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Key points 13 

 Combined geophysical and petrological constraints provide a detailed picture of the sub-14 

volcanic architecture at Wolf volcano. 15 

 Wolf is underlain by two discrete magma storage regions: one within the edifice, the other in 16 

the lower crust. 17 

 Almost all the magma ejected during the 2015 eruption of Wolf was derived from the lower 18 

crust.  19 



Abstract 20 

The 2015 eruption of Wolf volcano was one of the largest eruptions in the Galápagos Islands since the 21 

onset of routine satellite-based volcano monitoring. It therefore provides an excellent opportunity to 22 

combine geophysical and petrological data, to place detailed constraints on the architecture and 23 

dynamics of sub-volcanic systems in the western archipelago. We present new geodetic models which 24 

show that pre-eruptive inflation at Wolf was caused by magma accumulation in a shallow flat-topped 25 

reservoir at ~1.1 km, whereas edifice-scale deformation during the eruption was related to a 26 

deflationary source at 6.1–8.8 km. Petrological observations suggest that the erupted material was 27 

derived from both a sub-volcanic mush and a liquid-rich magma body. Using a combination of 28 

olivine-plagioclase-augite-melt (OPAM) and clinopyroxene-melt barometry, we show that the 29 

majority of magma equilibration, crystallisation and mush entrainment occurred at a depth equal to or 30 

greater than the deep geodetic source, with little petrological evidence of material sourced from 31 

shallower levels. Hence, our multidisciplinary study does not support a fully trans-crustal magmatic 32 

system beneath Wolf volcano before the 2015 eruption, but instead indicates two discrete storage 33 

regions, with a small magma lens at shallow levels and the major zone of magma storage in the lower 34 

crust, from which most of the erupted material was sourced. A predominance of lower crustal magma 35 

storage has previously been thought typical of sub-volcanic systems in the eastern Galápagos 36 

Archipelago, but our new data suggest that this may also occur beneath the more active volcanoes of 37 

the western archipelago.  38 



1. Introduction 39 

Determining the crustal-scale architecture of magma plumbing systems is essential for understanding 40 

sub-volcanic processes, such as crystallisation, magma mixing, mush formation and assimilation, as 41 

well as recognising critical pre-eruptive ‘warning’ signs in volcano monitoring data. Before and 42 

during eruptions, magma storage depths can be inferred from geophysical and geochemical 43 

observations at the Earth’s surface, including ground deformation [Amelung et al., 2000; Biggs et al., 44 

2009; Hooper et al., 2004; Ofeigsson et al., 2011], seismic activity [Aspinall et al., 1998; Davidge et 45 

al., 2017; Gudmundsson et al., 1994], and gas emissions [Burton et al., 2007; McCormick Kilbride et 46 

al., 2016]. Following eruptions, storage depth estimates can be obtained from petrological analyses of 47 

erupted material, through the application of experimentally-calibrated geobarometers [Putirka, 2008; 48 

Ridolfi et al., 2010; Yang et al., 1996]. Geophysical and petrological constraints are not often 49 

combined to study the architecture of sub-volcanic systems, largely because both datasets are seldom 50 

simultaneously available for the same eruptions [Jay et al., 2014]. In the rare circumstance where both 51 

robust geophysical datasets and rock samples are available, integration can provide better constraints 52 

on magma storage depths, additional information about the structure and dynamics of magma 53 

plumbing systems, and an improved understanding of the processes responsible for pre-eruptive 54 

monitoring signals [Gudmundsson et al., 2016; Halldórsson et al., 2018; Hartley et al., 2018; Jay et 55 

al., 2014; Klügel et al., 2015; Laeger et al., 2017; Longpré et al., 2014; Magee et al., 2018; Stock et 56 

al., 2018]. 57 

The Galápagos Archipelago is one of the most volcanically active regions on Earth, with eruptions 58 

typically occurring every 2 years on average, and therefore provides a natural laboratory for 59 

volcanology and other Earth sciences [e.g. Harpp et al., 2014]. The most recent eruption of Wolf 60 

volcano, located in the north of Isabela Island (Fig. 1), occurred between 25 May – 11 July 2015 and 61 

produced ~116·10
6
 m

3
 of basaltic lava (Bernard et al., 2018), making it one of the most voluminous 62 

eruptions in the Galápagos Islands in recent years. Interferometric Synthetic Aperture Radar (InSAR) 63 

surface displacement measurements have recorded ground motion at Wolf since 1992 [Fig. 1a; 64 

Bagnardi, 2014], providing the means to track magma accumulation beneath the surface over more 65 



than two decades prior to the 2015 eruption. InSAR data also well image surface displacements 66 

caused by dike intrusion and magma withdrawal during the eruption, offering an excellent opportunity 67 

to integrate petrological and geophysical techniques to obtain a comprehensive picture of the 68 

magmatic plumbing system at an active ocean island volcano. Petrological data from the 2015 69 

eruption allow detailed examination of previously incompletely studied crystallisation conditions and 70 

crustal magma processing in the Galápagos Archipelago. 71 

In this study, we present new geodetic models constrained by inversions of InSAR data at Wolf 72 

volcano that accurately constrain the depths of pre- and syn-eruptive sources of deformation 73 

interpreted as potential areas of magma storage. We then undertake geochemical analysis of erupted 74 

material and apply recently developed petrological barometers to establish the pressures of 75 

crystallisation, mush entrainment, and magma storage and equilibration in the sub-volcanic system. 76 

We show that comparing geophysical constraints with independent petrological barometers can 77 

provide mutual verification of results and additional detail about the dynamics and architecture of 78 

sub-volcanic systems. This represents the most detailed study of magma storage depths in the 79 

Galápagos Archipelago to date and the first attempt to quantitatively reconcile geochemical and 80 

geophysical results. Our results are widely applicable to interpreting sub-volcanic processes in the 81 

active western Galápagos Archipelago where previous geodetic studies have detected similar patterns 82 

of deformation [e.g. Bagnardi and Amelung, 2012], and may be important for informing future 83 

volcano monitoring. Furthermore, by robustly applying petrological and geophysical methods, 84 

accounting for the uncertainties in both datasets, we highlight the utility of multidisciplinary 85 

approaches to studying the structure of sub-volcanic systems globally. 86 

2. Geological Background 87 

The western sub-province of the Galápagos Archipelago comprises seven distinct volcanic centres on 88 

the islands of Isabela and Fernandina (Fig. 1). These are proximal to the upwelling Galápagos plume 89 

and are characterised by frequent eruptive activity relative to the older volcanoes in the eastern 90 

archipelago [Geist et al., 2014; Harpp and Geist, 2018; Villagómez et al., 2014]. The western 91 



Galápagos volcanoes likely emerged <500 kyr ago [Kurz and Geist, 1999] and the erupted products 92 

are dominantly basaltic lava and near-vent tephra [Geist et al., 2014]. 93 

Wolf is the highest volcano in Galápagos, reaching 1710 m above sea level, and has an ‘inverted-soup 94 

bowl’ morphology, typical of the western sub-province shields [McBirney and Williams, 1969]. The 95 

volcano is topped by a well-developed caldera (6 km diameter, 700 m deep), which formed through 96 

multiple collapse events [Munro and Rowland, 1996]. It sits on the north-western extremity of the 97 

Galápagos Platform on top of ~11 km thick, ~10 Myr old oceanic crust [Feighner and Richards, 98 

1994; Wilson and Hey, 1995]. There have been 12 reported basaltic lava eruptions at Wolf volcano in 99 

the past 220 years [eight in the last century; Siebert et al., 2011], which occurred either from 100 

circumferential fissures on the caldera rim or radial fissures on the flanks [Chadwick and Howard, 101 

1991]. Before 2015, the most recent eruption was in 1982, which produced lavas from a vent within 102 

the caldera and a secondary fissure on the southeast flank [Geist et al., 2005]. Past Wolf eruptions 103 

sampled melts that are enriched in incompatible trace elements, similar to other western Galápagos 104 

volcanoes, but show a long-term isotopic depletion in their mantle source, analogous to mid-ocean 105 

ridge basalt [MORB; Geist et al., 2005]. The erupted melts have remarkably homogeneous MgO 106 

concentrations (typically 5.5–6.5 wt%), interpreted as evidence for thermal and compositional 107 

buffering of the magmatic system [maintained at ~1150 +/− 11 °C; Geist et al., 2005]. In contrast, the 108 

