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Abstract 

This thesis presents three essays in Bayesian Stochastic Frontier models for cost and 

production functions and links the fields of productivity and efficiency measurement and 

spatial econometrics, with applications to energy economics and aggregate productivity. 

The thesis presents a chapter of literature review highlighting the advances and gaps in 

the stochastic frontier literature. Chapter 3 discusses measurement of aggregate efficiency 

in electricity consumption in transition economies in a cost frontier framework. The 

underlying model is extended to a Spatial Autoregressive model with efficiency spillovers 

in Chapter 4, showing good performance in simulations. The model is applied to 

aggregate productivity in European countries, leading to evidence of convergence 

between eastern and western economies over time, as in the previous chapter regarding 

efficiency in electricity consumption. Finally, Chapter 5 proposes a spatial model which 

allows for dependence in the structure of the inefficiency component while accounting 

for unobserved heterogeneity. This approach is applied to New Zealand electricity 

distribution networks, finding some evidence of efficiency spillovers between the firms. 

All essays explore the performance of the model using simulations and discuss the utility 

of the approaches in small samples. The thesis concludes with a summary of findings and 

future paths of research.  
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Chapter 1. General Introduction 

This thesis explores two research paths in the field of Stochastic Frontier analysis: 

persistent inefficiency and spatial dependence. The determination of cost and technical 

efficiency levels of firms is an increasingly popular exercise with policy making 

consequences. The approach is now a wide reaching technique, with frequent applications 

that range from classical measurement of efficiency of industries to health economics, 

school efficiency, energy, agricultural, transport economics and even cost efficiency of 

football clubs.  

 

There are some new rising trends in the literature. In the past decade, the influential work 

of Greene (2005) has led to a focus on unobserved heterogeneity and the implications to 

efficiency measurement. Many researchers have worked on various types and methods of 

estimation of models that measure persistent and time-varying inefficiency. Although 

there is a consensus on the underlying idea, the methods to estimate these models diverge 

greatly, with multiple competing frequentist and Bayesian methods. However, many 

methods have thus far not resulted in applications by other authors or particularly 

recognizable applied contributions to the field. Other trends have pushed the literature 

towards non-parametric estimation, the consideration of dynamic firm behaviour and 

endogeneity in frontier estimation. This thesis will also focus on the spatial frontier 

literature, which is in its infancy compared to other fields. Only in the past few years there 

have been some limited advances in the consideration of spatial interactions of firms and 

their efficiency and how to capture and measure those effects. Like other fields of the 

literature, there are both frequentist and Bayesian options available to the applied 

researchers, but little use of them beyond the construction of the estimation approach. 

The first efforts of the literature often struggled to develop the models beyond the point 

of limited interpretation and limited understanding of the implications of integrating a 

spatial structure in frontier models. 

 

The thesis explores the theory and practice of Bayesian Stochastic Frontier models, 

contributing to the literature with two modelling extensions to the current spatial 

literature, an empirical exploration in the context of energy economics and the use of 

mostly unexplored Bayesian rejection techniques to improve estimation performance. 
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Small sample performance of this type of models is often not investigated and of great 

importance to applied economists. 

 

The objectives of the thesis are as follows. First, the thesis aims to summarize the current 

state of the literature and identify gaps and issues in the literature requiring further 

attention. Secondly, the thesis aims to make an empirical exploration of well-known 

models, and also to extend them to the context of Bayesian spatial econometrics. Thirdly, 

it also aims to explore small sample performance and the role of priors across all three 

essays. Finally, the thesis explores alternative estimation techniques to assess 

performance versus traditional Bayesian techniques. 

 

Further detail follows. The thesis develops an application of the most recent techniques 

in estimation of persistent inefficiency to the context of energy economics, and then 

investigate the spatial domain of the modelling approaches, developing models that 

associate the spatial dependence to the output of the cost or production function and to 

the inefficiency component of the function. The thesis is based on Bayesian techniques 

which facilitate estimation of complicated models and allow for the role of prior 

information. In chapter 2, I present a literature review which covers the basic concepts of 

Stochastic Frontier modelling, the key aspects of the literature and the current state of the 

research in the field. One of the key findings of the review of the literature is the lack of 

applications of a vast amount of theoretical models and estimation techniques available 

to address multiple challenges. This field appears to show a persistent gap between theory 

and practice, which is partially justified by the multitude of alternatives and the lack of 

easily usable statistical packages to estimate these models. This thesis shows applications 

not only of the cutting edge models in the literature but also of the proposed extensions 

to the literature. For that effect, I present a review and three essays that cover the efforts 

to extend this literature: 

 

Chapter 2: Concepts and Literature Review. This chapter introduces and discusses the 

basic concepts behind Stochastic Frontier modelling. It also examines the latest 

extensions in Stochastic Frontier (SF) models, particularly the ones that have risen since 

the construction of fixed and random effects approaches in SF modelling to account for 

unobserved heterogeneity. The SF literature allowed for considerable amount of work on 

technical efficiency and contributed to build further knowledge and orientate policy 

measures since the seminal work of Aigner et al. (1977). However, in the past decade, 
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particular attention was given to issues previously overlooked, such as accounting for 

unobserved heterogeneity, the problem of endogeneity, how to account for partial 

adjustments in efficiency of firms through the construction of dynamic models, and also 

spatial dependence. Various modelling approaches have stemmed from these concerns, 

growing in diversity and complexity. This chapter conducts a survey of techniques and 

their uses and discusses those new approaches for efficiency measurement, mostly unused 

in applied econometrics so far, but of great potential to applied researchers. 

 

Chapter 3: Aggregate Energy Efficiency Measurement. The chapter outlines and 

estimates a measure of underlying efficiency in electricity consumption for an unbalanced 

panel of 28 transition economies and 5 Western European OECD countries in the period 

1994-2007. Extensive data collection efforts from multiple sources lead to a rich dataset 

that allows to explore weaknesses in past literature. A Bayesian Generalized True 

Random Effects (GTRE) Stochastic Frontier model that estimates both persistent and 

transient inefficiency is estimated. This approach is now well established in the literature 

(although mostly through ML methods) but empirical applications are scarce and require 

further investigation. The properties of alternative GTRE estimation methods in small 

samples are explored to guide the estimation strategy. The chapter analyses the behaviour 

of underlying efficiency in electricity consumption in these economies after accounting 

for time-invariant technological differences. After outlining the specific characteristics of 

the transition economies and their structural economic changes, an aggregate energy 

demand function is estimated to obtain efficiency scores that give more insights for 

transition economies than a simple analysis of energy intensity. There is some evidence 

of convergence between the CIS countries and a block of Eastern European and selected 

OECD countries, although other country groups do not follow this tendency, such as the 

Balkans. 

 

Chapter 4: Spatial Dependence and Unobserved Heterogeneity. This chapter 

contributes to the literature of SF modelling and efficiency measurement in production 

and cost functions in panel data by discussing estimation of technical or cost inefficiency 

in a context of spatial dependence and unobserved heterogeneity. The common pitfalls of 

previous literature are discussed to pave the way for a new modelling approach. A 

Bayesian Random Effects Spatial Lag Stochastic Frontier Model is proposed, allowing 

for the decomposition of inefficiency into a time-varying component and a persistent 

component, both with important policy implications in many empirical contexts. An 
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extension to a Spatial Durbin Model is technically straightforward in this context but of 

important value to the applied researcher. A Bayesian approach with a standard 

assumption of a half-normal distribution for both inefficiencies is outlined. The chapter 

also contributes to the literature by exploring the performance of the proposed approach 

with competing methods. Small sample performance of the model is deeply related to the 

underlying signal-to-noise ratios with good performance for larger samples and 

encouraging results for applied research. The model is applied to aggregate productivity 

in 43 European countries between 1992 and 2005, highlighting the role of spatial 

dependence and unobserved heterogeneity in the production frontier. The results show a 

large amount of persistent inefficiency which would be ignored under less complex 

estimation methods, and also non-negligible spatial dependence.  

 

Chapter 5: Efficiency Spillovers. This chapter develops a Bayesian Random Effects 

Stochastic Frontier model with spatial dependence associated to the inefficiency 

component, allowing for spillovers between firms. The proposed model is designed for 

contexts of unobserved heterogeneity, the existence of technical or cost inefficiency 

(assumed to be exponentially distributed) and spatial spillovers of inefficiency, using an 

exogenous spatial weights matrix determined by the researcher. The chapter also reviews 

the sparse efforts to include spatial dependence in the stochastic frontier literature, 

highlighting its contribution, with a particular focus on small sample performance. It also 

explores the Guided Walk Metropolis method as an alternative to classic rejection 

techniques to draw from non-standard distributions. The chapter applies the proposed 

model to a sample of 27 New Zealand electricity distribution firms in a stable post-

unbundling period between the 2001 and 2009 fiscal years, discussing some pitfalls in the 

multiple perspectives on this topic in the literature. Some evidence of spillovers exists 

when a second order neighbour matrix is used. 

 

Chapter 6: Conclusion. This chapter summarizes the findings of this thesis, the 

implications of the conducted research and a discussion on future research paths, along 

with concluding remarks. 
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Chapter 2. Stochastic Frontier Modelling: General framework and 

literature review 

 

2.1. Introduction 

The stochastic frontier literature has evolved greatly over the past few decades. Deriving 

from theoretical productivity and efficiency analysis, it is now a key area of economics 

with a large literature. A large set of applications have used approaches that are well 

established in the literature. However, since the work of Greene (2005) to account for 

heterogeneity and disentangle it from inefficiency in panel data, many researchers have 

tried to tackle different issues in the literature, as well as estimation challenges, diverging 

considerably in goals and achieved results. An extensive survey of cross-sectional and 

panel data stochastic frontier models was conducted by Greene (2008). This chapter 

intends to broaden the discussion towards more recent research and further issues in 

recent literature and rounds up all the latest work developed and how it has been applied, 

showing the need to have a broad view of the literature in order to merge some of the 

concerns of researchers and achieve modelling approaches that tackle all the key issues, 

such as heterogeneity, persistent inefficiency, endogeneity and spatial dependence. It also 

stresses how the failure to account for those issues in the past compromises results of 

empirical work and why it is important to focus on new approaches and make sure the 

links between them are established to improve the existing literature and provide more 

accurate inference on efficiency. Many of the approaches presented in this chapter had 

very few empirical applications as of yet. This chapter also aims to justify the approaches 

used in subsequent chapters regarding spatial modelling and the estimation of persistent 

inefficiency in a Bayesian context. 

 

The chapter is organized as follows: Section 2 presents the origins and the basics of the 

field and an overview of the established literature in stochastic frontier modelling up to 

the seminal work of Greene (2005). Section 3 presents concerns about that work and ways 

to tackle the issues of heterogeneity, persistent inefficiency and consistent estimation in 

the fields of random and fixed effects modelling, which are very popular approaches in 

applications of stochastic frontier modelling. This section highlights multiple points that 

are the basis of contributions of this thesis regarding new estimators that consider 

persistent inefficiency.  Section 4 digresses into other important issues of the efficiency 
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literature and focuses on the increasing dynamic stochastic frontier literature and partial 

adjustments of inefficiency, with a comment on the use and application of Bayesian 

approaches. Section 5 focuses on common shocks and endogeneity, as well as presenting 

some other significant developments in the literature to tackle alternative issues. Section 

6 digresses into the issue of spatial dependence and spatial econometrics and efficiency 

measurement. However, much of the space for that is open for the next chapters to discuss 

further, as it constitutes a key part of the contributions in this thesis. Section 7 discusses 

the issue of skewness and the interpretation of counter-intuitive skewness from a 

theoretical perspective. Section 8 contrasts Bayesian and frequentist approaches to justify 

the use of Bayesian approaches to problems raised in Sections 3 and 6. Section 9 

concludes the chapter.  

 

 

2.2. From the origins of stochastic frontier analysis to the use of fixed and 

random effects in panel data models 

In the first half of the 20th century, average productivity of labour was deemed as an 

acceptable measure of productive efficiency, although that ignores that other inputs save 

labour. In the 1950s the foundations of modern economic thinking laid the first stones of 

modern efficiency and productivity analysis. Koopmans (1951) defines technical 

efficiency as the impossibility to produce more of one output without producing less of 

other output or using more of some input. Hicks (1935) observed that “the best of all 

monopoly profits is a quiet life”, as the absence of a competitive environment gives 

monopolists the freedom to not pursue conventional optimization objectives. This relates 

to the idea that not all firms operate on full efficiency. One of the building blocks of the 

literature was, rather indirectly, the work of Leibenstein (1975) which argues production 

is bound to be inefficient as a result of multiple problems such as information, monitoring 

and agency problems within the firm. This general and rather vague definition of 

inefficiency can perhaps be attributed to poor model specification in some cases. A more 

direct contribution to the foundations of the Stochastic Frontier literature comes from the 

theoretical literature on productive efficiency.  

 

Measuring productive efficiency in firms and industries in a more elaborate form and with 

further use of economic theory was a decisive step in policy making and gave valuable 

insight from both empirical and theoretical perspectives. The research of Farrell (1957) 



 7 
 

was a crucial turning point, by paying attention to the issue of productive efficiency and 

how firms and industries can increase their outputs without absorbing further resources. 

The author discussed the concept of an efficient production function, where overall 

efficiency corresponded to the product of technical efficiency (the success in producing 

a maximum level output from a given set of inputs) and price efficiency (the success in 

choosing an optimal set of inputs). The author stressed that technical efficiency is a 

relative concept, as it depends on the set of firms included in the estimation of the 

function. Statistical methods to solve the problem are discussed, and in fact, work in the 

following decade tried to close the gap between theory and empirical work. Incidentally, 

in practical terms, the work of Farrell influenced the (mostly non-stochastic) alternative 

literature of Data Envelopment Analysis (DEA). Aigner and Chu (1968) state that an 

“industry production function is conceptually a frontier of potential attainment for given 

input combinations” (pp. 826). One can consider technical efficiency to be the ratio of 

observed output to maximum feasible output in the production function: 

 

 𝑇𝐸𝑖 =
𝑦𝑖

𝑓(𝑥𝑖;  𝛽)
 (1) 

 

The starting point of the analysis is a function denoting the maximum output possible 

(𝑦𝑖) given inputs: 

 

 𝑦𝑖 = 𝑓(𝑥𝑖;  𝛽). 𝑇𝐸𝑖 (2) 

In this equation, 𝑇𝐸𝑖 = exp (−𝑢𝑖) . Assuming a log-linear Cobb-Douglas form, this 

deterministic production frontier model becomes: 

 

 𝑙𝑛𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑛𝑙𝑛𝑥𝑛𝑖

𝑛

− 𝑢𝑖 (3) 

The restriction 𝑢𝑖 ≥ 0 implies that 𝑇𝐸 ≤ 1 and 𝑦𝑖 ≤ 𝑓(𝑥𝑖;  𝛽) in this deterministic case.  

This model can be solved through linear programming, which calculates the parameter 

vector which minimizes the sum of proportionate deviations of the observed output below 

maximum output (Aigner and Chu, 1968). The model can also be solved by minimizing 

the sum of quadratic proportionate deviations. In these approaches, the parameters are 

calculated rather than estimated. Other suggested approaches that predate stochastic 
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modelling are Corrected Ordinary Least Squares (Winsten, 1957) and Modified Ordinary 

Least Squares (Afriat, 1972). In both cases, the first step is OLS estimation, followed by 

a “correction” of the constant, shifting it up according to the level of inefficiency. 

 

The production function considered above is a mathematical representation of the 

technology that transforms inputs into outputs. A well-defined production function 𝑓(𝑥) 

satisfies the following regularity conditions (Chambers, 2001): 

 

i) 𝑓(𝑥) is finite, non-negative, real-valued and single-valued for all non-

negative and finite 𝑥. For example, a single input cannot lead to multiple 

values of an output, and the production cannot be negative; 

ii) 𝑓(0) = 0, simply meaning that if the input is zero, the output will be zero; 

iii) Monotonicity – it preserves ordering, as more input will lead to no lesser 

output; 

iv) 𝑓(𝑥) is a continuous function and twice-differentiable at any point, as this 

is important for maximization and mathematical treatment of the 

production function; 

v) The input requirement set is a convex set, as 𝑓(𝑥)  is quasi-concave, 

meaning that there is a diminishing marginal rate of technical substitution; 

vi) The input requirement set is closed and non-empty for any positive output.  

 

 

Consider a simple example with two inputs and one output as in Herrero and Pascoe  

(2002). 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Cost Frontier with two inputs 
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2 
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If the agent fails to optimize, the producer ends up beneath the estimated production, 

revenue or profit frontier. On the other hand, in the case of a cost frontier, it will be above 

the frontier. Consider a firm in position Z, with a demonstrative combination of inputs 

X1 and X2. The firm is producing an output using the input combination defined in Z. 

One could use less inputs into point C, where the isoquant is. This isoquant reflects the 

minimum level of energy consumption required to produce Y. Technical efficiency is 

0C/0Z, as Z is far from the isoquant. However, the minimum cost to produce Y would be 

at point A (least-cost combination). To achieve the same level of expenditure on inputs, 

the inputs would have to go to point B. Therefore, 0B/0Z is “cost efficiency”, the 

combination of allocative and technical inefficiency, and 0B/0C is input allocative 

efficiency. 

 

In order to have estimates with known statistical properties, the following (general 

notation) stochastic frontier model can be considered: 

 

𝑦𝑖 = 𝑓(𝑥𝑖;  𝛽) + 𝜀𝑖                                                                                                      (4)                            

 

It is possible to estimate this model by Maximum Likelihood (ML) by making 

assumptions on the distribution of 𝜀𝑖. The first work to develop this was conducted by 

Schmidt (1976), that assumed 𝜀𝑖 to be a one-sided (positive) error term, but this model 

still does not allow to invoke asymptotic properties because the regularity conditions are 

violated. A definitive step in building the modern stochastic frontier literature was 

achieved with the assumption 𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖 , with the first being a symmetric disturbance 

and the latter being a one-sided error term with a truncated normal distribution, making 

the frontier clearly stochastic (Aigner et al., 1977). The random disturbance results of 

unfavourable external events, measurement and observation errors on 𝑦𝑖. The one-sided 

disturbance reflects the fact that the output of firms must lie on or below the frontier  𝑦𝑖 =

𝑓(𝑥𝑖;  𝛽) + 𝑣𝑖 and deviations are related to factors under the control of the firm. Meeusen 

and van Den Broeck (1977) suggest a similar model arguing that the exponential 

distribution for the one-sided error is the most appropriate1. Therefore, from a very early 

stage in the literature, different distributional assumptions about the error components 

were considered and used in empirical work – half-normal, truncated-normal, exponential 

                                                      
1 Stevenson (1980) also suggested that the mean of the underlying normal distribution of the efficiency could be 

nonzero, so that this mean can vary with inputs. 
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and gamma are common examples in literature. However, Greene (2008) suggests that 

the results of truncated-normal and exponential models are extremely similar. A survey 

of early work in production functions was conducted by Førsund et al. (1980).  

 

A key issue is the measurement of (relative) efficiency that can be retrieved from 

estimations: while estimating ( 𝑣𝑖 + 𝑢𝑖)  for each observation is easy, 𝑢𝑖  is the key 

component in efficiency analysis and it is important to disentangle it from 𝑣𝑖. Jondrow et 

al. (1982) (JLMS) do this by knowing that 𝑢𝑖  is conditional on (𝑣𝑖 + 𝑢𝑖) and giving 

formulas for the half-normal and exponential cases. This enables the researcher to 

evaluate the levels of efficiency of firms after carrying on estimations, making it possible 

to have insight into distances to the frontier and relative rankings of firms in industries. 

The Battese and Coelli (1992) model allows efficiency to evolve over time although it 

also requires calculations of conditional expectations like the JLMS approach. Expected 

value calculations and mode calculations (which relate to ML estimation) are often seen 

as competing methods for efficiency estimation. 

 

The mentioned work assumes error terms that are independently distributed across 

observations, an assumption that is sometimes not reasonable beyond a single cross-

section. This meant that conducting panel data studies was problematic and new solutions 

were needed to extend efficiency analysis to panel data frameworks, using fixed effects 

and random effects. An overview of the established literature of both fixed and random 

effects models is presented next, culminating in the models of Greene (2005). 

