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Abstract 

 

Estuaries and tidal inlets are often characterised by the co-existence of cohesive (i.e. mud: 

clay and silt, D<65m) and non-cohesive (i.e. sand, D>65m) sediments in different 

fractional concentrations.  Knowledge of the dynamic sedimentation behaviour of sand-

mud mixtures is therefore crucial to the physical understanding and prediction of the time-

dependent structure (i.e. mixed or segregated), composition and erodibility of sediment 

bed deposits developing within these sedimentary environments.  

 

The current study develops and applies a new, non-invasive electrical resistivity 

measurement technique (ERMT) to capture both temporal and spatial changes in density, 

porosity and composition of the evolving sand-clay bed deposits, complemented by time-

lapsed images of the sedimentation processes.  A series of settling column tests are then 

conducted to investigate spatial and temporal variations in sediment bed structure and 

composition resulting from differential settling of a range of sand-clay mixtures over 

three different parametric conditions (i.e. sediment composition, initial mixture 

concentration and ambient pore fluid salinity).  Further experiments on erosion and 

deposition of mixed-sediment beds are conducted with benthic annular flume. Therefore, 

discussion, analysis and critical reflection on the current experimental results and findings 

have provided new insight into mixed (sand-clay) sedimentation and erosion processes. 

 

The results show that the formation of segregated (sand-clay) bed layers within bed 

deposits is largely controlled by the initial fractional composition (i.e. relative sand and 

clay concentrations). Specifically, mixtures with low clay contents are shown to form 

well-defined (sand-clay) layer segregation within the resulting deposits, while higher clay 

contents result in more transitional segregation patterns or no layer segregation (for very 

high clay concentrations). The physical mechanism under which these different 

segregation types can be generated are illustrated through predictions from an existing 

polydisperse hindered settling model of Cuthbertson et al. (2008). This model indicates 

that the degree of bed segregation, and time scale over which this occurs, correlates well 

with the difference in predicted hindered settling characteristics and upward 

displacements associated with the sand and clay fractions, respectively.  From the erosion 

experiments, a negative correlation between the proportion of cohesive sediment and the 

inception of erosion is further established.  Specifically, a 5% clay fractional content 
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within sand-clay sediment bed is identified as the critical cohesive fractional content that 

delineates the non-cohesive and cohesive bed erosion regimes.  
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CHAPTER ONE  

 

Introduction 

“The secret of change is to focus all your energy, not on fighting the old, but on building the new” 

—Socrates   

 

 

 

1.1 General Background 

Processes such as flocculation, sedimentation and consolidation involving cohesive, non-

cohesive or mixed sediments are very common in the world’s shorelines and, to a large 

extent, play vital roles in events such as coastal erosion and flooding, environmental 

pollution and destruction of sensitive habitats and ecosystems. As recorded by Small and 

Nicholls (2003), 23% of the world’s population live in Global Coastal zones and 19% of 

the total Earth’s land surface is a 100km wide coastal zone. Therefore, physical 

understanding of the processes associated with estuaries and nearshore coastal zones is 

very important, due to the high environmental, economic and social value of such 

ecosystems. This explains why various policy makers around the world have put in place 

policies and regulations aimed at managing them in sustainable and integrated ways, by 

making sure that a safe balance exists between economic deliverables from coastal 

engineering projects (e.g. ports, dam, channelling, etc.), and, for example, socio-

economic impacts from coastal erosion and flooding risk (e.g. EC, 2004; HM 

Government, 2011 and USGCRP, 2009). This reinforces the general acknowledgement 

that shorelines are amongst the most productive, dynamic and complex environments in 

the world, not least, due to the common occurrence of mixed sediment beds containing 

both cohesive (i.e. mud and silt, D<65m) and non-cohesive (i.e. sand, D>65m) 

fractions.  The structure and composition of these sediment beds, however, are largely 

influenced by the combined action of flocculation, settling, deposition and consolidation 

processes, as well as their subsequent entrainment and erodibility (Manning et al., 2010; 

Grabowski et al., 2011). 
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It is, therefore, essential to have fundamental understanding of physical processes 

controlling the dynamic behaviour of mixed sediments within estuarine and coastal 

systems; specifically, the temporal and spatial changes to mixed sediment beds due to 

mobilisation and deposition from combined current and wave actions.  This is required to 

provide accurate and more generic models of sediment transport dynamics, which will 

account for variability in sedimentary environments, for the assessment and prediction of 

the impacts of sediments (cohesive, non-cohesive or mixture of both) and their derivatives 

(e.g. sediment-bound contaminants) on aquatic ecosystem, and marine structures and 

human health. This is of major importance for the maintenance and management of 

navigation channels, ports and harbours, as well as in assessing the effects of increased 

turbidity on water quality and aquatic habitats within these environments (Torfs et al., 

1996; Cuthbertson et al., 2008, Grabowski et al., 2011). 

 

There are a number of other industrial applications whose success depends on an adequate 

understanding of physical processes involving sediment-fluid interactions within 

sediment suspensions and the properties of the resulting sediment deposits. In the water 

and sewage treatment industries for example, turbulence is introduced into raw water or 

sewage to enhance particle aggregation, thereby facilitating speedy settling and 

deposition of the larger aggregates into bed deposits called ‘sludge cake’, which is easily 

removed and disposed.  It should be noted, however, that other factors such as biological 

properties of the sediment in this type of process influence the particle aggregation and 

by extension the properties of the resulting bed deposits.  

 

 

1.2 Ancient and Recent Sediment Dynamics Problems 

It is interesting to discover that the ancient Book of Isaiah in the Bible, written in Palestine 

about 792-722 BC, recorded how tossing sea with its waves cast up mire and mud (Isaiah 

57:20 NIV). Records of historical developments in civil engineering technology, also 

show that, for more than 8000 years, humanity has been facing problems associated with 

sediment dynamics in the marine environments and that various methods have been 

devised to solve them (Mehta, 2014).  Furthermore, there have been many historical 

incidents reported as consequences of uncontrollable settling and deposition of sediments 

in the marine environments, one such example is that of the ancient port of Ostia, near 

Rome. In the first two centuries, Ostia was arguably the most important city in the Roman 

Empire serving as their naval base and because its all-important port was renowned for 
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supporting various commercial activities. Later it became impossible for heavy vessels to 

navigate through the port because the Tiber River was uncontrollably filled with too much 

sediment and that resulted in the ruin of the port (BBC, 2014; Steves, 2015).  More 

recently, as of the end of 2012, the total actual dredging cost as a result of U.S. Army 

Corps and industrial activities in the U.S. was $12.201 billion and 237.9million cubic 

yards of sediment dredged1 generally during activities associated with dams, canals and 

flood protection and ecosystem restoration.  In Somerset (UK), there were two major 

flooding incidents between 2013 and 2014, before the recent flooding incidents that 

occurred in most major cities and towns across UK between late 2015 and early 2016.  

Failure to maintain regular dredging of the rivers Parrett and Tone by the Environment 

Agency (EA) has been widely blamed to have played a vital role in the flooding incidents 

which caused devastating damage to lives, homes, land and wildlife in that area and also 

in many parts of England and Wales2.  An investigation on River Wharfe (in Yorkshire, 

UK) has established that even in channels with stabilised banks, sedimentation can 

significantly increase flood risk (Raven, et al. 2010).  In the report on ‘Foresight Future 

Flooding 2004 qualitative risk analysis’ commissioned by Sir Michael Pitt; Evans, et al. 

(2008) stated that: “approximately a year and a half of aggradation produced an increase 

in the flooded area equivalent to nearly half a century of the impact of climate change on 

catchment runoff.”  Various other researchers and even flood victims have established 

significance of sediment-related flood risks and their corresponding damage. 

 

Although, dredging is often not regarded as the best long term or economic solution when 

compared with other available flood risk measures, it is however, obvious that it is an 

integral part of Environment Agency and U.S. Army Corps maintenance regimes. It has 

been reported that the effects of flooding, and managing flood risk, including dredging 

activities cost the UK around £2.2bn each year3.  In addition, the cost of managing and 

disposing dredged materials is on the increase every year especially with significant 

changes in EU-UK waste management legislations with significant impact on the 

dredging industry and navigation authorities’ operations (AINA, 2013).   

 

 

1.3 Basis for Current Study 

Clear evidence exists that in most estuaries and near-shore regions, cohesive (i.e. mud: 

clay and silt, D<65m) and non-cohesive (i.e. sand, D>65m) sediments co-exist in 

different fractions under different tidal and/or wave actions resulting in either segregated 
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bed layers or mixtures (Williamson, 1991; Torfs, 1994; Torfs et al., 1996). The 

implication of such coexistence is that it makes accurate prediction of sediment transport 

and morphological changes in these environments very challenging, not least as both 

types of sediments (i.e. cohesive and non-cohesive) can be mobilised easily under tidal 

and/or wave actions. For example, in a situation where sand and mud fractions behave 

independently, i.e. having minimal interaction during settling and deposition processes, a 

well-sorted and layered or segregated bed is the result (Torfs, 1994; Amy et al., 2006).  It 

is worth noting that, these changes and differences in sediment distribution within 

sediment beds have economic consequences and results in visible changes in nearshore 

coastal-zone morphology, siltation and erosion of navigation channels, dredging impact, 

etc. (POL, 2009).  Apart from sediment composition, research has shown correlation 

between structure and erosional strength of sediment bed deposits and other factors such 

as water chemistry (e.g. salinity, pH), initial sediment concentration (i.e. bulk density), 

organic components (e.g. EPS), etc. (Torfs et al., 1996; Been & Sills, 1996; Spears et al., 

2008; Grabowski et al., 2011).   

 

A variety of process (or physically)-based modelling approaches (e.g. Waeles et al., 2008; 

Le Hir, 2011; Van and Pham Van Bang, 2013, Grasso et al., 2015, etc.) have been 

formulated to simulate mixed sediment settling and deposition processes and structural 

development in mixed sediment beds. One such approach is the Kynch theory, which 

assumes that settling rate of particles in a suspension is determined by the local particle 

density only (Kynch, 1952). Based on the proposed relationship between these two 

physical parameters, sedimentation rate has been related to sediment concentration and 

composition (e.g. Le Hir et al., 2001). Some of the models (e.g. Winterwerp and Van 

Kesteren, 2004; Le Hir, 2011; Grasso et al., 2015) were based on Gibson’s theory from 

soil mechanics, which assumes that an increase in density is a result of the vertical 

exchange of pore water brought about by changes in pressure gradient within the structure 

(Gibson, et al., 1967).  However, general applicability of these models is limited, 

especially when handling a wide range of initial sediment concentrations and sand 

contents (e.g. with sand content ≥ 15%) [Torfs et al., 1996; Grasso et al., 2015, etc.]. 

These models also largely require extensive experimental data for their validation; this is 

particularly a problem, as sufficient data constraining the main variability are required to 

test the performance of any of such models (POL, 2009).  In addition, the capacity of 

these models to accurately simulate occurrence of segregation in mixed sediment 
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conditions is a challenge, not least because the presence of sand strongly modifies 

hindered settling of its cohesive counterpart (Grasso et al., 2015). 

 

Therefore, with the crucial goal of improving the applicability and accuracy of sediment 

transport models, sediment modellers attempt to comprehensively validate these process-

based models and/or initialise them. It is necessary for coastal modelling systems to, for 

instance, fully account for the influence of mixed sediment dynamics (i.e. in terms of 

wide range of initial sediment conditions) on structural formation and segregational 

behaviour and, by extension, on the dynamics of sand-mud erosion and deposition 

processes in sedimentary environments.  These developments indisputably require more 

process-driven studies on sand-mud interactions within mixed sediment environments, 

both at small and large scale. This is with the view of providing robust laboratory 

experimental data necessary to validate and improve some of these mixed sediment 

transport models, thereby, making them more applicable to a wider range of variability in 

mixed sediment environments; consequently, addressing some of the current knowledge 

gaps and uncertainties associated with mixed sediment dynamics. 

 

Clearly, there is a need for a fundamental understanding of the physical processes 

controlling the dynamic behaviour of sediments (especially mixed sediments) in estuarine 

and coastal systems.  An adequate understanding of these processes together with the 

hydraulics of these sedimentary environments will aid provision of accurate and more 

generic models, for example, necessary for the prediction and estimation of the cost of 

managing and maintenance of dredging volumes.  

 

 

1.4 Electrical Resistivity Measurement Technique (ERMT) 

One of the major challenges for improved understanding of the physical processes of 

sediment dynamics in estuaries and coastal zones, is the availability of simple, non-

destructive measurement techniques to characterise the spatial and temporal variation in 

sediment bed structure and composition [Been, 1981; Ha, et al., 2010].  From traditional 

experimental studies on sedimentation process, volume concentration, bulk density 

profiles and porosities of the resulting sediment deposits have been obtained (for 

example) by high energy X-rays or attenuated gamma rays, acoustic & wave attenuation 

and turning fork. Although these are non-intrusive methods, they have drawbacks and 

limitations, such as being relatively inflexible, expensive and have clear health and safety 
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implications. Therefore, there is a need for alternative methodologies that are simple, 

reliable and less complicated in terms of usability and safety.  Previous studies have 

shown that, although knowledge of the electrical properties of marine sediments is scant, 

the increasing use of electrical resistivity techniques to study soils has shown significant 

promise as a viable investigative tool, (Blewett et al., 2001; Lovell, M. A., 1985; Dai et 

al., 2009; Samouelian et al., 2005, te Slaa, et al., 2013; Ibikunle et al., 2013). Therefore, 

in the current work, a simple, non-invasive electrical resistivity measurement technique 

(ERMT) to characterise the spatial and temporal variation in sediment bed structure and 

composition resulting from differential settling behaviour of the sediment mixtures has 

been developed. 

 

 

1.5 Research Aims and Objectives 

Physical processes associated with mixed sediments on a small scale are generally 

influenced by occurrence of time-dependent flow conditions (i.e. tidal, waves), mixed 

sediment composition (e.g. sediment types, proportions and initial concentrations), water 

chemistry (e.g. salinity, pH, temperature) and concentration gradients generated by 

unsteady flow conditions. This study thus aims to advance the current understanding of 

the underlying characteristics of physical processes governing dynamics of mixed 

sediments in the marine environments and to further establish, some of the important 

connections between fluid-sediment interactions and structural characteristics of the 

resulting mixed sediment bed deposits. 

 

The specific aims of this study are therefore to;  

1) systematically investigate and quantify these fundamental dynamic processes 

(such as settling, bed structural formation and onset of consolidation) for mixed 

sediments containing cohesive clay and non-cohesive sand within a settling 

column and over a wide range of unsteady turbulent flow conditions; and,  

2) investigate the development and properties of mixed sedimentary bed structures 

over a range of sediment mixture compositions, ambient fluid salinity and initial 

mixture concentration.   

 

Also, the specific objectives of the study are to:  

1) explore the potential of employing non-invasive electrical resistivity 

measurement technique (ERMT) to characterise the spatial and temporal 



Chapter One: Introduction 

 

7 
 

variation in sediment bed structure and composition resulting from differential 

settling behaviour of the sediment mixtures. 

2) extend existing knowledge on the spatial and temporal variation of sediment bed 

structure and composition resulting from differential settling of mixed sediments 

over a wide range of parametric conditions.  

3) provide a significant dataset on sand-clay sedimentation processes, over a wide 

range of initial mixture concentrations and compositions required to (i) 

investigate further the parametric dependence of mixed and segregated bed 

deposit formation and (ii) test the polydisperse hindered settling formulation 

proposed by Cuthbertson, et al. (2008) in terms of its predictive capabilities for 

the generation of these mixed and segregated bed deposits.  

4) relate new experimental data on time-dependent sand-mud erosion and 

deposition processes, measured over a range of unsteady flow events, to the 

nature and extent of bed restructuring, segregation, stabilisation and bedforms 

generation in mixed sedimentary environments. 

5) suggest appropriate criteria from (1) - (3) to describe likely parametric conditions 

under which well-mixed or segregated bed layers will form in mixed sediment 

environments.  

 

Meeting the highlighted aims and objectives, will undoubtedly extend the much-needed 

understanding of fundamental dynamics of mixed sediment processes in estuaries and 

coastal regions as required by practitioners involved in management, planning and the 

implementation of legislations in these dynamic and complex ecosystems. Three 

experimental series (ES) have been developed, to meet the study’s aims and objectives, 

namely: (i) ES-1: Development of the electrical resistivity measurement technique 

(ERMT), (ii) ES-2: Systematic mixed sediment suspension experiments, and (iii) ES-3: 

Mixed sediment bed erosion experiments.  

 

 

1.6 Contents of the Thesis 

This introductory chapter is followed by literature review (Chapter-2) on topics relevant 

to the current study.  Chapter-3 describes, in detail, the experimental facilities, 

equipment/instrumentation and procedures utilised in each experimental series.  Chapter-

4 describes initial results of continuous density and porosity profiles that have been 

obtained for sand-clay mixtures using the developed ERMT (i.e. ES-1).  Chapters 5 and 
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6 describe the experimental findings from ES-2 and ES-3 experiments respectively.  

Chapter 7 presents a general discussion and analysis of these results, and their 

corresponding wider implications, while Chapter 8 draws together the conclusions from 

all the main experimental findings and ends with recommendation for future work. 
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1 <http://www.navigationdatacenter.us/db/dredging/ddcost/> accessed on 15/12/16 
2 <http://www.telegraph.co.uk/topics/weather/10644101/How-Somerset-Levels-river-flooded-after-it-

was-not-dredged-for-decades.html> accessed on 15/12/16 
3<http://www.theguardian.com/environment/2014/feb/12/uk-floods-the-facts> accessed on 15/12/2016 

http://www.navigationdatacenter.us/db/dredging/ddcost/
http://www.telegraph.co.uk/topics/weather/10644101/How-Somerset-Levels-river-flooded-after-it-was-not-dredged-for-decades.html%2011/04/14
http://www.telegraph.co.uk/topics/weather/10644101/How-Somerset-Levels-river-flooded-after-it-was-not-dredged-for-decades.html%2011/04/14
http://www.theguardian.com/environment/2014/feb/12/uk-floods-the-facts
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CHAPTER TWO 

 

Literature Review 

“All truths are easy to understand once they are discovered; the point is to discover them” 

 — Galileo Gililei 

 

 

 

2.1      Introduction 

‘Flocculation, settling and deposition, consolidation, erosion and transport in suspension, 

are typically interlinked by the cyclic nature of the tide dominated environments’ (Mehta 

et al., 1989). Characterizing these interlinked processes in the marine environment is, 

nevertheless, complex due to the dual dependence of sediment aggregate properties on 

the physical, geochemical and biological properties of the sediment-water mixture, as 

well as the intensity of turbulent flow field (Mehta et al., 1989; Winterwerp and Van 

Kesteren, 2004; Grabowski et al., 2011; Mehta, 2014).  However, characterisation and 

understanding of these complex processes are needed to be able to provide accurate 

models of the resulting sediment transport dynamics. This, in turn, allows assessment of 

the impacts of sediment (i.e. cohesive, non-cohesive or mixtures of both), and their 

derivatives (e.g. sediment-bound contaminants), on aquatic ecosystems, marine 

engineering structures and human health (Grabowski et al., 2011). Therefore, this chapter, 

reviews the literature directly relevant to the issues being addressed in the current study.   

 

 

2.2      Sediments in Marine Environment  

In many rivers, lakes, estuaries, coastal waters and intertidal (littoral) zones; sediments 

constitute major components of the suspended load and sediment bed. They are generally 

heterogeneous with regard to their composition and also display a considerable degree of 

spatial and temporal variations due largely to intensive anthropogenic activities, 

decreasing precipitation and some other natural factors (Zhao et al., 2014; Syvitski et al., 

2005 and Futterer, 2006). For instance, owing to the continuous activity of tidal current 

and waves, sediments in the intertidal zone have been found to be commonly well sorted 

 



Chapter Two: Literature Review  

 

10 
 

in terms of size and forms of the sediment grains (Eisma, 1998).  Marine sedimentary 

particles are generally classified according to their structures and, the most common 

element used is sediment grain diameter (Soulsby, 1997; Winterwerp and Van Kesteren, 

2004 and Futterer, 2006).  The percentage in which the various sedimentary particles are 

present in a sediment depends markedly on the grain-size distribution.  Therefore, based 

on their diameters, sediment grains are classified as clay, silts, sands, granules, pebbles, 

cobbles and boulders. The combination of clays and silts is called ‘mud’; whereas 

granules and pebbles, are collectively called gravel. (Soulsby, 1997).  In sedimentology, 

sediment classification system based on the grain size distribution is commonly carried 

out with the use of sand-silt-clay triangle (i.e. Ternary diagram, see Figure 2.1). This 

allows a more quantitative approach to sediment classification (van Ledden et al.,2004).  

The three common size fractions in (fine) sediment dynamics are clay particles (e.g. 

kaolinite, illite, montmorillonite and chlorite) with particles < 2μm; silt-sized particles 

(e.g. quartz and feldspar minerals) ranging from 2µm to 63µm, and sand sized particles > 

63μm.  

 

Another interesting classification is the one that classifies sediments based on 

combination of their mechanical and geochemical properties. Based on this, marine 

sedimentary particles are classed into two groups, namely cohesive and non-cohesive 

sediment.  The clay fraction of mud, for instance, is cohesive while sand and silt are non-

cohesive.  Individually, the characteristics and behaviour of cohesive and non-cohesive 

sediments are significantly different, however, when mixed, their behaviour is much more 

complex. For example, their (i.e. cohesive, non-cohesive and mixture of both) resistance 

to erosion under hydrodynamic and waves actions, transport and deposition phenomena 

are significantly different (Cuthbertson et al., 2008, 2010; Manning et al., 2011; etc.).   

 

Generally, the following bulk sediment characteristics influence the behaviour and 

dynamics of cohesive, non-cohesive and mixture of both in the marine environment: (i) 

grain size distribution, (ii) orientation and packing arrangement, (iii) porosity (or void 

ratio), and (iv) moisture content. In turn, these characteristics, to a large extent, govern 

the properties such as cohesiveness, deformability, elasticity, permeability, bulk density, 

internal friction and shear strength (Pye, 1994).  It is therefore correct to say that, physical 

properties of marine sediments depend predominantly on the properties (or 

characteristics) and arrangement of the solid and fluid constituents. If Figure 2.2 is 

considered as being the components of marine sediments, then the single particles are the 
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sediment grains; the voids (i.e. the pores) between these grains of particles are filled with 

pore fluid (e.g. sea water) assuming the sediments are water-saturated; and finally, the 

connected particles and the sediment grains in close contact build the overall sediment 

frame (Breitzke, 2006).  

 

For the purpose of this study, sediments with higher size range than sand are not 

considered;, sand is taken as the non-cohesive sediment whilst clay (kaolin) the cohesive 

sediment. 

 

 

 

Figure 2.1 Sand-silt-clay ternary diagram based on grain size distribution, showing  

transition for cohesion & network structure (From: te Slaa et al. 2013) 

 

 

Figure 2.2 Components of marine sediments (From: Breitzke, 2006) 
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2.2.1   Non-cohesive sediment: General characteristics 

The silica tetrahedron is the basic unit from which major sedimentary grains (i.e. non-

cohesive fractions) of the marine environment are made.  In a silica tetrahedron, four 

oxygen atoms are arranged at the corners of a tetrahedron with a silicon atom at the centre 

(Dyer, 1986). Sand and gravel are examples of non-cohesive sediments. Silt-sized 

particles ranging from 2µm to 63µm form as a result of physical weathering of primary 

minerals, are generally classified as non-cohesive from a mineralogical point of view; 

although, silt constituents -quartz and feldspar- are commonly found, along with clays, in 

both suspended and bed sediment (te Slaa et al., 2013). However, erosion studies (e.g. Jin 

et al. 2002 and Roberts et al. 1998) on silt-rich sediment have shown silt particles to 

exhibit cohesive-like behaviour.  

 

Non-cohesive sediments generally consist of larger, discrete particles than that of their 

cohesive counterparts.  It is typical of non-cohesive particles to majorly react to forces 

exerted upon them by the inherent hydrodynamic condition and their corresponding 

movement to these forces is predominantly affected by the physical properties of the 

particles (e.g. size, shape and density).  Unlike in the case of cohesive sediments, the 

particle’s size and its terminal fall velocity of the non-cohesive sediments are the most 

important parameters commonly use to relate their properties with sediment motion 

(Dyer, 1986; Van Rijn, 1993; Julien, 1995). This explains why, in most cases, deposition 

of coarse particles is regarded as characteristic of high energy depositional locations, e.g. 

fluvial environment (Grabowski et al., 2011).   

 

2.2.2   Cohesive sediments: General characteristics and compositions 

In sedimentary environments, cohesive and non-cohesive sediments are significantly 

different from each other, particularly when considering the following two processes; i.e. 

flocculation and consolidation of deposited material. Almost all cohesive sediment found 

in marine environment is flocculated due to their physico-chemical characteristics 

(Winterwerp & Van Kesteren, 2004), which is not the case with non-cohesive sediments.  

Floc formation affects the settling velocity and bed structure (this will be discussed in 

detail later in this chapter), hence the sediment dynamics of cohesive particles is different 

and much more complex than that of sand (Toorman, 2001; Berlamont et al. 1993). The 

term ‘cohesive’, according to Winterwerp and Van Kesteren (2004), relates to ductile 

behaviour of the sediment when it is remoulded.  In soil and sediment erosion research, 

Jumars and Nowell (1984) described ‘cohesion’ as attraction between chemically similar 
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sedimentary particles or substances, this as recorded by Grabowski et al. (2011) refers 

typically to the attraction of clays and colloids by electro-chemical forces, such as van 

der Waals forces and electrostatic attraction.  

 

Cohesive sediments found in the marine environment are often with a mixture of clay, 

silt, sand, organic material, water, and in some cases, gases (e.g. methane); when mixed 

in water they form what is commonly known as mud. The term mud is often used 

interchangeably with cohesive sediment, it can therefore be said that there are some non-

cohesive fractions in marine cohesive sediments (Soulsby, 1997; Winterwerp and Van 

Kesteren, 2004; and Grabowski et al., 2011). However, the cohesive behaviour of marine 

sediments is determined by the proportion of clay particles and organic material present, 

in conjunction with the pore water chemistry, i.e. chemical properties of the liquid phase 

(Winterwerp and Van Kesteren, 2004; Mehta, 2014). 

 

Generally, cohesive sediment is a heterogeneous, particulate and porous material that is 

composed of solid, liquid and gas phases (Grabowski et al., 2011; Mehta, 2014).  Both 

the solids and liquid phase largely govern their cohesive behaviour; whereas, inorganic 

and organic materials are the constituents of the solid phase of the cohesive sediment 

(Winterwerp and Van Kesteren, 2004). Inorganic minerals include clay minerals (e.g. 

silica, alumina, illite, montmorillonite and kaolinite) and non-clay minerals (e.g. quartz, 

mica, carbonates and feldspar).  Clay minerals (typically < 2µm in diameter when 

classified with ‘Wentworth scale’) are formed foremost from chemical weathering of 

primary, rock forming aluminous silicates or minerals such as like feldspar, hornblende 

and pyroxene or even volcanic glass (Futterer, 2006; and Grabowski et al., 2011).   

Futterer (2006) stated that ‘the clay minerals are of special importance, as they not only 

constitute the largest proportion of fine-grained and non-biogeneous sediment, but they 

also have the special geo-chemical properties of absorbing and easily releasing ions’ and 

therefore the most electro-chemically active portion of the cohesive sediment (i.e. major 

contributors to cohesiveness).  Clay minerals of cohesive sediments were described as a 

very effective working “geochemical factory” due to their ability to absorb ions internally 

within the crystal structure, or bind them superficially by means of reversible adsorption, 

as well as their capacity to temporarily bind larger amounts of water.  The non-clay 

mineral components of cohesive sediment are mainly originated from physical 

weathering of continental rocks (i.e. the primary minerals) (Futterer, 2006; Grabrowski 

et al. 2011).  
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All types of clay mineral (e.g. kaoline, illite, montmorillonites and chlorite) can, to 

varying degrees, undergo ion exchange within them or with those within their ambient 

solution. This property of clay thus mean that their character can change depending on 

the concentration of ions in their environment.  Their mineralogy is, therefore, difficult 

to predict and their behaviour (e.g. settling) in the marine environment is largely 

influenced by the ionic charges on their surfaces. For example, particle flocculation can 

result, if their ionic charges interact with the ions in the ambient solution (Dyer, 1986; 

Winterwerp and Van Kesteren, 2004). On the other hand, when deposited on the bed, 

their electromagnetic properties can cause the charged particles to bind together giving 

cohesive forces that are much stronger than the gravitational forces on the particles (Dyer, 

1986).  

 

Organic materials in the solid phase may exist as living organisms (e.g. bacteria, benthic 

algae, etc.), detritus (e.g. dead particulate organic material, fecal material, etc.), 

extracellular polymeric substances (EPS) and organic colloids (Grabrowski et al. 2011). 

Integrated biofilms (e.g., diatoms) are found majorly on sediment surface, while EPS 

(diatoms’ major constituents) are present deeper in the sediment (Figure 2.3). Organic 

materials are equally electro-chemically active similar to the inorganic material 

counterparts and therefore contribute considerably to the cohesion and adhesion 

characteristics of cohesive sediments. Even a small amount of organic matter can have a 

significant impact on sediment aggregation and sediment erodibility (Winterwerp and van 

Kesteren, 2004). 

 

The liquid phase of cohesive sediments in the marine environment is predominately saline 

water, which can occupy a significant proportion of the sediment. Although, as reported 

by Bale et al. (2007), water quantity can often exceed that of the solids, this is particularly 

the case at the surface of unconsolidated sediment.  Gases may be significantly present in 

estuarine sediment exposed to air, especially at low tides, but generally, relatively lower 

volumes of gases are seldom found in fine riverine sedimentary environments 

(Grabrowski et al. 2011).  The gases (e.g. methane) are primarily formed when the 

organic component of the sediment is broken down by the actions of inherent organisms 

(e.g. bacteria, protozoans, fungi, diatoms, polychaetes, etc.) within the sediment (Gebert 

et al., 2006; Sanders et al., 2007) 
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On a final note, the composition or behaviour of cohesive sediment varies both spatially 

and temporally and it is governed by the availability of the sediment and its components 

(see Figure 2.3), the meteo-hydrodynamics conditions, biological activity, history, etc. 

(Winterwerp and Van Kesteren, 2004).  For instance, structure and interactions of 

different subcomponents present in cohesive sediment, to a large extent, determine its 

erodibility (Grabrowski et al. 2011).  

 

 

Figure 2.3 Diagrammatic presentation of cohesive microstructure and composition (From: 

Grabrowski et al., 2011) 

 

2.2.3   Mixed-sediment dynamics 

The formation of sediment beds under different natural flow conditions is a common 

occurrence in many sedimentary environments such as estuarine and near-shore coastal 

marine environments. The structure and composition of these sediment beds are largely 

influenced by the combined action of settling, deposition and consolidation processes, as 

well as their subsequent entrainment and erodibility caused by changes in hydrodynamic 

conditions, i.e. change in energy level. In the context of coastal and estuarine waters, 

accurate prediction of the transport, interactions and fate of sand-mud mixtures is strongly 

associated with these sedimentation processes because, for instance, sediment beds in 

estuaries and tidal basins often consist of both sand (non-cohesive) and mud (cohesive).  

 

Until recently, literature contains an overwhelming amount of work on the development 

and behaviour of bed deposits for monodisperse sediments in the marine environment 

(e.g. Winterwerp & Kesteren, 2004). More recently however, there have been 



Chapter Two: Literature Review  

 

16 
 

considerable amount of laboratory tests that have revealed primarily, that, the rate or 

nature of settling, flocculation and consolidation processes characterise bed formation for 

polydisperse sediment (e.g. sand-mud mixtures) [Williamson, 1991; Torfs et al., 1996; 

Cuthbertson et al., 2008, 2010; Manning et al., 2011, Mehta, 2014]. For example, 

Cuthbertson et al. (2010) and Manning et al. (2011) revealed that processes controlling 

flocculation and settling rates (which, by extension, influence bed formation processes) 

can alter dramatically when cohesive and non-cohesive sediments are mixed. It is 

therefore clear from the literature (e.g. Torfs, 1994; Uncles et al., 1998; Whitehouse et 

al., 2000; van Ledden, 2003; and Amy et al., 2006; Le Hir, 2011), that sand and mud 

within these mixed sediment environments can be thoroughly mixed, may exhibit a 

horizontal gradient (e.g. resulting from gradients in the current or wave patterns), or can 

be layered in the bed, and witness the history of forcing events.  In a situation where the 

sand and mud fractions have minimal interaction during the settling and deposition 

processes, then segregation of each fraction within the resulting bed deposits dominates, 

resulting in a well-sorted, layered bed structure (Torfs, 1994; Amy et al.,2006; and 

Manning et al., 2011). 

 

Torfs et al. (1996) extensively described the results of various settling and consolidation 

experiments involving sand-mud mixtures based on many laboratory and field tests 

carried out by the Hydraulics Laboratory of the Katholieke University Leuven (KUL) and 

by HR Wallingford Ltd, with the aim to (i) investigate the nature of deposition of mixed 

sediments, (ii) follow the development of the density structure in time, (iii) study 

properties of the bed, and, (iv) look at different features of deposition and consolidation 

behaviour that occur in mixed sediments. However, effects of some parametric conditions 

such as ambient salinity (which has been identified to significantly alter the dynamics of 

sedimentation processes (Owen; 1970; Dyer, 1986; Winterwerp and van Kesteren, 2004; 

Mehta, 2014; etc.) were not fully considered and this is one of the areas the current study 

addresses.  One of the observations of Torfs et al. (1996) was occurrence of segregation 

in mud-sand mixtures, they found that in some sand-mud mixtures heavier sand particles 

settled faster to the bottom of the column to form a sand rich base layer, and noticed this 

continued as long as the mud concentration is not high enough to form a continuous 

network structure to prevent this segregation.  Figure 2.4 shows the size grading of the 

bottom and top layer (1 mm) of two of the experiments with Hong Kong mud and King’s 

Lynn Sand (C0 = 1 -3 g l-1, D50 sand = 230 μm) before and after the input of sand.  
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Figure 2.4 Size grading of the top and bottom millimetre of the bed before and after a single 

input of sand. Left: no sand; Right: 66% added sand (From: Torfs et al., 1996) 

 

 

It is obvious from the size grading in Figure 2.4 that clear segregation occurs between the 

top and the bottom of the bed for both tests, although strong segregation is seen in the test 

with added 66% sand, consisting entirely sand base layer. The segregation observed in 

the sand free experiments was attributed to strong, compact flocs that rapidly sank to the 

bottom of the bed.  Torfs et al. (1996) therefore concluded that the occurrence of 

segregation may depend on factors, such as the type of mud (i.e. in terms of mineralogical 

and chemical composition, organic content and biological processes) and the initial input 

density, as segregation occurs for initial mud concentrations below the gelling point. They 

added that the degree of segregation is limited to a maximum sand content, which is a 

function of the mud type as well. 

 

The mineral composition in combination with particle size distributions are important 

discriminators when consideration is being given to the mechanical behaviour of mixed 

sediments (especially in terms of textures and structure).  For instance, the presence of 

clay minerals is a vital criterion for sediment mixtures to show cohesive behaviour, in 

other words, the cohesiveness or non-cohesiveness of mixed sediment matrix is largely 

dependent on the clay content within the matrix (van Ledden et al., 2014; te Slaa et al., 

2013). A transition between non-cohesiveness to cohesiveness has been reported in mixed 

sediment bed at clay contents of 5-10% (van Ledden et al., 2014). From the sediment 

classification approach presented in the sand-silt-clay triangle (Figure 2.1), it is clear that 

network structures can be formed by solid fractions of sand, silt and clay which has been 

reported to be largely dependent on the overall porosity (te Slaa et al., 2013).  For 

example, from the ternary diagram (Figure 2.1), the following network structures can be 

seen: (i) non-cohesive sand dominated; (ii) cohesive sand dominated; (iii) non-cohesive 

mixed; (iv) cohesive clay dominated; (v) cohesive silt dominated; and (vi) non-cohesive 
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silt dominated. Transition to sand or sand–silt-dominated network structures for overall 

porosities of n = 40 % and n = 50 % are represented by the bold broken lines; while the 

horizontal bold broken line represents a clay content (i.e. 8 %) at which the transition 

between cohesive and non-cohesive behaviour can be initiated. Areas of sand- and silt-

dominated network structures are respectively indicated by the shaded areas A and B (te 

Slaa et al., 2013 and Van Ledden et al., 2004) 

 

 

2.3     Settling and Deposition 

2.3.1 General overview 

The processes involving settling and deposition of particles that are heavier than the fluid 

in which they are suspended (i.e. negatively-buoyant particles) are very common in many 

natural and industrial systems such as rivers, estuaries, water and waste-water treatment 

systems, etc. The importance of these processes has resulted in extensive studies being 

carried out, especially in the context of coastal and estuarine waters, where accurate 

prediction of the transport, interactions and fate of cohesive and non-cohesive sediment 

is essential.  

 

Settling involves the rate of falling of particles in carrier fluid, while deposition occurs 

when the forces responsible for keeping the particles in suspension are no longer 

sufficient to overcome the forces of the particles’ weight and friction (i.e. inter-particle 

force of attraction). Mehta (2014) described deposition as removal of particles from flow 

as they settle to form part of the bed-bottom material. This implies that when flow is 

absent, settling and deposition will mean the same thing. In other words, deposition 

describes a phenomenon where suspended or eroded sediment being transported within a 

fluid is deposited at the loss of enough kinetic energy in the fluid, thereby, resulting in 

the building up of layers of sediment. In intertidal zones (or shorelines) for instance, this 

phenomenon explains why sediment of a particular size moves across the shoreline profile 

to a position where it is in equilibrium with the wave and flows acting on that sediment 

grain.  In such scenario or process, the finer sediments are transported away from the 

region of high energy and subsequently settle out of suspension, or deposit in region of 

low energy (see Figure 2.5). This results in the coarse sediments being deposited at the 

upper part of the shoreline profile and sorted by the wave-generated hydraulic regime (see 

Figure 2.5) [Horn, 1992] 

 

https://en.wikipedia.org/wiki/Kinetic_energy
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              Figure 2.5 Illustration of the sediment size distribution over a shoreline profile  

              (Horn, 1992) 

 

Various modes of settling of fine sediments have been recorded; they are (i) ‘free settling’ 

(Type I settling), which is common to all particles; (ii) ‘flocculation settling’ (Type II 

settling), which is unique to cohesive sediments; and (iii) ‘hindered settling’ (Type III 

settling), which occurs predominantly at higher concentration of sediment particles; this 

could be the case in monodisperse non-cohesive or flocculated suspensions and in 

polydisperse suspension containing cohesive and non-cohesive particles (Winterwerp and 

van Kesteren, 2004; Cuthbertson et al., 2008).  Detailed descriptions of the above 

highlighted modes of settling are given in the following sections. Within each mode of 

settling described above however, the settling rate (or velocity) is generally influenced by 

a number of factors namely: particle physical properties (e.g. size, shape, structure); 

ambient fluid physico-chemical properties (e.g. salinity, temperature, viscosity); initial 

mixture concentration; the turbulence levels/ types within the fluid (e.g. shear rate, 

oscillating flow) and presence of organic matter (Scott, 1984; Cheng, 1997; Winterwerp, 

2002; Dankers, 2006; Cuthbertson et al., 2008; Le Hir et al., 2011; and Mehta, 2014). 

 

2.3.2  Monodisperse particles settling in quiescent fluid  

 

Basically, when considering the interaction between sediment particles and carrier fluid, 

settling velocity describes the influence of gravitational force on the motion of discrete 

particles.  Generally, the physical properties governing the fall velocity of a single 

sediment particle in motionless carrier fluid are its sizes, shape and density. For 

monodisperse particles settling at infinite dilution, individual spherical particle will settle 

within the still, homogeneous fluid conditions at a terminal fall velocity ws when the drag 

forces on the spherical particle equal the immersed weight.  Stokes (1851) derived an 

expression to describe the drag force, which can be written in terms of drag coefficient 

(CD), i.e. 
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                        FD = CDπ
𝐷2

4
 ρ 

𝑤𝑠
2

2
                                       (2-1) 

 

The ‘immerse weight’ I, can be expressed as: 

 

                       I = 
4

3
 π 

 𝐷3

8
(ρ𝑠 – ρ) g                               (2-2) 

 

where D is the particle diameter, ρs and ρ are the particle and fluid densities respectively, 

ws is the settling velocity and g is the gravitational acceleration. 

 

The nature of the flow around the falling spherical particle is determined by whether it 

falls gradually, when viscosity will be important, or rapidly, when the particle inertia will 

dominate. To account for these effects, a Reynolds number can be formed from the fall 

velocity and the particle diameter: 

 

                      Res = 𝑤𝑠
𝐷

𝑣
                                                   (2-3) 

 

 where 𝑣 = (µ/ρ) is the kinematic viscosity 

 

When Res << 1, laminar settling conditions exist, the particle then creeps through the 

carrier fluid, distorting the flow in the process for relatively large distances from the 

particle with no wake occurring.  At Res << 1, the drag force becomes: 

 

                       FD = 3πµDws                                    (2-4) 

 

where µ is the molecular viscosity. From equating Equations (2-2) and (2-4), the 

following expression can be derived: 

 

         ws  =  
𝐷2

18
 ((ρs − ρ )/µ)g = c𝐷2                                 (2-5) 

 

Equation (2-5) is known as the Stokes’ law and it demonstrates that  𝑤𝑠 ∝  𝐷2 in the 

viscous regime. The value of ‘c’ in the expression varies from 8975 (m s)-1 at 200C and 

6880 (m s)-1 at 100C, to 5920 at 50C for quartz particles. These values are further reduced 

by about ca 5% for salinity of 35ppt (Dyer, 1986).  The coefficient, ‘c’ depends on particle 

characteristics such as, density, composition, etc. 
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The relationship between drag coefficient and Reynolds number is obtained from 

Equation (2-1) and (2-4) as: 

 

                     CD = 
24

𝑅𝑒𝑠
                                           (2-6) 

 

 

2.3.2.1     Effect of higher Reynolds number 

It should be noted that CD is not only dependent on Res (i.e. flow conditions) but also on 

the effect of ambient fluid temperature.  Therefore, the linear relationship between CD 

and Res is only valid for low Reynolds number (i.e. Res ≤ 1); consequently, the fall 

velocity cannot be theoretically predicted from Equation (2-5) because the condition for 

creeping motion (i.e. Stoke’s flow) is greatly exceeded once the effect of drag associated 

with inertia becomes significant (Dyer, 1986; Julien, 1995; Mehta, 2014). 

   

At Res > 1, the particle ceases to act independently. In this case, the flow separates in the 

lee of the particle, and vortices are shed, this occur periodically at the initial stage and 

then randomly thereafter, resulting in the boundary layer around the particle becoming 

turbulent (Dyer, 1986).  Figure 2.6 shows how this relationship significantly deviates 

from experimental data obtained by Engelund and Hansen (1967) for natural sand and 

gravel particles. Therefore, for higher values of Res, various attempts have been made by 

many researchers (e.g. Oseen, 1927; Goldstein, 1929; Rubey, 1933; Dallavalle, 1948; 

Julien, 1995; Soulsby, 1997; and Cheng, 1997) to extend the applicability of the Equation 

(2-6) to a wider range of flow conditions by introducing empirical corrections for the CD.  

Equation (2-7) is the general form of such expressions especially for Res > 105, as 

presented by Mehta (2014), and Table (2-1) presents the experimental values of 

coefficients AD, BD and exponent m. 

 

                  CD = [(
𝐴𝐷

𝑅𝑒𝑠
)

1 𝑚⁄

+ 𝐵𝐷
1 𝑚⁄ ]

𝑚

                     (2-7) 

 

          Table 2-1 Experimental values of Equation G coefficients 

 

Investigator AD BD m 

Dallavalle, 1948* 24.0 0.40 2.0 

Julien, 1995 24.0 1.50 1.0 

Soulsby, 1997 26.4 1.27 1.0 

Cheng, 1997 32.0 1.00 1.5 

                                             *For spherical particles      (Adapted from Mehta, 2014) 
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From consideration of the above studies, Cheng (1997) proposed an explicit formula for 

the settling velocity of individual natural sediment particles over a range of Stokes’ flow 

conditions (i.e. 1.0 ≥ 𝑅𝑒𝑠 ≤ ~104); 

 

                    ws  = 
𝑣

𝑑𝑝
(√25 + 1.2𝑑𝑝∗

2 − 5)
1.5

                                                               (2.8) 

 

where, 

                    𝑑𝑝∗ (the dimensionless particle parameter) = (
𝑔′

𝑣2)

1

3
 𝑑𝑝                           (2.9) 

 

and, 

 

                   𝑔′ (the reduced gravity) = 𝑔(ρs −  ρ)/ρ                             (2.10) 

 

 

 
             Figure 2.6 Drag coefficient for natural sand and gravel particles (From Julien, 1995) 

 

 

Particle shape is another parameter, whose influence on fall velocity depends on Res.  This 

influence is negligible within the Stokes’ law range (i.e. Res ≤ 1), as the drag coefficient 

is essentially independent of particle shape; but the influence becomes significant at 

higher Res (i.e. in the viscous regime).  This is because the particle will tend to settle with 

its maximum cross-sectional area normal to the direction of motion; clay minerals are 

likely to settle in this manner (Dyer, 1986; Cuthbertson, 2001). To account for the 

influence of particle shape on fall velocity, a shape factor (SF), based on the triaxial 

dimensions of the particle is usually used.  Dyer (1986) and Garde and Ranga Raju (1977) 

recommended that for naturally worn sediment particle, SF values ranging from 0.6 to 
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0.7 can be considered appropriate. The curves in Figure 2.7 show the relationship between 

CD and Res for a sphere and particles of various shape factors. It is clear from Figure 2.7 

that particles of different shapes have different curves in the range above Res ~ 1. Particles 

with a disc shape for example, tend to have a constant CD of about 1 at high Res (Dyer, 

1986).  Theoretically, the expression for fall velocity of a disc in viscous regime is given 

as: 

                     𝑤𝑠= 
1

2𝑘𝜇
 

𝐷̅

𝐷𝑐
 (𝜌𝑠 − 𝜌) g𝐷2̅̅ ̅̅                  (2-11) 

 

where 𝐷̅ = 0.5(Da + Db). The coefficient k as reported by Dyer (1986) has a value of 5.1 

for broadside settling of infinitely thin particles and 9 for natural particles. 

 

 

 
Figure 2.7  Drag coefficient of spheres and non-spherical particles with various shape factors  

as a function of Reynolds number, based on the nominal diameter Dn (From Dyer, 1986) 

 

 

It is important to state at this point that the relationships described and derived above are 

for non-cohesive sediments only and the settling mode described here is an example of 

Type-I settling mode (i.e. dilutes, non-flocculent, free-settling regime, where every 

particle settles independently).   

 

2.3.3  Effect of aggregation processes 

The properties of flocs differ markedly from those of individual solid particles from which 

they were formed. Therefore, because flocculating particles constantly change in size and 

shape during aggregation processes; flocculation settling (i.e. Type II settling) of flocs 

cannot be described adequately by Stoke’s law (i.e. Equation 2-5).  Additionally, as water 

gets trapped in the floc, specific gravity increases and this explains why there is a scarcity 

of adequate mathematical models to describe Type II settling, hence reliance has been on 

https://en.wikipedia.org/wiki/Flocculation
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settling column tests to determine settling characteristics during flocculation settling.  

Winterwerp and van Kesteren (2004), suggested that Equations (2-5) and (2-7) are valid 

for flocs of cohesive sediments if it is implicitly assumed that the fluid flows only around 

and not through the flocs. They concluded that flocs can be treated as porous but 

effectively impermeable entities as an approximation to determine their settling 

characteristics in marine conditions. This assumption has, however, been proved not to 

be trivial (e.g. Johnson et al., 1996; Gregory, 1997; Mehta, 2014).  For example, Mehta 

(2014) suggested that for the settling velocity of suspended flocs at concentration in 

excess of Cf, aggregation processes (i.e. floc growth and breakup) must be accounted for. 

Based on Stoke’s law, by considering the particle collision frequency which is expected 

to vary with concentration C, a general relationship between settling velocity and the 

suspended flocs concentration was proposed;  

 

                   𝑤𝑠  =   𝑎𝑤
′ 𝐶𝑛𝑤   =   𝑎𝑤

′′ ∅𝑣
𝑛𝑤                   (2-12) 

 

where  𝑎𝑤
′  and 𝑎𝑤

′′  = ρ𝑠
𝑛𝑤 are empirical velocity scaling coefficients dependent on the 

sediment and 𝑛𝑤 (number of particle per volume) = 1.33 (i.e. 4/3, see Figure 2.8). He 

cautioned that 𝑎𝑤
′  and 𝑛𝑤 vary with flow shear and the fractal dimension nf of the floc.  

Krone (1962) and Burt (1986) conducted tests that confirmed the applicability of the 

Equation (2-12) in the flocculation settling range in the laboratory (see Figure 2.8) and 

in-situ experiments respectively. 

 

 

Figure 2.8 Krone (1962): Flocculation settling of San Francisco bay sediment (From Mehta, 2014) 
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2.3.4 Hindered settling  

In practical terms, groups of particles will be settling through the carrier fluid rather than 

solitary particles. During settling, mutual interactions will normally occur amongst these 

settling particles, thereby modifying the settling velocities regime from what is observed 

for solitary particles (Cheng 1997).  In other words, when the concentration of sediment 

grains in a carrier fluid increases, the grains cease to act independently, their motions are 

therefore correlated through hydrodynamic and grain-grain interactions, which often 

results in lower settling velocities in comparison to that of a solitary grain (Scott, 1984; 

Whitehouse et al., 2000; Cuthbertson et al., 2008), this phenomenon is known as 

‘hindered settling’ (i.e. Type III settling). The characteristics of hindered settling arise 

predominantly as indicated by previous studies [e.g. Winterwerp (2002) for mud flocs; 

and Cheng (1997) for sand particles] from: (i) return flow generation and wake formation, 

(ii) increased viscosity of the mixture, and (iii) buoyancy effects.  

 

The exact form of the Richardson and Zaki (1954) formulae and/or some related variation 

have mostly been employed by many scholars to calculate or predict these hindered 

settling characteristics for coastal sediment transport modelling. However, as proposed 

by Cuthbertson et al. (2008) when modelling suspensions containing both mud flocs and 

sand particles, a multi-fraction or polydisperse approach is required to fully account for 

the relative influence of each individual fraction on the settling characteristics of other 

fractions present in the mixture.  In an attempt to achieve this, they developed a two-

fraction analytical model, based on the polydisperse formulations of Batchelor (1982) and 

Davis and Gecol (1994), to predict the hindered settling of both sand particle and mud 

floc fractions under a wide range of mixture compositions and concentrations (the testing 

of the Cuthbertson et al. (2008) analytical model, in terms of its predictive capabilities 

for the generation of mixed and segregated bed deposits, is discussed extensively in 

section 7.6, pg. 194). The following subsections present more comprehensive literature 

review on the characteristics of hindered settling in suspensions containing cohesive, non-

cohesive and combination of both sediments. 

 

2.3.4.1    Cohesive sediments 

For cohesive sediments, hindered settling effect increases with increasing sediment 

concentration and becomes more significant with sediment flocculation. For instance, 

given a situation where the concentration of the sediment in suspension exceeds a given 

upper limit value (say Ch) of flocculation settling (Equation 2-12), [which, according to 
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Mehta (2014), may range between approximately 1 to 10 kg/m3 and largely dependent on 

the composition of the sediment], 𝑤𝑠   will rapidly decrease with corresponding increase 

in concentration, C (Figure 2.9) [Whitehouse et al., 2000].  Mehta (2014) reported that 

this reduction is largely due to the decreasing rate at which the settling slurry dewaters as 

its permeability decreases with time.  If 𝑤𝑠   in Equation (2-12) is now taken as 𝑤𝑠𝑚 (i.e. 

hindered settling velocity for pure mud suspensions) at Ch and assuming that 𝑤𝑠𝑚 (see 

Figure 2.9) can be estimated from Equation (2-5),  𝑤𝑠   at a given concentration can be 

represented by the product of 𝐾𝑤𝑤𝑠𝑚 , where 𝐾𝑤 has been described as the ‘retardation 

factor’ applicable to Stokes’ settling (Mehta, 2014).  Richardson and Zaki (1954) found 

from settling column experiments an expression for retardation factor, 𝐾𝑤 as; 

 

                    𝐾𝑤  = (1 - ∅𝑣𝑓) 4.65                                               (2-13) 

 

where ∅𝑣𝑓 is the flocs volume fraction. Therefore, settling velocity 𝑤𝑠  can then be 

expressed as; 

 

                             𝑤𝑠   = 𝐾𝑤𝑤𝑠𝑚 ; i.e.   𝑤𝑠𝑚  (1 - ∅𝑣𝑓) 4.65                                             (2-14) 

 

Winterwerp (2002) suggested that the retardation factor (i.e. 𝐾𝑤) can be attributed to the 

effects of (i) increased viscosity, (ii) particle buoyancy, and (iii) return-flow of fluid due 

to the continuity as particles settle. In order to account for these three effects, Equation 

(2-14) has been revised as:  

 

                      𝐾𝑤  =   
(1 − ∅𝑣𝑠)(1− ∅̃𝑣)𝑚

(1+2.5∅̃𝑣)
                                        (2-15) 

 

From Equation (2-15), ∅v (solids volume fraction) is C/𝜌𝑠;  ∅𝑣𝑠 (volumetric concentration 

of primary mud particles contained within the flocs) is Cs/𝜌𝑠 (Cs is the space-filling 

concentration) and ∅̃𝑣 is C/Cs. The value of 1 was assigned to the exponent m by 

Winterwerp (2002); Letter (2009) and Dankers (2006) found m = 2 appropriate for 

simulating the density profiles of the settling of a fine-grained slurry tested by Kynch 

(1952).  Equation (2-15) is the final hindered settling formula for a concentrated 

suspension of mud flocs (i.e. cohesive sediments) [Winterwerp, 2002; Mehta, 2014], and 

the description of each fraction in the Equation is given in Table (2-2). 
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Figure 2.9  Variations of settling velocity and settling flux with concentrations  

            (From: Mehta, 2014) 

 

 

                      Table 2-2 Descriptions of fractions in the expression for 𝑲𝒘 in Equation (2-15) 

 

Fractions Descriptions 

(1 −  ∅𝑣𝑠) It accounts for decrease in 𝑤𝑠 due to return-flow through the slurry 

pores and micro-channels. 

