, V_{j N}\right\}$, i.e.

$$
\tilde{L}_{j}=\left\{s_{1} V_{J 1}+\cdots s_{N} V_{j N}: \forall i \in I_{N}, s_{i} \geq 0, s_{1}+\cdots+s_{N}=1\right\}
$$

and \hat{L}_{j} is the convex hull of the vertex set $\left\{m_{\delta}\left(V_{j 1}\right), \ldots, m_{\delta}\left(V_{j N}\right)\right\}$. Since each Γ_{i} is concave or convex, Γ_{i} is between $L_{i}(p)$ and \tilde{L}_{i}, so $\Gamma_{i} \cap \mathbb{R}_{+}^{N}(u(\delta))$ is between $L_{i}(p) \cap \mathbb{R}_{+}^{N}(u(\delta))$ and \hat{L}_{i}, the one above $\Gamma_{i} \cap \mathbb{R}_{+}^{N}(u(\delta))$ is denoted by $L_{i}^{u}(\delta)$ and the one below $\Gamma_{i} \cap \mathbb{R}_{+}^{N}(u(\delta))$ is denoted by $L_{i}^{l}(\delta)$. Then it follows from the radial projection feature of $m_{\delta}($ centred at p) that the relationship between the positions of the $L_{j}^{l}(\delta), L_{j}^{u}(\delta), p$ and $[u(\delta), v(\delta)]$ in $\mathbb{R}_{+}^{N}(u(\delta))$ is exactly the same as that of the L_{j}^{l}, L_{j}^{u}, p and $[0, U]$ in \mathbb{R}_{+}^{N}. Thus, for each $i \in I_{N}$, $L_{i}^{l}(\delta) \cap S^{0}\left(u(\delta), v_{i}(\delta)\right)$ is strictly above $L_{j}^{u}(\delta)$ for all $j \in I_{N} \backslash\{i\}$ so $\Gamma_{i} \cap S^{0}\left(u(\delta), v_{i}(\delta)\right)$ is strictly above Γ_{j} for all $j \in I_{N} \backslash\{i\}$. Following the conclusion from the previous paragraph and by Lemma 6.4 , for each $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$ we have either $\omega\left(x_{0}\right) \subset[u(\delta), v(\delta)]$ or $\omega\left(x_{0}\right) \subset \pi_{k}$ for some $k \in I_{N}$. Furthermore, for each $x_{0} \in \operatorname{int} \Sigma$, we have either $\omega\left(x_{0}\right) \subset \Sigma \cap \pi_{k}$ and $\alpha\left(x_{0}\right) \subset \Sigma \cap[u(\delta), v(\delta)]$ for some $k \in I_{N}$ or $\gamma\left(x_{0}\right) \subset \Sigma \cap[u(\delta), v(\delta)]$.

From condition (d) and the feature of m_{δ} we see that for each $i \in I_{N}, L_{i}^{u}(\delta) \cap \pi_{i}(u(\delta)) \cap$ $[u(\delta), v(\delta)]$ is strictly below $L_{j}^{l}(\delta)$ for all $j \in I_{N} \backslash\{i\}$. By Lemma 6.5 again and repeating the above process, we obtain $\delta_{1} \in(\delta, 1)$ so that $[u(\delta), v(\delta)]$ can be replaced by $\left[u\left(\delta_{1}\right), v\left(\delta_{1}\right)\right]$ in the above conclusion. Since this process can be repeated as long as $\delta_{1}<1$, by taking the supremum of such δ_{1}, we obtain the conclusion with $[u(1), v(1)]=\{p\}$. Therefore, for each $x_{0} \in \mathbb{R}_{+}^{N} \backslash\{0\}$, we have either $\omega\left(x_{0}\right) \subset \pi_{i}$ for some $i \in I_{N}$ or $\omega\left(x_{0}\right)=\{p\}$; for each $x_{0} \in \operatorname{int} \Sigma$, we have either $\omega\left(x_{0}\right) \subset \Sigma \cap \pi_{i}$ for some $i \in I_{N}$ and $\alpha\left(x_{0}\right)=\{p\}$ or $\gamma\left(x_{0}\right)=\{p\}$ so $x_{0}=p$.