Al2O3 concentrations of pre-2015 lavas (i.e. whole-rock samples) vary significantly, due to 109 

plagioclase accumulation from the erosion of a sub-volcanic mush zone [Geist et al., 2005]. 110 

2.1. Previous constraints on Galápagos magma storage depths 111 

Due to their remoteness, our knowledge of magma storage depths beneath Galápagos volcanoes is 112 

largely based on remote sensing data (almost exclusively space-geodetic data), with limited 113 

petrological constraints. On long timescales, most volcanoes in the western archipelago show 114 

protracted ground uplift, related to shallow magma accumulation in flat-topped reservoirs at 1–2 km 115 

depth beneath the surface [Amelung et al., 2000; Bagnardi and Amelung, 2012; Bagnardi et al., 2013; 116 

Chadwick et al., 2011; Xu et al., 2016; Yun et al., 2006]. Long-term subsidence, possibly related to 117 



crystallisation and contraction of a shallow magma body at ~3 km depth, has also been observed at 118 

Alcedo [Hooper et al., 2007]. Evidence for additional, deeper magma storage at >5 km has been 119 

identified in InSAR data from Fernandina [Bagnardi and Amelung, 2012; Bagnardi et al., 2013; 120 

Chadwick et al., 2011], Cerro Azul [Bagnardi and Hooper, 2018] and Wolf volcano [Xu et al., 2016], 121 

and by seismicity patterns at Sierra Negra [Davidge et al., 2017]. There are currently no geodetic 122 

constraints on magma storage depths beneath volcanoes in the eastern Galápagos Archipelago, due to 123 

the infrequency of historic eruptions [Siebert et al., 2011] and the apparent absence of clear inter-124 

eruptive deformation. 125 

Current petrological constraints on Galápagos magma storage depths rely entirely on comparison of 126 

whole-rock lava compositions with the parameterisation of the MORB olivine + plagioclase + augite 127 

+ melt (OPAM) pseudo-invariant point defined by Grove et al. [1992]. These comparisons were made 128 

by eye and, in the western archipelago, individual eruptions return a wide range of magma storage 129 

pressures between 1 bar and 3 kbar [i.e. 0–11 km depth; Geist et al., 1998; Naumann et al., 2002]. 130 

Together with geophysical constraints and other petrological observations, these barometric estimates 131 

have been used to construct a general model of the magmatic systems, in which western Galápagos 132 

volcanoes are underlain by vertically extensive mush columns, capped by shallow liquid-rich magma 133 

reservoirs [Cerro Azul is an exception as there is no evidence for shallow magma storage; Geist et al., 134 

2014]. The amount of magma processing at different crustal levels and the extent of mixing between 135 

magma batches from different storage regions remain unconstrained [Geist et al., 2014]. In contrast 136 

with the western Galápagos volcanoes, petrological analyses from the eastern archipelago return 137 

storage pressures >5 kbar [Geist et al., 1998]. This is interpreted as indicating a different style of sub-138 

volcanic architecture, in which magmas are stored almost exclusively in the mid-to-lower crust 139 

[Harpp and Geist, 2018]. 140 

3. The 2015 Wolf eruption 141 

After 33 years of quiescence, Wolf volcano began erupting on the 25 May 2015 from an ~800 m long 142 

circumferential fissure on the southeast side of the caldera (Fig. 1c). Eyewitnesses on the west flank 143 



of the volcano report the onset of eruption between 00.30 and 00.45 (local time) on 25 May, when 144 

they felt seismicity and observed an ash plume, illuminated by lava incandescence and volcanic 145 

lightning (David Anchundia [an eyewitness to the eruption], personal communication). The eruption 146 

was accompanied by a series of seismic events, recorded by an Instituto Geofisico seismometer on 147 

Fernandina (FER1), beginning at 23:50 on 24 May and culminating with the largest event (M3.8) at 148 

00:58 on 25 May (www.igepn.edu.ec/servicios/noticias/1007-informe-especial-galapagos-no-2-2015). 149 

The first direct observation of erupted lava flows was by the crew of the La Pinta tourist ship at 150 

01:29. During this initial phase, the NASA Ozone Monitoring Instrument recorded a major plume 151 

extending northwest from the vent and a subsidiary plume extending eastwards; this transported 152 

cryptotephra that was detected >1000 km away in Quito [Bernard et al., 2015]. 153 

The first lavas produced in the 2015 eruption flowed down the flanks of the volcano and were 154 

associated with a >100 m high lava fountain from the southeast summit fissure. Lava initially moved 155 

southeast, reaching ~9 km from the vent. After 1–2 days the southeast flow stopped, and activity 156 

transitioned to the east flank of the volcano (Fig. 1c). The eastern lava flow reached the sea (~7 km 157 

from the vent) between 26–27 May and the circumferential fissure stopped erupting on 2 June. After a 158 

hiatus, the eruption briefly resumed from the circumferential fissure on 11 June, before switching to a 159 

vent within the caldera on the southeast side on 13 June, producing flows that covered much of the 160 

caldera floor (Fig. 1c). The eruption ended on 11 July. In total, ~63·10
6
 m

3
 of lava were emplaced 161 

during the circumferential fissure phase of the eruption (i.e. flows on the volcano flanks), with a 162 

further ~53·10
6
 m

3
 erupted during the subsequent caldera-fill phase (Bernard et al., 2018). The 163 

detailed chronology and phenomenology of the eruption is the subject of an ongoing investigation. 164 

Multi-platform surface deformation measurements from InSAR data acquired in the years prior to the 165 

2015 eruption show a ~0.6 m net intra-caldera inflationary signal between 1992 and 2009 and no 166 

deformation between 2009 and late-2010 [Fig. 1a; Bagnardi, 2014], when routine InSAR data 167 

coverage ceased. Poor temporal sampling during 1992–2000 does not allow time-integrated studies of 168 

the deformation during this period but data acquired after 2000 have shown near continuous uplift at a 169 

rate of ~0.045 cm/yr until the end of 2008. Routine InSAR coverage resumed in December 2014 with 170 



the launch of the European Space Agency’s Sentinel-1 satellite mission, and co-eruptive surface 171 

displacements present a complex pattern that has been interpreted as the superposition of deformation 172 

caused by the intrusion of two subvertical dikes feeding the eruptive fissures and the deflationary 173 

signal produced by magma withdrawal from two sources, located at ~1 and ~5 km depth, respectively 174 

[Xu et al., 2016]. The shallow deflationary source correlates with the depth of pre-eruptive inflation 175 

between 1992–1997 [Fig. 1a; Amelung et al., 2000] and 2004–2008 [De Novellis et al., 2017]. The 176 

constraints on the deeper source placed by Xu et al. [2016] may be affected by the use of an 177 

incomplete dataset that does not appropriately include displacements in the far field, south of the 178 

volcanic edifice. Far-field deformation measurements are, in fact, diagnostic of source depth. We 179 

therefore reanalyse pre- and syn-eruptive surface deformation data with the aim of placing robust 180 

constraints on the depths of both magma storage regions and estimate the associated uncertainties 181 

using a congruent approach. 182 

4. Data, samples and methods 183 

4.1. InSAR data and geodetic modelling 184 

To estimate source parameters for the shallower deformation source, we use synthetic aperture radar 185 

(SAR) data acquired during the long-term pre-eruptive inflationary period by the European Space 186 

Agency’s (ESA) ENVISAT satellite (Fig. 2). The use of pre-eruptive data allows us to avoid a 187 

complicated signal deconvolution otherwise needed for the syn-eruptive data [Xu et al., 2016]. We 188 

process 45 SAR images from an ascending track (T061) and 44 images from a descending (T140) 189 

track, acquired between January 2004 and December 2008 with a minimum repeat pass of 35 days. 190 

The SAR data are used to form interferograms with short temporal and perpendicular baselines to 191 

maximise coherence and minimise topographic errors. For each track we apply a chain stacking 192 

approach [e.g. Biggs et al., 2007], where we sum the unwrapped interferometric phase of temporally 193 

consecutive interferograms to generate cumulative surface displacements maps spanning the five-year 194 

interval (Fig. 2a,d). In this approach, the second image used to form each interferogram (commonly 195 

referred to as slave image) is the reference image (commonly referred to as master image) used to 196 



form the following interferogram, such that orbital and atmospheric contributions from images in the 197 

middle of the chain cancel out, and only those relative to the first master and last slave remain.  198 