 

 

2.2.1. Fixed Effects 

The seminal work of Schmidt and Sickles (1984) can be classified as a starting point for 

a rich literature in Fixed Effects SF modelling. The authors interpret the firm-specific 

(time-invariant) effect as inefficiency, leading to consistent estimation through ordinary 

least squares by using dummy variables. As such, considering a (linear) panel data 

example:  

 

𝑦𝑖𝑡 = 𝛼𝑖 +  𝑥𝑖𝑡𝛽 + 𝑣𝑖𝑡                                                                                  (5) 

𝑢̂𝑖 = 𝑚𝑎𝑥(∝̂𝑖) −∝̂𝑖                                                                                       (6) 
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This approach strongly depends on the interpretational assumptions done on the fixed 

effects, although estimation becomes straightforward. However, there are three problems 

in this approach. First, the time-invariance assumption of the efficiency estimate is 

unrealistic for panels with larger T. Second, since the fixed effect is being interpreted as 

inefficiency, modelling firm heterogeneity becomes an issue. This model forces any time-

invariant heterogeneity into the same term being used to capture inefficiency, meaning 

that the model may pick up heterogeneity instead of technical inefficiency. Finally, the 

large number of parameters growing with N can become a computational issue (Greene, 

2005).  Some approaches have been conducted to make efficiency estimates vary with 

time, but they are restrictive as they still imply a time-invariant fixed effect. Cornwell et 

al. (1990) introduce a quadratic function of time in the production function with 

coefficients varying across firms, with this representing different productivity growth at 

a rate that varies over firms.  

 

Other attempts have taken place, with more modern approaches and the use of the 

Generalized Method of Moments (GMM). Ahn et al. (2001) present a model where 

individual effects vary over time with an arbitrary pattern that is the same for all firms, 

allowing to control for time-varying unobservable events that are faced by all firms. Han 

et al. (2005) propose to extend the previous model, allowing for a parametric function for 

time–varying coefficients of individual effects, using a number of GMM estimators. 

Other applications of the fixed effects estimator have appeared, for example a dynamic 

approach by Ahn and Sickles (2000) that focuses on long-run inefficiency levels and 

models inefficiency following an AR(1) process and a partial adjustment process. Further 

discussion of dynamic models is given in Section 4 of this chapter. 

 

To address the issues of time-invariance and heterogeneity, Greene (2005) suggested the 

“True Fixed Effects” model (TFE): 

 

𝑦𝑖𝑡 = 𝛼𝑖 +  𝑥𝑖𝑡𝛽 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡                                                                          (7) 

 

Where 𝛼𝑖  captures firm heterogeneity and 𝑢𝑖𝑡  is a one-sided (positive) error with a 

particular distributional assumption to capture inefficiency – for example, half-normal or 

exponentially distributed. This model can be solved by “brute force” using ML, even with 

a very large amount of parameters. However, the fixed effects approach suffers from the 

problems of incidental parameters and a small T bias. One is a consequence of the other, 
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as larger N leads to more nuisance parameters, not allowing the estimator to approach the 

true parameter value. Greene (2005) conducts Monte Carlo analysis and verifies that the 

bias of the coefficients of the explanatory variables of the TFE model are lower than 

expected and lower against those verified in binary response models. However, the bias 

in efficiency estimates is more serious, and considering its importance in analysis of 

results, this becomes rather worrisome. Insight into the bias the problem causes and ways 

to overcome it are discussed further in Section 3.  

 

An example of an application of the “true fixed effects” model is the work of Kawaguchi 

et al. (2012) that assesses unique components of 127 Japanese hospital production 

structures over a period of three years. Studies with such a small T are prone to suffer 

more from the incidental parameters problem. Another example is a study of efficiency 

of 436 Finnish Upper Secondary schools between the years 2000 and 2004 (Kirjavainen. 

2012). 

 

In Random Effects models, the effects can be viewed as unobserved random variables 

instead of incidental parameters if N is large. This leads to a more parsimonious problem. 

These models are discussed next. 

 

 

2.2.2. Random Effects 

 

The first considerable effort to make a Random Effects SF model was conducted by Pitt 

and Lee (1981) to investigate the technical inefficiency of the Indonesian weaving 

industry. This is almost the same model as in equation (5) but with a normally distributed 

random component that is time-invariant and is assumed to be uncorrelated with the 

included variables (instead of including dummy variables for each firm). However, the 

issue of time invariance has been tackled in following years, for example, by using a 

monotonic decay model (Battese and Coelli, 1988), but the time-invariant random 

component still is a costly restriction in some circumstances. As in the case of fixed 

effects estimation, there were some attempts to achieve time-varying estimates although 

the random effect is time-invariant. To address the issues of time-invariance and 

heterogeneity, Greene (2005) suggested the “true random effects” (TRE): 
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𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑤𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡                                                                  (8) 

 

The difference against the Pitt and Lee (1981) approach is the inclusion of 𝑤𝑖, a random 

firm specific effect. Also, this model now includes a constant and can be solved through 

Maximum Simulated Likelihood (MSL). This model can also be extended easily to a 

single or doubly heteroscedastic model, therefore related to both 𝑣𝑖𝑡  and 𝑢𝑖𝑡 , as some 

variables can impact the distribution of the idiosyncratic error term or the distribution of 

inefficiency. Applications of the TRE model are slightly more common than the TFE 

model in the literature, probably due to the signalled problems in consistent estimation of 

the latter. Examples of applications of this include a productivity and efficiency of large 

and community US bank mixing this technique with a Bayesian approach (Feng and 

Zhang, 2012), benchmarking of regulated firms in the railway sector (Smith, 2012), 

economic-wide energy efficiency through an energy demand approach (Filippini and 

Hunt, 2011), efficiency of Ethiopian manufacturing firms (Hailu and Tanaka, 2015) and 

efficiency of Norwegian electricity distribution networks (Growitsch et al., 2012), among 

others. This model is increasingly popular because of its ability to separate heterogeneity 

from inefficiency and its easy application in software applications, for example through 

the program “sfpanel” for Stata (Belotti et al., 2012). However, a key limitation of both 

TRE and TFE models is at times ignored in empirical work, with serious consequences 

to the estimation of technical efficiency. Persistent inefficiencies that are time-invariant 

are absorbed by the heterogeneity component, meaning that they are not captured as 

inefficiency. This can result in abnormally high efficiency scores, as noted for example 

by Filippini and Hunt (2011). This can distort relative efficiency rankings of firms if some 

of them have high levels of persistent inefficiency and that is captured by the 

heterogeneity term, even if the model appropriately captures the actual heterogeneity in 

the data. However, in some contexts this approach is valid if persistent inefficiency is not 

of interest for analysis or there is a strong reason to believe it is undesirable to estimate it 

(an example of this is explored in Chapter 5). 

 

The next section will discuss the latest work on both fixed and random effects modelling 

to deal with the issues discussed above, so that the following section can then discuss 

other issues present in the literature that are of interest beyond heterogeneity. For further 

discussion on the established models of the literature, efficiency estimators and 

confidence intervals for efficiency measurement, see Greene (2008). 
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2.3. Heterogeneity and persistency in inefficiency: latest developments in Fixed 

and Random effects modelling 

While the focus of the literature has shifted from fixed effect models that do not truly 

account for unobserved heterogeneity to the TFE approach (Tsionas and Kumbhakar, 

2014), the issues of persistent inefficiency being captured as heterogeneity and the issue 

of the incidental parameters problem are not yet fully clarified. The latter problem implies 

that the number of parameters changes with the sample size, leaving doubt on whether 

the fixed effects MLE estimator is consistent. While it is clear that the fixed-effects logit 

estimator is not consistent and the fixed effects linear model with normal errors has a 

consistent 𝛽 if 𝑁 → ∞ and an inconsistent error variance unless 𝑇 → ∞ (which is quite 

unusual in empirical work), the behaviour of the true fixed effects MLE is less clear, 

although Greene points that the behaviour resembles the latter case (Chen et al., 2014). 

The error variance is particularly important as efficiency estimates clearly depend on 

accurate estimation of the error components. One of the first efforts to achieve consistent 

estimation (Wang and Ho, 2010) shows that first-difference and within transformation 

can be analytically performed on the TFE model to remove the fixed effects, rendering 

the estimator immune to the incidental parameters problem, with the interesting property 

of achieving consistency by either 𝑁 → ∞ or 𝑇 → ∞. While the authors consider the 

random portion of 𝑢𝑖𝑡 to be time invariant, Chen et al. (2014) build a similar strategy but 

letting 𝑢𝑖𝑡  vary randomly over t. In fact, different transformations of the fixed effects 

model are possible because it does not have the property of information orthogonality 

(Lancaster, 2000). This is an example of the use of the closed skew normal distribution 

to build feasible ML estimators and overcome the incidental parameters problem, 

although they are quite complicated from a technical point of view. The properties of the 

closed skew normal distribution are very useful for Stochastic Frontier analysis 

(Dominguez-Molina et al., 2004) and were developed later for fixed effects estimation 

and, as will be seen later in this section, for random effects models that try to disentangle 

heterogeneity from persistent inefficiency.  

 

A parallel effort to avoid the incidental parameters problem had two different approaches: 

marginalizing the inefficiency term via simulation (which imposes some restrictions on 

the heteroscedastic specification as they can only be expressed as a function of time 

invariant explanatory variables) or an alternative procedure that uses the analytical 

closeness property of the maximum likelihood function (Belotti and Ilardi, 2012). 
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However, all these approaches to solve the incidental parameters problem still do not help 

solving the issue of disentangling persistent inefficiency from time-invariant 

heterogeneity. Still, extensions of the TRE model have managed to solve that problem 

and are discussed next. 

 

Efforts in the development of extensions of the TRE model were mostly focused in 

making estimation efforts easier and overcoming the problem of disentangling persistent 

inefficiency from firm heterogeneity. As a first effort to facilitate estimation, Tsay and 

Ke (2010) derive an analytic approximation formula of the likelihood function for T=2 

and combine it with a pairwise likelihood estimator for estimation with T>2. This is 

implemented without resorting to numerical integrals or simulation-based techniques. 

Regarding persistent inefficiency, the way that was found to disentangle it from firm 

heterogeneity was to add another specific random effect to account for long-run sources 

of inefficiency. This is justified by the fact that firm management changes over time but 

a considerable part of it is also time-invariant, giving economic rationale for the 

appearance of this new error component. The model can be written as follows, with the 

notation that will be followed for the rest of the thesis: 

 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 + 𝜂𝑖                                                              (9) 

 

This resembles equation (8) except for the addition of a one-sided time-invariant random 

effect 𝜂𝑖. This will capture persistent (long-run) sources of inefficiency, which are now 

separated from heterogeneity 𝛼𝑖 . Total inefficiency is therefore captured by 𝑢𝑖𝑡 + 𝜂𝑖  . 

Colombi et al. (2011) were the first authors to suggest this approach, using results from 

the closed skew normal distribution under a series of assumptions (for example that all 

random variables are independent in probability and all random vectors are independent 

in probability). The authors state that this approach is particularly appropriate when firms 

are heterogeneous and the panel is long. Since the resulting log-likelihood function is 

complex, a two-step procedure to estimate all parameters is required. In the first step, 𝛽 

is retrieved (a consistent estimate of 𝛽) by estimating a random intercept model. In the 

second step, a pseudo-likelihood function using  𝛽 is maximized to retrieve all other 

parameters, following the general theory of two-step M-estimators. One of the key 

contributions of this paper is also the comparison of this suggested approach with the 

established techniques in the literature by using log-likelihood ratio tests on different 

applications and datasets, stressing the point that the addition of this specific long-run 
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inefficiency effect is not necessary in all cases, depending on the nature and behaviour of 

the inefficiency. The authors apply their approach to three different datasets: hospitals 

(larger T and N), rice producers and airports (small samples). It is clear that it is in the 

case of the larger sample that it is undesirable to drop any of the components. However, 

tests for the suitability of models show that such a complete model is not necessary in all 

occasions, and depending on the data, one or more components can be dropped from 

equation (9). Colombi et al. (2011) also point that future work can include generalizing 

the model to introduce some dependency among random components capturing the short-

run sources of inefficiency in a firm. This has several technical and theory implications. 

Dynamic models will be discussed in the next section of this chapter. 

 

Another approach to solve the same problem of persistent inefficiency is a Bayesian 

approach (Tsionas and Kumbhakar, 2014). This approach has the advantage of proposing 

a more flexible Bayesian approach. The authors also contribute to the Bayesian literature 

by proposing parameterizations for the Gibbs sampler that provide accurate inferences 

and less autocorrelation in the Markov Chain Monte Carlo (MCMC) scheme, to address 

the correlation between persistent inefficiency and firm effects. The authors apply their 

method to a balanced panel of banks from 1998 to 2005, finding evidence in support of 

the use of their model. This paper will be examined (and criticized) in detail throughout 

this thesis. However, the merits of a Bayesian approach in terms of the use of priors and 

assessment of the strength of the results in small samples are of great interest. This will 

be discussed further in Section 2.8. 

 

 

2.4. Dynamic models and partial adjustment of inefficiency  

One good example to portray the development of the Stochastic Frontier literature and 

how it is growing in branches (that are not necessarily well connected to each other) is 

the field of firm dynamics. It is fundamentally linked to the consideration of lags in the 

inefficiency term, which leads to changes in interpretation of results. A reason for the 

visible lack of work in this specific field is the complexity of the likelihood function and 

the difficulty in providing inference on unobserved firm-specific inefficiencies (Tsionas, 

2006). Another reason for the importance of considering dynamics in stochastic frontier 

models is the fact that technical efficiency scores can be argued to be only interpretable 

in the short-run, and firms could be found to be inefficient because they are operating at 
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their long-run equilibrium with respect to efficiency under an interpretation of 

dynamic/long-run efficiency analysis (Emvalomatis, 2012). Note that this notion of 

“long-run” is different from the one of Colombi et al. (2011), as the latter uses that term 

to describe persistent inefficiency in a non-dynamic model.  

 

One of the first efforts to include dynamics in the stochastic frontier literature was 

conducted by Ahn and Sickles (2000), within the time-varying efficiency fixed effects 

literature, taking the fixed effects model of Schmidt and Sickles (1984) as a starting point. 

The authors consider the existing methods in fixed effects modelling at the time 

inappropriate for estimation of long-run efficiency (in a dynamic sense) and propose a 

model where the firm-specific technical inefficiency levels are autoregressive. It is worth 

noting that in this specific part of the literature the fixed effect is interpreted as the 

inefficiency term, and therefore there is no space to account for firm heterogeneity. 

Another weakness of the fixed effects approach is that to retrieve time-varying efficiency 

measures, the score will either increase or decrease with time as in Cornwell et al. (1990), 

as efficiency is assumed to be also a function of time, or technical inefficiency barely 

varies for large T as it converges to a finite level with bigger T (Kumbhakar, 1991). The 

model of Ahn and Sickles (2000) can be reduced to a traditional fixed effects model with 

autocorrelated errors in which the fixed effects are interpreted as the firm’s long run 

technical efficiency. Each firm’s inefficiency follows an AR(1) process, meaning that a 

new parameter of interest appears: 𝜌, the ability to adjust past-period inefficiency levels, 

with a value between zero and one. While this allows to find long-run average inefficiency 

levels, adjustment speeds and output loss by sluggish adoption of technical innovations, 

it still suffers from the fact that it develops from the classic fixed effect literature, its 

interpretation of the fixed effect as an inefficiency term, and the lack of a framework to 

handle firm heterogeneity and therefore results only hold if no such heterogeneity is 

present or is controlled adequately with the use of additional regressors. The model can 

be estimated using Non-Linear Generalised Least Squares (NLGLS), but the error term 

follows a MA process and weak exogeneity of the lagged dependent variable no longer 

holds. Because of this source of bias, GMM is likely to be more appropriate for estimation 

in this context.  Ahn and Sickles apply it to a panel of US airlines, finding that results for 

the airline industry do not strongly support the hypothesis of long-run convergence of 

technical inefficiency levels of firms in an industry. The results also point that ignoring 

dynamics in fixed effects estimation can exaggerate heteroskedasticity in long-run 

inefficiency. 
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A similar effort was conducted by Desli et al. (2003), but with a focus driven away from 

long-run inefficiency and focusing instead on the fact that most of the existing literature 

does not allow stochastic frontier models to consider the correction of past inefficiencies. 

The authors build a model with a time and firm specific intercept, with the latter following 

an AR(1) process. As technical efficiency is introduced in the model in the intercept and 

is not a function of time, time can be an explanatory variable and allow to distinguish 

technical change from efficiency change. The model is estimated using ML. This 

approach has been applied to the context of efficiency of financial services in China 

(Zhang et al., 2015). However, this modelling approach suffers from some problems 

(Wang, 2007), as it does not allow the efficiency of a firm in one period to be influenced 

by past levels, although the output may be influenced by them. Wang (2007) suggests an 

extension of the basic model of Aigner et al. (1977) with an AR(p) inefficiency term, 

meaning that technical inefficiency of firms at time t is influenced by past inefficiencies 

in p periods from t-p to period t-1. The author derives the log-likelihood function that can 

be easily maximized to obtain ML estimates. 

 

Tsionas (2006) presents a Bayesian approach to dynamic models and applies it to a panel 

of large US commercial banks. The author states that the method is more appropriate for 

longer panels, which are an exception in efficiency analysis. While this stems from the 

original approach of Aigner et al. (1977), it specifies technical inefficiency in the 

following way: 

  

𝑙𝑜𝑔𝑢𝑖𝑡 =  𝑧𝑖𝑡
′ 𝛾 + 𝜌𝑙𝑜𝑔𝑢𝑖,𝑡−1 + 𝜗𝑖𝑡      𝑓𝑜𝑟 𝑡 = 2, … , 𝑇                                               (10) 

 𝑙𝑜𝑔𝑢𝑖1 =  𝑧𝑖1
′ 𝛾/(1 − 𝜌) + 𝜗𝑖1      𝑓𝑜𝑟 𝑡 = 1                                                             (11) 

 

The term 𝑧𝑖𝑡
′ 𝛾 + 𝜌𝑙𝑜𝑔𝑢𝑖,𝑡−1 captures systematic, expected log-inefficiency sources while 

the last part 𝜗𝑖𝑡 captures unexpected sources, captured by a random variable. 𝑧𝑖1 is a set 

of covariates that influence inefficiency 𝜌, a parameter that accounts for persistency in 

the inefficiency process. As the resulting likelihood function is very complex (including 

integrals that cannot be computed analytically), the author proposes a Bayesian approach 

with MCMC methods (although maximum simulated likelihood can also be used). 

Results from the US banking sector show that the persistence is fairly close to unity and 

efficiency levels are very high, being higher than the ones given by the static model. An 

example of empirical work using this approach studies the dynamic efficiency of Spanish 
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outdoor and greenhouse horticulture sector (Lambarraa, 2011). The author stresses the 

large difference in results between static and dynamic cases in estimates of technical 

efficiency levels. This is consistent with a high persistency coefficient. 

 

Emvalomatis (2012) focuses on the problem of long-run equilibrium in dynamic models 

and extends the work of Tsionas (2006) besides highlighting some of the problems in 

estimation caused by theoretical considerations. Estimates of the persistency of 

inefficiency can be overestimated when an interior long-run equilibrium exists due to an 

underlying dynamic optimization problem (depending on expectations of the managers 

of firms). In a turbulent industry, long-run equilibrium might change with time and the 

inefficiency process appears to have a trend captured by the persistency component. Other 

reason to inflate 𝜌 is the presence of unobserved heterogeneity – as in this model it is 

interpreted partially as inefficiency – although the slope parameters will be largely 

unaffected. In fact, considering that persistency estimates of both the studies of Tsionas  

(2006) and Lambarraa (2011) are very high, this is possibly caused by the presence of 

unobserved heterogeneity not being modelled appropriately (more likely than the 

presence of large shifts in long-run equilibrium). Another consequence seen in Monte 

Carlo experiments when ignoring heterogeneity is that 𝜎𝑢  is underestimated, with 

consequences to the efficiency estimates (and possibly, to the comparison of models that 

Tsionas (2006) makes between static and dynamic models). The modelling approach of 

Emvalomatis (2012) implies that the long-run level of inefficiency is common to all firms, 

although it is possible to let it vary as a function of covariates. The author discusses the 

issue of unobserved heterogeneity and considers the inclusion of firm-specific effects in 

this model, so this model can be considered as a dynamic extension of the models of 

Greene (2005). However, this still suffers from the issue of time-invariant inefficiency 

being captured by the firm-specific terms, so estimations of efficiency can be inflated in 

the presence of large persistent inefficiencies. Bayesian methods are also applied.  