7. Conclusion

So far by using geometric analysis, we have obtained a sufficient condition (Theorem 3.1) for a boundary or an interior equilibrium point p to be globally asymptotically stable. We have also derived a sufficient condition (Theorem 5.1) for an interior equilibrium point to be globally repelling on Σ. These results can be applied to a class of systems (6) when each nullcline surface Γ_{i} is concave or convex, so that an upper plane L_{i}^{u} above Γ_{i} and a lower plane L_{i}^{l} below Γ_{i} can be defined. Then, geometric conditions of the theorems are formed by using the relative positions of the L_{i}^{u} and the L_{j}^{l} on the boundary $\partial \mathbb{R}_{+}^{N}$ within a set $[0, V]$.
Note that Theorem 5.1 for global repulsion cannot be applied to a boundary equilibrium point $p \in \mathbb{R}_{+}^{N} \backslash\{0\}$ with support J a proper subset of I_{N}. However, it can be applied to the $|J|$-dimensional subsystem

$$
\begin{equation*}
\dot{x}_{i}=x_{i} F_{i}(x), i \in J, x \in \cap_{k \in I_{N} \backslash J} \pi_{k} \tag{48}
\end{equation*}
$$

as p is an interior equilibrium of (48). If p is globally repelling for the $|J|$-dimensional subsystem (48) and there is a saturated boundary equilibrium point p_{0} that is globally attracting for system (6), then it might be possible for p to be globally repelling on Σ.

Theorem 7.1. Assume that the following conditions hold:
(a) The kth axial equilibrium point R_{k} of (6) is saturated for some $k \in I_{N}$.
(b) For each $i \in I_{N}$, the nullcline surface Γ_{i} is either concave or convex. If Γ_{i} is convex with $F_{i}\left(R_{k}\right)<0$ then the function F_{i} is also convex with $F_{i}(0)=\max _{x \in \mathbb{R}_{+}^{N}} F_{i}(x)$.
(c) For all $i, j \in I_{N} \backslash\{k\}$, the intersection point $R_{k i}$ of L_{k}^{l} with the positive half x_{i}-axis is above L_{j}^{u}.
(d) System (6) has an equilibrium $p \in \mathbb{R}_{+}^{N}$ with support $J=I_{N} \backslash\{k\}$ and p as an interior equilibrium point of the subsystem

$$
\begin{equation*}
\dot{x}_{i}=x_{i} F_{i}(x), i \in J, x \in \pi_{k}, \tag{49}
\end{equation*}
$$

is globally repelling on $\Sigma \cap \pi_{k}$.
(e) Any α limit set $\alpha\left(x_{0}\right)$ consists of a single equilibrium point if $\alpha\left(x_{0}\right) \subset \Sigma \cap \pi_{k} \cap$ $\left(\cup_{j \in J} \pi_{j}\right)$.
(f) The unstable manifold $W^{u}(q)$ for each equilibrium q in $\Sigma \cap \pi_{k} \cap\left(\cup_{j \in J} \pi_{j}\right)$ is a subset of $\cup_{j \in J} \pi_{j}$.

Then p is globally repelling on Σ and R_{k} is globally attracting. Moreover, if R_{k} is above Γ_{i} for all $i \in J$, then R_{k} is globally asymptotically stable.

Proof. From condition (c) we know that either Y^{J} is below L_{k}^{l} or $L_{k}^{l} \cap[0, Y] \cap \pi_{k}$ is strictly above L_{j}^{u} for all $j \in I_{N} \backslash\{k\}$, where Y is defined by (28). By conditions (a)-(c) and