To estimate source parameters for the deeper source, we use SAR data acquired by ESA’s Sentinel-1 199 

satellite and spanning the 2015 eruption (Fig. 3). Large-scale surface displacements caused by 200 

pressure changes in a deeper magma reservoir are, in fact, only observed during this eruption. 201 

Sentinel-1 syn-eruptive data are only available for the descending pass of the satellite (track T128) 202 

and are acquired in the Terrain Observation by Progressive Scans (TOPS) mode. We form three 203 

Sentinel-1 independent interferograms (i.e. using different image pairs), one during the 204 

circumferential fissure eruptive phase (18 May 2015 – 30 May 2015; Fig. 3a), one spanning the 205 

caldera-fill eruptive phase (11 June 2015 – 23 June 2015; Fig. 3d), and a third one measuring the 206 

displacements associated with both phases (6 May 2015 – 5 July 2015; Fig 3g). Given the complex 207 

deformation pattern within and around the summit caldera caused by the convoluted effect of the 208 

opening of the subvertical feeder dikes and shallow source deflation [De Novellis et al., 2017; Xu et 209 

al., 2016], we mask out a sub-circular area around the caldera and only use far field data [e.g. 210 

Bagnardi and Amelung, 2012]. The extent of the mask is constrained using source parameters for the 211 

shallower source and the feeder dikes estimated by Xu et al. [2016]. We observe that these sources 212 

produce line-of-sight displacements that are <0.01 m at radial distances >6 km from the centre of the 213 

caldera (grey ellipses in Figure 3). 214 

All interferograms are formed using the InSAR Scientific Computing Environment (ISCE) software 215 

[Rosen et al., 2015] and by applying conventional differential InSAR processing techniques for 216 

stripmap (Envisat) and TOPS (Sentinel-1) data. Topographic contributions to the interferometric 217 

phase are removed using the NASA Shuttle Radar Topography Mission 30-m resolution digital 218 

elevation model [Farr et al., 2007], and interferograms are phase-unwrapped using the Snaphu 219 

unwrappper [Chen and Zebker, 2000] implemented in ISCE. A list of SAR acquisitions, 220 

interferograms, and radar look vector information, are provided in the Supporting Information. 221 



Deformation source parameters and uncertainties are estimated using a Bayesian approach 222 

implemented in the Geodetic Bayesian Inversion Software [GBIS; Bagnardi and Hooper, 2018]. The 223 

inversion algorithm samples posterior probability density functions (PDFs) of source parameters using 224 

a Markov chain Monte Carlo method, incorporating the Metropolis-Hastings algorithm, with 225 

automatic step size selection. Posterior PDFs are calculated considering errors in the InSAR data, 226 

which we directly quantify using experimental semivariograms to which we fit an unbounded 227 

exponential one-dimensional function with a nugget [Bagnardi and Hooper, 2018]. The exponential 228 

function is then used to populate the data variance-covariance matrix. 229 

We jointly invert the cumulative displacement maps from the Envisat contemporary pre-eruptive data 230 

and estimate source parameters for the shallower source, which we model as a horizontal rectangular 231 

dislocation with uniform opening [Okada, 1985]. For the Sentinel-1 data, we independently invert 232 

each syn-eruptive masked interferogram spanning the different phases of the eruption and infer source 233 

parameters for the deeper source, which we model as a finite spherical pressure source with fixed 234 

radius r = 1000 m [McTigue, 1987]. Other source types with more complex geometries were tested 235 

but did not provide statistically significant improvements in reproducing the observed surface 236 

displacements. We therefore opted for the source geometry with the lowest number of parameters. 237 

Since the elevation range spanned by the InSAR measurements is in all cases <1000 m and the 238 

average height of data points is 310 m above sea level, we do not consider the effect of topography 239 

when estimating surface displacements. Prior to inversions, all InSAR datasets are subsampled using 240 

an adaptive quadtree sampling [Decriem et al., 2010] to reduce the computational burden when 241 

calculating the inverse of the data variance-covariance matrix and in forward model calculations. 242 

Quadtree is an efficient gradient-based subsampling method that maintains a higher density of data 243 

points in areas characterised by higher displacement gradients and vice versa. The algorithm 244 

recursively divides a dataset into sets of four polygons until the phase variance of the points within a 245 

polygon is below a given threshold. For all models, we assume that the deformation sources are 246 

embedded in an isotropic elastic half-space with Poisson’s ratio   = 0.25. Since no detailed prior 247 

information on the deformation source parameters are available, prior probability distributions are 248 



assumed to be uniform between geologically realistic bounds. In each inversion, posterior PDFs are 249 

sampled through 10
6
 iterations. Depth estimates are referred to as distance from the surface. 250 

4.2. Petrological samples and methods 251 

Petrological samples were collected from the east flank of Wolf volcano during fieldwork in June 252 

2017 (Fig. 1b). All material was unaltered and collected from low-vesicularity flow interiors where 253 

possible. The six lava samples selected for this study are from different flow lobes that formed during 254 

2015 and cover the entire timespan of the initial circumferential fissure phase of the eruption. Intra-255 

caldera lavas were inaccessible. Tephra samples were also collected from seven locations on the east 256 

coast of the volcano. No tephra was found on top of any lava flows that formed in 2015, including the 257 

initial southeast flow lobe, and we therefore infer that it was expelled during the high lava fountaining 258 

episode at the onset of eruption [Bernard et al., 2015]. 259 

Lava samples were prepared for microanalysis as polished thin sections. Scoria samples were crushed, 260 

and heavy liquid and magnetic separation techniques were used to separate pyroxene crystals from the 261 

40–500 μm size fraction. Crystals and glass fragments were mounted in epoxy, ground and polished 262 

for analysis. Samples were examined by back-scattered electron (BSE) imaging to characterise 263 

pyroxene zoning patterns and assess glass fragments for the presence of microlites using an FEI 264 

Quanta 650F scanning electron microscope (SEM) in the Department of Earth Sciences, University of 265 

Cambridge, operating with a 15 kV beam and spot size 4.5–5. 266 

Crystal and glass major and trace elements were analysed using a Cameca SX100 electron microprobe 267 

in the Department of Earth Sciences, University of Cambridge. Clinopyroxene was analysed using a 268 

15 kV, 20 nA, defocussed (5 μm) beam. Glass measurements were made using a 15kV, 6 nA, 269 

defocussed (10 μm) beam for most elements, with alkalis and SiO2 analysed first to minimise the 270 

effects of electron beam-induced sample damage. SO2, Cr2O3 and MnO were measured in a second 271 

glass analysis at 10 nA but Cr2O3 was consistently below detection limits. Typical peak counting 272 

times were 10–30 s for major elements and 30–90 s for minor elements. Pyroxene crystals were 273 

analysed in different textural associations (i.e. phenocrysts, glomerocrysts, tephra crystals) by point 274 



analysis or line transects, to characterise the zoning textures identified by SEM. Relative 2σ precision 275 

was estimated from repeat analyses of secondary standards and is typically better than ±5% for most 276 

elements, except Cr2O3 (±8.8%) and MnO (±34.1%) in clinopyroxene and SO2 (±11.1%), K2O 277 

(±17.4%), P2O5 (±17.8%) and MnO (±43.9%) in glass. To ensure consistency between analytical 278 

sessions, glass compositions were normalised using VG-2 as an internal standard [Jarosewich et al., 279 

1980]. All pyroxene formula recalculations are on a six-oxygen (6O) basis and phase components are 280 

defined according to Putirka [2008]. 281 

4.3. Thermobarometric modelling 282 

The OPAM barometer assesses the pressure-dependent position of the olivine–plagioclase–augite–283 

melt pseudo-invariant point [Grove et al., 1992], thus quantifying the pressure of magma 284 

equilibration. This was initially parameterised as a function of the melt XAl, XCa and XMg (where X is 285 

mole fraction) over a range of temperatures and melt major compositions by Yang et al. [1996]. We 286 

apply a recent reparameterization by Voigt et al. [2017], which accounts for the effects of oxygen 287 

fugacity (fO2) and melt Cr contents on the OPAM point location. Our calculations assume negligible 288 

melt Cr (based on our EPMA data) and FeO/FeO* = 0.85 (where FeO* is total FeO + Fe2O3), which 289 

approximates an fO2 close to the fayalite-magnetite-quartz buffer, similar to that measured by 290 

Peterson et al. [2015] in Galápagos lavas. A prerequisite of the OPAM approach is that liquids are 291 

multiply-saturated in olivine, plagioclase and clinopyroxene. Although visual assessment of 2015 292 