 

Extensions of these models are sometimes easy to outline but hard to achieve or to 

interpret. A possible extension to the work of Emvalomatis (2012) is the addition of a 

one-sided time invariant random component to capture persistent inefficiency and 

therefore disentangle it from unobserved heterogeneity, while keeping an AR(1) structure 

on the transient component of inefficiency. However, the issue of the determination of 

the long-run level of efficiency would become problematic and in the presence of large 

and heterogeneous persistency, inference could be obfuscated, as the data could capture 
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the process that describes evolution of inefficiency out of equilibrium – in the long-run, 

every firm should have the same efficiency. This can be relaxed to assume that each firm 

has a different long-run equilibrium level by making this vary according to a set of 

covariates as in Tsionas (2006), but in general interpretation of such models can be 

complicated. 

 

 

2.5. Endogeneity, common shocks and benchmarking 

As the literature keeps growing in depth and diversity, focus is placed on issues that were 

once overlooked. An occasional issue is the presence of unobserved common shocks that 

cause heterogeneous impacts across firms, causing bias in efficiency estimates. In fact, 

examples of this problem are not difficult to imagine, for example with the consequences 

of the global financial crisis and how it represented a common shock to many businesses 

and industries around the world. While traditional stochastic frontier methods do not 

distinguish these shocks from technical inefficiency, Hsu et al. (2015) try to control for 

those shocks and obtain consistent estimates of technical inefficiency by modifying the 

ML estimator, applying the methodology to OECD banking data. However, there is no 

current effort in the literature to reconcile the treatment of this issue with other issues 

discussed in this chapter. 

 

Another important topic that only received attention recently is the issue of endogeneity 

in SFA. While it is now established in other parts of the econometrics literature how to 

deal with this issue, the technical difficulties of solving this issue in stochastic frontier 

modelling implied that the first effort is extremely recent (Kutlu, 2010). The author 

modifies the Battese and Coelli (1992) estimator of inefficiency to account for 

endogenous variables. This is done by decomposing the irregular term (𝑣𝑖𝑡 in previous 

equations), assumed to be correlated with the regressors and independent of the 

inefficiency term, in two parts: one correlated with the regressors and the other not. This 

two-step procedure leads to inconsistent standard errors and a bootstrapping approach is 

required. However, Monte Carlo experiments show the improved performance and the 

severe bias of the Battese-Coelli estimator in presence of correlation, which is not 

surprising. The work of Kutlu (2010) is not generalized and focused specifically on the 

Battese-Coelli efficiency estimator, leaving space for further work to be done in 

addressing the issue of endogeneity in stochastic frontier models. A more general 
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framework is proposed by using a one-step GMM approach that provides the correct 

standard errors of the estimated parameters (Tran and Tsionas, 2013). This is achieved by 

looking at the first order conditions of the resulting likelihood function when endogeneity 

is accounted for. Monte Carlo simulations show that performance is similar to MLE when 

there is no endogeneity in regressors, but the MLE deteriorates quickly with increasing 

correlation. The suggested approach presents good finite-sample performance and is 

applied to Norwegian farm data, showing more plausible estimates of returns to scale 

when using GMM, while efficiency estimates are generally lower and less dispersed. 

Farm dummies are implemented in this example, meaning that this can be seen as a 

variation of the TFE model that accounts for endogeneity in regressors. Accounting for 

that, estimates of efficiency appear to be very low, considering that the fixed effects 

should absorb persistent inefficiency and then the visible inefficiency is considered as 

transient or “short-run” inefficiency. However, the estimates of output factor elasticity 

are much more reasonable, leading to the belief that estimations are probably more 

trustworthy than the ones conducted using a simpler approach. Amsler et al. (2016) 

conducted the most recent survey on endogeneity in stochastic frontier models, 

elaborating on 2SLS and LIML techniques to address the issue, but also copula 

approaches (a joint distribution whose marginal distributions are uniform) to model the 

distributions in case of correlation between the error components and the variables. 

Griffiths and Hajargasht (2016) have also outlined alternatives for Bayesian estimation 

of endogenous stochastic frontier models. 

 

It is important to point that all of the literature mentioned so far generally discusses 

parametric stochastic frontier models. This means that the distributions of the error terms 

are known up to the specific values of the parameters, estimated using maximum 

likelihood, simulated maximum likelihood or Bayesian methods. Fully nonparametric 

approaches avoid all forms of misspecification and allow for heteroskedasticity of 

unknown form. This constitutes a small (yet growing) part of the stochastic frontier 

literature and will not be discussed further in this thesis. For further details on semi 

parametric and nonparametric approaches, including latent class models, see Greene 

(2008). An example (not included in the aforementioned survey) is the approach of Tran 

and Tsionas (2009), a nonparametric specification for covariates that affect the mean of 

technical efficiency, applied to the British manufacturing sector. However, only average 

technical efficiency can be estimated, as a key limitation of this modelling approach is 

that distributional assumptions need to be made in order to retrieve individual efficiency 
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scores, removing much of the added value on the application of a nonparametric method. 

This was however solved by using Local Maximum Likelihood (LML) in Kumbhakar 

and Tsionas (2011). 

 

Another important aspect overlooked in the literature is that while neoclassical production 

theory considers all firms are fully efficient and the current stochastic frontier literature 

assumes that no firms are fully efficient, a reasonable compromise is to assume that 

something “in between” happens: while some firms are fully efficient, others are not. This 

issue was dealt with by constructing latent class models, where a cluster of firms 

sometimes has very high efficiency estimates, indicating some clusters at full efficiency 

but not others. Kumbhakar et al. (2013) built a “zero inefficiency” model that accounts 

for this economic problem that is particularly important for benchmarking, as the 

benchmark is preferred to have more than one firm. This also gives a better landscape of 

inefficiency in an industry and provides some clustering insights to policy making. Tran 

and Tsionas (2016) propose a semi-parametric zero inefficiency model, with encouraging 

results in simulations. However, as many papers in the field, the focus on very small 

samples that matter to the applied researcher is at times ignored. The smallest sample of 

the simulations of the authors has 2500 observations, a number that is hard to reach when 

considering firm data for specific industries, a set of limited regions in a country, or a set 

of countries in the world. 

 

 

2.6. Spatial Frontier Models 

Another increasingly important aspect of efficiency analysis is the issue of spatial 

dependence. A Spatial Autoregressive (SAR) dependence in the cross-sections, for 

example, can lead to omitted variable bias if a spatial lag of the dependent variable is not 

included in the model. On the other hand, a Spatial Error Model (SEM) specification can 

also capture spillovers, but they are related to the error components and therefore with 

less of a structural economic interpretation. Both approaches will be investigated further 

in this thesis. A brief survey of the literature follows. A more descriptive literature review 

on Spatial Stochastic Frontier models is explored in detail in Chapters 4 and 5 in the 

context of the contributions to the literature contained in those chapters.  
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The literature can be divided in three broad categories: SAR based approaches (developed 

further in Chapter 4), SEM based approaches (developed further in Chapter 5) and other 

mixed approaches related to spatial econometrics. 

 

Noticeable early efforts in the literature include Druska and Horrace (2004), that develop 

a GMM frontier model and apply it to rice farms in Indonesia, and also Schmidt et al. 

(2009) that focus on the unobserved local determinants of inefficiency in farm 

productivity in the Centre-West of Brazil. In this (Bayesian) study, spatial dependency is 

allowed through lagged latent regional effects, instead of farm effects, unlike Druska and 

Horrace (2004). 

 

Spatial Autoregressive approaches are becoming more established in recent literature. In 

Areal et al. (2012), the spatial spillovers are modelled directly in the efficiency 

components, so there is a spatial relationship between firms’ efficiencies. Pavlyuk (2013) 

develops a cross-sectional maximum likelihood estimator for SARSF (Spatial 

Autoregressive Stochastic Frontier model) and SARARSF (Spatial Autoregressive 

Stochastic Frontier model with spatial autoregressive disturbances) models. Affuso 

(2010) used a SARSF model to evaluate the impact of agricultural extension programmes 

that have positive effects not only on chosen farmers but also to other farmers due to 

spatial spillover effects. Another contribution to the literature is a spatial extension of the 

CSS estimator (Cornwell et al., 1990) to the case of a spatial autoregressive dependence 

which involves direct, indirect and total efficiency (Glass et al., 2014). Glass et al. (2016) 

make further analysis of spatial spillovers and the modelling approach, with important 

aspects which will be considered and developed further throughout this thesis, such as 

efficiency measurement after estimation.  

 

The development of SEM based models is scarcer and received less attention in the 

literature, particularly in high impact journals. Areal et al. (2012) apply a spatial 

stochastic frontier model with an autoregressive specification of the inefficiency 

component of the compound error term. The key contribution of this paper is the direct 

specification of inefficiency to be spatially autoregressive and including a parameter that 

measures the level of spatial dependence. Fusco and Vidoli (2013) present a similar 

approach to Areal et al. (2012) with the key difference of the use of a half normal 

inefficiency assumption and estimation using ML methods. Tsionas and Michaelides 

(2016) propose a latent random effects vector that is specified to follow a spatial 
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autoregressive process for panel data. The idiosyncratic part of inefficiency is assumed to 

be half-normal and the model is estimated using complex Bayesian methods. 

 

There are also other recent efforts in the literature linked to spatial stochastic frontier 

models. Adetutu et al. (2015) study the effects of efficiency and TFP growth on pollution 

in Europe in a two stage approach. In a first stage, non-spatial and local spatial stochastic 

production models are estimated. In a second stage, measures of productive performance 

are used as regressors in models of per capita emissions of nitrogen and sulphur oxides. 

Some advances in spatial stochastic frontier modelling have also taken place in the 

macroeconomic literature.  Mastromarco et al. (2013) use a two-step approach to 

investigate the channels under which globalisation factors lead to technical efficiency by 

combining a dynamic stochastic frontier model with a time series approach.  Mastromarco 

et al. (2016) propose a framework to accommodate both time and cross-sectional 

dependence by combining the exogenously driven factor-based approach with an 

endogenous threshold efficiency regime selection mechanism.  

 

Up to this point, no spatial frontier model that takes into account persistent inefficiency 

while accounting for unobserved heterogeneity seems to exist in the literature. There are 

also no current significant signs of research done about dynamic frontier models with 

spatial dependence. To add to this, the development of models where spatial dependence 

is placed on the inefficiency components is also in its infancy. Another fact that does not 

help dissemination of this work is the lack of spatial econometrics aspects in broad SFA 

literature reviews, such as the review of Parmeter and Kumbhakar (2014). These issues 

lead to the detection of a gap in the efficiency measurement literature that could be filled 

for better benchmarking procedures in efficiency measurement. 

 

 

2.7. A note on economic interpretation of skewness and “wrong” skewness 

Most of the literature focuses on the estimation of inefficiency without delving 

considerably into a complete interpretation of the principles on which stochastic frontier 

analysis is based on. A key factor is the skewness of the error term, how it is interpreted 

and how inefficiency measurement arises from that. It is generally considered that in 

production frontiers the skewness of the error term should be negative and that in cost 

frontiers it should be positive. An example of a discussion about the theoretical 
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foundations of the direction of the existing skewness is present in Bhattacharjee et al. 

(2009). The usual skewness interpretation is associated with the Neo-Schumpeterian 

theory of growth – where a frontier results from the forging ahead of firms, overcoming 

the best practices. However, the behaviour of residuals in empirical work does not always 

follow that theory, as there are production function settings where positive skewness is 

found or cost function settings where negative skewness is found. This cannot be 

compatible with the assumptions made about the one-sided error in classic Stochastic 

Frontier models. Various reasons can be considered, from measurement errors to 

misspecification, or an economic interpretation of “super efficiency” where all firms are 

efficient, as this skewness shows little evidence of inefficiency in the sample (Greene, 

2008). 

 

However, two other theories exist in the literature: one that considers that wrong skewness 

is a finite sample problem and another that considers wrong skewness not to be a problem, 

but just a consequence of the strong assumptions made about the one-sided error or other 

theoretical considerations. The first starts from consequences of small-sample estimation: 

if the signal-to-noise ratio is very small, then in a very small sample there is a high 

probability of finding wrong skewness in that sample. Simar and Wilson (2009) apply a 

bootstrapping procedure to retrieve inefficiency measures independently of the direction 

of the skewness. Other approaches are, for example, to impose negative skewness 

constraints on the residuals in ML estimation for production frontiers or apply corrected 

least squares estimation. 

 

In the latter perspective of the literature mentioned above, Carree (2002) considers a 

binomial distribution for inefficiency so that skewness can take both positive and negative 

values. In this case, a positive skewness in a production frontier setting is interpreted as 

a low probability of small inefficiencies and high probability of large inefficiencies. The 

theory behind it is related to cycles of innovation and imitation and transient dominance 

of firms within an industry, where innovation leads to positive skew and imitation leads 

to negative skew. Almanidis and Sickles (2011) consider a doubly-truncated normal 

model, allowing skewness in both directions. The authors consider that misspecification 

should only happen if the wrong distribution for the inefficiency process is assumed and 

show that the wrong skewness is also a large sample problem. However, this econometric 

advance that consists of a bounded inefficiency approach clashes with the pre-established 

theory that justifies the direction of the skewness. This leaves space for some discussion 
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between theory and practice. Considering the base foundations of the field, it is probably 

not recommended to conduct efficiency analysis if the skewness of the residuals seems 

to be incorrect. Econometric procedures to get around that problem will still struggle with 

the underlying (lack of) meaning of what is being estimated. 

 

 

2.8. Bayesian Approaches 

 

A common trend in the literature has appeared in recent years. While the literature has 

tried to address problems that are increasingly harder to solve, Bayesian approaches have 

gained popularity as practical tools to solve those problems and increasingly appear in 

different applications of stochastic frontier models in efficiency analysis, instead of 

classic ML estimation approaches. This popularity has certainly benefitted from exciting 

computational advances in recent decades which put large computational power at the 

hands of any researcher in small and low cost machines. These approaches usually imply 

better small-sample properties and more flexible approaches towards efficiency 

measurement when used correctly. Early work in Bayesian stochastic frontier modelling 

includes Koop et al. (1995) and van den Broeck et al. (1994). Further Bayesian analysis 

of such models is in Koop and Steel (2003). However, Greene (2008) stresses that 

assuming an informative prior distribution is important to get estimates of inefficiency 

that are specific to individual observations. With diffuse priors, the Bayesian applications 

are nothing else than alternative methods of maximizing the likelihood function, while 

appearing more modern and complex.  Procedures such as Local Maximum Likelihood 

(Kumbhakar et al., 2007) or Simulated Maximum Likelihood (Greene, 2003) show 

advantages over simpler classical methods when estimating different Stochastic Frontier 

models. When facing more complicated problems, it is also possible to decouple the 

estimation into a simple first step where the cost or profit function is estimated and a 

second step where the error term is decomposed as required. However, two-step 

approaches suffer from loss of information that can be particularly damaging in small 

samples and is hard to quantify. 

 

However, the literature contains examples of Bayesian approaches which go beyond what 

is seen in the classical literature, for example with the spatial stochastic frontier model of 

Areal et al. (2012) and the work on dynamic firm behaviour of Emvalomatis (2012). It is 

also possible to assess the sensitivity of results to different priors and evaluate the strength 



 27 
 

of the underlying signal in the data in small samples. For example, it is very difficult to 

assess the stability of the results in the classical GTRE approach of Filippini et al. (2016) 

as the model estimates persistent inefficiency with very small N and there is no 

information on the performance of the estimator. The sensitivity of the results to different 

choices is a key objective of chapters 3, 4 and 5. Bayesian techniques can also facilitate 

estimation to overcome obstacles that would often lead to two-step approaches in 

frequentist estimation, overcoming the issue of loss of information between the steps. 

These issues justify the use of such techniques throughout the thesis and will be explored 

further in subsequent chapters. 

 

 

2.9. Conclusion 

The Stochastic Frontier literature has clearly evolved in recent years, both in depth and 

range. It is now possible for researchers to ask deeper questions and get more accurate 

answers, tuning their methodology according to the increasingly available range of 

modelling and estimation approaches. The issue of heterogeneity has seen significant 

developments in the literature, linked to the expansion of estimation techniques, both 

through Bayesian approaches and extensions of the established Maximum Likelihood 

estimation methods. Techniques like Local Maximum Likelihood and Maximum 

Simulated Likelihood greatly increased the possibilities of researchers in efficiency 

measurement, just like advances in computational power and statistical software made 

complex Bayesian MCMC approaches possible. More attention was given to the 

incidental parameter problem, which might have affected the conclusions of some studies 

conducted in the past. However, other technical and theoretical details were investigated 

leading to significant developments in recent years. Recent tools allow researchers to 

account for endogeneity in the production or cost function, include dynamics in the 

specification of the stochastic frontier model and account for spatial links between the 

efficiency of a firm and its neighbours. These tools are growing in depth and generality, 

allowing for a promising future in the field. The next step is the catching up process of 

the applications of stochastic frontier models with the large amount of modelling 

innovations in recent years, considering that the overwhelming majority of the 

applications over the last few decades ignores key issues due to the lack (at the time) of 

proper tools to tackle the particular issues at hand. There is, however, still room for 

improvement in theory and econometric approaches to efficiency measurement, as zero 
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inefficiency models and spatial models can grow in complexity and dynamic models can 

increasingly account for heterogeneity. Allowing for endogeneity in the production 

function while also accounting for the problems mentioned above is a possible extension 

to this large body of literature.  

 

Spatial dependence is an issue capturing increasing attention and is witnessing interesting 

developments of great importance to efficiency measurement. However, empirical work 

needs to close the gap and take advantage of the new developments in the literature to 

fully capitalize on such advances. It is also necessary to keep building strong bridges 

between the undeniable advances in econometrics and the existing theory on efficiency 

measurement. The lack of ready to run statistical packages and code provided by the 

authors that conduct estimation of many of the models referenced above might justify 

most of the gap between theory and application seen up to this day. 

 

The issues of persistent inefficiency and spatial spillovers discussed in Sections 3 and 6 

respectively are of particular interest and will be combined in the contributions of this 

thesis to the existing literature. The choice of a Bayesian approach is of particular interest 

when related to small sample issues, which will be recurrent throughout the thesis. 
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Chapter 3. Energy Efficiency in Transition Economies: A Stochastic 

Frontier Approach 

3.1. Introduction 

 

Energy efficiency and energy-saving measures are a heavily debated topic in recent years, 

both in high profile environmental discussions and in the media, as issues like energy 

security, energy supply, carbon emissions and climate change take increasing shares of 

the attention of policy makers, the media and society in general. The issue has been 

approached from multiple perspectives, from renewable energies to changes in consumer 

behaviour, spanning a large spectrum of research on technical aspects, policy making and 

economic analysis. 

 

The world energy demand profile has changed in past decades, with some noticeable 

geographic differences. The oil shocks of 1973 and 1979 fundamentally changed energy 

demand in the OECD, slowing down the growing patterns of energy demand that were 

ongoing since WWII (Cooper and Schipper, 1992). Eastern Europe and the USSR were 

mainly isolated from price shocks, which allowed the bloc to carry on with its industrial 

expansion which in turn came to an end with the collapse of the political and economic 

system. After this turning event, the reform packages of the Washington Consensus were 

applied to try to recover and transform the economies, with heterogeneous paces of 

implementation and different results across the region. After 25 years of the process, some 

countries of the Former Soviet Union (FSU) still maintain an economy with very fragile 

market mechanisms and do not seem to be approaching a free market economy status 

anytime soon. 

 

Economies that transitioned from a centrally planned economy to a market economy after 

the fall of the USSR often experienced rapid improvements in energy intensity as market 

reforms alleviated problems such as resource misallocations and price distortions. 