Theorem 3.1, R_{k} is globally attracting. Thus, we have $\omega\left(x_{0}\right)=\left\{R_{k}\right\}$ for any $x_{0} \in \Sigma \cap \mathbb{R}_{J}$. In particular, R_{k} attracts the compact set $\Sigma_{\delta}=\left\{x \in \Sigma: x_{k}=\delta\right\}$ for sufficiently small $\delta>0$. Condition (c) and Lemma 6.3 imply that $\Sigma \cap \pi_{k}$ is strictly below Γ_{k}. Thus, Σ_{δ} is strictly below Γ_{k} for sufficiently small $\delta>0$. Since $x_{k}(t)$ is increasing as long as $x(t)$ is below Γ_{k}, we have shown that $\alpha\left(x_{0}\right) \subset \Sigma \cap \pi_{k}$ for $x_{0} \in \Sigma_{\delta}$ and, hence, for all $x_{0} \in \Sigma \cap \mathbb{R}_{J} \backslash\left\{R_{k}\right\}$. As p repels on $\Sigma \cap \pi_{k}$ by condition (d) and p is below Γ_{k}, p is a repellor on Σ. Thus, for any $\alpha\left(x_{0}\right) \subset \Sigma \cap \pi_{k}$, we have either $\alpha\left(x_{0}\right)=\{p\}$ or $\alpha\left(x_{0}\right) \subset \Sigma \cap \pi_{k} \cap\left(\cup_{j \in J} \pi_{j}\right)$. By condition (e) we know that, as $t \rightarrow-\infty, x\left(x_{0}, t\right)$ converges to p or an equilibrium point in $\Sigma \cap \pi_{k} \cap\left(\cup_{j \in J} \pi_{j}\right)$ for $x_{0} \in \Sigma \cap \mathbb{R}_{J} \backslash\left\{R_{k}\right\}$. Now we claim that $\alpha\left(x_{0}\right)=\{p\}$ for all $x_{0} \in \operatorname{int} \Sigma$. Indeed, $x_{0} \gg 0$ so $x_{0} \notin \pi_{i}$ for all $i \in I_{N}$. By condition (f), $x_{0} \notin W^{u}(q)$ for any equilibrium point $q \in \Sigma \cap \pi_{k} \cap\left(\cup_{j \in J} \pi_{j}\right)$. Thus, $\alpha\left(x_{0}\right) \not \subset \Sigma \cap \pi_{k} \cap\left(\cup_{j \in J} \pi_{j}\right)$ so $\alpha\left(x_{0}\right)=\{p\}$. Therefore, p is globally repelling on Σ. Finally, if R_{k} is above Γ_{i} for all $i \in J$, then the Jacobian matrix $D f\left(R_{k}\right)$ has N negative eigenvalues, so R_{k} is globally asymptotically stable.

Example 7.2. Consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{1}\left(1-2 a x_{1}-a x_{1}^{2}-x_{2}-x_{3}-x_{4}\right)=x_{1} F_{1}(x), \\
& \dot{x}_{2}=x_{2}\left(1-x_{1}-2 a x_{2}-a x_{2}^{2}-x_{3}-x_{4}\right)=x_{2} F_{2}(x), \tag{50}\\
& \dot{x}_{3}=x_{3}\left(1-x_{1}-x_{2}-2 a x_{3}-a x_{3}^{2}-x_{4}\right)=x_{3} F_{3}(x), \\
& \dot{x}_{4}=x_{4}\left(2-3 a x_{1}-3 a x_{2}-3 a x_{3}-x_{4}\right)=x_{4} F_{4}(x),
\end{align*}
$$

where $a \in(0,0.3]$ is a constant satisfying (43). The 3 -dimensional subsystem on π_{4} is the system (42) in Example 5.4. So $p=\left(p_{0}, p_{0}, p_{0}, 0\right)^{T}$ is globally repelling on $\Sigma \cap \pi_{4}$. This shows that system (50) satisfies condition (d) of Theorem 7.1. The axial equilibrium point $R_{4}=(0,0,0,2)^{T}$ is above Γ_{1}, Γ_{2} and Γ_{3} so it is saturated. Clearly, Γ_{4} is a plane and F_{1}, F_{2}, F_{3} are convex (see Example 5.4 in section 5). Thus, (50) meets conditions (a) and (b) of Theorem 7.1. The intersection points of $L_{1}^{u}, L_{2}^{u}, L_{3}^{u}$ and L_{4}^{l} with the positive half x_{1}-axis are $\left(\frac{1+a p_{0}^{2}}{2 a\left(1+p_{0}\right)}, 0,0,0\right)^{T},(1,0,0,0)^{T},(1,0,0,0)^{T}$ and $R_{41}=\left(\frac{2}{3 a}, 0,0,0\right)^{T}$ respectively. As $p_{0}<\frac{1}{2}$ and $a \leq 0.3$, we have

$$
1<\frac{1+a p_{0}^{2}}{0.9} \leq \frac{1+a p_{0}^{2}}{2 a\left(1+p_{0}\right)}<\frac{1}{2 a}+\frac{1}{2\left[\left(\frac{1}{p_{0}}\right)^{2}+\frac{1}{p_{0}}\right]}<\frac{1}{2 a}+\frac{1}{12}=\frac{6+a}{12 a}<\frac{2}{3 a} .
$$