Wolf lavas suggests that these melts were multiply-saturated (i.e. all phases present, euhedral crystal 293 

forms, no resorption of crystal rims), this appraisal is qualitative and is not possible in low-294 

crystallinity tephra where crystals were extracted by density and magnetic separation (i.e. preserve no 295 

textural information). We therefore filter our input liquid compositions for multiple saturation using 296 

the approach of Hartley et al. [2018]. This calculates a probability factor for three-phase saturation 297 

(PF), with the OPAM model returning reliable pressures at PF >0.8. Although this filter falsely rejects 298 

a minority of multiply-saturated liquids, it minimises the OPAM uncertainty [Hartley et al., 2018]. 299 

The standard error of estimate (SEE) has not been quantified for the Voigt et al. [2017] 300 



parameterisation and we therefore assume a conservative SEE equal to that of the original Yang et al. 301 

[1996] model (±1.4 kbar). 302 

Clinopyroxene-melt thermobarometry estimates crystallisation conditions through pressure-sensitive 303 

jadeite component reactions [Putirka, 2008]. Putirka et al. [1996] developed the first barometric 304 

model relating clinopyroxene-melt equilibria to crystallisation pressures in basaltic systems and we 305 

utilise the most recent reparameterization with the lowest SEE [±1.4 kbar; Neave and Putirka, 2017]. 306 

Following Neave and Putirka [2017], we solve the barometric equations iteratively with the 307 

thermometric equation 33 of Putirka [2008; SEE ±28 °C]. Our calculations assume an anhydrous melt 308 

with FeO/FeO* = 0.85 [Peterson et al., 2015], consistent with our OPAM modelling. Robust 309 

application of clinopyroxene-melt thermobarometers requires identifying liquid compositions in 310 

equilibrium with analysed pyroxenes. To avoid biasing our results and to maximise the number of 311 

equilibrium clinopyroxene-melt pairs for barometry, we make no prior assumptions about the nature 312 

of liquids in equilibrium with our pyroxene crystals. Instead, we implement a melt-matching 313 

algorithm [as in Neave and Putirka, 2017; Winpenny and Maclennan, 2011], testing each of our 314 

pyroxene analyses against our tephra glass analyses and the whole-rock and submarine glass 315 

compositions of pre-2015 Wolf lavas measured by Geist et al. [2005]. Crystals with strong sector 316 

zoning are excluded after visual assessment [Neave and Putirka, 2017] and equilibrium liquids are 317 

identified where KD(Fe-Mg) is within ±0.03 of that predicted from a pyroxene analysis and diopside-318 

hedenbergite (DiHd), enstatite-ferrosillite (EnFs) and calcium Tschermak’s (CaTs) components are 319 

within 1 SEE [Mollo et al., 2013; Putirka, 1999; Putirka, 2008]. Where pyroxene analyses match with 320 

multiple input liquids within uncertainty of the equilibrium tests, we report mean pressure and 321 

temperature conditions estimated from all potential equilibrium liquids. 322 

Data are evaluated using kernel density estimates (KDEs), which give a non-parametric probability 323 

density function of a random variable, analogous to a smoothed frequency histogram but with a 324 

greater statistical significance [Rudge, 2008; Thomson and Maclennan, 2012]. The shape of a KDE 325 

curve strongly depends on the chosen bandwidth. To ensure that KDEs have physical meaning (i.e. all 326 

peaks are significant and no real peaks are smoothed out in data processing), we calculate the 327 



bandwidth with the method of Sheather and Jones [1991]. Although crustal density is not well 328 

constrained in Galápagos, the crustal velocity profile and Moho depth beneath Wolf are comparable to 329 

Hawaii [Hill and Zucca, 1987; Villagómez et al., 2011]. Hence, we convert pressures to depths using 330 

the polynomial Hawaiian depth vs pressure curve of Putirka [1997] and all depths are measured 331 

relative to the surface (i.e. the caldera floor). 332 

5. Results 333 

5.1. Geodetic modelling results 334 

The inversion of Envisat pre-eruptive InSAR data recording intra-caldera inflation confirms that it is 335 

best explained by opening of a ~1.8 x 2.3 km flat-topped source at 1.1 km depth (posterior PDFs for 336 

all parameters are shown in Supporting Fig. S1). A comparison between the observed displacements 337 

and those predicted using the maximum a posteriori probability solution is shown in Figure 2. 338 

In the case of the deeper source, inversions of the three Sentinel-1 syn-eruptive datasets provide 339 

source centroid depth estimates ranging between 6.1–8.8 km beneath the surface (posterior PDFs for 340 

all parameters are shown in Supporting Figs S2–S4). In detail, estimates based on InSAR data 341 

spanning the circumferential fissure phase of the eruption locate the source at 6.5–7.9 km, those for 342 

the caldera-fill phase at 6.1–7.5 km, and those for the entire event at 6.7–8.8 km depth (depth ranges 343 

express the 2.5 and 97.5 percentiles of posterior PDFs). Sources with maximum posteriori probability 344 

solutions are centred at 7 km, 6.7 km, and 7.6 km depth, respectively, and comparisons between the 345 

observed displacements and those predicted using the maximum posteriori probability solutions are 346 

shown in Figures 3b, 3e, and 3h. Our results estimate that this source is ~2 km deeper than inferred by 347 

Xu et al. [2016] who, in some cases, used the same InSAR data. This discrepancy is likely due to our 348 

use of far field data, which was excluded in the study of Xu et al. [2016]. 349 

5.2. Petrological results 350 

5.2.1. Sample petrography 351 



Lavas from the 2015 eruption are composed of vesicular porphyritic basalt. The groundmass is 352 

microcrystalline and contains acicular plagioclase laths, with anhedral olivine, clinopyroxene and 353 

ilmenite, and minor interstitial glass. Macrocrysts include euhedral plagioclase (<4 mm, ~5 vol.%) 354 

and euhedral or subhedral clinopyroxene (<1 mm, ~2 vol.%) and olivine (<1 mm, <1 vol.%). These 355 

occur in two principal textural associations: (1) isolated phenocrysts surrounded by groundmass and 356 

(2) gabbroic glomerocrystic aggregates containing two or more touching or intergrown crystals of 357 

plagioclase + clinopyroxene +/− olivine, with minor microcrystalline interstitial groundmass. Many 358 

plagioclase macrocrysts show evidence of synneusis. Tephra samples are highly vesicular reticulite, 359 

dominantly composed of quenched glass with very few microlites. Although the tephra is crystal poor, 360 

macrocrysts separated from the 40–500 μm size fraction include plagioclase, clinopyroxene and 361 

olivine (in decreasing modal abundance). No textural information is available from these crystal 362 

separates (i.e. it is not possible to distinguish between potential phenocrysts or glomerocrysts). 363 

Clinopyroxene zoning textures were studied to ensure thorough compositional characterisation of the 364 

crystal cargo from the 2015 eruption. Most crystals in lava samples show concentric oscillatory 365 

zoning, which is weak in phenocrysts but occasionally more strongly defined in glomerocrysts, with 366 

small internal resorption horizons. A minority of glomerocryst clinopyroxenes also include well-367 

defined cores, which are dark in back-scattered electron (BSE) images. These cores are not resorbed 368 

and are overgrown by oscillatory zoned mantles (Fig. 4a). Some phenocrystic and glomerocrystic 369 

pyroxenes additionally show minor sector zoning, with oscillatory zones cross-cutting sector 370 

boundaries. Only a very small number of crystals have strongly defined sector zones (Fig. 4b). 371 

Clinopyroxenes in both textural associations typically have a thin, well-defined rim zone, which is 372 

intergrown with groundmass microlites. This rim is concentric in phenocrysts but only occurs on 373 

crystal faces in contact with the groundmass in glomerocrysts (Fig. 4a,b). Our interpretation is that 374 

these rims grew within the lava flows at the surface. Clinopyroxene crystals in tephra samples are 375 

typically unzoned or have weak oscillatory zoning, like those in lava samples. A small number of 376 

tephra crystals are texturally distinct in BSE images, with zoning patterns that are absent in lava 377 

samples. These include clinopyroxenes with faint patchy zoning, a single analysed crystal with a 378 



concentric bright rim around an unzoned core (Fig. 4c), and rare crystals with highly resorbed bright 379 

cores, mantled by a concentric darker rim (Fig. 4d). The pyroxenes with highly resorbed cores contain 380 

abundant mineral and melt inclusions. Thin rim zones, analogous to those inferred to have grown at 381 

the surface in lava samples (Fig. 4c), are absent in crystals from tephra samples. 382 