Research has often focused on energy intensity as a measure of what impacts energy 

efficiency, with transition economies not being an exception. However, deep changes 

were also ongoing as market reforms took place, changing the role of the government in 

the economy and the structure and key sectors that contribute to the economy. By using 

energy intensity as a proxy for energy efficiency, the considerable changes in the structure 
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of these economies are mostly ignored in the assessment of efficiency. By modelling 

energy demand for the purpose of the analysis, a measure of underlying energy efficiency 

is estimated, as it is separated from some changes in intensity caused by economic 

collapse or other deep structural changes of the economy. This is achieved through recent 

developments in the estimation of SF models, the Generalized True Random Effects 

model (Colombi et al., 2011), exploring the Bayesian reparametrized estimation approach 

of Tsionas and Kumbhakar (2014) and also the simpler Gibbs sampling approach of 

Makiela (2016) as competing estimation solutions. Simulations show that results in small 

samples are very sensitive to prior choices, but this sensitivity is mostly dependent on the 

underlying signal-to-noise ratio of the data, allowing for meaningful estimation and 

interpretation under strong enough ratios. This chapter contributes to the literature by 

estimating both time-varying and persistent inefficiency measures in an electricity 

demand equation approach (a cost frontier), while accounting for unobserved 

heterogeneity in a random effects framework. It also uses a rich dataset from multiple 

sources to consider issues previously overlooked in the literature, such as climate effects 

and economic structure.  The countries in the sample provide particularly interesting 

insights, as they were the target of one of the most ambitious reform programmes in recent 

history (even if executed at different paces and intensities) and were subject to an extreme 

situation of political and economic turmoil at the start of the transition period and 

sometimes beyond that. In this approach, "true" efficiency can be measured by focusing 

on other aspects, such as norms, traditions, use of appliances, habits and conscience on 

energy consumption in both households and the industrial sector. Selected OECD 

countries are added to the sample as a comparison term, due to their large role in the EU 

and also to expand data available for estimation.  While there is an undeniable decrease 

in energy intensity in transition economies in the 1990s (Cornillie and Fankhauser, 2004), 

that can be due to de-industrialization and the collapse of economic activity, and not 

because of actual improvements in the use of energy in existing activities at a given time. 

Therefore, the purpose of this chapter is to measure underlying energy efficiency levels 

in electricity consumption and its changes by accounting for structural changes in the 

economy and other key socio-economic variables, in a challenging context of limited 

data. 

 

While research in the past has heavily focused on using energy intensity as a proxy for 

energy efficiency, few attempts to discuss and identify mismatches between the two 

concepts have been done. Transition economies in and around the FSU, which represent 
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one of the most interesting episodes of quick and radical transformation in the past 

decades, are the location of a unique type of “natural experiment”. Results give evidence 

that a part of the gap between East and West has been closed mostly by the time Eastern 

European countries joined the EU, with the Balkans being a clear exception and lagging 

behind, as well as most of the countries further to the East. There is evidence of 

convergence across most groups but with a few clear exceptions which are worthy of a 

discussion around possible reasons for such results. 

 

 

3.2. Energy in Transition: key facts and literature review 

 

Key differences separated the western economies from the centrally planned economies 

in the FSU and Former Yugoslavia spheres of influence. Planning and policy in the energy 

sector were also fundamentally different from western countries, as the communist 

regimes focused on supply-side solutions to meet increasing demand instead of tackling 

demand issues and waste (Cooper and Schipper, 1992). This implied large investments 

were made in fuel extraction and power generation in order to meet demand, instead of 

tackling energy efficiency problems or consumer behaviour with demand driven policies. 

Serbia and Uzbekistan are still examples of countries where the main electricity 

generation firm is deeply involved in coal extraction and the energy industry is highly 

integrated. Another important issue was the pricing system of transition economies. Over 

24 million goods had fixed prices in the Soviet Union, with prices being inflexible and 

unable to provide any correct information about scarcity. Microeconomic efficiency was 

not achievable (Ericson, 1991), cascading into macroeconomic outcomes. 

 

Some serious problems still persisted in the power sector long after the start of the 

transition process. Energy companies mostly continued to function as "quasi-fiscal 

institutions" after a decade of transition, providing large implicit subsidies to households 

and (state-owned) enterprises through low energy prices, preferential tariffs or free 

provision of services to privileged groups, the toleration of payment arrears, and noncash 

arrangements (Petri et al., 2002). This generated considerable inefficiencies and 

distortions. Such arrangements were necessary, for example in Russia, as insolvent 

companies kept doing business and generated a non-payment crisis (Martinot, 1998).  

Another consequence is that underinvestment and capital stock depletion occur under a 

scenario of tariffs set below cost recovery levels. Although some tariff rebalancing has 
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taken place, cross-subsidizing was still present in the transition process as residential 

tariffs were more expensive than industrial tariffs, especially in the CIS (Kennedy, 2003). 

Removing this distortion maximizes economic benefits. Another major issue is general 

under-pricing in the power sector, as prices are well below Long Run Marginal Cost 

(LMRC) and they should be above LMRC in order to recover past accumulated energy 

debt, which is a major component of total sovereign or quasi-sovereign debts in some CIS 

economies. While different countries have heterogeneous marginal costs, it is clear from 

Table 3.1. that there is a gap in prices between countries where regulators are established 

and others where that is not the case, and energy intensities are clearly higher in countries 

with lower electricity prices, as there is no clear incentive to reduce consumption through 

appropriate pricing. 

 

 

Independence 

of electricity 

regulator 

Household 

expenditure 

on power 

and water 

(%) 

 Energy use (kg 

of oil equivalent) 

per $1,000 GDP 

(constant 2005 

PPP) (2008) 

Residential 

electricity 

tariffs (USc 

kWh)  (2008) 

Albania Partial 5 90.1 9.6 

Armenia Partial 6.8 173.3 7.9 

Azerbaijan No 3.5 189.7 7.4 

Bulgaria Full 11.2 216.3 10.9 

Croatia Full 13.1 118.4 12.4 

Georgia Partial 11 151.9 10.3 

Hungary Full 10.9 147.2 22.5 

Kazakhstan Partial 3.7 422.0 5.3 

Kyrgyzstan Partial 4.4 253.8 1.6 

Latvia Full 3.8 126.5 11.8 

Lithuania Full 3.8 155.3 10.5 

Macedonia Partial 6.6 160.4 6.1 

Moldova Partial 9.6 318.7 10.1 

Poland Full 6.8 156.0 20.0 

Romania Full 3.7 155.5 14.5 

Russia Partial 6.6 328.4 6.7 

Slovakia Full 9.5 165.9 22.8 

Slovenia Full 9.1 140.6 18.4 

Ukraine Partial 9.1 436.8 4.6 

Table 3.1. – Power Sector and Energy Intensity information on selected transition 

economies. Sources: EBRD/World Bank 

  

Cornillie and Fankhauser (2004) argue that the industry has no incentive to use energy 

efficiently, as electricity prices are below cost-recovery level, particularly in the CIS, and 
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tariff collection rates were not appropriate. This effect is augmented by the lack of 

restructuring and reform, as there is “a substantial overlap between the policies needed to 

improve energy intensity and some of the region’s key transition challenges” (p.294). 

Their study decomposes energy data to identify the factors driving energy intensity using 

data collected between 1992 and 1998. Main conclusions point towards the importance 

of energy prices and enterprise restructuring as the causes of more efficient energy use. 

Markandya et al. (2006) consider economic growth as the driving force in changes in 

energy intensity to study the convergence of energy efficiency and income between 15 

EU countries and 12 countries of Eastern Europe. Conclusions point that there is 

convergence between the two blocks of countries, but the rate of convergence differs 

between countries.  Nepal et al. (2014) take an institutional approach to explain changes 

in energy efficiency using dynamic panel data (Bias Corrected LSDV method), using 

energy intensity as a dependent variable. The authors find that market liberalization, 

financial sector and infrastructure industries (excluding the power sector) improved 

energy efficiency in these countries, while privatization programmes were only effective 

in that sense in South Eastern Europe. However, in this case, energy intensity is directly 

interpreted as energy efficiency, an assumption that is not consensual across the literature. 

 

To estimate stochastic frontier models, research is mostly based on the seminal work of 

Aigner et al. (1977) that introduces the specification of the error term into two separate 

components, one that is normal and the other that has a one-sided half-normal distribution, 

as discussed in Chapter 2. Greene (2005) presents several extensions to the stochastic 

frontier model accounting for unmeasured heterogeneity and firm inefficiency. These 

extensions include two noticeable additions: the true fixed effects model (TRE) and the 

true random effects model (TFE). The used methodology in this case will rely on an 

extension of the true random effects model with an additional one-sided component 

(Colombi et al., 2011). However, this is done using Bayesian estimation techniques, as in 

Tsionas and Kumbhakar (2014) and Makiela (2016). This extension allows to consider 

both time-varying and time invariant inefficiency, unlike the TRE and TFE models which 

translate to a loss of information about time-invariant inefficiency. This methodology is 

sparsely used in the applied econometrics literature, for example in efficiency 

measurement of Swiss railways (Filippini and Greene, 2016) or electricity distribution in 

New Zealand (Filippini et al., 2016). Both of those applications are frequentist. 
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A major methodological and conceptual influence for estimation of energy efficiency 

scores of this chapter is the energy demand cost frontier approach of Filippini and Hunt 

(2011). Their study conceptualizes a measure of energy efficiency by estimating a 

stochastic cost frontier model which tackles the fragilities of energy intensity as a proxy 

for energy efficiency. Demand is larger in countries where energy is used inefficiently 

(holding all else constant), as demand is bounded from below. This level of minimum 

attainable consumption given all factors leads to a cost frontier. The authors estimate an 

aggregate energy demand function to estimate “underlying energy efficiency” after 

controlling for income and price effects, climate, technical progress and other exogenous 

factors, using a pooled model (Aigner et al., 1977) and the TRE model (Greene, 2005). 

The authors also argue that without conducting such analysis it is not possible to know if 

the changes in energy intensity over time are a reasonable reflection of actual efficiency 

improvements. The study concludes that although for a number of countries the proxy is 

good, that is not always the case, with Italy being an extreme example. While the study 

of Filippini and Hunt (2011) focuses on a long sample period (1978-2006) for 29 OECD 

economies, the analysis of transition economies leads to different backgrounds and 

frameworks, due to the underlying changes in the political system and the economy. 

However, the aforementioned study had three countries in common with the analysis that 

will be conducted in this chapter (Hungary, Poland and Slovakia). The aforementioned 

study overlooks the issue of heterogeneity among countries by choosing an estimation 

method that might suffer from heterogeneity bias. It also has an unrefined approach on 

accounting for climate and the structure of the economy, which will be discussed in 

further detail in this chapter. The size of the time dimension of the panel also raises some 

concerns about the stationarity of the data and therefore the validity of the obtained 

results, some of them of difficult interpretation or justification. Another article with 

similar methodology by Filippini and Hunt (2012) is an application of stochastic frontier 

models to estimate efficiency within the context of residential demand in the USA. Since 

the TRE model is unable to capture persistent and time-invariant inefficiency, and the 

model was rendering very high and implausible efficiency scores possibly due to the 

omission of the aforementioned inefficiency, the chosen method was a Mundlak (1978) 

version of the model as discussed in Farsi et al., (2005). 

 

Stern (2012) is an influential example in the energy efficiency measurement literature. 

The author analyses efficiency trends in 85 countries over a 37 year period. However, due 

to the lack of data for FSU countries, those countries are not included. Differences in 
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energy efficiency are modelled as a stochastic function of explanatory variables (instead 

of being considered as random) and the model is estimated using the cross-section of 

time-averaged data. One of the key advantages of this method is that no assumptions are 

made about technological change over time. The aforementioned paper has two important 

differences from Filippini and Hunt (2011). Efficiency is measured using a distance 

function and estimation is conducted using random effects, fixed effects and finally a 

distance function with an auxiliary regression, using variables that co-vary with the 

unobserved state of technology (such as state of democracy, openness, corruption and 

total factor productivity), in order to reduce omitted variable bias. Secondly, it contains 

key conceptual differences - the dependent variable is energy intensity and the study is 

also based on the productivity literature instead of the energy demand modelling 

literature. Stern (2012) chases the drivers behind changes in both energy prices and 

efficiency, while Filippini and Hunt (2011) take policy as given and observe how 

households and firms react to the economic environment. The complex data building 

process includes a series of assumptions in order to include capital and human capital as 

variables in the model such as linear growth of years of schooling and assumptions about 

the rate of depreciation. Results differ with fixed and random effects estimations. 

 

Other approaches are implemented across the literature. The DEA (Data Envelopment 

Analysis) technique is non-parametric which means that it is robust to misspecification 

of the functional form (Cornwell and Schmidt, 2008). However, it is more difficult to 

assess uncertainty in DEA efficiency measures, making it unclear up to which extent 

uncertainty impacts results and conclusions in empirical work. It is also more difficult to 

assess the impact of noise in DEA results. Zhou and Ang (2008) used this technique to 

measure energy efficiency in 21 OECD countries between 1997 and 2001.  

 

In contrast to most previous work in the literature, this chapter will tackle the issue of 

economy-wide energy efficiency in the specific context of transition while using up to 

date Stochastic Frontier techniques, specifically for efficiency in electricity consumption. 

The context of these economies implies that data collection is difficult and the price 

variable has to be constructed carefully. Due to the small sample size, investigations on 

the performance of the estimators are also conducted. In the next section, the research 

framework is clarified further.  
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3.3. Conceptual Framework 

 

The concepts of energy intensity and energy efficiency are fundamentally different, 

although the first is sometimes used as a proxy for the latter. Energy intensity is simply 

the ratio of total energy consumption per unit of GDP. This indicator suffered severe 

changes in transition economies since 1990, but not homogeneously across transition 

economies. The same happened with electricity intensity, the ratio of electricity 

consumption per unit of GDP. The Caucasus region countries managed to achieve great 

reductions in electricity intensity from high levels since the early 1990s. The current 

members of the EU have lower electricity intensities but their levels were already 

considerably low in the early 1990s. Kazakhstan, Kyrgyzstan, Russia, Moldova and 

Ukraine had high energy intensities in 1992 and didn’t manage to considerably bring 

those levels down by 2007. It is also clear that there is some heterogeneity in efforts 

bringing down energy intensity even within the subset of current EU members, which is 

easy to spot by comparing Latvia and Czech Republic, as it can be seen in Figure 3.1 

below. 

 

 

Figure 3.1. – Electricity use (tonnes of oil equivalent) per $1,000 GDP (constant 2005 

PPP). Data source: World Bank 

 

Energy efficiency is a more complex concept, as it is the activity that can be made with a 

certain amount of energy, involving not only structural but also behavioural changes. It 

depends on a number of factors that are not considered for energy intensity such as 
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climate, output and composition of the economy (OECD, 2011). Energy efficiency can 

fundamentally vary through behavioural change in both households and industry, as the 

reform packages applied to transition economies shifted the public and businesses away 

from a Soviet supply-side mentality and also gave an incentive for more efficient use of 

energy through government policies, price signals and improved management practices.  

 

The framework outlined in the previous section points for several theoretical and 

estimation challenges. It is possible that a decrease in energy intensity is not accompanied 

by a decrease in underlying efficiency, as the decrease in energy intensity could have been 

mostly explained by deep structural changes in the economy, resulting from large changes 

in the industrial sector or a shift of capital and labour to other sectors in the economy with 

different electricity consumption profiles and/or value added. As such, the key differences 

between electricity intensity and the proposed measure of efficiency should be clearly 

noticeable when the structural changes in the economy are not followed by other sort of 

real efficiency gains that are channelled through change in traditions and norms, different 

consumption profiles and improved government regulations and other incentives for a 

more rational use of energy, in the sense that a troubled economy is not necessarily 

efficient (conditional on its few surviving activities, for example). 

 

It becomes clear that there is a large overlap between energy intensity and energy 

efficiency but the concepts are not interchangeable. The key drivers of changes in energy 

efficiency that are highlighted here also impact energy intensity, but are just a component 

of those changes. By building an energy demand approach with controls for economic 

structural changes and many other factors, the efficiency effect can be separated from 

other effects and effectively measured. 

 

The model uses aggregate (final) electricity consumption for each economy. Demand in 

general translates to demand for several energy services: heating, manufacturing, lighting, 

etc. This requires capital equipment for machinery, home appliances, etc. The model takes 

an input demand function perspective, so the difference between the observed input and 

the cost-minimizing input demand represents both technical as well as allocative 

inefficiency (Filippini and Hunt, 2011). This is in line with the fact that technical 

efficiency is necessary, but not sufficient, for the achievement of cost efficiency 

(Kumbhakar and Lovell, 2004). 
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Due to the changes the economies went through in the transition period, it is important to 

consider that there can be large differences in trends between the estimated level of 

efficiency and the energy intensity measure. That could lead to dangerous policy advice, 

for example, if technological advances, structural change towards services and the 

purchasing of energy efficient equipment in the economy leads to a decrease in energy 

intensity but in fact the use of such technology is not optimal (in the sense of “underlying” 

efficient use). Another very important aspect is the consideration of persistent sources of 

inefficiency, which can be particularly large in transition economies due to the economic 

history and previous economic systems of these countries. These sources of inefficiency 

can be larger in countries where no significant reform efforts were made following the 

collapse of the Soviet Union. This will be taken into account in the modelling approach. 

The productivity approach of Stern (2012) will not be followed for two reasons. First, 

such an approach would require a set of data that is not available for those economies and 

had to be approximated or estimated. Second, the productivity approach intends to find 

deep drivers of differences in efficiency and energy prices between countries, but 

transition economies have the peculiar framework of strong (even if heterogeneous) 

reform efforts from the conclusions of the Washington Consensus. As such, policy 

parameters are taken as given, and an attempt to assess how households and firms react 

to the economic environment is made, at the light of the available data and taking into 

account unobserved heterogeneity between countries. 

 

 

3.4. A stochastic frontier model for transition economies: data and 

methodology 

 

3.4.1. Estimation approach 

 

A firm is technically efficient if it uses the minimal level of inputs given output and input 

mix or if it produces the maximal level of output given inputs (Cornwell and Schmidt, 

2008). In this context, SFA has been used often in empirical research to estimate firm 

level technical efficiency. It can be argued that an SFA approach using electricity 

consumption as a dependent variable given a set of inputs can retrieve economy-wide 

efficiency scores which represent national aggregate efficiency. Therefore, the seminal 

SFA research that was originally used within the neoclassical theory of production is now 

used at an aggregate level in an electricity demand cost frontier.  
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A neoclassical framework for frontier approach is considered, although such a framework 

is partially discarded as the concept of stochastic frontier will be used here within the 

empirical approach traditionally used in the estimation of an aggregate energy demand 

function. However, as pointed by Filippini and Hunt (2011), this still implies a kind of 

production process. Further discussion about the conceptual framework first developed 

by these authors will follow. The usual regularity conditions need to be assumed (Orea et 

al., 2014) – and the functional form is chosen to achieve estimation simplicity. 

 

The role of the random effects is related to heterogeneity in cost functions. They can be 

considered as country specific intercepts in the cost function to account for unobserved 

heterogeneity in electricity consumption across countries. The random effects correct the 

bias in the parameters of the cost function so that the frontier is estimated correctly. The 

DEA literature already considers a parametric approach to be too restrictive in the 

description of the cost function. Naturally, the cost function needs to be identified 

correctly for accurate results. In a scenario of constant differences in technology across 

countries, the GTRE model presumably works well in finding true measures of cost 

efficiency. Time-invariant technological differences between countries are accounted for 

in this way. One could consider that this relates to the use of random effects models with 

large enough T to raise concerns about what is time-invariant and what is not, so changes 

in relative technological gaps between regions could be captured by the inefficiency 

measure – but a modelling compromise is necessary given the limitations of the data – 

and even the existing limitations of Stochastic Frontier models.   

 

The estimation approach is deeply linked to the issues of country heterogeneity and the 

possible persistence of inefficiencies in energy consumption in transition economies. 