Thus, R_{41} is above L_{1}^{u}, L_{2}^{u} and L_{3}^{u}. By symmetry, R_{42} and R_{43} are also above L_{1}^{u}, L_{2}^{u} and L_{3}^{u}. This shows that (50) satisfies condition (c) of Theorem 7.1. To check conditions (e) and (f), we note that the phase portrait on $\Sigma \cap \pi_{4}$ is given by Figure 4. From the flow on $\Sigma \cap \pi_{4}$ we see that any $\alpha\left(x_{0}\right) \subset \Sigma \cap \pi_{4}$ must consist of a single equilibrium point. Thus, condition (e) of Theorem 7.1 holds for (50). Since $\Sigma \cap \pi_{4}$ is strictly below Γ_{4}, for any equilibrium point $q \in \Sigma \cap \pi_{4} \cap\left(\pi_{1} \cup \pi_{2} \cup \pi_{3}\right)$, $D f(q)$ has an eigenvector in $\pi_{1} \cup \pi_{2} \cup \pi_{3}$ transverse to π_{4} corresponding to the positive eigenvalue $F_{4}(q)$. By the invariance of each π_{i}, we have $W^{u}(q) \subset\left(\pi_{1} \cup \pi_{2} \cup \pi_{3}\right)$. Thus, (50) satisfies condition (f) of Theorem 7.1. Then, by Theorem 7.1, R_{4} is globally asymptotically stable and p is globally repelling on Σ.

Figure 4. Phase portrait for system (50) on $\Sigma \cap \pi_{4}$.

Discussion. For any equilibrium $p \in \Sigma$ with support $J \subset I_{N}$, we call p saturated in reversed time if $F_{i}(p) \geq 0$ for all $i \in I_{N}$. As $F_{i}(p)$ is an eigenvalue of the Jacobian matrix $D f(p)$ if $i \in I_{N} \backslash J$, it follows that a necessary condition for p to be a repellor on Σ is that p must be saturated in reversed time. Combining Theorems 5.1 and 7.1, we have obtained sufficient conditions for an equilibrium p saturated in reversed time to be globally repelling on Σ if p has at most one zero component (i.e. $|J| \geq N-1$). However, if p has more than one zero components, our theorems for global repulsion are not applicable. Does the geometric method used here still have the power to deal with the problem of global repulsion when $|J|<N-1$? This is left as an open problem.

Appendix

The proofs of Propositions 2.2 and 2.3 are given below.
Proof of Proposition 2.2. (i) and (ii) are straightforward from the definitions of convexity and concavity of a surface and convexity of a set.
(iii) Taking any $x, y \in \Gamma$ with $\alpha<G(0)$ in the range of G, by the convexity of G we have

$$
\begin{equation*}
\forall s \in[0,1], G(s x+(1-s) y) \geq s G(x)+(1-s) G(y)=s \alpha+(1-s) \alpha=\alpha \tag{51}
\end{equation*}
$$

Since $0 \in \Gamma^{-}$and $G(0)>\alpha$, we must have $G(w)>\alpha$ for all $w \in \Gamma^{-}$. So $s x+(1-s) y \in \Gamma^{-} \cup \Gamma$ for all $s \in[0,1]$. This shows that Γ is convex.
(iv) Since $-G$ is convex, for any $\alpha>G(0)$ in the range of G and $x, y \in \Gamma$, we have

$$
\begin{equation*}
\forall s \in[0,1],-G(s x+(1-s) y) \geq-s G(x)-(1-s) G(y)=-s \alpha-(1-s) \alpha=-\alpha \tag{52}
\end{equation*}
$$