(1 −  ∅̃𝑣)𝑚 It accounts for buoyancy effect which acts against the weight of 

settling particles. 

(1 + 2.5∅̃𝑣) It accounts for an increase in drag force on the particle due to the 

viscosity of suspension being higher than water. 

(Adapted from Mehta, 2014) 

 

2.3.4.2    Non-cohesive sediments 

As stated above, Equations (2-13) and (2-15) are applicable to cohesive sediments; for 

non-cohesion sediments, Cheng (1997) proposed an approach for concentrated 

suspensions of sand particles which was formulated by considering the settling sand 

particles within the fluid as a two-phase flow problem. The determination of the slip 

velocity (i.e. the difference in velocities) between the particles and the fluid was based on 

continuity arguments.  The sand particle slip velocity obtained was then expressed in the 

form identical to Equation (2-8), as: 
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                        W’s  =  
𝑣𝑠

′

𝑑𝑝
(√25 + 1.2𝑑𝑝∗𝑠

′2 − 5)
1.5

                                                     (2-16) 

 

where 𝑣𝑠
′ = effective sand-fluid mixture viscosity; and 𝑑𝑝∗

′ = [(
𝑔𝑠

′

𝑣𝑠
′2)

1

3
 𝑑𝑝] is the modified 

dimensionless sand particle diameter [with 𝑔𝑠
′  = 𝑔(𝜌𝑠 − 𝜌′)/𝜌′].  It should be noted that, 

Equation (2.8) differs from Equation (2.16), in that it is proposed for the settling velocity 

of individual natural sediment particles (i.e. predominantly cohesive sediment).  

 

2.3.4.3    Hindered settling of sand-mud mixtures 

The settling velocity of mono-dispersed particles in the hindered settling phase is more 

or less uniform, this is also true in the consolidation phase but with relatively lower 

settling velocity.  However, this cannot be said of the poly-dispersed particles, such as in 

mud-sand mixtures, due largely to the complex nature of the inter-related behaviour 

(including settling characteristics) of the two distinct phases.  For example, segregation 

occurs in the hindered settling phase when the sand particles settle faster than the mud 

flocs; however, sand particles are trapped within the mud matrix that has gained strength 

in the consolidation phase and all particles then tend to settle as one (Cuthbertson et al., 

2008; Dankers, 2006; Torfs et al., 1996).   

 

In much diluted suspensions, Van Ledden (2003) suggested that, the sand and mud 

fractions within the suspension can be assumed to settle independently. This is obviously 

not acceptable in more concentrated suspensions because, the fractional settling 

characteristics for the sand and mud constituents are according to Cuthbertson et al. 

(2008) not only governed by the total sediment concentration, but also affected critically 

by their relative fractional content within the mixture.  For instance, in a sand-rich 

mixture, Amy et al. (2006) suggested that the settling sand particles may generate return 

flow large enough to upwardly displace the mud particles (or flocs) within the fluid.  In 

mud-rich mixture on the other hand, significant reduction in the settling velocity of the 

sand particles can occur due to the increased apparent viscosity and return flow resulting 

from high mud fraction within the mixture (e.g. Winterwerp

 

The work of Wang et al. (1995) was one of the few on analysis of settling behaviour of 

non-cohesive sand in clay suspensions. They performed experiments with large amounts 

of quartz sand, plastic beads and gravel in both dilute and concentrated mud suspensions 

and thereafter proposed a purely empirical equation based on the Richardson and Zaki 
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(1954) and Maude and Whitmore (1958) formulae to describe the settling characteristics 

of sand in mud suspensions: 

 

                      
𝑤𝑠𝑠

𝑤𝑠𝑠,0
 = (1 − ∅𝑠)𝑛(1 − ∅𝑝)

2.5
                                       (2-17) 

 

where 𝑤𝑠𝑠 is the hindered settling velocity of the sand through the mud suspension, 𝑤𝑠𝑠,0 

is the Stoke’s settling velocity of sand, ∅𝑠 the particle volume concentration of sand, ∅𝑝 

the particle volume concentration of mud and 𝑛 is a function of the particle Reynolds 

number, as in the Richardson and Zaki (1954) formula. 

 

Equation (2-17) modelled their experiments well, although with much higher values of 𝑛 

(i.e. 𝑛 ≈ 8) than suggested by Richardson & Zaki (1954) [𝑛 ≈ 2.5-5.5]. Wang et al. (1995) 

then concluded that their model only works well for the hindered settling of sand in dilute 

mud suspensions but significantly deviates from experimental data where the mud 

concentration is so high that the critical diameter approaches the median diameter of the 

particles. However, volume effects are important in the hindered settling phase; therefore, 

for suspensions in which ∅s << ∅p, the return flow effect and viscosity effect will be 

mainly determined by the mud fraction in the mixture (Dankers, 2006).  Winterwerp & 

Van Kesteren (2004) in an attempt to address this, proposed a model under some limiting 

conditions to predict separately, the hindered settling velocity of both the cohesive mud 

and non-cohesive sand fraction: (1) the slip velocities of sand particles and mud flocs are 

equal to their terminal settling velocities measured in clear fluid; and (2) the mixture is 

predominantly mud with only a small sand fraction (i.e.  ∅𝑠 << ∅𝑝): 

 

                     𝑤𝑠𝑓 = 
(1−∅)(1−∅𝑝−∅𝑠)

(1+2.5∅)
 𝑤𝑠𝑓,0                                 (2-18) 

 

Expanding Equation (2-18) gives; 

 

                     𝑤𝑠𝑠 = 
(1−∅)(1−∅𝑝−∅𝑠)

(1−∅𝑓)(1+2.5∅)
 (𝑤𝑠𝑠,0 − ∅𝑓𝑤𝑠𝑓,0)                            (2-19) 

 

In the model presented in Equation (2-19), buoyancy, viscosity and the non-linear return 

flow effect are all accounted for. However, the model is unable to account adequately for 

the enhanced hindered settling effects on the mud fraction that may arise from increasing 
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the volumetric sand content ∅𝑠 within the sand-mud mixtures; therefore, its applicability 

is restricted to mud-rich suspensions. This is also the case with the modified Cheng’s 

model (this has not been covered here) proposed by Cheng (1997) to predict the hindered 

settling velocity of the non-cohesive sand fraction. The highlighted shortfalls of the 

models mentioned above formed one of the major aims of the work of Cuthbertson et al. 

(2008) as noted above (see section 2.3.4). Their new polydisperse approach for example 

defined mixture conditions under which the mud flocs would be displaced upwards due 

to return flow effects generated by the hindered sand fraction settling. They also 

suggested that this differential settling phenomenon is likely the prime mechanism for 

layer segregation within resulting sand-mud bed deposits.  A similar polydisperse model 

was developed by Van and Pham Van Bang (2013) to investigate segregation (and 

trapping) effects that occur between mud flocs and sand grains during the hindered 

settling phase of sedimentation processes. The authors acknowledged, however, that 

limitations in the extent of calibration data available (i.e. one 20 % sand − 80 % kaolin 

test mixture) meant the model needed further validation over a wider range of sand-clay 

mixtures.   

 

Grasso et al. (2014) analysed data from a number of previous settling column studies (e.g. 

Merckelbach and Kranenburg, 2004a; te Slaa et al., 2013; van and Pham Van Bang, 2013; 

etc.) which investigated hindered settling of sand-mud mixtures over a wide range of 

initial concentrations and sand contents. The outcome of the analysis showed that the sand 

fraction segregation within the resulting bed deposits was not a regular occurrence and 

appeared to be prevented at a particular initial concentration threshold of the cohesive 

sediment fraction.  Therefore, the spatial and temporal variations observed in sediment 

bed texture and structure (e.g. the formation of mixed or segregated deposit layers) are 

believed to be largely defined by hindered settling characteristics within sand-mud 

suspensions.  

 

2.3.5 Effect of salinity on settling 

From Stoke’s law (Equation 2-5) and all its offshoots, it is clear that the settling velocity 

is influenced by the effects of changing salinity on floc characteristics (e.g. diameter, 

density) and, to some extent, fluid viscosity. Dyer (1986) suggested that as flocculation 

rate increases with increase in salinity, a particular settling velocity will occur at a lesser 

concentration in a higher salinity, and that, depending on the ratio of particle size D to the 

spacing of adjacent particles s, peak settling velocity should occur at a lower 
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concentration (McNown and Lin, 1952; Dyer, 1986).  Ambient fluid salinities ranging 

from ~0.5-5.0 psu (i.e. oligahaline) and ~5.0-18.0 psu (i.e. mesohaline) are broadly 

reported to enhance flocculation and settling of clay and clay flocs (Ani et al., 1991; 

Uncles et al., 2006; Sutherland et al.,2014; etc.). For example, one of the studies (e.g. 

Cerco et al., 2013) in modern estuaries reported a decrease in suspended sediment content 

in the seaward direction. This was interpreted to be a result of clay sedimentation in the 

inner estuary and dilution from sea water. Although, the qualitative link between salinity 

and settling of suspended inorganic solid particles, is somehow complicated (Sutherland 

et al.,2014); however, this qualitative link has been clearly observed in the Gironde 

Estuary, France (Allen and Posamentier, 1993), the Jiaojang Estuary, China (Guan et al., 

2005), Kouchibouguac Bay, Canada (Hauck et al., 2009) and in Avonmouth Estuary, 

England (Owen, 1970). 

 

The series of laboratory settling experiments of Owen (1970) conducted with natural clay 

from the Avonmouth Estuary in England, revealed that, for each initial sediment 

concentration, a measurable increase in their settling velocity can be seen with increase 

in salinity up to 30 ppt, and above which, the settling process was retarded (Figure 2.10). 

There is a generally consistent trend of the gradual rise in the settling velocity with 

salinity, attainment of a peak value at about 30 ppt, and a relatively rapid decrease with a 

further increase in salinity (especially above 30 ppt) for all the sediment concentration 

tested.  Similarly, Sutherland et al. (2014) reported that, increasing the salinity beyond a 

nominal value (~20 psu) does not change the settling rate, and that, this rate was found to 

be retarded with increase in particle concentration (Note: psu is approximately equivalent 

to ppt).  Specifically, the trend in Figure 2.10 appears to indicate that, above 4 kg m-3, 

initial sediment concentration plays significant roles in hindering settling. The flatness of 

the curve for 32 kg m-3 (see Figure 2.10) suggests however, that hindrance due to high 

concentration may likely suppress the effect of salinity (Mehta, 2014).  Also, because 

natural mud was used (Owen, 1970), another likely, and possibly very important, factor 

responsible for this reduction in settling velocity is the effect the benthic organisms can 

have on settling process, as they are capable of altering sediment dynamics by changing 

the structure and composition of the sediment (Jumars and Nowell, 1984; Jones et al., 

1997).  High salinities can chemically alter organic matter and influence, for example, 

microbial community (e.g. cynobacteria) to produce mucus-like substance which can bind 

the particles and hence alter their settling characteristics (Mehta, 2014; Grabowski et al., 

2011; Winterwerp and Van Kesteren, 2004). 
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Figure 2.10  Effects of salinity on the settling velocity of Avonmouth (England) mud                

[After Owen (1970); from Mehta (2014)].  

 

 

2.4     Sediments Bed Formation Process 

2.4.1 Brief introduction 

Understanding the dynamics of natural sediment bed formation processes is important to 

accurately assess and predict erosion and deposition processes that take place in estuarine 

and near-shore coastal marine environments.  For example, in the event such as, dredging 

excavation or disposal of waste slurries (which is more practical to be dumped on land 

rather than back into the water due to the possibility of the dredged material being already 

polluted), accurate prediction of settling and consolidation of such dumped material is 

necessary to optimize the disposal process (Torfs, et al., 1996; Van and Pham Van Bang, 

2013). 

 

2.4.2 Bed formation concept 

Two major mechanisms are responsible for bed formation, namely: sedimentation of 

particles or flocculated particles and consolidation (Ross, 1988; Mehta, 2014).  

Sedimentation can be defined as the process by which particles, or aggregates of particles, 

under the influence of gravitational force leave suspension and settle to form a bed 

deposit. Consolidation in a fully saturated environment is a process which results from 

the deformation of the bed deposit particle framework under an applied stress. The 

applied stress could either be as a result of net negative buoyancy i.e. self-weight or 

imposed overburden loading (Dyer, 1986; Ross, 1988; Mehta, 2014).   



Chapter Two: Literature Review  

 

33 
 

In the context of bed formation by sedimentation and consolidation, when a column of 

suspended sediment settles in still water under gravity, the sequence of the complete 

processes is (Dyer, 1986; Mehta, 2014): flocculation, settling, deposition and 

consolidation (Figure 2.11).  Depending on factors such as sediment types, composition 

and concentration, the sequence may be altered, for example, the first three processes can 

occur simultaneously and flocculation can be omitted completely in predominantly non-

cohesive sediments (this is discussed further in Chapter 5).  A general description and 

graphical model of the bed formation processes (Figure 2.11) was given by Imai (1981). 

Due to low submerged weight that makes flocculated sediments to settle more slowly 

than coarse or non-cohesive sediment of the same size as flocs, the model therefore 

describes the three general stages that flocculated sediments undergo to form bed 

deposits: 

   

 

          Figure 2.11  Imai (1981) description and graphical model of bed formation process  

          (From Mehta, 2014) 

 

Flocculation stage   

Aggregation in particular is the defining process in this stage. The process of aggregation 

(flocs building-up) and breaking-up is called flocculation.  Particles aggregation results 

when two particles collide and stick together and the rate of aggregation is driven by 

frequency of collisions, the efficiency of the collisions in getting the particles to stick 

together and the particle concentration. Particle collisions are initiated by Brownian 

motion of particles, turbulence within the suspending liquid and differential settling of 

the suspended particles (Van Leussen, 1994; Winterwerp and van Kesteren, 2004; Mehta, 

2014).  At this stage, floc formation due to coagulation will occur if the initial particles 
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are primary or dispersed and conducive to cohesion (Mehta, 2014).  Depending on the 

mineralogy of the sediment involved, this stage may last for seconds or minutes. The 

onset of rapid fall in the water-sediment interface at the end of the stage (Figure 2.11) 

shows a smooth transition to the next stage (i.e. settling stage; Figure 2.11) [Imai, 1981; 

etc.].  

 

Settling stage   

This stage is characterised by two phases, namely: uniform settling/constant flux settling 

phase and hindered settling phase (see Figure 2.11).  In the former, the rate of fall of 

water-sediment interface is relatively uniform due to negligible hindrance against the fall; 

in the latter phase, however, the fall of the interface (i.e. lutocline) is hindered, this phase 

is characterised by the decrease in the interface falling rate with time and the formation 

of second interface below the lutocline (see Figure 2.11), which defines the building up 

of bed above the bottom (Imai, 1981; Mehta, 2014).  Detailed description of this stage 

has been given earlier in this chapter (i.e. section 2.3.4)  

 

Consolidation stage 

The last identified stage is the consolidation stage, and the transition from the settling 

stage to this stage happens at a time (t) when the lutocline meets the rising bed height (see 

Figure 2.12). Beyond the meeting point between the lutocline and the rising bed height, 

the surface of the freshly formed bed falls very slowly until there is no significant 

reduction in the bed deposit height, and this is due mainly to consolidation (Imai, 1981; 

Mehta, 2014). At the initial stage of consolidation, as mud flocs settle, subsequently 

settled flocs will squeeze the flocs that settle before them and in the process pore-water 

is expelled out of the flocs and out of the space between the flocs. This process has been 

described as self-weight consolidation process by Terzaghi (1943).  Self-weight 

consolidation process basically describes the transition from a fluid-supported suspension 

to a solid-supported suspension (e.g. soil), which is characterised by a change of state in 

which pore-fluid pressures and vertical total stress are equal, to a state where pore-fluid 

pressures are less than the total vertical stress (i.e. there is existence of effective stress) 

[Sills (1998)].  Figure 2.12 shows (a) a typical density profile; and (b) the calculation of 

its effective stress (i.e. difference between total pressure and pore pressure) for 

experiment REDMO5 from Sills (1998). Figure 2.12(a) clearly shows, the fluid supported 

part, the hindered settling phase, solid-supported part, and the consolidation phase. In 

Figure 2.12(b), the hindered settling phase is characterised by equal pore-fluid pressures 
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and total pressure; in the consolidation phase, however, the pore pressures are less than 

the total pressure (i.e. showing existence of effective stresses). The process described 

above is widely used in soil mechanics to characterise soil structures; for example, the 

onset of consolidation is identified by the development of effective stresses, therefore 

from Figure 2.12(b), it is clear that consolidation starts at Pressure = ca 0.17 kPa. The 

pressure value corresponds to a density of ca 1200 Kg m-3 in Figure 2.12(a), this referred 

to as the structural density (i.e. the concentration at which a space-filling network occurs 

where particles within the mixture support each other at their loosest packing). 

 

 

 

Figure 2.12 Sketch of a typical density profile (a) and the calculation of its effective 

stress [i.e. difference between total pressure and pore pressure] (b), for experiment 

REDMO5 from Sills (1998). [Adapted from Lintern, 2003] 

 

Figure 2.13 shows the density profiles for the initial 79 hours of a settling column 

experiment to investigate sedimentation process of estuarine mud (from Combwich, 

Somerset in England), Been and Sills (1981), described the density (i.e. 1070 Kg m-3 or 

1.07 g cm-3) of the initial mud suspension as almost uniform (i.e. at flocculation stage), 

but with time, as settling continues, an interface separating the pool of clear water and the 

sediment slurry forms which falls linearly with time and maintains an almost constant 

concentration (i.e. settling stage, similar to Figure 2.11). Meanwhile, at the bottom, a layer 

of relatively high density is formed, due to (i) coarse particles settling quickly before 

becoming involved in the flocculation process (which is the case most of the time with 

sand-mud mixtures) and (ii) partly because of rapid consolidation at the base while the 

sediment layer is still relatively thin (Been and Sills, 1981).   
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Figure 2.13 Density profiles in a settling suspension with initial density of 1.07 g cm-3      

(From Been and Sills, 1981) 

 

2.4.3 Effective stress and pore-water pressure 

Sediment bed deposits are examples of porous media, comprising a deformable mineral 

skeleton filled with an incompressible fluid (water) [Ross, 1988; Craig, 1992].  For such 

a system, settling in hindered mode and consolidation (see Figure 2.11) are both governed 

by the rate of pore water dissipation (Winterwerp and van Kesteren, 2004; Mehta, 2014). 

The effective normal stress within the settling suspension is insignificant, i.e. pore-water 

pressure (∪́) is approximately equal to the total hydrostatic pressure (∪́ℎ) on the sediment 

suspension; but within consolidating bed deposits, it is significantly less than total 

pressure (𝜎) [see Figure 2.12(b)].  This difference has been attributed to the fact that part 

of the suspension total weight is supported by the particle matrix (Winterwerp and van 

Kesteren, 2004; Mehta, 2014). This difference in pressure is represented by a concept of 

effective stress 𝜎′ (Equation 2-20) which represents load supported by particles matrix as 

opposed to pore fluid. This has been found to be the controlling parameter in determining 

soil strain, deformation and strength (Been and Sills, 1981; Schiffman et al., 1986).  

According to the principle of ‘effective stress’, the strength and compressibility (i.e. 

degree of looseness) of a soil or bed deposit depend on the difference between the ‘total 
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stress’ and the stress carried by the pore fluid i.e. pore-water pressure (Mitchell, 1960 and 

Craig, 1992). 

 

                      𝜎′ =  𝜎 - ∪́                                                                                   (2-20) 

 

Total stress at a point in the bed can be obtained by integrating density profile from the 

top of the bed down to that point. So, from total stress values and pore-water pressure, 

the distribution of ‘effective stress’ over the settling column height can be calculated from 

Equation (2-20) [Torfs et al., 1996; Been &and Sills, 1981; Sills, 1998; Craig, 1992; 

Winterwerp & Van Kesteren, 2004; etc.].   

 

In addition to effective stress, another important parameter in this context is excess pore 

pressure (∆𝑢) (Equation 2-21), which is the difference between actual pore water pressure 

(∪́) and hydrostatic pressure(∪́ℎ).  

 

                       ∆ ∪ = ∪́ - ∪́ℎ                                                                             (2-21) 

 

The dissipation of pore water has been used to explain consolidation processes; 

nevertheless, pore water pressure gradient has also been demonstrated to be useful to 

explain freshly deposited bed behaviour (Lintern, 2003; Ross, 1988; Been and Sill, 1981; 

etc.). For example, if total stress, 𝜎, is approximately equal to ∪́ under dynamic conditions 

(i.e. 𝜎′ ≈ 0), liquefaction of the sediment slurry can occur (e.g. fluid mud) (Ross, 1988).  

In a highly porous sediment bed, the effective stress everywhere within the bed is non-

zero and the pore pressure is everywhere hydrostatic.  In a freshly deposited bed, the pore 

water pressure in the upper part of the deposit will be equal the total stress, the implication 

of this is that the sediments are in suspension, and therefore the water bears the sediment 

weight. With time, the pore-water pressure will drop below the total stress allowing 

particle interaction, and a weak bed structure begins to from which is able to bear some 

of the weight of the sediment (Ross, 1988).  These illustrations confirm that the 

development of effective stress provides a fundamental distinction between suspension 

and structural bed deposits (Ross, 1988; Been and Sills, 1981; Sills and Elder, 1986; Sills, 

1998). 

 

Been and Sills (1981) and Sills and Elder (1986) carried out extensive laboratory studies 

on the development of effective stress in settling and consolidating estuarine silty-clay 
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mud from Combwich (UK) in a settling column.  Figure 2.14 shows the instantaneous 

density and effective stress profiles for one of the tests 4.75 hours after the start of the 

settling test. In their experiments, they could not find a particular concentration level at 

which effective stress will develop, but they did observe that structural development 

occurred over a range of concentrations (80 – 220 kg m-3) which largely depended on the 

initial mixture density. Ross (1988) suggested that their observation seems to imply that 

structural phase development is dependent on sedimentation rate especially in low 

concentration quiescent conditions. However, according to the findings of this study on 

laboratory tests on wave erosion, hydrodynamic agitation also influences structural phase 

development. 

 

 

Figure 2.14  Instantaneous density, total pressure and pore pressure profiles of  

settling Combwich-UK mud (From Mehta, 2014) 

 

 

2.5     Erosion and Entrainment 

2.5.1 General overview  

The stability of bed sediment in the marine environment as reported by Grabowski et al. 

(2001) is largely dependent on the balance between hydrodynamic forces that cause 

erosion and the forces within the sediment that resist it.  Amos et al. (1998) and 

Winterwerp and Van Kesteren (2004) described these hydrodynamic forces (erosive 

forces) as being the embodiment of fluid-transmitted forces (e.g. boundary layer shear 

stress) and prevalent turbulent conditions.  They added that, the characteristics of these 

erosive forces are largely influenced by the nature of fluid flow and solid transmitted 
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stresses from particles moving along the bed.  The potential of these forces are hindered 

by aspects of the near-bed environment (e.g. increased bed roughness, presence of organic 

component, etc.) that control fluid velocity and turbulence intensity (Jumars and Nowell, 

1984; Madsen and Warncke, 1983).  Therefore, Grabowski et al. (2011) stated that 

erosion occurs when erosive forces are larger than the resistive forces within the sediment 

which include gravity, friction, cohesion and adhesion.  Based on these submissions, 

erodibility, often expressed as ‘erosion threshhold’ or as an ‘erosion rate’, is a measure 

of these resistive forces (Sanford, 2008; Grabowski et al., 2011).  Erosion rate is defined 

as the mass of sediment eroded per unit time once the threshold is exceeded (i.e. at an 

excess shear stress); while erosion threshold is the water velocity or critical bed shear 

stress (τcs) that initiates sediment erosion.  

 

2.5.2 Main properties affecting cohesive sediment erodibility 

Findings of various studies (e.g. Torfs et al, 2001, Le Hir et al., 2008; Grabowski et al., 

2011; Baas et al., 2013; etc.) conducted on erosion of sediments from bed deposits have 

shown that erodibility of these beds is influenced by a number of physical, geochemical 

and biological sediment properties and processes. These include; average size of 

particle/aggregate constituting the bed; particle size distribution within the beds (e.g. clay, 

silt and sand content); bed bulk density and water content; temperature, clay mineralogy, 

total salinity, relative cation concentration, pH, metal concentration, bioturbation, feeding 

and egestion by organisms and biogenic substances (e.g. extracellular polymeric 

substances -EPS).  Figure 2.15 presents some of the main sediment properties and 

processes that significantly influence erodibility. Grabowski et al. (2011) noted that these 

properties are dynamically linked and the net impact of any individual property on 

erodibility for natural sediment is more often dependent on the interactions between two 

or more properties.  
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Figure 2.15  Conceptual model of the sediment properties and processes that a ffect  

erodibility (From Grabrowski et al., 2011) 

 

2.5.2.1 Physical property: particle size distribution  

Various studies both in the field and laboratory (e.g. Yallop et al., 2000; Amos et al., 

2004; Gerbersdorf et al., 2008; Tolhurst et al., 2008) have identified physical properties 

of the sediment (e.g. mean particle size distribution, bulk density, etc.) as the most 

important of the properties that influence erodibility. This explains why they are 

frequently identified to underlie the significant spatial and temporal variation in 

erodibility observed in natural marine environments (Amos et al., 2004; Bale et al., 2007) 

and commonly used in site-specific models of sediment transport to predict erodibility 

(Sanford, 2008; Paarlberg et al., 2005).  A negative correlation between critical bed shear 

stress and average particle size was reported (Figure 2.16) in the experiment on natural 

marine mud. Grabowski et al. (2011) attributed the reduction in erosion threshold of the 

unconsolidated bed with increase in particle size to a decrease in density. Dade et al. 

(1992) however, found a directly opposite trend, i.e. positive correlation between critical 

shear stress and particle size (grain diameter ranging between 10-170 μm). These findings 

suggest that correlation between particle size and critical bed shear stress can be negative 

or positive, Grabowski et al. (2011) suggested that this variation may depend on how the 

aggregates are deposited and sediment beds are formed.  

 

Therefore, using cohesive sediments as an example, the relative proportions of clay, silt 

and fine sands within them will substantially affect their erodibility (Winterwerp and van 

Kesteren, 2004; Le Hir et al.,2008; Grabowski et al., 2011; Mehta, 2014).             
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Grabowski et al. (2010), Panagiotopoulos et al. (1997), Mitchner and Torfs (1996) and 

Le Hir et al.(2008) reported a measurable increase in erosion threshold, up to a maximum 

erosion threshold at 30-50% mud, when mud was added to a sand bed [see Figure 2.17 

(a)].  A sharp increase in critical shear stress for erosion occurred when clay content 

exceeds 4.5% in Le Hir et al. (2008) erosion experiment with mixture of 280 μm sand and 

‘St Yves’ mud (Figure 2.17b). Torfs et al. (2001) analysed various experimental data on 

erosion of mixed (sand-mud) sediment beds, and found also that erosion threshold 

increased with increasing mud content, except at mud content of few percent (less than 

5%) as presented in Figure 2.18. Their findings show majorly that, combination of 

hydrodynamic smoothing (i.e. fluid-sediment interactions); clay-sand adhesion and clay 

cohesion are responsible for the observed increase in erosion threshold.  At low clay 

contents (e.g. 2% bentonite by weight in Lick et al., 2004), the voids between the sand 

and/or silt grains are filled by the clay minerals helping the sand and silt grains to stick 

together resulting in bed with smoother surface that is more resistant to erosion 

(Grabowski et al., 2011).  With high clay contents (e.g. 4-10% by weight), the structural 

framework of the sediment changes from sand (or silt) grain skeleton framework to a clay 

mineral framework, indicating a transition from a non-cohesive sediment to a cohesive 

sediment (van Ledden et al., 2004; Winterwerp and van Kesteren, 2004; Grabowski et al. 

2010). 

 

 

Figure 2.16 Critical shear stress variations with particle size for different beds  

            (From Grabowski et al., 2011) 
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Figure 2.17 Erosion threshold of laboratory mixtures of sand (280 μm) and ‘St Yves’ mud 

against volume fraction of (a) mud and (b) clay (From Le Hir et al., 2008) 

 

 

 

Figure 2.18  Measured critical shear stress as a function of fine grained  weight fraction for 

mixtures of kaolinite/sand and natural mud/sand (From Torfs et al., 2001) 

 

 

(b) 

 

(a) 
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2.5.3  Erosion behaviour of non-cohesive sediment 

The mechanisms underlying the erosion processes of sand and/or silt are relatively well 

understood and documented. Sediments properties such as particle size, shape and 

packing density can be reasonably used to predict erodibility of these non-cohesive 

sediments (Grabowski et al., 2011; Mehta, 2014).  In addition to the sediment properties, 

erosion of this class of sediments depends on the flow-induced forces. Consider the forces 

acting on a particle at the surface of a horizontal bed (Figure 2.19), being a cohesionless 

particle, it is assumed to be non-deformable, each with an identity when at rest or in 

motion (some authors have argued that cohesive floc can be ideally treated as sand grain 

based on these assumptions (e.g. Winterwerp and van Kesteren, 2004; Mehta, 2014; etc.).  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  Figure 2.19 Forces on a particle at a horizontal bed surface subject to turbulent flow  

            (Adapted from Mehta, 2014) 

 

 

Above the particle (Figure 2.19), for curved streamlines, a low pressure is generated 

which induces a vertical lifting force FL. The drag force is as a result of flow by means of 

viscous skin friction and low pressure, FD, acting at the same level with bed surface (plane 

of zero-velocity).  If the cohesive-adhesive force (represented by FC), which may be 

assumed to be equal to inter-particle electromagnetic attraction, is considered, then the 

total resisting force on the particle will be particle buoyant weight (Fg) and FC.  Therefore, 

the net normal force on the particle can be given as: ‘Fg + FC - FL’.  Angle  φ𝑎 is termed 

angle of repose, and corresponds to the threshold of movement of the first particle 

Fg + Fc 

Fg + Fc - FL 

 

FD 

 

 FL 

 
 Ub 

P 
ϕa 

Plane of zero velocity 

Resultant force at the 
threshold of movement 
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anywhere on the bed surface (Mehta, 2014).  FD can be assumed to be = 𝑐∗ 𝑑𝑝τ𝑐 (where, 

𝑐∗ is a coefficient that takes into account the geometry and packing of the grains and the 

variation of the drag coefficient – it is equally expected to vary with boundary Reynolds 

number; 𝑑𝑝 is the particle diameter; and 𝜏𝑐 is the average boundary shear stress). 

 

Shields (1936) developed a parameter to determine the initiation of motion for 

cohesionless particle (sand) based on the principle of force balancing described above. 

The model is generally referred to as Shields’ entrainment parameter 𝜃𝑐𝑟  (Equation 2-

22), but when FC is negligible,  θ𝑐𝑟  for coarse particles can be defined as a function of 

the particle roughness Reynolds number 𝑅𝑒∗ (Equation 2-23).  Examples of some flume 

experimental data relating Equations (2-22) and (2-23) are shown in Figure 2.20 (i.e. 

Shields’ diagram).  Generally, if Re∗ is known, θ𝑐𝑟 of the particle can be determined and 

by extension the critical shear stress (τ𝑐) of the particle.  Under given flow conditions, a 

Shields parameter greater than the critical line (Figure 2.20) will result in motion of non-

cohesive sediments, i.e. the particles start rolling and sliding as the applied shear stress is 

reaching critical shear stress. 

 

                       θ𝑐𝑟 = 
|τc|

(ρ𝑠− ρ𝑤)𝑔𝑑𝑝
                                 (2-22) 

 

where 𝜏𝑐 (N/m2) is the critical bed shear stress at the threshold of erosion, 𝑔 (m s-2) is the 

acceleration due to gravity,  𝑑𝑝 is the particle diameter, and  𝜌𝑠 and 𝜌𝑤 are the particle 

and fluid density respectively. 

 

 

                      𝑅𝑒∗ = 
𝑢∗𝑐𝑑𝑝

𝑣
    ;  𝑢∗𝑐 = √

τ𝑐

ρ𝑤
                                                                    (2-23) 

 
 

where 𝑣 is the kinematic viscosity of water and 𝑢∗𝑐  is the critical value of the friction 

velocity. 
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Figure 2.20 Initiation of motion according to Shields (1936) [i.e. Shields’ diagram]  

 

A wide range of flow conditions for which there is weak but noticeable sediment 

movement is one of reasons why determination of particle movement threshold is so 

challenging, which leads to the general problem of how to define the condition of 

incipient movement in the first place. This explains why the Shields diagram is under 

criticism in its application to define condition of incipient movement; for example, 

because 𝜏𝑐 and 𝑑𝑝 both appear in the axis variables it will be impractical to use it to find 

the threshold shear stress that corresponds to a given sediment diameter, or to find the 

largest sediment diameter that is moved by a given shear stress.  Van Rijn (1993) 

suggested that the Shields curve in terms of 𝑅𝑒∗ and 𝜃𝑐𝑟 is largely not practical because 

𝜏𝑐 value can only be obtained by iteration. Nonetheless, the Shields diagram continues to 

be used, because it gives good ballpark results for both engineering and sedimentological 

purposes. Recently various sand erosion laws (often called pick up functions) have been 

formulated to address the pitfalls of Shields diagram, although experimental validation of 

such laws is rare.  Most of these published sand erosion laws (e.g. van Rijn, 1985; Beach 

and Sternberg, 1988; Nielsen, 1992; etc.) are expressed by relating erosion rate as a 

function of the excess-shear stress to a power, which value varies depending on the sand 

diameter (e.g. higher power for smaller particles) [Le Hir et al., 2008]:   

 

                      𝐸𝑠𝑎 = 𝐸0,𝑠𝑎 [
𝜏𝑏

𝜏𝑒𝑠
− 1]

𝑛𝑠

  for  τb >  τ𝑒𝑠              (2-24) 

 

where  τ𝑒𝑠 is the sand particles critical stress for erosion (e.g. deduced from Shields curve, 

and parametrically formulated in terms of grain size and density by Soulsby, 1997);  𝑛𝑠 
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is generally optimised from calibration and varies according to authors [e.g. 𝑛𝑠 = 1.5 in 

van Rijn (1985);  𝑛𝑠 =1 in Beach and Sternberg (1988); 𝑛𝑠 =0.5 in Waeles et al. (2007)].   

 

Bed shear stress obtainable from the erosion formulae can be used to characterise the 

modes of sand particles transport. For example, at relatively low bed shear stress but still 

sufficient enough to initiate motion but incapable of suspending the particles in the 

overlying water body, the bed load transport regime dominates, where particles are only 

experiencing the first three modes of sediment transport (i.e. sliding, rolling and 

saltation).  Bedforms in the scale of ripples can be formed in such a situation. Generally, 

ripples are formed when shear stresses are about 10-20% larger than critical shear stress 

(Julien, 1995; Soulsby, 1997). For relatively higher bed shear stress, the predominant 

mode of transport is suspension, although as recorded by Soulsby (1997) bedload can still 

occur but the quantity af sand that will be carried in suspension will often be very much 

greater than that carried by bedload, especially for fine sands.  The transport regime is 

called sheet flow regime (i.e. the flow regime in which the shear stress exerted on the 

sediment bed by the fluid flow is strong enough to set in motion a thick layer of particles) 

where due to strong flows ripples are washed out.  

 

2.5.4  Erosion behaviour of cohesive sediment  

 

The principle of particle erosion described in the preceding section (i.e. Shields’ 

entrainment parameter 𝜃𝑒𝑐) cannot be adequately used to describe erodibility of cohesive 

sediment because when dealing with cohesive sediment, ideally prediction of cohesion 

and adhesion forces should not only be based on particle size, but also on mineralogy, 

organic content, biogenic substances, etc. (Winterwerp and Van Kesteren, 2004; Mehta, 

2014; etc.). In numerical models of cohesive sediment transport, the critical shear stress 

and sediment erosion rate are commonly used parameters. The first set of systematic 

experiments on erosion of mud beds was carried out by Parthenaides (1965); based on his 

results, Ariathurai (1974) proposed the following erosion equation, for erosion rate (E), 

defined as the mass of material eroded per unit time once the erosion threshold has been 

exceeded [i.e. at an excess shear stress (𝜏𝑏 − 𝜏𝑒)] (Grabowski et al., 2011): 

 

                      𝐸 = 𝑀 (
τb− τe

τe
)  for  τ𝑏 >  τ𝑒                          (2-26) 
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where 𝐸 (kg m-2s-1) is the erosion rate, 𝑀 (kg m-2s-1) is an empirical erosion parameter; 𝜏𝑏 

(Pa) and 𝜏𝑒 (Pa) are the bed shear stress and erosion threshold respectively.  

 

Winterwerp and Van Kesteren (2004) however, cautioned that care must be taken when 

using Equation (2-26) in establishing 𝑀 from erosion experiments as it is very sensitive 

to small errors in 𝜏𝑒 thereby leading to inaccurate results. Equation (2-26) has been 

generalized [e.g. as Equation (2-27)] by various other researchers (e.g. Sheng, 1984; Lick, 

1982; Mehta, 1981; Harrison and Owen, 1971; etc.) and it is widely used (e.g. in 

mathematical models) for its simplicity (Winterwerp and van Kesteren, 2004).  The value 

of 𝜏𝑒 in Equation (2-27) often varies with depth and time due to consolidation and 

physico-chemical effects. 

 

                       𝐸 = 𝑀 [
τ𝑏− τ𝑒 (𝑧,𝑡)

τ𝑒(𝑧,𝑡)
]

𝑛

  for  τ𝑏 >  τ𝑒                         (2-27) 

 

where 𝑛 is generally unity; however, Harrison and Owen, (1971) and Kusuda et al. (1985) 

suggested that 𝑛 can assume a range of other values. Various cohesive sediment erosion 

formulae have been proposed by other authors based on that of Partheniades (1965). For 

instance, Winterwerp et al. (2012) treated surface erosion in terms of Mohr-Coulomb 

failure of the drained layer of flocs exposed at the bed surface. Smerdon and Beasley 

(1959) presented one of the earliest models to address the issue of sediment cohesiveness, 

by relating erosion threshold (τ𝑒) to the cohesiveness of the sediment bed rather than to 

the clay content, by expressing cohesiveness in terms of plasticity index, PI (%). 

Additionally, Mitchener and Torfs (1996) proposed an equation to estimate critical shear 

stress (𝜏𝑒) by relating it to the bed bulk density. 

           

2.5.5  Erosion of sand-mud mixtures 

Section 2.5.2.1 highlights the erosion behaviour of a mixture of sand and mud. From the 

different experimental works reviewed, it appears that below a critical mud fraction, the 

mixture behaves like pure sand, whereas above this critical value the resistance to erosion 

increases with the mud fraction. Based on some of the observed behaviour, these 

researchers proposed different semi-empirical based relationships to estimate erodibility 

of beds with mixture of sand and mud. Although, there is still need for more investigation 

on the subject, van Ledden (2003) and van Ledden et al. (2004) undertook a thorough 

analysis on the various studies on this subject. On this basis, and on the textural 

classification provided by ternary diagrams (Figure 2.1), they proposed two heuristic 
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formulas. The first formula was based on the assumption that in a non-cohesive regime, 

sand and mud particles will behave independently and that the individual sediment 

component does not affect the erodibility of the other fraction (Winterwerp and Van 

Kesteren, 2004), hence Equation (2-31) was proposed: 

 

         𝐸𝑠𝑎 − 𝐷𝑠𝑎 =  γ𝑊𝑠(𝐶𝑒
𝑠𝑎 − 𝐶𝑠𝑎)  ;    𝐸𝑚 = ∈𝑚 𝑀 (

τ𝑏−τ𝑒,𝑛

τ𝑒,𝑛
);   for  τ𝑏 > τ𝑒,𝑛     (2-31) 

 

where 𝐸 = erosion rate, 𝐷 = deposition rate, 𝑊𝑠 = settling velocity, 𝐶 = suspended 

sediment concentration, 𝑀 = erosion parameter, 𝐶𝑒
𝑠𝑎 = sand equilibrium concentration, 

and γ = form coefficient, ∈𝑚 = mud content, ∈𝑠𝑎 = sand content. Superscripts 𝑚 and 𝑠𝑎 

are mud and sand fractions respectively. On the other hand, in the cohesive regime, it is 

believed that erosion is governed by the cohesiveness of the bed, i.e. mud fraction is active 

while sand fraction is passive. It is equally assumed that the erosion of sand particles 

occurs simultaneously with the mud particles at a rate proportional to its fraction; 

Equation (2-32) was proposed as a result: 

 

                  𝐸𝑠𝑎 = ∈𝑠𝑎 𝑀 (
τ𝑏−τ𝑒,𝑐

τ𝑒,𝑐
)   ;    𝐸𝑚 = ∈𝑚 𝑀 (

τ𝑏−τ𝑒,𝑐

τ𝑒,𝑐
);    for  τ𝑏 > τ𝑒,𝑐         (2-32) 

 

It should be noted that Winterwerp and Van Kesteren (2004) suggested that the erosion 

threshold of the cohesive bed (τ𝑒,𝑐) and that of non-cohesive bed (τ𝑒,𝑛) may be different, 

so also their erosion rates. 

 

Jacobs et al. (2011) argued that one of the main reasons why there is currently inadequate 

insight into the determining processes of erosion of a sediment bed is because only highly 

empirical formulations describing the erosion behaviour of sand-mud mixtures rather than 

process-based formulations are available. They suggested that, in order to obtain more 

physically founded, and more generally applicable erosion formulations, a soil 

mechanical approach is required, such as the approach proposed by Schofield and Wroth 

(1968). This approach was based on the soil critical-state concept, defined as the end or 

ultimate state of a deformation process for saturated soils (Schofield and Wroth, 1968).  

The critical-state model proposed by Schofield and Wroth (1968), relates the mechanical 

behaviour of soils to the applied loading conditions on one side, and the cohesiveness, 

permeability, stress history and parking density on the other (Jacobs et al., 2011).  Some 
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of the findings of Jacobs et al. (2011) from their experiments on surface erosion based on 

the soil mechanical approach are summarised below: 

 

 Sediment bed deposits exhibits purely granular behaviour for a plasticity index 

(PI) < 2 (i.e. sand rich bed).  For larger PI, only two types of erosion can occur: 

flocs and surface erosion.  

 Surface erosion threshold exhibits a negative correlation with water content, 

which is a measure of the packing density. A clear power law relation exists 

between the threshold and the plasticity index which, according to them, is a bulk 

material parameter for the cohesiveness of a soil being a function of the clay 

content and mineral type and the effect of pore water chemistry. (Basis for 

characterising surface erosion as a drained process in their study). 

 

2.5.6  Modes of erosion 

Below critical bed shear (𝜏𝑐𝑠) erosion is insignificant, whereas significant erosion occurs 

beyond this threshold. Depending on the flow characteristics, four different modes of 

erosion (Figure 2.21) have been formulated by Winterwerp and Van Kesteren (2004) 

based on the geotechnical approach of Schofield and Wroth (1968), and are summarised 

below: 

1) Entrainment (Figure 2.21a): occurs when turbulent flow causes entrainment of 

fluid mud from the surface of the bed into the overlying water body. [Fluid mud 

is a high concentration aqueous suspension of fine grained sediment in which 

settling is substantially hindered (McAnally et al. 2007)]  

2) Floc erosion (Figure 2.21b): this is the case when individual flocs get disrupted 

from the surface of the bed by flow-induced peak bed shear stresses. 

3) Surface erosion (Figure 2.21c): occurs in the absence of pore water pressure 

gradients (i.e. drained failure process) when the mean bed shear stress is greater 

than the mean erosion threshold.  The implication is that sediment particles (sand 

and mud) simultaneously and continuously erode from the whole surface layer of 

the sediment bed, which is in contrast with the random character of floc erosion 

in spatial and temporal terms. 

4) Mass erosion (Figure 2.21d): is the last erosion mode, which occurs in the 

presence of pore-water pressure gradient (i.e. an undrained process) characterise 

by erosion of lumps of material due to external fluid stresses, which largely 
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exceed the cohesive bed strength as well as the strength resulting from pore water 

pressure gradients. 

 

 

 

Figure 2.21 (a) Entrainment of mud layer (b) Floc erosion (c) Surface erosion (drained failure) 

(d) Mass erosion (undrained failure) (Winterwerp and van Kestern, 2004)  

 

2.5.7 Bedform development in mixed (sand-mud) beds 

Experimental studies in flumes, modern rivers and intertidal areas have found that, water 

flowing over a flat-bed will, as the flow-induced shear stress increases, develop a 

sequence of individual topographic elements, termed bedforms, which generally differ in 

terms of morphology and behaviour. As an example, Figure 2.22 presents definition of 

terms commonly used to describe asymmetrical bed-forms under unidirectional flows. 

These bedforms make up the overall bed configuration, and their geometry (and that of 

the bed configuration) depends on the depositional environment defined by the sediment 

properties and flow conditions (Menard, 1950;  Ashley, 1990; Baas, 1994; etc).  It is a 

common practice to broadly classify bedforms, based on the flow regime under which 

they develop (Simons and Richardson, 1961). However, bedforms development is 

expected to also be influenced by the presence of cohesive clay particles within the bed, 

as grain size, is reported to have a primary control on equilibrium bedform height and 
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wavelength (e.g. Baas, 1994, Raudkivi, 1997; Baas et al.,2013). Also, in addition, as 

demonstrated in previous studies (e.g. Mitchener and Torfs, 1996; Jacobs et al., 2011), 

addition of cohesive clay has been shown to increase dramatically, the erosion thresholds 

of sandy beds. Therefore, cohesive sediment fraction is expected to play significant role 

in defining the morphology and stability of sedimentary bedforms (Baas et al., 2013). The 

direct application of the information in Figure 2.22 is shown in chapter 6.  

 

 

 

Figure 2.22 Definit ion of terms used to describe asymmetrical bed -forms that develop  

under unidirectional flows (Simons and Richardson, 1961).  

 

 

2.6     Bed Characterisation: Measurement Techniques 

2.6.1 General overview 

Reliable bed characterisation measurement techniques are unequivocally required for 

accurate analysis and prediction of mixed sediment settling, deposition and bed re-

structuring/consolidation which are essential to improve our understanding of coastal 

sediment transport and morphodynamics. However, availability of simple and non-

destructive measurement techniques to achieve this (for example, characterisation of 

spatial and temporal variation in sediment bed structure and composition) has been 

identified as a major challenge [Been, 1981; Ha et al., 2010; etc.].    

 

Most traditional techniques are intrusive and end up altering the structure of the bed under 

investigation. An example of such is ‘direct coring’, which though still regarded as the 

standard testing method against which to compare measurements from other 

characterisation methods that require elaborate calibrations for estimation of bulk density. 

However, density measurements based on core samples are laborious, time consuming, 
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unreliable, and its spatial and temporal resolution is very low for most applications 

especially in unconsolidated sediments where the sample is unlikely to be representative 

of the bulk material by the time it is tested (Ha et al., 2010).    

 

Alternatively, from previous experimental studies on sedimentation process, bulk density 

profiles and porosities of the sediment bed deposits have been successfully obtained by 

passing high energy X-rays or attenuated gamma rays through the sediment bed (Been, 

1981; Pane and Schiffman, 1997; Ellis, 1987; Been and Sills, 1981, Jacobs et al. 2009). 

These nuclear devices are based on the principle that an increase in sediment bulk density 

will cause the sediment to absorb more nuclear radiation (Hirst et al., 1975; Been and 

Sills, 1981) hence, the bulk density of the sediment can be estimated from the attenuation 

of nuclear radiation passing through its layers (Ha et al., 2010). However, although these 

X-ray/Ƴ-ray techniques are non-intrusive, they are relatively inflexible, expensive, 

laborious and have clear health and safety implications. In addition, field loss from these 

radioactive materials can lead to serious contamination problems (Ha et al., 2010). 

 

Recently, other non-intrusive methods such as acoustic and wave attenuation (AWA) and 

turning fork (TF) methods have been developed (Libicki and Bedford, 1989; Maa et al., 

1997; Fontein and van der Wal, 2006). AWA techniques are based on the principle that 

acoustic echo strength is proportional to the product of the speed of sound and density 

(i.e. acoustic resistivity), thus analysis of the acoustic signals returned from the sediment 

bed can be used as a proxy to calculate corresponding bulk density (Maa and Lee, 2002; 

Kaya et al., 2008).  Though they have the advantages of being relatively simple and safe 

to use, they are however limited to the top layer of the sediment beds and their vertical 

resolution is relatively too low. AWA based techniques have been found to be unreliable 

in the presence of air bubbles and organic materials; and give varying results depending 

on the composition of the mud (Hydramotion Ltd, 2013). In addition, the calibration of 

AWA requires direct extraction of sediment sample thereby defeating the non-intrusive 

goal (e.g. Ha et al., 2010).  In TF devices on the other hand, the bulk density of the 

medium under test is derived from the vibration frequency of the exposed prongs of the 

tuning fork (Hydramotion Ltd, 2013). They have drawbacks of being applicable only to 

low-density fluid mud and require complementary methods for higher density sediment 

layers.  Furthermore, errors in the measurements are very common in these devices 

because granular material can easily become trapped between the prongs of the fork. 

(Libicki and Bedford, 1989; Dowling, 1990; Hydramotion Ltd, 2013 and Ha, et al., 2010).  
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The drawbacks of the non-intrusive methods mentioned above emphasise the need for 

reliable, less cumbersome and non-intrusive sediment bed characterisation measurement 

techniques.  Studies have shown that, although knowledge of the electrical properties of 

marine sediments is scant, the increasing use of electrical resistivity techniques to study 

soils has shown significant promise as a viable geophysical tool (Breitzke, 2006; Blewett 

et al., 2001: 2003; Lovell, 1985; Jackson, 1975; Dai et al., 2009; Samouelian et al., 2005; 

Schlaberg et al., 2006; te Slaa, et al., 2013). Hence, one of the main objectives of the 

current study is to explore and develop a non-invasive characterisation technique based 

on the principle of electrical resistivity to characterise the spatial and temporal variation 

in sediment bed structure and composition resulting from differential settling behaviour 

of the sediment mixtures, without most of the various limitations of other techniques 

highlighted above.  

 

2.6.2  Electrical resistivity and sediments 

The electrical resistivity measurement technique (ERMT) is based on the principle that, 

when an electric current passes through water-saturated marine sediments, the electrical 

resistivity of the sediments will depend on the resistivity of both the solid (sand-mud 

fractions) and fluid components. Hence different combinations of these components 

should, in theory, have different resistivities associated with them (Breitzke, 2006). As 

the sediment grains are insulators (or at least poor conductors), it has been concluded that 

the propagation of electric current takes place via the interstitial pore fluid (Jackson, 1975; 

Dowling, 1990; Lovell, 1985; Breitzke, 2006).  Many researchers have recorded that the 

dominant transport mechanism for electrical current propagation in a pore fluid is by ionic 

(electrolytic) conduction. Therefore, current propagation within the water-saturated 

sediments actually occurs through the pore spaces and hence, the resistivity of the 

sediment bed has been noted to depend both on the conductivity of the pore water and the 

microstructure of the sediment (e.g. porosity, pore geometry, grain surface morphology 

and dielectric properties of the mineral grains) [Kanagy and Mann, 1994; Salem, 2001; 

Wildenschild et al., 2000; Roberts and Wildenschild, 2004; Breitzke, 2006; Metayer et 

al., 2010]. Therefore, this dependency or relationship can then be used as a proxy to 

estimating bulk density. 