Since the TRE approach of Greene (2005) cannot disentangle time-persistent 

inefficiencies from country heterogeneity and the approach of Aigner et al. (1977) fails 

to account for country heterogeneity leading to biased results, the GTRE approach of 

Colombi et al. (2011) is followed to solve both issues. The authors point that this approach 

is particularly appropriate for cases where firms are heterogeneous (in this case, countries) 

and the panel is long. The distributional assumption for inefficiency is a half-normal 

distribution for tractability purposes, although alternatives are available, such as an 

exponential distribution (Meeusen and van Den Broeck, 1977). A Bayesian Generalized 

True Random Effects model with exponential distribution assumptions is outlined in 

Griffiths and Hajargasht (2016). Also, note that in the case of assumed exponential 
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inefficiencies the draws for time-varying inefficiency require some rejection method as 

the distribution is not easily simulated in statistical software. This is not an obstacle found 

in the case of the half-normal assumption. Here, the frontier gives the minimum level of 

energy consumption attainable by a country. The frontier concept is applied to estimate 

the baseline energy demand - the frontier reflecting demand of countries that use high 

efficiency equipment and have good use practices (Filippini and Hunt, 2011).  As such, 

the following cost frontier model accounts for persistent sources of long-run inefficiency 

and variable sources of inefficiency: 

 

 𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝛼𝑖 +  𝜂𝑖 +  𝑢𝑖𝑡 +  𝑣𝑖𝑡 (12) 

 

 𝛼𝑖 ~ 𝑖. 𝑖. 𝑑. 𝑁(0; 𝜎𝛼
2)                 𝑣𝑖𝑡~ 𝑖. 𝑖. 𝑑. 𝑁(0; 𝜎𝑣

2) (13) 

 𝑢𝑖𝑡~ 𝑖. 𝑖. 𝑑. 𝑁+(0; 𝜎𝑢
2)               𝜂𝑖~ 𝑖. 𝑖. 𝑑. 𝑁+(0; 𝜎𝜂

2) (14) 

 

𝑥′𝑖𝑡 is a row vector of regressors and 𝛽 is a column vector of unknown parameters to be 

estimated (note the model also has a constant). 𝛼𝑖 captures latent heterogeneity (random 

effect) and 𝑣𝑖𝑡 is an idiosyncratic error component. Attention is focused on 𝜂𝑖 and 𝑢𝑖𝑡, as 

they represent time-invariant inefficiency (long-run) sources of inefficiency and time-

varying (short-run) inefficiency respectively. In fact, this model is an extension of the 

TRE model (Greene, 2005)2, as it adds another time-invariant random effect to capture 

persistent inefficiency ( 𝜂𝑖) . The identification of the model is assured through the 

distributional assumptions on the four error components (without those assumptions, the 

model is not identified). In a random effects model, the effects cannot be correlated with 

the explanatory variables, as it leads to bias in estimates. Since there is a possibility of 

such a problem in applied econometrics, a Mundlak (1978) transformation can be 

conducted to account for correlation between the time-varying explanatory variables and 

country-specific effects: 

 

𝛼𝑖 = 𝛾𝑋𝑖̅ +  𝜑𝑖   where    𝑋̅𝑖 =  
1

𝑇
∑ 𝑋𝑖𝑡

𝑇
𝑡=1    and  𝜑𝑖 ~ 𝑁(0, 𝜎𝜑)                     (15)            

 

                                                      
2 The heterogeneity could possibly be dealt with through alternative approaches such as a model with 

random slopes, but the estimation would be difficult given the relatively small sample panel size and the 

large number of regressors. 
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Cross-section means for variables with very low variation are not added, such as 

population and urbanization rate, as recommended by statistical software. 

 

Two econometric approaches to Bayesian estimation of the GTRE model will be 

considered and compared in a context of small samples to investigate the robustness of 

the results. The first econometric approach follows Tsionas and Kumbhakar (2014) with 

a Bayesian approach which involves reparameterizing the model to reduce 

autocorrelations in the draws of the model parameters. The model can be rewritten by 

stacking the time series observations: 

 

 𝑦𝑖 = (𝛼𝑖 +  𝜂𝑖) ⊗ 𝑙𝑇 + 𝑥𝑖𝑡𝛽 + (𝑢𝑖𝑡 + 𝑣𝑖𝑡) =  𝛿𝑖 ⊗ 𝑙𝑇 + 𝑥𝑖𝑡𝛽 + 𝜀𝑖𝑡 (16) 

 

𝜀𝑖𝑡 has a skew-normal distribution and all random components are mutually independent 

as well as independent of 𝑥𝑖𝑡. Therefore, all the building process of the likelihood function 

follows Tsionas and Kumbhakar (2014). Gibbs sampling will be used, keeping latent 

variables to increase computational efficiency of MCMC schemes instead of integrating 

them out. The prior distributions are: 

 

 𝑝(𝛽, 𝜎𝑒 , 𝜎𝑢, 𝜎𝜑, 𝜎𝛼) = 𝑝(𝛽)𝑝(𝜎𝑣)𝑝(𝜎𝑢)𝑝(𝜎𝜂)𝑝(𝜎𝛼) (17) 

 

With regression parameters assumed to follow the k-variate normal distribution 

𝛽~𝑁𝐾( 𝛽̅, 𝐴−1)  with mean vector  𝛽̅ = 0(𝑘𝑥1)  and precision matrix 3  𝐴 = 10−4. 𝐼𝐾 . 

Therefore, there is very little information in the prior about the coefficients of the 

regressors. For scale parameters, it is assumed that: 

 

 
1

σZ
2 ~ fG ( 

N̅Z

2
 ,

Q̅Z

2
 ), for Z = v, u, η, α  (18) 

 

For the rest of the chapter, fG follows the shape-rate gamma parameterization. It is also 

set that N̅Z = 1, representing the length of a prior sample from which a sum of squares 

Q̅k is obtained. For posterior consistency, Q̅Z has to be larger than zero, and Tsionas and 

Kumbhakar (2014) set this to be 10−4 in the context of an application to the banking 

                                                      
3 The authors originally define 𝐴 = 10−4. 𝐼𝐾 . This has no impact in any key results and is done for 

consistency with the choices in Makiela (2016). 
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sector with relatively low estimated inefficiency. However in this application there is a 

belief that all variances should be important although there is uncertainty their relative 

magnitudes. As such, information in the prior4 is set as Q̅𝑣 = 10−4, Q̅𝑢 = 10−3, Q̅𝛼 =

10−3  and Q̅𝜂 = 0.25 . Further discussion on the consequences of these choices is in 

subsequent sections of this chapter. A Gibbs sampler is implemented, with draws being 

taken from the various posterior conditional distributions. According to Tsionas and 

Kumbhakar (2014), the “naïve” Gibbs sampling scheme will not have good mixing 

properties and easily collapses. This claim will be debated later in the chapter. To reduce 

the natural correlations among parameters in the Markov Chain Monte Carlo (MCMC) 

scheme, reparametrizations are implemented. First, a 𝛿-Parametrization5 is conducted, 

with 𝛿𝑖 = 𝛼𝑖 +  𝜂𝑖 , grouping firm-specific effects and persistent inefficiency, which 

would be grouped implicitly in Greene (2005) TRE model (the reason why persistent 

inefficiency would be treated as heterogeneity), although it would be forced to have a 

mean of zero in the latter. As in Tsionas and Kumbhakar (2014), this allows to obtain the 

posterior conditional distributions of 𝛿𝑖, 𝜎𝑢
2, 𝜎𝑣

2and 𝛽. However, note that obtaining 𝛿𝑖 

does not allow to quantify persistent inefficiencies and only short-run inefficiencies can 

be obtained from this first step of analysis. However, it should point for the magnitude of 

the mean persistent inefficiency (i.e. mean 𝛿𝑖). In a second step, a 𝜉-Parametrization is 

conducted (taking the estimates of 𝛽 from the 𝛿-Parametrization as given), as in panel 

data GLS, with ξ𝑖𝑡 = 𝛼𝑖 + 𝑣𝑖𝑡. This allows to draw 𝜂𝑖 independently of the draw for 𝛼𝑖, 

and in turn the conditional distributions of not only 𝜂𝑖 but also 𝑢𝑖𝑡.  

 

Tsionas and Kumbhakar (2014) set a simulation experience to show the good properties 

of their reparameterization. However, these results do not hold in simulations attempted 

in this chapter, even for a similar DGP, with estimation of inefficiencies easily collapsing 

when signal to noise ratios are not large. There are also some inaccuracies in the 

distributions of the published paper which are corrected here for the purpose of the 

simulations (see Appendix 3.2. for the correct expressions used and further details).   

 

                                                      
4 Lower values of Q can lead to issues in convergence and density plots of variances that were clearly not 

reasonable, due to an unreasonably tight prior, as pointed by Makiela (2016). There is also previous research 

that shows that vague priors with small amounts of data can be problematic Lambert et al. (2005).  
5 Tsionas and Kumbhakar (2014) use a special rejection technique to draw 𝛿. They also argue that a general-

purpose rejection sampler for log-concave densities (Gilks and Wild, 1992) is well behaved and this is the 

chosen option as its timing properties were found to be appropriate. In this chapter, adaptive-rejection 

sampling is used to draw 𝛿. 
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Makiela (2016) revisited the GTRE “naïve” approach and the approach of Tsionas and 

Kumbhakar (2014), exploring other priors that allow for correct estimation without any 

reparameterization, leading to much better numerical efficiency and results. The model is 

therefore estimated without any reparameterization and with the following prior: 

 

 𝑝(𝛽, 𝜎𝑣, 𝜎𝑢, 𝜎𝜂 , 𝜎𝛼) = 𝑝(𝛽)𝑝(𝜎𝑣)𝑝(𝜎𝑢)𝑝(𝜎𝜂)𝑝(𝜎𝛼) (19) 

 

where the prior for 𝛽 as in the aforementioned paper is uninformative, and the prior on 

variances of symmetric error components is:  

 
1

σZ
2 ~ 𝑓𝐺  ( 

N̅Z

2
 ,

Q̅Z

2
 ), for Z = v, α  (20) 

 

For the priors of the inefficiency components, a key change in the approach is the use of 

a more flexible prior that is easier to tune to fit the needs of the researcher: 

 

 
1

σZ
2 ~𝑓𝐺(5,10 ln2(𝑟𝑍

∗)), 𝑓𝑜𝑟 𝑍 = 𝜂, 𝑢 (21) 

 

In the equation above, 𝑟𝜂
∗ represents prior median persistent efficiency and 𝑟𝑢

∗represents 

prior median transient efficiency. The shape parameter influences the weight of the prior 

in the estimation as it changes the sample of prior observations, as it can be observed from 

equation (20). If 𝑟𝜂
∗ = 0.7 , mean prior persistent efficiency is 0.683 and the 95% highest 

prior density interval is (0.323 ; 0.999). If 𝑟𝑢
∗ = 0.85 , mean prior transient efficiency is 

0.83 and the 95% highest prior density interval is (0.597 ; 0.999). These values of 𝑟𝑍
∗ will 

be used in simulations in Section 3.5.The rate parameterization of the gamma distribution 

is used throughout this chapter. In any of the aforementioned cases, the following measure 

of total efficiency (bounded between 0 and 1) is used to measure efficiency: 

 

 𝐸𝑓𝑓𝑖𝑡 =  exp(−𝑢𝑖𝑡 − 𝜂𝑖) (22) 

To incorporate uncertainty, a simple Monte Carlo approximation is proposed. Suppose 

ũit
(𝑠) is a draw from the conditional posterior of ũ for the 𝑠𝑡ℎ pass of the MCMC scheme 

and that the same argument is applicable for 𝜂̃𝑖
(𝑠): 
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 𝐸𝑓𝑓𝑖𝑡 = 𝑆−1 ∑ exp [−ũ𝑖𝑡
(𝑠)

− 𝜂̃𝑖
(𝑠)]

𝑆

𝑠=1

 (23) 

All estimations are conducted using own code in R 3.1.1, a language and environment for 

statistical computing and graphics, available as free software. 

 

 

3.4.2. Variable choice and data 

 

Data availability is an additional challenge in the context of transition economies, and the 

particular characteristics of the countries in this analysis demand some specific modelling 

features to address concerns. As such, the following electricity demand model is 

estimated: 

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑓(𝑉𝐴, 𝑃, 𝐶𝑊, 𝑆𝑇𝑅𝑈𝐶𝑇𝑈𝑅𝐸, 𝑃𝑂𝑃, 𝑈𝑅𝐵𝑅𝐴𝑇𝐸, 𝑇, 𝐸𝐹𝐹) 

 

Variable Description 

VA Value Added 

P Electricity Prices 

CW Climate Variable 

STRUCTURE Structure of the economy 

(manufacturing, construction and 

primary sector) 

POP Population 

URBRATE Urbanization rate (%) 

T Time dummies 

EFF Efficiency (to be estimated, not a 

regressor) 

Table 3.2. Explanatory variables of energy demand model 

 

The chosen dependent variable is electricity demand instead of total energy demand as 

was the case in Filippini and Hunt (2011). This choice relates to data availability issues, 

as there is no available energy price data for most of the transition economies and possible 

proxies are very likely to be of low quality. However, the availability of substitute fuels 

might become a problem in the analysis, particularly with natural gas, as direct use of oil 

and coal have less use as substitutes for electricity. Substitution effects from primary fuels 
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to electricity can show in results as artificial efficiency decreases, while substitution of 

electricity for gas can show the opposite effect. The possibility of issues related to fuel 

substitution are explored in robustness checks in Section 3.6. 

All variables except for T and EFF are logarithmically transformed. Electricity demand 

is represented by final electricity consumption in thousand tonnes of oil equivalent 

(International Energy Agency, 2014). Economic activity is measured through national 

Value Added (VA) sourced from the United Nations National Accounts database, 

excluding sectors C and E (mining and extraction activities), and with PPP and constant 

prices. This allows to consider the economic activity that is deeply linked to the electricity 

consumption considered. This is preferred to GDP as many of the considered economies 

have considerable shares of GDP from oil, gas and mining activities which don’t consume 

any electricity. Further control variables are necessary to account for factors that influence 

electricity consumption. CW is a variable that takes into account extreme temperatures 

and the need to use additional energy in such events. A function that applies penalties to 

deviations from a base temperature every month is defined. The suggested function is: 

 

 𝐶𝑊𝑖𝑡 =  ∑(|16 − 𝐴𝑀𝑇𝑖𝑡|)

12

𝑚

 (24) 

 

This will capture not only annual patterns in weather but also extreme monthly deviations, 

for both warm and cold weather, reducing distortions in time-varying efficiency estimates 

which would be affected by extreme variations in weather conditions. AMT is the average 

monthly temperature in country i, in month m of year t. Thus, higher values of CW reflect 

higher deviations from the base temperature in a given year for each country and should 

translate to higher energy consumption. This is a superior control for weather when 

compared to a climate dummy because that dummy is time invariant and fails to control 

for annual climate variability that can be particularly extreme and affect time-varying 

inefficiency estimates. This index uses data from the University of Delaware Air 

Temperature and Precipitation Database V3.01 (Willmott and Matsuura, 2001),which 

contains global high resolution monthly data for the timeframe of the considered dataset.  

 

It is also necessary to incorporate variables that account for the structure of the economy 

and the importance of energy intensive activities. As such, to insert measures of the 

structure of the economy in the model, the share of value added in percentage of GDP 
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manufacturing (hereafter “MAS” – ISIC D), construction (“CON” – ISIC F) and primary 

sector (ISIC A and B) as separate variables6. These variables are chosen instead of a 

disaggregation between industries and services as in Filippini and Hunt (2011) because 

of the importance of such activities in ex-Soviet economies and the need to separate 

energy intensive from non-intensive activities and also to consider the transition towards 

a service based economy. POP is the population of the country at a given year, and 

URBRATE is the urbanization rate in percentage of population. T is a set of time 

dummies which can be interpreted as technological change but can also capture other 

common effects. The price of electricity (P) constitutes one of the key estimation issues. 

Prices are reported in US dollars (mostly sourced from EBRD Transition Report data, 

multiple reports7). However, the complicated issue of deflation and the overall issue of 

data quality needs to be considered. The data is extended using a variety of sources8 and 

is deflated using CPI in non-OECD economies. Otherwise, OECD real energy price index 

are used. Observations where yearly inflation is more than 35% are removed to avoid 

distortions caused by outliers at periods of extreme turmoil. This model also implies a 

simplification in the sense that possible asymmetric effects in prices and income are not 

considered 9 . Finally, EFF is the “real energy efficiency” term. The information is 

retrieved from the residuals, as the exponential of the negative one sided estimated 

residuals for inefficiency provide a measure of efficiency from 0 to 1 (fully efficient). 

This can be translated into a score from 0 to 100% (or 0 to 1).  

 

This study is based on an unbalanced panel of 33 economies over the period 1994-2007. 

The dataset contains 389 observations, with a minimum T of 5, a maximum T of 14 and 

an average T of 11.8 across the sample (higher than the conservative T=10 set in 

simulations in the next section to assess model performance). The choice of timeframe is 

mostly associated to the availability of electricity price data as a proxy for energy prices 

and also the necessary information to deflate it (there is lack of economic data for 

transition economies in many aspects). The countries in the sample are Albania, Armenia, 

                                                      
6 According to the ISIC Revision 3.1. Data sourced from National Accounts Main Aggregates Database 

1970-2011, December 2012 Update, United Nations Statistics. These shares are calculated according to the 

value added variable chosen (i.e. sectors C and E are removed from calculations). 
7 Average tariffs are used, but when data is missing, residential tariffs or an average of the year before and 

after are used for completeness. The latter issue affects a very small part of the sample. 
8 Besides the use of EBRD data, the price dataset for the construction of a price index is extended using 

data for Albania, Lithuania and Ukraine (Krishnaswamy, 1999),Belarus (International Energy Agency, 

1994), Bosnia (Ding and Sherif, 1997), Mongolia (Energy Regulatory Authority of Mongolia, 2010) and 

Uzbekistan (Karabaev, 2005). 
9 For details on such asymmetries, see Gately and Huntington (2002). 



 47 
 

Azerbaijan, Belarus, Bosnia, Bulgaria, Czech Republic, Croatia, Estonia, Georgia, 

Hungary, Latvia, Lithuania, Kazakhstan, Kyrgyzstan, Macedonia, Moldova, Mongolia, 

Poland, Russia, Romania, Slovakia, Slovenia, Tajikistan, Turkmenistan, Ukraine and 

Uzbekistan (transition) and Austria, UK, France, Germany, Finland and Denmark 

(OECD). This extensive data collection exercise from multiple sources allows this thesis 

to conduct empirical research with a larger dataset, while taking into account some of the 

weaknesses from previous studies in the literature. 

 

 

3.5. Artificial examples and performance of GTRE model in small samples 

 

Consider the following data generating process: 𝑦𝑖𝑡 = 1 + 𝑥𝑖𝑡 +  𝛼𝑖 +  𝜂𝑖 +  𝑢𝑖𝑡 +  𝑣𝑖𝑡 , 

where 𝑥𝑖𝑡  is a standard normal distribution. Different parameters can be set for 

𝜎𝑣,𝜎𝑢, 𝜎𝜂 , 𝜎𝛼, using different scenarios. The panel size is set to be quite small with N=35 

and T=10, to resemble the small-sample issues that the transition data used here might 

face in estimation. As an alternative sample size and to assess convergence to true values 

as the sample size increases, simulations are repeated with a larger panel of N=100 and 

T=10. The following scenarios are created: 

 

Scenario 1: 𝜎𝑣 = 0.1, 𝜎𝑢 = 0.2, 𝜎𝜂 = 0.5, 𝜎𝛼 = 0.2. This scenario is the same as the case 

N=50 in Tsionas and Kumbhakar (2014) and implies moderate signal-to-noise ratios. 

With not very strong ratios there is an expectation of bigger performance degradation as 

the sample size decreases. 

 

Scenario 2: 𝜎𝑣 = 0.05, 𝜎𝑢 = 0.2, 𝜎𝜂 = 0.5, 𝜎𝛼 = 0.1. This scenario has stronger signal-

to-noise ratios and is expected to perform better in small samples. 

 

The Makiela approach is computationally much more efficient than the Tsionas and 

Kumbhakar (2014) approach (hereafter “TK”), allowing for faster simulations. Gibbs 

samplers for the Makiela approach simulations uses 70,000 draws with the first 40,000 

discarded and keeping only one in 5 of the remaining 30,000. TK approach simulations 

use 10,000 draws with the first 5,000 being discarded, and one in two of the remaining 

5,000 being kept as the method is considerably slower. The columns not signed as “TK” 

correspond to Makiela (2016) approach (“new GTRE” in the mentioned paper). 
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Table 3.3. Simulation results for Scenario 1 with N=35 and T=10 

 

Table 3.4. Simulation results for Scenario 1 with N=100 and T=10 

 

Scenario 1 

N=35 , T=10 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7   

r𝑢 = 0.85       

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.85       

r𝑢 = 0.85       

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.6   

r𝑢 = 0.85  

TK: Q̅𝑣=Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

 True Est. True Est. True Est. True Est. 