So $G(s x+(1-s) y) \leq \alpha$ for all $s \in[0,1]$. Then $G(0)<\alpha$ and $0 \in \Gamma^{-}$imply $G(w)<\alpha$ for all $w \in \Gamma^{-}$. Thus, $s x+(1-s) y \in \Gamma^{-} \cup \Gamma$ for all $s \in[0,1]$, so Γ is convex.
(v) Since G is convex, (51) holds for all $x, y \in \Gamma$ with $\alpha>G(0)$ in the range of G. Since $0 \in \Gamma^{-}$and $G(0)<\alpha$, we must have $G(w)<\alpha$ for all $w \in \Gamma^{-}$and $G(w) \geq \alpha$ for all $w \in \Gamma \cup \Gamma^{+}$. It then follows from (51) that $\overline{x y} \subset \Gamma \cup \Gamma^{+}$, so Γ is concave.
(vi) Since $-G$ is convex, (52) holds for all $x, y \in \Gamma$ with $\alpha<G(0)$ in the range of G. Since $0 \in \Gamma^{-}$and $G(0)>\alpha$, we must have $G(w)>\alpha$ for all $w \in \Gamma^{-}$and $G(w) \leq \alpha$ for all $w \in \Gamma \cup \Gamma^{+}$. It then follows from (52) that $\overline{x y} \subset \Gamma \cup \Gamma^{+}$. This shows the concavity of Γ.

Proof of Proposition 2.3. Note that the sign of $G(x)-\alpha$ on Γ^{-}is opposite to that on Γ^{+}. We first assume $G(x)-\alpha<0$ for $x \in \Gamma^{-}$and $G(x)-\alpha>0$ for $x \in \Gamma^{+}$.
(a) From the convexity of Γ and Proposition 2.2 (ii), $\Gamma^{-} \cup \Gamma$ is a convex set. So, for each $x \in \Gamma^{-} \cup \Gamma \backslash\{u\}, \overline{x u} \subset \Gamma^{-} \cup \Gamma$. Thus,

$$
\begin{equation*}
\forall s \in[0,1], G(s x+(1-s) u)-G(u)=G(u+s(x-u))-\alpha \leq 0 \tag{53}
\end{equation*}
$$

From this it follows that

$$
D_{\overrightarrow{u x}} G(u)=\lim _{s \rightarrow 0^{+}} \frac{1}{s}[G(u+s(x-u))-G(u)] \leq 0
$$

Since the directional derivative of G satisfies

$$
D_{\overrightarrow{u x}} G(u)=\nabla G(u) \frac{(x-u)}{\|x-u\|}=\frac{1}{\|x-u\|} \nabla G(u)(x-u)
$$

we obtain $\nabla G(u)(x-u) \leq 0$ for all $x \in \Gamma^{-} \cup \Gamma$. This shows that $\Gamma^{-} \cup \Gamma$ is on one side of $T_{u}(\Gamma)$. As $0 \in \Gamma^{-}$and 0 is below $T_{u}(\Gamma)$, the set $\Gamma^{-} \cup \Gamma$ is below $T_{u}(\Gamma)$ and so is Γ.

To show that Γ is above $L(\Gamma)$, we need only show that $L(\Gamma)$ is below Γ, i.e. $L(\Gamma) \subset \Gamma^{-} \cup \Gamma$. If R_{i}, R_{j} exist for some distinct $i, j \in I_{N}$, as $R_{i}, R_{j} \in \Gamma$, by the convexity of Γ and Proposition 2.2 (i), $\overline{R_{i} R_{j}} \subset\left(\Gamma^{-} \cup \Gamma\right) \cap L(\Gamma)$. If R_{i} exists but R_{j} does not exist, then $J_{j} \subset \Gamma^{-}$. Let $Q_{j} \in J_{j}$ with v_{j} as its j th component. Then $\overline{R_{i} Q_{j}} \subset \Gamma^{-} \cup \Gamma$. As the half line $L_{\left(R_{i}\right) j}$ passing through R_{i} and parallel to J_{j} lies in $L(\Gamma)$, by the definition of $L(\Gamma)$, and is the limit of $\overline{R_{i} Q_{j}}$ as $v_{j} \rightarrow+\infty$, we also have $L_{\left(R_{i}\right) j} \subset\left(\Gamma^{-} \cup \Gamma\right) \cap L(\Gamma)$. This shows that each one-dimensional edge of $L(\Gamma)$ is contained in $\Gamma^{-} \cup \Gamma$. Since $\Gamma^{-} \cup \Gamma$ is convex and $L(\Gamma)$ is both convex and concave, for any $x, y \in\left(\Gamma^{-} \cup \Gamma\right) \cap L(\Gamma)$, we must have $\overline{x y} \subset\left(\Gamma^{-} \cup \Gamma\right) \cap L(\Gamma)$. As each two-dimensional face of $L(\Gamma)$ consists of $\overline{x y}$ with x, y taking all the points in two onedimensional edges, all two-dimensional faces of $L(\Gamma)$ are contained in $\Gamma^{-} \cup \Gamma$. Repeating this process a finite number of times, we obtain $L(\Gamma) \subset \Gamma^{-} \cup \Gamma$. Hence, $L(\Gamma)$ is below Γ.
(b) By the concavity of Γ and Proposition 2.2 (ii), $\Gamma \cup \Gamma^{+}$is convex. So, for any $x \in$ $\Gamma \cup \Gamma^{+} \backslash\{u\}$, we have $\overline{x u} \subset \Gamma \cup \Gamma^{+}$. Thus,