 

Electrical conductivity of the pore fluid is, therefore, a function of salinity, pH, dissolved 

ions/molecules mobility, and concentration (i.e. fluid saturation); while that of sediment 

microstructure is controlled by the amount and distribution of the pore space, and its 
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capillarity and tortuosity; common to both is sensitivity to temperature (Breitzke, 2006; 

te Slaa et al., 2013).  As a consequence, the electrical resistivity of marine sediments 

cannot be considered as a bulk parameter solely dependent on relative amount of solid 

and pore fluid in the bed deposit. However, it has been successfully shown (Archie, 1942; 

Winsauer et al., 1952; Boyce, 1968; Taylor Smith, 1971; Erchul and Nacci, 1972; 

Jackson, 1975; Sen et al., 1981; Lovell, 1985; Wildenschild et al., 2000; Samouelian et 

al., 2005; Breitzke, 2006; Blewett et al.,2001; 2003; Ibikunle et al., 2014) that it can be 

correlated to bed porosity, wet bulk density and permeability, provided an adequate 

calibration to a typical sediment composition can be carried out.  Recently, electrical 

conductivity measurements have been successfully correlated to sediment mass 

concentration [te Slaa et al. (2013)] and suspended sediment concentration (Dai et al., 

2009). 

 

2.6.3 Theory of Electrical resistivity technique: Galvanic method  

There have been several models developed to describe electric flow through solid 

structure like rocks and water-saturated sediments theoretically (Sen et al., 1981; 

Waxman and Smits, 1968, Ruffet et al., 1991), but, in practice, because often only few of 

the required model parameters are known, these models are not very useful, and the most 

widely preferred model was an empirical equation proposed by Archie in 1942 (Breitzke, 

2006). Conventional treatment of rock resistivity data (Archie, 1942 and Winsauer et al., 

1952) has been to use a term known as the formation factor F to define a normalised 

resistivity which is the ratio of bulk deposit resistivity of the saturated rock 𝜌𝑏𝑢𝑙𝑘 to the 

resistivity of the saturating liquid 𝜌𝑝, and relating F to the porosity  through the 

following relationship (Archie, 1942), 

 

                         𝐹 =   
ρ𝑏𝑢𝑙𝑘

ρ𝑝
= 𝑎φ−𝑚                                                                         (2-33)   

 

where exponent m is known as the cementation factor and is related to the tortuosity and 

connectivity of the pore network within the rock; a is an empirically-derived coefficient 

of saturation (Winsauer et al.,1952 and Breitzke, 2006), which is valid over a particular 

range of porosities .  Similar to those of a, values of m are also determined empirically 

and are characteristic for a given porous rock system.  A wide range of values have been 

reported for m and a for different rock and sediment formations, with a, typically in the 

range 0.4–2.5 and m (m > 1), typically ranging between 1.2 – 3.5 (e.g. Worthington 1993; 
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Bassiouni, 1994; Devarajan et al., 2006; Khalil and Santos 2011). It should be noted that, 

Archie (1942) postulated that the formation factor F is a constant independent of 

resistivity of the liquid and solely a function of pore geometry. 

 

This model [i.e. Equation (2-33)] has been extended successfully to study sedimentation 

of clay slurries (Blewett et al., 2003; te Slaa et al., 2013), where F is defined as the ratio 

of the bulk resistivity of the clay-water mixture 𝜌𝑏𝑢𝑙𝑘 to that of the water phase 𝜌𝑝, with 

a and m, again, empirical coefficients.  Equation (2-33) can thus be used, provided 

appropriate calibration is carried out, to determine more physically-relevant properties of 

a porous material, example of such is solids volume concentration s (i.e. ratio of the 

volume of solids to the total wet volume) expression derived by te Slaa, et al. (2013), i.e. 

 

                      𝑠 = [1 −
σ𝑚

σ𝑤
] å                                                                                   (2-34) 

 

where å is an empirically-derived coefficient, σ𝑤 and σ𝑚 are the conductivity of water 

and the sediment-water mixture respectively (note: conductivity is the reciprocal of 

resistivity). From Equation (2-34), the corresponding mass concentration cs can be 

computed via cs = s.s, where s is the density of the sediment particles.   

 

 

2.7     Electrical Resistivity Measurements: Technical Issues 

Past and recent studies have established the potential of electrical resistivity techniques 

as a viable geophysical tool to study soils (Breitzke, 2006; Blewett et al., 2001: 2003; 

Lovell, 1985; Jackson, 1975; Dai et al., 2009; Samouelian et al., 2005; Schlaberg et al., 

2006); te Slaa et al., 2013; Ibikunle et al., 2014). However, some key technical issues 

have been identified which must be adequately addressed before reliable results can be 

obtained from the techniques, examples of such are: temperature, salinity and pH effects; 

electrode polarisation; electrode configuration (e.g. spacing, types), cation exchange 

capacity (CEC) of clay, triboelectric effect and effect of electric field on cohesive force 

(te Slaa et al., 2013; Pahtz et al., 2010; Metayer et al., 2010; Ha et al., 2010; Nowak et 

al., 2005; Winterwerp and van Kesteren, 2004;  etc.).  The significance of each technical 

issue differs from one to another and depends on the prevailing environmental or 

experimental conditions (e.g. in brackish environment, the prevailing issue is likely to be 

surface conduction of electrically active material, such as clay). In the following sub-
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sections, literature has only been reviewed on these technical issues, whilst the 

methodologies for overcoming them have been extensively discussed in chapter-3. 

 

2.7.1  Electrode configuration 

Measurement of electrical resistivity usually requires four electrodes (i.e. 4-point 

measurement, Figure 2.23a) [Samouelian et al., 2005], although, a two-electrode system 

is also a common practice (i.e. 2-point measurement, Figure 2.23b) [Blewett et al., 2001; 

2003]. Using a 4-point/electrode configuration (i.e. Figure 2.23a), two of the electrodes 

(i.e. current electrodes), designated by letter A & B, are used to inject current, while the 

other two potential electrodes, designated as M & N, are used to record the resulting 

potential difference across the sample (Figure 2.23). If the potential difference measured 

between the electrodes M and N is denoted by ΔV, then the electrical resistivity (ρ) can 

be calculated using: 

 

                     ρ = k 
ΔV

𝐼
                                (2-35)                                      

 

where k is a geometric coefficient (with the unit of length) that depends on the 

arrangement and geometry of the four electrodes A, B, M and N (Samouelian et al., 2005).  

Various types of electrode combinations have been proposed, each type of combination 

has advantages and limitations in terms of lateral resolution and vertical penetration 

(Bernard et al., 2004). One aspect of electrode configuration that has not been extensively 

dealt with in the literature is the effect of electrode horizontal spacing on lateral resolution 

of the measurements, this has been extensively investigated in the current study. ‘k’ in 

Equation (2-35) takes different forms, depending on the geometry and configuration of 

the electrode.  For instance, if resistivity (in  m), of a unit cubic volume of a specific 

material is measured between two opposite faces, separated by a distance L, and R is 

defined as the bulk resistance of the prismatic sample contained between a pair of 

electrodes (i.e. the two opposite faces) of surface area A (i.e. Figure 2.23c), then the bulk 

resistivity ρ𝑏𝑢𝑙𝑘 can be written as:  

 

                         ρ𝑏𝑢𝑙𝑘  =  
𝑅𝐴

𝐿
 (.m)                                            (2-36) 

 

This is the typical relationship for a 2-point plate electrode arrangement e.g. Blewett et 

al. (2001; 2003).  However, where a 4-point pin electrode arrangement (e.g. Figure 2.23a) 
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has been used (i.e. equally-spaced in-line electrodes), the relationship in Equation (2-37) 

is appropriate. 

 

                       ρ𝑏𝑢𝑙𝑘 
 
= 2π𝑎𝑅  (.m)                                                                (2-37) 

 

             

where ‘2πa’ represent the surface of a hemispherical sphere of radius 𝑎. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.23  Electrode configuration for resistivity measurements showing electric field 

lines (solid lines) and equipotential curves (dashed lines) (a) 4–point arrangement   

(b) 2–point arrangement (c) 2–point plate-electrode arrangement. 

 

2.7.2 Electrode polarisation (EP) 

EP is one of the identified challenges associated with electrical resistivity techniques and 

it has been adequately managed in the current study (see section 3.4.2). It is mechanisms 

typically causing formation of compounds that can partly passivate the electrode surfaces 

thereby render the surfaces less reactive electrically. As an effect, EP can decrease the 

voltage required by electrolysis cells, lowering currents and increasing the output voltage. 

When applying electrical resistivity methods to soil or sediment samples, EP will 

manifest itself as resistivity at the electrode-soil interface shunted in series with the 

sample resistivity (McCarter and Desmazes, 1997; Carrier and Soga, 1999; and Dahlin, 

2000).   As shown in Figure 2.23(b & c), in some instances e.g. Blewett et al. (2001; 

2003) and te Slaa et al. (2013), a 2 point-electrode measurement method can be used. 

(a) (b) 

 

  

A 

L 

 

 

 

(c) 
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However, electrode polarisation (EP) is a major problem in such configuration especially 

when plate electrodes are used (Janesch, 2013). 

 

In addition, fringing effect (FE) may be observed when the specimen under test is not 

prismatic.  For example, considering the plate electrode arrangement in Figure 2.23c, the 

geometrical constant A/L (i.e. in Equation 2-36) for the pair of electrodes cannot be 

calculated directly due to fringing effects occurring in the electrical field. This fringing 

makes the area of the field spread, and the length of the field path greater than that 

obtained from the electrode geometry.  Calibration of the electrode pair is required to 

overcome this challenge (Blewett et al., 2003).  In 2-point/plate electrode system (Figure 

2.23b & c), EP effects on soil are normally eliminated by using alternating current and by 

monitoring the resistivity over sufficiently wide range of frequencies. This is because EP 

effects reduce as the frequency of applied electrical field increases (Blewett et al., 2003).  

Obtaining an ideal frequency range at which EP effect can be minimised might however 

be very difficult when dealing with heterogeneous sediment samples or when the resulting 

sedimentary forms of the sample cannot be easily predicted, as in the case of bed deposits 

generated under fluvial processes and with heterogeneous sediments. Excessive EP could 

result in erroneous resistivity/conductivity results and/or could result in measurement 

system breakdown; this could possibly explain why te Slaa et al. (2013) experienced 

conductivity signal blurring during measurement in two of their columns.  Employing a 

4-point pin electrode measurement technique eliminates the effects of EP and fringing 

with the problems listed above and allows accurate measurement of the bulk resistance 

of the sample between each electrode pair.  Samouelian et al. (2005) pointed out, 

however, that as EP is also attributed to charge build-up at the interface between the 

electrode and the soil, it can be avoided by not measuring the potential with the electrodes 

that have just been used to inject current, this is basically the principle behind a 4-point 

measurement. 

 

2.7.3 Temperature effects 

Electrical resistivity decreases with an increase in temperature. To avoid 

misinterpretation of resistivity measurements either in the laboratory or on the field, it is 

important that variation in temperature (especially seasonal variation for field application) 

and its effect on electrical resistivity are accounted for (Samouelian et al., 2005). The 

common practice both in the laboratory and in the field is to measure resistivity and 

temperature simultaneously and, subsequently, correct the results to an equivalent 
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resistivity at a reference temperature of choice e.g. 250C (Blewett et al., 2001;2003; 

Ibikunle et al., 2014). 

 

2.7.4 Cation Exchange Capacity (CEC), Ionic double layer of clay and Surface 

conduction 

Clays with grain less than 4µm in diameter composed of hydrous aluminium silicates and 

alumina (Al2O3), are the most electro-chemically active portion of the sediments. As a 

consequence, they exhibit a more complex behaviour, especially when occurring in 

conjunction with other sediment as in the case of shaly sands (Bassiouni, 1994; 

Grabowski et al., 2011).  One such complex behaviour is the ability of clay minerals to 

adsorb certain ions at their surfaces which, in turn, produces an ‘ionic double layer’ at the 

clay surface, if either of the following conditions exists: (i) ions of different valences 

present in the solution, or (ii) heterogeneous distribution of unbalanced charges on the 

clay surfaces (Winsauer and McCardell, 1953; Salem, 2001).  With respect to the electric 

current, conductivity in porous media containing clay minerals, the overall influence of 

‘ionic double layer’ becomes significant as the grains and pores become smaller and 

smaller (Salem, 2001). 

 

The ‘ionic double layer’ has excess negative charges, therefore, for electrical neutrality, 

hydrated cations will be required from the pore liquid electrolyte (Devarajan et al., 2006).  

The rate and extent of exchange of these hydrated cations depend on clay mineralogy, or 

the clay cation exchange capacity (CEC).  Winterwerp and van Kesteren (2004) defined 

CEC as the number of cations that can be exchanged in the double layer of clay particles.  

Therefore, in addition to other influencing parameters on the mechanism of electric-

current conduction in water-saturated mixed sediments mentioned above, ionic double 

layer and CEC of clay minerals are also very important.  

 

The failure of Archie’s equation (Equation 2-33) to account for the CEC of clay minerals 

under the influence of an electric field has drawn some criticism in its application on 

heterogeneous sediments containing clay minerals (Waxman & Smits, 1968, Sen et al., 

1981, Clavier et al., 1984, Ruffet et al., 1991, Bassiouni, 1994, Revil et al., 1998, 

Devarajan et al., 2006).  As a consequence, various empirical models have been 

developed to address this gap, for example; Waxman-Smits model by Waxman & Smits 

(1968) and Dual-Water model by Clavier et al. (1984) were proposed to account for the 

dual conductive pathways formed by pore brine and clay mineral exchange cations. The 
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Waxman-Smith model gave the following expression to address the ‘deficiency’ of 

Equation (2-33): 

                     σp = 
1

𝐹
(σbulk + BQv)                                                                         (2-38) 

 

where σbulk and σp are the bulk conductivity of the saturated rock and conductivity of the 

saturating liquid respectively; Qv is the cation concentration per unit pore volume 

(meg/ml); and B is the average mobility of the counter ions close to the grain surface (mho 

cm2/meg) (Devarajan et al., 2006).  In practice, most of these models are impractical 

because many of their required parameters (e.g. B and Qv in Equation 2-38) are unknown 

or very difficult to obtain (Breitzke, 2006), which makes the empirical equation proposed 

by Archie (1942) still the most widely used, and despite the inherent errors due to surface 

conduction effects (Breitzke, 2006).  
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CHAPTER THREE 

 

Methods, Materials and Equipment 

“How you climb a mountain is more important than reaching the top.”  

― Yvon Chouinard 

                                                                     

 

 

3.1   Introduction 

Owing to large amount of uncertainties and variations associated with in-situ 

investigation of sediment transport processes in marine environments, laboratory studies 

are often the preferred option in advancing our knowledge and understanding of the 

mechanisms governing these complex processes.  Laboratory studies enable the study of 

cause and effect as it allows for the deliberate and precise control of one variable, whilst 

keeping all other variables constant (van Leussen and Winterwerp, 1990).  However, 

findings from laboratory studies have often been found to differ significantly from 

corresponding observations in natural marine environments, due to assumptions and 

scaling problems (Cuthbertson, 2001). Nevertheless, the data from laboratory studies 

have been found to be useful in advancing our understanding of physical processes that 

govern sediment transport dynamics and have extensively been used in the development 

and validation of process-based numerical models (e.g. Waeles et al., 2008; Le Hir, 2011; 

Van and Pham Van Bang, 2013, Grasso et al., 2015, etc.) that have been formulated to 

simulate mixed sediment settling and deposition processes and structural development in 

mixed sediment beds. 

 

Materials, equipment and methods employed in the current laboratory studies are 

designed to meet the aims and objectives detailed in chapter 1. The experimental 

procedures described below follow, to some extent, previous settling column and annular 

flume experimental studies found in the literature (e.g. te Slaa et al., 2013; Laksanalamai, 

2007; Lintern, 2003; Sills, 1998; Been & Sills, 1996; Mitchener and Torfs, 1996; 

Williamson and Ockenden, 1996; Villaret and Paulic, 1986; Parchure and Mehta, 1985; 

http://www.goodreads.com/author/show/12641.Yvon_Chouinard
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etc.). However, modifications have been made on both the experimental methods and 

equipment to meet the specific needs of the current work.   

 

In an attempt to ensure that experimental results are applicable to prototype conditions, a 

theoretical procedure termed ‘scaling analysis’ is usually employed to establish correct 

procedures for relating experimental results to the prototype conditions, thereby avoiding 

incorrect extrapolation of data.  As such, in the current study, consideration has been 

given to this concept, and the 1:1 scaling has been considered appropriate and adopted 

for all the sediments used, in terms of their size distribution and physical properties. 

 

 

3.2   Outline of Experimental Studies 

The experimental programme is divided into three series, denoted: ES-1, ES-2 and ES-3 

and, discussion on ‘materials, methods and equipment’ is presented separately for each 

experimental series.  

 

3.2.1  ES-1: Electrical Resistivity Measurements Technique (ERMT) 

This experimental programme was undertaken to develop an ERMT for characterisation 

of sand-mud deposits [i.e. mainly to achieve point (1) of the main objectives of the current 

study; pg. 6]. In this work, two settling columns with different electrode arrays and 

configurations were fabricated (section 3.5.1 provides a detailed description of the 

settling columns used in this experimental series). The experiment started with a pilot 

study conducted within a low resolution acrylic sedimentation column (named: Settling 

Column-1). The main purpose of this preliminary experiment was to test the feasibility 

of the electrical resistivity method for characterising mixed sediment deposition.  A 

second acrylic sedimentation column (named: Settling Column-2) was also constructed, 

in order to develop, test and optimise a higher resolution electrical resistivity 

measurement, than that offered by the Column-1.  

 

3.2.2  ES-2: Systematic mixed sediment slurry experiment  

This series of experiments was carried out in the Settling Column-2, to conduct a 

parametric study on the settling/ deposition/ onset of consolidation of sand-mud mixed 

sediments. The purpose of this experimental work was to identify and quantify spatial 

and temporal variation in sediment bed structure and composition resulting from 

differential settling of mixed sediments over a wide range of parametric conditions, such 
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as: initial mixture concentration, mixing fluid salinity and sediment mixture compositions 

[This is synonymous to points (2) - (3) of the main objectives; pgs. 6 – 7]. 

 

3.2.3  ES-3: Mixed sediment bed erosion experiment  

The purpose of this experimental work, was to generate a new set of data from time-

dependent erosion and deposition processes of placed mixed sediment beds with varying 

sand-mud fractions [i.e. in line with point (4) of the study’s objectives; pg. 7]. This was 

obtained over a large number of cyclic, unsteady flow events, with the aim of relating the 

experimental data to the nature and extent of bed restructuring, segregation and 

stabilisation in mixed sedimentary environments. ES-3 employed a benthic annular flume 

called Voyager II (section 3.8.1 gives a detailed description of the annular flume). This 

flume, is the only commercially available benthic annular flume in the UK and provides 

an ideal platform to investigate the effect of unsteady turbulent shear flows on the size-

selective erosion and deposition of mixed sediments, such as those conditions typically 

encountered in periodically-reversing (tidally-driven) estuaries or tidal inlets. 

 

 

3.3    Materials 

3.3.1  Cohesive sediment: Kaolin clay  

Polwhite B kaolinite (SiO2= 47 %; Al2O3 = 37 %), a high quality medium particle size 

kaolin clay [D=∼0.5–20 μm; D50= 2 μm; plastic limit (PL) = 28 %; liquid limit (LL) = 54 

%; SG = 2.59] supplied by IMERYS Minerals Ltd was used in all the experimental series.  

Typical particle size distribution for this material is shown in Figure 3.1.  Kaolin has been 

used majorly in the current set of experiments for the following reasons, its: (1) behaviour 

in-situ and in the laboratory has been widely documented in the literature; (2) engineering 

properties (e.g. Plastic Limit, liquid limit, etc.) are well documented; (3) colour (i.e. 

white) will allow easy qualitative analysis of the bed deposits when in mixture with the 

sand, and  (4) artificial clay is chosen over natural mud to eliminate influence of biological 

and organic factors on the experiments in line with the aims of the current study.   In 

addition, reasons discussed in section 3.4.3 also made kaolin the best choice.  
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                    Figure 3.1 Typical particle size distribution for Polwhite-B Kaolin clay   

                                      (Courtesy: IMERYS Minerals Ltd) 

 

3.3.2  Non-cohesive sediment 

The matrix grade of the two sediment types used throughout the experimental programme 

was a fine to medium, well graded sand.  CLS33-Superfine high silica sand (SiO2> 95 %; 

see Table 3-1 for particle size distribution) was one of them, the material is super fine [D 

= ∼75–500 μm; D50 = 150 μm; SG = 2.64] washed light yellow high silica sand with sub-

rounded and highly spherical grains supplied by Cornish Lime Company Ltd.  

 

           Table 3-1 Particle size distribution (PSD) of CLS33-Superfine High Silica Sand 

 

 

 

 

 

 

 

 

HST-95 (rounded, light yellow, washed, surface treated and graded quartz based silica 

sand) sourced from Bent Farm in Congleton, Cheshire was the other fine sand used mainly 

for ES-3.  A summary of the HST 95 sand properties is shown in Table 3-2 and its PSD 

shown in Figure 3.2.  The significant advantages of using these sand grades are their (i) 

distinct yellowish colour, which is ideal for visual observation and qualitative analysis of 

the mixed bed deposits (ii) relatively finer grading will ensure their differential settling 

velocities are reasonably closer to that of kaolin (i.e. closer resident time for the fractions 

within the mixture).  Further examination of these sand particles under microscope 

Sieve size (mm) % Retained 

5 

2.36 

1.18 

0.6 

0.3 

0.15 

0.075 

<0.075 

0 

0 

0 

0.87 

43.79 

50.9 

4.42 

0.02 



Chapter Three: Methods, Materials and Equipment  

 

65 
 

revealed they are generally sub-rounded to rounded; this is particularly advantageous as 

it indicates that the influence of particle shape on the settling velocity would be 

insignificant.  

 

3.3.3  Brine water 

Each experiment requires that the sediments are mixed with water, as the intention was 

to mimic estuarine and coastal zones conditions especially in terms of salinity, 

appropriate salt solutions were required. Brackish waters of estuaries (where fresh river 

water meets salty ocean water) may have salinity levels between 1 and 17 ppt, which may 

vary from estuary to estuary and can change from one day to the next depending on the 

tides, weather, etc. (Levinton, 1995).  For the purpose of this study, salt solutions ranging 

from ‘15 – 40 ppt’ (plus additional controlled solution with 0 ppt) were used depending 

on test conditions.  Analytical reagent grade Sodium Chloride (NaCl) salt and double 

distilled water were used to prepare the brine water samples used. The brine water 

samples were prepared at least 24 hours before use to ensure thorough dissociation of the 

salt.  

                                     Table 3-2 Physical properties HST 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                  Figure 3.2 HST 95 Silica Sand PSD 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000

P
er

ce
n

ta
ge

  P
as

si
n

g 
(%

)

Particle Size (µm)

Soil Properties  HST 95 Silica Sand 

D10 (μm) 100 

D30 (μm) 120 

D60(μm) 140 

SG 2.63 

Loose bulk density (kg/m3) 1420 



Chapter Three: Methods, Materials and Equipment  

 

66 
 

3.4   ERMT: Technical Issues 

In chapter-2 some technical issues associated with electrical resistivity measurements 

were highlighted. As a necessity, the most significant of these technical issues are 

addressed and discussed in the following sub-sections. 

 

3.4.1 Temperature 

For ionically conducting sediment, such as the sand-mud mixtures under investigation, 

bulk resistivity, bulk, and temperature can be linked through an Arrhenius relationship,  

 

                  𝜌𝑏𝑢𝑙𝑘 = 𝐴𝑒[
𝐸𝑎
ℜ𝑇

]
                                                                                          (3-1)  

 

where T is the absolute temperature (K); A is the pre-exponential constant (Ω-cm); ℜ is 

the gas constant (8.314 J mol-1 K-1) and Ea is activation energy for the conduction process 

(kJ/mol).  

 

An increase in temperature results in a corresponding increase in fluid viscosity which, 

by extension, increases ions agitation in the fluid, thus electrical resistivity decreases with 

an increase in temperature.  Although the experiments for this study were undertaken in 

a temperature-controlled laboratory (21C ± 2C), it was still considered appropriate to 

account for the effect of minor fluctuations in temperature on the measured resistances, 

as briefly mentioned in the preceding chapter.  All the electrical resistivity measurements 

were therefore expressed at a standardised temperature (in degree Celsius). To achieve 

this, the temperature variation within the settling sand-clay mixtures was monitored using 

bead thermistors embedded in the column walls; as the thermistors measurements were 

in ohms, these measurements were converted to 0C using the Steinhart-Hart equation 

(Equation 3.2): 

 

                       T = [A + BlnR + C (lnR)3]-1 – 273.15                 (3-2)

      

where R is the measured resistance of the themistor (ohms); T is the temperature (0C); A, 

B and C are coefficients which depend on the type of thermistor, and ln is the natural 

logarithm.  For the thermistor used in this current work, values of A, B and C were 

evaluated from manufacturer’s data to be: 1.288 x 10-3 K-1; 2.357 x 10-4 K-1 and 9.510 x 

10-8 K-1 respectively. Once the corresponding temperature measurements in 0C have been 

obtained for all the experimental results, resistivity values were then corrected to an 
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equivalent resistivity at a predefined reference temperature which was 25C (i.e. Tref) 

through Equation (3-3),  

 

                  𝜌𝑟𝑒𝑓 = 𝜌𝑏𝑢𝑙𝑘𝑒
𝐸𝑎
ℜ

[
1

𝑇𝑟𝑒𝑓
 − 

1

𝑇
]
 ,      (

𝐸𝑎

ℜ
= 𝛽)                                       (3-3) 

 

Equation (3-3) allows any resistance measured at an arbitrary temperature T  to be referred 

to a standard reference temperature Tref as long as a value for 𝛽 is known (𝛽 is a function 

of activation energy, i.e. Ea and universal gas constant, ℜ).  The values of 𝛽 for the range 

of mixing fluids used throughout the test were obtained through a calibration experiments 

carried out in a controlled temperature chamber. This was done by steadily increasing the 

temperature of the mixing fluid in the chamber and recording the corresponding changes 

in resistance (𝜌𝑟𝑒𝑓). The slope of the graph shown in Figure 3.3 gives for example the 

value of 𝛽 as approximately 1.7
 
K for 0.5M NaCl solution.  

 

 

         Figure 3.3 Graph of ln (ρref) against (1000/T) K-1 

 

3.4.2  Electrode polarization and fringing effects 

Figure 3.4 presents the two types of electrode configuration and arrangement, employed 

in the current work. As discussed in section 2.7, a 2-electrode point measurement method 

(e.g. Figure 2.23 b & c) is generally in use due to its simplicity and ease of automation. 

However, electrode polarisation (EP) can be a major problem in such a configuration. 

Throughout the current experiments, a 4-point measurement technique or arrangement 

(e.g. Figure 3.4) has been employed, which eliminates the effects of EP. In column-1 (i.e. 

Figure 3.4b) experiments, sufficiently high frequency/signal amplitude (10 kHz/1000mV) 

was used to overcoming EP effects from the plate electrodes. The field fringing (Figure 
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3.4b) was accounted for by the calibration of electrodes to obtain geometrical constant in 

Equation (2-36).   

 

For each set of electrodes on the array, electrical resistance measurements were taken 

using a 4-electrode method (see Figure 3.4) with the two outer electrodes (A&B) serving 

as the current input/output connections, and the two inner electrodes (M&N) served as 

the voltage (sensing) connections. In addition to the elimination of electrode polarization 

effects, as the plexiglas column walls can be regarded as a non-conducting boundary, the 

4-electrode method has the added advantage that the measured resistance (R) can be 

converted directly to resistivity, ρbulk, through the Equations (2-36) and (2.37), (i.e.

bulk

RA

L


 
  
 

 and 2bulk aR  ) in the case of settling column-1 and column-2 respectively, 

where ‘a’ is the inter-electrode spacing (e.g. 6 mm or 20 mm). 

 

 

 Figure 3.4 Electrode configuration employed in the current study (a) Settling Column-1 

electrode array (b) Settling Column-2 electrode array 

 

3.4.3  Ionic double-layer effect 

In saturated sand-mud mixtures, the clay particles develop a diffuse, electrical double-

layer. This can give rise to surface conduction processes and represents an additional, 

parallel current conduction path. This effect, however, is only significant in low-porosity 

systems and when the interstitial pore-water is of high resistivity; the contribution of 

surface conduction effects on the measured resistance becomes increasingly less 

significant as the pore-water resistivity decreases (i.e. ionic concentration within the pore 

water increases) [Revil et al, 1998; Wildenschild et al., 2000; Salem, 2001].  In such 

circumstances, conduction via the interstitial aqueous phase dominate over any 
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contribution from surface conduction.  In the current study, the resistivity of the mixing 

water samples (i.e. 0.1 - 0.5M brine solution) was considered low enough to ensure that 

surface conduction had a negligible effect on the bulk resistance measurement.   

 

Also, because of the likely role of clay mineralogy in influencing surface conduction, the 

effect of clay mineralogy was eliminated by using commercially available Kaolin clay, 

which has a very low CEC relative to other clay minerals (Table 3-3). In addition, the 

calibration samples were the actual sediments used in the experiments, so any effect (if 

any at all) of clay mineralogy would have been accounted for in the final results.  

Furthermore, after each experiment, the resistivity of the pool of water overlying the bed 

was determined and compared with the resistivity of the initial mixing fluid, the results 

show no significant difference (see Table 3-4), thereby confirming there has not been 

significant ionic leaching from the Kaolin clay. 

 

Table 3-3 Important Properties of Clay Mineral Groups 

Clay Density (g/cm3) Hydrogen (%) Average CEC (meq/g) 

Kaolinite 2.69 1.5 0.03 

Illite 2.76 0.5 0.2 

Montmorillonite 2.33 0.5 1.0 

Chlorite 2.77 1.2 0.0 

 

       Table 3-4 Resistivities of mixing fluid and pore fluid  

Sample Composition Mixing fluid (NaCl 

solution) resistivity 

(.m) 

Final Pore-fluid 

resistivity (Rf)  

(.m) 

100% C 0.2175 0.205 

50C:50C 0.2175 0.205 

75C:25S 0.2175 0.205 

25C:75S 0.2175 0.206 

100% S 0.2175 0.205 

 

 

3.5   Experimental Series (ES- 1): Development of ERMT 

The tests carried out in ES-1 below, detail experimental procedures to develop non-

invasive, electrical resistivity measurements to characterize the spatial and temporal 

variation in sediment bed structure and composition resulting from differential settling of 

cohesive kaolin clay and non-cohesive sand mixtures.  Two sets of tests (i.e. pilot and 

high-resolution) were carried out under ES-1 as described below.  
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3.5.1 Settling columns set-up 

The pilot test 

The preliminary (or pilot) study into the development of ERMT was conducted within a 

50 mm by 50 mm (i.e. square plan form) by 600 mm high acrylic (10 mm thick) 

sedimentation column (i.e. Settling Column-1; Figure 3.5a) with pairs of square stainless 

steel plate electrodes (50 mm  50 mm) at five elevations (centred at z = 25, 125, 225, 325 

and 425 mm from the column base) embedded within two opposite walls of the column, 

flush with the internal wall faces. Additional pairs of 1.6 mm diameter stainless steel pin 

electrode were mounted horizontally into the column through one of the other two 

opposite column walls at the mid-elevations of the plate electrodes. This stainless steel 

plate-pin electrode arrangement allowed 4-point electrical resistivity measurements to be 

obtained at the different elevations within the column.   

 

As it would be seen later in the test results (see Chapter 4), the coarse spatial resolution 

of the electrical measurement results, due largely to the electrode arrangement in settling 

column-1, meant that a detailed vertical characterisation of the settling and deposition 

processes was not possible. Therefore, in order to facilitate higher resolution resistivity 

measurements, a set of tests was further conducted in a larger, demountable settling 

column as described below.  

 

The high-resolution test 

The second test column was constructed with dimensions 150 mm by 150 mm (i.e. square 

plan form) by 500 mm high (Figure 3.5b). The electrode arrangement in this modified 

column consisted of sets of four 1.6 mm diameter stainless steel pin electrodes embedded 

through the column walls in horizontal rows, with vertical spacing between these sets 

ranging from 5 mm up to 20 mm.  The horizontal spacing between the individual 

electrodes in each set was set at 6 mm on one column wall and 20 mm on the other wall, 

to test the influence of electrode spacing on measured electrical resistivity. In total, 35 

electrode sets were embedded in both column walls (Note: the electrode sets on the 

opposite column walls collect electrical measurements simultaneously but independent 

of each other). Each column has a sealed base and top plate to prevent leakage and/or 

pore water evaporation. It should be noted that, the design and construction of a 

rectangular column over a more conventional cylindrical column was chosen for the 

following reasons (i) ease of embedding resistivity probes especially plate electrodes 

within the walls (i.e. to allow a wide range of electrode arrays and configuration to be 
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tested, (ii) to allow the column  to be demountable (i.e. for cleaning purposes), and such 

that four different electrode configurations can be tested simultaneously, and (iii) the 

clear, flat wall surface of the column makes it easy to capture images of the 

settling/deposition process without curvature effects. 

 

 
 

Figure 3.5 Settling column arrangements: (a) 0.6 m-high 4-point (plate-pin) electrode settling  

column (adapted from Blewett et al., 2001); and (b) 0.5 m-high, high-resolution 4-point (pin) 

electrode settling column.  

 

3.5.2  Sample preparation and experimental procedure 

Prescribed sediment mixtures were generated from the Polwhite-B kaolin clay and fine-

to-medium grade quartzite sand (d = 150 – 500 m; specific gravity, SG = 2.64).  The 

same sample preparation procedures and mixtures compositions were used for both pilot 

and high-resolution tests; one of the advantages of this was that it makes it more 

reasonable to compare the spatial and temporal characterization results from both 

columns. Mixtures were tested for the following sand(s): clay(c) compositions (% by dry 

weight): (i) 100s:0c; (ii) 75s:25c; (iii) 50s:50c; (iv) 25s:75c; and (v) 0s:100c. Sand-clay 

compositions were mixed into a concentrated slurry (cs = 0.33 g/ml) with a brine solution 

(0.5 M NaCl). The concentration of brine water (i.e. 0.5M) allows assessment of the effect 

of salinity on the suitability of electrical measurement in a brackish environment (Ha et 

 

 

 

 

 

` 

 

  

 

 

 

 

  

 

 

 

(a) (b) 

6
0

0
 

1
0

0
 

1
5

0
 

5
0

 

50 
150 

5
0

0
 

Pin electrodes @ 
20 mm spacing 

Pin electrodes 
@ 6 mm spacing 

Bead 
thermistor 

Plate 
electrodes 

10 

Pin 
electrodes 20 

Bead 
thermistor 

10 

10 

5 



Chapter Three: Methods, Materials and Equipment  

 

72 
 

al., 2010; Winterwerp and van Kesteren, 2004). All mixtures (sand, clay and brine 

solution) were homogenously mixed for minimum of 30 minutes; it is considered that this 

time was sufficient to achieve a thoroughly mixed sediment-water mixture (te Slaa et al., 

2013). 

 

Again, for both column tests (i.e. pilot and high-resolution tests), the same experimental 

procedures were employed; however, the homogenous sediment mixtures in the high-

resolution test were designated as follow:  100s:0c = ERM-EX1; 75s:25c = ERM-EX2; 

50s:50sc = ERM-EX3; 25s:75c = ERM-EX4; and 0s:100c = ERM-EX5. For each mixture 

composition, the homogenized sediment mixture was transferred in a single-shot into the 

test settling column [Figure 3.5 (a) or (b)], where the sediment-water mixture was further 

agitated thoroughly by a grid stirrer for up to 5 minutes after which the mixture is left to 

settle, this was necessary to prevent preferential settling during placement. For each test, 

the column was sealed appropriately to prevent evaporation of the pore water. The 

differential settling and depositional processes for each tested mixture within the columns 

were monitored over a period extending up to 72 hours. After the initial settling phase 

(within the first 1 hour), the longer term bed development was monitored at prescribed 

elapsed times throughout the experiment (i.e. 6, 24, 30, 48, 72 hours).   

 

3.5.3  Measurement methods and equipment  

In both columns, the differential settling and depositional processes of each sand-clay 

composition were monitored using a combination of time-lapsed photographic imaging 

(by Canon EOS 600D, Resolution 18.0 MP) and electrical resistivity measurements over 

the period of each experimental run. For ES-1, two separate electrical resistivity 

measurements systems were used, due to varying levels of technicality brought about by 

the different electrode configurations (see Figure 3.5) within each settling column (i.e. 

Settling Column-1 and -2).  These two measurement systems are discussed separately 

below. Nevertheless, in combination with the photographic imaging system, both 

electrical resistivity measurements systems allowed the settling patterns and depositional 

behaviour of the different mixtures to be investigated and analysed in line with the main 

aim of ES-1. 

 

The pilot test column (Column-1) 

Due to having only 5 sets of electrodes (Figure 3.5a) through which electrical resistivity 

is measured, time-elapsed measurements were taken manually by connecting the 
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measurement leads to the appropriate ports on the Hewlett Packard HP4263B LCR meter 

(see Figure 3.6a). This LCR meter operated at a sample frequency of 10 kHz in a voltage-

drive mode with signal amplitude of 1000mV (after Blewett et al., 2001).  

 

The high-resolution column (Column-2) 

For the high resolution test column, the measurement procedures described above were 

laborious and obtaining continuous time-elapsed measurements was very difficult as there 

were about 70 pairs of electrodes to switch through manually for every measurement 

regime.  Therefore, the need for automated system was obvious, however, due to some 

technical difficulties associated with the available instruments and their limitations at the 

time; a semi-automatic measurement system (see Figure 3.6b) was developed with which 

resistance measurements were taken from all the 70 pairs of electrodes within 10-15 

minutes. 

 

The electrode sets were wired into Agilent-34970A 4-wire-multiplexer modules, allowing 

4-point electrical resistivity measurements to be taken via a data acquisition switch unit 

(Agilent-34970A) [see Figure 3.6b]. This switch unit was in turn connected via its output 

ports to the input ports of Hewlett Packard HP4263B LCR meter (see Figure 3.6b).  

Measurement is trigged by switching through each point (representing each pair of 

electrodes) on the multiplexer modules with the switching control on the Agilent-34970A. 

The measurement system operated at frequency and signal amplitude of 1 kHz and 

350mV respectively. 

 

 

                     Figure 3.6  Measurement set-up: (a) Preliminary test column only  

                                           (b) High resolution settling column 

 

(a) (b) 

 

 



Chapter Three: Methods, Materials and Equipment  

 

74 
 

Temperature fluctuations within the sand-clay mixtures were monitored as previously 

discussed (see section 3.4.1). This allowed direct comparisons between the electrical 

resistivity measurements obtained in all tests by expressing them to a standardised 

temperature of 25C (i.e. 295.15 K) with the Arrhenius Equation (i.e. Equation 3-3).  For 

clarity, each pair of electrodes shall be referred to as (resistivity) probes.   

 

 

3.6   Calibration of ERMT 

Within the study, two calibration procedures were required (for ES-1 and ES-2): (i) 

calibration of the different electrode configurations within each column to measure bulk 

resistivity bulk, pore water resistivity p, and hence, the formation factor F [from Equation 

(2-33)]; and (ii) calibration of the acquired formation factor F profiles within the columns 

to obtain more physically-relevant properties such as bulk density (and, by extension, 

porosity) and volumetric composition.   

 

3.6.1  Calibration of electrode configuration 

Within settling column-1, the bulk resistance R of the saturated sand-clay mixture is 

measured at different elevations within the column between the five pairs of square plate 

electrodes. Due to the field fringing effects (Figure 3.4b) described earlier, the electrode 

system had to be calibrated in order to convert the measured resistance R (ohms), to 

resistivity, bulk (in ohms.m).  Calibration of the electrodes was conducted using a standard 

solution of known conductivity/resistivity, in this instance, 0.1M NaCl solution, (p = 

8.333 .m) to obtain correction factors k (Equation 2-35), which is equivalent to A/L in 

Equation (2-36) for each pair of plate electrodes in the column.  The k factors for 

resistivity-probes 2-5 (Figure 3.5a) were 0.1835 m, 0.1909 m, 0.1888 m and 0.1944 m, 

respectively, whereas resistivity-probe 1 had a value of 0.1574 m.  The significant 

difference in A/L between the resistivity-probes (i.e. 1 and 2-5) is as a result of the non-

conductive boundary (i.e. the base of the column) in close proximity to resistivity-probe 

1. (Note that if there were no field fringing effects, the theoretical value of the A/L for this 

configuration would be 0.125 m) 

 

By contrast, for the pin electrode arrangements in settling column-2 (Figure 3.4a), 

fringing effect is not an issue, due to the hemispherical electrical equipotential lines 

generated (Figure 3.4a) (Samouelian et al., 2005). The bulk resistivity bulk from this 4-

point pin electrode arrangement is then evaluated from Equation (2-37), i.e. 𝜌𝑏𝑢𝑙𝑘 =
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2𝜋𝑟𝑅.  Calibration of each electrode set within this column was still necessary to account 

for small changes to electrodes during manufacturing, and it was also performed with 

0.1M NaCl solution (i.e. p = 8.333 .m) initially, and following each experimental run, 

to check for any alteration or drift in the electrode measurements. The values of ‘2r’ for 

each probe (i.e. all the 70 probes) are presented in Appendix 3-1.  

 

Recalling Equation (2-33), i.e. 𝐹 =  𝜌𝑏𝑢𝑙𝑘 𝜌𝑝 = 𝑎𝜑−𝑚⁄ ; the cementation factor (m) is 

related to tortuosity and continuity of the pore network within the material and, any 

alteration in the porosity or topography of the pore network would result in changes in 

the F. Therefore, the calibrated bulk resistivity bulk measurements obtained for the 

different sand-clay mixtures at each 4-point electrode set in both columns were then 

normalised by the resistivity of the interstitial pore fluid, p to obtain the formation factor 

F from Equation 2-33.  In the current experimental configurations, the clear solution 

forming at the top of the column as the sand-clay mixture settles and deposits is assumed 

to have the same resistivity, p, as the interstitial pore fluid within the sand-clay deposit 

itself. This assumption is, to a large extent, correct as shown in section 3.4.3 as there was 

no significant difference between the resistivity (0.2175 .m) of the initial mixing fluid 

(i.e. 0.5M NaCl solution) and that of the overlying clear pore-fluid resistivity (~ 0.205 

.m) at the end of each experimental run. 

 

3.6.2  Empirical equations for physically-relevant properties of bed deposits 

As mentioned in the previous chapter, Equation (2-33) has been extended successfully to 

study sedimentation of clay slurries (e.g. Blewett et al., 2003; te Slaa et al., 2013). With 

appropriate calibration being carried out, Equation (2-33) can be used to determine other 

physically-relevant properties of a porous material. For instance, the solids volume 

concentration s (i.e. ratio of the volume of solids to the total wet volume) of the sediment 

particles can be calculated as:  

 

                      𝑠 = (1 − ) = [1 − (
𝑎

𝐹
)

1

𝑚
]                                                                  (3-4) 

Note: From Equation 2-33,  = (
𝑎

𝐹
)

1

𝑚
. 
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From Equation (3-4), the corresponding mass concentration Cs and  bulk of pure clay-

water (or sand-water) mixture can be computed via: 

 

                     Cs = s.s,    (s is the density of the sediment particles)                (3-5) 

 

                     bulk = (s s +  p)                               (3-6)  

where s and p are the densities of the clay (or sand) particles and the pore fluid, 

respectively. For mixtures containing sand, clay and water; the solid volume 

concentration 𝑠 will then be expressed as: 

 

                     𝑠 =  𝑠
𝑠𝑎 + 𝑠

𝑐𝑙
                                                                                    (3-7) 

 

where 𝑠
𝑠𝑎

 and 𝑠
𝑐𝑙

  are, respectively, the volumetric concentrations of the sand and clay 

fractions. Hence, the mass concentration Cs and bulk densities of the sand-clay-water 

mixture are given by the modified expressions,  

 

                    Cs = 𝑠
𝑠𝑎 𝑠

𝑠𝑎 + 𝑠
𝑐𝑙 𝑠

𝑐𝑙                              (3-8) 

 

                    bulk = (𝑠
𝑠𝑎 𝑠

𝑠𝑎 + 𝑠
𝑐𝑙 𝑠

𝑐𝑙 +  p)                             (3-9) 

  

where  𝑠
𝑠𝑎 and  𝑠

𝑐𝑙 are respectively the densities of the sand and clay particles.  In the 

event where  𝑠
𝑠𝑎 ≈   𝑠

𝑐𝑙 (i.e. = s), then Equation (3-9) can be represented as follows: 

 

       bulk = s (𝑠
𝑠𝑎 + 𝑠

𝑐𝑙) +  𝑝  =   𝑠
(1 −  ) +  𝑝 = 𝑠 −  (𝑝 −   𝑠)       (3-10) 

 

Dividing through by the pore fluid density 𝑝 allows the normalised bulk density bulk/𝑝 

to be determined from Equations (3-4) and (3-10), such that: 

 

                      
𝛾𝑏𝑢𝑙𝑘

𝛾𝑝
=  

𝛾𝑠

𝛾𝑝
− (

𝑎

𝐹
)

1

𝑚
(

𝛾𝑠−𝛾𝑝

𝛾𝑝
)                             (3-11) 

 

However, the general validity of Equation (3-11) requires that the Archie equation (i.e. 

Equation 2-33) for the formation factor F as a function of porosity to be universally valid 
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over a wide range of sand-clay-water mixture conditions.  Specifically, from Equation (2-

33), it is clear that empirical parameters a and m cannot be fitted to satisfy the condition: 

F →1 as  →1 (i.e. very dilute suspensions, where bulk →𝑝), unless a is set as unity. 

However, as noted above, the value of a varies within wide limits. As a consequence, the 

relationship between normalised bulk density bulk /𝑝 and formation factor F is 

determined through a best-fit power law to calibration measurements on predefined sand-

clay-water mixtures (see section 4.4.2, pg. 108 for more details).  Additionally, expressing 

the term (𝑎/𝐹)−𝑚 as porosity   in Equation (3-11), then, the following expression can 

be obtained:  

       

                    =    
𝛾𝑠−𝛾𝑏𝑢𝑙𝑘

𝛾𝑠−𝛾𝑝
                                                                      (3-12) 

 

where, by definition,  →1 when bulk /𝑝 (i.e. very dilute suspensions) and  →0 as bulk 

→ 𝑝 (i.e. solid bed with no pore space).   

 

3.6.3  Calibration tests for physically-relevant properties 

Relating F values to more physically-relevant characteristics of the sand-clay deposits 

required, further calibration tests. In this case, six saturated sand-clay samples of known 

fractional composition (i.e. 𝑠
𝑠𝑎and 𝑠

𝑐𝑙
) were carefully prepared with 0.1M NaCl 

solution (p = 8.333 .m) and mixed to an appropriate consistency such that particle 

segregation could not occur within the test samples. Each saturated mixture was 

transferred carefully into a specially designed test ring cell (Figure 3.7) with the 

embedded set of pin electrodes used to obtain 4-point resistivity measurements (these set 

of electrodes vary in alignment and position, the purpose for varying the alignment and 

position of the electrodes was to ascertain that the test sample within the test ring is 

isotropic). Employing the ERMT and calibration methods described in sections 3.5.3 and 

3.6.1 respectively, three sets of resistance readings were taken on each test sample and 

later used to calculate formation factor, F.   

 

The specific gravity (Gs) of the mixture constituents (i.e. sand, kaolin clay and brine 

solution) and sample compositions (e.g. 10s:90c; 40s:60c; etc.) was determined prior to 

the calibration test in accordance with BS 1377: Part 2: 1990.  Immediately after each 

test, the water content (wc) of the test sample was also determined in accordance with 
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standard protocol in BS 1377: Part 2: 1990.  Subsequently, knowing Gs and wc values, 

the bulk density (bulk), porosity () and void ratio (e) of each test sample were calculated 

using standard geo-mechanical equations. Appendix 3-2 presents detailed geo-mechanical 

equations [i.e. Appendix 3-2(a)] and the table containing the results [i.e. Appendix 3-2(b)].  

A total of three measurements were made for each sand-clay mixture composition to test 

repeatability and consistency of the calibration method (results of these calibration tests 

are discussed in chapter 4, i.e. section 4.5.2).  

It should be noted that, the calibration and experimental series used to develop the 

electrical resistivity method were obtained at constant salinity and pH, while the 

temperature was generally kept at average of 210C (though all the measurements were 

converted to standardised temperature of 250C later); so, having controlled all the 

necessary parameters, the resistivity measurements are solely function of solid 

components (i.e. sand and clay).   

 

 

         Figure 3.7 Calibration test ring with embedded resistivity probes 

 

 

3.7  Experimental Series (ES-2): Sand-Clay Suspension Settling Experiment 

The preceding series of tests (i.e. ES-1) have been majorly carried out to develop and test 

the ERMT, one of the deliverables of ES-1 was the potential of obtaining physically-

relevant properties of sediment bed deposits (such as bulk density, porosity, etc.) from 

this non-invasive bed characterisation technique. The extensive knowledge of the 

applicability of ERMT from ES-1 especially in terms of characterisation of spatial and 

temporal variations in bed deposit has been employed in the current experimental series 

(i.e. ES-2), which was designed to investigate the influence of initial mixture 

concentration, mixing fluid salinity and sediment mixture compositions on spatial and 
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temporal variation in sediment bed structure and composition resulting from differential 

settling of mixed sediments.  

 

The experimental set-up and procedures described in the current work are similar to those 

carried out on most sedimentation and consolidation column experiments performed in 

the literature (te Slaa et al., 2013; Xu et al., 2012; Lintern, 2003; Sills, 1998; Been & 

Sills, 1996; Torfs et al., 1996; Imai, 1981; etc.). The difference, however, is that the 

settling column is custom built (see Figure 3.5b) to facilitate the characterisation of the 

spatial and temporal variations of the resulting bed deposits within the column (see Figure 

3.5b) with the ERMT. Most settling column experiments, for example, start from 

sediment suspensions of known initial concentration which are poured into the column. 

The suspension-water interface moves down with time in the column, leaving clear water 

above, while the bed builds up from the bottom. The resulting sedimentary structure 

properties are measured as it settles and consolidates.  Although, this practice mainly 

represents events such as excavation of dredging or disposal of dredging materials, 

nevertheless, column tests have been found useful to study sediments deposition, bed 

formation and bed restructuring in laboratory environments. Also, because settling is a 

one-dimensional process (downward movement of sediment and upward movement of 

water), it can be conveniently modelled at any scale in the laboratory within vertical 

settling column under controlled conditions.  Results from these types of laboratory tests 

have been extensively used to understand and model sediment dynamics in more 

environmental realistic conditions similar to those found in natural estuaries and coastal 

regions.  

 

This section describes, the set-up and configuration of the sedimentation system, 

comprising the settling column used, image capturing and bulk density/porosity 

measurement technique employed. 

 

3.7.1  Experimental set-up and procedures 

The procedures and set-up for these tests are similar to those described in section 3.5.1, 

but the difference lies mainly to changes in (i) sample composition, (ii) initial slurry bulk 

density and, (iii) mixing fluid salinity.  These changes were necessary to meet the set 

objectives of this particular experiment, aimed at investigating the development and 

properties of sedimentary bed structures over a range of mixed sediment compositions, 

mixing fluid salinity and initial mixture concentration. During settling, vertical resistivity 
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(see section 3.7.3) profiles were measured every 30 seconds for up to 24 hours. Also, the 

interface that formed between the supernatant liquid and the settling mixed-sediment 

layer were recorded manually every 30 minutes. Time-lapse photography and videos were 

equally used (see section 3.7.4 on image capturing). 

 

Sample preparation and input 

Sediment-water mixtures from Polwhite-B kaolin clay and fine sand were generated for 

a range of sand(s): clay(c) compositions (% by dry weight), mixing fluid salinity (0 - 40 

ppt) and initial mixture concentrations (367-813 kg.m-3) as shown in Table (3-5). This 

table also shows the types of measurements made in each test. 

 

Settling column set-up 

The 150 mm x 150 mm x 500 mm settling column (Figure 3.5b) described in section 3.5 

has been used for these tests.  A scale bar was attached to the column wall to enable the 

measurement of interface developments.   

 

3.7.2  Bulk density and porosity measurements 

Bulk density and porosity were obtained indirectly using non-invasive electrical 

resistivity measurements techniques (ERMT) described in sections 3.5 and 3.6.  Other 

parameters e.g. volume concentration and void ratio, were calculated from resistivity 

values (see chapter 4).  Calibration of the resistivity probes was carried out after each 

experimental run; to check for any alteration or drifting of the probes during washing and 

cleaning or other handling operations.  Reference concentration measurement was 

estimated from resistivity profiles obtained from each sample of the brackish water before 

the start of each experimental run. 

 

3.7.3 Instrumentation and data acquisition  

Due to time dependent nature of the parameters measured in the current experimental 

series, a fully automated data acquisition system was used for resistivity measurements. 