𝛼𝑖  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜂𝑖  0.400 0.451 0.406 0.254 0.400 0.501 0.396 0.369 

𝑢𝑖𝑡  0.168 0.161 0.160 0.166 0.160 0.168 0.160 0.135 

𝜎𝑣  0.1 0.094 0.1 0.095 0.1 0.094 0.1 0.110 

𝜎𝑢  0.2 0.212 0.2 0.209 0.2 0.211 0.2 0.176 

𝜎𝜂  0.5 0.559 0.5 0.322 0.5 0.650 0.5 0.483 

𝜎𝛼  0.2 0.164 0.2 0.280 0.2 0.119 0.2 0.227 

S.D. (𝑢𝑖𝑡) 0.121 0.127 0.120 0.125 0.121 0.126 0.120 0.112 

S.D. (𝜂𝑖) 0.292 0.326 0.300 0.218 0.300 0.341 0.298 0.289 

Correlation between 

true and est. 𝑢𝑖𝑡 
0.753 0.749 0.752 0.755 

Correlation between 

true and est. 𝜂𝑖 
0.828 0.836 0.833 0.845 

Bias of mean 𝑢𝑖𝑡 less 

than 20% (% of repet.) 
96% 93% 93% 62% 

Bias of mean 𝜂𝑖 less 

than 20% (% of repet.) 
61% 11% 40% 53% 

Scenario 1 

N=100 , T=10 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7   

r𝑢 = 0.85       

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.85       

r𝑢 = 0.85          

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.6   

r𝑢 = 0.85  

TK: Q̅𝑣=Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

 True Est. True Est. True Est. True Est. 

𝛼𝑖  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜂𝑖  0.402 0.420 0.396 0.277 0.401 0.464 0.395 0.359 

𝑢𝑖𝑡  0.160 0.162 0.159 0.163 0.161 0.160 0.159 0.156 

𝜎𝑣  0.1 0.098 0.1 0.097 0.1 0.099 0.1 0.103 

𝜎𝑢  0.2 0.204 0.2 0.205 0.2 0.203 0.2 0.196 

𝜎𝜂  0.5 0.527 0.5 0.353 0.5 0.592 0.5 0.461 

𝜎𝛼  0.2 0.184 0.2 0.273 0.2 0.157 0.2 0.233 

S.D. (𝑢𝑖𝑡) 0.121 0.123 0.120 0.124 0.120 0.122 0.121 0.119 

S.D. (𝜂𝑖) 0.302 0.313 0.299 0.230 0.302 0.332 0.299 0.280 

Correlation between 

true and est. 𝑢𝑖𝑡 
0.754 0.754 0.755 0.753 

Correlation between 

true and est. 𝜂𝑖 
0.834 0.835 0.840 0.845 

Bias of mean 𝑢𝑖𝑡 less 

than 20% (% of repet.) 
100% 100% 100% 98% 

Bias of mean 𝜂𝑖 less 

than 20% (% of repet.) 
84% 30% 69% 76% 
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Table 3.5. Simulation results for Scenario 2 with N=35 and T=10 

 

Table 3.6. Simulation results for Scenario 2 with N=100 and T=10 

 

 

 

Scenario 2 

N=35 , T=10 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7   

r𝑢 = 0.85  

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.85  

r𝑢 = 0.85  

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.6  

r𝑢 = 0.85  

TK: Q̅𝑣=Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

 True Est. True Est. True Est. True Est. 

𝛼𝑖  0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.001 

𝜂𝑖  0.394 0.422 0.403 0.317 0.391 0.444 0.402 0.381 

𝑢𝑖𝑡  0.159 0.162 0.161 0.163 0.159 0.162 0.159 0.160 

𝜎𝑣  0.05 0.047 0.05 0.047 0.05 0.048 0.05 0.050 

𝜎𝑢  0.2 0.204 0.2 0.205 0.2 0.204 0.2 0.200 

𝜎𝜂  0.5 0.531 0.5 0.387 0.5 0.601 0.5 0.493 

𝜎𝛼  0.1 0.079 0.1 0.159 0.1 0.072 0.1 0.137 

S.D. (𝑢𝑖𝑡) 0.120 0.122 0.120 0.122 0.120 0.121 0.121 0.120 

S.D. (𝜂𝑖) 0.302 0.308 0.303 0.259 0.298 0.308 0.299 0.289 

Correlation between 

true and est. 𝑢𝑖𝑡 
0.901 0.898 0.900 0.903 

Correlation between 

true and est. 𝜂𝑖 
0.947 0.943 0.944 0.944 

Bias of mean 𝑢𝑖𝑡 less 

than 20% (% of repet.) 
100% 100% 100% 99% 

Bias of mean 𝜂𝑖 less 

than 20% (% of repet.) 
84% 51% 71% 81% 

Scenario 2 

N=100 , T=10 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7   

r𝑢 = 0.85  

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.85  

r𝑢 = 0.85   

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.6  

r𝑢 = 0.85  

TK: Q̅𝑣=Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

 True Est. True Est. True Est. True Est. 

𝛼𝑖  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜂𝑖  0.401 0.411 0.393 0.360 0.400 0.427 0.396 0.371 

𝑢𝑖𝑡  0.159 0.160 0.161 0.159 0.159 0.160 0.159 0.159 

𝜎𝑣  0.05 0.049 0.05 0.048 0.05 0.049 0.05 0.050 

𝜎𝑢  0.2 0.201 0.2 0.202 0.2 0.201 0.2 0.200 

𝜎𝜂  0.5 0.516 0.5 0.445 0.5 0.552 0.5 0.472 

𝜎𝛼  0.1 0.089 0.1 0.122 0.1 0.076 0.1 0.137 

S.D. (𝑢𝑖𝑡) 0.120 0.121 0.120 0.121 0.120 0.121 0.120 0.120 

S.D. (𝜂𝑖) 0.303 0.305 0.297 0.280 0.302 0.307 0.297 0.283 

Correlation between 

true and est. 𝑢𝑖𝑡 
0.899 0.900 0.900 0.900 

Correlation between 

true and est. 𝜂𝑖 
0.946 0.944 0.946 0.946 

Bias of mean 𝑢𝑖𝑡 less 

than 20% (% of repet.) 
100% 100% 100% 100% 

Bias of mean 𝜂𝑖 less 

than 20% (% of repet.) 
97% 77% 96% 89% 
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 Scenario 

1 

N=35 

Scenario 

1 

N=100 

 

Scenario 

2 

N=35 

Scenario 

2 

N=100 

 

Change in mean 𝜂𝑖 from change 

in r𝜂 = 0.7 to r𝜂 = 0.85  (0.15 

change in prior median efficiency) 

0.197 0.143 0.105 0.051 

Change in mean 𝜂𝑖 from change 

in r𝜂 = 0.7 to r𝜂 = 0.6  (0.1 

change in prior median efficiency) 

0.095 0.044 0.022 0.016 

Table 3.7. Key results from prior changes in simulations 

 

 

The summary table shows how the prior drives the results in a small sample when there 

is little data to draw from with low signal-to-noise ratios. With r𝜂 = 0.85  the prior is 

tightened into intervals of low inefficiency that are incompatible with the underlying DGP 

and results suffer severely as a result. With r𝜂 = 0.6 the witnessed change is smaller as 

the prior is still quite vague about the interval in which efficiency lies. This is in line with 

the recommendations of Makiela (2016) to keep these hyperparameters within reasonable 

values (0.7 or 0.75, for example), with evidence of irregular behaviour as these approach 

0.9 if the true inefficiency is rather large. As the signal-to-noise ratio strengthens in 

Scenario 2, the impact of changing priors in the posteriors is greatly reduced.  

 

There are three key conclusions to take from these results. The first is that in relevant 

sample sizes for the analysis of energy efficiency in transition economies, the prior will 

drive the results if there is not enough information in the data. However, if the underlying 

signal is strong enough, the results should not vary much independently of using a 

Makiela or TK approach with different reasonable priors. Although the TK approach can 

render reasonable results if priors are tuned enough, the underlying priors are problematic. 

The “naïve” approach seems to be more intuitive and much more computationally 

efficient but both methods can be used for robustness of the analysis. Either way, it is 

clear and not unexpected that with an extremely small sample of N=35 it is difficult to 

obtain robust results unless the underlying signal in the data is strong. 

 

The second conclusion relates to the behaviour of efficiency levels and correlations 

between true and estimated values. Across both scenarios and all sample sizes and priors, 

the correlation of estimated transient inefficiency with true values is at least 0.74 and the 
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correlation of estimated persistent inefficiency is at least 0.83. This means that the relative 

rankings within each type of inefficiency are well preserved even in small samples. 

However, as the total efficiency scores are a combination of both types of inefficiency, 

this also implies that if the prior drives the mean of persistent inefficiency significantly 

then a distortion of the true efficiency rankings is likely, if the size of both inefficiencies 

is significant. From the behaviour seen in the tables 3.2 to 3.6, it is recommended that 

analysis on efficiency scores is only conducted if the mean persistent inefficiency is not 

significantly affected by changes in hyperparameters, as that implies there is sufficient 

underlying data (strong signal) for estimation. However, it is also true that if the signal-

to-noise ratio grows significantly, it is likely that the random effects become increasingly 

irrelevant and barely distort the efficiency rankings – making the case for estimation of a 

simpler model in which the random effects are dropped. This is an interesting outcome to 

have in mind when estimating the GTRE model in small samples.  

 

The third and final conclusion is that the TK approach is overall not competitive or 

attractive for multiple reasons. First, results are not improved with the reparameterization 

versus the alternative “naïve” approach in terms of mean bias, the spread of that bias over 

repetitions and the overall performance of key parameters. Second, the prior leads to 

problems in applied research, as will be explored further in the next section. Finally, the 

TK approach is considerably slower computationally due to the additional steps. Also, 

given that the authors originally consider all Q to be 0.0001 in their simulations, it is very 

puzzling how their results were so close to the true values, as that prior would lead to very 

irregular results in the simulations above. There can only be some limited speculation for 

the reasons of this, but one of them can be that one of the incorrect conditional posteriors 

in the paper confuses one signal-to-noise ratio with the other (time-varying where there 

should be a persistent one), combined with the fact that both of the simulations had both 

ratios being equal in the DGP. This could have artificially stabilized results close to the 

true values, but lead to huge bias under a different DGP. 

 

These results are broadly in line with the findings of the detailed simulation previously 

conducted on the (frequentist) GTRE model (Badunenko and Kumbhakar, 2016). The key 

to good estimation is the relationship between the sizes of the four components. The 

authors refer that unless the noise and the random effects are nearly non-existent, only 

one of the inefficiency components can be estimated correctly. In some scenarios, 

efficiency analysis is not recommended due to the unreliability of the estimates. The 
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authors also find that the largest and smallest efficiencies measured are estimated more 

imprecisely. These findings align well with the simulations conducted above, although 

the use of priors in Bayesian econometrics gives less pessimistic insights about some 

scenarios, particularly in smaller samples. The message from the simulations above is that 

once can proceed with estimation, but with a careful approach towards the interpretation 

and the stability of the results. 

 

 

3.6. Results and Discussion 

 

The economic theory in which this cost frontier approach is based requires positive 

skewness for inefficiency to exist and have valid interpretation. Preliminary frequentist 

random effects estimation shows positive skewness in both the idiosyncratic error and the 

random effects, indicating the need to indeed pursue this modelling approach.  

 

Both Makiela (2016) approach (hereafter “Makiela”) and Tsionas and Kumbhakar (2014) 

approach (hereafter “TK”) are used to estimate the model. 1,300,000 draws are taken, 

with a burn-in of 400,000 and taking one in each twenty of the remaining draws for both 

approaches, including TK. The latter method is much slower computationally, taking 

many hours to run, while the “new GTRE” approach of Makiela takes about an hour10.  

Although credible intervals for efficiency estimates can be considered (Horrace and 

Schmidt, 1996), it is not common to analyse the results from Stochastic Frontier analysis 

by restricting statements to events of strong statistical significance due to the naturally 

high uncertainty of estimates. The analysis will mostly rely on point estimates and group 

average analysis over time. Some coefficients of the cross-sectional means of regressors 

are significant, justifying the use of the Mundlak extension in this context. Therefore, 

estimates without these additional regressors are not reported as they are expected to be 

biased.  

 

Two datasets were considered: one excluding the data points where inflation is over 35% 

including Norway, and another where Norway is excluded11. For each case, parameter 

                                                      
10 Note that this is valid for an unbalanced panel framework such as the one in this application – simulations 

with balanced panels require simpler programming which runs slightly faster. 
11 Norway is an advanced economy with large oil exports and a very cold climate, combined with low 

access to natural gas. This can distort results and presents Norway as an extremely inefficient consumer. 

For results summary with Norway included, see Appendix 3.3. 
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estimates and efficiency estimates will be presented under multiple priors to assess the 

robustness of the results. In all cases, 95% credible intervals are presented in square 

brackets. The full dataset is in Appendix 3.4. The analysis of results is focused on the 

column where prior and posterior persistent inefficiency are rather close, with r𝜂 = 0.6, 

as explained below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3.8. Key regression results 

 

The first three columns comfortably show signs of convergence according to the Geweke 

convergence diagnostic (Geweke, 1992). This is based on a test for equality of the means 

of the first and last part of a Markov chain (typically the first 10% and the last 50%). The 

Z-score from the test is asymptotic normal if the two means from the parts of the chain 

are stationary. Z-scores for each parameter are in Appendix 3.1. However, the 

Dataset 2 

(excluding 

Norway) 

 

Q̅𝑣=0.001 

Q̅𝛼=0.01 

r𝜂 = 0.7  

r𝑢 = 0.85  

Q̅𝑣=0.001 

Q̅𝛼=0.01 

r𝜂 = 0.6           

r𝑢 = 0.85     

Q̅𝑣=0.001 

Q̅𝛼=0.01 

r𝜂 = 0.5           

r𝑢 = 0.85    

TK: 

Q̅𝑣 = 0.001 

Q̅𝛼 = 0.01    

Q̅𝑢 = 0.01 

Q̅𝜂 = 0.25 

𝛽𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  
-15.083 

[-21.50;-8.72] 

-16.023 

[-22.86;-8.81] 

-15.794 

[-22.55;-8.96] 

-15.776 

[-22.21;-8.48] 

𝛽𝑉𝐴             
0.2080 

[0.15;0.27] 

0.2054 

[0.15;0.26] 

0.2042 

[0.15;0.26] 

0.2075 

[0.15;0.26] 

𝛽𝐸𝑙𝑒𝑐.  𝑃𝑟𝑖𝑐𝑒 
-0.0505 

[-0.08;-0.02] 

-0.0497 

[-0.08;-0.02] 

-0.0493 

[-0.08;-0.02] 

-0.0488 

[-0.08;-0.02] 

𝛽𝑊𝑒𝑎𝑡ℎ𝑒𝑟   
0.0492 

[-0.11;0.21] 

0.0483 

[-0.11;0.21] 

0.0479 

[-0.11;0.21] 

0.0554 

[-0.10;0.22] 

𝛽𝑈𝑟𝑏.𝑅𝑎𝑡𝑒   
1.0470 

[0.64;1.45] 

1.0970 

[0.70;1.47] 

1.1357 

[0.73;1.55] 

1.0834 

[0.69;1.46] 

𝛽𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  0.7581 

[0.53;0.96] 

0.7340 

[0.51;0.98] 

0.7215 

[0.45;0.98] 

0.7256 

[0.47;0.96] 

𝛽𝑀𝑎𝑛𝑢𝑓.  𝑆ℎ𝑎𝑟𝑒  
0.0951 

[0.02;0.17] 

0.0888 

[0.02;0.16] 

0.0838 

[0.01;0.16] 

0.0867 

[0.01;0.16] 

𝛽𝐶𝑜𝑛𝑠𝑡𝑟.  𝑆ℎ𝑎𝑟𝑒  
0.0413 

[-0.00;0.09] 

0.0391 

[-0.01;0.08] 

0.0373 

[-0.01;0.08] 

0.0383 

[-0.01;0.08] 

𝛽𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑆ℎ𝑎𝑟𝑒  
-0.0006 

[-0.08;0.08] 

-0.0021 

[-0.09;0.08] 

-0.0034 

[-0.09;0.08] 

-0.0031 

[-0.09;0.08] 

Mean(𝜂𝑖) 0.484 0.552 0.608 0.481 

Mean(𝑢𝑖𝑡) 0.099 0.098 0.098 0.096 

𝜎𝑣  
0.0177 

[0.010;0.028] 

0.0176 

[0.010;0.028] 

0.0176 

[0.010;0.028] 

0.0200 

[0.011;0.032] 

𝜎𝑢  
0.1348 

[0.123;0.147] 

0.1346 

[0.123;0.147] 

0.1344 

[0.123;0.147] 

0.1280 

[0.115;0.141] 

𝜎𝜂  0.5912 

[0.401;0.828] 

0.7018 

[0.510;0.942] 

0.8217 

[0.634;1.073] 

0.6049 

[0.256;0.981] 

𝜎𝛼  
0.1896 

[0.046;0.424] 

0.1573 

[0.046;0.383] 

0.1237 

[0.041;0.307] 

0.2042 

[0.050;0.459] 

Mean 

Efficiency   

(0-100%) 

59.6% 56.7% 54.1% 60.2% 
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convergence results for the TK approach are very poor, with multiple parameters with 

higher Z-scores. This highlights the poor mixing of the model, although the results are 

not very different. 

 

Parameter estimates are intuitive and show the expected signs, although elasticities of 

income and prices are rather small (yet perfectly plausible). Deviations from an average 

temperature level also show an effect on higher electricity consumption, although the 

impact is not statistically significant. The urbanization rate has a strong impact on 

electricity consumption as people move from rural to urban areas, which often leads to 

switches in fuel use and fuel availability. In the case of transition economies, this is not a 

move to areas with electricity supply, as one of the consequences of the soviet legacy is 

full or almost full electrification. As expected, population also has a strong positive effect, 

although the coefficient is smaller than 1. The manufacturing share of value added seems 

to be the only activity share variable that is significant, leading to more consumption than 

other activities, as expected.  

 

Unsurprisingly, there is larger persistent inefficiency than transient inefficiency in the 

context of transition economies. Mean efficiency in the sample is just above 56%, and 

given the small sample context, is prone to some changes with different priors. As seen 

in Section 5, in comparable sample sizes the results will be severely affected if the 

underlying signal-to-noise ratio is not strong enough (as in Scenario 1). Therefore, 

different priors are tested to assess the impact of priors on results. When the prior median 

persistent efficiency is changed from 60% to 50% (second to third column of Table 3.8), 

with both cases showing prior efficiency relatively close to posterior efficiency, posterior 

mean efficiency changes from 56.7% to 54.1%, a relatively small change of 2.6 p.p. 

caused by a 10 p.p. in median prior inefficiency and comparable to the one seen in 

Scenario 2 simulations in Section 5. The median changes by 3.3 p.p., making it very likely 

that a sufficient amount of information is present in the data for meaningful estimation, 

given that it is difficult to get much more robust results than this from such a small sample. 

Estimation using the TK paper method gives reassurance about the robustness of results 

as they are reasonably similar, even if the methodology can be problematic. However, a 

comparison of density plots of the draws for the variance of persistent inefficiency shows 

how the priors in the method of Makiela (2016) might be more appropriate to deal with 

the problem of identification. The figure below shows density plots for 𝜎𝜂
2  for two priors 

under the Makiela approach and two priors under the TK approach.  
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Figure 3.2. Posterior densities of 𝜎𝜂
2 under different priors and approaches. r𝜂 = 0.7 

(black), r𝜂 = 0.6 (blue) , Q̅𝜂=0.1 (green), Q̅𝜂=0.25 (red). 

 

 

Given the behaviour seen in simulations, the r𝜂 = 0.6 case might be the most appropriate 

choice, as the prior efficiency is centred close to the posterior and results in a smooth 

posterior. Therefore, analysis of results will be based on the case r𝜂 = 0.6. For analysis 

of results, most countries are divided into key groups: core EU nations (UK, France, 

Germany and Austria), CIS core nations (Russia, Ukraine, Belarus and Moldova), 

Balkans (Slovenia, Croatia, Bosnia, Albania and Macedonia), Caucasus (Armenia, 

Azerbaijan and Georgia) and Eastern EU members (Estonia, Lithuania, Latvia, Poland, 

Czech Republic, Slovakia, Romania and Bulgaria). When considering group averages, 

there are some signs of convergence. This is a sign that after controlling for technological 

differences and other heterogeneity in the data, the groups effectively have similar 

efficiencies in energy consumption. Their fundamental differences in the use of energy 

can then probably be attributed to differences in technology and equipment instead of 

their use, when taking such technology and equipment as given. It appears that most 

country groups are converging towards an average level of approximately 60% with the 

Balkans being a clear exception.  
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Figure 3.3. Efficiencies across country groups 

 

The convergence behaviour (seen in the figure above) is compatible with the removal of 

Soviet and Eastern European barriers to efficient use of energy. It is also possible that 

technological catching-up with energy efficient equipment is partially driving the results, 

as the Eastern EU members and the CIS core countries quickly adopt technologies that 

were already a standard in core EU nations. This resembles the argument of Gomułka 

(2000), where not only there is visible macroeconomic convergence during the 1990s, but 

there is also an assumption that international technology transfer is proportional to 

investment and also the technology gap, highlighting the importance of capital 

accumulation. The CIS members had more of a gap to close from the start in this case. 