5.2.2. Melt and pyroxene compositions 383 

Excluding Al2O3-enriched lavas that have accumulated feldspar, whole-rock analyses from pre-2015 384 

Wolf lavas plot with decreasing Al2O3 and CaO/Al2O3 and increasing incompatible element 385 

concentrations (e.g. K2O, TiO2) with decreasing MgO, consistent with olivine, plagioclase and 386 

clinopyroxene crystallisation [Fig. 5; Geist et al., 2005]. Our 2015 tephra glass analyses and 387 

submarine glass analyses from pre-2015 lavas [Geist et al., 2005] plot on the same compositional 388 

array. The tephra glasses have a narrow compositional range with 5.12–6.25 wt% MgO but are 389 

slightly heterogeneous outside of analytical uncertainty for most major elements (Supporting Table 390 

S1). They have intermediate compositions on the whole-rock array: most bulk lavas have more 391 

primitive compositions (higher MgO, lower incompatible elements) than the tephra glasses but a 392 

small number extend to more evolved compositions (Fig. 5). Pre-2015 submarine glasses are also 393 

more compositionally diverse than the 2015 tephra glass, extending to both more primitive and 394 

evolved compositions. 395 

Clinopyroxene crystals in lava samples are diopsidic (Di>96), with En40–49Fs9–16Wo39–46 (Supporting 396 

Table S2). They plot on a well-defined compositional trend, with a strong negative correlation 397 

between XMg and XTi, XAl and XNa (Fig. 6). Although there is overlap between populations, KDEs 398 

highlight a compositional distinction between pyroxene crystals in different textural associations (Fig. 399 

6a): glomerocrysts typically have high XMg (~0.86–0.88 on a 6O basis) and XCr (<0.026) relative to 400 

phenocrysts (XMg ~0.79, XCr <0.0089). All analyses from crystals with strong sector zoning (e.g. Fig. 401 

4b) diverge from the compositional trend towards high XMg and low XCa (Fig. 6), likely due to 402 

disequilibrium crystallisation at high growth rates [Mollo et al., 2010]. Clinopyroxene crystals from 403 

tephra samples are also diopside-rich (Di>95) but exhibit greater diversity in their enstatite and 404 



ferrosillite components than crystals from the lava (En19-47Fs9-38Wo35-46; Supporting Table S2). Most 405 

crystals from tephra samples plot on the same compositional trend as crystals from lava samples, with 406 

an XMg KDE peak at 0.85 (Fig. 6a), high XCr and low XTi and XAl. In general, these crystals are 407 

compositionally analogous to the glomerocrysts in lava samples, with only a small number correlating 408 

with the main phenocryst population. The tephra samples also contain a sub-set of clinopyroxene 409 

crystals that are compositionally distinct from those in lava samples, extending to very low XMg values 410 

(0.36–0.68) and very high XFe*. These crystals contain negligible XCr and are poor in XAl and XCa 411 

relative to crystals on the main compositional trend (Fig. 6). 412 

Oscillatory zoning textures observed in BSE images correspond with small fluctuations in the 413 

clinopyroxene major components (En, Fs, Wo). In lava crystals with defined core-mantle zonation 414 

(e.g. Fig. 4a), the cores are relatively SiO2 and MgO enriched and FeO*, CaO TiO2, Al2O3 and Cr2O3 415 

depleted, with higher a Mg# [XMg/(XMg+XFe*)] than the mantles. These cores are compositionally 416 

distinct from crystals with strong sector zoning, suggesting that they are not sectioning artefacts where 417 

sector zoned crystals are cut perpendicular to the c-axis [Welsch et al., 2016]. In the tephra crystal 418 

with a defined rim zone, the core plots on the main clinopyroxene compositional trend but the rim is 419 

Mg poor with a markedly lower Mg# (Fig. 4c). The lowest measured pyroxene XMg compositions (and 420 

highest XFe*) are in the crystals from tephra samples that have heavily resorbed cores or clear patchy 421 

zoning textures. In the former, the heavily resorbed crystal cores have very low Mg# and are 422 

overgrown by higher Mg# mantles (Fig. 4d). 423 

5.2.3. Thermobarometric modelling results 424 

We applied the OPAM barometer [Voigt et al., 2017] to 58 tephra glass analyses from the 2015 Wolf 425 

eruption. The statistical test for three-phase saturation returned acceptable results (PF >0.8) for ~60% 426 

of the input analyses. These high PF liquids have a restricted range of MgO contents between 5.55–427 

6.06 wt% and do not include either the most MgO rich or poor glass analyses (Fig. 7a). This does not 428 

preclude that these more primitive or evolved liquids were ternary saturated, as the statistical test can 429 

return false negatives [Hartley et al., 2018]. However, the results with PF <0.8 are excluded to ensure 430 

the reliability of barometric results. The mean pressure of magma equilibration obtained using the 431 



OPAM method is 2.8 ±0.7 kbar (1σ of calculated pressures). There is no correlation between OPAM 432 

pressures and any glass compositional parameter outside of model uncertainty and there is only a 433 

single peak in the probability distribution of OPAM pressure estimates (Fig. 7b). 434 

To identify equilibrium pairs for clinopyroxene-melt barometry, we tested 52 phenocryst and 280 435 

glomerocryst clinopyroxene analyses from lava samples and 170 clinopyroxene analyses from tephra 436 

samples against our tephra glass analyses from the 2015 eruption and the pre-2015 whole-rock and 437 

submarine glass analyses from Wolf volcano measured by Geist et al. [2005]. Matches were found for 438 

35 phenocryst, 162 glomerocryst and 73 tephra crystal analyses (Fig. 6). The equilibrium tests did not 439 

match any pyroxene analyses with Al2O3-enriched whole-rock analyses that include accumulated 440 

plagioclase and do not represent liquids (Fig. 5). In general, the most Mg-rich clinopyroxene analyses 441 

return equilibrium matches with the most primitive (high-MgO) liquids. Hence, lava glomerocrysts 442 

and crystals from tephra samples typically return equilibrium matches with liquids similar to more 443 

primitive whole-rock and submarine glass compositions and phenocrysts from lava samples typically 444 

match with liquids similar to evolved whole-rock, submarine glass or tephra glass analyses (Fig. 5a). 445 

In detail, pyroxene analyses often return equilibrium matches with both whole-rock and glass 446 

analyses, but we seek to avoid making a priori assumptions about the nature of equilibrium 447 

clinopyroxene-liquid pairs and hence average all potential liquids that match each pyroxene analysis; 448 

using glass or whole-rock compositions individually makes negligible difference to the barometric 449 

results. Equilibrium matches with our input liquids were almost exclusively restricted to pyroxene 450 

analyses that plot on the main compositional trend; very few equilibrium liquids were identified for 451 

the sub-set of crystals from tephra samples with low XMg contents and those that did return 452 

equilibrium matches are only slightly XMg-depleted relative to the main population at equivalent XAl 453 

(Fig. 6). 454 

In lava samples, clinopyroxene crystals in glomerocrysts return a mean clinopyroxene-melt 455 

crystallisation pressure of 2.8 ±0.6 kbar (1σ of calculated pressures). The probability distribution is 456 

not perfectly Gaussian, as a small number of analyses at the rims of glomerocrysts return markedly 457 

low pressures (~1 kbar). However, the mean pressure correlates with the major peak in the KDE (Fig. 458 



8a). Thermometric modelling of these pyroxenes gives an average crystallisation temperature of 1164 459 

±11 °C (1σ of calculated temperatures), with an irregular probability distribution, peaking at 1160 °C 460 

and 1173 °C (Fig. 8b). Clinopyroxene phenocrysts return a mean crystallisation pressure of 3.2 ±0.7 461 

kbar (peak at 3.3 kbar) and a lower average crystallisation temperature of 1151 ±9 °C, both with 462 

approximately normally distributed KDEs (Fig. 8). Clinopyroxene-melt barometric results for crystals 463 

from tephra samples have more complex probability functions than those from lava samples: they 464 

record average crystallisation pressures of 2.9 ±0.8 kbar but the probability distribution is skewed, 465 

with a peak at 3.1 kbar and a long tail towards lower pressures (Fig. 8a). Thermometric modelling of 466 

pyroxene crystals from tephra samples returns a similarly skewed distribution with an average 467 

crystallisation temperature of 1164 ±15 °C, the largest peak at 1170 °C, and a pronounced tail towards 468 

lower temperatures (Fig. 8b). Analyses that return the lowest pressure estimates for a given crystal are 469 

not necessarily at the rim, but the estimated pressures are within model uncertainty (SEE = ±1.4 kbar) 470 

of those calculated for points closer to the crystal exteriors. A single negative pressure estimate is 471 

within uncertainty of other low-pressure clinopyroxene-melt barometric results. 472 