The following items of equipment were used (Figure 3.8a-c): (a) a Stanford Research 

Systems (SRS) SIM900 — Mainframe, (b) SRS-SIM921 — AC resistance bridge and (c) 

SRS-SIM925 — 4-pole relay multiplexing unit.  To get an adequate number of channels, 

5 SRS-SIM925 multiplexing units were used.  For the purposes of this research, an 

automatic real time process control programme was configured using the software 

WinWedge Pro with Excel macros, allowing communication between these multiple data 
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collection devices.  Each pair of the electrodes was wired, with wires of negligible 

resistance, into each channel of SRS-SIM925 module (each SIM925 can accommodate 7 

channels); the five SIM925 modules used provided 35 channels in total. The time for one 

measurement was approximately 1 second per channel, with a complete profile taking 

approximately 30 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 8 Real-time resistivity measurement syst em: (a) SIM900-Mainframe (b)  

SIM921-AC Resistance Bridge and (c) SIM925-4-pole relay switching multiplexer  

 

The above set of instruments within the measurement system facilitates 4-point resistivity 

measurements, from which bulk density, void ratio, porosity and other relevant data will 

then be calculated. Throughout the period of each experimental run, temperature 

fluctuations were monitored and recorded accordingly.   

 

3.7.4   Video and photographic systems 

To facilitate a more complete understanding of settling, deposition and bed restructuring 

processes, time-lapsed photographs and videos were taken at variable time intervals 

during each experimental run.  The video recording was done with GZ-MG20 HDD-

based camcorder from JVC, while for still images, a Canon EOS 600D (resolution: 18.0 

MP) was used, both were mounted on stable tripods, set at different plane sides of the 

column (see Figure 3.9). Considering the initial density ranges of the mixed sediment 

slurries being tested, it was expected that the settling phase will happen very fast, so, EOS 

utility software, provided by Canon Inc., was used to control the camera. This allowed 

(a) 

(b) (c) 
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continuous image capturing and post experiment editing of the captured images.  For each 

test, the frequency of still image capturing was: 360 images in the initial 30 minutes (i.e. 

1 image every 5 seconds), 12 images in the next 60 minutes, followed by 5 images in the 

following 150 minutes and finally 2 images in the last 2 hours. It should be noted that 

these images were mainly used for qualitative observation (see chapter 5).  
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Table 3-5 Details of the Slurry settling experimental conditions and types of measurements made  

Experiment 

Name 

 

 

Clay 

Content 

(%) 

Initial 

Concentration, Co 

(g/mL) 

Salinity 

 

(ppt) 

Settling 

Time 

(hr) 

Self-

weight 

Height 

(mm) 

Density* 

Profiles 

(y/n) 

Photographic 

Images 

(y/n) 

Segregation 

 

(y/n) 

SET-EX1 15 0.561 15 24 470 y y y 

SET-EX2 15 0.561 30 24 470 y y y 

SET-EX3 25 0.561 30 24 470 y y y 

SET-EX4 35 0.561 0 24 470 y y y 

SET-EX5 35 0.561 15 24 470 y y y 

SET-EX6 35 0.561 30 24 470 y y y 

SET-EX7 35 0.561 40 24 470 n y y 

SET-EX8 35 0.367 30 24 470 n y y 

SET-EX9 35 0.813 30 24 470 n y n 

                               *Resistance measurements could not be obtained for SET-EX8 to EX9 due to some technical problem with the real time  

                                 measurement system. 

 

 

 

 

 

8
3
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Figure 3.9 Photographic image of ES-3 experimental set-up 

 

 

3.8 Experimental Series (ES-3): Mixed Sediment Bed Erosion Test 

Before bed evolution can be correctly predicted, knowledge of the vertical structure of 

the sediment is required (Torfs et al., 1996; Van and Pham Van Bang, 2013). This set of 

experiments (i.e. ES-2) was designed to improve our understanding of the dynamics of 

natural sediments sedimentation and bed formation processes over a range of parametric 

conditions (e.g. initial mixture concentration, ambient salinity and sediment 

compositions), which are important to accurately assess and predict erosion and 

deposition processes that take place in estuarine and near-shore coastal marine 

environments. The settling column experiment, such as the one described above, is a one-

dimensional process which may not fully capture the dynamic physical processes 

common in sedimentary environments. The sedimentation of fine-grained sediment in 

estuaries is largely governed by accelerating and decelerating tidal flows (van Leussen 

and Winterwerp, 1990). This process, and the subsequent erosion and deposition of the 

fine-grained sediments within estuaries is further influenced and/or complicated by a 

number of factors, such as river discharge, wind-driven flows, waves, salinity and the 

fine-grained sediments’ properties (Scott, 1984; van Leussen and Winterwerp, 1990; 

Cheng, 1997; Dankers, 2006; Le Hir et al., 2011; etc.).   
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The specifications and geometry of the benthic annular flume used in the study are 

detailed; the challenges faced, and considerations made in respect of some important 

aspects when using this facility in the laboratory, are discussed.  Details of how the flume 

was adapted for the laboratory-based study are described, e.g. design and construction of 

housing tank for the flume.  The bed composition, preparation and placing are also 

outlined. Finally, a comprehensive description of the instrumentation and measurement 

techniques used to obtain parameters such as bulk density, 3D flow profiles and 

suspended sediment concentrations is provided. 

 

3.8.1  Description and operation of the annular flume 

The use of an annular flume permits monitoring of cohesive and mixed sediment transport 

processes in an infinite length channel under fully-developed turbulent flow conditions 

generated above the erodible sediment bed, with no disturbance or interruption from 

pumps, etc. The annular flume employed for the erosion tests was a ‘Voyager II Benthic 

Flume’ supplied by Partrac Consulting Ltd (Figure 3.10). The use of benthic annular 

flume in the current study, is unique as it provides a link between field and laboratory-

based experiments.  

 

The Benthic annular flume, which was based on the designs and dimensions of Amos et 

al. (1992), consists of an aluminium channel 0.3 m high (H) and 0.15 m wide (W), with a 

total diameter (D) of 2.2 m (Figure 3.10). Eight equidistantly spaced paddles (Figure 

3.11a) induce a current via a train drive, driven by a 0.6 hp, 24 V DC submarine motor 

and gearbox. The lower tip of the set of paddles is ∼200 mm above the nominal bed level. 

Eight lid sections, each equipped with a lid which can open to allow flushing of water 

during flume deployment, are arranged on top of the channel (one section is transparent 

which allows the paddle drive train to be easily seen).  A 0.07 m wide and 0.005 m thick 

skirt around the outer channel wall allows the flume to sink ∼45 mm into the bed evenly, 

and ensures a constant channel depth.  An on-board computer ensures accurate control of 

the flow conditions within the enclosed flume by driving the eight equidistantly-spaced 

paddles (Figure 3.11a) at a specified rotation rate. This allows either steady or pre-

programmed cyclic and reversing flows to be simulated. The flume itself is equipped with 

state-of-the-art instrumentation including a Nortek-Vectrino velocimeter for measuring 

flow velocities and turbulence characteristics (at 0.15 m above the nominal bed level) 

[Figure 3.11b] and optical backscatter sensors (OBS) for turbidity measurements at three 

different heights (centres at 85, 145 and 200 mm above the nominal bed level) [Figure 
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3.11c].  A Perspex™ window on the internal channel wall allows for submarine video 

imagery to be recorded while the flume is in operation.  

 

3.8.2 Setup and bed configuration 

In order to adapt the Benthic annular flume to this laboratory based study, it was housed 

within a custom-built 2.5 m x 2.5 m x 1.5 m tank, 3 sides of the tank are glass-walled 

while the last side is made up of waterproof marine plywood (see Appendix 3-3). Figures 

3.13a & b respectively show the schematic diagram and plan view of the set-up.  The tank 

has four hoses (50 mm diameter) connected close to the corners of the tank at the base; 

these are for filling and draining of the tank accordingly.  For easy drainage and 

prevention of loss of materials, from the base, the tank was layered with 200 mm gravel, 

followed by 0.5 mm geotextile filter fabric and finally, 1 mm perforated stainless steel 

sheet (Figure 3.13). 

 

 

 

           Figure 3.10  Voyager II in-situ benthic annular flume (Courtesy: Partrac Consulting Ltd)  
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             Figure 3.11  Images showing (a) the paddle (b) ADV probe (c) the vertical OBS array (Red    

             arrows point to the paddle and ADV probe respectively) [Courtesy: Partrac Consulting Ltd]  

 

The sediment bed was placed on the perforated sheet. In order to have platforms to stand 

on for any adjustment or inspection, platforms were made with bricks and wooden boxes 

at the centre of the tank and sides close to the walls. These platforms also served as 

supports for the flume (Figure 3.12b). 

 

3.8.3  Bed preparation and placing 

Artificially generated sediment beds have been used; the beds are homogeneous and 

unconsolidated, such beds normally have nearly-uniform density from top to bottom. 

Although sediment beds in estuaries and tidal lagoons often consist of a mixture of sand 

and mud, their mode of occurrence could be such that sand and mud fractions can be 

homogeneously mixed, form alternating layers or occur in patches (Jacobs et al., 2007). 

Research has shown that the erosion and deposition processes are not only dependent on 

sediment mixtures but also on the mode of their occurrence (Winterwerp and van 

Kesteren, 2004; Jacobs et al., 2007; Mehta, 2014). However, the current study is aimed 

at investigating the effect of varying clay content within sandy beds on the erosion and 

deposition characteristics of such artificially generated sand-clay mixtures. The 

occurrence of sediment beds with these properties is highly unlikely; it is, however, 

believed that the artificially generated sand-clay mixtures used in this study can form a 

reference for mixtures with more natural properties. 

 

To generate the artificial beds, it is assumed that the generated sediment beds are isotropic 

(i.e. their vertical and horizontal properties are the same) and that the following 

requirements are met in order to obtain reproducible bed samples: 

(a) (b) (c) 
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1) The sediment samples should be fully saturated; this is important as clay particles 

need to be saturated to exhibit cohesive behaviour; and, 

2) The sediments samples should be homogeneously mixed in order to avoid 

segregation during placement and, as an effect, result in non-uniform erosion 

behaviour 

3) The sediment samples should be adequately plastic for ease of placement within 

the holding tank. 

 

For a 100% sand-bed, the tank was filled with dry sand to the designated height (see 

Figure 3.14) which was then flooded with tap water (note, all the tests under this section 

was conducted with tap water). For each experimental run with mixed sediments bed, the 

approach was different.  The measured fractions (i.e. sand, kaolin and water) were firstly 

mixed in a ‘15W-40’ rotary mixer (The Creteangle Multi-Flow Mixer; Type ME/CL) (see 

Appendix 3-4) for up to 30 minutes before being transferred into the tank. The quantity of 

water added in each case was sufficient to ensure proper mixing but not enough to cause 

segregation of particle fractions. 

 

For the current test, the following sand(s): clay(c) bed compositions (% by dry weight) 

were used: (i) 100(s):0(c) [EDT-EX1]; (ii) 98(s):2(c) [EDT-EX2]; (iii) 95(s):5(c) [EDT-

EX3]; and (iv) 90(s):10(c) [EDT-EX4]. These sediment compositions were chosen, such 

that the effect of low clay fractional contents, on the erosional behaviour of predominantly 

sandy beds could be studied. Previous studies (e.g. Raudkivi, 1998; Dade and Nowell, 

1992; Mitchener and Torfs, 1996; Panagiotopoulos et al., 1997; Whitehouse et al., 2000; 

Baas et al.,2013) observed that, once the cohesive fraction (i.e. mud) within a sediment 

bed exceeds 5 - 10 % by weight, the bed cohesion becomes the dominant control on 

erosion rate.  

 

3.8.4 Instrumentation and visualization techniques 

This section describes the techniques and instruments employed within the experimental 

set-up to measure flow turbulent characteristics, suspended sediment concentration (SSC) 

and real time bed bulk density/ porosity. Visualisation and image capturing devises are 

also discussed. 
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3.8.4.1     Acoustic Doppler Velocimeter (ADV) 

A Vectrino®, 3-D ADV manufactured by Nortek-ASTM was used to measure mean and 

turbulent flow characteristics within the flume. The measurement technology of ADV 

probe is based on the principles of Doppler processing.  This particular Vectrino has a 

side looking probe (Figure 3.15) but because of the way it is fitted within the flume it 

operates as a vertically oriented probe, i.e. down-looking, this orientation is ideal for 

measuring turbulence characteristics close to a bed surface.  The ADV probe measures 

the 3-D instantaneous velocities and turbulence characteristics in tangential (x), radial (y) 

and vertical (z) directions of the flow within a sampling volume located at a known 

distance below the tip of the probe.   

 

The ADV probe was mounted within the flow, 0.15 m above the nominal bed level, 

through an opening on the side of the flume wall (Figure 3.11b). The sampling rate chosen 

was between 20-25 Hz, and other relevant user-defined specifications were appropriately 

set (e.g. sampling volume was set at ca 240 mm3), to ensure detailed measurement of 

turbulence characteristics. Simplicity of set-up and operations is the main attraction of 

this device, it requires no probe calibration and detailed time series data of the turbulent 

characteristics can be obtained and viewed on the go. Post-processing of large ADV data 

has also been made easier with WinADV software.   
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                        Figure 3.12  (a) Schematic diagram of experimental set-up (b) Plan view of the set-up 

 

 

 

(b) 

(a) 
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Figure 3.13 Artificial bed configuration for ES-3 

 

 

 

 

            Figure 3.14 Image showing 100% sand bed prior to wetting and placing of annular flume 

 

 

Paddle 
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          Figure 3.15 3-D Side-looking ADV probe (from: www.nortek-as.com) 

 

3.8.4.2   Optical backscatter sensor (OBS) 

A special on-board OBS measurement system was required to obtain the SSC due of the 

nature of this experimental set-up.  The system employed two devices: a ‘XR-420CT+Tu 

data logger’ manufactured by RBR® and an auto-ranging Seapoint Turbidity Meter by 

Seapoint Sensors Inc (Figure 3.16).  RBR's ‘XR-420CT+Tu’ is a small, autonomous data 

logger powered by four 3V CR123A cells. It is designed to monitor (1Hz sampling rate) 

and store recorded data on its inbuilt internal memory (8MB Flash). The turbidity meter 

comes in delrin polymer pressure case making it rugged and water-tight.  Two of the 

major advantages which made the Seapoint Turbidity sensor very suitable for the current 

study are: (i) ability to sense scattered light from a small volume within 5cm of the sensor 

windows, which allows the sensor to be calibrated in relatively small water containers 

without errors from surface and wall reflections; and (ii) the small sampling distance (i.e. 

5 cm from the sensor windows) allows the sensor to be used in confined spaces and where 

limited volumes of water exist, such as it is with the Benthic annular flume.  

 

For the current study, three of the measurement systems described above were used to 

measure turbidity in NTU within the flume’s channel at three different heights (centres at 

85, 145 and 200 mm above the nominal bel level, see Figure 3.11c) during erosion and 

deposition processes. Prior to deployment of the OBS measurement system, they were 

locally connected to a computer to be configured, scheduled and enabled [i.e. set 

measurement parameters, set frequency/time scales (3Hz over 5 hours was used), and 

initiate measurement respectively] in Ruskin® which is a software package that provides 
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a graphical user interface to manage and control the loggers. When already deployed or 

during operation, data sets were graphically viewed in Ruskin®. Finally, after each 

experimental run, the data were downloaded and exported in a range of formats with the 

same software. Figure 3.17 shows an example of turbidity-time series plot obtained 

during one of the erosion tests. 

 

To obtain SSC (g/l) from the OBS Turbidity measurements (in NTU), the OBS was 

calibrated. The best way to do this would be to take water samples immediately adjacent 

to the sensor and develop a numerical relationship between the signals and the SSC 

values of the samples; however, this was found impractical because of limited access. An 

alternative approach was to calibrate the OBS sensors with the sediments used for the 

study. This was done by incrementally adding a known quantity of the sediment to a fixed 

volume of water. A small submersible pump was placed in the container to ensure uniform 

mixing of the suspension. Figure 3.18 shows the calibration curve from which a numerical 

relationship between the sensor’s signals (in NTU) and the SSC values (in g/l) was 

obtained. One major problem with the OBS measurement system however, was that 

output was non-linear above 750 NTU (see Figure 3.18); the implications of this were 

further discussed in chapter 6.   

 

 

                 

                    Figure 3.16 The Seapoint Turbidity Meter (adapted from the users’ manual)  
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                     Figure 3.17  Example of turbidity-time series plot 

 

                        

                      Figure 3.18 SSC versus Turbidity calibration curve 

 

3.8.4.3   Novel submersible resistivity measurement box 

Exploration of the electrical resistivity technique described in sections (3.4) and (3.5) was 

further extended to capture evolution and restructuring of sediment bed under turbulent 

flow conditions. This application meant that the measurement set-up had to be water proof 

(i.e. the wiring has to be adequately concealed) and capable of being adapted to the 

benthic annular flume.  These requirements necessitated the design and development of 

a novel custom built submersible 4-point resistivity measurement box.  The box (165 mm 

x 165 mm x 210 mm) was fabricated from 10 mm thick clear acrylic Perspex (Figure 

3.19a).   30 pairs (each pair containing four 1.6 mm diameter stainless steel pins) of 

electrodes were embedded into the side in contact with the bed [i.e. the (50mm x 10mm x 

210mm) rectangular plate firmly glued to the main face of the box] (see Figure 3.19b for 

the schematic diagram of the electrode arrangement).  Due to the nature of its deployment, 

and to compensate for any gap between the bed and the box during placement, the tips of 
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the electrodes protruded by 1mm from the plate.  The vertical and horizontal distances 

between and within each pair of electrodes were approximately 5mm and 6mm, 

respectively.  To ensure stability, lead plates were sealed within the box, although once 

implanted in the bed, additional load was always placed on the box. These electrodes 

were wired-up accordingly to work with the data acquisition techniques described in 

section 3.7.3.  Calibration of each set of the electrodes was performed similarly to the 

method previously described in section 3.6.  The box was immersed in a tank full of 0.1 

M NaCl solution and 5 sets of resistance measurements of the fluid were taken for onward 

calculation of the values of ‘2r’ (i.e. geometrical constant) for each of the electrode pair 

(see values of ‘2r’ for each pair of electrodes in Appendix 3-1).  The resistivity data 

obtained for each erosion test were converted to bulk density following the procedures 

described in section 3.6. 

 

3.8.4.4     Video and photographic systems 

To facilitate better understanding of suspension, deposition and bed restructuring 

processes, video recording was done with 12MP Professional Grade HERO3+ Black 

edition of GoPro camera with ultra-sharp ƒ/2.8 - 6 element aspherical glass lens and ultra-

wide angle with reduced distortion. The main reasons for using this camera are (i) up to 

30 frames per second achievable (ii) built-in Wi-fi making it possible to control remotely 

(iii) most importantly, waterproof to 131’/40 m.  

 

A Perspex™ window on the internal channel wall of the annular flume allows for 

submarine video imagery to be recorded. The GoPro camera was fixed to look through 

the window at an angle to provide an oblique view across the sediment surface within the 

channel.  A sealed submarine lamp (Aquabeam) was used to illuminate the bed surface 

through the Perspex window. Unfortunately, the video images recorded were not useable 

because of the poor quality of the video imagery resulting from excessive turbidity 

generated within the flume during the test.  On the other hand, still images of the resulting 

bed after each experimental run were taken with 18.0 MP Canon EOS 600D camera.  

Extreme care was taken when lifting up the flume after each experimental run, this was 

to ensure no or minimal disruption to the bed before post experimental analysis. 
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                    Figure 3.19  (a) Novel custom built submersible 4-point resistivity measurement cell  

                   (b) Schematic diagram of the electrode arrangement  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

(a) 

(b) 
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     Figure 3.20  Images showing the Resistivity box being buried and fitted into the bed  

     and flume prior to the erosion test. 

 

3.8.5  Experimental procedures 

The beds were placed and levelled within the test tank before lowering the flume into the 

tank with overhead electrically operated crane, after it has been properly aligned and fitted 

in place, the custom built submersible resistivity measurement box (see Figure 3.19 & 

3.20) was implanted appropriately into the bed, this was possible as the flume had been 

modified (i.e. a groove created for it on the flume internal wall) to accommodate this box 

(see section 3.8.4.3). To enhance firmness of the box to the flume’s wall, transparent silica 

gel was applied appropriately. The tank was then filled with water to the level of the bed 

and left to stand till the following day in order to further meet requirement (i) mentioned 

in section 3.8.3. On the following day, all other measurement devices (e.g. OBS, ADV, 

Go-Pro camera, see section 3.8.4) were then configured and programmed as required 

before fitting them into appropriate positions on the flume and ready to take 

measurements. Once this has been completed, the tank was finally filled with water to a 

level that completely covered the flume’s motor. This was necessary to prevent the motor 

becoming overheated. 

 

Hydrodynamic conditions were generated within the flume by increasing the paddle 

rotation speed for a set period of time (10 mins) in a stepwise fashion as shown in Figure 

(3.21). This was designed to sequentially re-suspend and erode the bed. The discrete 

power settings applied to achieve the changes in paddle’s speed were: 2, 6, 8, 10, 12, 14, 

16 and 17 volts. It should be noted that the voltage levels and experimental conditions 

employed here, were decided after series of preliminary tests. Following the completion 
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of each experimental run, the water is the tank was drained very slowly overnight. Prior 

to the draining process, a waiting time of 20 minutes was introduced to allow for any 

remaining suspended particles within the flume to settle.  On the following day, the 

measurement devices were removed to retrieve the stored data from the OBS and Go-Pro 

camera, as ADV data was logging directly of the on-board computer. The flume was then 

lifted up with extreme care so as not to disturb the bed. Photographic images of the bed 

were taken at various positions (with Canon EOS 600D); the bed profiles (height and 

geometry of bed-forms) were measured using a meter rule, after which, sediment cores 

from the resulting sediment bed were taken with a PVC tube to examine any vertical 

stratification. A trial run was carried out with 100% sand bed to ensure that the 

experimental set-up work as expected. 

 

 

          Figure 3.21  Time series of the motor voltage for generation of hydrodynamic conditions  
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CHAPTER FOUR 

 

Experimental Results: ERMT (ES-1)  

“Great design is not just a solution; it is the elimination of the problem” 

—M. Cobanli 

 

 

 

4.1     Introduction 

This chapter presents the development and application of the electrical resistivity 

technique (EMRT), designed to characterise both the spatial and temporal variation in 

bed structure and composition resulting from the differential settling of mixed (sand-clay) 

sediments. Technical issues associated with the electrical resistivity measurements are 

identified and the technique is trialled using a specially designed acrylic sedimentation 

column described in the previous chapter. The intention is to highlight the potential for 

the methodology to provide an additional, non-invasive and sensitive characterization 

technique to study sand-mud mixture sedimentation processes both within the laboratory 

and in the field.  The hypothesis for this study is that when an electric current passes 

through water-saturated marine sediments, the measured electrical resistivity will depend 

on the resistivity of both the solid (sand-mud fractions) and fluid components, hence 

different combinations of these components should, in theory, have different resistivities 

associated with them.  The set of experiments is carried out in three phases: 

1) The pilot test (i.e. preliminary study) conducted within a 50x50x600 mm (high) 

acrylic sedimentation column (Figure 3.5a); 

2) Further developmental study (i.e. high-resolution test) conducted within a 

150x150x500 mm (high) column (Figure 3.5b), for improved spatial resolution 

and to evaluate the influence of electrode configuration on measured electrical 

resistivity. This was necessary due to limitations of the column mentioned in 1 

above; 

3) Calibration experiments carried out to achieve the following: 

 to evaluate the values of geometric constant (A/L and ‘2r’) for each pair of 

electrodes within the settling columns. This allows the bulk resistivity bulk 
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together with the pore water resistivity p to be obtained, and hence formation 

factor F can be calculated from Equation (2-33); and,  

 to obtain more physically-relevant properties such as bulk density (and, by 

extension, porosity) and volumetric composition from Formation Factor, F, 

values within the columns. 

For ease, the preliminary study will be, henceforth, referred to as Column-1 experiments 

and the high-resolution tests as Column-2 experiments. The electrical resistivity 

measurements presented in the current work are complemented by time lapsed 

photography of the developing deposits, which allowed both qualitative aspects of the 

bed formation to be observed and discussed.   

 

All the experimental runs in the current chapter was run at constant salinity and pH while 

the temperature variations were controlled and corrected as discuss in section 3.4.1. 

Having controlled these parameters, the resistivity measurements are solely function of 

solid components (i.e. sand and clay).  

 

 

4.2    Qualitative Observations on Sand-Clay Deposition 

It is informative, at this point, to briefly obtain a qualitative understanding of the typical 

formation of these mixed sand-clay deposits, as well as variations in their vertical 

structures and composition. This is important to evaluate how the electrical resistivity 

technique has performed in characterising the observed temporal and spatial variations in 

the structure of the bed deposits.  

 

Clearly, differential settling effects between the sand and clay fractions - due to variations 

in the densities and sizes of particle and flocs, respectively - would suggest that sand 

particles should settle out first, followed by the clay particles/flocs leading to segregation 

layers within the bed deposit (e.g. Williamson, 1991; Torfs et al., 1996). However, the 

complexity of the interaction between the sand and clay fractions, together with the 

influence of the pore water salinity, means that the resulting deposit structure is likely to 

be complex and, to some extent, depends on the sand and clay proportions in the initial 

mixture. This is thought to be controlled by the initial mixture concentration s and 

relative volumetric concentration of the sand s
sa and clay s

cl fractions in the initial 

sediment mixture (Cuthbertson et al., 2008). The parametric influence of s, s
sa & s

cl on 

a wider range of resulting sand-clay deposits will be discussed in detail later in chapter 5. 



Chapter Four: Experimental Results: ERMT (ES-1)  

 

101 

 

4.2.1 Preliminary test: sand-clay deposition 

As indicated previously, time-lapsed images were obtained with a digital camera to 

observe the settling and deposition characteristics for the different sand-clay mixture 

compositions used for the development experiments.  Figure 4.1 shows the typical 

temporal development and evolution of the deposit structure for the 50s:50c mixture 

within the column-1. Assuming each graduation mark on the scale shown in Figure 4.1 is 

10 mm, the rapid settling of a large proportion of the sand fraction appears to result in the 

formation of a sand-rich bottom deposit layer  30 mm thick [Figure 4.1(i)], with near-

vertical dewatering channels formed in this layer during the rapid settlement phase. 

Above this initial sand-rich deposit, a patchier mixed sand-clay layer  25 mm thick 

[Figure 4.1(iv)] is deposited over a specific time period [i.e. t ≈ 90 minutes; Figure 

4.1(i)-(iv)]. Subsequent to this, a thicker clay-rich layer containing discrete sand patches 

or clusters [i.e.  100 mm thick, up to z ≈ 160 mm mark, Figure 4.1(vi)] forms over a 

relatively longer time period [i.e. t ≈ 150 minutes, Figure 4.1(iv)-(vi)]. It is particularly 

interesting to note the presence of the sand patches within this clay-rich layer as this 

suggests the remaining sand becomes trapped as the concentration of the clay reaches the 

gelling point (e.g. Winterwerp and Van Kesteren, 2004), although subsequent settlement 

of these patches is observed [Figure 4.1(vi)  (viii)] as the clay-rich layer becomes 

denser through on-going settlement. Finally, the remaining clay appears to form a 

relatively sand-free surface layer in the bed deposit [i.e. z > 160 mm mark; Figure 

4.1(viii)]. 

 

4.2.2 High-resolution test: sand-clay deposition 

A similar final deposition structure as discussed above for 50s:50c in the preliminary test 

column was observed to occur also for the 50s:50c mixture (i.e. run ERT-EX3) within the 

column-2 (see Figure 4.2b). In comparison, the final deposition structures of the sand-

rich mixture (ERT-EX2; 75s:25c) is shown (Figure 4.2c) to result in a more clearly 

defined segregation interface between the sand-dominated layer at the column base and 

overlying clay-dominated layer, with discrete trapped sand patches again shown 

especially close to the interface. By contrast, the clay-rich mixture (run ERT-EX4; 

25s:75c) is shown (Figure 4.2a) to result in no clear segregated layers forming within the 

resulting deposition. 
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Figure 4.1 Time-lapsed images showing the development of sand-mud deposit layer in the 

preliminary column design for 50s:50c mixture at elapsed times (hrs) of (i) 0.25, (ii) 0.5, (iii)  

1.0, (iv) 1.5, (v) 2.0, (vi) 4.0, (vii) 5.0 and (viii) 6.0.  (Each graduation mark on the scale is 

equivalent to 10 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

    

  Figure 4.2 Final deposition patterns in the high-resolution column for (a) ERT-EX4 (25s:75c),    

  (b) ERT-EX3 (50s:50c) and (c) ERT-EX2 (75s:25c) 

 

   

4.3 Electrical Measurements 

As previously indicated, measurements of formation factor F profiles were obtained in 

both columns (i.e. column-1 and -2) to investigate the settling and depositional behaviour 

of the different sand-clay mixtures tested. Where appropriate, these profiles were 

transformed into more physically-relevant properties (e.g. bulk density bulk, porosity) to 
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characterise structural features, such as segregated bed layers and transitions in solid 

volumetric composition within the resulting bed deposits.  

 

4.3.1   Preliminary sedimentation tests (Column-1) 

For the tests conducted in column-1, these measurements focused primarily on proving 

the viability of the ERMT for determining spatial and temporal variations in the sand-

clay deposit formation and resulting composition.  In this regard, Figure 4.3 shows 

comparisons of the measured formation factor F profiles at discrete elapsed times during 

these preliminary runs. These results show the pure-sand deposit forms almost 

immediately with a reference F value of 4.6 – 5 (Figure 4.3a).  A high F value is also 

measured at the base of the column (i.e. z = 25 mm) for the sand-rich (i.e. 75s:25c) mixture 

(i.e. F  4, Figure 4.3a), reflecting the initial formation of a base layer composed 

predominantly of deposited sand. By contrast, initial F values for the other sand-clay 

mixtures and pure-clay runs appear to be relatively consistent over depth, with only a 

slight increase in F observed for the 50s:50c mixture (i.e. F  1.9, Figure 4.3a), which 

reflects the initial development of a sand-clay deposited layer at the column base. After 6 

hours, the F value at the column base for the 75s:25c mixture has further increased (i.e. 

F  4.2, Figure 4.3b) to approach that of the pure-sand deposit. The corresponding F value 

for the 50s:50c mixture has also increased significantly (i.e. F  3.14, Figure 4.3b), 

reflecting the formation of a mixed sand-clay deposit layer. Evidence of sand deposition 

in a clay-rich base layer is also indicated by the slight increase in F for the 25s:75c mixture 

(i.e. F  1.95, Figure 4.3b). Higher up the column (i.e. z = 125, 225, 325 and 425 mm), F 

values appear to have less variation for all sand-clay mixtures, suggesting the dominance 

of the clay fraction in the deposition characteristics away from the column base. For the 

measurements taken at 24 and 72 hours (i.e. Figure 4.3c & d, respectively), there appears 

to be no significant changes to the overall F profiles with respect to the 6-hour 

measurement. However, all F values continue to increase as the resulting sand-clay 

deposits continue to compact over this time scale.  
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Figure 4.3 Measured formation factor F profiles in preliminary column-1 for 0(S):100(C); 

25(S):75(C); 50(S):50(C); 75(S):25(C) and 100(S):0(C) at elapsed times of (a) 0 hrs; (b) 6 hrs; 

(c) 24 hrs; and (d) 72 hrs. 

 

 

4.4  High-resolution Settling Column Tests (Column-2) 

Clearly, the results of the preceding section demonstrate that distinct variations in 

measured F profiles are obtained for different compositions of sand-clay mixtures and 

their resulting deposits for the tests within the settling column-1. These results 

undoubtedly establish the potential of ERMT in characterising spatial and temporal 

variations in mixed sediment deposits. However, the low-resolution of electrical 
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measurements associated with the settling column-1 design, meant that detailed 

information on the vertical variations in structure and composition of the mixed deposits 

were not possible. Therefore, the potential of this technique was further investigated in a 

specially designed high resolution column (see section 3.5 and Figure 3.5b). One of the 

main advantages of this column over column-1 was that it was designed to investigate the 

influence of electrode geometry and horizontal spacing on the electrical measurement. 

The remainder of this chapter will focus, therefore, on the high-resolution electrical 

measurement results obtained in this specially built sedimentation column and their 

physical interpretation. The use of electrical measurements method to obtain physical 

properties of mixed sediment deposits is discussed below and also in chapters 5 and 6 of 

this thesis.  

 

4.4.1 Influence of electrode geometry and configuration 

Initial electrical measurements in the high-resolution settling column were designed to 

test the influence of pin electrode spacing within each four-point set on the ability of the 

ERMT to identify structural features (e.g. changes in layer composition) within the sand-

clay deposits. In this respect, two sand-clay settling test runs were completed in which 

simultaneous measurements were taken in the high-resolution column with the 6 mm and 

20 mm spaced pin electrode sets (with vertical spacing fixed at 10 mm between sets).  

Figures 4.4a & b show comparisons of the formation factor F profiles for the 50s:50c 

(ERT-EX3) and 75s:25c (ERT-EX2) mixtures, respectively, obtained with the 6 mm and 

20 mm pin arrangements after 6 hours. These plots appear to indicate that a reduction in 

the horizontal electrode resolution (i.e. 20 mm  6 mm) results in reduced vertical 

gradients (i.e. dF/dz) observed at transitions between sand-rich layers (with high F values) 

and clay rich layers (with lower F values). This is particularly noticeable in the 75s:25c 

mixture, which was shown (Figure 4.2c) to have a sharp segregation between the sand-

rich and clay-rich deposition layers.  A final test using an artificially-generated deposit 

consisting of alternate layers of pure-sand and pure-clay clearly demonstrates this effect. 

The resulting formation factor F profiles (Figure 4.4c) confirm that horizontal pin 

electrode spacing (together obviously with the vertical spacing of electrode sets) affects 

significantly ability of the electrical resistivity technique to pick up sharp transitions in 

segregated beds.   
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The influence of electrode geometry, in particular, was also evaluated by comparing the 

results obtained after 6 hours for tests consisting of 25c:75s within both columns. From 

the results (Figure 4.5), it is obvious that there is no significant difference from the 

profiles obtained by 6 mm spaced pin-electrodes, 20 mm spaced pin-electrodes and square 

plate-electrodes, in the region of the beds with little or no segregation (i.e. z ≥ 120 mm), 

but significant differences exist in the segregated region (i.e. z < 120 mm) of the bed; with 

the least resolution result from the plate electrodes.  In general, these findings suggest that 

spatial resolution of the EMRT is affected by electrode configuration (horizontal spacing) 

and geometry especially when characterising segregated bed deposits or settling 

processes where segregation is likely to occur. It was therefore decided to use the 6 mm 

electrode spacing to more clearly identify these transitions, hence, subsequent 

experimental results in the current study are based on measurements made with a 6 mm 

electrode spacing. 
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Figure 4.4 Development of formation factor F profiles at 6 hours for runs with (a) ERT-EX3 

(50s:50c); (b) ERT-EX2 (75s:25c); and (c) placed deposits (with alternating pure-sand and clay 

layers) to compare the 4-Pin electrode horizontal resolutions (i.e. pin-pin spacing; 6mm and 

20mm). 
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            Figure 4.5 Profiles showing the influence of electrode configuration and geometry on spatial  

resolution of ER. 

 

4.4.2 Calibration Measurements: physically-relevant properties of bed deposits 

The physical properties, i.e. bulk density (bulk /𝑝) and porosity (), obtained from 

calibration tests described in section 3.6.3 (pg. 77), were related to the formation factor F 

for each test sample (Figures 4.6 and 4.7). From Figure 4.6, F versus   for the range of 

sand-clay mixtures tested, the values of the empirical coefficients a and m in Equation (2-

33) can be obtained as a = 1.575 and m = 1.135 from the best-fit power relationship 

through this calibration data, which has been shown to have the same form as the Archie 

(1942) relationship (Equation 2-33), such that:  

 

                         𝐹 =   
𝜌𝑏𝑢𝑙𝑘

𝜌𝑝
= 1.575𝜑−1.135                                                               (4-1) 

 

Interestingly, coefficients a and m in Equation (4-1) are in general agreement with values 

obtained from other studies in unconsolidated, saturated soil [a = 0.62–1.97 (e.g. Boyce 

1968 and Bassiouni, 1994) and m = 1.0–1.5 (e.g. Archie, 1942; Schon, 1996 ; 

Worthington, 1993 and McCarter et al. 2005)].  
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 Figure 4.6  Derived Archie (1942) relationship between Format ion Factor, F and Porosity, φ 

 

It is reemphasised here that the range of applicability of Equation (4-1) (and, hence, 

Equation 2-33 in general) is limited as the condition: F →1 as  →1 is not satisfied (i.e. 

pore fluid only).  Therefore, Equation (4-1) can only be considered valid over the range 

of porosities (  = 0.35 – 0.92) for the calibration mixtures tested. As indicated previously, 

these limiting conditions also have implications for general validity of Equation (3-11), 

which relates normalised bulk density bulk /𝑝 with formation factor F. Indeed, this 

relationship is shown in Figure 4.7a (red line) and, while reasonable fit is demonstrated 

within the calibration data range, the required condition that bulk /𝑝→1 as F→ 1 is clearly 

not satisfied.  Hence, an improved fit to the calibration data (i.e. blue line in Figure 4.7a) 

is proposed (R2 = 0.9948), which as it can be seen satisfies the imposed condition, such 

that:  

 

                        
𝛾𝑏𝑢𝑙𝑘

𝛾𝑝
=  1.016 𝐹 0.455                                               (4-2) 

 

In the same vein, the improved fit to the calibration data is proposed for the relationship 

between Porosity () and Formation Factor F, as shown by the black solid line in              

Figure 4.7(b).  This proposed fit apparently satisfies better the required condition (i.e. 

 →1 as F→ 1), therefore the following equation is proposed (R2 = 0.994): 

 

                     𝜑 = 1.284 𝑒− 0.265 𝐹                                                                         (4-3) 
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Equations (4-2) and (4-3) can therefore be used to predict evolving normalised density 

(bulk /𝑝) and porosity () profiles within the sand-clay deposits directly from electrical 

resistivity measurements as it has been demonstrated in the current study.  It should be 

borne in mind that, the calibration plots in Figures 4.6 and 4.7 have been derived from 

tests on unconsolidated, saturated sand-clay mixtures and hence are more representative 

of freshly deposited bed conditions. Hence, the coefficients in these equations (i.e. 4-2 

and 4-3), are therefore valid for the range of sand-clay mixtures tested here or for 

sediment mixtures of similar characteristics and compositions. As such, the electrical 

properties of sand-clay suspensions (i.e. prior to bed layer formation) or heavily 

consolidated sand-clay bed layers would be expected to vary from the range of formation 

factors (e.g. F ≈ 2.0–5.0) as measured in the calibration tests. However, the physical 

properties (e.g. bulk density and porosity) of the former can clearly be estimated from 

Equations (4-2) and (4-3) when extrapolated back to the required condition bulk /𝑝 and 

 = 1 when F= 1.  

 

  

Figure 4.7  Calibration plots showing the derived relationships between (a) normalised bulk 

density bulk  /𝒑
 and formation factor F; (b) porosity  and formation factor F within sand-clay 

test samples 
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4.4.3 Formation factor (F) profiles 

As the effects of pore solution salinity and temperature are constant; and using the sand-

clay mixture calibrations outlined above, a time series of measured formation factor F 

profiles (e.g. colour maps of measured formation factor F profiles shown in Figure 4.8) 

can be obtained (see section 2.6.3, pg. 54 for more details). Visual observation of the 

photographic images in Figures 4.2(b-c) and 4.8 clearly shows that, in both cases, 

although segregation occurred, the degree of clarity of the interfaces between these 

segregated layers in the bed deposits differ significantly depending on granular material 

concentration. The colour maps in Figure 4.8 clearly present these differences.  In both 

Figures 4.8a & b, different layers can be identified in the bed deposits with the magnitude 

of each largely dependent on sand concentration.  In the corresponding colour map, at z 

= 80 mm, a sharp transition can be seen between the clay rich layer and sand rich layer in 

75s:25c mixture (Figure 4.8b) but at the corresponding height (z = 40 mm) in 50s:50c 

mixture (Figure 4.8a) the transition is not distinctly clear as it can be seen in the bed 

deposit image.  

 

In general, Figure 4.8 appears to allow more quantitative analyses of different settling 

conditions, segregation/stratification mechanisms and structural differences of the 

resulting bed deposits. For instance, information on settling regimes can be clearly picked 

from Figure 4.8, in both runs ERT-EX3 (50s:50c) and ERT-EX2 (75s:25c), ‘t0-t1’ 

represents a period where the granular materials rapidly settled; and ‘t1-t2’ shows the 

phase where clay particles concentration dominate thereby causing hindered settling of 

the granular materials. However, in run ERT-EX3, ‘t2-t3’ regime denotes phase with 

settling clay particles in a consolidating bed while this regime extends to ‘t4’ in run ERT-

EX2. 
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Figure 4.8 Time series colour map plots showing variation in measured formation factor F 

profiles for (a) ERT-EX3 and (b) ERT-EX2. (Corresponding images show bed deposit structure 

after 48 hours) 

 

 

4.4.4 Bulk density and porosity profiles 

In terms of characterising variations in the vertical composition of sand-clay deposits, it 

is more informative to convert the measured electrical properties into more physically-

relevant properties such as bulk density and porosity. These can then be easily associated 

with specific bed structural feature at different elevations within the deposits. The 

formation factor (F) profiles (e.g. Figure 4.8) can be transformed into normalised bulk 

density bulk /𝑝 and porosity 𝜑 profiles using Equations (4-2) and (4-3) respectively.  

Figure 4.9 presents typical results of the temporal variation in normalised bulk density 

bulk/p for the majority of the mixtures (i.e. ERT-EX2 to EX5) tested in the high-

resolution column with the 6 mm-spaced pin electrodes while Figure 4.10 presents their 

corresponding vertical porosity (𝜑) profiles (i.e. from Equation 4-3).  
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Figure 4.9 Vertical profiles of normalised bulk density bulk/p at elapsed time shown for run (a) 

ERT-EX5 (0s:100c; i.e. pure-clay); (b) ERT-EX4 (25s:75c; i.e. clay-rich); (c) 50s:50c (ERT-

EX3); and (d) ERT-EX2 (75s:25c; i.e. sand-rich). 

 

For the pure-clay deposit (i.e. ERT-EX5) the bulk/p values increase slightly (bulk/p = 1.3 

 1.4) with both increasing deposit depth (i.e. reducing z values) and increasing elapsed 

time (0  6  48 hours), due primarily to compaction effects within the pure-clay deposit 

(Figure 4.9a). The porosity of the (i.e. ERT-EX5) final bed structure appears to be 

uniform across the bed (i.e. z = 0  200 mm), with the average indicative values of bed 

porosity, 𝜑 (Figure 4.10a) ≈ 0.85.  
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For the clay-rich mixture (ERT-EX4; Figure 4.9b), bulk density profiles are found to be 

similar to that for the pure-clay deposit, except in the near-base region (i.e. z < 75 mm) of 

the deposit, at greater elapsed times (i.e. at 48 hours), where the average bulk/p values 

are increased slightly (bulk/p = 1.4 – 1.5) by the presence of trapped sand within the 

dominant clay matrix. The indicative values of the bed porosity in this region of the bed 

(i.e. z = 0  75 mm) vary from 𝜑 ≈ 0.73 to 0.81; but for z > 75 mm, the average value of 

𝜑 is 0.84 (see Figure 4.10b), which is similar to average porosity in 100% clay sample.  

 

For run ERT-EX3 (50s:50c; Figure 4.9c), the bulk density profiles show three distinct 

changes in gradients within the near-base region (i.e. z < 100 mm), representing the 

transitions between layers of different composition [see Figure 4.2(b)]. Above this region 

appears to be predominantly clay deposit. From the bulk density profile at 48 hours 

elapsed time, the slight increase in bulk/p values (1.3  1.5) between z = 100  65 mm 

appears to be associated with the formation of the clay-rich layer with trapped sand 

patches (see Figure 4.2b and Figure 4.11a); the corresponding porosity values between z 

= 100  65 mm, vary from 𝜑 ≈ 0.82 to 0.86 (Figure 4.10c).  A transition in gradient is 

then observed at z = 65 mm, indicating the presence of the sand-rich layer with clay 

patches, which extends down to z = 45 mm with bulk/p values increasing from about 1.4 

 1.7 and 𝜑 varying from ≈ 0.60 to 0.82 over this layer. A second gradient transition is 

observed around z = 45 mm, indicating the presence of the near-base, sand-dominated 

layer (with de-watering channels and some clay present, Figure 4.2b and Figure 4.11a). 

In this layer of the bed, the values of bulk/p increase from about 1.7  1.93 with the 

corresponding porosity values range from 𝜑 ≈ 0.44 to 0.60 (Figure 4.10c).   

 

Finally, for the sand-rich mixture (ERT-EX2; Figure 4.9d) there is a relatively sharp 

transition between the sand-dominated base layer (with bulk/p between 1.8 – 2.0 and 𝜑 

≈ 0.44 – 0.48 for z < 65 mm) and the clay-dominated upper layer (with bulk/p = 1.2 – 1.3 

and 𝜑 ≈ 0.84 – 0.91 for z > 85 mm). This sharp transition was evident from the final 

deposit of the 75s:25c (i.e. ERT-EX2 after 48 hours; see Figure 4.2c and Figure 4.11b).  

Interestingly, a layer [i.e. z = 65  85 mm; region (ii) in Figure 4.11b] is sandwiched in 

between the sand-dominated base layer and clay-dominated upper layer with bulk/p = 

1.36 – 1.84 and 𝜑 ≈ 0.48 – 0.84 (Figure 4.10d and Figure 4.11b), this layer (i.e. z = 65 

 85 mm) is however sand rich as shown in Figure 4.10d. Comparison of near-base 
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variations in normalised bulk density bulk/p at 48 hours was shown in Figure 4.12 for all 

mixtures tested.  

 

  

 

   

Figure 4.10 Vertical profiles of Porosity,  at 48th hour for run (a) ERT-EX5 (0s:100c; i.e. 

pure-clay); (b) ERT-EX4 (25s:75c); (c) 50s:50c (ERT-EX3); and (d) ERT-EX2 (75s:25c). 
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Figure 4.11 Normalised bulk density profiles and images of sand(s)-clay(c) deposits obtained 

for run (a) ERT-EX3 (50s:50c) and (b) ERT-EX2 (75s:25c). Zones (i) – (iv) show sand-rich 

(>60% sand); sand-clay mix; sandy-clay (<10% sand) and clay layers, respectively.  

 

 

 

Figure 4.12  Comparison of near-base variations in normalised bulk density bulk/p at 48 hours 

for mixtures of composition: 0s:100c (pure-clay); 25s:75c (clay-rich); 50s:50c (sand-clay); 

75s:25c (sand-rich); and 100s:0c (pure-sand) 
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From the vertical porosity (𝜑) profiles of the bed deposits shown in Figure 4.10, 

qualitative analysis of the granular material distribution in the resulting bed deposits is 

possible which may complement further analysis such as particle size distribution (further 

calibration tests may be required).  From Figure 4.10, it is apparent that sand fraction 

significantly decreases vertically upward through the bed deposit with corresponding 

increase in porosity; an opposite trend is observed in the case of clay fraction. In terms of 

bulk density of the sediment bed deposits, bed samples with little or no sand particles will 

have relatively high porosity (Figure 4.10a & b), meaning porosity increases with 

decreasing sand content. A similar trend was reported by te Slaa et al. (2013). 

Furthermore, Figure 4.13 indicates how the normalised bulk density of the prepared sand-

clay calibration samples increases (though non-linearly) [i.e. bulk/𝑝= ∼1.5→∼2.0] with 

sand content (i.e. 0→100 %); and decreases [i.e. bulk /𝑝= ∼2.0→∼1.5] with clay content 

(i.e. 0→100 %). 

 

 

Figure 4.13 The relationship between bulk/p and material fractional content within sand-clay 

test samples 

 

In summary, the formation factor colour map plots (Figure 4.8); bulk density profiles 

(Figure 4.9) and porosity profiles (Figure 4.10) have clearly shown the initial stages of 

the bed layer development for different sand-clay mixture compositions and indicate 

quantitatively how the individual deposit layer forms over time, as well as providing an 

indication of their composition and structure (i.e. through corresponding bulk /𝑝 and 

porosity 𝜑 values in the different bed regions). 
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4.5 Main Conclusion 

This chapter has extensively described results of an experimental study exploring the 

potential of non-intrusive electrical resistivity techniques to characterize the spatial and 

temporal variation in sediment bed structure and composition, resulting from the 

differential settling of cohesive clay and non-cohesive sand mixtures. Various associated 

technicalities have been identified and finally, continuous bulk density profiles and an 

expression for porosity profiles have been successfully obtained for these sand-clay 

mixtures with ERMT.  In addition, the time series profiles of these physically relevant 

properties (e.g. bulk density, porosity and material ratio) obtained from formation factor 

F have been demonstrated to allow quantitative analyses of different settling conditions, 

segregation/stratification mechanisms and structural densities of the resulting bed 

deposits from sand-mud mixtures. 

 

The bulk density profiles obtained for the different sand-clay mixtures in the current work 

demonstrate, to a large extent, the influence of the non-cohesive sand fraction, in 

particular, on the spatial and temporal variation of the resulting composition and structure 

of mixed sediment bed deposits (e.g. Torfs et al. 1996; Manning et al., 2010; Xu et al., 

2012; etc.).  Generally, considerable care should be taken when comparing results from 

different devices for characterisation of bed deposits as variation in results could be 

technically linked to various factors such as scale of deployment, environmental 

conditions, etc., nevertheless, the bulk density values obtained from the current study are 

broadly in agreement with values obtained by other authors utilizing other non-invasive 

techniques for similar sand-mud compositions. For example, Torfs et al. (1996) recorded 

bulk densities ranging from 1.0 to 1.4 g cm-3 for single shot experiments on Scheldt mud 

with sand additions of 0%, 5%, 10% and 20%.  Similarly, Been and Sills (1981) obtained 

bulk densities ranging from 1.02 to 1.53 g cm-3 for various consolidating soft soils, (see 

Table 4-1). 

 

Table 4-1 Comparison of ER with other common non-invasive techniques 

Author Bulk density 

ranges (g cm-3) 

Technique 

Used 

Sediment 

Compositions 

 Accuracy (+/-) 

Current study 

 

1.2 – 2.0 ERMT 0-75% Sand 0.025-0.04 g cm-3 

Torfs, et al. 

(1996)  

1.0 – 1.4 Gamma-ray 

(MAST-

G6M, 1992) 

0-32% Sand  0.01 g cm-3 

Been and Sills 

(1981)  

1.02 – 1.53 X-ray 75µm sieved Silt 

+ 30%Clay 

 0.01 g cm-3 
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Therefore, in spite of identifying some technical issues that must be given consideration 

when using EMRT, such as electrode polarization, temperature effects, electrode 

configuration and CEC of clay (or surface conduction effects), the results presented in 

this chapter have established that, ERMT is an extremely useful non-invasive 

characterization methodology to study sand-mud mixture sedimentation and bed 

formation processes, and, provided a suitable calibration is carried out, it is anticipated 

that this methodology can be deployed on variety of samples both at laboratory and field 

scales. 

 

Finally, based on the findings of the current work, the following general relationship is 

proposed between the normalized bulk density of the sediment bed deposit and 

corresponding formation factor F value:   

 

                    
𝒃𝒖𝒍𝒌

𝒑

= 𝑎. 𝐹𝑏                                                                     (4-4) 

 

Also, to capture the relationship between porosity, 𝜑 and formation factor F, the 

following equation is equally proposed: 

 

                     𝜑 = 𝑎̂𝑒− 𝑏̂.𝐹                                                               (4-5) 

 

The coefficients in Equations (4-4) and (4-5) are experimentally-derived [e.g. the 

coefficients in Equations (4-2) and (4-3) respectively, have been derived for sand-clay 

mixtures tested in this study]. The require condition for the proposed relationships is such 

that bulk/p and 𝜑  1 as F 1.  As an extension of the application of ERMT in settling 

column experiment, use of this technique in quasi-field environment has been 

demonstrated by adapting it to a benthic annular flume to study bed entrainment and 

erosion processes (see chapter 6 for further details). 
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CHAPTER FIVE 

 

Experimental Results: Sand-Clay Suspension Settling Experiment (ES-2) 

“There are three principal means of acquiring knowledge…observation of nature, reflection and experimentation…” 

—Denis Diderot 

 

 

 

5.1     Introduction 

The experimental findings from chapter 4 have served to demonstrate the ERMT to be 

suitable for the non-intrusive characterisation of spatial and temporal changes in mixed 

(sand-clay) sediment bed deposits forming as a consequence of sedimentation (i.e. 

settling and deposition) and subsequent consolidation behaviour for mixed sediment 

slurries in settling column tests. This will help improve fundamental understanding of the 

dynamic behaviour of mixed sediment beds within estuaries. 