The author also points that in the late 1990s the reform strategies were less divergent 

between transition economies, compared to the early 1990s. This argument can be 

transposed to energy efficiency and investment in equipment in this context. The 

modelling approach attempts to abstract from the technological differences of the 

countries, but deep changes in technological catching-up might be visible in the time-

varying efficiency results. 

 

The group that stands out as diverging from the others is the Balkans, with this result 

being robust to some changes in the composition of the group. In this group, only Albania 

escapes a tendency of clear decrease in efficiency levels in the second half of the sample 

period. Albania is a clear exception with major political and social instability in the late 

1990s that seem to take a toll on efficiency scores. Conflicts could lead to interruptions 

of productive processes and overall economic activity that translate to efficiency 
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decreases even if that is most likely to be an artefact due to large decreases in GDP – 

which can be naturally associated to energy consumption not translating to output in 

general. The Balkans countries have not experienced significant changes in gas supply 

availability or relative use of natural gas as a fuel over the sample period. However, this 

region of Europe is partially dependent on local coal fired generation for electricity, which 

is a highly pollutant fuel, but also cheap to obtain locally. In some countries of the region 

the national electricity company also has a significant role in coal mining, and the 

mining/generation/distribution industries are deeply integrated. When considering other 

fuel availability as well, this region is mostly self-sufficient in terms of energy 

consumption. The political and social paradigm of the Balkans differs in multiple ways 

from the one in Eastern Europe and the CIS, as there was already a significant private 

sector role in the 1990s. It is likely that this region has failed to capitalize as much in 

terms of efficiency gains as others in the sample, although the starting point was relatively 

comparable to other economies in the mid-1990s. 

 

There are three further groups of countries not displayed in Figure 3.3. Kazakhstan and 

Kyrgyzstan display very volatile and low efficiency scores (average of 0.369), the Far 

East CIS group, and Scandinavia. Regarding Far East CIS (Uzbekistan, Tajikistan and 

Turkmenistan), this group highlights some of the issues that can arise when fitting 

stochastic frontier models in this context. Although Uzbekistan and Tajikistan are some 

of the most inefficient countries in the sample as expected, Turkmenistan is the fourth 

most efficient country in the sample. This is probably driven by factors other than true 

underlying efficiency, such as the abundant and virtually free gas supply which feeds 

industry and households and extremely low electricity consumption, although the 

population access to electricity is close to 100%. Given that electricity consumption per 

capita is comparable to other countries in the region and other countries in the sample, 

this points that there is likely to be much more inefficiency in gas consumption than in 

electricity consumption, although an investigation on such claims falls out of the scope 

of this chapter. 

 

One of the most noticeable decreases in efficiency throughout the sample is the case of 

Armenia, with a drop around 11% mostly concentrated in the last few years of the sample. 

This happens at a time of a large construction boom in the country that finds no parallel 

in the sample – however, the inclusion of construction shares in the model does not give 

rise to any strong statistical significance. 
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Some complications appear when discussing this partial convergence behaviour. There is 

possibly some measurement error in some variables, for example in electricity prices and 

1990s macroeconomic variables for poorer countries, although the results that are 

obtained are mostly intuitive. Another issue is that the size of the shadow economy in 

many of these countries is rather large (Schneider et al., 2010). The underestimation of 

value added that varies across time and across countries could possibly lead to a situation 

where efficiency results are distorted by levels and changes in the shadow economy, as 

that shadow economic activity can also consume some electricity. However, this theory 

is somewhat in conflict with the obtained results. One of the most inefficient countries in 

the sample (Uzbekistan) was one of the countries in the Former Soviet Union with the 

smallest shadow economy throughout the 1990’s (Schneider, 2002). On the other hand, 

for the example of Hungary, both aforementioned studies show rather low levels of 

shadow economy but the economy appears to be quite efficient in electricity 

consumption. There is no clear correlation between shadow economy sizes and levels of 

efficiency and there is no empirical argument supporting the claim that this is distorting 

results. Regarding changes throughout the sample period, there are also some further 

examples to support this perspective. Poland, for example, sees some rather consistent 

efficiency gains in periods where the shadow economy appears to be stabilized or even 

increasing. Croatia’s level of shadow economy probably peaked around 2000 but the 

decrease in efficiency levels is very consistent throughout time and does not follow the 

pattern of the size of the shadow economy.  

 

Countries where reform efforts were shy still present efficiency scores that are lower than 

other countries in general. One example of that is Uzbekistan, an economy that didn’t 

make as much progress as others and remains with very low scores for economic reforms 

according to the EBRD. The economy is still focused in agriculture and commodities and 

large obstacles to foreign investment and currency convertibility exist, with corruption 

looming and a clearly slow paced and gradualist approach towards any economic reform. 

The efficiency scores for this country are quite volatile but consistently low.  

 

Another possible issue to consider is a correlation between efficiency scores and fuel 

availabilities, as briefly mentioned in Section 3.4.2. If an economy has abundant or cheap 

gas supply, that might influence electricity consumption. In the 33 countries considered 

in the sample, the correlation between individual efficiency scores and the percentage of 
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electricity consumption in total energy consumption (in ktoe) varies greatly. 11 of the 

correlations are positive, with only 10 of the remaining 22 correlations located between -

0.5 and -1. Although a strong negative correlation might imply that results are being 

driven by substitution of fuels and fuel availability, these results give little supporting 

evidence, even if the overall correlation of the two vectors for the entire sample is -0.497. 

A possibly more accurate diagnostic is the correlation between efficiency scores and the 

share of natural gas in total energy consumption, with a large positive correlation showing 

potential problems (fuel substitution arising as efficiency in consumption of another fuel). 

This substitution is more likely than others using fuels such as oil or biomass. However, 

this overall correlation is only 0.105, giving no evidence of any serious problems of 

distorted results. The correlation between efficiency scores and the relative ratio between 

electricity consumption and gas consumption is -0.02. 

 

Possible endogeneity issues related to the regressors might require further work in the 

future in the stochastic frontier literature. Mutter et al. (2013) point that it is also important 

to consider if the endogeneity is present in the idiosyncratic error or in the inefficiency, 

and finds that the latter case is much more dangerous, while endogeneity in the 

idiosyncratic error does not affect efficiency results as much. Tran and Tsionas (2013) 

present an alternative for estimation of a simple stochastic frontier model with GMM and 

endogenous regressors. In this case, it would be hard to solve a possible endogeneity issue 

(i.e. finding and using appropriate instruments) but regressions do not show any strong 

significance of lags of prices or value added in this case. In this chapter, exogeneity is 

assumed as is the case in the energy demand frontier literature, including Filippini and 

Hunt (2011).  

 

A clear restriction from the parametric stochastic frontier estimation is that a functional 

form has to be imposed to the cost equation, and it often has to be a simple form to allow 

for estimation. More accurate results could in theory be achieved with a more complex 

functional form for the cost function, but the number of parameters in the model is high 

for such a small sample. 

 

Another important issue worth mentioning is that this frontier concept is closely related 

to the concept of the rebound effect. The expenditure reduction in energy services due to 

increased efficiency can lead to increased consumption, which can partially offset the 

savings. Therefore, as Orea et al. (2014) point out, the elasticity of demand for energy 
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with respect to changes in this energy efficiency measure in this context provides a direct 

measure of the rebound effect. The model estimated in this chapter implicitly imposes the 

restriction of a zero rebound effect like the rest of the literature, which according to the 

evidence from past research from other regions is possibly too restrictive. The issue of 

rebound effects in transition economies is not well studied at the moment, so prospective 

size estimates are unclear. While theory would point that in least developed countries the 

unmet demand for energy services could increase the rebound effect, the tight budget 

constraint that was experienced in transition economies could lead to this budget 

relaxation being directed towards increased spending in other goods and services, which 

would counter the increase of the effect. It is possible that the first effect overrides the 

latter, and the rebound effect is slightly larger on transition economies than in developed 

economies, according to evidence from developing countries. While it is true that the 

rebound effect might have an important effect which is implicitly ignored in the chosen 

estimation procedure, there is also a very large trade-off in choosing another approach to 

account for this issue. Since the problem of assuming an elasticity of energy savings with 

respect to changes in energy efficiency of -1 affects changes in efficiency, persistent 

inefficiency should not be affected by this discussion. One can speculate that in the 

presence of a strong rebound effect the convergence effect will be attenuated, leading to 

some difference between CIS and OECD countries, for example. That effect should be 

loosely proportional to the size of the rebound effect. This can be a topic of future 

research. 

 

 

3.7. Conclusion 

 

This chapter presents a methodology to estimate underlying efficiency in electricity 

consumption in the context of transition economies after the fall of the Soviet Union, 

between 1994 and 2007. This methodology focuses on measuring efficiency after 

accounting for multiple factors such as economic activity by sector, climate, electricity 

prices and population. Estimation is conducted using the Stochastic Frontier GTRE 

model, which is mostly unexplored in energy economics applications, even if it displays 

a diverse literature on technical and estimation aspects. The Bayesian approach of 

Makiela (2016) is preferred for analysis of results after a comparison with an alternative 

reparameterization method, with additional investigations on the small sample 

performance of this model, given the nature of the sample in this context. Some large 
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differences in efficient use of electricity are found mostly in groups of economies where 

market economy reforms were not thoroughly conducted.  Convergence behaviour is 

witnessed between Western economies and most transition country groups, with the 

exception of the Balkans and countries in the Far East. The importance of the 

measurement of persistent inefficiency is particularly strong in the results. The results and 

their analysis are an important contribution to the energy efficiency and applied 

econometrics literature as there is no other significant work in the application of the 

Bayesian GTRE approach, the region of study and the discussion of the issues around the 

estimation of the efficiency measures.  

 

The chapter also highlights some of the difficulties and challenges surrounding cost 

frontier estimation in an energy demand framework and the trade-off between complex 

modelling and tractability. Large uncertainty around estimates leads to a discussion of 

group averages rather than a detailed discussion on individual efficiency scores and 

country rankings. On average, this average inefficiency level stayed mostly stable through 

the time frame of this study. The model clearly distinguishes some countries with a low 

level of market reforms, such as Tajikistan and Uzbekistan, as lagging behind in terms of 

efficiency and containing large persistent inefficiency which is compatible with the 

Soviet legacy and its implications, even after controlling for unobserved heterogeneity.  
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Chapter 4. Spatial Dependence and Unobserved Heterogeneity in 

Stochastic Frontier Models: A Bayesian Approach 

4.1. Introduction 

 

The stochastic frontier literature has advanced considerably in the last four decades. Panel 

models have been outlined and extended to be able to account for multiple factors, such 

as heterogeneous technologies and spatial dependence. As mentioned in previous 

chapters, recent advances in the literature allow for the separation of firm effects from 

technical or cost inefficiency in a production or cost function framework (Greene, 2005). 

Further work has been conducted to allow a more complete separation of those effects 

from inefficiency, specifically a more complete separation by allowing for two 

inefficiency components, a time varying and a time invariant one, besides accounting for 

unobserved heterogeneity. On the other hand, spatial models have been slowly populating 

a small literature in the past decade, but those often do not consider approaches to separate 

these effects from inefficiency and simply allow, for example, a spatial lag to capture 

spatial spillovers in the model. This chapter combines the two literatures and proposes a 

spatial model that allows for full separation of unobserved heterogeneity and the 

inefficiency components. Bayesian estimation is conducted, focusing on the issues of 

identification as the model complexity increases. 

 

The economic rationale for an extension of the literature is straightforward. Consider an 

example of an industry with heterogeneous management. It is natural to assume that 

management skills and quality change over time, but also natural to assume that there is 

some persistent inefficiency associated to the management activities or the firm in 

general, some core inefficiency associated to management that does not change with time, 

but is not attributed to heterogeneous technologies or unobservable characteristics when 

compared to other firms. However, the policy maker might want to ignore the time-

invariant inefficiency from the analysis as it can be attributed for example to regulation, 

even if some authors argue for its estimation in either case (Tsionas and Kumbhakar, 

2014). Also, it is possible that there is unobserved heterogeneity (technological 

availability, for example) as well as endogenous spatial interactions between the outputs 

or costs of the firms and also exogenous spatial interactions among the independent 

variables that constitute the production or cost function. In the context of the application 
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of this chapter, which relates to aggregate productivity across European economies, there 

is unobserved heterogeneity between countries but also productivity spillovers. Large 

amounts of inefficiency are clearly present, with most of it being persistent, justifying the 

inclusion of both time-varying and time-invariant inefficiency components. The size of 

unobserved heterogeneity is also not negligible. 

 

The contribution of this chapter is twofold. First, it presents a Bayesian modelling 

approach which allows for the measurement of efficiency in the presence of simultaneous 

challenges of spatial dependence and unobserved heterogeneity. Given the increased 

complexity of this model, identification is an issue which is explored in detail. This allows 

for a flexible framework. Secondly, the model allows for easy estimation in most standard 

statistical software packages in an age of increasing computational power. Section 2 

outlines a literature review of the fields of spatial dependence and heterogeneous 

technologies in stochastic frontier modelling. Section 3 presents the model and discusses 

its characteristics. Section 4 presents the MCMC scheme with two competing alternatives 

for estimation. Section 5 explores the identification issues and small sample performance 

of the model. Section 6 outlines an application of the model to aggregate production in 

43 European continent economies between 1992 and 2005, in a context of some spatial 

dependence and large inefficiencies that are mostly persistent but also vary across time. 

Section 7 concludes. 

 
 

4.2. Literature Review 

 
The field of Stochastic Frontier Analysis (SFA) grew immensely since the 1970s, with 

the seminal work from Aigner et al. (1977) opening the path for a stream of literature that 

measured efficiency of productive units while still allowing for noise in the estimation 

process, which is separated from the inefficiency by making distributional assumptions. 

This was a key contrast to other usually non-stochastic techniques such as Data 

Envelopment Analysis (DEA).  In the last few decades, the SFA literature has focused 

intensely on the issue of heterogeneous technologies, to account for differences in 

technology across productive units when measuring their technical efficiency. More 

recently, the literature has also focused, although sparsely, on the issue of spatial 

dependence in cost and production frontiers. Different streams of the literature appeared 

regarding the issue of heterogeneity in applied research.  
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In more recent developments of the literature, there has been considerable advance in 

both fields of unobserved heterogeneity and spatial dependence. In the field of 

heterogeneity, Tsionas and Kumbhakar (2014) propose a Generalized True Random 

Effects model (GTRE) in a Bayesian setting which separates persistent inefficiency from 

unobserved heterogeneity by assuming the presence of a zero-mean random effect and 

one sided inefficiency components with a half-normal distributional assumption. As 

highlighted in Chapter 2, the model was originally proposed by Colombi et al. (2011) and 

is an extension of the TRE model of Greene (2005) to allow for the measurement of 

persistent inefficiency, which is otherwise omitted from the analysis as it is implicitly 

embedded in the random effect. Makiela (2016) discusses the shortcomings of the Tsionas 

and Kumbhakar (2014) approach and proposes tweaks to the “naïve” approach to improve 

estimation. Other ways of estimating the same underlying model are ML estimation using 

closed-skew normal properties (Colombi et al., 2014) and a three step frequentist 

approach where the first step is a simple random effects regression and the other two steps 

are simple frontier estimates (Kumbhakar et al., 2014). The underlying model for is 

outlined as below, in a cost frontier framework. 

 

 𝑦𝑖𝑡 = 𝑋𝑖𝑡𝛽 + η𝑖 + 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 (25) 

                𝑣𝑖𝑡   ~ 𝑁(0, 𝜎𝑣
2)                    𝑢𝑖𝑡 ~ 𝑁+(0, 𝜎𝑢

2)  (26) 

                η𝑖    ~ 𝑁+(0, 𝜎η
2)                  𝛼𝑖   ~ 𝑁(0, 𝜎𝛼

2)   (27) 

 

The four components are the idiosyncratic error, time-varying (short-run) inefficiency, 

persistent (long-run) inefficiency and a zero mean random effect respectively, allowing 

for the correct measurement of total inefficiency in the presence of unobserved 

heterogeneity as long as the distributional assumptions are adequate. However, precise 

efficiency measurement is in jeopardy if any existing spatial dependence in the process is 

ignored by the researcher. 

 

The field of spatial analysis is a late bloomer within the SFA literature. Ignoring this issue 

can lead to biased efficiency estimates. There is also the theoretical aspect of considering 

production or cost processes with some sort of spatial dependence. Even Farrell (1957), 

two decades before Aigner et al. (1977), recognized that his method of measuring 

agricultural efficiency in the United States would show that differences in efficiency are 

also related to geographical factors such as climate and location, besides other sources. 
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The SFA literature developed throughout the following decades but only very recently 

significant efforts to create spatial SF models were conducted. While the efficiency 

literature often considers spatial heterogeneity as the differences in efficiency due to 

location, controlled for by using dummy variables or similar approaches, spatial 

dependence relates to the dependence of outcomes in different locations – the concepts 

do not necessarily overlap, creating the reasoning for the use of spatial approaches in SF 

modelling. In the case of Areal et al. (2012), the spatial spillovers are modelled directly 

in the efficiency components, so there is a relationship between firms’ efficiencies. 

Pavlyuk (2013) stresses that with an increase in mobility and transportation capabilities, 

the efficiency of airports, sea ports and coach terminals suffers from the influence of 

spatial interaction as terminals become closer to their neighbouring competition and 

intensify spatial effects. The author develops a cross-sectional maximum likelihood 

estimator for SARSF (Spatial Autoregressive Stochastic Frontier model) and SARARSF 

(Spatial Autoregressive Stochastic Frontier model with spatial autoregressive 

disturbances) models. The author outlines the SARSF model as, again in a cost setting 

and in matrix form: 

 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑣 + 𝑢                                                                  (28) 

 

𝑣 and 𝑢 are an error term and an inefficiency term respectively, following from Aigner et 

al. (1977). This SARSF model has a (N x N) spatial weights matrix 𝑊, which is often an 

inverse distance matrix, and parameter 𝜌 as a measure of spatial dependence. 𝑤𝑖 is the 

𝑖𝑡ℎ row of the matrix 𝑊 . If the spatial relationship of the symmetric error terms is 

considered as well, the SARARSF model is considered, following equation (28) but with 

the particular detail that 𝑣𝑖𝑡 also depends on a matrix of dependencies between errors and 

a parameter that measures that level of spatial dependence. A comparison of the standard 

model of Aigner et al. (1977) with the SARSF model shows that the bias of the classic 

stochastic frontier model becomes serious as 𝜌 increases, which is an expected result. For 

low levels of 𝜌 such as 0.1, the parameter estimates are not severely biased. However, 

there is noticeable bias in 𝜎𝑢 , which is crucial for inefficiency estimates and is a 

fundamental part of the analysis of stochastic frontier models. This study then applies the 

spatial methodology to a set of European airports, finding significant spatial effects. 

Applying the SARARSF model shows that in this case there is significant spatial 

heterogeneity – previously considered as inefficiency in other models, although the author 

does not follow into a discussion of result interpretation and calculation of efficiency 
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scores after this, leaving a gap in the literature. Affuso (2010) used a SARSF model to 

evaluate the impact of agricultural extension programmes that have positive effects not 

only on chosen farmers but also on other farmers due to spatial spillover effects. This 

was, as far as the knowledge of the literature allows, the first effort of its kind in the 

literature. It is also possible to conceive spatial frontier applications that use alternative 

interpretations of the efficiency term and alternative estimation methods. Naturally, 

besides the interpretation of the one-sided error term, spatial frontier models have also 

used random effects and fixed effects and interpret them as efficiency measures to retrieve 

efficiency estimates while accounting for spatial dependence.  

 

Adetutu et al. (2015) study the effects of efficiency and TFP growth on pollution in 

Europe in a two stage approach. In a first stage, non-spatial and local spatial stochastic 

production models are estimated. In a second stage, measures of productive performance 

are used as regressors in models of per capita emissions of nitrogen and sulphur oxides. 