Crystallisation pressures calculated from clinopyroxene-melt barometry do not show an obvious 473 

relationship with either the Mg# of pyroxene analyses (Fig. 8a) or their equilibrium liquids. However, 474 

there is a positive correlation between crystallisation temperatures and the Mg# of the pyroxene 475 

crystals (Fig. 8b) and their equilibrium liquids. Our most probable crystallisation temperatures agree 476 

well with the range of Wolf magma storage temperature estimated from MELTS models by Geist et 477 

al. [2005]. There is no clear connection between pyroxene zoning textures in lava samples and 478 

crystallisation conditions within the uncertainty of our dataset. In crystals from tephra samples, 479 

analyses from the core of the crystal with a low Mg# rim (Fig. 4c) return pressures close to the peak in 480 

the tephra clinopyroxene-melt barometry probability distribution and points slightly inside of the rim 481 

zone plot within the low-pressure tail. Crystallisation pressures could not be calculated for the low 482 

Mg# rim of this crystal, any zones within the tephra crystals with highly resorbed cores or the patchy 483 

zoned crystals, as they are not in equilibrium with any of our input liquids. 484 

6. Discussion 485 



6.1. Deciphering the Wolf crystal cargo 486 

Glomerocrysts in lavas from the 2015 Wolf eruption are texturally analogous to those in samples from 487 

other ocean islands, which are interpreted as fragments of disaggregated sub-volcanic mush [Holness 488 

et al., 2007; Neave et al., 2014; Sliwinski et al., 2015; Stock et al., 2012]. Abundant glomerocrysts in 489 

the products of other eruptions from the western Galápagos Archipelago [Chadwick et al., 2011; 490 

Cullen et al., 1989; Geist et al., 1995; Sinton et al., 1993] attest to sub-volcanic mush zones across the 491 

region [Geist et al., 2014]. At Wolf volcano, the presence of a gabbroic mush zone has previously 492 

been inferred from whole-rock data [Geist et al., 2005]. Although some phenocrysts in lavas from the 493 

2015 eruption could also have been entrained from this mush, they are typically compositionally and 494 

texturally distinct from glomerocrysts, with planar low-index growth faces, consistent with growth in 495 

a liquid-rich environment [e.g. Fig. 4b; Holness et al., 2017a]. Plagioclase synneusis further attests to 496 

crystallisation under liquid-rich conditions [Holness et al., 2017b]. 497 

Excluding samples that show evidence for plagioclase accumulation, glass and whole-rock data from 498 

Wolf volcano appear to follow a single liquid line of descent (Fig. 5), which is supported by the 499 

majority of clinopyroxene analyses plotting on a single compositional trend (Fig. 6). Although there is 500 

significant overlap between the crystal populations, phenocrysts typically have lower XMg contents 501 

(and Mg#; Fig. 6) and calculated crystallisation temperatures (Fig. 8b) than glomerocrysts, and return 502 

equilibrium matches with our more evolved input liquids (Fig. 5a). This suggests that the crystal mush 503 

formed from a slightly more primitive melt than the phenocrysts that crystallised in a liquid-rich 504 

magma body.  505 

Most clinopyroxene analyses from tephra samples plot on the same compositional trend as crystals in 506 

the lava samples and are compositionally analogous to the glomerocrysts (Fig. 6); they are in 507 

equilibrium with compositionally similar melts (Fig. 5) and have similar crystallisation temperatures 508 

(Fig. 8). Although no textural information is available for tephra crystals, this geochemical 509 

comparison suggests that most crystals sampled by the early explosive phase are derived from the 510 

same sub-volcanic mush zone as the later effusive phase. The sub-set of pyroxene analyses from 511 



tephra samples that have low XMg contents do not plot on the main trend and do not return an 512 

equilibrium match with any of the input erupted liquids (Fig. 6) but their low Mg# is consistent with 513 

crystallisation from more evolved liquids than those from the main compositional trend. The diversity 514 

of zoning textures in these evolved crystals indicates a mixed crystal cargo, with individual grains 515 

recording different growth histories. Specifically, the presence of both normal zoning (core-to-rim 516 

decrease in Mg#; Fig. 4c) and resorptional reverse zoning (core-to-rim increase in Mg#; Fig. 4d) 517 

suggests crystallisation under open-system conditions [Streck, 2008; Ubide and Kamber, 2018]. 518 

6.2. Architecture of the sub-volcanic plumbing system 519 

Our analyses of InSAR data and geodetic modelling results indicate the presence of at least two 520 

crustal magma storage regions beneath Wolf volcano, consistent with previous studies [Xu et al., 521 

2016]. We model a shallow, flat-topped magma reservoir at 1.1 km beneath the surface and centred 522 

below the summit caldera. This source overlies a second deeper storage region modelled as a 523 

pressurised spherical cavity at 6.1–8.8 km. The Wolf caldera floor is located ~1 km above sea level 524 

and ~2 km above the top of the northern periphery of the Galápagos Platform bathymetric high, which 525 

in turn rises ~2.5 km above the Pacific Ocean floor [Geist et al., 2005]. Hence, the shallow 526 

deformation source is likely within the volcanic pile, approximately at sea level (Fig. 9). This is 527 

similar to the shallow magma storage regions beneath Fernandina and Sierra Negra volcanoes, which 528 

are within the edifices at ~1.1 km (below sea level) and 1.9 km (below the surface), respectively 529 

[Bagnardi and Amelung, 2012; Yun et al., 2006]. 530 

Our OPAM results are broadly distributed, with the most probable carrier liquid equilibration depth at 531 

9.8 ±2.7 km (1σ of calculated depths). Clinopyroxene-melt barometry returns most probable 532 

crystallisation depths of 9.9 ±2.2 km and 11.2 ±2.4 km for glomerocrysts and phenocrysts in lava 533 

samples, respectively, and 10.1 ±2.8 km for pyroxene crystals in tephra samples. Hence, the 534 

crystallisation depths for clinopyroxene crystals in different textural associations overlap within 535 

uncertainty and are comparable with magma storage depths derived from OPAM barometry. The crust 536 

beneath the Wolf edifice is ~11 km thick [Feighner and Richards, 1994] and our petrological 537 



barometry therefore reveals that most of the material expelled during the 2015 eruption was sourced 538 

from a lower crustal storage region, at or only slightly above the Moho (Fig. 9). The probability 539 

distributions for our petrological magma storage depth estimates overlap with the depth of the lower 540 

InSAR deformation source (Fig. 9). Erupted volumes and geodetically-estimated volume changes are 541 

not directly comparable without accounting for the physical characteristics of a multi-phase magma in 542 

the reservoir (e.g. compressibility) and of lava at the surface (e.g. conversion of bulk volume into 543 

dense rock equivalent volume). However, our finding that the erupted material is mostly sourced from 544 

the lower crust is qualitatively consistent with a significantly greater syn-eruptive volume loss from 545 

the deep geodetic source (between 43·10
6
 and 64·10

6
 m

3
 [2.5 and 97.5 percentiles of posterior PDFs]; 546 

this study) than the shallow source (~2.8·10
6
 m

3
; Xu et al., 2016). 547 

Although the clinopyroxene-melt barometry probability distribution for crystals from tephra samples 548 

shows a tail towards low pressures and a few glomerocryst rim analyses return low pressure 549 

crystallisation estimates (Fig. 8), there is little petrological evidence of erupted material being sourced 550 

from the shallow storage region identified in our geodetic models (Fig. 9). We nevertheless note that 551 

tephra samples contain a small number of texturally and compositionally distinct pyroxene crystals 552 

that have experienced open-system interaction between evolved and primitive liquids (Fig. 4). These 553 

crystals are absent from lava samples and are not in equilibrium with any known magmatic liquids 554 