 

The current chapter details a parametric study on the spatial and temporal variations in 

sediment bed structure and composition resulting from the differential settling of cohesive 

clay and non-cohesive sand mixtures for a range of different mixture compositions, initial 

mixture mass concentrations and ambient fluid salinities (see Table 5-1). The main 

objectives of these experiments are as follows: 

 To study the influence of these parametric conditions on the spatial and temporal 

variation of sediment bed layer composition and structure (i.e. mixed or 

segregated) resulting from the differential settling of mixed sediments. This is 

investigated in terms of settling and consolidation rates, depth dependent bulk 

densities, and bed porosities.  

 To provide a significant dataset on sand-clay sedimentation processes, over a 

wide range of initial mixture concentrations and compositions required to (i) 

investigate further the parametric dependence of mixed and segregated bed 

deposit formation and (ii) test the polydisperse hindered settling formulation 

proposed by Cuthbertson et al. (2008) in terms of its predictive capabilities for 

the generation of these mixed and segregated bed deposits.  
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 To derive appropriate parametric criteria to describe the conditions under which 

well mixed or segregated bed layers will form in mixed sedimentary 

environments. 

 

To achieve these objectives, an experimental programme and methods have been 

designed, as described in sections 3.6 (pg. 74) and 3.7 (pg. 78) of Chapter 3, a summary 

of which is provided in the following section. 

 

 

5.2     Summary of Experimental Set-up and Conditions 

The experiments were carried out in the custom-built settling column (Figure 3.5b) with 

embedded electrical resistivity probes to facilitate electrical resistance measurements of 

the evolving sand-clay deposit formation.  Nine settling experiments (SET-EX1 to -EX9, 

Table 5-1) were carried out in addition to the five (i.e. ERT-EX1 to EX5) test runs carried 

out during the development stage of the test column (see Table 5-1).   

 

Prescribed sand-clay mixture compositions were generated from the Polwhite-B kaolin 

clay and fine-to-medium grade quartzite sand (see section 3.7.1, pg. 79). For this set of 

experimental runs (i.e. SET-EX1 to EX9), the following sand(s): clay(c) compositions (% 

by dry weight) were tested: (i) 85(s):15(c); (ii) 75(s):25(c); (iii) 65(s):35(c). These sand-

clay proportions extend the range of mixture from those tested in past studies on sand-

mud sedimentation processes, which have typically considered mixtures with low to 

medium sand contents (i.e. > 10-20%) [e.g. Toorman 1996, 1999; Merckelbach and 

Kranenburg 2004b; Le Hir et al., 2011; Grasso et al., 2015; etc.]. Hence, the current tests 

are expected to provide additional data sets to validate existing analytical and numerical 

models (e.g. Cuthberston et al., 2008; Grasso et al., 2015; etc.), for hindered settling, 

sedimentation and consolidation processes, particularly those defining parametric 

conditions that lead to bed segregation.  Previous research has revealed a correlation 

exists between the final structure of mixed sediment bed deposits and the initial sediment 

mixture concentration (Torfs et al., 1996; Been & Sills, 1996 and Sills, 1998).  As such, 

three single-shot input concentrations have been tested in the run, i.e.  367 kg m-3,             

561 kg m-3 and 813 kg m-3. 

 

The ambient fluid salinity was also varied between runs, with the mixed sediment slurries 

prepared using brine solutions with the following salinities:  0 ppt (i.e. fresh water),          
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15 ppt, 30 ppt and 40 ppt.  Brackish estuarine waters may have salinity levels between     

1 and 17 ppt; while on average, seawater in the world's oceans has a salinity of 

approximately 35 ppt (Levinton, 1995).  Thus, the range of salinities tested covers the 

majority on aquatic environment and allows direct comparison with results from other 

experimental studies in the literature (e.g. Owen 1970; Sutherland et al., 2014; Mehta, 

2014; etc.). 

 

A summary of the main experimental parameters and test conditions for all the 

experiments is presented in Table (5-1).  In each experimental run, the sand-clay mixture 

was transferred into the column as a single shot and mixed thoroughly with a porous grid 

mixer to prevent initial deposition prior to the start of the test.  During the settling phase, 

vertical resistivity (see section 3.7.3, pg. 80) profiles were measured at 30 second intervals 

for up to 24 hours. The interface that developed between the supernatant pore liquid and 

the settling sediment layer was recorded at every 30 minutes for the first 6 hours and 

every hour subsequently from photographs and video recordings of the settling process 

(see section 3.7.4 on image capturing, pg. 81).  These time-lapsed photographic and video 

images were used essentially to observe and measure (i) the developing bed layer 

structure and, in particular, segregation between the depositing sand and clay fractions, 

and (ii) the vertical displacement of the interface formed between the developing bed 

deposit layer and supernatant pore water. 

 

 

5.3    Qualitative Observation on Sand-Clay Sedimentation 

This section provides a qualitative description of the physical observations made during 

the sedimentation experiments. Within the settling column arrangement employed in the 

current study, the typical sedimentation and bed formation processes displayed by 

different sand-clay mixtures are essentially one-dimensional, with upward pore water 

flow and downward movement of sediment (Torfs et al., 1996).  Clearly, it is anticipated 

that due to differential settling effects, sand particles in the initial mixture will settle out 

faster than the clay particles/flocs. These processes have been reported to be largely 

responsible for the observed segregation layers forming within sand-mud bed deposits 

(e.g. Migniot, 1968; Ockenden and Delo, 1988; Williamson, 1991; Williamson and 

Ockenden, 1993; Torfs et al., 1996; etc.).  However, the specific parametric influence of 

initial mixture concentration, sand and clay proportion and fluid salinity means that the 

resulting bed deposit structure and layer composition are likely to be more complex.  
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Table 5-1  Main experimental parameters and conditions for ES-2 

Experiment 

Name (1) 

 

%Sand: 

%Clay 

Initial mixture 

Concentration, 

Co,s 

(kg/m3) 

Pore-

water 

Salinity 

(ppt) 

Pore-water 

density ρw 

(kg/m3) (2) 

Initial clay 

concentration 

Co,s
cl (kg/m3) 

 

Initial sand  

concentration 

Co,s
sa

  (kg/m3) 

 

Initial vol. 

mix. conc. 

Øs   

 

Initial vol. 

clay conc. 

Øs
cl 

Initial vol. 

sand conc. 

Øs
sa

  

Deposit 

segregation 

(Y/N) 

SET-EX1 85S:15C 561 15.0 1009.10 84 477 0.2131 0.0324 0.1807 Y 

SET-EX2 85S:15C 561 30.0 1020.50 84 477 0.2131 0.0324 0.1807 Y 

SET-EX3 75S:25C 561 30.0 1020.50 140 421 0.2136 0.0541 0.1595 Y 

SET-EX4 65S:35C 561 0.0 997.80 196 365 0.2140 0.0757 0.1383 Y 

SET-EX5 65S:35C 561 15.0 1009.10 196 365 0.2140 0.0757 0.1383 Y 

SET-EX6 65S:35C 561 30.0 1020.50 196 365 0.2140 0.0757 0.1383 Y 

SET-EX7 65S:35C 561 40.0 1028.10 196 365 0.2140 0.0757 0.1383 Y 

SET-EX8 65S:35C 367 30.0 1020.45 128 239 0.1399 0.0494 0.0905 Y 

SET-EX9 65S:35C 813 30.0 1020.45 285 528 0.3100 0.1100 0.2000 N 

ERT-EX1 100S:0C 330 29.2 1019.90 0 330 0.1250 0 0.1250 - 

ERT-EX2 75S:25C 330 29.2 1019.90 83 247 0.1256 0.0320 0.0936 Y 

ERT-EX3 50S:50C 330 29.2 1019.90 165 165 0.1262 0.0637 0.0625 Y 

ERT-EX4 25S:75C 330 29.2 1019.90 247 83 0.1268 0.0954 0.0314 N 

ERT-EX5 0S:100C 330 29.2 1019.90 330 0 0.1274 0.1274 0 - 

 (1) SET-EX1-9 - shorter term tests (up to 24 hours); EIT-EX1-5 - longer term tests (up to 72 hours) 
 (2) Pore-water densities ρw calculated at 220C 

 

 

 

1
2

3
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For the vast majority of the sediment mixtures tested (SET-EX1 to EX8 and ERT-EX2 to 

EX3, see Table 5.1), following the onset of the settling phase, the sand particles tend to 

settle to the bottom of the column, resulting in the formation of two distinct interfaces in 

the settling column by the end of the experimental run. The top interface occurs between 

the overlying supernatant pore fluid and the settling clay-rich sediment layer, while the 

lower interface forms as a result of segregation between the sand and clay proportions in 

the mixture. Additionally, within the final bed deposits, distinct regions or segments with 

different composition and structure can be identified, particularly for all the segregated 

bed deposits. This is discussed in greater detail below. 

 

5.3.1 Segregation in bed deposits 

The settling characteristics of the tested sand-clay mixtures were largely responsible for 

the observed variability in the final structure and composition of the bed deposits, defined 

parametrically by initial sediment mixture concentration, composition and pore fluid 

salinity.   For clarity, all the experimental runs have been grouped as shown in Table (5-

2) to facilitate comparison of parametric dependencies.    

 

  Table 5-2 Classification of experimental runs into paramet ric groupings 

Group Elements Descriptions 

A SET-EX1 & EX5 Constant salinity (15ppt) with varying clay contents (15 & 35%) 

B SET-EX2, EX3 & EX6 
Constant salinity (30ppt) with varying clay contents (15, 25 

&35%) 

C SET-EX1 & EX2 Lower clay content (15%) with varying salinity (15 & 30ppt) 

D 
SET-EX4, EX5, EX6 

& EX7 

Higher clay content (35%) with varying salinity (0, 15, 30 & 

40ppt) 

E SET-EX6, EX8 & EX9 
Constant salinity (30ppt) and clay content (35%) with varying 

initial mixture concentrations (367, 561 and 813 kg/m3) 

 

 

Figures 5.1 – 5.3 (and Appendices 5-1 – 5-2) show the time-lapsed images of the 

formation of bed deposits from run SET-EX1 to EX9. These figures reveal that a large 

proportion of the sand particles settle out of the mixtures between t = 0 and t = 3 hours.  

It is clear that the time of initiation of segregations vary among the tested mixtures.  For 

examples, the 85s:15c mixtures (run SET-EX1 and EX2; Group C, Table 5.1), begin to 

segregate almost immediately following the initiation of the settling phase of the test (i.e. 
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elapsed time t = 10 s, Figure 5.1a & Appendix 5-1), with a sand-dominated deposit layer 

forming at the base of the column over an elapsed time t = 2 mins (Figure 5.1a & 

Appendix 5-1). Above these sand-dominated bottom deposit layers, a sharp interface 

forms with the overlying clay-rich bed layer that develops over a significantly longer 

period of time (i.e. t→6 hrs, Figure 5.1a & Appendix 5-1), as indicated by the vertical 

displacement of the upper interface with the supernatant pore fluid.  From Figure 5.1b, 

the 75s:25c mixture (run SET-EX3) appears to follow similar trend, the initial formation 

of sand-dominated deposit layer at the base of the column occurring over t = 15-30 mins 

(Figure 5.1b).   

 

Time-lapsed images of sedimentation process shown in Figure 5.2 & Appendix 5-2(a-c) 

respectively for four of the mixtures with 65s:35c (i.e. run SET-EX4, SET-EX5, SET-

EX6 and SET-EX7, Group D; Table 5.1), also reveal a similar segregation trends to the 

85s:15c and 75s:25c mixtures discussed above, but with the sand-dominated layers 

forming at the base of the column over a longer time period t = 60 mins [Figure 5.2 & 

Appendix 5-2(a-c)].  Here also the interfaces between the overlying clay-rich and sand-

rich layers are shown to be less well-defined.   

 

Another experimental run which exhibited strong sand-clay segregation was SET-EX8 

(i.e. Figure 5.3a), immediately after initiation of the settling phase (i.e. similar to SET-

EX1 and SET-EX2). The formation of the sand-rich base layer is formed over a similar 

time scale (t = 60 mins) to the 65s:35c mixtures (e.g. SET-EX4, SET-EX5, SET-EX6 and 

SET-EX7) [Figure 5.2 & Appendix 5-2(a-c)].  Only two experimental runs with sand-

clay mixtures did not indicate the development of segregation in the settling column test: 

SET-EX9 [65s:35c, Figure 5.3(b)] and ERT-EX4 (25s:75c; Figure 4.2a). This was due to 

the high clay concentration (i.e. Co,s
cl

  = 285 kg m-3 and 247 kg.m-3 respectively; Table 5.1) 

in the sand-clay mixtures, irrespective of the corresponding sand content in the mixture 

(i.e. Co,s
sa

 = 528 kg m-3 and 83 kg m-3 in SET-EX9 and EIT-EX4 respectively). 

Interestingly, images from the resulting deposit from run SET-EX9 (i.e. Figure 5.3b) 

indicate that although no sand-dominated bottom layer is shown to form, the high sand 

content in the mixture becomes trapped in distinct patches within the clay-dominated 

layer, i.e. for z < 200 mm at t = 6 and 24 hours. 
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              Figure 5.1 Time-lapsed images of sand-clay sedimentation process at t shown for (a) 85s:15c mixture, run SET-EX1                                           

              and (b) 75s:25c mixture, SET-EX3 (see Table 5.1) 
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  Figure 5.2 Time-lapsed images of sand-clay sedimentation process at times t shown for run SET -EX4 (65s:35c) [see Table 5.1] 

 

 

 

 

 

 

 

 

 

 

 

 

                      

Figure 5.3 Time-lapsed images of sand-clay sedimentation process at times t shown for 65s:35c mixtures  

(a) run SET-EX8 (Cs = 367 kg.m-3) and (b) SET-EX9 (Cs = 813 kg.m-3) [see Table 5.1]
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In terms of the classification of experimental runs into parametric groupings (Table 5-2), 

comparison of SET-EX1 and SET-EX2 [i.e. for otherwise similar 85s:15c mixture 

conditions; Figure 5.1a & Appendix 5-1), shows the influence of salinity to have no 

significant effect on the formation of segregation in sand-clay sedimentation process, 

particularly in the presence of high volumetric sand concentration (Øs
sa).  Similarly, 

comparing experiments SET-EX4 (0 ppt), SET-EX5 (15 ppt), SET-EX6 (30 ppt) and 

SET-EX7 (40 ppt), for equivalent 65s:35c mixture conditions [Figure 5.2 & Appendix 5-

2(a-c)], shows the formation of segregation within their resulting bed deposits to be 

temporally and spatially similar. As such, the differences in ambient pore fluid salinity 

between runs appears to have no significance influence on the bed deposit formation or 

the degree of sand-clay segregation observed.   

 

The parametric influence of initial clay concentration (Cs
cl) within the mixtures (for 

otherwise similar mixture conditions)  can be investigated by comparing experimental 

runs  SET-EX1 and SET-EX5, conducted at a salinity of 15 ppt, and runs SET-EX2, SET-

EX3 and SET-EX6, conducted at a higher salinity of 30 ppt. Comparing the time-lapsed 

images of SET-EX1 (Figure 5.1a) and SET-EX5 (Appendix 5-2a) shows that the lower 

clay concentration in SET-EX1 resulted in strong segregation with a well-defined 

interface between the sand-dominated base layer and the overlying clay-dominated layer, 

which developed over a short time period t = 2 mins (Figure 5.1a).  By contrast, an 

increase in the clay content in the run SET-EX5, resulted in a more transitional 

segregation with a less well defined sand-clay interface forming over a longer time period 

t = 60 mins (Appendix 5-2a).  Similarly, for runs SET-EX2, SET-EX3 and SET-EX6 (i.e. 

Appendix 5-1, Figure 5.1b & Appendix 5-2b respectively), it is clear that the degree of 

segregation observed in each bed deposit appears to become more transitional with a less 

well defined interface with increasing initial clay concentration. 

 

The findings highlighted above, clearly indicate that the most highly segregated bed 

conditions tend to occur for sand-mud mixtures with higher sand Øs
sa and lower clay Øs

cl 

concentrations, respectively, while salinity was shown to have negligible effect. It is also 

interesting to note that the two sand-clay mixtures for which no segregation was observed 

had the highest volumetric clay concentrations [i.e. Øs
cl = 0.095 (ERT-EX4) and Øs

cl = 

0.110 (SET-EX9), Table 5.1], irrespective of the corresponding volumetric sand content 

[i.e. Øs
sa = 0.0314 (ERT-EX4) and Øs

sa = 0.20 (SET-EX9), Table 5.1]. This latter finding 

suggests that a critical value of clay concentration Øs
cl exists where sand particles in the 
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mixture become trapped within the overlying clay-dominated layer and prevented from 

settling to form a segregated sand dominated layer at the bottom of the settling column. 

This would appear to be analogous to a gelling concentration condition forming in the 

clay-dominated layer (e.g. Winterwerp and van Kesteren 2004) at which point the clay 

flocs will form a space-filling network within the evolving bed layer, which represents 

the onset of primary consolidation (Winterwerp, 2001).  

 

5.3.2  Bed deposits compositional and structural variations 

Qualitative analysis of photographic and video images for all the tests show clearly that 

the segregation behaviours within the bed deposits display different compositional and 

structural features and transitions with depth. A schematic representation of the 

compositional and structural transitions observed within the bed deposits is shown 

schematically in Figure 5.4.   At the initiation of the settling phase in all the tests, all 

mixtures were uniformly distributed, mixed slurries (Figure 5.4a), and they settled to form 

distinct bed deposits with vertical changes in composition and structure. In general, 

deposit regions (or segments) with four distinct and different composition and structure 

have been identified for all the segregated bed deposits. These are presented as Segment 

Type I – IV in Figure 5.4b, with corresponding brief descriptions of each observed 

segment given. It is interesting to observe that some experimental runs exhibit all the four 

segment types during the settling phase while others show only some regions/segments 

to be present.  It is also noted that the time of formation of the different segments differs 

between sand-clay mixtures. The number and nature of segments exhibited in each 

deposit and the corresponding time of formation are controlled largely by the parametric 

conditions in each run (e.g. solid volumetric concentration of mixture, sand-clay 

composition and pore fluid salinity). 

 

In all tests, after the initiation of hindered settling phase and prior to the onset of primary 

consolidation stage, near-vertical drainage paths (i.e. dewatering channels), were formed 

within the predominantly clay suspensions in Segment Type III and IV. Pore fluid was 

seen being expelled through these dewatering channels (∼ ≤ 3.0 mm in diameter). After 

the onset of primary consolidation phase, they later became smaller or even disappeared 

completely.  It was also observed that these dewatering channels not only allowed the 

upward expulsion of water, but sand grains were also shown to settle through the 

dewatering channels; an observation also recorded by Merckelbach (2000).  When the 

dewatering channels have significantly diminished or disappeared (analogous to the clay 
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matrix reaching the gelling concentration, e.g. Winterwerp and van Kesteren, 2004), the 

remaining sand grains were trapped within the clay matrix, thereby contributing to the 

development of sand clusters or patches (e.g. Segment Type II and III). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5.4 Schematic representation of the compositional and structural features observed 

in the sand-clay bed deposits over the range of parametric conditions tested (a) at the 

start of the test (b) of the final bed deposit formed 

 

 

Figures 5.5 & 5.6 present time-lapsed images of the developing bed deposits for all the 

mixtures tested to investigate closer, the structure and composition of the segregated 

sand-clay regions/segments that occurred within these deposits in line with schematic 

representation in Figure 5.4.  For the majority of the experimental runs, it is apparent that 

a proportion of the clay fraction is trapped in the sand-dominated base layer; while some 

sand particles become trapped as clusters in the upper clay-dominated layer during the 

bed formation process, resulting in segment types discussed above (Figure 5.4).   

 

 

 

 

 

 

 

 

(a) 

Start of Test 
(b) 

During & after Test 

El
ev

at
io

n
, z

 (
m

m
) IV 

III 

II 

I 

Purely clay matrix with no visible sand grains 
 
 
Predominantly clay rich matrix with visible 
sand grains 
 
Clay dominated matrix with trapped sand 
patches or clusters. The sizes of the clusters 
vary from mixture to mixture 
 
 
Base sand dominated matrix with/without 
clay particles 



Chapter Five: Experimental Results: Sand-Clay Suspension Settling Experiment (ES-2) 

131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Time-lapsed images showing segregated deposit formation at elapsed times t  

shown for run (a) SET-EX1 (85s:15c) (b) SET-EX2 (85s:15c) and (c) SET-EX3 (75s:25c)  

(see Table 5.1); Elapsed times of (i)→(iv) = 30, 180, 360,1440 minutes respectively. 
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Figure 5.6 Time-lapsed images showing segregated deposit formation at elapsed times t 

shown for runs with 65s:35c mixtures (a) SET-EX4 (b) SET-EX5 (c) SET-EX6 and (d) 

SET-EX7 (see Table 5.1); Elapsed times of (i)→(iv) = 30, 180, 360,1440 minutes 

respectively.  
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Comparison between Figures 5.5b & 5.6c, show the temporal development of strongly 

segregated bed deposits for the 85s:15c mixture (run SET-EX2, Table 5.1) and the 

transitionally segregated deposit arising from the 65s:35c mixture (i.e. run SET-EX6 

(Table 5.1), respectively. These images again highlight the rapid formation of sand-

dominated layer (i.e. Segment Type I, Figure 5.4) at the base of the column (i.e. z = ∼140 

mm thick and ∼100 mm thick at t = 30 mins for SET-EX2 and SET-EX6, respectively). 

The layer in SET-EX6 is characterised by near-vertical banding indicative of the 

development of clay-pore water “dewatering” channels during this initial settlement 

phase. However, this is not visible in the thicker sand-dominated bottom layer of SET-

EX2. For both mixtures, this bottom layer (Figure 5.4) appears to be overlain by a thicker 

clay-dominated layers containing discrete sand patches and grains [i.e. z =140∼200 mm 

and 110∼260 mm after t = 180 mins for SET-EX2 (Figure 5.5b) and SET-EX6 (Figure 

5.6c)]. The discrete sand patches appear to be large in SET-EX6 and smaller in SET-EX2.  

With increasing duration (i.e. for t = 360→1440 mins), this layer (i.e. Segment Type II) 

is shown to slightly compact, as indicated by the downward displacement of the trapped 

sand patches (Figures 5.5b & 5.6c),  although, this is less obvious in SET-EX2 than 

observed in SET-EX6 due mainly to (i) the lower volumetric clay concentration in run 

SET-EX2, compared to SET-EX6, and/or (ii) the formation of a sharp segregational 

interface between the incompressible base sand layer and overlying clay-rich deposit. 

 

The presence of discrete sand patches within the clay-dominated layers of the two 

mixtures is particularly interesting when considering the time at which trapping occurs. 

The significant difference in the mixture composition for SET-EX2 and SET-EX6 (see 

Table 5-1) appears to indicate that a proportion of the sand fraction becomes trapped at 

elapsed times t ≥ 150 mins (see also Appendices 5-1 and 5.2b), most probably, as the clay 

concentration Øs
cl reaches the gelling concentration.  Above segment type II layer, the 

remainder of the overlying clay suspension deposits to form a (relatively) sand-free 

surface layer (i.e. Segment Type IV) within the bed deposit (i.e. z > 200 mm and 260 mm 

for SET-EX2 and SET-EX6 respectively; Figures 5.5b & 5.6c).  

 

A similar comparison is carried out on runs within parametric classification Group-D in 

Table 5.2 (i.e. runs SET-EX4 to -EX7), to identify any significant influence that the pore 

fluid salinity may have on the temporal and spatial development of the resulting bed 

deposit composition and structure in particular in the presence of high % clay content (i.e. 

35%). From the images in Figure 5.6, the development of transitional segregated deposits 



Chapter Five: Experimental Results: Sand-Clay Suspension Settling Experiment (ES-2) 

134 

 

is shown for all the mixtures considered in classification Group-D (Table 5.2). Indeed, 

the temporal and spatial evolution of the bed deposits are similar to the descriptions given 

above for the bed deposit formation from the 65s:35c mixture (i.e. SET-EX6). This is 

obvious as they all have the following parametric conditions in common: initial mixture 

concentration and sand and clay contents (Table 5.1).  In summary, these runs appear to 

have similar segment types (Figure 5.4) of approximately the same vertical extent (see 

Figure 5.6), with each final bed deposit having all the four distinct segment types as 

defined in Figure 5.4.  In other words, salinity has little or no influence on the formation 

and structure of the final segregated (sand-clay) bed deposits in comparison to the strong 

influence of initial mixture concentration and fractional sand and clay concentration. 

However, further analysis of a large number of their photographic and video images, 

indicates that the appearance of segment type-II is delayed in mixture with the highest 

salinity concentration i.e. SET-EX7 (40 ppt) [at t = 150 mins; Appendix 5-2c], compared 

to SET-EX4 (0 ppt) [at t = 60 mins; Figures 5.2].  Similar trend was equally observed in 

SET-EX2 (30 ppt) [Appendix 5-1] and SET-EX1 (15 ppt) [Figure 5.1a], where Segment 

Type II appeared at t = 60 mins and 30 mins respectively. Further analysis on the 

parametric influence of pore fluid salinity on for example differential settling behaviour 

of sediment mixtures shall be discussed later in the chapter. 

 

 

5.4     Hindered Settling and Consolidation Rates 

The vertical displacement of the upper bed interface with the supernatant pore fluid for 

different sand-clay mixtures was measured from the time-lapsed photographic and video 

images (e.g. Figures 5.1-5.3). Previous studies (e.g. Torfs et al., 1996; Xu et al., 2012, 

Sutherland et al., 2014, etc.) used the temporal change in this fluid-sediment interface 

elevation to determine the variation in sedimentation rates for sand-mud mixtures over 

the experimental duration. As such, the settling and consolidation rates (ws, mm s-1) of the 

depositing sediment mixtures tested here are also estimated directly from measurement 

of the temporal variation in the interface elevation over the duration of each experimental 

test.  

 

Graphical representation of this temporal change in the upper interface elevation for the 

different sand-clay mixtures tested is shown in Figure 5.7a, while Figure 5.7b, is the plots 

of the corresponding settling/consolidation rates (mm s−1) against elapsed time t (s).  From 

Figure 5.7a, an initially high vertical displacement in the interface elevation which 
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reduces as the elapsed time increases, can be seen for all the sand-clay mixtures (i.e. SET-

EX1 to SET-EX9) between t = 0 and 3 hrs.  It is clear from this plot that, an inflection 

point exists on the temporal evolution of these interfacial settling profiles, that delineates 

the transition between hindered settling behaviour and the onset of the so-called phase I 

consolidation (Imai, 1981; Merckelbach and Kranenburg, 2004a) [see section 2.4]. Figure 

5.7b shows that the time at which this transition occurs between the settling phase and the 

onset of phase I consolidation lies between t = 9,000 s and 18,000 s, depending on the 

sand-clay mixture tested. As these upper interfaces occur between the clay-rich sediment 

and the overlying supernatant pore fluid, these inflections points are thought to be 

initiated when the gelling concentration (e.g. Danker, 2006; te Slaa et al., 2013) or 

structural density (e.g. Sills, 1998; Been and Sills, 1981) in the overlying clay-rich 

sediment is reached.  

 

During the so-called hindered settling regime (Figures 5.7), it is clear that, for sand-clay 

mixtures with relatively high volumetric clay concentrations Øs
cl and/or pore water 

salinity, the downward interfacial displacement reduces and occurs over a longer period 

of time. This corresponds to a general reduction in the hindered settling rate (Figures 

5.7b), compared to runs with a lower clay content and lower salinity. These findings, are 

expected considering the form of the hindered settling velocity formula proposed by 

Winterwerp (2002) for a mono-dispersed suspension of cohesive sediment flocs (see 

section 2.3.4; pg. 25):  

 

               𝑤𝑠
𝑐𝑙 =  

(1− ∅𝑓𝑙𝑜𝑐
𝑐𝑙 )(1−∅𝑠

𝑐𝑙)

1+2.5∅𝑓𝑙𝑜𝑐
𝑐𝑙  𝑤𝑠,0

𝑐𝑙                                                                           (5-1) 

 

where ∅𝑓𝑙𝑜𝑐
𝑐𝑙  is the volumetric concentration of clay flocs within the suspension and 𝑤𝑠,0

𝑐𝑙  

is the fall velocity of a single clay floc.  It has been demonstrated in Figure 5.7 that, higher 

clay concentrations ∅𝑠
𝑐𝑙 result in larger hindering effect on sedimentation rates. This is 

due to increased buoyancy, which acts against the weight of settling flocs [i.e. accounted 

for by the hindered settling factor (1 − ∅𝑠
𝑐𝑙), Equation 5-1]. More speculatively, higher 

salinities may result in the formation of larger clay flocs (and, hence, larger volumetric 

clay floc concentration ∅𝑓𝑙𝑜𝑐
𝑐𝑙 ) at least over a range of salinity values tested.  The result 

would be an increase in return flow, and increased viscosity effects [i.e. accounted for by 
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the hindered settling factors (1 − ∅𝑓𝑙𝑜𝑐
𝑐𝑙 ) and (1 + 2.5∅𝑓𝑙𝑜𝑐

𝑐𝑙 ), respectively, Equation 5-

1].   

 

 

 

 

Figure 5.7 Temporal variation in upper clay layer interface with supernatant pore water for 

SET-EX1 to EX9 (b) corresponding temporal variation in settling/consolidation rates for all the 

experimental runs 

 

Furthermore, Figure 5.7b, indicates that, the hindered settling rates vary in the order O 

(10−3–10−2) mm s−1, depending on the initial mixture fractional composition (and 

particularly clay concentration Øs
cl values), while consolidation rates decrease from O 

200

250

300

350

400

450

500

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

E
le

v
at

io
n
 z

 (
m

m
)

Time (hrs)

(a) SET-EX1 (15% Clay; 561 g/l; 15ppt)

SET-EX2 (15% Clay; 561 g/l; 30ppt)

SET-EX3 (25% Clay; 561 g/l; 30ppt)

SET-EX4 (35% Clay; 561 g/l; 0ppt)

SET-EX5 (35% Clay; 561 g/l; 15ppt)

SET-EX6 (35% Clay; 561 g/l; 30ppt)

SET-EX7 (35% Clay; 561 g/l; 40ppt)

SET-EX8 (35% Clay; 367 g/l; 30ppt)

SET-EX9 (35% Clay; 813 g/l; 30ppt)

1,000 10,000 100,000

S
et

tl
in

g
/C

o
n
so

li
d
at

io
n
 R

at
e 

(m
m

/s
)

Time (s)

(b)

SET-EX1 (15% Clay; 561 g/l; 15ppt)
SET-EX2 (15% Clay; 561 g/l; 30ppt)
SET-EX3 (25% Clay; 561 g/l; 30ppt)
SET-EX4 (35% Clay; 561 g/l; 0ppt)
SET-EX5 (35% Clay; 561 g/l; 15ppt)
SET-EX6 (35% Clay; 561 g/l; 30ppt)
SET-EX7 (35% Clay; 561 g/l; 40ppt)
SET-EX8 (35% Clay; 367 g/l; 30ppt)
SET-EX9 (35% Clay; 813 g/l; 30ppt)



Chapter Five: Experimental Results: Sand-Clay Suspension Settling Experiment (ES-2) 

137 

 

(10−3) mm s−1 to O (10−4) mm s−1 with increasing elapsed time.  These results are also 

broadly in agreement with the findings of other researchers, e.g. Torfs et al. (1996), te 

Slaa et al. (2013), etc. In addition, the settling patterns exhibited by sand-mud mixtures 

with high sand concentrations Øs
sa, suggest that settling rates of the sand-clay mixtures 

generally increase with increasing sand content, a finding also in agreement with Torfs et 

al. (1996).   

 

 

5.5     Parametric Dependency of Sedimentation Rates 

The parametric dependency of the sedimentation process on initial fractional composition 

of sand-clay mixtures (i.e. relative sand and clay concentrations) was investigated under 

two levels of salinity (15 and 30 ppt). As anticipated, Figures 5.8a(i) & b(i), show that 

immediately after the start of the experiments, the vertical interfacial displacement during 

the hindered settling stage is much slower in SET-EX5 (15 ppt) and SET-EX6 (30 ppt) 

[both with Cs
cl = 196 kg m-3] when compared with SET-EX1 (15 ppt) and SET-EX2 (30 

ppt) [i.e. with Cs
cl = 84 kg m-3].  Figure 5.8a(ii) indicates that the initial hindered settling 

rates for SET-EX1 (Cs
cl = 84 kg m-3) and SET-EX5 (Cs

cl = 196 kg m-3) [i.e. Group A, 

Table 5-2] are on the average of 66 mm/hr and 33 mm/hr respectively, with corresponding 

initial consolidation rates of 8 mm/hr and 6 mm/hr respectively [Note: these average 

settling rates were estimated by finding the average of sedimentation rates from the 

initiation of hindered settling regime up until t = 10,000 s, for hindered settling phase; 

where t = 10,000 s was arbitrarily taken as the inflection point that delineates the transition 

between hindered settling behaviour and the onset of the phase I consolidation, see section 

5.4].   

 

On the other hand, Figure 5.8b (ii) shows for SET-EX2 and SET-EX6 (Group B, Table 

5-2), average initial hindered settling rates of 45 mm/hr and 25 mm/hr respectively, with 

both mixtures having similar consolidation rates of 6 mm/hr [Figure 5.8b (ii)]. These 

results appear to suggest that, at the consolidation stage, the sedimentation behaviour of 

the sand-clay mixtures under consideration are very similar. This is expected, as the clay-

dominated bed deposit layer is expected to be fully formed and subsequent vertical 

variation in the sediment-fluid interface elevation will result primarily from consolidation 

effects in the clay-dominated layer (see Figures 5.1 & 5.2). Nevertheless, the significant 

differences between the average settling rates of these sand-clay mixtures at hindered 

settling phase, indicate again, that higher clay mass concentration within the initial sand-
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clay mixture inhibit both the initial hindered settling phase and subsequent formation of 

the mixed bed deposit, broadly in agreement with the findings of Torfs et al. (1996).  

 

    (a) 

 

                                                                             (b) 

 

Figure 5.8 Sedimentation rates showing parametric influence of clay mass concentrations 

Cs
cl for (a) SET-EX1 and SET-EX2 (b) SET-EX2 and SET-EX6; [a(i) and b(i) being 

comparison of their corresponding upper interface displacement profiles respectively; 

with dashed lines in a(ii) and b(ii) showing corresponding average settling rates at 

hindered settling phase] 

 

Figure 5.9 shows the parametric influence on sedimentation rates of salinity for identical 

sand-clay mixture compositions.  Generally, for the two groups (i.e. Group C and D; 

Table 5.2), the results in Figures 5.9a(i) and b(i), clearly demonstrate that, there appears 

to be a systematic dependency of the temporal displacement of the upper interface on the 

pore water salinity. Specifically, higher initial settling rates are measured for sand-mud 

mixtures with lower pore water salinities [Figures 5.9a(ii) & b(ii)].  This trend is also 

clearly demonstrated from the calculated sedimentation rates [i.e. Figure 5.9b(ii)], which 

indicate larger and earlier peak settling rates occur for sand-clay mixtures with lower 

pore water salinities.   
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(a) 

 

(b) 

 

Figure 5.9 Sedimentation rates showing parametric influence of salinity concentrations for 

mixtures with (a) low Cs
cl (b) high Cs

cl; [a(i) and b(i) being comparison of their corresponding 

upper interface displacement profiles respectively]  
 

 

Results in the current chapter along with previous studies (e.g. Torfs et al., 1996; te Slaa 

et al., 2013; Grasso et al., 2014; Grasso et al., 2015), have established that initial clay 

concentration has a strong parametric influence on sedimentation characteristics of sand-

mud mixtures.  However, from Figure 5.9, it is apparent that ambient salinity equally, has 

significant effect on settling characteristics of sand-clay mixtures.  These results (Figures 

5.9) specifically reveal that, if the salinity of sand-clay mixture is sufficiently large (e.g. 

> 15 ppt), and the proportion of clay in the initial mixture is relatively high (e.g. ≥ 15%), 

the settling/consolidation rate will be significantly inhibited.  These findings on the 

parametric influence of salinity on sedimentation rates are somewhat surprising, 

considering the general consensus (see section 2.3.5; pg. 30) that settling velocity would 

be expected to increase with increasing ambient salinity up to about 30 ppt (e.g. Owen, 

1970; Grabowski et al., 2011; Mehta, 2014; etc.). Also there is an expectation that, to 

some degree, salinity would be expected to promote flocculation within clay 
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suspensions (e.g. as occurs in brackish estuarine waters; ∼15 ppt) [Guan et al., 2005; 

Hauck et al., 2009; etc.], and would result in increased sedimentation rates compared to 

those obtained in freshwater (Sutherland et al., 2014). It should be equally noted that, 

the parametric influence of salinity on mud flocculation processes is also known to 

diminish for salinity values above 20 ppt (e.g. Al-Ani et al., 1991; Allen and 

Posamentier, 1993; etc.). The parametric inconsistency identified here, may be 

attributed to the significant differences in the mixture composition (in particular, range 

of high clay mass concentration, i.e. Cs
cl = 84–285 kg m−3 in mixtures tested here, 

Table 5.1) compared with those of other studies.  As a comparison, Sutherland et al. 

(2014) investigated the settling of kaolinite clay suspensions within a mass 

concentration range, up to one order of magnitude lower than the current study, 

i.e. Cs
cl = 14.7–39.3 kg m−3; while within turbidity maximum zone of estuaries, 

suspended sediment concentrations can typically reach up to ∼10 to ∼15 kg m−3. Thus, 

the sand-clay mixtures tested in the current study are more representative of hyper-

concentrated, near-bed, fluid-mud layers and, consequently, are expected to display 

significantly different settling characteristics compared to these more dilute 

suspensions.   

 

Figure 5.10 compares runs SET-EX6 and EX9 (i.e. Group E, Table 5-2) which shows the 

parametric influence of initial mixture concentration (561 and 813 kg m-3, respectively) 

for the same sand-clay mixture proportion (i.e. 65s:35c) and pore fluid salinity (i.e. 30 

ppt). It is noted here that the developing bed conditions for SET-EX9 do not show 

segregation while SET-EX6 does (Figure 5.3b and Appendix 5-2b respectively). 

Although, the first 90 mins of the sedimentation process indicate similar initial downward 

interface displacement over this time period, albeit noticeably lower for SET-EX9 (Figure 

5.10).  After this initial settlement, the rate of downward displacement increases sharply 

in SET-EX9 compared to SET-EX6, which remains approximately at the same rate over 

the period t = 1.5→3 hrs (Figure 5.10a). This is reflected in the corresponding 

sedimentation rates (Figure 5.10b), which show an earlier and higher peak value in SET-

EX9 compared to SET-EX6. 

 

http://link.springer.com/article/10.1007/s10236-016-0958-7#CR32
http://link.springer.com/article/10.1007/s10236-016-0958-7#Tab1
http://link.springer.com/article/10.1007/s10236-016-0958-7#CR32
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Figure 5.10 (a) Comparison of upper interface displacement profiles and (b) Corresponding 

sedimentation rates of segregating/non-segregating sand-clay mixtures. 

 

It is interesting to note here that in the sand-clay mixtures demonstrating bed segregation 

(i.e. through sand deposition to the base of the column), the subsequent hindered settling 

characteristics and transition to phase I consolidation is expected to behave similar to a 

clay only suspension in the absence of sand after this initial segregation (e.g. Figures 5.1- 

5.3). However, it is unclear what influence the trapped sand fraction has on the 

sedimentation rate of sand-clay mixtures, in which segregation is inhibited (e.g. Figure 

5.3b) or how it affects the transition between the settling regime and the onset of phase I 

consolidation. It can be hypothesised therefore that, the initial settling regime may not 

exist or at least be of a sufficiently short duration within non-segregating sand-clay 

mixtures, as the fact that the sand fraction does not segregate suggests that the clay 

fraction has reached the gelling concentration rapidly before segregation can occur. As 

such, this condition cannot be accounted for in many polydisperse hindered settling 

models (e.g. Cuthbertson et al., 2008) for hindered settling of sand-clay mixtures, which 

is considered in chapter 7 (Discussion and Analysis). 

 

 

5.6     Electrical Resistivity Measurements of Bed Deposit Formation 

5.6.1 Electrical resistivity profiles 

Temporal changes in the formation factor F profiles during both the hindered settling and 

bed formation (i.e. phase I consolidation) phases of the sand-clay sedimentation process 

were measured in line with the experimental procedures described in the preceding 

chapter.  Figure 5.11 (see Appendix 5-3 also) presents colour maps of the temporal change 

in formation factor F profiles over the first hour of the sedimentation process for the 

majority of the sand-clay mixtures tested.  These electrical resistivity time series profiles 

show rapid development of a strongly segregated bed over t = 0→∼150 s for the 85S:15c 

(b) (a) 
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mixture in SET-EX2 (Figure 5.11a), with high formation factors F ranging from 3.5 – 

4.2, recorded for its segment type I (Figure 5.4b) at the column base (z = 0 – ∼130 mm). 

Above this base layer (i.e. segment types II – IV; Figure 5.4b), a range of lower formation 

factor F values was recorded (i.e. F = 1 – 1.5). Clearly from Figure 5.11a, the sharp 

transition between high and low F values delineates the rapidly forming sand-dominated 

base layer (i.e. segment type I; Figure 5.4b) and the overlying clay-dominated layer (i.e. 

segment types II – IV). The elevation of this transition is consistent, with the interface 

elevation (z ∼125 mm) shown in the time-lapsed image of the bed development (Figure 

5.1b).  For the 75s:25c mixture tested on SET-EX3 (Figure 5.11b), the time-series colour 

map of F profiles shows similar trend to that observed in SET-EX2, but with a reduction 

in formation factor values (i.e. F = 3.2 – 3.8) at its segment type I (i.e. the sand-dominated 

base layer; z = 0 – 110 mm), which also develops over a longer time period (t = 0→∼350 

s).  

 

The observed reduction in the F values of SET-EX3 compared to those of SET-EX2, at 

their corresponding segment type I (Figure 5.4b), reflects the influence of increased clay 

concentration, Cs
cl, both on the hindered settling characteristics of sand fraction and the 

increased presence of trapped clay in the sand-dominated layer at the column base 

(indicated by the presence of vertical clay bandings in the corresponding time-lapse image 

in Figure 5.11b). By contrast, the formation factor colour map (Figure 5.11c) for SET-

EX6 (65s:35c; Table 5.1), shows a less well defined interface between the base sand-rich 

(i.e. segment type I; Figure 5.4b) and upper clay-rich layers (i.e. segment types II – IV), 

which reflects the more gradual transition in formation factor F values between these two 

layers. The resulting sand-rich layer in this mixture, is relatively thinner (z = 0 - 85 mm) 

with lower F values (i.e. F = 2.4 - 3.6) and develops over a significantly longer period of 

time (t = 0→∼1300 s). Finally, comparison between SET-EX4 (65s:35c; 0 ppt; Figure 

5.11d) and SET-EX6 (65s:35c; 30 ppt; Figure 5.11c), reveals that the key bed layer 

development characteristics for these mixtures (i.e. layer thicknesses and development 

time; range of F values) are very similar despite variations in their ambient pore fluid 

salinity.  

 

In summary, the formation factor colour maps highlight key differences in the nature and 

extent of segregation that occurs in the bed deposits of different sand-clay-water 

suspensions. These are associated particularly with (i) the sharpness of the interfacial 

transition between the sand-dominated base layer and overlying clay-dominated layer and 
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(ii) the quantity of clay trapped in the sand-dominated base layer and vice versa. It is 

interesting to note, however, that the pore water salinity appears to have little influence 

on the key characteristics of this initial bed layer formation phase, at least, as shown by 

the electrical resistivity results (i.e. Figure 5.11 and Appendix 5-3).  

 

 

 

   

  

  
Figure 5. 11 Time series colour map plots of the variation in measure formation factor F profiles during the 

first hour of the sand-clay sedimentation process for (a) SET-EX2 (b) SET-EX3 (c) SET-EX6 and (d) SET-

EX4 (see Table 5.1). Corresponding images show bed deposit layer formation at t = 1hr 
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5.6.2 Bulk Density Profiles 

In terms of characterising variations in the vertical composition of sand-clay deposits, it 

is more informative to convert the measured electrical properties (i.e. formation factor F) 

into more physically-relevant properties such as bulk density and porosity. These can then 

be more easily associated with specific composition at different elevations within the 

deposits. The measured formation factor F profiles obtained for most of the experimental 

runs are thus transformed into normalised bulk density and porosity profiles using 

Equations 4.2 and 4.3 respectively, with the aid of sand-clay mixture calibrations, detailed 

in section 4.4.2; pg. 108.  In this context, Figure 5.12 presents equivalent contour plots of 

the temporal change in the normalised bulk density bulk/p profiles over the initial 

sedimentation period for the same sand-clay mixtures previously considered in Figure 

5.11 (for SET-EX2, EX3, EX4 and EX6) and Appendix 5-4 (for SET-EX1 and EX5). 

 

5.6.2.1  Initial sedimentation stage 

In terms of the influence of salinity, the contour plots of normalised bulk density bulk/p 

profiles over the initial sedimentation period for 85s:15c mixtures in SET-EX2 (Figures 

5.12a) and SET-EX1 (Appendix 5-4a), show similar development of the segregated (i.e. 

sand  clay-dominated) layers in the resulting deposits.  In addition, calculated layer 

densities bulk/p and porosities ϕ values appear to be largely similar at this initial stage of 

the sedimentation process. For example, Figure 5.12a shows that bulk/p values vary 

initially (i.e. t = 30 s) from ∼ 1.23 at z = 200 mm to ∼1.59 at z = 5 mm.  This is 

representative of the differential (sand-clay) settling and layer segregation process that 

occurs immediately following the start of the test (see section 5.1). The bulk/p values of 

the lower sand-dominated layer (i.e. segment type I; Figure 5.4b), that develops as a 

consequence of this segregation of sand particles over ∼120 s, vary from ∼1.80 to ∼1.90 

in the column region z = 0  ∼125 mm. The segregation interface was shown to form at 

z ≈ 135 mm. For this segment type I, the estimated sand content was > ∼60 % (i.e. from 

Figure 4.13).  The corresponding indicative values of bed porosity ϕ (from Equation 4-3) 

are shown to vary from ϕ = 0.45 for lower sand layer up to ϕ = 0.94 in the upper segment 

type IV (i.e. clay-water suspension).   

 

By contrast, the initial formation of the sand dominated base layer (i.e. segment type I) 

for 75s:25c mixture in SET-EX3, was shown (Figure 5.12b) to develop (i.e. z = 0  ∼105 

mm) over a longer period of time (i.e. t = 0→ ∼360 s), with bulk/p ≈ 1.84 and ϕ = ∼0.51. 
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Overlaying this segment type I (i.e. sand-dominated base layer) was a mixed sand-clay 

deposit layer (segment types II; Figure 5.4b), with bulk/p = ∼1.40 to ∼1.71; ϕ = 0.57– 

0.63), while the elevation of the sand-clay transition to the upper clay-water suspension 

(i.e. segment type IV) [bulk/p < ∼1.20, ϕ = 0.94] was shown to increase gradually with 

time (i.e. z ≈ 105 → 120 mm as t =350→1000 s). 

 

Figures 5.12c-d (and Appendix 5-4b) indicate a more transitional structure in the resulting 

deposit (sand → clay-dominated), as well as in the layer densities bulk/p and porosity ϕ 

values. The initial bed development for run SET-EX4 (65s:35c; 0 ppt) is shown to be very 

similar to other sand-clay mixtures of similar composition but with varying salinity 

concentrations (Figures 5.12c–d and Appendix 5-4b).  Figures 5.12c-d also show that, the 

time required for the segment type I (i.e. Figure 5.4b) to develop for 65s:35c mixtures is 

significantly longer (i.e. t = 0→ > ∼1200 s) than for 85s:15c and 75s:25c mixtures 

(Figures 5.12a-b). It is also evident that significant differences in physical bed properties 

occur between different mixtures with more transitional changes found in 65s:35c bed 

deposits, from the segment type I layer at the column base (i.e. bulk/p = ∼1.7→∼1.8; ϕ 

= 0.51) to an upper clay-dominated layer (segment types III-IV) [i.e. bulk/p = 

∼1.2→∼1.5; ϕ = 0.68–0.87].  In summary, these contour plots of bulk/p show the initial 

stages of the bed layer development for different sand-clay mixture compositions and 

indicate quantitatively how the individual deposit layer forms over time, as well as 

providing an indication of their composition and structure (i.e. through corresponding 

bulk/p and porosity ϕ values in the different bed regions). 

 

5.6.2.2  Longer term sedimentation period 

Figures 5.13, 5.14 and Appendix 5-5 present the longer term development of normalised 

density bulk/p profiles over the first 24 hrs for the range of sand-clay mixtures tested. 

Figure 5.13a and Appendix 5-5a, respectively show the comparison of changes in the 

normalised bulk density profiles for runs within parametric classification Group-C in 

Table 5.2 (i.e. 85s:15c mixtures: SET-EX1 and SET-EX2), while Figure 5.13b shows 

similar comparison for 75s:25c mixture (i.e. SET-EX3) at elapsed times of 1 min, 10 

mins, 1 hr, 6 hrs and 24 hrs. It is apparently from these profiles (i.e. Figure 5.13a and 

Appendix 5-5a) that, the vertical elevation of the density interface between the sand-

dominated base layer (i.e. segment type I; z < 125 mm) and clay dominated upper layer 
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(i.e. segment types II – IV; z > 125 mm) is established at a relatively early stage in the 

sedimentation process (i.e. t < ∼ 10 min). 

 

 

Figure 5.12 Initial temporal development of normalised bulk density bulk/p within sand-clay bed deposit 

layers for (a) SET-EX2 (85s:15c; 30 ppt), (b) SET-EX3 (75s:25c; 30ppt), (c) SET-EX6 (65s:35c; 30ppt) 

and (d) SET-EX4 (65s:35c) [see Table 5.1]. Values of porosity ϕ shown are indicative (based on Equation 

3-12) 
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Sand-clay transition ( = 0.57  0.87) 

Clay-water suspension ( = 0.94) 
(a) 

bulk/f 

Initial sand-clay suspension 

[ = 0.84  0.87, Eq. (16)] 

Initial sand-clay deposit ( = 0.57  0.70) 
Sand-dominated deposit layer ( = 0.51) 

Sand-clay deposit layer ( = 0.57  0.63) 

Sand-clay transition ( = 0.63  0.87) 

Clay-water suspension ( = 0.94) 

(b) 

bulk/f 

Initial sand-clay deposit ( = 0.57  0.70) 

Initial sand-clay suspension 

[ = 0.81  0.84, Eq. (16)] 

Sand-dominated deposit layer ( = 0.51) 

Sand-clay deposit layer ( = 0.57  0.63) 

Clay-dominated layer ( = 0.68  0.87) 

Clay-water suspension ( = 0.87) 

(d) 

bulk/f 

Initial sand-clay suspension 

[ = 0.84  0.87, Eq. (16)] 
Clay-water suspension ( = 0.94) 

Initial sand-clay deposit ( = 0.57  0.70) 

Clay-dominated layer ( = 0.68  0.87) 

Sand-clay deposit layer ( = 0.57  0.63) 

Sand-dominated deposit layer ( = 0.51) 

bulk/f 

(c) 
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Over the 24 hr experiment duration, this interface elevation remains largely unchanged, 

with the sand-rich bottom shown to develop a uniform bulk/p profiles below this interface 

at all elapsed times (Figure 5.13a).  It is interesting to note that, the average bulk/p values 

in this sand-dominated layer increase slightly over the experiment duration (i.e.  bulk/p = 

∼1.65 → ∼2.00).  This is thought to indicate that some degree of compaction or structural 

re-organisation occurs during this period, similar to self-weight consolidation process 

(e.g. Terzaghi, 1943 and Sills, 1998; see section 2.4 for detailed discussion on this 

process).  

 

Above the sand-rich bottom layer there is a sharp transition in gradient observed at z = 

∼125 mm for both 85s:15c mixtures (i.e. Figures 5.13a and Appendix 5-5a), to the clay 

dominated upper layer. These layers are characterised by the presence of trapped sand 

patches (i.e. segments II-III) close to the interface, which visibly extend up to z = ∼210 

mm for both tests (see Figures 5.5a(iv) & b(iv)].  It is noted that a significant increase in 

density within this upper clay-dominated layer (i.e. z = 130 – 235 mm) is also observed 

over the experiment duration with bulk/p values increasing; bulk/p = 1.19→1.36 and 

1.28→1.40 for runs SET-EX1 and SET-EX2 respectively. In general, this is clearly 

indicative of the settling and initial consolidation regimes in the clay-dominated bed layer 

above the deposited sand-dominant base layer. This is also suggested by the reduction in 

bulk/p values at higher elevations within the column (i.e. z > 245 mm) due to differential 

settling effects or reduction in sand concentration at these locations.   