$$
\begin{equation*}
\forall s \in[0,1], G(s x+(1-s) u)-G(u)=G(u+s(x-u))-\alpha \geq 0 \tag{54}
\end{equation*}
$$

from which follows $D_{\vec{u} \vec{x}} G(u) \geq 0$. As $D_{\vec{u} \vec{x}} G(u)=\frac{1}{\|x-u\|} \nabla G(u)(x-u)$, we obtain $\nabla G(u)(x-$ $u) \geq 0$ for all $x \in \Gamma \cup \Gamma^{+}$. Thus, $\Gamma \cup \Gamma^{+}$is on one side of $T_{u}(\Gamma)$. We shall see that

$$
\begin{equation*}
\forall w \in \Gamma, \mathbb{R}_{+}^{N}(w)=\left\{x \in \mathbb{R}_{+}^{N}: x \geq w\right\} \subset \Gamma \cup \Gamma^{+} \tag{55}
\end{equation*}
$$

So, from this follows $\mathbb{R}_{+}^{N}(u) \subset \Gamma \cup \Gamma^{+}$since $u \in \Gamma$. As $2 u \in \mathbb{R}_{+}^{N}(u)$ so $2 u \in \Gamma \cup \Gamma^{+}$, we have $\nabla G(u)(2 u-u)=\nabla G(u) u \geq 0$. This together with $\nabla G(u) u \neq 0$ implies that $\nabla G(u) u>0$ and $\nabla G(u)(0-u)<0$. Thus, $\Gamma \cup \Gamma^{+}$is on one side of $T_{u}(\Gamma)$ but 0 is on the other side of $T_{u}(\Gamma)$. Since 0 is below $T_{u}(\Gamma)$ by definition, $\Gamma \cup \Gamma^{+}$is above $T_{u}(\Gamma)$ and so is Γ.
To show that Γ is below $L(\Gamma)$, we need only show that $L(\Gamma)$ is above Γ, i.e. $L(\Gamma) \subset \Gamma \cup \Gamma^{+}$. For this purpose, we first show (55). We claim that $L_{(w) i} \subset \Gamma \cup \Gamma^{+}$for all $i \in I_{N}$. Indeed, if R_{i} does not exist, then the half line $L_{(w) i}$ lies in $\Gamma \cup \Gamma^{+}$by assumption. If R_{i} exists, then, for any $Q_{i} \in J_{i}$ with v_{i} as its i th component and $Q_{i}>R_{i}$, by the convexity of $\Gamma \cup \Gamma^{+}$and $Q_{i}, w \in \Gamma \cup \Gamma^{+}$, we have $\overline{w Q_{i}} \subset \Gamma \cup \Gamma^{+}$. Since $L_{(w) i}$ is the limit of $\overline{w Q_{i}}$ as $v_{i} \rightarrow+\infty$, we also have $L_{(w) i} \subset \Gamma \cup \Gamma^{+}$. Then it follows from the convexity of $\Gamma \cup \Gamma^{+}$that

$$
L_{(w) i} \times L_{(w) j}=\left\{s x+(1-s) y: x \in L_{(w) i}, y \in L_{(w) j}, s \in[0,1]\right\} \subset \Gamma \cup \Gamma^{+}
$$