(Fig. 6), inhibiting calculation of their crystallisation pressures. We propose that these evolved 555 

crystals were derived from part of the sub-volcanic system that was incorporated into initially 556 

ascending melts but not into the magmas feeding later lava flows. This region must have been 557 

volumetrically small compared to the ascending magma, so that only a small number of crystals were 558 

incorporated into the ascending material, and the melt composition was largely overprinted by mixing 559 

during interaction with ascending liquids; magma mixing on short pre-eruptive timescales is 560 

supported by the minor heterogeneity in tephra glass compositions (Figs 4, 6). The most likely 561 

possibility is that the evolved crystals were sourced from the region of shallow inflation, which 562 

underwent periods of cooling and crystallised in the upper crust (e.g. during hiatuses in deformation 563 



when no new melt entered system) but unpicking the detailed petrogenesis of these evolved 564 

components is beyond the scope of this paper. 565 

6.3. Pre- and syn-eruptive processes 566 

Figure 10 summarises processes before and during the 2015 Wolf eruption, based on our 567 

interpretation of geophysical and petrological data. Before the eruption (t1), the volcano showed 568 

shallow inflation as new melts intruded into a shallow sill at 1.1 km depth: inflation occurred between 569 

1992–1997 (poor temporal sampling inhibits determining whether this was persistent or episodic) and 570 

was continuous between 2000–2009 [Fig. 1a; Bagnardi, 2014]. Cooling and crystallisation, 571 

punctuated by periodic recharge events, gave rise to complex pyroxene zoning textures including 572 

evolved compositions in shallow parts of the system. There was no deformation between 2009 and 573 

late-2010, as no new melts entered the shallow sill (t2). There is no evidence for renewed deformation 574 

before the eruption in 2015 but we cannot exclude it, due to a gap in routine SAR coverage. During 575 

the eruption, magma ascended from the lower crust, causing deflation at 6.1–8.8 km depth (maximum 576 

probability 7.6 km). The first magma to ascend erupted in a high fountaining episode, forming the 577 

reticulitic tephra. This carried a mixed crystal cargo, including mush-derived crystals from the deep 578 

storage region (i.e. compositionally analogous to lava glomerocrysts) and crystals with complex 579 

zoning that were entrained on ascent, potentially from the upper crustal sill detected by InSAR (t3). 580 

Magmas that ascended later fed lava flows and only carried crystals from the lower crustal storage 581 

region, sampling both liquid-rich (phenocrysts) and mushy (glomerocrysts) crystallisation regions (t4). 582 

Our OPAM and clinopyroxene-melt barometry demonstrates that almost all the material expelled 583 

during the 2015 eruption was sourced from the lower crust, with very little petrological evidence for 584 

material conceivably sourced from the shallow sill. This likely reflects the relative sizes of the two 585 

storage regions, with only a small amount of material from the upper–mid crust mixing with a much 586 

larger volume of magma ascending from depth. 587 

7. Conclusions and implications for Galápagos magma storage 588 



Previous models of sub-volcanic systems in the western Galápagos Archipelago typically infer 589 

vertically protracted magma systems, capped by liquid-rich sills or magma chambers in the upper 590 

crust [Geist et al., 1998; Geist et al., 2014]. In contrast, volcanoes in the eastern archipelago are 591 

thought to be characterised by magma storage in the mid-to-lower crust [Harpp and Geist, 2018]. 592 

These interpretations are largely based on geophysical data in the western archipelago, but solely on 593 

petrological constraints and geomorphological observations in the east [Geist et al., 2014]. Our 594 

integrated petrological and geophysical data from Wolf volcano (in the western archipelago) support 595 

at least two discrete zones of magma storage in the sub-volcanic system: a small upper crustal sill at 596 

1.1 km and a lower crustal magma storage zone at >6.1–8.8 km, which contains both mushy and 597 

liquid-rich regions (Figs 9, 10). Almost all the material expelled during the 2015 eruption was sourced 598 

from the deeper storage region. Hence, our data do not support a fully trans-crustal magmatic system 599 

[e.g. Cashman et al., 2017; Marsh, 1996] before the 2015 eruption but rather suggest that the majority 600 

of magma equilibration, crystallisation and mush entrainment occurred in the lower crust (Fig. 9). 601 

This is consistent with observations from other ocean islands, where recent studies have shown that 602 

eruptions may be supplied by melts ascending directly from the lower crust or uppermost mantle 603 

[González et al., 2015; Longpré et al., 2014; Maclennan et al., 2001; Winpenny and Maclennan, 604 

2011]. Although shallow sills in the western archipelago may be relatively small, mixing between 605 

shallow and deep melts could nonetheless be responsible for the spread in previous barometric results 606 

from the western Galápagos, which are based on whole-rock analyses [Geist et al., 1998]. 607 

Patterns of ground deformation similar to those identified before the 2015 Wolf eruption have 608 

recently been identified elsewhere in the western Galápagos Archipelago (e.g. at Fernandina and 609 

Cerro Azul), with shallow inter-eruptive inflation and significant deflation of a deeper magma storage 610 

region during eruptions or major dike intrusion events [Bagnardi and Amelung, 2012; Bagnardi and 611 

Hooper, 2018; Bagnardi et al., 2013; Geist et al., 2008b]. Based on our observations from Wolf 612 

volcano, these deep deflationary sources must reflect melt extraction from large lower crustal magma 613 

storage regions or mush columns, from which most of the erupted material is sourced. This is 614 

supported by earthquake locations and a major low velocity zone imaged by seismic tomography in 615 



the lower crust beneath Sierra Negra [Davidge et al., 2017; Tepp et al., 2014]. In this case, significant 616 

magma storage and processing in the lower crust may not be restricted to the eastern Galápagos sub-617 

province but could also occur in the western archipelago. Volcanoes in the western sub-province are 618 

also underlain by small shallow sills, which we hypothesise may be ephemeral super-solidus features, 619 

sustained by high magma supply rates close to the focus of the Galápagos plume [Villagómez et al., 620 

2014] and with further magma ascent inhibited by crustal stresses associated with the summit calderas 621 

[Corbi et al., 2015]. Geist et al. [2014] suggest that shallow magma may not be maintained in the 622 

eastern archipelago because volcanoes are in a dying phase, away from the plume head. In any event, 623 

the results presented here show that little crystallisation and differentiation occurs in the upper part of 624 

the magmatic plumbing system: most of the compositional variation is imparted in the lower crust. 625 

Although Wolf volcano underwent a prolonged period of magma accumulation in the shallow crust, 626 

this did not immediately precede the 2015 eruption and was not where most of the erupted magma 627 

was stored. This has broad implications for global volcano monitoring, highlighting a fundamental 628 

disconnection between inflation and eruption: long-term shallow inflation does not necessarily 629 

represent a precursory signal before eruptions but could instead characterise typical inter-eruptive 630 

activity [e.g. Biggs et al., 2014]. In Galápagos, genuine pre-eruptive ‘warning’ signs may be 631 

characterised by seismicity or other signs of magma movement in the lower crust, as identified before 632 

the 2005 eruption of Fernandina [Bagnardi and Amelung, 2012]. 633 
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 929 

Figure 1: a) Time-series of ground deformation at Wolf volcano from the onset of SAR data 930 

collection (1992) to late-2010 when there was a pause in routine InSAR coverage, from Bagnardi 931 

[2014]. The red bar shows the period of ENVISAT data collection used to constrain the depth of the 932 

shallow deformation source. b) Regional map of the Galápagos Archipelago showing the different 933 

volcanic centres on Isabela Island (200 m contours). c) Detailed map of Wolf volcano. The 2015 lava 934 

flows are coloured red, with kipukas in pink, and the locations of the circumferential fissure and inra-935 

caldera vent in yellow [after Bernard et al., 2015]. Green circles and blue diamond’s show sampling 936 

locations of lava and tephra samples used in this study, respectively. 937 

  938 



 939 

Figure 2: (left column; a,d) Envisat cumulative displacement maps (January 2004 – December 2008); 940 

(middle column; b,e) forward model using the maximum a posteriori probability solution; and (right 941 

column; c,f) residual maps. Black arrows show the flight direction of the satellite and the look 942 

direction. The black rectangle on model plots represents the outline of the optimal source solution. 943 