 

Figure 5.13b shows the temporal development of the bulk/p profiles for the 75s:25c 

mixture (i.e. SET-EX3, Table 5.1), to be largely similar to SET-EX1 and EX2 runs; but 

with a more notable difference in their sand-clay interface elevation within the first 10 

mins.  Figure 5.13b shows that, the position of the sharp density interface between the 

sand-dominated base layer (i.e. z < ∼100 mm) and clay dominated upper layer (i.e. z > 

∼105 mm) is established over t = ∼60 mins, with the interface remaining virtually 

unchanged for the remainder of the experiment duration. This is consistent with the results 

presented in (Figures 5.1b and 5.12c), which indicates that the transitional interface 

elevation is developed over a longer time (i.e. t > 600 s).  The bulk density bulk/p in the 

base sand-dominated layer (i.e. segment type I) also increases over time but is generally 

lower [i.e. bulk/p = ∼1.44→1.88 (on average) as t = 1 min → 24 hrs] in the SET-EX3 
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(compared to SET-EX1 and EX2), due to the increased presence of clay in the lower sand-

dominated layer.  

 

 

Figure 5.13 Longer term temporal development in normalised bulk density bulk/p profiles at 

elapsed times shown for (a) SET-EX1 (85s:15c) and (b) SET-EX3 (75s:25c). [See Table 5.1] 

 

The longer term development of normalised bulk density bulk/p profiles over 24 hrs for 

65s:35c mixtures (i.e. SET-EX4 → -EX6, Group D; Table 5.1) are presented in Figure 

5.14 (for SET-EX4 and EX6) and Appendix 5-5b (for SET-EX5). Significant differences 

can be seen in their bulk/p profiles, compared to the results presented in Figure 5.13.  

Specifically, the density profiles for these 65s:35c mixtures, indicate significant changes 

continue to occur up to t = 6 hrs (Figures 5.14).  Again, similar to the trend in SET-EX3, 

the results in Figure 5.14, show that a longer elapsed time is required for development of 

the transitional interface between the sand-dominated and clay dominated layer due to the 

increased clay content. The normalised bulk densities of the sand-dominated layers (i.e. 

z < 45 mm) for these mixtures, increase with elapsed time [i.e. bulk/p = ∼1.25 → ∼1.87 

as t = 1 min→24 hrs]. Again generally lower, when compared to SET-EX1 and EX2 (e.g. 

Figure 5.13a), due to the increased presence of clay in these layers, evident by more near-

vertical clay bandings (see Figure 5.6).  Directly above the sand-dominated base layers in 

these mixtures (i.e. SET-EX4 to -EX6), a notable deviation from the well-defined sand-

clay interface observed in the 85s:15c and 75s:25c mixtures (i.e. Figure 5.13) is shown, 
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to an approximately linear density reduction within a sand-clay transition [i.e. bulk/p = 

1.48→ 1.57 (SET-EX4); = 1.62→ 1.71 (SET-EX5) = 1.59→ 1.81 (SET-EX6) as t = 1 

and 24 hrs]. This is clearly indicative of the more transitional segregation (e.g. Figure 

5.3) that occurs in mixed sediment bed deposits for sand-clay mixtures containing higher 

clay contents Cs
cl, as discussed in previous sections. 

 

 
 

Figure 5.14 Longer term temporal development in normalised bulk density bulk/p profiles at 

elapsed times shown for mixtures with 65s:35c (a) SET-EX4 (0 ppt) and (c) SET-EX6 (30ppt). 

[See Table 5.1] 

 

 

5.7    Conclusion of Main Findings 

The following brief conclusions have been drawn out of the findings of this chapter, 

whilst detailed conclusions are provided in chapter 8:  

 The sedimentation behaviours of the tested sediment mixtures were generally as 

expected (e.g. Imai, 1981; Torfs et al., 1996; Winterwerp, 2002; Danker, 2006; 

Xu et al., 2012; te Slaa et al., 2013; Sutherland et al., 2014; Grasso et al., 2014; 

etc.). Within the resulting upper clay-rich bed layer, the time evolution of the 

upper clay-water interface (i.e. via time-lapsed images) provides information on 

the transition from hindered settling regime to phase I consolidation regime (e.g. 

Merckelbach, 2000).   
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 The findings, have generally shown to hold, the anticipated parametric 

dependence of decreasing settling rates for sand-clay mixtures with higher initial 

mass concentration (and, specifically, higher clay mass concentration) [e.g. 

Cheng, 1997; Danker, 2006; Xu et al., 2012; te Slaa et al., 2013; Grasso et al., 

2014; 2015; etc.)].   

 The formation of segregated (sand-clay) bed layers has equally been shown, to be 

largely controlled by relative sand and clay concentration within the initial 

mixture.  Specifically, mixtures with low clay contents are shown to form well-

defined (sand-clay) layer segregation within the resulting deposits, while higher 

clay contents result in more transitional segregation patterns or no layer 

segregation (for very high clay concentrations).  

 Specifically, if the salinity concentration of sand-clay mixture is sufficiently large 

(e.g. > 15-ppt), and in addition, the ratio of clay particles in the initial mixture is 

relatively high (e.g. ≥ 15%), the settling/consolidation rate will be significantly 

inhibited. Revealing a more significant hindrance to the particles settling rates 

under conditions with high clay content and salinity concentration.  

 Higher clay mass concentrations Cs
cl, plays a more significant role in defining 

particles settling rates in sand-mud mixtures. However, comparison between 

SET-EX6 (segregated bed; 65s:35c; Cs
cl = 196 kg m−3; salinity = 30 ppt) and 

SET-EX9 (non-segregated bed; 65s:35c; Cs
cl = 285 kg m−3; salinity = 30 ppt) 

revealed an opposite trend, with distinct differences in the transition behaviour of 

the two mixtures. It can therefore be hypothesised, whether or not the initial 

settling regime exists for non-segregating sand-clay mixtures, as the fact that the 

sand fraction has not segregated clearly suggests that the clay fraction has already 

reached the gelling concentration. 

 

Lastly, the temporal changes in deposition characteristics of the sand-clay suspensions 

investigated here, are successfully identified by the time series electrical resistivity profile 

measurements taken throughout the duration of each experimental run. Indeed, the 

experimental results clearly demonstrate the potential and success of this new non-

invasive characterisation technique (i.e. ERMT) in the fine resolution measurement of 

mixed sedimentation processes and (dis)continuities within the resulting bed layer 

deposits (i.e. density, porosity and composition), following appropriate calibrations.  
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CHAPTER SIX 

 

Experimental Results: Mixed Sediment Bed Erosion Experiment    

(ES-3) 

“...like the tossing sea…whose waves cast up mire and mud (cohesive sediment) …” 

 — (Isaiah 57:20 NIV) 

 

 

 

6.1     Introduction 

The set of experimental runs described in the preceding chapter (i.e. ES-2) was based on 

identifying and quantifying spatial and temporal variations in sediment bed composition 

and structure resulting from the differential settling of mixed (sand-clay) sediments over 

a wide range of parametric conditions.  The main findings from ES-2 suggest that, the 

formation of segregated (sand-clay) bed deposits is largely controlled by the initial 

fractional composition (i.e. relative sand and clay concentrations). Specifically, mixtures 

with low clay contents are shown to form well-defined (sand-clay) layer segregation 

within the resulting deposits, while higher clay contents result in more transitional 

segregation patterns or no layer segregation (for very high clay concentrations).  

 

The current chapter reports on experimental results for the observed erosion and 

deposition behaviour of prescribed mixed sediment beds (predominantly sandy beds). 

This experimental study employed a 2 m diameter benthic annular flume (Voyager II, 

Figures 3.10 and 3.11), which is typically deployed in the field within marine benthic 

environments to measure erodibility of natural sea-beds. This testing facility was supplied 

by PARTRAC Ltd and utilised in an idealised laboratory setting, to investigate the effect 

of cyclic, flow-induced shear stresses, on the size-selective erosion and deposition of 

mixed sediments, such as those conditions typically encountered in periodically-reversing 

(tidally-driven) estuaries or tidal inlets.  
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6.2     Summary of Experimental Set-up and Conditions 

As described in section 3.8, the following mixed sand(s): clay(c) bed compositions (% by 

dry weight) were used for the erosion and deposition experiments: (i) 100(s):0(c); (ii) 

98(s):2(c); (iii) 95(s):5(c); and (iv) 90(s):10(c), namely: EDT-EX1 to EX4 respectively 

[see Table (6-1)].  These sediment compositions were chosen, such that the effect of low 

clay fractional contents, on the erosional behaviour of predominantly sandy beds could 

be studied.  Raudkivi (1998) observed that, once the cohesive fraction (i.e. mud) within a 

sediment bed exceeds 10 % by weight, the bed cohesion becomes the dominant control 

on erosion rate. Other laboratory studies on mixed-sediment bed erosion, however, put 

this critical clay fraction at 5% to 15% (Dade and Nowell, 1992; Mitchener and Torfs, 

1996; Panagiotopoulos et al., 1997; Whitehouse et al., 2000; Baas et al., 2013). Therefore, 

in line with the aims of the current erosion tests, 10% clay by dry weight was used as the 

maximum.  Furthermore, this range of sediment compositions tested, ultimately provides 

results that can be compared directly with previous studies (e.g. Lyle and Smerdon, 1965; 

Panagiotopolos et al., 1997; Torfs, 1994; Whitehouse et al., 2000; Baas et al., 2013; etc.).   

 

Hydrodynamic conditions were generated within the annular flume by incrementally 

increasing the paddle rotation speeds during each experimental run (see Figure 3.21). 

Each paddle rotation speed increment was 10 minutes in duration; the exception being at 

the highest rotation speed, where a 2-hour duration was applied.  The durations were 

determined a priori based on the results from series of trial experimental runs, and on the 

methodologies reported for similar erosion tests in the literature.  Generally, it was 

expected that, for each rotational speed, erosion would occur, followed by deposition, and 

a state of dynamic equilibrium will then be expected to be reached within the duration of 

each speed. In an annular flume experiment (at any given shear stress), a dynamic 

equilibrium, is thought to be reached when the bed erosion rate is equal to the deposition 

rate (Lick, 2009; De Pinto et al., 2011). Hence, a longer duration was chosen for the 

maximum paddle speed, with the expectation that, this state of equilibrium will be reached 

at a longer duration. The fact however, is that in natural tidal environments, due to 

variability of flow conditions (i.e. from waves and current actions), it is unlikely for bed 

deposits to actually attain equilibrium state. Therefore, Lintern (2003) suggested that it is 

acceptable to change the turbulent condition before the bed reach such equilibrium state, 

provided the measuring procedure is consistent throughout the experimental runs to be 

compared. The complete experimental flow cycle was repeated two more times in 

sequence for the resulting bed from run ERT-EX4, namely; ERT-EX5 and ERT-EX6 
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respectively. The aim was to investigate the susceptivity (in terms of erosion and 

redistribution) of the previously eroded sediment bed, to further flow cycles.  

 

The Vectrino® vertically oriented Acoustic Doppler Velocimeter (ADV) probe was used 

to measure the 3-D mean flow velocities within the annular flume channel throughout 

each test, while the suspended sediment concentration (SSC) was measured by three 

optical backscatter sensor (OBS) probes (see section 3.8.4.2; pg. 92).  The OBS probes 

were placed at varying heights above the bed surface (i.e. at 85, 145 and 200 mm above 

the nominal bed level; Figure 3.11c), allowing the vertical variation in suspended 

sediment concentration (SSC) within the annular flume column to be measured.  

 

During each experimental run, the restructuring of the sediment beds, was measured by 

an in-situ 4-point resistivity measurement system (Figures 3.19 and 3.20). In this system, 

30 sets of electrodes, each consisting of four 1.6 mm diameter stainless steel pins, were 

embedded into the outer wall of the annular flume in contact with the sediment bed (see 

section 3.8.4.3 for details). The resistivity profile data generated over a 30 second interval 

for the duration of each run, were processed and analysed as described in Chapter-4. 

 

                    Table 6-1 Experimental parameters and conditions for ES-3 

Experimental  

Parameters 

EDT-EX1 EDT-EX2 EDT-EX3 EDT-EX4 EDT-EX5 EDT-EX6 

1Sand [%] 100 98 95 90 90 90 

2Clay [%] 0 2 5 10 10 10 

No. of Cycle 1 1 1 3 - - 

            (1) HST 95-Silica sand (SG = 2.63, see Table 3-2) 

            (2) Polwhite-B kaolin clay (Plastic Limit = 28%; Liquid limit = 54%; SG = 2.59) 

 

 

6.3     Measurement of Flow Velocity  

As described in section 3.8.4.1, the flow velocities (m s-1) in tangential (x), radial (y) and 

vertical (z) directions at 0.15 m above the bed were measured within the annular flume 

with a single point ADV. The supporting software package WinADV was used to process 

the generated raw velocity data, following the data quality and filtering procedures 

recommended by Nortek (i.e. data with SNR < 15 and/or a correlation less than 85% were 

discarded).  The flow velocity time series obtained from WinADV (Figure 6.1a) were 

averaged over a 5 second interval (i.e. Figure 6.1b).  As expected, Figure 6.1 shows that, 

there is a corresponding increase in the tangential mean flow velocity with increase in 
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paddle speed.  These tangential flow velocities, are shown to remain constant over the 

duration of each paddle speed (Figure 6.1b), showing the absence of spinning-up effects 

within the annular flume when the paddle rotation speed is step-wisely increased.  

 

 

 

Figure 6.1 (a) Typical output of ADV-measurements showing the tangential (black), radial (blue) 

and vertical (red) flow velocities within annular flume column (b)Tangential flow -velocity 

magnitude averaged every 5 seconds (Numbers denote applied voltage)  

 

 

6.4     Determination of the Bed-shear Stress 

Erosion processes are driven by changes in fluid hydrodynamic conditions, as 

demonstrated by the correlation between applied shear stress and the threshold of bed 

erosion. However, other factors such as bed composition are also known to influence 

erosion processes, especially in mixed sediment environments. It is therefore appropriate 

to present the experimental results in terms of measured shear stresses and sediment mass 

eroded from the bed. This is in accordance with general approach being used in laboratory 

and field-based studies on the erosion behaviour of marine sediment beds (e.g. 

Williamson and Ockenden, 1996; Parchure and Mehta, 1985; Villaret and Paulic, 1986; 

Feates et al., 1999; Lintern, 2003; Laksanalamai, 2007; etc.). 
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For the current study, the bed shear stress (𝜏𝑏) was determined by methodologies provided 

by PARTRAC for the Voyager II annular flume, following empirical calibrations for 

different mean flow velocities, after Amos, et al. (1992), Thompson and Amos (2002) 

and Thompson et al. (2011).  The resulting empirical relationship between shear velocity 

(𝑢∗𝑠, ms-1) and the mean flow velocity measurements (𝑢̅, ms-1) is given as: 

 

                    𝑢∗𝑠  = 0.0167 + 0.097 𝑢̅                                                                  (6-1) 

 

Clearly, the estimated shear velocity (𝑢∗𝑠, ms-1) from Equation (6-1) will result in 

underestimation of 𝜏𝑏, as it was derived under clear water conditions. The presence of 

sediment in suspension is known to reduce bed shear stress (due to drag reduction), 

especially at sediment concentrations above 200 mg l-1, which are very common within 

annular flumes during in situ sediment bed erosion measurements (e.g. Gust, 1976; 

Cloutier et al., 2006; Amos et al., 1992; and Thompson et al., 2006; etc.). Thus, it is 

necessary to correct bed shear stresses to account for the evolution of high suspended 

sediment concentrations during erosion runs.  As such, the change in bed shear stress, as 

the erosion test progresses, is a function of both the paddle rotation speed and the increase 

in suspended sediment concentration. However, it will also be dependent on bed surface 

changes (e.g. bed forms; Baas et al., 2013).  In view of this, Amos et al. (1992) proposed 

a correction to Equation (6-1) that has been employed to account for the effect of turbidity 

on the derived bed shear stresses.  It should be noted here that the Voyager II annular 

flume was based on the design and dimensions of the annular flume used by Amos et al. 

(1992).  From the corrected shear velocity values, the corresponding values for bed shear 

stress were derived from the expression in Equation (6-3). Table (6-2) presents the mean 

values of 𝑢∗𝑠 and 𝜏𝑏 obtained over the range of applied paddle rotation speeds used for 

all the experimental runs. 

 

                  𝑢∗𝑠 = 𝑢∗0 - 10[−1.76𝐸−4(𝑆)]                   (6.2) 

 

where S is the suspended sediment mass concentration (SSC). 

 

                  𝜏𝑏 = ρ𝑢∗𝑠
2                                            (6.3) 

 

where ρ is the density of water within the test tank (i.e. = 1030 kg m-3, is the estimated 

density of the water within the tank prior to each experimental run) 
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Table 6-2 Mean values of Shear velocity and bed shear stress for corresponding applied voltage 

Levels 

 

Applied voltage 

(Volts) 
2 4 6 8 10 12 14 16 17 

Horizontal Flow 

Velocity (m s-1) 
0.026 0.068 0.120 0.213 0.276 0.332 0.375 0.409 0.457 

Corrected Shear 

Velocity, 𝑢∗𝑠  

(m s-1) 
0.0005 0.0065 0.0135 0.0211 0.0264 0.0325 0.0376 0.0433 0.0449 

Bed Shear stress, 

𝜏𝑏  (Pa) 
0.0003 0.0425 0.1816 0.4464 0.6997 1.0601 1.4186 1.8808 2.0205 

 

 

6.5  Erosion Test Results 

The results of the current set of experiments (Table 6-1) are discussed in relation to the 

nature and extent of bed erosion and deposition processes in mixed sedimentary 

environments, through analysis of: concentration-time profile measurements, bed shear 

strength and erosion rate calculations and observed structural changes in the bed.   

 

It is necessary to highlight at this point, some of the challenges encountered in the current 

experimental runs. Several issues arose that unavoidably limited the data collection within 

the annular flume and consequently, constrained the parametric extent of the experimental 

results presented herein. Firstly, high resolution video recorded with a GoPro camera 

with the expectation of having an indication of the dynamics of the erosion and deposition 

processes, was unfortunately not clear for observation, due to severe erosion, resulting in 

the water body in the tank being too cloudy. Hence, the description of the erosion 

processes in the current study, was mainly inferred from OBS and ADV data, and the 

images of the resulting bed structures at the end of each experimental run.  In addition, 

while electrical resistivity data were also used, reliable data from ERMT were only 

possible for EDT-EX1 and EDT-EX2. The reason for this was not particularly known, 

however, the limitation of the technique in characterising suspended sediment is a likely 

cause. Finally, there were issues relating to saturation of the OBS probes at high 

concentrations exceeding the measurement limit of the probes (i.e. 4000 NTU; with non-

linear output above 750 NTU). However, as the erosion characteristics of the sediments 

are not known in advance and the maximum gain of the sensors had already been utilised, 

this saturation effect was unavoidable. Consequently, in general, some datasets were of 

poor quality and not amenable to analysis.  
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The issue of saturation within the flume channel water body, also meant that only the 

datasets (i.e. before the threshold of the probe was reached) for the topmost OBS probe 

were considered in the analysis (see section 3.8.4.2; pg. 92, on OBS probe calibration).  

With these limitations, the discussion on the investigation into the nature and extent of 

bed erosion and deposition processes in the current study, is based on the assumption that 

(i) the available datasets are sufficient to at least indicate the inception of the erosion 

processes, and (ii) the bed shear stress (and erosion rate), required for the determination 

of the bed erosion thresholds, can be sufficiently estimated from the available 

experimental data. 

 

6.5.1  Time series data analysis  

The total surface area of the bed exposed to the hydrodynamic actions within the flume 

was estimated as 0.872 m2, while the total volume of water in the flume at any given time 

was 0.262 m3 (262 L) (i.e. from Figure 6.2). To achieve the calculations discussed below, 

the following additional assumptions were made; (i) no material escaped from the flume 

channel to the surrounding water body in the tank, and (ii) the concentration was uniform 

with vertical elevation in the flume. The condition assumed here (i.e. second assumption) 

is clearly untypical of flume erosion tests (or conditions in natural environments), where 

concentration gradient above the bed has been reported (e.g. Parchure and Mehta, 1985; 

Laksanalamai, 2007; Thompson et al.,2011; Mehta, 2014; etc.). However, in general, 

these assumptions have been found to be reasonable for determination of the erosion 

thresholds of the sediment beds tested here (see last paragraph of section 6.5.3; pg. 162).   

 

The generated time series datasets (in NTU) from the OBS probe were converted to 

suspended sediment concentration (SSC) in g l-1 following the calibration procedures 

outlined in section 3.8.4.2 (pg. 92). These SSC datasets were visually inspected for quality 

and outliers were deleted. The resulting dataset was then time-averaged every 2 mins, 

after Widdows et al. (2007), to eliminate high frequency, short-term variability in the 

SSC measurements. The mass of eroded sediments (in g) per each time step, was 

estimated by multiplying the estimated SSC by the water volume in the channel (262 L).  

The local rate of change of the averaged SSC is required to calculate the erosion rate (g 

m-2 min-1), however, this depends on the duration over which the original concentration 

time-series is averaged. Hence, optimum duration (∆t) of a rotational speed is required. 

Using too large ∆t will result in the initial increase in the concentration being averaged 

out. Therefore, ∆t = 0.2T (where T is the duration of each rotational speed, i.e. 10 mins) 
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was used, with the assumption that any sudden increase in SSC is well represented within 

this period. This agrees well with ∆t ≤ 0.2T, that has been used in similar annular flume 

tests (e.g. Laksanalamai, 2007; Thompson et al.,2011). The sediment erosion rate at each 

applied shear stress was then determined, by dividing the mass eroded per unit bed surface 

area (g m-2) by T (10 mins). [Note: mass eroded per unit bed surface area is obtained by 

dividing mass of eroded sediment per each time step by total surface area (i.e. 0.872 m2)].  

These methods described above, are based on the methodologies provided by PARTRAC; 

and same as used by Thompson, et al. (2011) when the Voyage II benthic annular flume 

(i.e. Voyager II) was used to study in-situ erodibility of  seabeds in the North sea seabed. 

Jacobs et al. (2011) also used similar methodologies for determination of erosion 

threshold of sand-mud mixtures. In addition, the methods are consistent with the approach 

employed by Laksanalamai (2007), with the TU Delft annular flume used for 

investigation of mixed sediment beds erosion characteristics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Schematic illustration of (a) the total surface area of the bed exposed to 

hydrodynamic actions within the flume (b) cross-section of the flume. (Bed-forms 

measurements and image capturing were carried out from the patterned section of (a), see 

section 6.5.4). 

 

In the current study, Tables (6-3), (6-4) and Appendices (6-1), (6-2) respectively present 

results for (i) measured suspended sediment concentrations (SSC) (g l-1); (ii) erosion rates 

(g m-2 mins-1); (iii) total mass sediment eroded (g); and (iv) mass eroded per unit bed 

surface area (g m-2). These calculated values are clearly estimates and should therefore be 

treated with same uncertainty due to the highlighted limitations. In the current chapter, 
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the main findings from these experimental runs and some discussions of their implications 

for mixed sediment transport dynamics shall be reported. However, further discussion on 

wider implications of the results is presented in chapter 7. 

 

   Table 6-3 Maximum suspended sediment concentration (SSC) in gl-1 per applied bed shear    

   stress (Pa) 

 

 
Mean Bed Shear stress, 𝝉𝒃  (Pa) 

Erosion Tests 0.0003 0.0425 0.1816 0.4464 0.6997 1.0601 1.4186 1.8808 2.0205 

EDT-EX1 0.00 0.050 0.932 saturated saturated saturated saturated saturated saturated 

EDT-EX2 0.00 0.065 0.876 1.866 2.026 saturated saturated saturated saturated 

EDT-EX3 0.00 0.006 0.007 0.008 0.033 0.114 0.201 0.383 0.624 

EDT-EX4 0.00 0.001 0.001 0.001 0.001 0.001 0.011 0.075 0.269 

EDT-EX5 0.00 0.002 0.002 0.002 0.002 0.002 0.020 0.125 0.405 

EDT-EX6 0.00 0.002 0.003 0.003 0.003 0.107 0.121 0.233 0.439 

 

Table 6-4 Erosion rate, E (g m-2 mins-1) per applied bed shear stress (Pa) 

 

 
Mean Bed Shear stress, 𝝉𝒃  (Pa) 

Erosion Tests 0.0003 0.0425 0.1816 0.4464 0.6997 1.0601 1.4186 1.8808 2.0205 

EDT-EX1 0.00 1.49 28.01 saturated saturated saturated saturated saturated saturated 

EDT-EX2 0.00 1.95 26.32 56.07 60.87 saturated saturated saturated saturated 

EDT-EX3 0.00 0.18 0.21 0.24 0.99 3.43 6.04 11.51 18.75 

EDT-EX4 0.00 0.03 0.03 0.03 0.03 0.03 0.32 2.23 8.08 

EDT-EX5 0.00 0.06 0.06 0.06 0.06 0.06 1.01 3.76 12.17 

EDT-EX6 0.00 0.06 0.09 0.09 0.09 3.21 3.64 7.00 13.19 

 

6.5.2  Time series of concentration measurements 

The temporal changes in SSC for all the tests are presented in Figures 6.3 and 6.4.  

Clearly, from these results, SSC is shown to increase with increasing bed shear stress, as 

expected.  The results also reveal that sediment entrainment was initiated at significantly 

different times (i.e. different shear stress conditions) for each run; i.e. at t = ∼8 mins (at 

𝜏𝑏 = 0.043 Pa); t = ∼15 mins (at  𝜏𝑏= 0.043 Pa); t =∼40 mins (at 𝜏𝑏 = 0.700 Pa) and t = 

∼68 mins (at 𝜏𝑏 = 1.419 Pa) for EDT-EX1, EX2, EX3 and EX4 respectively (Figure 6.3). 

After the initiation of sediment entrainment (Figures 6.3 & 6.4), especially at higher shear 

stresses, it is shown that SSC exhibits time-increasing behaviour (Figure 6.3). This 

indicates that, the applied bed shear stresses had exceeded the maximum bed shear 

strength of each tested sediment bed (Parchure and Mehta, 1985; Villaret and Paulic, 

1986).  At the same corresponding bed shear stress, higher SSC values are obtained in 

mixed sediment beds with lower clay fractions (Figure 6.3; see also Table 6-3). 
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Comparison of runs EDT-EX4, EX5 and EX6 (i.e. for otherwise similar 90s:10c mixture 

conditions; Table 6-1), shows differences in the sediment entrainment initiation time for 

these runs.  For EDT-EX5, sediment entrainment was shown to be initiated ∼8 mins 

earlier (i.e. t = ∼60 mins) than for EDT-EX4; while in EDT-EX6, it was initiated ∼16 

mins earlier (i.e. t = ∼52 mins) [Figures 6.3 & 6.4].   

 

The initiation of sediment entrainment, though at different time, occurs at the same level 

of applied bed shear stress for both EDT-EX4 and EX5 (i.e. 𝜏𝑏 = 1.419 Pa; Figures 6.3 

& 6.4).  Interestingly, in EDT-EX6, it occurs at relatively lower bed shear stress (i.e. 𝜏𝑏 

= 1.06 Pa; Figure 6.4).  In addition, for these runs, the corresponding total sediment mass 

eroded at these bed shear stresses are shown to differ significantly; i.e. 2.79, 8.81 and 28.0 

g for EDT-EX4, EDT-EX5 and EDT-EX6 respectively (Appendix 6-1). These highlighted 

variabilities in the erosion characteristics of these runs, suggest that, mixed-sediment beds 

that have been exposed to repeated cyclic erosion and deposition processes, are 

subsequently more susceptible to rapid erosion. Decrease in the bed shear strength due 

probably to cyclic hydrodynamic conditions is most likely to be responsible for this 

observed behaviour; this is similar to enhanced erosion due to bed softening reported by 

Villaret and Paulic (1986).   

 

Generally, erosion is thought to occur when the erosive forces (i.e. hydrodynamic forces) 

are larger than the resistive forces within the sediment (e.g. gravity, friction, cohesion and 

adhesion) [Grabowski et al., 2011]. Therefore, the observed variabilities in the erosion 

characteristics of runs EDT-EX4 to EX6, suggest that, antecedent conditions of the bed 

affect its subsequent resistance to erosion. In other words, this result clearly shows that a 

bed that has been previously disturbed is likely to be unstable.  Therefore, it can be argued 

that, owing to the continuous activity of tidal current and waves, sediment beds in 

intertidal zones are most likely to be more unstable, i.e. having low erodibility. Ockelford 

and Haynes (2013) reported a similar scenario, where floods with short recurrence 

intervals indicated bed material being comparatively loose and less resistant to 

subsequent entrainment. Although, sediment beds stability in the marine environment is 

also defined by the aspects of the near-bed environment (e.g. increased bed roughness, 

present of organic components, etc.) that controls the potential of these hydrodynamic (or 

erosive) forces (Jumars and Nowell, 1984; Madsen and Warncke, 1983; etc.). 
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Figure 6.3 Averaged instantaneous SSC (g/l) and Bed shear stress (Pa)  as function of  

Time (minutes): (a) EDT-EX1; (b) EDT-EX2 and (c) EDT-EX3.  
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Figure 6.4 Averaged instantaneous SSC (g/l) and Bed shear stress (Pa) as function of 

Time (mins) for EDT-EX4, EDT-EX5 and EDT-EX6 

 

6.5.3 Erosion rate, erosion threshold and bed shear strength 

Figure 6.5, plots the corresponding erosion rates (in g m-2 mins-1) for all the runs, against 

applied bed shear stress (𝜏𝑏, Pa).  As expected, the results reveal that, at low  𝜏𝑏, erosion 

of material from the bed surface is insignificant or non-existent, especially for the runs 

with higher clay fractions (i.e. EDT-EX3 to EX4; Figures 6.5c & d, Table 6-1). With 

increasing 𝜏𝑏 however, a certain erosion threshold (see erodibility in section 2.5) occurs 

in each run, above which sediments are randomly eroded from the exposed bed surface 

area, with a monotonic increase in the rate of erosion E (Figure 6.5). This threshold is 

assumed to be linked to onset of material (sand and clay particle) transport, based on the 

SSC data obtained from the calibration procedures (Figures 6.3 & 6.4). Once this 

threshold is reached, an increase in 𝜏𝑏 results in time-independent and unlimited supply 

erosion. Time-independent erosion generally occurs when 𝜏𝑏 exceeds bed characteristic 

shear strength (𝜏𝑠𝑐), which is similar to Type-II erosion defined by Parchure and Mehta 

(1985) and also Sanford (2006). This is equally in agreement with surface mode of erosion 

(Winterwerp and van Kesteren, 2004; Jacobs et al., 2011).  Therefore, the current study 

focuses on the threshold of this mode of erosion (i.e. surface erosion), which has been 

found to depend on sediment bed characteristics (e.g. bed shear strength), rather than the 

stochastic (or random) character of the flow as in the case of floc erosion (Winterwerp 

and van Kesteren, 2004 and Jacobs et al.,2011) [Note: all natural events (which includes 

waves and current actions) are stochastic phenomenon]. 
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In Figure 6.5, if fit lines are plotted for data points between B and C, the bed characteristic 

shear strength (𝜏𝑠𝑐) [i.e. the so-called erosion threshold] can be obtained by extrapolating 

the fit lines to the x-axis (see Appendix 6-3 for more details).  Similarly, the shear stress 

value at point A, can be taken as the representative value of the corresponding bed surface 

shear strength (𝜏𝑠𝑜) for each experimental run. These methodologies are in line with those 

employed in previous studies on erosion and deposition processes of sediment beds, as 

reported in the literature (e.g. Parchure and Mehta, 1985; Villaret and Paulic, 1986; 

Winterwerp and van Kesteren, 2004; Laksanalamai, 2007; Jacobs et al., 2011; Mehta, 

2014; etc.), and are based on the assumption that quasi-linear relationship exists between 

erosion rate (E) and applied bed shear stress (𝜏𝑏) [Jacobs et al., 2011]. Examples of the 

use of these methodologies in determining erosion thresholds are shown in Appendix 6-4 

(pg. 230) [i.e. plots from previous studies showing this linear extrapolation process, e.g. 

Laksanalamai, 2007; Jacobs et al., 2011]. 

 

Comparison between the results of runs EDT-EX1 to EX4 (Figure 6.5), shows that, 

increase in clay fraction, increases sediment bed initial resistance to erosion (i.e. bed 

surface shear strength, 𝜏𝑠𝑜). The 𝜏𝑠𝑜 value of EDT-EX3 (5% clay content) is shown to be 

1 and 2 order of magnitude more than that of EDT-EX2 (2% clay) and EDT-EX1 (0% 

clay) respectively (Figures 6.5a-c and 6.6).  Also, 𝜏𝑠𝑜 = 1.12 Pa was obtained for EDT-

EX4 (10% clay), which was more than double that of EDT-EX3 (i.e. 𝜏𝑠𝑜= 0.50 Pa) 

[Figure 6.6].  For all runs, even after the initiation of erosion, their bed characteristic shear 

strengths (𝜏𝑠𝑐) are shown to increase with the increase in percentage of cohesive fraction 

in the bed (Figure 6.6).  

 

In terms of the multiple cycle run (EDT-EX4 to EX6), Figure 6.6, shows noticeable 

reductions in both 𝜏𝑠𝑜 and 𝜏𝑠𝑐 values (i.e. reduction in initial bed resistance to erosion), 

for each subsequent flow cycle.  Specifically, 𝜏𝑠𝑜 of 1.12 Pa for EDT-EX4 was shown to 

reduce to 0.7 Pa in EDT-EX6 (Figure 6.6); i.e. ∼37.5% reduction.  In addition, this 

observed reduction in 𝜏𝑠𝑜, may possibly be due to the likelihood of topmost part of the 

bed after the two successive flow cycles, having similar characteristics to deposited bed 

layer as opposed to the initial placed bed in run EDT-EX4. The shear and structural 

strength of deposited beds generally increase with increasing depth into the bed (i.e. 

weaker topmost layer), while that of placed bed is expected to be uniform across the bed 

(Villaret and Paulic, 1986; Winterwerp and van Kesteren, 2004; and Mehta, 2014). 
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Therefore, speculatively, the lower 𝜏𝑠𝑜 (i.e. 0.7 Pa) recorded for EDT-EX6 compared to 

1.12 Pa for EDT-EX4 may be due to this effect as well. 

 

It is expected that, highly erodible sediment beds would have a low erosion threshold 

and/or high erosion rates at a lower excess shear stress, i.e. (𝜏𝑏 − 𝜏𝑠𝑐) (Grabowski et al., 

2011), and vice versa.  Therefore, to demonstrate this expected relationship, the rate of 

erosion (E) was plotted against excess shear stress (𝜏𝑏 − 𝜏𝑠𝑐) for all the runs and (𝜏𝑏 −

𝜏𝑠𝑐) > 0 (Figure 6.7).  From the results, EDT-EX1 (0% clay) and EDT-EX2 (2% clay) 

have higher erosion rates at lower excess shear stresses, suggesting they are relatively 

more erodible than other mixtures with higher clay contents.  On the other hand, EDT-

EX3 (5%clay) and EDT-EX4 to –EX6 (10%clay) demonstrated significant lower erosion 

rates at higher excess shear stresses, thus having relatively higher erosion thresholds (i.e. 

higher resistance to erosion).  This again re-emphasizes the role of cohesive sediment 

fraction in mixed bed stability (e.g. Mitchener and Torfs, 1996; Panagiotopoulos et al., 

1997; Grabowski et al., 2010; etc.).  

 

The limitations highlighted in the current study notwithstanding, the results in Figures 6.5 

and 6.6, show surface erosion thresholds that vary from 0.08 to 1.45 Pa, this range is in 

good agreement with reported data for low-cohesive sediment samples (e.g. Winterwerp 

and van Kesteren, 2004; Le Hir et al., 2008; Jacobs et al., 2011). Specifically, Jacobs et 

al. (2011) reported erosion thresholds (𝜏𝑠𝑐) that varied between 0.1 and 1.5 Pa for low-

cohesive sand-mud mixtures in their experiments. Furthermore, Laksanalamai (2007) 

obtained erosion thresholds that varied between 0.75 and 1.10 Pa, for mixed sediment 

beds with 70-90% sand contents (see Appendix 6-4), again in broad agreement with the 

results from the current study.   

 

The additional two assumptions made in section 6.5.1 are herein shown to be reasonable 

by this good agreement observed between the estimated erosion thresholds (i.e. 0.08 to 

1.45 Pa) and those reported in the literature for similar low-cohesive sediment beds. As 

it has been shown (see sections 2.5.1 and 6.5.1), these erosion thresholds are obtained in 

relation to the changes in erosion rates. 
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                      Figure 6.5 Erosion rates of materials as function of Bed shear stress: (a) EDT-EX1 (b) EDT-EX2 (c) EDT-EX3 (d) EDT-EX4  

                      (e) EDT-EX5 & (f) EDT-EX6. 
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Figure 6.6 Comparison of bed shear strengths and erosion thresholds across all  

the erosion tests  

 

 

 

Figure 6.7 The rate of erosion (E) plotted against excess shear stress (𝝉𝒃 − 𝝉𝒔𝒄) for  

all the runs; (𝝉𝒃 − 𝝉𝒔𝒄) > 0 

 

 

6.6     Erosion and Deposition of Bed Materials  

A quadrant of the whole bed surface (i.e. ∼1200 mm span length, see the patterned 

quadrant in Figure 6.2) was considered for capturing the characteristics of the resulting 

bed-forms and bed deposits from each experimental run. One of the closest quadrants to 

the electrical resistivity measurement box (see Figure 3.6) was chosen to reduce 

variability in the datasets. The plot of the bed deposit height against this span length for 

each run is shown in Figure 6.8, while the corresponding aerial view of each bed deposit 
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is presented in Figure 6.9.  Images of these final bed deposits, reveal that, deposition of 

eroded materials, predominantly sand, was along the inner wall of the flume (Figure 6.9), 

due probably to the occurrence of secondary currents. Interestingly, Laksanalamai (2007) 

observed similar trends in annular flume erosion tests on mixed sediment beds.  

 

It is clear from the results that, EDT–EX1 and EDT–EX2 have the highest average bed 

deposit heights across the span, i.e. ∼63 mm and ∼55 mm respectively (Figure 6.8a-b), 

due to large layers of sediments continuously and severely eroded and mobilised in these 

runs (i.e. supported by the results in Figures 6.3 & 6.4). On the contrary, EDT-EX4 (10% 

clay) has the lowest average bed deposit height (Figure 6.8d); suggesting, it is the bed 

with highest erosion resistance. This again, as expected shows the parametric influence 

of clay fraction on erosion and deposition processes of mixed (sand-clay) sediment beds, 

this is consistent with the results in Figures 6.3 - 6.7. 

 

Bed deposits for runs EDT-EX3 to EX6 (Figures 6.8c-e & 6.9c-e) are spatially different 

from those of EDT-EX1 & EX2 (Figures 6.8a-b & 6.9a-b) discussed above. The 

deposition of eroded sand materials observed in these runs (i.e. EDT-EX3 to EX6) are 

relatively smaller in height and width when compared to those from runs EDT-EX1 and 

EX2. Sand deposit with height of ∼15 mm and width of ∼20 mm (Figures 6.8d & 6.9d), 

is observed for EDT-EX4 (with the highest 𝜏𝑠𝑐 value = 1.45 Pa; Figure 6.6); while height 

of ∼45 mm and width of ∼80 mm (Figures 6.8c & 6.9c) were recorded for EDT-EX3 (𝜏𝑠𝑐 

= 0.75 Pa).  Lastly, significant spatial differences can be seen in the final bed deposits 

from EDT-EX4 and EX6.  Final sand deposit from EDT-EX4 increased by an average of 

70% (both in height and width) after it was subjected to further two flow cycles (i.e. in 

EDT-EX6; Figures 6.8e & 6.9e). Again, this is clearly indicative of reduction in the bed 

shear strength.  

 

In general, the spatial extent of the sand deposit or the nature and extent of bed 

restructuring observed from the final sediment beds of all the experimental runs, is shown 

to be influenced by the fractional content of the cohesive clay within the initial mixed-

sediment bed. Also, in addition, within mixed-sediment beds with highest clay fraction 

(i.e. runs EDT-EX4 to EX6; 90s:10c), the history and antecedent conditions of the bed, 

is shown to contribute significantly to the definition of their sediment transport 

characteristics. 
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6.6.1 Generated bedforms 

In this study, the generated bedforms (refer to section 2.5.7; pg. 50, for brief description 

of sedimentary bedforms), have been described solely to highlight the parametric 

influence of cohesive sediment fraction (i.e. clay) on bedforms development in mixed 

(sand-clay) beds. Using the description in Figure 2.22, the characteristics of the generated 

bedforms were estimated from Figures 6.8 and 6.9, and Table 6.5 presents the results. 

The results show bedforms with length (L) ranging from 180 to 600 mm and height (H) 

of 4 to 48 mm. These are in good agreement with typical sand ripples dimensions of L = 

∼ 50 – 600 mm and H = ∼5 – 50 mm (Ashley 1990).  Across all the experimental runs, 

slightly straight-crested plan morphology of bedforms are observed on the final bed 

deposits (Figures 6.8 & 6.9). The sides of the final beds along the outter wall of the flume 

channel (Figure 6.2) are shown to have deep and wide (∼100-160 mm) erosional scour 

holes (see the red oval curves in Figure 6.9) mainly in beds with clay content < 5 % (i.e. 

runs EDT-EX1 and EX2). However, these are completely absent in run EDT-EX4 (10 % 

clay; Figure 6.9d), although, a couple of such scour holes was seen across the total surface 

area of the final bed from run EDT-EX6 (10 % clay; e.g. Figure 6.9e), again suggesting 

run EDT-EX6 relative to EDT-EX4, has lower bed shear strength (Figure 6.6). 

 

Table 6-5 Characteristics of the bedforms generated from the experimental runs  

Tests % Clay Height (H) (mm) Length (L) (mm) 

EDT-EX1 0 48 360 

EDT-EX2 2 32 600 

EDT-EX3 5 28 440 

EDT-EX4 10 4 180 

EDT-EX6 10 10 220 
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Figure 6.8  Bed deposits heights measured over the span length of the selected quadrant (Figure 

6.2) for: (a) EDT-EX1 (b) EDT-EX2 (c) EDT-EX3 (d) EDT-EX4 and (e) EDT-EX6. 

(Corresponding photographic images show the heights of the sand deposits).  
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Figure 6.9 Photographic images of the aerial view of the final beds within the selected quadrant 

(Figure 6.2) of the flume, showing sand deposit and clay veneer parts, and red oval curves show 

the scour holes for: (a) EDT-EX1 (b) EDT-EX2 (c) EDT-EX3 (d) EDT-EX4 and (e) EDT-EX6. 

Corresponding schematic diagrams are representatives of deposits features when cut through 

designated sections.    
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The spatial-temporal development of the bedforms has not been quantified in the current 

study, due to some of the previously highlighted limitations. Hence the analysis is based 

on the characteristics of the bedforms developed on the final bed deposits for all the runs. 

These have been compared with the recent results from Baas et al. (2013) on experimental 

study of bedform development in mixed sand-clay sediment beds under steady flow 

conditions, where the influence of initial clay fraction ranging from 0 – 18% was tested. 

For comparison, from Baas et al. (2013), the characteristics of bedforms (in terms of 

height and length) developed at equilibrium conditions (i.e. after t > 1 hr) have been 

considered. The schematic representation of changes in bed morphology at t = 0 and 5hrs 

for the current experiment is shown in Figure 6.10.  Similar to Baas et al. (2013), the 

crests of the bedforms are shown to mainly comprise clean sand (Figures 6.8, 6.9 & 6.10).   

 

Specifically, results from Baas et al. (2013) suggest, a strong inversely proportional 

relationship between bedform height (H) and the initial mud fraction and a weak inversely 

proportional relationship between bedform length (L) and the initial mud fraction. These 

findings are in good agreement with the findings from the current study as shown in Table 

(6-5) and Figure 6.8. For the bedforms generated, a strong negative correlation can be 

consistently seen between H or L and percentage (%) initial clay fraction. Although for 

L, run EDT-EX1 appears to deviate from this relationship (see Table 6-5). Similar 

deviation in bedform length, was equally observed by Baas et al. (2013), where they 

found some tests with relatively lower clay fraction having shorter equilibrium-lengths 

compared to other runs with higher clay fractions. It may be inferred therefore, that, 

supply of sand material, from the initial mixed bed, needed for the development of 

bedforms has been limited by the increased cohesive bed strength with the increase in 

clay fraction (see Table 6-5), thereby forming what Allen (1968) described as sediment-

starved bedforms. Thus, these findings suggest that, high cohesive bed strengths (i.e. as 

initial % clay fraction increases), relative to the flow-induced bed shear stresses, are to 

large extent responsible for the observed decrease in bedform heights and lengths (Figures 

6.9 & 6.10). 

 

Furthermore, images in Figure 6.9 show a clear banding occurring in the channel, where 

sand is deposited at the inner wall (darker strip in Figure 6.9c-e) and clay veneer over the 

remainder of the bed surface. Thus, run EDT-EX3 (5% clay; Figure 6.9c) clearly appears 

to be a transitional bed between sand dominated and clay dominated conditions, due to 

the nearly even delineation between the deposited sand part (i.e. inside the channel) and 
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clay veneer part (i.e. at the outer part of the channel). This is also supported by the erosion 

results (e.g. Figure 6.6) already discussed above, where this run has been shown to 

represent the transition from non-cohesive behaviour of the mixed bed (i.e. in terms of 

resistance to erosion) to the cohesive behaviour. Interestingly, Baas et al. (2013) show 

specifically that cohesive bed forces had a more significant influence on bedform 

development at clay content > 5.4 %. This is clearly consistent with the findings of the 

current study (i.e. run EDT-EX3 has 5% clay fraction).  Le Hir et al. (2008) also, from 

the erosion experiment on mixture of 280 μm sand and ‘St Yves’ mud (see Figure 2.17b; 

pg. 42), found this critical clay fraction to occur at 4.5%. 

 

Finally, it is informative to investigate whether stratification occurs within the resulting 

bed after the erosion and deposition processes. As such, cores were taken, close to the 

inner wall of the channel, from the final bed deposits in some of the runs (e.g. EDT-EX2 

& EX3). Figure 6.11 shows two core samples from runs EDT-EX2 and EDT-EX3. In 

both runs, the upper parts of the cores appear to consist of relatively clean sand deposit, 

which may have been formed by a process similar to a phenomenon described as 

‘winnowing of clay particles’ by Baas et al. (2013).  Clay winnowing describes a process 

where clay particles are selectively removed from the active part of the mixed (sand-clay) 

bed. It is clear that the thickness of the clean sand layer is ∼20 mm in EDT-EX3 (5% 

clay) and ∼50 mm in EDT-EX2 (2% clay). This suggests that, increase in fractional 

composition of clay within the mixed (sand-clay) beds (which has already been 

established to increase bed stability, i.e. resistance to erosion), appears to limit clay 

winnowing. Similar to these findings, Baas et al. (2013) equally observed that, the degree 

of winnowing tends to decrease with increasing clay fraction, with lowest degree of 

winnowing observed in runs with the smallest bedforms heights and lengths. These 

findings critically suggest that, winnowing of fine sediments from their compositional 

base, appears to be an important sediment transport process in the development of 

bedforms and also, in erosion and deposition processes of mixed (sand-mud) beds.  

 

 

 

 



Chapter Six: Experimental Results: Mixed Sediment Bed Erosion Experiment (ES-3) 

173 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

     Figure 6.10 Schematic representation of changes in bed morphology at t = 0 & 5 hrs for (a) EDT-EX1 (100% sand) (b) EDT-EX2 (98% sand) (c) EDT-EX3 (95% sand)               

     (d) EDT-EX4 (90% sand) and (e) EDT-EX6 (90% sand after 3rd flow cycle). [Note the pure sand bedforms overlying the mixed sand–clay beds]
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                     Figure 6.11 Final sediment bed core (a) EDT-EX2; (b) EDT-EX3 

 

 

6.7     Electrical Resistivity Measurement Results 

The real time bed restructuring, resulting from continuous erosion and deposition 

processes, was captured with the ERMT (at the inner wall location only, see Figure 3.12; 

pg. 91). Figure 6.12 shows the temporal development of normalised density (bulk/p) 

profiles for runs EDT-EX1 and EDT–EX2, at elapsed times ranging from t = 30 s and 5 

hrs.  Figure 6.13, on the other hand, presents time series colour maps of the variation in 

the measured formation factor F profiles over the whole period of erosion and deposition 

processes. 

 

It is apparent from Figure 6.12 that, there is no significant temporal changes in the vertical 

position of bulk/p profiles above the initial bed height (i.e. z > ∼140 mm) for up to t = 1 

hr. This is also shown in Figure 6.13, where the measured formation factor F profiles 

remain virtually constant at the interface between the placed bed and overlying water 

column for up to t = 3600 s (1 hr). This suggests that, there was virtually no material 

deposition during this time period.  However, results in Figure 6.3a-b, show that in these 
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runs, erosion of bed materials started within the first 20 mins. Therefore, it can be inferred 

that, the eroded materials within this period of time were transported mainly as suspended 

load (i.e. part of the total load that is moving in suspension without continuous contact 

with the bed as a result of agitation of fluid turbulence). From t ≥ 1 hr, above the bed-

water interface, continuous changes (both horizontally and vertically) in bulk/p profiles 

are shown for up to t = 3 hrs, with bulk/p values ranging from ∼1.16  1.92 for EDT-

EX1 and 1.15  1.89 for EDT-EX2 (Figure 6.12). The colour maps of the F profiles in 

Figure 6.13 show this effect more clearly with temporal changes in F ranging from 3.5 

 5.5 for both runs.  Apparently, these results indicate continuous erosion and deposition 

of sediment with increasing bed shear stress over this period of time (i.e. t ≥ 1 to ∼3 hrs). 

Results in Figures 6.12 & 6.13, show that this period of time was characterised by 

intermittent increase and decrease in bulk/p and F values respectively.  

 

It should be noted also, that from t ≥ 1 hr, temporal increase in interface height (i.e. from 

z = ∼140 to ∼ 200 mm) between the placed bed and overlying water column is shown for 

the two runs (Figures 6.12 & 6.13), suggesting deposition of eroded materials.  

Specifically, after t ≥ 3 hrs and to the end of the experiment (i.e. the final 60 minutes 

during the period of ramping down of the flume paddles speed), the spatial and temporal 

bulk/p and F profiles appear to be steady with little or no significant changes (Figures 

6.12 & 6.13). This clearly indicates that, the bed deposits are stable, with this stability 

shown for both tests by the similarity in bulk/p profiles obtained at t = 4 hrs and t = 5 hrs.  

In general, the observed spatial-temporal changes in bulk/p and F values across the entire 

duration of each experimental run, are thought to be initiated by the changes in bed shear 

stresses within the flume channel, and are indicative of erosion, mobilisation and 

deposition of bed materials.  

 

From Figures 6.12 & 6.13, it is particularly interesting to observe that over t ≥ 1 hr, the 

spatial-temporal rise and fall in bulk/p and F values respectively, indicates that the final 

bed deposits were not steadily built up, and/or suggests the migration of bedforms (i.e. 

local changes in bed elevation). This is similar to a scenario common in sediment 

transport, where bed-forms (e.g. ripples) earlier formed at relatively lower bed shear stress 

(𝜏𝑏) are subsequently eroded at higher 𝜏𝑏, indicating a transition in the sediment transport 

mode from the bed load to the sheet flow regime (Hanes and Bowen, 1985; Van Rijn, 

1993; Soulsby, 1997 and Winterwerp & Kesteren, 2004, etc.).   
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Figure 6.13b shows a clear interface (i.e. at z = ∼150 mm) between the base sand-mud 

bed (F values = ∼3.5  3.75) and the overlying clean sand deposit (F values = ∼4.5  

5.5) for run EDT-EX2, similar to schematic representation of changes in bed morphology 

shown in Figure 6.10b. As expected, the range of F values obtained for this overlying 

clean sand deposit is similar to the F values observed in sand only bed of run EDT-EX1 

(Figure 6.13a). This effect is equally shown in Figure 6.12b (i.e. the area of the plot in 

red circle), the average value of bulk/p profile (at t = 5 hrs; z ≥ 150 mm) for instance, is 

∼2.15, which is approximately the same as that observed across the bed deposit in run 

EDT-EX1 (Figure 6.12a). This is clearly an important effect, showing the ‘cleaned sand 

deposit’ layer over the surface of the initial mixed bed (similar to diagram in Figure 

6.10b).  Furthermore, from Figures 6.12 & 6.13, the final height of the deposits can be 

estimated; i.e. ∼65 mm and ∼56 mm for EDT-EX1 and EX2 respectively. These 

measurements are interestingly similar to those measured directly from their bed deposits, 

i.e. ∼63 mm and ∼55 mm respectively (Figure 6.8). This close similarity in measurements 

is again highlighting the potential of ERMT to characterise bed evolution in confined 

sedimentary environments not readily accessible to human beings.    

 

Lastly, from the colour maps in Figure 6.13, the spatial-temporal changes in F profiles 

seen immediately after t = ∼4000 s is quite interesting, as they show evidence of erosion 

and deposition of bed materials over the period of each experimental run (especially up 

to t = ∼14000 s). Particularly, the deposition processes are shown to occur even at higher 

bed shear stresses (𝜏𝑏), (i.e. as 𝜏𝑏 is increased with time, see section 6.2). Therefore, 

explaining these results in the light of ‘exchange paradigms of erosion with deposition’ 

(e.g. Krone, 1963; Mehta, 2014; etc.), highlights the shortfalls of the ‘exclusive bed 

exchange model’ (i.e. the model’s inability to allow simultaneous occurrence of erosion 

and deposition). Therefore, the implication of this finding, especially as it affects erosion 

laws of mixed sediments, is that the laws obviously need more investigation. 