for all $i, j \in I_{N}$. Since $\mathbb{R}_{+}^{N}(w)=L_{(w) 1} \times L_{(w) 2} \times \cdots \times L_{(w) N}$, repeating the above process a finite number of times, we have shown (55).
Now if $R_{i}, R j$ exist for some distinct $i, j \in I_{N}, \overline{R_{i} R_{j}}$ is a one-dimensional edge of $L(\Gamma)$ and $\overline{R_{i} R_{j}} \subset \Gamma \cup \Gamma^{+}$by the convexity of $\Gamma \cup \Gamma^{+}$. If R_{i} exists but R_{j} does not exist, then $L_{\left(R_{i}\right) j}$ is a one-dimensional edge of $L(\Gamma)$ and $L_{\left(R_{i}\right) j} \subset \Gamma \cup \Gamma^{+}$by assumption. Thus, every one-dimensional edge of $L(\Gamma)$ is contained in $\Gamma \cup \Gamma^{+}$. Then, following the same reasoning as we did in part (a), we obtain $L(\Gamma) \subset \Gamma \cup \Gamma^{+}$, so $L(\Gamma)$ is above Γ.
The proof is complete under the assumption $G(x)-\alpha<0$ for $x \in \Gamma^{-}$and $G(x)-\alpha>0$ for $x \in \Gamma^{+}$. If $G(x)-\alpha>0$ for $x \in \Gamma^{-}$and $G(x)-\alpha<0$ for $x \in \Gamma^{+}$, the above proof is still valid after swapping " \leq " and " \geq " in (53), (54) and some related inequalities.

Acknowledgement

The author is grateful to the anonymous referees for their kind comments and helpful suggestions in revising the previous draft of this paper.

References

[1] S. Baigent and Z. Hou, Global stability of interior and boundary fixed points for Lotka-Volterra systems, Differential Equations Dynam. Systems 20 (2012), 53-66.
[2] M. W. Hirsch, Systems of differential equations that are competitive or coorperative. I: Limit sets, SIAM Journal on Mathematical Analysis 13 (1982), 167-179.
[3] M. W. Hirsch, Systems of differential equations that are competitive or coorperative. II: Convergence almost everywhere, SIAM Journal on Mathematical Analysis 16 (1985), 423-439.
[4] M. W. Hirsch, Systems of differential equations that are competitive or coorperative. III: Competing species, Nonlinearity 1 (1988), 51-71.
[5] Z. Hou and S. Baigent, Fixed point global attractors and repellors in competitive Lotka-Volterra systems, Dynamical Systems 26 (2011), 367-390.
[6] Z. Hou and S. Baigent, Global stability and repulsion in autonomous Kolmogorov systems, Communications in Pure and Applied Analysis 14 No. 3 (2015), 1205-1238.
[7] Z. Hou, Global attractor in autonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc. 127 No. 12 (1999), 3633-3642.
[8] Z. Hou, Global attractor in competitive Lotka-Volterra systems, Math. Nachr. 282 No. 7 (2009), 995-1008.
[9] Z. Hou, Geometric method for a global repellor in competitive Lotka-Volterra systems, Nonlinear Analysis 71 (2009), 3587-3595.
[10] J. Jiang and L. Niu, On the validity of Zeeman's classification for three-dimensional competitive differential equations with linearly determined nullclines, J. Differential Equations 263 (2017), 7753-7781.
[11] J. Jiang, L. Niu and D. Zhu, On the complete classification of nullcline stable competitive threedimensional Gompertz models, Nonlinear Analysis: RWA 20 (2014), 21-35.
[12] Y. Takeuchi, "Global dynamical properties of Lotka-Volterra systems", World Scientific, Singapore, 1996.
[13] Y. Yu, W. Wang and Z. Lu, Global stability of Gompertz model of three competitive populations, J. Math. Anal. Appl. 334 (2007), 333-348.
[14] M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynamics and Stability of Systems 8 (1993), 189-217.
[15] E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc. 355 (2003), 713-734.

E-mail address: z.hou@londonmet.ac.uk

[^0]: 1991 Mathematics Subject Classification. Primary: 37B25; Secondary: 37C70, 34D23, 34D05, 92D25.
 Key words and phrases. equilibrium point, global attraction, global repulsion, global asymptotic stability, geometric method.