Each colour cycle (fringe) corresponds to 2.8 cm of displacement in the line-of-sight direction 944 

between the ground and the satellite. 945 

  946 



 947 

Figure 3: (left column; a,d,g) Sentinel-1 interferograms spanning the 2015 eruption at Wolf; (middle 948 

column; b,e,h) forward models using the maximum a posteriori probability solutions; and (right 949 

column; c,f,i) residual maps. Black arrows show the flight direction of the satellite and the look 950 

direction. The grey ellipses outline the areas masked before inversions. The black stars on model plots 951 

represent the source centroid location of the optimal source solutions. Each colour cycle (fringe) 952 

corresponds to 2.8 cm of displacement in the line-of-sight direction between the ground and the 953 

satellite. 954 
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 956 

Figure 4: False-coloured BSE images showing macrocrystic clinopyroxene zoning textures in 957 

samples from the 2015 Wolf eruption. a,b) Crystals from lava samples showing simple core-rim 958 

zoning and sector zoning, respectively. Groundmass and glomerocryst material are labelled in (a), 959 

where they touch different sides of the crystal. c,d) Crystals from tephra samples that have a defined 960 

rim zone and heavily resorbed core, respectively. Annotated sketches of the different crystals are 961 

shown next to the BSE images to highlight the different zoning patterns. Numbers show 962 

representative Mg# in distinct parts of the crystals. 963 
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 965 

Figure 5: Glass and whole-rock compositions from Wolf volcano. Tephra glass compositions from 966 

the 2015 eruption (this study) and pre-2015 whole rock and submarine glass compositions [Geist et 967 

al., 2005] used as inputs for barometric modelling are shown as black open diamonds and grey 968 

crosses, respectively. Filled symbols show the mean liquid compositions in equilibrium with 969 

clinopyroxene crystals in tephra samples (blue diamonds) and clinopyroxene phenocrysts (green 970 

circles) and glomerocrysts (red squares) in lava samples. Yellow diamonds show tephra glass 971 

compositions that returned PF >0.8 and were used for OPAM modelling. The KDE above (a) shows 972 

the probability distribution of liquid MgO concentrations used for clinopyroxene-melt (blue dotted 973 

line, tephra crystals; green dashed line, lava phenocrysts; red solid line, lava glomerocrysts) and 974 

OPAM barometry (yellow dot-dashed line). The arrow in (b) shows the trajectory of whole-rock 975 

compositions affected by plagioclase accumulation – these did not return high PF values or 976 

equilibrium matches with clinopyroxene crystals and were therefore not used for barometric 977 

modelling. Characteristic 2σ tephra glass EPMA uncertainties are shown. 978 



 979 

Figure 6: Clinopyroxene compositions from the 2015 Wolf eruption. Open symbols show all 980 

clinopyroxene analyses input into the equilibrium clinopyroxene-liquid matching algorithm. Filled 981 

symbols show clinopyroxene analyses that are in equilibrium with one or more input liquids (Fig. 5) 982 

and were used in clinopyroxene-melt barometry. Blue diamonds, green circles and red squares 983 

distinguish clinopyroxene analyses from tephra samples, clinopyroxene phenocrysts from lava 984 

samples and clinopyroxene glomerocrysts from lava samples, respectively. The KDE above (a) shows 985 

the probability distribution of clinopyroxene XMg contents in all measured crystals from tephra 986 

samples (blue dotted line), phenocrysts (green dashed line) and glomerocrysts (red solid line). The 987 

grey crosses are from a compositionally distinct sector zoned crystal (Fig. 1b), which grew under 988 

disequilibrium conditions and was not used for clinopyroxene-melt barometry. Crystal compositions 989 

were calculated on a 6O basis. Fe* = total FeO + Fe2O3. Characteristic 2σ analytical uncertainties are 990 

shown or are less than the size of a data point. 991 



 992 

Figure 7: Pressure (P) estimates from 2015 Wolf eruption tephra glass analyses, calculated using the 993 

OPAM barometer of Voigt et al. [2017]. a) The compositions of all glass analyses measured in this 994 

study. Open diamonds returned PF <0.8 and were not used for OPAM modelling. Filled yellow 995 

triangles returned PF >0.8 and were used for OPAM barometry. b) Equilibration pressures calculated 996 

using the OPAM barometer. The KDE to the right of (b) shows the probability distribution of the 997 

calculated equilibration pressures. Error bars show characteristic 2σ analytical uncertainties for glass 998 

compositions and the SEE for the calculated pressures (1.4 kbar). 999 
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 1001 

Figure 8: Pressure (P) and temperature (T) estimates from 2015 Wolf eruption clinopyroxene 1002 

analyses that are in equilibrium with one or more input liquids (Fig. 5), calculated using equation 1 of 1003 

Neave and Putirka [2017] and equation 33 of Putirka [2008]. Panels (a) and (b) show clinopyroxene 1004 

crystallisation P and T versus the crystal Mg# from the same analysis, respectively. Panel (c) shows 1005 

clinopyroxene crystallisation P versus T. Blue diamonds, green circles and red squares distinguish 1006 



clinopyroxene analyses from tephra samples, clinopyroxene phenocrysts from lava samples and 1007 

clinopyroxene glomerocrysts from lava samples, respectively. The KDEs to the right of panels (a) and 1008 

(b) show the probability distribution of the calculated crystallisation P (a) and T (b) for clinopyroxene 1009 

crystals in tephra samples (blue short-dashed line), phenocrysts from lava samples (green long-dashed 1010 

line) and glomerocrysts from lava samples (red solid line). Standard error of estimates for the 1011 

calculated pressures (1.4 kbar) and temperatures (28 °C) are shown. The Mg# uncertainty is less than 1012 

the size of a data point.  1013 



 1014 

Figure 9: Comparison of magma storage depths at Wolf volcano determined using geophysical and 1015 

petrological techniques. a) Normalised posterior probability distributions for the depths of Wolf 1016 

deformation sources. The shallow source (dark yellow solid line) was constrained from pre-eruptive 1017 

inflation and the deep source was constrained from syn-eruptive deflation during the circumferential 1018 

fissure eruptive phase (dark green dotted line), caldera-fill eruptive phase (dark red dot-dashed line) 1019 

and through the entire eruption (dark blue dashed line). b) Kernel density estimates showing the 1020 

probability distribution of clinopyroxene crystallisation depths from clinopyroxene-melt barometry 1021 

[Neave and Putirka, 2017]. The light blue dotted line, light green dashed line and light red solid line 1022 

distinguish depths derived from clinopyroxene crystals in tephra samples, clinopyroxene phenocrysts 1023 

in lava samples and clinopyroxene glomerocrysts from lava samples, respectively. c) Kernel density 1024 



estimate showing tephra glass equilibration depths from OPAM barometry [light yellow dot-dashed 1025 

line; Voigt et al., 2017]. The depths of the Moho [black dotted line; Feighner and Richards, 1994] and 1026 

Galápagos platform [grey box; Geist et al., 2008a] are shown for comparison. All depths are 1027 

measured relative to the surface and petrological pressures were converted to depth using the 1028 

polynomial depth vs pressure curve of Putirka [1997].  1029 



 1030 

Figure 10: Schematic diagram summarising the architecture of the Wolf magma plumbing system 1031 

before and during the 2015 eruption, constrained by our observations (not to scale). t1–t4 denote a 1032 

relative time progression. Crystal colours represent crystals in tephra samples (blue), phenocrysts in 1033 

lava samples (green) and glomerocrysts in lava samples (red). Ol, olivine; Plag, plagioclase; Cpx, 1034 

clinopyroxene. t1) Pre-eruptive inflation of a thin, shallow sill at 1.1 km by melts ascending from 1035 

depth. The earliest measured deformation was between 1992–1997, with continuous inflation from 1036 

2000–2009. t2) Hiatus in deformation beginning in 2009, representing a pause in magma ascent into 1037 

the shallow sill. The shallow system is inferred to cool and fractionate during such pauses in magma 1038 

recharge, leading to diverse crystal zoning patterns. t3) Explosion during initiation of the 2015 1039 

eruption. Erupted melts equilibrated at depth (i.e. from OPAM barometry) but tephra glasses are 1040 

heterogeneous, indicating some pre-eruptive magma mixing, likely within the shallow sill during 1041 



ascent. Tephra samples have a mixed clinopyroxene crystal cargo, including evolved crystals, inferred 1042 

to be sourced from the shallow system, and more mafic (i.e. higher XMg) crystals sourced from depth. 1043 

Both the shallow and deep magma storage regions show syn-eruptive deflation, with the deep source 1044 

at ~7.6 km. t4) Eruption of lava flows from the circumferential fissure. Clinopyroxenes are all sourced 1045 

from the lower crust, and include crystals derived from a mush zone (glomerocrysts) and a liquid-rich 1046 

region (phenocrysts). 1047 