Conclusively, it is particularly very interesting (and informative) to see the resistivity 

profiles (i.e. Figures 6.12 and 6.13), identifying the simultaneous occurrence of erosion 

and deposition (i.e. simultaneous bed exchange) within these runs. 
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Figure 6.12 Vertical profiles of normalised bulk density bulk/p at elapsed times shown for 

EDT-EX1 (b) EDT-EX2. Red circle in (b) highlights the deposition of clean sand layer at the 

surface of mixed bed of EDT-EX2. 

 

0

25

50

75

100

125

150

175

200

225

1.00 1.25 1.50 1.75 2.00 2.25 2.50

B
ed

 e
le

v
at

io
n
, 

z 
(m

m
)

Normalized bulk density, bulk/p

30 secs
60 secs
30 mins
1 hr
2 hrs
3 hrs
4 hrs
5 hrs

Initial Bed height

0

25

50

75

100

125

150

175

200

225

1.00 1.25 1.50 1.75 2.00 2.25 2.50

B
ed

 e
le

v
at

io
n
, 

z 
(m

m
)

Normalized bulk density, bulk/p

30 secs
60 secs
30 mins
1 hr
2 hrs
3 hrs
4 hrs
5 hrs

Initial bed height 

(a) 

(b) 



Chapter Six: Experimental Results: Mixed Sediment Bed Erosion Experiment (ES-3) 

 

178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.13 Time series colour map plots of the variation in measure format ion factor F 

profiles during erosion and deposition processes for (a) EDT-EX1 (0% clay) and (b) EDT-

EX2 (2% clay). 

 

It is important to make reference to the unexpected variability observed in bulk/p values 

within the bed (i.e. z = 0 -150 mm; Figure 6.12). Clearly, from t = ∼30 s and 5 hrs, bulk/p 

increases from 2.0 to 2.25 particularly for EDT-EX1 (100s:0c). This increase in bulk/p 

technically suggests that, in addition to erosion and deposition processes being initiated 

at the topmost layer of the bed, there was a form of compaction going on within the bed. 

The reason for this is not particularly known, however, considering the size and weight 

of the benthic annular flume used, plus other factors, this observation may have been due 

to the artefact of the experimental set-up or procedures. 

 

 

6.8     Conclusions from ES-3 Experiments 

The main findings of the experimental series reported in the current chapter, are 

summarised below: 

 In agreement with previous studies (e.g. Parchure and Mehta, 1985; Villaret and 

Paulic, 1986, etc.), after the initiation of erosion, quasi-linear relationship was 
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found to exist between suspended sediment concentration (SSC) and applied bed 

shear stress (𝜏𝑏). Also, over the range of sediment proportions considered, a quasi-

linear relationship was also found to exist between erosion rate (E) and applied 

bed shear stress (𝜏𝑏), once the erosion threshold is exceeded (e.g. Jacobs et al., 

2011; etc.), 

 A strong positive correlation between mixed sediment bed resistance to erosion 

and the proportion of cohesive fraction in the bed was further established.   

 The results reveal that mixed sediment bed’s initial resistance to erosion may be 

significantly reduced with further exposure to subsequent erosion cycles.  

 The use of erosion rate (E), bed surface shear strength (𝜏𝑠𝑜) and bed characteristic 

shear strength (𝜏𝑠𝑐) as measures of bed erosion in isolation may give misleading 

information as they are not only largely affected by bed materials’ properties and 

compositions; but also significantly by the antecedent conditions of the sediment 

beds. Therefore, in this context, prediction of sediment beds erosion 

characteristics in marine environments is best supported by adequate 

understanding of the sedimentary regimes, probably gained by observational 

measurements rather than a priori determination. 

 Surface and mass erosion processes (e.g. Winterwerp and van Kesteren, 2004) 

have been inferred to be most likely common in mixed beds with clay content ≤ 

2% by dry weight.  

 Similar to the finding of Baas et al. (2013), clay dry weight fraction of ≥ 5.0 % 

within mixed (sand-clay) beds, will result in cohesive bed forces having more 

significant influence on bedform development and morphology.  

 Winnowing of fine sediments from their compositional base, appears to be an 

important sediment transport process in the development of bedforms and also, 

in erosion and deposition processes of mixed (sand-mud) beds.  Baas et al. (2013) 

reported similar findings.  

 The transition from the bed load to the sheet flow regime during sediment 

transport, (e.g. Hanes and Bowen, 1985; Van Rijn, 1993; Soulsby, 1997 and 

Winterwerp & Kesteren, 2004, etc.), was established by the electrical resistivity 

results. 

 The results from the resistivity profiles, also support the adoption of simultaneous 

bed exchange model (e.g. Krone 1963; Mehta, 2014; etc.). 
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CHAPTER SEVEN 

 

Analysis and Discussion 

“There will come a time when our descendants will be amazed that we did not know things that are so 

plain to them” —Lucius Annaeus Seneca 

 

 

 

7.1     Introduction 

Physical processes associated with mixed sediments are generally known to be influenced 

by occurrence of time-dependent flow conditions (i.e. tidal currents and/or waves), mixed 

sediment characteristics (e.g. cohesive and non-cohesive sediment types, proportions and 

initial concentrations), water chemistry (e.g. salinity, pH, temperature) and concentration 

gradients generated by unsteady flow conditions.  Extensive research has been conducted 

on the interactions between fluid and sediment within mixed sediment suspensions and, 

the structural characteristics of the resulting bed deposits. However, these linkages are 

not yet completely understood due to the complex interplay between sediment transport 

processes such as flocculation, settling, deposition, erosion and consolidation (e.g. Grasso 

et al., 2015). In this context, attempts were made in the current study to address some of 

the current knowledge gaps and uncertainties associated with these processes in mixed 

sedimentary environments, through idealised experimental investigations. Some of the 

findings of this study, will undoubtedly provide new insight into fundamental 

mechanisms of mixed sediment processes in estuaries and coastal regions, as required by 

practitioners involved in management, planning and the implementation of legislations in 

these dynamic and complex ecosystems. 

 

The main aims of the current chapter are therefore to (i) analyse and discuss the main 

findings from the experimental results presented in Chapters 4, 5 and 6, especially in 

relation to equivalent findings from previous investigations; (ii) investigate further the 

parametric influences on the formation of mixed and segregated bed deposits and (iii) test 

the polydisperse hindered settling formation proposed by Cuthbertson et al. (2008) in 
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terms of its predictive capabilities for the conditions under which mixed and segregated 

bed deposits are generated. 

 

 

7.2     Bed Characterisation: Electrical Resistivity Measurement Techniques   

Like other similar non-destructive measurement techniques [e.g.  X-ray/gamma ray 

techniques (Been, 1981; Pane and Schiffman, 1997; Ellis, 1987; Been and Sills, 1981); 

Acoustic & Wave attenuation techniques and Turning fork methods (Libicki and Bedford, 

1989; Maa et al., 1997; Ha et al., 2010; Fontein and van der Wal, 2006)], it has been 

established that the electrical resistivity profiling technique can be used to characterise 

the structure of mixed sediment deposits at laboratory, provided an accurate calibration 

is carried out. In addition, unlike the other techniques, the electrical resistivity 

measurements do not have inherent limitation such as inflexibility, health and safety 

implications, etc.  

 

The major doubt in the applicability of this technique, however, is its suitability for field 

measurements in brackish water environments, where ambient salinity can vary in space 

and time (Winterwerp and van Kesteren, 2004; Ha, et al., 2010). The current work has 

demonstrated this to be trivial, although it was difficult to capture electrical resistivity 

measurement for mixtures with salinity greater than 30 ppt, this was mainly due to the 

limitation of the instrumentation used (see section 3.7.3) rather that its applicability (i.e. 

SIM921 — AC resistance bridge, could not accommodate higher range of resistance 

measurements required at salinity greater than 30 ppt). It is therefore, believed that, if this 

difficulty (i.e. relating to instrumentation) can be overcome, this technique can be 

successfully applied in high salinity environments.   

Based on the findings of the current work, empirical relationships [i.e. Equations (4-4) 

and (4-5) respectively] are proposed between the normalized bulk density (𝑏𝑢𝑙𝑘/𝑝) and 

the porosity (𝜑) of the sediment bed deposit, as well as between the corresponding 

formation factor F and 𝜑. These expressions require the following condition to be 

satisfied: bulk/p and 𝜑  1 as F 1. 

 
𝒃𝒖𝒍𝒌

𝒑

= 𝑎. 𝐹𝑏   (i.e. Equation 4-4)     ;        𝜑 = 𝑎̂𝑒− 𝑏̂ 𝐹    (i.e. Equation 4-5) 
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The above empirical relationships have been used to define the temporal and spatial 

changes in the density, porosity and composition within bed deposits resulting from the 

differential settling of sand-clay mixtures tested in the current work. Specifically, the 

density and porosity profiles obtained have highlighted the influence of initial fractional 

composition (i.e. relative sand and clay concentrations) on the formation of segregated 

(sand-dominated and clay-dominated) bed layers within the deposits, and also on the 

erodibility of mixed sediment beds. These are similar to previous findings, where 

presence of sand in sand-mud sedimentation processes, has been shown to have a strong 

influence on hindered settling (e.g. Cuthbertson et al., 2008; Van and Pham Van Bang, 

2013; etc.) and consolidation (e.g. Torfs et al., 1996; Xu et al., 2012; Grasso et al., 2014; 

etc.) processes that can lead to the formation of segregated, layered structures within the 

resulting bed deposits.  These mixed sediment processes, and their role in defining the 

nature of the developing bed structure, are also shown to be crucial for determining its 

subsequent resistance to erosions (e.g. Torfs et al. 1996; te Slaa et al., 2013). 

 

 

7.3     Sedimentation Behaviour of Sand-Clay Mixtures  

In the current study, an attempt was made to differentiate between the hindered settling 

and phase I consolidation stages during the sedimentation processes of different sand-

clay mixtures. The calculated sedimentation rates (𝑤𝑠), for each experimental run (i.e. 

SET-EX1 to EX9), were thus divided into these stages, before their averages were 

computed. The results for mean settling rates, 𝑤𝑠−𝑚𝑒𝑎𝑛 over the duration of the 

experiment have been expressed as function of (i) ambient salinity for runs with similar 

mixture conditions (i.e. SET-EX4 to EX7) [Figure 7.1], and (ii) initial clay concentration 

𝐶𝑠
𝑐𝑙, to synthesise the influence of higher clay mass concentration for all the runs (Figure 

7.2).  

 

7.3.1   Mixed-sediment settling rate and ambient salinity 

Figure 7.1 shows that ambient salinity influences the settling characteristic of the particles 

differently at each identified sedimentation stage. At the hindered settling stage, it is 

apparent that, an increase in ambient salinity up to 15 ppt brings about slight increase in 

𝑤𝑠−𝑚𝑒𝑎𝑛.  However, 𝑤𝑠−𝑚𝑒𝑎𝑛 slightly decreases as the salinity increases beyond 15 ppt.  

From 0 ppt to 40 ppt, the corresponding 𝑤𝑠−𝑚𝑒𝑎𝑛 value decreases by ∼ 20% at this stage. 

As discussed in section 5.5, for a more diluted suspended sediment concentration, such 

as found within turbidity maximum zone of estuaries (i.e. up to ∼10 to ∼15 kg m−3, 
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Manning et al.,2007; Dyer et al.,2002; Sutherland et al., 2014), it is generally expected 

that, to some degree, salinity will promote flocculation and, hence, leads to an increased 

sedimentation rates, compared to those obtained in freshwater (e.g. Sutherland et 

al., 2014). Interestingly, Figure 7.1 appears to suggest that this general consensus may 

also hold for suspensions with very high clay mass concentrations, more representative 

of hyper-concentrated, near-bed, fluid-mud layers (such as tested in the current study, 

where 𝐶𝑠
𝑐𝑙  = 84–285 kg m−3). However, this increased sedimentation rate is shown, in the 

current study, to peak at salinity around 15 ppt.  It should also be noted that, the parametric 

influence of salinity on mud flocculation processes is also known to diminish for salinity 

values above ∼20 ppt (e.g. Al-Ani et al., 1991; He et al., 2008; Sutherland et al., 2014). 

The result appears to suggest that; higher salinities above ∼15 ppt do not increasingly 

boost sedimentation (similar to findings of Sutherland et al., 2014). Therefore, it can be 

hypothesised that, sediment distribution (in terms of bed deposit structure and 

composition) patterns in marine environment with higher ambient salinity (e.g. higher 

salinity basins) will be similar in certain degrees to those observed in marine 

environments with lower salinity (e.g. estuaries). At phase I consolidation stage on the 

other hand, increase in ambient salinity appears to have no significant effect on 𝑤𝑠−𝑚𝑒𝑎𝑛 

(Figure 7.1). This is understandable, because any subsequent variation in the sediment-

fluid interface at this stage, will principally be due to creeping (i.e. particles framework 

deformation) and consolidation effects within the bed.    

 

 

Figure 7.1 Plot of mean settling rates at each settling regime as a function of ambient salinity  

 

7.3.2   Mixed-sediment settling rate and clay concentration 

The parametric dependence of decreasing settling rates with increasing clay mass 

concentrations (𝐶𝑠
𝑐𝑙) [or volumetric clay concentration, Ø𝑠

𝑐𝑙] has been observed in the 
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current study, and is also well documented in previous studies for different sediment 

suspensions (e.g. Imai, 1980; Been & Sills, 1981; Torfs et al., 1996; Sutherland et al., 

2014; Amy et al., 2006; etc.).  From Figure 7.2, during the hindered settling phase, the 

decrease in 𝑤𝑠−𝑚𝑒𝑎𝑛 with increasing volumetric clay concentration (Ø𝑠
𝑐𝑙) is apparent, 

showing the hindered settling effects, as described by te Slaa et al. (2013).  Again, clay 

concentration (i.e. Ø𝑠
𝑐𝑙) is shown to have no significant parametric influence on the 

𝑤𝑠−𝑚𝑒𝑎𝑛 at phase I consolidation stage (Figure 7.2), for reason described above.  

 



         Figure 7.2 Calculated mean settling rate as a function of volumetric clay concentration  

 

The results show a negative correlation between 𝑤𝑠−𝑚𝑒𝑎𝑛 and Ø𝑠
𝑐𝑙 according to a power 

law (Figure 7.2).  Hence, from this relationship, Equation 7-1(a) has been obtained; this 

provides an empirical measurement of the 𝑤𝑠−𝑚𝑒𝑎𝑛 for the sediment mixtures under 

consideration:   

                     𝑤𝑠−𝑚𝑒𝑎𝑛 = ф (Ø𝑠
𝑐𝑙)−0.725                                                                                               (7-1a) 

 

in which, somewhat arbitrarily, ф is defined as: 

 

                     ф  =    
𝑤𝑠,0−𝑚𝑒𝑎𝑛

(Ø𝑠,0
𝑐𝑙 )

−0.725⁄   = 0.0008                                             (7-1b)                      
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Therefore, for Equation (7-1b) to hold, the coefficients Ø𝑠,0
𝑐𝑙   and 𝑤𝑠,0−𝑚𝑒𝑎𝑛 are set as 

0.1274 and 0.0036 mm s-1 respectively. Thus, Equation (7-1a) takes the following new 

form: 

 

                     𝑤𝑠−𝑚𝑒𝑎𝑛 = 𝑤𝑠,0−𝑚𝑒𝑎𝑛  (
Ø𝑠

𝑐𝑙

Ø𝑠,0
𝑐𝑙⁄ )

−0.725

                                               (7-2)  

 

 

7.4     Onset of Consolidation  

From Figure 5.7 (pg. 132), after the initial hindered settling phase, the subsequent 

temporal evolution of the clay-water interface represents the onset of the primary 

consolidation [generally known as Phase I consolidation or permeability regime, e.g. 

Imai, 1981; Merckelbach and Kranenburg, 2004a; Winterwerp and van Kesteren, 2004; 

see sections 2.4 (pg. 32) and 5.4 (pg. 134)].  Prediction of this Phase I consolidation has 

been described through the adoption of a fractal approach, typically used to model 

aggregation processes in cohesive sediment suspensions, during formation of bed deposit. 

During this initial consolidation stage, the effective bed stresses are expected to be low, 

with the consolidation process governed largely by the deposit permeability (Been and 

Sills, 1981; Sills, 1998).  Merckelbach (2000) and Merckelbach et al. (2002) derived a 

model to investigate initial consolidation processes under this assumption, based on the 

observations of the evolving interface elevation ℎ(𝑡) alone, such that: 

 

                      ℎ(𝑡) = (
2−𝑛

1−𝑛
 𝜁𝑚)

1−𝑛

2−𝑛
 ((𝑛 − 2) 𝐾𝑘  

𝜌𝑠−𝜌𝑤

𝜌𝑤
)

1

2−𝑛

𝑡
1

2−1                                 (7-3) 

 

The material height, also called Gibson height (𝜁𝑚), at any time 𝑡 is given by (Winterwerp 

and van Kesteren, 2004): 

 

                   𝜁𝑚 =    
ℎ.∅𝑠

𝑐𝑙

(1− ∅𝑠
𝑠𝑎)

                                                    (7-4) 

 

where volumetric concentrations ∅𝑠
𝑐𝑙  and ∅𝑠

𝑠𝑎 are assumed initially to be uniformly 

distributed in the column of height ℎ.  Since the total mass of the sediment in the column 

does not change, the Gibson height (𝜁𝑚) is said to be independent of  𝑡.  𝜁𝑚  is used to 
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account for the total solids (i.e. clay and sand) based on the assumption that the sand 

particles only fill space in the clay-water mixture, and do not affect the network of the 

structure.   

 

Equations (7-3) and (7-4) are applicable when the behaviour of soft sediment is dominated 

by clay, but the sediment may also contain small fractions of sand or silt (te Slaa et al., 

2013).  Hence run ERT-EX1 (100s:0c) was exempted from this analysis, however, for the 

other sand-clay mixtures, the equations are applicable, if restricted to the upper part of 

the bed, i.e. predominantly clay layers (Merckelbach, 2000).  In the Phase-I consolidation 

stage, as soon as most of the sand particles settled to the base of the column, it was 

generally observed that the settlement of the interface versus time follows a power law. 

Therefore, the permeability parameter 𝐾𝑘 (which accounts for effects due to viscosity, 

pore water density and shape) and fractal dimension 𝑛𝑓 [i.e. 𝑛 = 2/(3 − 𝑛𝑓)] can thus be 

determined by fitting Equation (7-3) to temporal variation of the measured upper clay-

water interface (when plotted on double log scales, e.g. Figure 7.3a & b).  These model 

predictions are shown by the dashed lines in Figure 7.3, with the corresponding fitted 

values of 𝐾𝑘 and 𝑛𝑓  shown in Table (7-1).   

 

The measurement of the rate at which pore water pressure gradients can be dissipated 

within sediment deposit or soil is termed its permeability, which generally ranges from 

10-12 to 10-10 m s-1 for clayey soils (e.g. te Slaa et al., 2013). This however, corresponds 

with the general range of density for mud layer i.e. 1100 < ρs < 1400 kg m-3 (Merckelbach, 

2000).  Therefore, from material functions (i.e. 𝐾𝑘 and  𝑛𝑓) obtained from the fits on the 

Equation (7-3), the permeability (𝑘) of the upper clay-rich mixture of the deposits, can be 

determined as function of the solid content (Merckelbach, 2000), through the relationship 

shown in Equation (7-5), if fractional sediment contents of that layer of the bed are known 

(Winterwerp and van Kesteren, 2004; te Slaa et al., 2013). 

 

                    𝑘𝑐𝑙𝑎𝑦 𝑙𝑎𝑦𝑒𝑟 = 𝐾𝑘 (
∅𝑠

𝑐𝑙

1− ∅𝑠
𝑠𝑎)

2

3−𝑛𝑓
                                                                    (7-5) 

 

where  ∅𝑠
𝑐𝑙 is the combined solid content of clay and ∅𝑠

𝑠𝑎 is a correction for the solid 

content of the sand fraction in the mixture. 
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Figure 7.3 Temporal variation in upper clay layer interface with supernatant pore water showing 

the fit (i.e. dashed lines) of Equation (7-3) for (a) SET-EX1 to EX9 and (b) ERT-EX2 to EX5. 
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Table 7-1 Initial experimental conditions and sand segregation occurrence with constitutive relationship parameters  

 

Tests %Sand: 

%Clay 

Salinity 

(ppt) 

Initial mass 

concentration 

Cs  (Kg m-3)  

Cs
cl 

(Kg m-3) 

Cs
sa 

(Kg m-

3) 

Øs
sa Øs

cl Crelmud 

(++) 

(Kg m-3) 

Segregation 

Yes/No 

nf (+) Kk (+) 

(m s-1) 

ERT-EX1 100s:0c 29.2 330 0 330 0.1250 0 - - - - 

ERT-EX2 75s:25c 29.2 330 83 247 0.0936 0.032 92 Yes 2.70 3.03 x 10-12 

SET-EX1 85s:15c 15.0 561 84 477 0.1807 0.0324 103 Yes 2.76 4.72 x 10-15 

SET-EX2 85s:15c 30.0 561 84 477 0.1807 0.0324 103 Yes 2.76 3.32 x 10-15 

SET-EX8 65s:35c 30.0 367 128 239 0.0905 0.0494 141 Yes 2.75 5.71 x 10-15 

SET-EX3 75s:25c 30.0 561 140 421 0.1595 0.0541 167 Yes 2.79 2.51 x 10-15 

ERT-EX3 50s:50c 29.2 330 165 165 0.0625 0.0637 176 Yes 2.75 1.31 x 10-13 

SET-EX4 65s:35c 0.0 561 196 365 0.1383 0.0757 227 Yes 2.80 3.01 x 10-15 

SET-EX5 65s:35c 15.0 561 196 365 0.1383 0.0757 227 Yes 2.81 2.41 x 10-15 

SET-EX6 65s:35c 30.0 561 196 365 0.1383 0.0757 227 Yes 2.81 1.92 x 10-15 

SET-EX7 65s:35c 40.0 561 196 365 0.1383 0.0757 227 Yes 2.80 4.32 x 10-15 

ERT-EX4 25s:75c 29.9 330 247 83 0.0314 0.0954 255 No 2.80 1.11 x 10-14 

ERT-EX5 0s:100c 29.9 330 330 0 0 0.1274 330 No 2.89 2.12 x 10-13 

SET-EX9 65s:35c 30.0 813 285 528 0.2000 0.1100 356 No 2.79 3.08 x 10-13 

    (+) Fractal dimension nf and permeability coefficient Kk obtained from fit to Equation 7-3. 

                  (++) See section 7.5 for more details 

 

 

 

1
8

8
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Generally, it is expected that the consolidation characteristics of the clay dominated upper 

layers in the current sand-clay bed deposits will be similar to that of fully cohesive 

sediment deposits, which therefore allows a comparison with consolidation 

characteristics from previous studies investigating the sedimentation of cohesive 

sediments (e.g. Merckelbach and Kranenburg, 2004a; Winterwerp and van Kesteren, 

2004; Merckelbach, 2000; te Slaa et al., 2013; Merckelbach, 2000; Townsend and 

McVay, 1990). It is interesting to note that the fractal dimension 𝑛𝑓 for the structure 

formation of the clay-dominated bed layer, is significantly higher than the expected fractal 

dimension for cohesive flocs in suspension, where the fractal dimension might be 

expected to be around  𝑛𝑓 ≈ 2 (Winterwerp and van Kesteren, 2004). Therefore, in 

consolidating cohesively behaving sediment, 𝑛𝑓  is likely to increase to values close to 3 

(Mehta, 2014; te Slaa et al., 2013; Winterwerp and van Kesteren, 2004), indicating 

significant reduction in interstitial pore spaces within the flocs and the consolidating 

sediment matrix.    

 

Consolidation characteristics from previous sedimentation experiments have been 

analysed and described, for (i) sand-mud mixtures (e.g. Merckelbach and Kranenburg, 

2004a; Winterwerp and van Kesteren, 2004; and Merckelbach, 2000), (ii) silt-rich 

sediment (e.g. te Slaa et al., 2013) and (iii) soft muds (e.g. Merckelbach and Kranenburg, 

2004b; Merckelbach, 2000; Townsend and McVay, 1990; and Been, 1980).  Their 

findings show a  range of values for 𝐾𝑘 and  𝑛𝑓, which have been compared with those 

obtained in the current study [see Table (7-2); pg. 193].  In general, Winterwerp and van 

Kesteren (2004) noted that the fractal dimension (𝑛𝑓) varies between 2.61 and 2.75; all 

the results (including current results) compared in Table (7-2) broadly agreed with this 

range.  Although, the range obtained (i.e. 𝑛𝑓  = 2.70 – 2.89) in the current study appears 

to be slightly higher. It should be noted that, the range of initial clay mass concentration 

(i.e. 83-330 kg m-3) used in the current study is relatively higher than those of the studies 

mentioned above (see Table 7-2).   

Furthermore, the predicted values of permeability coefficient 𝐾𝑘 (= 10-15 to 10-12 m s-1; 

Table 7-1) are equally in broad agreement with representative values obtained from these 

studies [see Table (7-2)]. Therefore, the measured interface height profiles at phase I 

consolidation phase in the current study are reasonably predicted by this model (i.e. 

Equation 7-3). 
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In a simple term (e.g. as described in fractal geometry), a fractal dimension of a set is a 

number that shows how ‘densely’ the set occupies the metric space in which it lies 

(Mahmood, 2006). The concept of fractal geometry is applied to describe the structure of 

the clay network. This structure of clay network is regarded as self-similar fractal, 

meaning its geometrical properties are truly scale invariant under various stretching and 

squeezing of the underlying space (Mandelbrot, 1982). Analogous to this definition, 

Winterwerp and van Kesteren (2004) described fractal dimension (𝑛𝑓) as an expression 

that describes the extent of structure formation of clay-dominated bed layer under 

consolidation. They suggested that, 𝑛𝑓 increases to values close to 3 as the degree of 

squeezing of the flocs (which results in expulsion of pore water) in the bed increases 

under self-weight consolidation (see section 2.4.2; pg. 32). Therefore, the higher range of 

𝑛𝑓  values predicted for the sand-clay mixtures tested in the current study relative to 

previous studies (see Table 7-2), suggest that, the higher sediment concentration (and 

specifically fractional composition of clay) mean that the clay dominated deposit layers 

in the current study will consolidate faster than the sediment compositions tested by these 

authors. This is also partly supported by the predicted range of permeability coefficient 

𝐾𝑘 values. These 𝐾𝑘 values [see Table (7-2)] are approximately one order of magnitude 

larger than most of those predicted by the authors under consideration here.  Similar 

conclusion was made by te Slaa et al. (2013), when they found range of 𝐾𝑘 values (i.e. 

10-13 to 10-15) for Yangtze Estuary fresh clay deposits, that was one order of magnitude 

larger than those predicted (i.e. 10-14 to 10-16) by Merckelbach (2000) for Ems-Dollar 

sediment [see Table (7-2)]. Hence, they concluded that, Yangtze Estuary clay deposits 

consolidate faster than Ems-Dollar sediment deposits. 

 

Furthermore, te Slaa et al. (2013), Van and Pham Van Bang (2013) and Merckelbach 

(2000) specifically reported that fractal dimension (𝑛𝑓) increases with increasing initial 

sediment concentration, i.e. for a given sediment, 𝑛𝑓 varies with the initial sediment 

concentration.  Increase in fractal dimension with increase in initial concentration was 

also indicated by numerical simulation of Vicsek (1989).  However, relating 𝑛𝑓 values 

from the current and previous studies as function of clay concentration (Cs
cl) within the 

initial mixed (sand-mud) sediment mass concentration (Cs) (Figure 7.4), interestingly 

shows that irrespective of the initial sand content (Cs
sa) (see Table 7-2), 𝑛𝑓 appears to 

linearly increased with Cs
cl.  Figure 7.4 indicates a good positive correlation (R² = 0.90) 

between 𝑛𝑓 and Cs
cl.  Grasso et al. (2015) reported similar correlation between 𝑛𝑓 and 
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initial relative mud concentration (i.e. Crelmud; see section 7.5 for details), with initial sand 

content showing no significant influence. In support of submissions made by Grasso et 

al. (2015), these findings have significant implication on 3D estuarine transport 

modelling (e.g. Le Hir et al., 2011; Waeles et al., 2008), where overlying water column 

and sediment bed are usually treated as two compartments and the initial sediment 

concentration of the deposit always taken arbitrarily as having a constant value. It will 

therefore mean that consolidation processes prediction from such models will obviously 

be less accurate as it may be difficult to consider dependency of these parameters on this 

arbitrary initial sediment concentration. 

 

 

Figure 7.4 Relation between the fractal dimension (nf) and the relative initial clay concentration 

for the current and previous studies: Current study (green circles); Grasso et al. (2014) (MSMB 

– Cancale, red triangles); Grasso et al. (2014) (MSMB – Hirel, blue circles); (te Slaa et al. 

(2013) (diamonds); Grasso et al. (2014) (SE-Mel, black squares); and Merckelbach and 

Kranenburg (2004b) (purple triangle). The solid blue -line (R² = 1) is the Least Square 

Regression Line for the data and solid black-line represents -0.12 Standard Deviation data). 

 

 

In conclusion, as expected, the experimental evidence presented in this study, shows that 

the fractal dimension (𝑛𝑓) of bed structure undergoing phase I consolidation (i.e. 

permeability regime) is significantly higher than that of mud flocs in suspension. Also, 

the predicted material functions (i.e. 𝐾𝑘 and  𝑛𝑓) in the current study relative to others, 

suggest that the predominantly clay deposits tested here compact more efficiently or 

faster, evidenced by relatively higher range of predicted material functions. The specific 

reason for this as highlighted above, is the relatively high clay fractional composition 
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within the initial mixed sediment mass concentration. It can be argued also that, this will 

result in higher concentration of aggregates during hindered settling phase, thereby results 

in a higher fractal dimension.  

 

Lastly, the current findings [e.g. Tables (7-1) & (7-2); Figure 7.4], have further 

established the strong dependence of material functions (e.g. 𝐾𝑘 and  𝑛𝑓) or the so-called 

constitutive relationship parameters in permeability regime (i.e. phase I consolidation 

regime), largely on initial fractional composition of clay (e.g. Grasso et al., 2015), and 

less on the initial mixed sediment mass concentration (e.g. Van and Pham Van Bang, 

2013; te Slaa et al., 2013; etc.).  Therefore, the implication of this is that, in addition to 

the significant role of initial fractional composition of clay in controlling formation of 

segregated (sand-clay) bed layers within bed deposits (see chapter 5); its observed 

influence on constitutive relationship parameters in the permeability regime, suggests that 

the efficiency of phase I consolidation process is also largely depends on it. 

 

 

7.5     Parametric Conditions for Segregation in Sand-Clay Mixtures 

Partial and full segregation was observed in the resulting bed deposits for the majority of 

the sand-clay mixtures tested within the settling column experiments. The exceptions to 

this are SET-EX9 and ERT-EX4, which were shown to result in the formation of a mixed 

bed deposit layer.  Recent analysis of Grasso et al. (2014) on a number of previous settling 

column studies revealed that sand segregation is not always observed within the deposits 

of sand-mud mixtures and appears to be prevented at a threshold level of the initial 

relative mud concentration 𝐶𝑟𝑒𝑙𝑚𝑢𝑑  (e.g. Waeles et al. 2008).  Based on these findings, 

Grasso et al. (2014), proposed that the initial relative mud concentration 𝐶𝑟𝑒𝑙𝑚𝑢𝑑 in 

relation to the initial volumetric sand content ∅𝑠𝑎𝑛𝑑 (i.e. grain diameter > 63 μm) in the 

mixture could be used as a potential segregation indicator in the resulting deposit, such 

that: 

 

                  𝐶𝑟𝑒𝑙𝑚𝑢𝑑 =  
𝐶𝑚𝑢𝑑

1− ∅𝑠𝑎𝑛𝑑
                                                      (7-6) 

 

where 𝐶𝑚𝑢𝑑, is the initial mass concentration of mud (clay and silt) fraction. Note that the 

𝐶𝑟𝑒𝑙𝑚𝑢𝑑 is directly related to the relative volume fraction of fine particles defined by 

Marckelbach and Kranenburg (2004b). 
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Table 7-2  n f and Kk: Comparison between current study and other studies    

 

 

Authors 

Initial clay 

concentration 

Cs
cl (kg m-3) 

 

Initial sand  

concentration 

Cs
sa

  (kg m-3) 

 

Initial silt  

concentration 

Cs
silt

  (kg m-3) 

Fractal 

Dimension 

nf  

Permeability 

Coefficient 

Kk (m s-1) 

Townsend and McVay (1990) 

 

167.4 - - 2.62 4.12 x 10-13 

Merckelbach and Kranenburg (2004b) 

 
≈100 - - 2.76 3.68 x 10-14 

Merckelbach (2000) 

 

81 

(∼80-90% clay) (2) 

24 

- 

- 

- 

2.67-2.75(1) 

2.72-2.75(2) 

1.2 x 10-15 – 4.5 x 10-13 (1) 

1.0 x 10-16 – 1.4 x 10-14 (2) 

Winterwerp and van Kesteren (2004) 

 

53 7 - 2.70 1.0 x 10-14 

te Slaa et al. (2013) 

 

3-34 0.5-17 21-292 2.69-2.82 1.04 x 10-15 – 8.32 x 10-13 

Current work 

 

83-330 83-528 - 2.70-2.89(3) 

2.75-2.81(4) 

1.92 x 10-15 – 3.03 x 10-12 

 (1) Results for Caland-Beer Channel mud 
                      (2) Results for Ems-Dollard Estuary mud 
                      (3) ERT-EX1-5 - longer term tests (up to 72 hours) 

                                            (4) SET-EX1-9 - shorter term tests (up to 24 hours) 

 

 
  

 

 

 

1
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Furthermore, based on the above, Grasso et al. (2015) synthesised 22 settling experiments 

from the literature, for the settling and consolidation of natural sand-mud mixtures, and 

for which segregation occurrence was determined, based on sediment concentration and 

grain size vertical profiles (e.g. Bartholomeeusen et al. 2002; Merckelbach and 

Kranenburg 2004a; te Slaa et al. 2013; van and Pham Van Bang 2013 and Grasso et al. 

2014). In these previous settling column studies, initial mixture conditions varied 

significantly (i.e. initial total mass concentration 𝐶𝑠 ranging from 64 to 893 kg m−3; sand 

content ranging from 2 to 80 %).  Specifically, their analysis revealed that no segregation 

occurred for 𝐶𝑟𝑒𝑙𝑚𝑢𝑑 ≥ 207 kg m−3. As such, Grasso et al. (2015) suggested 𝐶𝑟𝑒𝑙𝑚𝑢𝑑  ∼200 

kg m−3 as a threshold for segregation within sand-mud mixtures.   Applying these findings 

to the idealised sand-clay mixtures tested in the current study, using the appropriate 

notations  𝐶𝑠
𝑐𝑙 = 𝐶𝑚𝑢𝑑 and ∅𝑠𝑎𝑛𝑑 = 𝐶𝑠

𝑠𝑎/ρs = Ø𝑠
𝑠𝑎 in Equations (7-6), the corresponding 

values of 𝐶𝑟𝑒𝑙𝑚𝑢𝑑 are estimated and presented in Table 7-1 (pg. 188).  Clearly from Table 

(7-1), the calculated values of 𝐶𝑟𝑒𝑙𝑚𝑢𝑑 for the sand-clay mixtures tested range from 

𝐶𝑟𝑒𝑙𝑚𝑢𝑑 = 0 (i.e. test ERT-EX1, 100 % sand) up to 356 kg m−3 (i.e. test SET-EX9, 35 % 

sand). It is shown that the threshold for bed segregation occurs between 𝐶𝑟𝑒𝑙𝑚𝑢𝑑 = 227 

kg m−3 (i.e. runs SET-EX4 to –EX7) and 𝐶𝑟𝑒𝑙𝑚𝑢𝑑 = 250 kg m−3 (i.e. run ERT-EX4). This 

appears to be in broad accord with the findings of Grasso et al. (2015), but it does not 

provide further detail of the physical hindered settling processes under which sand-clay 

segregation may or may not occur.  

 

 

7.6     Polydisperse Model for Hindered Settling of Sand-Clay Mixtures 

The settling characteristics of monodisperse non-cohesive (e.g. Cheng, 1997) or cohesive 

sediment flocs (e.g. Winterwerp, 2002) suspensions have been extensively studied, with 

the exact form of the Richardson and Zaki (1954) formulae (see section 2.3.4.3; pg. 28) 

or some related variation being used for most hindered settling models employed to 

calculate sediment transport in coastal environments (Cuthbertson et al., 2008). By 

contrast, challenges associated with full theoretical description of settling characteristics, 

for high volumetric concentrations of polydispersed (i.e. multiple-species) particulate 

suspensions, still exist, in spite of contributions from various researchers (e.g. Batchelor, 

1982; Davis and Gecol, 1994; Ha and Lui, 2002; etc.). As demonstrated in the current 

work and from previous studies, relative fractional (i.e. sand-clay) content within the 

mixture can strongly influence the fractional settling characteristics for the sand and mud 

constituents in concentrated suspensions.  For example, in a suspension containing mainly 
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sand particles with a low mud content (i.e. “sand-rich” suspension), the generated return 

flow associated with the differential settling of sand particles, may be significant enough 

to initiate upward transport of the mud particles/flocs (Amy et al., 2006).  However, if 

the sand particle content is much lower than the mud particle/floc content (i.e. “mud-rich” 

suspension) within the suspensions, the settling velocity of the sand particles can be 

significantly reduced by the increased apparent viscosity and return flow generated by the 

high mud content within the suspension (Winterwerp, 1998; Cuthbertson et al., 2008).   

 

In this context, it is informative to consider the potential reciprocal influences that the 

sand and clay fractions are likely to have on each other in terms of their hindered settling 

characteristics within the sedimentation column experiments. To demonstrate this, an 

analytical hindered settling model for sand particle-clay floc mixtures, developed by 

Cuthbertson et al. (2008), has been used.  Also, this analytical model is used, not least, to 

remove the restriction associated with the “mud-rich” assumption (Øs << Øf) [e.g. 

Winterwerp and Van Kesteren, 2004 and Cheng, 1997], as well as to account adequately 

for the relative size and density effects between the cohesive mud flocs and non-cohesive 

sand particles. The model is based on a polydisperse formulation from Batchelor (1982), 

whereby the fractional settling velocities 𝑤𝑠𝑖, for a suspension containing 𝑚 different 

particle types with fractional volume concentrations ∅𝑗 within the polydisperse mixture 

can be determined by:  

 

                    𝑤𝑠𝑖 =  𝑤𝑠𝑖,0(1 − ∑ 𝑆𝑖𝑗∅𝑗
𝑚
𝑗=1 )                                                                 (7-7) 

 

where 𝑤𝑠𝑖,0 is the terminal settling velocity of a solitary particle from fraction 𝑖, and 𝑆𝑖𝑗 

is an empirical polydisperse sedimentation parameter dependent on (i) the particle size 

ratio λij (= 𝑑𝑗/𝑑𝑖;  (ii) the reduced density ratio 𝜌𝑖𝑗 = [(𝜌𝑗 − 𝜌𝑓)/(𝜌𝑖 −  𝜌𝑓)] and (iii) the 

particle Péclet number (Pe).  The particle Péclet number compares the ratio of particle 

advection to particle diffusion (i.e. Pe is defined as the ratio of mechanical to Brownian 

forces) and thus gives an estimate as to whether particle motions are predominantly 

advective (i.e. Pe ≫ 1) or dominated by randomly diffusive (e.g. Brownian) motions (Pe 

≪ 1). The work of Batchelor (1982), discussed here, was extended by Davis and Gecol 

(1994), by considering a Richardson-Zaki-type relation [e.g. 𝑤𝑠𝑠 𝑤𝑠𝑠,0⁄ =  (1 − ∅𝑠)𝑛; see 

section 2.3.4.3], such that:  
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                       𝑤𝑠𝑖 =  𝑤𝑠𝑖,0(1 − ∅)−𝑆𝑖𝑖(1 − ∑ (𝑆𝑖𝑗−𝑆𝑖𝑖) ∅𝑗
𝑚
𝑗≠1 ) (7-8) 

 

where ∅ is the total volumetric concentration of the mixture and 𝑆𝑖𝑖, is the equivalent 

empirical sedimentation parameter for a monodisperse suspension. The application of this 

type of polydisperse hindered settling model to concentrated sand–mud suspensions, such 

as we have in the current work, is based on the assumption that, (i) the mud flocs and 

sand particles contained within the suspension are individually monodisperse (i.e. 

represented by single volumetric concentrations ∅𝑓 and ∅𝑠 and sizes 𝑑𝑓 and 𝑑𝑠, 

respectively); and (ii) Pe >> 1 for each fraction (i.e. non-colloidal). Under these 

conditions, Cuthbertson et al. (2008) applied this polydisperse approach to consider 

mixed suspensions of uniform-sized sand particles and clay flocs, with hindered settling 

characteristics, 𝑤𝑠
𝑠𝑎 and 𝑤𝑠

𝑓𝑙𝑜𝑐
, respectively, given by: 

 

                    𝑤𝑠
𝑓𝑙𝑜𝑐 =  𝑤𝑠,0

𝑓𝑙𝑜𝑐(1 − ∅)−𝑆𝑓𝑓[1 + (𝑆𝑓𝑠 − 𝑆𝑓𝑓)∅𝑠
𝑠𝑎]                                  (7-9) 

 

                     𝑤𝑠
𝑠𝑎 =  𝑤𝑠,0

𝑠𝑎(1 − ∅)−𝑆𝑠𝑠[1 + (𝑆𝑠𝑓 − 𝑆𝑠𝑠)∅𝑓𝑙𝑜𝑐]                                     (7-10) 

 

The total mixture volumetric concentration ∅ =  (∅𝑓𝑙𝑜𝑐 + ∅𝑠
𝑠𝑎) and volumetric clay floc 

concentration ∅𝑓𝑙𝑜𝑐 after Winterwerp (2002), is: 

 

                     ∅𝑓𝑙𝑜𝑐 = (
𝜌𝑠−𝜌𝑓

𝜌𝑓𝑙𝑜𝑐−𝜌𝑓
)

𝐶𝑠
𝑐𝑙

𝜌𝑠
=  

𝐶𝑠
𝑐𝑙

𝜌𝑠
 (

𝑑𝑓𝑙𝑜𝑐

𝑑𝑠
𝑐𝑙 )

3−𝑛𝑓

                                             (7-11) 

 

where 𝐶𝑠
𝑐𝑙 is the clay mass concentration (kg m−3); 𝜌𝑠 (= 𝜌𝑠

𝑠𝑎= 𝜌𝑠
𝑐𝑙) is the solid particle 

density; 𝑑𝑠
𝑐𝑙 and 𝑑𝑓𝑙𝑜𝑐 are respectively, the clay primary particle and flocs sizes; and 𝑛𝑓 is 

the fractal dimension of the flocs (𝑛𝑓  = 2.0 is assumed here). Although, Equations (7-9) 

and (7-10) include implicitly all induced hindered settling effects (i.e. return flow 

generation, increased viscosity and buoyancy of the sand-clay mixture, Winterwerp 

2002). However, a further correction is necessary to account for the increased buoyancy 

effect resulting from the sum of the volumetric particle concentrations ∅𝑠 = (∅𝑠
𝑐𝑙 + ∅𝑠

𝑠𝑎) 

rather than from the total mixture volumetric concentration ∅ =  (∅𝑓𝑙𝑜𝑐 + ∅𝑠
𝑠𝑎). 

Therefore, Equations (7-9) and (7-10)] can be represented as: 

 

            𝑤𝑠
𝑓𝑙𝑜𝑐 =  𝑤𝑠,0

𝑓𝑙𝑜𝑐(1 − ∅)−(𝑆𝑓𝑓+1)(1 − ∅𝑠
𝑐𝑙 − ∅𝑠

𝑠𝑎)[1 + (𝑆𝑓𝑠 − 𝑆𝑓𝑓)∅𝑠
𝑠𝑎]        (7-12) 
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             𝑤𝑠
𝑠𝑎 =  𝑤𝑠,0

𝑠𝑎(1 − ∅)−(𝑆𝑠𝑠+1)(1 − ∅𝑠
𝑐𝑙 − ∅𝑠

𝑠𝑎)[1 + (𝑆𝑠𝑓 − 𝑆𝑠𝑠)∅𝑓𝑙𝑜𝑐]        (7-13) 

 

The sedimentation parameter 𝑆𝑓𝑠 and 𝑆𝑠𝑓 for the clay floc and sand particle fractions 

within Equations (7-12) and (7-13) can be estimated from an expression proposed by Ha 

and Lui (2002), following simulations by Batchelor and Wen (1982), such as; 

 

                  𝑆𝑓𝑠 = −2.5 − (𝜆𝑓𝑠
2 + 3𝜆𝑓𝑠 + 1 −

1.87𝜆𝑓𝑠

1+0.0024𝜆𝑓𝑠
2 ) 𝜌𝑓𝑠                                  (7-14) 

 

                 𝑆𝑠𝑓 = −2.5 − (𝜆𝑠𝑓
2 + 3𝜆𝑠𝑓 + 1 −

1.87𝜆𝑠𝑓

1+0.0024𝜆𝑠𝑓
2 ) 𝜌𝑠𝑓                                  (7-15)  

        

where particle size ratios 𝜆𝑓𝑠 = 𝑑𝑠
𝑠𝑎 𝑑𝑓𝑙𝑜𝑐⁄  and 𝜆𝑠𝑓 = 𝑑𝑓𝑙𝑜𝑐 𝑑𝑠

𝑠𝑎⁄ ; while reduced density 

ratios, 𝜌𝑓𝑠 = (𝜌𝑠 − 𝜌𝑓)/(𝜌𝑓𝑙𝑜𝑐 − 𝜌𝑓) and 𝜌𝑠𝑓 = (𝜌𝑓𝑙𝑜𝑐 − 𝜌𝑓)/(𝜌𝑠 − 𝜌𝑓).  By assuming 

λ = ρ = 1; 𝑆𝑓𝑓 and 𝑆𝑠𝑠 in Equations (7-12) and (7-13) respectively can be obtained as 𝑆𝑓𝑓 

= 𝑆𝑠𝑠 = -5.63 from Equations (7-14) and (7-15). This assumption that the sedimentation 

parameters are both constant and equal is, according to Cuthbertson et al. (2008) deemed 

acceptable as a first approximation. 

 

Thus, from the fractional hindered settling expressions in Equations (7-12) and (7-13), 

the hindered settling rates for clay floc fraction and sand particles within the tested 

mixtures in the current work, can be determined.  In order to successfully apply the 

Cuthbertson et al. (2008) model, it is proposed in the current analysis that mixture 

condition under which no sand-clay segregation occurs will result when the initial clay 

concentration 𝐶𝑠
𝑐𝑙 ≈ 𝐶𝑔𝑒𝑙  (i.e. gelling concentration). According to Winterwerp (2002), 

this condition occurs when the volumetric floc concentration Ø𝑓𝑙𝑜𝑐 → 1, as such, from 

Equation (7-11), an expression for 𝐶𝑠
𝑐𝑙 can be obtained as: 

 

                    𝐶𝑠
𝑐𝑙 = 𝐶𝑔𝑒𝑙 = 𝜌𝑠 (

𝑑𝑠
𝑐𝑙

𝑑𝑓𝑙𝑜𝑐
)

3−𝑛𝑓

                                                                  (7-16) 

 

Additionally, for the purpose of the current analysis, 𝐶𝑔𝑒𝑙= 330 kg m-3 has been assumed. 

This is the largest clay mass concentration (i.e. 𝐶𝑠
𝑐𝑙 = 330 kg m-3) tested within the 

experimental runs under consideration here (see Table 7-1). Furthermore, 𝜌𝑠 = 2590 kg 
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m-3, 𝑛𝑓 = 2.0 and 𝑑𝑠
𝑐𝑙 = 2 μm (i.e. 𝑑50) are equally used. It should be noted that in reality, 

this gelling concentration may be considerably lower, and has been reported (e.g. by 

Winterwerp and Van Kesteren, 2004) to be influenced by parameters such as fluid shear 

rate G and the fractal dimension 𝑛𝑓 of the clay/mud flocs generated, which are either 

undefined or assumed within the current study.  For the current hindered settling analysis 

within the sedimentation column experiments, 𝑑𝑓𝑙𝑜𝑐 = 15.6 μm, is the adopted 

representative clay floc size, which was obtained from Equation (7-16), substituting 

for 𝑛𝑓, 𝑑𝑠
𝑐𝑙, 𝐶𝑔𝑒𝑙  and 𝜌𝑠. 

 

Figure 7.5 presents the predicted non-dimensional hindered settling characteristics (i.e. 

ws
sa/ws,0

sa and ws
floc/ws,0

floc) for the sand particles and clay flocs obtained respectively from 

Equations (7-12) and (7-13).  These hindered settling characteristics have been obtained 

for a range of volumetric mixture concentration ∅ = 0.3-1.0 and volumetric sand particle 

concentration ∅𝑠
𝑠𝑎 = 0.03-0.18, arbitrarily chosen to reflect the characteristics of the sand-

clay mixtures under consideration (see Table 7-1).   

 

Clearly from Figure 7.5, the predicted hindered settling regime of the sand fraction varies 

from ws
sa/ws,0

sa = 0.19 to 0.31 at ∅ = 0.3 (i.e. depending on the ∅𝑠
𝑠𝑎 value), with ws

sa/ws,0
sa 

→ 0 as  ∅ → 1 (for all ∅𝑠
𝑠𝑎 values). The corresponding hindered settling regime for the 

clay flocs (Equation 7-13), however, shows a contrasting trend, with all negative values 

obtained for ws
floc/ws,0

floc, for all the ∅ values considered, with ws
floc/ws,0

floc values lower 

than -10 at ∅ values between 0.3 and 0.5 (depending on ∅𝑠
𝑠𝑎 values). The all negatives 

values obtained in the hindered settling regime for the clay flocs suggest that they are 

displaced upwards in the sedimentation column due to strong return flow effects 

generated by the settling sand fraction. Clearly, larger sand concentrations are shown to 

result in a stronger upward motion within the clay flocs (i.e. lower ws
floc/ws,0

floc values).  

By contrast, larger clay concentrations ∅𝑠
𝑐𝑙 within the mixture (i.e. increased ∅ for given 

∅𝑠
𝑠𝑎) are shown to reduce the upward motion of flocs and increase the hindered settling 

of sand particles, with the limit ws
floc/ws,0

floc → ws
sa/ws,0

sa → 0 as ∅ → 1 (Figure 7.5). It is 

therefore proposed that the generation of clearly segregated sand- and clay-dominated 

deposit layers in the column from initially well-mixed sand-clay suspensions requires the 

clay fraction (i.e. flocs) to be displaced upwards within the column while the sand fraction 

(i.e. particles) settles to the base of the column. 
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Figure 7.5 Predicted non-dimensional hindered (sand-clay) settling characteristics ws
sa/ws,0

sa and 

ws
floc/ws,0

floc versus volumetric mixture concentration Ø (for volumetric sand particle concentration Øs 

values shown). Discrete data points show predicted ws
sa/ws,0

sa and ws
floc/ws,0

floc values for the tested sand-

clay mixture (see Table 7-1). 

 

 

In this context, the predicted ws
floc/ws,0

floc and ws
sa/ws,0

sa values [Equations (7-12) & (7-

13)] are plotted as data points (Figure 7.5) for the individual sand-clay mixture conditions 

tested in the column (see Table 7.1). Clearly from the plot, sand-clay mixtures with lower 

volumetric concentrations ∅ < 0.5 (i.e. runs ERT-EX2, SET-EX1, EX2 and EX8; Figure 

7.5) have the largest predicted difference between hindered sand particle settling (i.e. 

ws
sa/ws,0

sa ≈ 0.1→ 0.23) and the upward clay floc motion (i.e. ws
floc/ws,0

floc ≈ −3.2 → −9.7). 

These runs are equally shown in Figures 5.2, 5.3 and 5.5(a) to generate the greatest degree 

of sand-clay layer segregation (and most well-defined interface) in the resulting bed 

deposits. In contrast, sand-clay mixtures in the range of ∅ ≈ 0.55→ 0.75 (i.e. runs ERT-
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EX3 and SET-EX3 to EX7, Figure 7.5) are shown to have lesser predicted differences 

between hindered sand particle settling (i.e. ws
sa/ws,0

sa ≈ 0.005 → 0.06) and upward floc 

motion (i.e. ws
floc/ws,0

floc ≈ −0.2 → −1.5). These predictions, show that the mixtures under 

consideration here (i.e. SET-EX3 to EX7) correspond to the structural conditions of bed 

deposits (i.e. in Figure 5.4), under which more transitional sand-clay segregation (i.e. with 

less well-defined interface between the sand-rich and clay-rich layers), are seen to occur.  

Finally, the two sand-clay mixtures with ∅ > 0.75 (i.e. runs ERT-EX4 and SET-EX9, 

Figure 7.5) have the least difference in predicted settling rates between the clay and sand 

fractions (i.e. ws
floc/ws,0

floc ≈ ws
sa/ws,0

sa → 0 as ∅ →1) and correspond to resulting bed 

deposit conditions where no vertical sand-clay segregation is observed (e.g. Figure 5.3b).  

 

For the current set of settling experiments, a schematic representation (Figure 7.6) of 

relative sand and clay fraction motion within initial mixture, to develop fully segregated 

sand-clay bed deposit layers (Figure 7.6a) and transitional segregated sand-clay bed 

deposit layers (Figure 7.6b), has been drawn. Furthermore, it is informative to estimate 

the corresponding time scales over which the sand-clay segregation process occurs within 

the settling column for the majority of sand-clay mixture tested.  Firstly, standard 

expressions by Cheng (1997) and Winterwerp (2002) [Equations (2-8) – (2.10); pg. 22] 

are used to estimate the settling rates for a single sand particle, 𝑑𝑠
𝑠𝑎 (= 150 μm), as ws,0

sa 

≈ 20 mm s-1 and clay floc, 𝑑𝑓𝑙𝑜𝑐 (= 15.6 μm), as ws,0
floc ≈ 0.6 mm s-1, respectively. 

Secondly, it is assumed that the nominal interface between the sand-dominated base layer 

and clay-dominated upper layer, forms at elevation 𝑧𝑖𝑛𝑡 (Figure 7.6), then, an indicative 

time scale 𝑡𝑠𝑒𝑔 for the sand-clay segregation process can be estimated either from the 

hindered sand particle settling time, or clay floc rise time, over z = 0.5ℎ between the 

“centres of mass” of these two identified layers, i.e.:  

 

                     𝑡𝑠𝑒𝑔 ≈  
0.5ℎ

|𝑤𝑠
𝑠𝑎|

            or         𝑡𝑠𝑒𝑔 ≈  
0.5ℎ

|𝑤𝑠
𝑓𝑙𝑜𝑐

|
                                            (7-17)  

 

where ℎ is the total height of the settling column.  For example, in sand-clay mixtures 

with highly segregated final bed deposit layers (e.g. SET-EX1 and -EX2, Table 7-2), the 

interface elevation is shown to form at 𝑧𝑖𝑛𝑡 ≈ 0.125 m = 0.25 ℎ (i.e. Figures. 5.1a, b and 

5.2). From Figure 7.5 and the estimated values of settling rates for a single sand particle 

and clay floc, the corresponding hindered sand particle settling velocity (i.e. ws
sa ≈ 0.1 x 

ws,0
sa = 2.0 mm s−1) and upward floc motion (i.e. and ws

floc ≈ −8.5 × ws,0
floc = −5.1 mm s−1) 
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are predicted accordingly.  Therefore, from Equation (7-17), the estimated segregation 

time scales can be calculated respectively as: 

 

                𝑡𝑠𝑒𝑔 ≈  
0.5ℎ

|𝑤𝑠
𝑠𝑎|

  = 125 s       and     𝑡𝑠𝑒𝑔 ≈  
0.5ℎ

|𝑤𝑠
𝑓𝑙𝑜𝑐

|
   = 49 s             

 

Interestingly, the 𝑡𝑠𝑒𝑔 ≈ 125 s clearly falls within the time scale observed for the 

formation of predominantly sand base layer during sedimentation processes of the sand-

clay mixtures under consideration here (i.e. t = 120 – 140 s; SET-EX1 and -EX2 in 

Figures 5.1a, b and 5.2).  Following similar procedures for sand-clay mixtures that 

resulted in more transitional segregation within the bed (i.e. SET-EX4 to -EX7; Table 7-

1), with the predicted ws
sa ≈ 0.0051 x ws,0

sa = 0.1 mm s−1 and ws
floc ≈ −0.204 × ws,0

floc = 

−0.12 mm s−1; the estimated segregation time scales can again be calculated respectively 

as: 

 

     𝑡𝑠𝑒𝑔 ≈  
0.5ℎ

|𝑤𝑠
𝑠𝑎|

  = 2500 s (42 mins)     and     𝑡𝑠𝑒𝑔 ≈  
0.5ℎ

|𝑤𝑠
𝑓𝑙𝑜𝑐

|
   = 2080 s (34 mins)    

Again, this is shown to be in broad agreement with the observed time scale during actual 

sedimentation experiments, over which transitional segregational process occurs (i.e. t = 

30 – 60 mins; SET-EX4 to EX7 in Figures 5.1d-f and 5.4). It should be noted that this 

initial segregation time scale 𝑡𝑠𝑒𝑔 is considerably shorter than the overall hindered settling 

time scale [i.e. t = 9000 – 18,000 s (150-300 mins); Figure 5.7] recorded during the 

settling experiments, prior to the onset of phase I consolidation in the upper clay-

dominated bed layers. 

 

In summary, as it has been demonstrated in the current section, the polydisperse hindered 

settling approach for sand-clay mixtures, proposed by Cuthbertson et al. (2008), provides 

improved representation of the physical mechanisms and reciprocal interactions between 

the sand and clay fractions that can lead to layer segregation within the bed deposit. 

Additionally, it has provided new insight into the parametric influences on these bed 

segregation patterns (e.g. sharp and transitional sand-clay interfaces) as well as 

information on the time scales over which this segregation would be expected to occur. 
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Figure 7.6 Schematic representation of relative sand and clay fraction motion within initial 

mixture, to develop (a) fully segregated sand-clay bed deposit layers and (b) transitional 

segregated sand-clay bed deposit layers. 

 

 

7.7     Effect of Clay on Erosion of Sandy Bed  

Occurrence of marine sediment as pure sand, silt or clay is very rare. In most sedimentary 

environments (e.g. tidal rivers, estuaries and coastal zones; etc.), sediments are usually 

found as mixtures of sand and mud (Torfs et al., 1996). The erosion and deposition 

processes of these mixed sediments are complex, even, a small quantity of clay particles 

in sand can significantly alter the fabric and shear strength of the mixed bed (Mehta, 

2014). As shown in Figure 7.7, the sediment bed surface shear strength (𝜏𝑠𝑜) and the bed 

critical (or yield) shear stress (𝜏𝑠𝑐) increase with increasing clay weight fraction, although 

the correlation especially for 𝜏𝑠𝑐 is non-linear. It is particularly interesting to observe 

significant influence of low fraction of clay (i.e. from 0.02 to 0.1) on erosion rate of 

predominantly sandy beds (Figure 7.7). This finding is in good agreement with Lyle and 

Smerdon (1965), Panagiotopolos et al (1997), Torfs (1994) and Whitehouse et al. (2000), 

etc., where addition of clay particles to pure sand was found to initially increase 𝜏𝑠𝑐 to a 

maximum value peaked at a clay weight fraction estimated to be in the order of 0.15 to 

0.2. Previous studies (e.g. Smerdon and Beasley, 1959; Torfs. 1995; Raudkivi, 1998; 

Jacobs et al., 2011; Baas et al, 2013) suggested that once the cohesive sediment fractional 

weight within predominantly sandy bed exceeds 5-10% (i.e. critical cohesive fraction 

value), then the bed stops behaving as a non-cohesive bed and becomes a cohesive bed, 
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i.e. the bed moves from non-cohesive regime to cohesive regime (van Ledden, 2003; van 

Ledden, et al, 2004). This trend has been shown in the current study, where run EDT-

EX3 [5% clay; Figures 6.8c (pg. 169) and 6.9c (pg. 170)] clearly appears to be a 

transitional bed between sand dominated and clay dominated behaviours. These 

measurable effects of small fraction of cohesive sediments on the erosion of 

predominantly non-cohesive sediments beds, call to question the widely used approach 

of modelling erosion fluxes of coarse and fine particle fractions as independent processes 

especially in cohesive regime (e.g. van Ledden, 2002; Sanford, 2008; etc.). For example, 

Sanford (2008) proposed a comprehensive model, based on two sediment classes, where 

the sand and mud fractions are eroded separately without the need to make a distinction 

between cohesive and non-cohesive regimes. The fact that this approach might be 

expedient and perhaps necessary to avoid some modelling difficulties and challenges, it 

is clearly not physically realistic and will unavoidably yield sediment transport models 

for predicting erosion in many sedimentary environments with limited successes. 

 

 

Figure 7.7  Plot showing the variance of critical shear stress with clay weight fraction  

within sandy-beds  

 

 

7.8    Semi-Empirical Erosion Rate (E) Equations 

For uniform beds, various mathematical expressions have been reported for the rate of 

erosion of cohesive sediment beds (e.g. Partheniades, 1965; Kandiah and Arulandan, 

1975; Raudkivi and Hutchison, 1974; Thorn and Parsons, 1980; Parchure and Mehta, 

1985; and Maa and Mehta, 1987; etc.) and mixed sediments beds (i.e. containing cohesive 

clay and non-cohesive sand) [e.g. van Ledden, 2003; van Ledden et al. 2004; Winterwerp 

and Van Kesteren, 2004; Jacobs et al., 2011]. Some of these expressions have been 

discussed in chapter 2 (see sections 2.5.4 and 2.5.5).  Common to them, is expressing 

erosion rate or flux (E) as a function of excess shear stress (𝜏𝑏 −  𝜏𝑠𝑐), i.e. 
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        𝐸 = 𝑓(𝜏𝑏 −  𝜏𝑠𝑐)                     (7-18) 

 

In general, these authors expressed the relationships between E and (𝜏𝑏 −  𝜏𝑠𝑐) mostly as 

linear, power law or exponential model. The linear model for instance is applicable to 

initiation of motion at low shear stresses, while exponential model describes the erosion 

flux over a wider range of applied shear stresses and rates of erosion. These relationships 

were checked with the erosion results obtained from the tests considered to be in cohesive 

regime in the current study (i.e. runs EDT-EX3 to EX6). The results (i.e. Figure 7.8) 

reveal that quadratic (Figure 7.8b) and exponential (Figure 7.8c) models appear to give 

the best representation of the relationships between E and (𝜏𝑏 −  𝜏𝑠𝑐), with power law 

being the least (Figure 7.8d). This is quite interesting as there has not been such quadratic 

relationship between E and (𝜏𝑏 − 𝜏𝑠𝑐) recorded in the literature (to the best of the current 

author’s knowledge). Therefore, in addition to existing empirical erosion formulae or 

models, the following quadratic erosion model [Equation (7-19)] has been proposed to 

estimate erosion processes of sand-clay mixture in cohesive regime (i.e. cohesive 

sediment fractional weight ≥ 5%), which obviously require further experimental 

validation. 

 

                    𝐸 = 𝑀1(𝜏𝑏 − 𝜏𝑠𝑐)2 + 𝑀2(𝜏𝑏 − 𝜏𝑠𝑐) + 𝑀3        for  𝜏𝑏 >  𝜏𝑠𝑐                 (7-19) 

 

𝑀1, 𝑀2 and 𝑀3 are erosion rate parameters which are believed to be strongly dependent 

on sediment composition or bed material characteristics. Although, exponential model 

(Figure 7.8c) appears to give the best representation (R2 = 0.769); however, the physical 

basis of Equation (7-19) with R2 = 0.765 is that, it may serve as a complementary model 

to the existing erosion empirical models. 
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             Figure 7.8  Semi-empirical expressions (or models) for the relationships between  

             E and (τb-τc): (a) linear, (b) quadratic, (c) exponential, and (d) power relationships.  
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7.9    Critical Reflection  

The previous chapters and sections have presented results, analyses and discussions of 

the experimental procedures designed to achieve the main aims and objectives of the 

current study (see section 7.1). Clearly, the findings reported here, are broadly in good 

agreement with related studies reported in the literature, especially in terms of parametric 

influence of ambient salinity, fractional sediment composition (i.e. relative sand and clay 

concentration) and initial sediment mass concentration on mixed sediment transport 

dynamics. 

 

In general, parametric dependence of hindered settling, bed structural formation and onset 

of phase I consolidation, on sediment mixture fractional compositions, ambient fluid 

salinity and initial mixture concentration; for mixed sediments containing cohesive clay 

and non-cohesive sand, is shown to follow the generally accepted theories (e.g. Kynch, 

1952; Imai, 1981; Bürger and Wendland, 2001; Grasso et al., 2014;2015; etc.).  

Furthermore, it has been shown that the resultant effects of the tested parametric 

conditions on these mixed sediment physical processes are significant. For instance, the 

settling characteristics of mixed sediment particles have been shown to be more complex 

and dynamic, especially at sufficiently large ambient salinity (> 15-ppt) and Cs
cl ≥ 100 

kg m-3. As expected, the observed parametric influence of ambient salinity during the 

hindered settling stage, was absent during phase I consolidation stage. The material 

functions (e.g. 𝐾𝑘 and 𝑛𝑓) or the so-called constitutive relationship parameters, governing 

the physical processes at this phase I consolidation stage (Winterwerp and van Kesteren, 

2004), were found to largely depend on initial fractional composition of clay (Cs
cl) and, 

less on the initial mixed sediment mass concentration (Cs).  

 

Furthermore, from the experimental results of the current study, more insight into the 

appropriate criteria describing the parametric conditions under which well mixed or 

segregated bed deposits are likely to be formed had been provided. The segregation 

mechanisms observed, clearly showed that, formation of segregated (sand-clay) bed 

layers within bed deposits is largely controlled by the initial fractional composition (i.e. 

fractional ratio of sand to clay). The results specifically indicate that segregated bed 

deposits are generally obtained for the range of sand-clay mixtures tested, with a sand-

dominated layer deposited at the column base and subsequently overlain by a clay-

dominated layer. The degree of segregation within these deposits is well described by the 

nature of the interface forming between these two layers, with a sharp, well-defined 
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interface obtained for mixtures with lower volumetric clay concentrations (∅𝑠
𝑐𝑙 ≤ 0.05) or 

high sand ratio. This is thought to be primarily due to the weak network structure form 

by the cohesive clay particles in the settling phase, which cannot adequately support 

majority of the sand particles in its matrix.  On the other hand, the mixtures with high 

volumetric clay fractions (i.e. 0.054 < ∅𝑠
𝑐𝑙 < 0.076), apparently result in the initial mixture 

concentration that has the potential of being above the structural density (i.e. the 

concentration at which a space-filling network occurs where particles within the mixture 

support each other at their loosest packing). Therefore, a network structure of 

predominantly cohesive flocs is formed, which significantly hindered the settling rate of 

sand particles within the mixture. Hence, generally results in transitional interfacial 

region developing for these mixtures. This appears to explain the co-existence of sand 

and mud in suspended sediment transport (e.g. Spearman et al., 2011) from weakly 

segregated bed deposits especially within high energy environments.  Finally, for some 

mixtures with sufficiently high volumetric clay concentrations (∅𝑠
𝑐𝑙 > 0.095), no sand-

clay layer segregation is shown to develop in the resulting bed deposits, irrespective of 

the corresponding sand concentration ∅𝑠
𝑠𝑎.  In addition, the time evolution of the upper 

clay-water interface (i.e. via time-lapsed images) also provided information on the 

transition from hindered settling and phase I consolidation within the upper clay-

dominant bed layer (see Figure 5.9), with the latter process shown to be well-represented 

by an existing consolidation model of Merckelbach (2000) [Figure 7.3].  

 

An existing polydisperse hindered settling model of Cuthbertson et al. (2008), was used 

for further investigation into the main physical mechanisms underpinning the occurrence 

(or non-occurrence) of segregation (or degree of segregation) within the resulting bed 

deposits from the differential settling of sand-clay particles. This model was employed to 

predict the relative motion of sand particles and clay flocs during the sedimentation 

process and how these vary for the different mixture compositions under consideration. 

The model, specifically, predicted that hindered settling characteristics (i.e. 0 ≤ ws
sa/ws,0

sa 

<1) will occur for the sand particles, while the clay flocs will be subjected to upward 

motion (i.e. ws
floc/ws,0

floc ≤ 0) due to return flow effects from the settling sand fraction 

(Figure 7.5). Interestingly, the magnitude of the difference between these downward 

(sand) and upward (clay) motions was found to correlate qualitatively with the degree of 

sand-clay segregation observed within the resulting bed deposit for the actual 

experimental runs. Specifically, for mixtures with high sand ∅𝑠
𝑠𝑎 and low clay contents 

∅𝑠
𝑐𝑙 (e.g. SET-EX1, -EX2, -EX8 and ERT-EX2), a well-defined segregation is observed, 
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between the sand and clay bed layers, where the difference in predicted fractional motions 

is maximal (see Figure 7.5).  However, a contrasting trend is observed for mixtures with 

higher clay contents ∅𝑠
𝑐𝑙 (e.g. SET-EX4, to -EX7 and ERT-EX3); within their bed 

deposits, a more transitional sand-clay layer segregation is seen to occur, where this 

difference in fractional motion is equally observed to be relatively reduced.  Lastly, in the 

remaining set of mixtures with ∅𝑠
𝑐𝑙 > 0.095 (i.e. SET-EX9 and ERT-EX4), as mentioned 

above, no sand-clay layer segregation is observed, as the overall mixture concentration Ø 

is tending to unity (Ø →1; i.e. at the so-called gelling concentration, Winterwerp and van 

Kesteren, 2004).  Furthermore, the prediction of relative sand-clay motions from the 

model, was used to estimate time scales, associated with these well-defined or transitional 

segregation processes. Interestingly, the results obtained are shown to agree quantitatively 

with experimental observations of layer development in the resulting bed deposits of the 

mixtures under consideration (see section 7.6). 

 

Therefore, from combination of the experimental measurements and polydisperse model 

predictions from Cuthbertson et al. (2008), the physical processes under which sand-clay 

segregation occurs (as shown schematically in Figure 7.6), can be described qualitatively 

as follows:  

 for sand-clay mixtures with lower clay concentrations (i.e. ∅𝑠
𝑐𝑙 ≤ 0.05): prior to 

the clay fraction in the mixture reaching gelling conditions, the sand fraction 

within the mixture, settles rapidly unhindered (and causing strong upward 

displacement of mud flocs)—the resulting deposit is separated by well-defined 

interface to form distinct sand and clay layers (Figure 7.6a);  

 for mixtures with higher clay concentrations (0.054 < ∅𝑠
𝑐𝑙< 0.076): the 

increasingly hindered (i.e. reduced) sand settling rates (and reduced upward 

displacement of clay flocs) allow a greater proportion of clay to remain trapped 

in the developing sand-dominated base layer; while above this layer, the clay 

fraction reaches gelling point before the sand fraction is completely deposited—

the resulting deposit forms a transitional segregation region (Figure 7.6b) where 

sand particles are trapped in patches within the clay dominated matrix (see Figure 

5.4); and  

 for mixtures with very high clay concentrations (∅𝑠
𝑐𝑙 ≥ 0.095): very little or no 

motion is predicted for either fractions suggesting that the mixture is close to or 

at the gelling point under initial conditions (i.e. prior to sedimentation)—the 
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resulting deposit therefore shows no layer segregation (see Figure 5.5b), with the 

sand fraction trapped almost immediately within the developing clay matrix. 

 

It should be noted here that the predictions obtained from the polydisperse model are 

based solely on the initial sand-clay mixture conditions and thus do not take account of 

temporal changes in sand or clay concentrations within the column during the 

sedimentation process itself. However, the correlation between the predicted hindered 

sand settling and/or upward clay motion and the time scales over which well-defined or 

transitional layer segregation occurs within the bed deposit layers appears to provide 

validation of the polydisperse model predictions for the first time. 

 

As described in chapter 2, there are so many marine environments where mud and sand 

are found to co-exist in different fractions under different tidal and/or wave actions, 

resulting in either mixed or segregated bed layers. If the former occurs, it creates the 

potential for both the mud and sand fractions to be re-entrained into suspension especially 

in dynamic environment (i.e. where sediment is regularly re-suspended), and 

consequently combine within a flocculation matrix (Manning et al., 2007). Thus, the 

physical effect of having cohesive mud and non-cohesive sand co-existing as a mixture 

in the marine environments has been reported (e.g. Mitchener et al., 1996) to result in bed 

deposits of increased strength or stability, which has the potential of forming 

predominantly mixed sediment flocs whenever the bed deposit is re-entrained 

(Panagiotopoulus et al., 1997; Mitchener et al., 1996; Torfs 1994; Williamson and 

Ockenden 1993; etc.).  On the other hand, if the latter occurs especially in the case of 

strongly segregated bed deposits, it would be expected that the textural and structural 

characteristics of the upper layer of the bed deposits will be dominated by clay-water 

matrix, which as a consequence, has the potential of forming predominantly mono 

sediment flocs whenever the bed deposit is re-entrained.   

 

The general implications of the two scenarios described above (i.e. where mud and sand 

co-exist as either mixed or segregated bed layers) in sedimentary environments are (i) 

sediment transport from non-segregated bed deposits will result in mud and sand particles 

interacting to form sand-mud flocs (e.g. Manning et al., 2010, 2011; Cuthbertson et 

al., 2010), which will apparently exhibit characteristics such as sizes, settling velocity 

and structural density distinctly different from their compositional base; and (ii) sediment 

transport from fairly or well segregated bed deposits will result in mud and sand particles 

http://link.springer.com/article/10.1007/s10236-016-0958-7#CR22
http://link.springer.com/article/10.1007/s10236-016-0958-7#CR23
http://link.springer.com/article/10.1007/s10236-016-0958-7#CR11
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within the suspended sediment acting independent of each other. This is largely because, 

for example, entrainment of natural sediment is dependent on the physical structure and 

particularly interactions of its subcomponents (Grabowski et al., 2011). Furthermore, 

segregation has been shown to clearly suggest minimal interaction between sand and mud 

fractions during settling and deposition processes (e.g. Torfs, 1994; Torfs et al., 1996; 

Amy et al., 2006; Manning et al., 2010).  Therefore, in this context, Manning et al. (2013) 

suggested that, prediction of suspended sediment transport in mixed sediment estuarine 

environments is best based on sedimentary regimes determined by observational 

measurements rather than a priori determination. This of course is another source of 

complexity to numerical modelling of suspended sediment transport in such 

environments.   

 

On the erosion of mixed (sand-clay) beds, in broad agreement with previous studies (e.g. 

Smerdon and Beasley, 1959; Torfs. 1995; Raudkivi, 1998; Jacobs et al., 2011; Baas et al, 

2013), ∼5% clay fractional concentration within sand-clay sediment bed, was identified 

as the critical cohesive fraction value that delineates the non-cohesive and cohesive bed 

erosion regimes (van Ledden, 2003; van Ledden et al, 2004). This implies that, below 

this critical clay fraction, the mixture behaves like pure sand, whereas above this critical 

value, the resistance to erosion increases with the clay fraction. Furthermore, it is a very 

common practice to use erosion rate (E), bed surface shear strength (𝜏𝑠𝑜) and bed 

characteristic shear strength (𝜏𝑠𝑐) as measures of bed erosion or to quantify erosion 

resistance of sediment bed. However, it has been shown in the current work, especially at 

cohesive erosion regime, that the use of these parameters should be with care, as they are 

largely affected by properties and compositions of bed materials and specifically the 

history and mode of the bed formation (e.g. Lau and Droppo, 2000; Grabowski et al., 

2011; etc.).  For instance, results from runs EDT-EX4 to EX6, (Figure 6.5), show that, 

the 𝜏𝑠𝑐 values of EDT-EX4 and EDT-EX6 are within a close range of 1.40-1.45 Pa, but 

the difference in their corresponding average erosion rates beyond 𝜏𝑠𝑐  (i.e. 5 and 10 g m-

2 mins-1 respectively) is significant. This may be of significant implication on numerical 

models, which require these experimentally derived parameters as inputs for predictions 

of the transport and fate of sediments in rivers, lakes and estuaries. This suggests that 

modelling efforts which do not, in particular, take into account the history and mode of 

the bed formation, may give misleading information or results in underestimation of the 

bed erosion strength and as such, can result in erroneous predictions of sediment transport 

and fate, in agreement with Pattiaratchi and Collins (1984) and Lau and Droppo (2000).

http://link.springer.com/article/10.1007/s10236-016-0958-7#CR22
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CHAPTER EIGHT 

 

 Conclusions and Recommendations 

“The only reason for time is so that everything does not happen at once” 

— Albert Einstein 

 

 

 

8.1    Summary of Main Experimental Findings 

Knowledge of the dynamic sedimentation behaviour of sand-mud mixtures is crucial to 

the physical understanding and prediction of the time-dependent structure (i.e. mixed or 

segregated), composition and erodibility of sediment bed deposits developing within 

sedimentary environments such as estuaries and tidal inlets, etc. However, the co-

existence of cohesive (i.e. mud: clay and silt, D < 65m) and non-cohesive (i.e. sand, D 

> 65m) sediments in different fractions, makes accurate prediction of sediment 

transport, fate and morphological changes in these sedimentary environments very 

challenging, not least as both types of sediments (i.e. cohesive and non-cohesive) can be 

mobilised easily under tidal and/or wave actions. These temporal and spatial changes and 

differences in sediment fractions distribution within sediment beds have consequences 

(e.g. economic, social, etc.) and to a large extent visible in changes in nearshore coastal 

zones morphology, siltation and erosion of navigation channels, dredging impact, etc. On 

this basis and in view of achieving the highlighted aims and objectives of the current 

study (see section 1.5), a series of settling column and erosion/deposition tests have been 

conducted to further investigate the complex underlying mechanisms of mixed-sediment 

sedimentation and erosion processes. The main findings from these series of experiments 

are thus re-iterated under the following sub-sections:  

 

8.1.1 ES-1: Electrical resistivity measurement technique (ERMT)  

Under this experimental programme, a new, non-invasive electrical resistivity 

measurement technique (ERMT) was developed and used to capture both temporal and 

spatial changes in density, porosity and composition of the evolving sand-clay bed 

deposits, resulting from the differential settling and erosion and deposition processes of 
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cohesive clay and non-cohesive sand mixtures. The main conclusions from ES-1 are 

summarised below: 

 The main technical issues that must be given consideration when using ERMT 

are: (i) electrode polarization (ii) temperature effects (iii) electrode configuration 

and (iv) CEC of clay (or surface conduction). Nevertheless, provided a suitable 

calibration is carried out, it has been shown that ERMT can be deployed on 

variety of samples both at laboratory and field scales. 

 Spatial resolution of the ERMT is shown to be significantly affected by electrode 

configuration (both vertical and horizontal) and geometry. When used to capture 

spatial changes within segregated bed deposits, the best spatial resolution was 

recorded with pin-electrodes array (i.e. 6 mm horizontal & 5 mm vertical spacing), 

whereas, plate electrodes spatial resolution was the least. 

 Based on the findings of the current work, empirical relationships [i.e. Equations 

(4-4) and (4-5) respectively] are proposed between the normalized bulk density 

(𝑏𝑢𝑙𝑘/𝑝) and the porosity (𝜑) of the sediment bed deposit, as well as between 

the corresponding formation factor F and 𝜑. These expressions require the 

following condition to be satisfied: bulk/p and 𝜑  1 as F 1. 

 
𝒃𝒖𝒍𝒌

𝒑

= 𝑎. 𝐹𝑏                     ;                          𝜑 = 𝑎̂𝑒− 𝑏̂ 𝐹 

 

     The coefficients (𝑎, 𝑏, 𝑎̂ and 𝑏̂) in these expressions are experimentally-derived. 

 

8.1.2 ES-2: Mixed-sediment settling experiment 

A series of settling column tests were conducted here to investigate the hindered settling 

and initial bed consolidation phases of a range of sand-clay mixtures to determine 

parametric conditions under which bed segregation occurs. The new, non-intrusive 

ERMT was used as described above, complimented by time-lapsed photographic and 

video images of the sedimentation process within the column. The main findings of this 

experimental series (ES-2) are summarised below: 

 Pore fluid is seen being expelled upwardly through the near-vertical drainage 

paths (i.e. dewatering channels), formed within the predominantly clay 

suspensions just after the initiation of hindered settling phase. Also, sand grains 

are also observed to settle through these channels, an observation also recorded 
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by Merckelbach (2000). After the onset of primary consolidation phase, the 

dewatering channels later became smaller or even disappeared completely.   

 Evidence of segregation immediately after the initiation of the tests in mixtures 

with lower initial clay fraction (i.e. Cs
cl ≤ 140 kg m-3) was apparent between 

elapsed time t = 10→ 60 s; while it became noticeable after t = 300 s in mixtures 

with Cs
cl = 196 kg m-3.  Therefore, while it is observed during the sedimentation 

processes that some degree of bed deposit segregation occurred in majority of the 

sand-mud mixtures tested, the results clearly indicate that, the most highly 

segregated bed conditions tend to occur for sand-mud mixtures with higher Øs
sa 

and lower Øs
cl values, respectively.  In general, the degree of segregation within 

the bed deposits is shown to become more transitional with a less well defined 

interface with increasing initial clay concentration. 

 The two mixtures for which no segregation was observed in the deposit had the 

highest volumetric concentrations of clay [i.e. Øs
cl = 0.095 (ERT-EX4) and Øs

cl 

= 0.110 (SET-EX9), Table 5.1], irrespective of the corresponding volumetric 

sand content [i.e. Øs
sa = 0.0314 (ERT-EX4) and Øs

sa = 0.20 (SET-EX9), Table 

5.1]. Clearly, a critical value of Øs
cl exists where sand particles in the mixture are 

trapped within the overlying clay-dominated matrix and consequently prevented 

from settling and forming a segregated bottom layer within the settling column, 

analogous to a gelling concentration (i.e. Winterwerp and van Kesteren 2004). 

 The transition region between the hindered settling stage and the onset of phase 

I consolidation (e.g. Imai, 1981) is thought to be largely initiated when the gelling 

point (e.g. Danker, 2006; te Slaa et al., 2013) or structural density (e.g. Sills, 

1998; Been and Sills, 1981) of the upper clay-rich sediment is reached. 

 During the hindered settling regime, the rate of downward interfacial 

displacement decreases steadily and occurs over a longer period of time for sand-

clay mixtures with relatively high volumetric clay concentrations Øs
cl and/or pore 

water salinity concentration. These results also indicate that, higher clay 

concentrations (Øs
cl) within the initial sand-clay suspension inhibit both the initial 

settling phase (in particular, hindered settling regime) and subsequent formation 

of the mixed bed deposit. 

 Investigation into the parametric influence of salinity on sedimentation rates for 

identical sand-clay mixtures (e.g. SET-EX4 to –EX7; Co,s
cl = 196 kg.m-3; See 

Table 5.1) clearly shows a negative correlation between pore water salinity and 

temporal displacement of the upper interfaces of these sand-clay mixtures. 
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Higher initial settling rates are distinctly shown for sand-clay mixtures with lower 

ambient pore water salinities; and earlier peak settling rates occur for sand-clay 

mixtures with reduced pore water salinities. Generally, in the context of the 

current study, these results specifically reveal that, if the salinity concentration of 

sand-clay mixture is sufficiently large (e.g. > 15-ppt), and in addition, the ratio 

of clay particles in the initial mixture is relatively high (e.g. ≥ 15%), the 

settling/consolidation rate will be significantly inhibited. It is apparent that, there 

is more significant hindrance to the particles settling rates due to combined 

effects of high clay content and salinity concentration.  

 Higher clay mass concentrations Cs
cl, has been found to play a more significant 

role in defining particles settling rates in sand-mud mixtures. However, 

comparison between SET-EX6 (segregated bed; 65s:35c; Cs
cl = 196 kg m−3; 

salinity = 30 ppt) and SET-EX9 (non-segregated bed; 65s:35c; Cs
cl = 285 kg m−3; 

salinity = 30 ppt) revealed an opposite trend, with distinct differences in the 

transition behaviour of the two mixtures. It can therefore be hypothesised, 

whether or not the initial settling regime exists for non-segregating sand-clay 

mixtures, as the fact that the sand fraction has not segregated clearly suggests that 

the clay fraction has already reached the gelling concentration. 

 The formation factor (F) colour maps, contour plots of bulk/p and lastly bulk/p 

profiles obtained from ERMT, clearly show the initial stages of the bed layer 

development for different sand-clay mixture compositions and indicate 

quantitatively how the individual deposit layer forms over time, as well as 

providing an indication of their composition and structure (i.e. through 

corresponding bulk/p and porosity ϕ values in the different bed regions).  

 

In summary, the study has successfully employed new non-invasive electrical resistivity 

measurements technique (ERMT) and time-lapsed image techniques to investigate 

sedimentation and bed formation processes for mixed (sand-clay) suspensions. This study 

has highlighted the parametric conditions under which sand-clay segregation can occur 

in the resulting bed deposits, as well as providing a physical explanation for both the 

nature and time scale of this segregation. 

 

8.1.3 ES-3: Mixed sediment bed erosion experiment 

The erosion and deposition experiments on prescribed mixed sediment beds have been 

carried out with a testing facility (i.e. a 2 m diameter benthic annular flume, Voyager II) 
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and utilised in an idealised laboratory setting. The main aim was to investigate the effect 

flow-induced shear stresses, on the size-selective erosion and deposition of these mixed 

sediment beds, such as those conditions typically encountered in periodically-reversing 

(tidally-driven) estuaries or tidal inlets. The main findings of the experimental series are 

summarised below: 

 After the initiation of erosion, quasi-linear relationship was found to exist 

between suspended sediment concentration (SSC) and applied bed shear stress 

(𝜏𝑏). Also, over the range of sediment proportions considered, a quasi-linear 

relationship was also found to exist between erosion rate (E) and applied bed 

shear stress (𝜏𝑏), once the erosion threshold is exceeded. 

 The limitations highlighted in the current study notwithstanding, the erosion 

thresholds values are shown to vary from 0.08 to 1.45 Pa, which are in good 

agreement with reported data for low-cohesive sediment samples (e.g. 

Winterwerp and van Kesteren, 2004; Le Hir et al., 2008; Jacobs et al., 2011).  

 A strong positive correlation between mixed sediment bed resistance to erosion 

and the proportion of cohesive fraction in the bed was further established. 

Specifically, the bed surface shear strength (𝜏𝑠𝑜) of the bed with 5% clay content 

is 1 and 2 order of magnitude more than that of the beds with 2% clay and 0% 

clay content respectively. Whereas, the spatial extent (i.e. height and width) of 

the sand deposits from all the experimental runs, is shown to reduce with 

increasing cohesive clay fraction within the bed.  

 The results reveal that mixed sediment bed’s initial resistance to erosion may be 

significantly reduced with further exposure to subsequent erosion cycles. This is 

established by significant reduction in both 𝜏𝑠𝑜 and 𝜏𝑠𝑐 values when the resulting 

bed from erosion test of EDT-EX4 (i.e. erosion cycle-1) was further subjected to 

two sequential erosion cycles (i.e. cycle-2 and-3).   

 The use of erosion rate (E), bed surface shear strength (𝜏𝑠𝑜) and bed characteristic 

shear strength (𝜏𝑠𝑐) as measures of bed erosion in isolation may give misleading 

information as they are all largely affected specifically by bed materials’ 

properties and compositions, and also significantly by antecedent conditions of 

the sediment beds. Therefore, in this context, prediction of sediment beds erosion 

characteristics in marine environments is best supported by adequate 

understanding of the sedimentary regimes, probably gained by observational 

measurements rather than a priori determination. 
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 Similar to the finding of Baas et al. (2013), clay dry weight fraction of ≥ 5.0 % 

within mixed (sand-clay) beds, will result in cohesive bed forces having more 

significant influence on bedform development and morphology. In general, a 5% 

clay fractional content within sand-clay sediment bed is observed in the current 

study, to be the critical cohesive fractional content that delineates the non-

cohesive and cohesive bed erosion regimes (e.g. van Ledden, 2003; van Ledden, 

et al, 2004). This implies that, below this critical clay fraction, the mixture 

behaves like pure sand, whereas above this critical value, the resistance to erosion 

increases with the clay fraction. 

 Winnowing of fine sediments from their compositional base, appears to be an 

important sediment transport process in the development of bedforms and also, 

in erosion and deposition processes of mixed (sand-mud) beds. Similar to 

findings of Baas et al. (2013). 

 The results from the resistivity profiles, appear to support the adoption of 

simultaneous bed exchange model (e.g. Krone 1963; Mehta, 2014; etc.). 

 

8.1.4 Analysis and discussion 

Discussion, analysis and critical reflection on the current experimental results and 

findings have raised a number of observation and critical issues which are thought to have 

a wider implication on the existing knowledge of the physical processes controlling the 

dynamic behaviour of mixed (sand-clay) sediments within estuarine and coastal systems. 

Again, summary of some of these observations and findings are given below: 

 From the analysis of the parametric influence of salinity on sedimentation 

processes, which appears to suggest that, higher salinities above ∼15 ppt do not 

increasingly promote sedimentation. Therefore, on this premise, the following 

hypothesis is made: ‘sediment distribution patterns (in terms of bed composition 

and structure) in marine environment with higher salinity (e.g. higher salinity 

basins) will be similar in certain degrees to those observed in marine environments 

with lower salinity (e.g. estuaries)’.  

 A negative correlation is shown between 𝑤𝑠−𝑚𝑒𝑎𝑛 and Ø𝑠
𝑐𝑙 according to a power 

law, hence, the following relationship has been proposed as an empirical 

measurement of the 𝑤𝑠−𝑚𝑒𝑎𝑛 for the range of sediment mixtures tested: 

 

                     𝑤𝑠−𝑚𝑒𝑎𝑛 = 𝑤𝑠,0−𝑚𝑒𝑎𝑛  (
Ø𝑠

𝑐𝑙

Ø𝑠,0
𝑐𝑙⁄ )

−0.725
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The coefficients Ø𝑠,0
𝑐𝑙   and 𝑤𝑠,0−𝑚𝑒𝑎𝑛 are found to be 0.1274 and 0.0036 mms-1 

respectively. 

 The material functions (e.g. 𝐾𝑘 and  𝑛𝑓) or the so-called constitutive relationship 

parameters in permeability regime (i.e. phase I consolidation regime), are 

specifically shown to largely depend on initial fractional composition of clay and 

less on the initial mixed sediment mass concentration. This is in good agreement 

with the findings of Grasso et al. (2015). 

 From the polydisperse hindered settling approach for sand-clay mixtures, 

proposed by Cuthbertson et al. (2008); it is proposed that, the generation of clearly 

segregated sand- and clay-dominated deposit layers in the column from initially 

well-mixed sand-clay suspensions requires the clay fraction (i.e. flocs) to be 

displaced upwards within the column while the sand fraction (i.e. particles) settles 

to the base of the column. This analytical model has been demonstrated to be 

capable of providing (i) an improved representation of the physical mechanisms 

and reciprocal interactions between the sand and clay fractions that can lead to 

layer segregation within the bed deposit, (ii) insight into the parametric influences 

on these bed segregation patterns (e.g. sharp and transitional sand-clay interfaces), 

and as well as (iii) information on the time scales over which this segregation 

would be expected to occur. 

 The Cuthbertson et al. (2008) model, specifically, predicted that hindered settling 

characteristics (i.e. 0 ≤ ws
sa/ws,0

sa <1) will occur for the sand particles, while the 

clay flocs will be subjected to upward motion (i.e. ws
floc/ws,0

floc ≤ 0) due to return 

flow effects from the settling sand fraction. Interestingly, the magnitude of the 

difference between these downward (sand) and upward (clay) motions was found 

to correlate qualitatively with the degree of sand-clay segregation observed within 

the resulting bed deposits for the actual experimental runs. 

 In addition to existing empirical erosion formulae or models, a new quadratic 

erosion empirical model has been proposed, for estimation of erosion processes 

of sand-clay mixture in cohesive regime (i.e. cohesive sediment fractional weight 

≥ 5%): 

 

                𝐸 = 𝑀1(𝜏𝑏 − 𝜏𝑠𝑐)2 + 𝑀2(𝜏𝑏 − 𝜏𝑠𝑐) + 𝑀3        for  𝜏𝑏 >  𝜏𝑠𝑐                    
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8.2    Potential Areas of Future Study 

The experimental programmes designed to achieve the aims and objectives of the current 

study and their corresponding findings, have provided a premise on which further 

extensive experimental and analytical studies on influence of the fractional composition 

(i.e. relative sand and clay concentration) on mixed sediment dynamics can be conducted.  

In the course of the study, the following potential areas of further study have been 

identified:  

 Comparison of runs SET-EX6 and EX9 in Figure 5.10 shows the parametric 

influence of initial mixture concentration (561 and 813 kg m-3, respectively) for 

the same sand-clay mixture proportion (i.e. 65s:35c) and pore fluid salinity (i.e. 

30 ppt).  No sand-clay segregation occurs within the developing bed conditions 

for SET-EX9 while for SET-EX6, segregation does occur. As shown, for sand-

clay mixtures demonstrating bed segregation (i.e. through sand deposition to the 

base of the column), the subsequent hindered settling characteristics and 

transition to phase 1 consolidation is expected to behave similar to a clay only 

suspension in the absence of sand after this initial segregation (e.g. Figures 5.1- 

5.3).  However, it is unclear what influence the trapped sand fraction has on the 

sedimentation rate of sand-clay mixtures, in which segregation is inhibited (e.g. 

Figure 5.4b) or how it affects the transition between the settling regime and the 

onset of phase 1 consolidation. Therefore, it was hypothesised in chapter 5 that, 

the initial settling regime may not exist or at least be of a sufficiently short 

duration within non-segregating sand-clay mixtures, as the fact that the sand 

fraction does not segregate suggests that the clay fraction has reached the gelling 

concentration rapidly before segregation can occur. As such, it may be desirable 

to conduct further experiments to test this hypothesis.  

 The results here, have demonstrated that, there appears to be a systematic 

dependency of the initial settling rates of sedimentation processes, on the pore 

water salinity; specifically, higher initial settling rates were recorded for sand-

mud mixtures with lower pore water salinities. However, the electrical resistivity 

measurements, reveal that the key bed layer development characteristics and the 

corresponding physical properties (e.g. bulk density and porosity) for these 

mixtures are very similar, despite variations in their ambient pore fluid salinity. 

The formation of a sand-mud bed deposit clearly begins with the fractional 

settling of the sediments from the suspension (Cheng, 1997; Grasso et al., 2014; 

etc.), as such, any modification to the settling characteristics within the sand-mud 
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suspensions would be expected to correspondingly influence the physical 

properties and/or composition of the resulting bed deposit. Therefore, this lack of 

clearer parametric influence of salinity on the physical properties of the resulting 

bed deposits, may have partly been due to the EMRT yielding bulk values (e.g. 

bulk density). Therefore, a further systematic investigation into this issue is 

recommended. For example, the need to complement the characterisation 

technique with other sediment sampling methodologies for particle size 

distribution (PSD) analysis may be necessary. 

 Finally, it is worth noting that the current study is clearly idealised both in terms 

of the cohesive and non-cohesive sediments used (i.e. 100 % kaolinite and 

superfine, high silica sand) and the environmental conditions under which the 

mixed sedimentation processes are studied. Further studies are therefore needed 

to validate the findings of this study for natural estuarine or coastal sediment 

deposits, which are characterised by larger ranges of particle sizes, mineralogical 

compositions (e.g. mud types), organic fractions and water chemistry. It is likely 

however, that the same sedimentation characteristics may be found in mixed 

sediment suspensions with different compositions from the ones already tested 

here.  Albeit, the settling regimes boundaries or transition from settling regimes 

to phase I consolidation regimes, may not occur at the same volumetric or particle 

concentration values.  
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  Appendices 

 

Chapter Three 

Appendix 3-1 The values of ‘2r’ for resistivity electrodes in ES-1 and ES-4 

 

ES-1 (Figure 3-3b Column) 

 

ES-4 (Resistivity box) 

 
Probe number 

from the base 

2r values (m) 

6 mm spacing 

array 

20mm spacing 

array 

Probe number 

from the base 

2r values 

(m) 

1 
0.2648 0.6693 

1 
0.2209 

2 
0.3374 0.8618 

2 
0.3092 

3 
0.3458 0.9259 

3 
0.2909 

4 
0.3356 0.9724 

4 
0.3124 

5 
0.3548 0.9968 

5 
0.2956 

6 
0.3296 0.9932 

6 
0.2758 

7 
0.3431 1.0077 

7 
0.2646 

8 
0.3764 0.9932 

8 
0.3409 

9 
0.3623 0.9342 

9 
0.2246 

10 
0.3552 0.9968 

10 
0.2549 

11 
0.3431 1.0250 

11 
0.2240 

12 
0.3617 1.0126 

12 
0.2778 

13 
0.3450 0.9932 

13 
0.2571 

14 
0.3623 0.9667 

14 
0.2657 

15 
0.3510 0.9747 

15 
0.2917 

16 
0.3525 0.9921 

16 
0.2877 

17 
0.3311 1.0163 

17 
0.2947 

18 
0.3521 0.9932 

18 
0.2627 

19 
0.3364 0.9735 

19 
0.2928 

20 
0.3580 1.0163 

20 
0.1998 

21 
0.3451 0.9956 

21 
0.3009 

22 
0.3612 0.9311 

22 
0.2271 

23 
0.3487 0.9701 

23 
0.2557 

24 
0.3493 0.9815 

24 
0.2674 

25 
0.3469 0.9634 

25 
0.2882 

26 
0.3415 0.9491 

26 
0.2787 

27 
0.3374 1.0212 

27 
0.2428 

28 
0.3607 0.9168 

28 
0.2938 

29 
0.3573 1.0113 

29 
0.2441 

30 
0.3537 1.0430 

30 
0.2440 

31 
0.3320 0.9992 

  

32 
0.3394 1.0101 

  

33 
0.3393 0.9188 

  

34 
0.3584 0.9535 

  

35 
0.3367 0.9612 
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Appendix 3-2(a) Standard geo-mechanical equations used for the calibration of ERMT 

 

The following are the standard geo-mechanical equations employed for the ER 

calibration (Adapter from Craig, 1992): 

 The bulk density (bulk) of a soil sample is the ratio of the total mass (𝑀) to the total 

volume (𝑉), i.e. 

        bulk =    
𝑀

𝑉
      (kg m-3 or g cm-3) 

 The void ratio (e) is the ratio of the volume of voids (𝑉𝑣) to the volume of solids 

(𝑉𝑠), i.e. 

       e =    
𝑉𝑣

𝑉𝑠
       

 Void ratio (e) can be expressed in terms of bulk density (bulk), water content (𝑤𝑐) 

and specific gravity (𝐺𝑠) as: 

                            e = 𝐺𝑠 (1 + 𝑤𝑐)
𝑏𝑢𝑙𝑘

𝑤𝑎𝑡𝑒𝑟

− 1  

 The porosity () is the ratio of the volume of voids (𝑉𝑣)  to the total volume of the 

soil (𝑉), i.e. 

                  =    
𝑉𝑣

𝑉
       

 The void ratio (e) and porosity () are inter-related as follows: 

                 e =    


1−
      ;      =    

𝑒

1+𝑒
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Appendix 3-2(b) Some important results obtained from the ERMT calibration processes 

 

 

 

 

 

 

 

 

Sample 

(%) 

C-clay;  

S-sand  

Number 

of Trial 

Specific 

Gravity 

(Gs) 

Water 

Content 

(Wc)  

(%) 

Bulk 

Density 

(bulk) 

(g cm-3) 

Void 

Ratio 

(e) 

Porosity 

() 

(%) 

Average 

Formation 

Factor (F) 

 

100C:0S 

 

 

1st 2.579 78.2 1.51 2.03 67.1  

2.28 
2nd 2.587 88.0 1.49 2.25 67.2 

3rd 2.592 89.9 1.49 2.29 67.5 

 

90C:10S 

 

 

1st 2.590 83.0 1.53 2.09 66.4  

2.40 
2nd 2.591 79.2 1.51 2.07 65.8 

3rd 2.609 80.4 1.53 2.05 66.0 

 

60C:40S 

 

 

1st 2.619 54.0 1.67 1.40 58.2  

2.88 
2nd 2.612 52.0 1.67 1.37 57.8 

3rd 2.613 54.1 1.69 1.37 57.8 

 

50C:50S 

 

 

1st 2.617 45.2 1.75 1.14 53.8  

3.18 
2nd 2.619 51.3 1.72 1.29 55.0 

3rd 2.604 48.0 1.73 1.24 54.3 

 

40C:60S 

 

 

1st 2.621 42.0 1.80 1.07 51.7  

3.36 
2nd 2.626 36.3 1.82 0.96 52.0 

3rd 2.615 38.0 1.82 0.99 51.4 

 

0C:100S 

 

 

1st 2.632 21.0 1.97 0.67 40.0  

4.45 
2nd 2.636 22.2 2.00 0.59 38.9 

3rd 2.645 21.2 2.00 0.58 39.6 
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Appendix 3-3 Custom-built tank to house the benthic flume for the erosion tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Toughened Glass Walls 

(10 – 12 mm thick) 

0.3 m 

1.5 m 

 Steel frame to be constructed by hollow rectangular section and/or angle section. 

 Three tank sides to be made from toughened glass. 

 One tank side and bed to be made from marine ply. 

 Drain arrangement and internal fittings to be confirmed. 

Drain at 

each corner 

2.5 m 

Marine Ply Bed 

(25 mm thick) 

   Base steel arrangement 

 

2
2

3
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Appendix 3-4 The Creteangle Multi-Flow Rotary Mixer 

 

 
(a) during mixing operation 

 

 

 
(b) after mixing operation 
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Chapter Five 

Appendix 5-1 Time-lapsed images of sand-clay sedimentation process at times t shown 

for run SET-EX2 (85s:15c) 
 

 

 

 

 

 

Appendix 5-2 Time-lapsed images of sand-clay sedimentation process at times t shown 

for runs with 65s:35c mixtures (a) SET-EX5 (b) SET-EX6 and SET-EX7  
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Appendix 5-3 Time series colour map plots of the variation in measure formation factor 

F profiles during the first hour of the sand-clay sedimentation process for (a) SET-EX1 

and (b) SET-EX5.  
 

 

 

Appendix 5-4 Initial temporal development of normalised bulk density bulk/p within 
sand-clay bed deposit layers for (a) SET-EX1 (85s:15c; 15 ppt) and (b) SET-EX5 

(65s:35c; 15ppt) 
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Appendix 5-5 Longer term temporal development in normalised bulk density bulk/p 
profiles at elapsed times shown for (a) SET-EX2(85s:15c) and (b) SET-EX5(65s:35c). 

[see Table 5.1] 
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Chapter Six 

Appendix 6-1 Total sediment mass eroded (g) per applied bed shear stress (Pa) 

 

 

 
Mean Bed Shear stress, 𝝉𝒃  (Pa) 

Erosion Tests 0.0003 0.0425 0.1816 0.4464 0.6997 1.0601 1.4186 1.8808 2.0205 

ERT-EX1 0.00 12.95 244.24 Saturated Saturated Saturated Saturated Saturated Saturated 

ERT-EX2 0.00 17.03 229.51 488.89 530.81 Saturated Saturated Saturated Saturated 

EXT-EX3 0.00 1.57 1.83 2.10 8.65 29.87 52.66 100.35 163.49 

ERT-EX4 0.00 0.26 0.26 0.26 0.26 0.26 2.79 19.45 70.48 

ERT-EX5 0.00 0.52 0.52 0.52 0.52 0.52 8.81 32.75 106.11 

ERT-EX6 0.00 0.52 0.79 0.79 0.79 28.03 31.70 61.05 115.02 

           

 

Appendix 6-2 Mass per unit bed surface area (g/m2) at the end of each applied 

bed shear stress (Pa) 
 

 

 

 
Mean Bed Shear stress, 𝝉𝒃  (Pa) 

Erosion Tests 0.0003 0.0425 0.1816 0.4464 0.6997 1.0601 1.4186 1.8808 2.0205 

ERT-EX1 0.00 14.85 280.10 Saturated Saturated Saturated Saturated Saturated Saturated 

ERT-EX2 0.00 19.53 263.20 560.65 608.73 Saturated Saturated Saturated Saturated 

EXT-EX3 0.00 1.80 2.10 2.41 9.92 34.25 60.39 115.08 187.49 

ERT-EX4 0.00 0.30 0.30 0.30 0.30 0.30 3.20 22.30 80.82 

ERT-EX5 0.00 0.60 0.60 0.60 0.60 0.60 10.1 37.56 121.69 

ERT-EX6 0.00 0.60 0.91 0.91 0.91 32.14 36.35 70.01 131.90 
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                   Appendix 6-3 Plots of Erosion rate against Bed shear stress. The fit lines for data points between B & C are extrapolated to the x-axis to     

                     determine the surface erosion threshold for all the experimental runs 
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Appendix 6-4 Examples of typical results from erosion tests on predominantly sandy 

beds showing the linear extrapolation process for determination of erosion thresholds: (a) 

& (b) 70% & 90% sand respectively (Laksanalamai, 2007), and (c) 75% sand (Jacobs et 

al.,2011) 
 

 
 

 
 

 

 
 

 

 

(b) 

(a) 

(c) 
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Appendices P-1 Monitoring and characterisation of sand-mud sedimentation processes 

(Sample of author’s publication in Ocean Dynamics) 
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