Another contribution to the literature is a spatial extension of the CSS estimator (Cornwell 

et al., 1990) to the spatial autoregressive case which involves direct, indirect and total 

efficiency (Glass et al., 2014). A key paper in this particular aspect of the literature makes 

further analysis of spatial spillovers and the modelling approach (Glass et al., 2016). This 

is based on a SARSF model for panel data and the authors also analyse the measurement 

of efficiency across units and time, the role of direct and indirect efficiencies, and the 

extension to a Spatial Durbin model within a SF framework. Although technically 

straightforward, the latter extension allows for a more flexible and rich modelling 

approach. The authors apply this approach to aggregate productivity in European 

economies, showing that the worst performing countries in the sample show higher 

efficiency levels than in a non-spatial model because the spatial model controls for the 

disadvantageous location of those economies. The model proposed throughout this 

chapter can be seen as a cross-over between the GTRE model (Colombi et al., 2011) and 

the SAR stochastic frontier model for panel data (Glass et al., 2016).  

 

In similar efforts, but not directly using Spatial Autoregressive models, Druska and 

Horrace (2004) develop a GMM frontier model and apply it to rice farms in Indonesia. 

The spatial autocorrelation term is introduced in the production frontier model as an 

exogenous variable, and as such, shifts the frontier technology. Estimation follows the 

random effects methodology (Schmidt and Sickles, 1984) meaning that the retrieved 

efficiency measure is time-invariant and follows the implied interpretation of the effects 
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as inefficiency. As discussed above, this also implies that all existing unobserved 

heterogeneity is captured as inefficiency.  

 

Schmidt et al. (2009) focus on the unobserved local determinants of inefficiency in farm 

productivity in the Centre-West of Brazil. The TRE model (Greene, 2005) is considered, 

besides the conditionality of inefficiencies related to unobserved heterogeneity and the 

possibility of a spatial structure in the unobserved heterogeneity. The particular aspect of 

this study is the existence of several farms within each municipality – making the 

inefficiency component a realization from a distribution that depends on a unobserved 

effect 𝑤𝑖. This effect follows a process that spreads through spatial contagion (such as a 

new technology). The model is specified assuming that 𝑤𝑖  follows a conditional 

autoregressive distribution that depends on its neighbours, imposing a spatial structure 

but not affecting output directly. This setting with two levels of hierarchy allows to 

identify municipal effects even when municipal level covariates are included. In this 

study, spatial dependency is allowed through lagged latent regional effects, instead of 

farm effects, unlike Druska and Horrace (2004). Analysis was conducted using Bayesian 

inference.  

 

It becomes rather clear that there is a gap in the literature in terms of combining the 

aspects of spatial dependence and correct measurement of inefficiency under the presence 

of unobserved heterogeneity captured in a random effects framework. While literature 

reviews in the Stochastic Frontier modelling field have managed to cover the issue of 

unobserved heterogeneity rather heavily in recent years, they have often ignored the 

issues of spatial dependence. Examples of this arise in recent reviews (Parmeter and 

Kumbhakar, 2014). This chapter proposes a methodology that gathers strengths from the 

spatial branch of the literature and the heterogeneity branch of the literature to achieve a 

more flexible framework.  

 

 

4.3. The Generalized Spatial Stochastic Frontier Model   

 

The modelling approach follows in this section. It implies a larger amount of error 

components than the standard stochastic frontier models and also some endogeneity 

problems which will be addressed. The model has the same distributional assumptions as 

in equations (26) and (27). If the model is to be written as a production frontier, the 
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distributions of the inefficiency components would be truncated from above at zero. The 

identification of the model depends on distributional assumptions about the shape of each 

of the four components, as otherwise it is impossible to separate them. Note that in the 

GTRE model and in the majority of the stochastic frontier literature it is assumed a priori 

that there is no spatial dependence, which translates to the assumption 𝜌 = 0 . 𝑋𝑖𝑡 

represents a set of exogenous variables that relate to the production or cost function and 

β corresponds to their associated parameters. Assume the following model: 

 

 𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑗≠𝑖

+ 𝑋𝑖𝑡𝛽 + η𝑖 + 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 (29) 

     𝑖 = 1, … , 𝑁                 𝑡 = 1, … , 𝑇 

 

The equation contains four error components – two of them normal and two of them half 

normal. 𝑣𝑖𝑡 is an idiosyncratic error in the classic sense of linear regression. 𝑢𝑖𝑡 is a one-

sided error term that varies across time and across unit, defined as time-varying 

inefficiency or short-run inefficiency. This inefficiency component is the typical 

component in models that do not account for unobserved heterogeneity, and is seen as the 

only inefficiency term in the TRE model, for example. η𝑖 captures inefficiency that varies 

across units but not across time, and has been called long-run inefficiency or persistent 

inefficiency in the literature. Finally, 𝛼𝑖 is a random effect to absorb any time-invariant 

unobserved heterogeneity. The assumptions of the Random Effects model must hold in 

this context – there must be no correlation between the unobserved heterogeneity and the 

explanatory variables – although this assumption can be relaxed by adding cross-sectional 

means of explanatory variables. 

 

This model captures spatial dependence through a spatial lag, which leads to issues of 

endogeneity. W is a (N x N) spatial weights matrix assumed to be exogenously 

determined by the researcher. Often, this matrix is defined according to the existence of 

neighbours of a given unit, or the distance between given units. 𝑤𝑖 is the ith row of the 

spatial weights matrix. It is important to define a correctly specified spatial weights matrix 

to avoid biased estimates, but the true matrix is not known. 𝜌 is a parameter measuring 

the strength of the spatial dependence in the context of a given production or cost process, 

and it is bounded theoretically between -1 and 1.  The researcher can bound it further 
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inside that interval for some specific reason, for example by only allowing it to be only 

non-negative. 

 

The endogeneity is taken into account by adding the Jacobian term of the transformation 

of 𝜀𝑖𝑡 to 𝑦𝑖𝑡 to the log-likelihood function (Anselin, 1988). In a more practical sense, the 

coefficient of 𝜌 is restricted to the interval between 
1

𝑊𝑀𝐼𝑁 
 and 

1

𝑊𝑀𝐴𝑋 
, where 𝑊𝑀𝐼𝑁 and 

𝑊𝑀𝐴𝑋 are the characteristic roots of the spatial weights matrix W. The restriction of 𝜌 to 

its parameter space is done by the addition of the Jacobian term in the log-likelihood 

function, while it could be unrestricted (and possibly leading to odd results) in alternative 

IV/GMM methods.  

 

There are two notes to make in this context. First, the extension of this model to include 

spatial lags of the exogenous variables is technically straightforward in the context, given 

that it is simply the addition of more regressors to the model, although it can lead to highly 

correlated regressors. However, this addition can be of great value to some applications 

and specific contexts of efficiency measurement where the production or the cost function 

involves not only spatial dependence related to the dependent variable, but also to the 

explanatory variables. Secondly, note that this particular model is very recent in the 

literature, but also that to the best of my knowledge, there is no Spatial Autoregressive 

True Random Effects model outlined in the literature as well – either in frequentist or 

Bayesian forms. The Spatial TRE model is easier to estimate, although it assumes a priori 

the non-existence of persistent inefficiency or it implicitly treats it as a part of unobserved 

heterogeneity. However, the validity of the model for less complex situations is clear. 

Although details on this specific model are not presented here, the MCMC scheme for 

that model is presented in Appendix 4.1. 

 

The choice of a half-normal distribution is justified by a combination of practicality and 

information about the performance of different distributions in parametric stochastic 

frontier models. It is known that often relative rankings and decile compositions are not 

very sensitive to the choice of distributional assumption between half-normal, truncated 

normal and exponential (Kumbhakar and Lovell, 2004). Other flexible distributional 

assumptions such as Gamma (Greene, 1990) and Weibull (Tsionas, 2007) distributions 

might be more appealing from a theoretical perspective, but they often lead to increasing 

difficulty or additional parameters to estimate, which would make estimation more 

unreliable in complex models. 
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The interpretation of the parameters of the model is not as straightforward as in a non-

spatial model. LeSage and Pace (2009) highlight that the coefficients of the explanatory 

variables cannot be directly interpreted as elasticities, because the marginal effects are 

linked to the spatial autoregressive variable. Therefore, and following the authors, it is 

possible to separate the total effect of the independent variables into direct and indirect 

effects using the estimated parameters. An issue of interest is that the same argument 

holds when considering the efficiencies. Total efficiency can also be decomposed into 

direct efficiency and indirect efficiency, which is related to the effect of the neighbouring 

units. Note that in the modelling approach where spatial dependence is not taken into 

account (Kumbhakar et al., 2014), the measure of efficiency is: 

 

 𝐸𝐹𝐹̂𝑖𝑡 = 𝑇𝑉𝐸̂ ∗ 𝑇𝐼𝐸̂ = exp(−𝜔𝑢𝑖𝑡̂ − 𝜔η𝑖  ̂) (30) 

 

The notation is, as before, ω = 1  for a cost frontier, and ω = −1  for a production 

frontier. However, the case of the suggested model is slightly more complicated due to 

the introduction of the spatial aspects in the model. Starting from the core idea of technical 

efficiency in equation (1) of Chapter 2, technical efficiency is now the ratio of the output 

of a unit divided by the maximum attainable output given inputs but also the outputs of 

other units.   

 

After stacking observations in equation (29) and re-organizing the model as 

y = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ̂W)−1(𝑋𝛽 + 𝐼𝑇 ⊗ η + 𝐼𝑇 ⊗ 𝛼 + 𝑣 + 𝑢) , the typical mathematical 

calculation of efficiency would lead, in a notation more consistent with equation (30), to 

the vector 𝐸𝐹𝐹̂ = exp [(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ̂W)−1(−𝜔𝑢̂ − 𝐼𝑇 ⊗ 𝜔η ̂)] . This stems from the 

reduced form of the model. Placing the inverse matrix inside of the exponential for 

efficiency measurement renders the nice property of efficiency bounded between 0 and 

1, in line with the suggestion of Fusco and Vidoli (2013). However, this would lead to 

counterintuitive effects as the median and the minimum efficiency observations would be 

increasingly more distant from the most efficient observation. Another unintended 

consequence of difficult interpretation of that alternative is that mean efficiency in the 

sample goes to 0 as the spatial parameter goes to 1, independently of the level of direct 

efficiency in the sample. This method follows the traditional mathematical implications 
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of stochastic frontier analysis, but does not pass the test of practical interpretation. 

Therefore, an alternative method is explained below. 

 

The alternative in the literature, as in Glass et al. (2016), is to start by taking the 

exponential of 𝑢 and η from the structural form of the model. Then, by considering the 

part of the reduced form that relates to efficiency, exp [(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ̂W)−1(−𝜔𝑢̂ − 𝐼𝑇 ⊗

𝜔η ̂)] is calculated based on the corresponding exponential from the structural form of 

the model. 

  

Reverting to a more explicit definition of the efficiency vectors, the total time-varying 

efficiency (TVE) will be (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ̂W)−1𝑒𝑥𝑝(−𝜔𝑢̂), a (NT x 1) vector as suggested 

previously in the literature (Glass et al., 2016) and correspondingly the total time invariant 

efficiency (TIE) will be (𝐼𝑁 − ρ̂W)−1𝑒𝑥𝑝(−𝜔η ̂), a (N x 1) vector. This leads to the 

following vector of efficiencies: 

 

 𝐸𝐹𝐹̂ =  (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ̂W)−1exp(−𝜔𝑢̂ − 𝐼𝑇 ⊗ 𝜔η ̂) (31) 

 

However, the efficiency measure in equation (31) is not bounded between 0 and 1 in some 

cases, leading to cases where the mathematical calculation does not lead to an intuitive 

interpretation supported by theory and the specificities of a spatial model. To gain an 

advantage over the alternative method and successfully interpret this measure, a relative 

scale must place the most efficient firm at the benchmark, while ranking all other 

observations with respect to that calculated maximum. This argument follows Glass et al. 

(2016) but leaves little room, for example, to consider the distance of the most efficient 

firm from the actual frontier, particularly in contexts of larger inefficiency (be it persistent 

or time-varying). However, it is desirable to measure efficiency in some form of absolute 

scale to assert how distant firms are from the frontier in general.  

 

In this case, the frontier model efficiencies are influenced by the spatial interactions, and 

there is no straightforward interpretation of an efficiency score below 0 or above 1. The 

following absolute measure is proposed in this thesis as a contribution to the literature, 

under the condition of non-negative ρW:  
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 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑆−1 ∑
(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ(𝑠)W)

−1
exp [−𝑢̂  −  𝐼𝑇 ⊗ η ̂]

𝑚𝑎𝑥[(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ(𝑠)W)−1𝑙𝑢]

𝑆

𝑠=1

 (32) 

 

In equation (32) 𝑙𝑢 represents an (NTx1) vector which is equal to 1, representing full 

efficiency. This denominator represents a value of maximum efficiency given the 

observed level of spatial dependence for one (abstract) fully efficient sample. The 

denominator is not bounded between 0 and 1, but it represents an attainable maximum by 

the firm that is the benchmark to compare all observations. With this proposed measure, 

the relative distance between the most and the least efficient unit decreases with 

increasing ρ, as in the relative efficiency measure proposed by Glass et al. (2016). The 

ratio between the median score and the lowest score in the proposed relative and absolute 

measures is exactly the same, retaining the original structure. Note that the condition of 

non-negative ρW is relatively general, as long as there is a positive spatial parameter 

coefficient and the spatial matrix is, for example, an inverse distance matrix or a 

neighbourhood matrix. 

 

The debate on what is the most appropriate approach is far from finished, as the approach 

of Fusco and Vidoli (2013) is well bounded but difficult to interpret, the approach of 

Glass et al. (2016) is easy to interpret but imposes relative measurement, and the approach 

of equation (32) expands efficiency measurement to an absolute scale in the spatial 

context, but is not applicable under some conditions such as a negative spatial parameter 

(context of competition between units). 

 

Direct and indirect efficiencies arise from the chosen procedures with spatial stochastic 

frontier models, as noted in the literature by Glass et al. (2016). Denoting the j’th (NT 

rows) row of exp(−ω𝑢̂  −  𝐼𝑇 ⊗ ωη ̂) as 𝐴𝑖𝑡, the resulting matrix will have a diagonal of 

direct effects, with all other values being indirect effects. 

 

  (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ̂W)−1 (

𝐴1

…
𝐴𝑗

) = (

𝐴11
𝐷𝑖𝑟𝑒𝑐𝑡    + ⋯      + 𝐴1𝑗

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡

⋮               + ⋱ +           ⋮
𝐴𝑗1

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + ⋯   + 𝐴𝑗𝑗
𝐷𝑖𝑟𝑒𝑐𝑡

) (33) 

 

This allows for asymmetric efficiency spillovers which affect indirect and total efficiency 

results. Indirect efficiency estimates can be obtained relating to the efficiency spillover to 

(from) one unit from (to) another unit (a particular indirect effect in equation (33)) or the 
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efficiency spillover to (from) all units from (to) another unit (the sum of indirect effects 

across a row or a column in equation (33)). In other words, units can “import” efficiency 

from their neighbours and “export” efficiency to their neighbours, with possibly 

asymmetric effects. 

 

When computing efficiency measures, it is also important to account for parameter 

uncertainty. This is dealt with in classic Rao-Blackwell fashion as in Tsionas and 

Kumbhakar (2014), but also with the spatial lag parameter influencing the computation 

of the efficiency measures. A model for balanced panel data is being considered in this 

context, as in SAR models it is a problem to consider unbalanced panels if the reason for 

missing data is not known (Elhorst, 2010). However, some assumptions can be made to 

proceed with estimation for unbalanced panels, such as assuming the data are missing at 

random (Pfaffermayr, 2013). All the measures above are computationally easy to 

calculate with little effort unless the sample is very large. In the next section, the MCMC 

scheme is presented to guide us through the estimation of the model. 

 

Given the use of a Bayesian approach, one can make inference on the uncertainty of 

efficiency measures by calculating at each draw the total efficiency measure. However, 

any credible intervals obtained should be rather large, given the nature of the stochastic 

frontier techniques. This is particularly true for persistent inefficiency with small N. To 

test hypothesis of dropping one error component from the model, for example persistent 

inefficiency, leading to a spatial autoregressive version of Greene (2005) True Random 

Effects model, an approximation of Bayes Factors can be used (Verdinelli and 

Wasserman, 1995). 

 

 

4.4. MCMC Scheme 

 

The MCMC approach will follow two paths of investigation. The first is an extension 

based on  an augmentation of the GTRE model following propositions in van den Broeck 

et al. (1994). This follows the approach of Makiela (2016) for the GTRE model. The 

second path is an extension of the Tsionas and Kumbhakar (2014) model using their 

reparameterization approach. Both are outlined in detail and their properties explored in 

the next section. 
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For the rest of the thesis, standard notation for conditional posterior distributions is used, 

with p(τ|y, X, 𝜃−τ), denoting the posterior conditional distribution for τ, given y, data X 

and all parameters other than τ. 

 

 

4.4.1. A simple Gibbs sampling approach 

 

Unless explicitly stated otherwise, the panel data is stacked by order of time first and then 

by unit. The scheme is presented in a cost frontier notation when ω = 1  and in a 

production frontier notation when ω = −1. The u and η components will be positive in 

a cost frontier and negative in a production frontier. 

 

 

The following priors are defined for the model: 

 

 𝛽~𝑁(𝑐, 𝐴−1) (34) 

 

 
1

σZ
2 ~ fG( 

N̅Z

2
 ,

Q̅Z

2
 ), for Z = v, α  (35) 

 

 
1

σZ
2 ~𝑓𝐺[5,10 ln2(𝑟𝑍

∗)], 𝑓𝑜𝑟 𝑍 = 𝜂, 𝑢 (36) 

 

The shape-rate parameterization of the gamma distribution is used throughout the rest of 

the chapter. All Q’s can be set, for example, to be 10^(-4) (the prior sum of squares of 

each of the error components). c can be set to be a vector of zeros (a vector of prior means 

of the regressors of the explanatory variables). Although in general terms the prior in (34) 

can be used, a standard uninformative reference prior is defined in this chapter, following 

Makiela (2016). Setting Nv=N𝛼 = 1 implies that a prior sample of size 1 has a sum of 

squares Q̅Z. 𝑟𝑍
∗ refers to the prior medians of inefficiency and this flexible prior allows for 

good tuning to meet the needs of the applied researcher. Note that this is linked to direct 

efficiency, and not total efficiency after accounting for the spatial aspect for the model. 

More on that follows in the next section. Also, note that if the researcher desires to input 

stronger prior information, this can be achieved, for example, by changing c and A to 
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reflect prior beliefs about the effect of particular exogenous variables, or some beliefs 

about the size of the inefficiencies. 

 

The draws for the parameters are obtained in the following way: 

 

 p(β|y, X, 𝜃−β) ∝ N(b, B) (37) 

 

 𝑏 = (X’X + σv
2A)−1(X’Sy + σv

2Ac) (38) 

 𝐵 = σv
2(X’X + σv

2A)−1 (39) 

 𝑆𝑦 = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)y − [lt ⊗ 𝛼] − [lt ⊗ 𝜂] − u (40) 

 

 

In equations (38) and (39) all multiplicative parts containing A will drop out of the 

equations using the reference uninformative prior. The conditional posteriors of the 

variances of the error components are drawn from well-known distributions: 

 

 p(σv
2|y, X, 𝜃−𝜎𝑣

) ∝  Inv − χ2(NT + Nv ; ((Qv + v’v)/(NT + Nv))) (41) 

 

 v = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ 𝜌𝑊)𝑦 − 𝑋𝛽 − 𝑢 − [lt ⊗ 𝛼] − [lt ⊗ 𝜂] (42) 

 

 

 p(σα
2|y, X, 𝜃−𝜎𝛼

) ∝ Inv − χ2(NT +  Nα ; ((Qα + α’α)/NT +  Nα)) (43) 

 

  p(σu
2|y, X, 𝜃−𝜎𝑢

) ∝  Inv − Gamma(NT/2 + 5 ; ((Qu + u’u)/(2 + ln2(𝑟𝑢
∗))))  (44) 

  

 p (σ𝜂
2|y, X, 𝜃−𝜎𝜂

) ∝ Inv − Gamma(N/2 + 5 ; ((Q𝜂 +  𝜂’𝜂)/(2 + ln2(𝑟𝜂
∗)))) (45) 

 

 p(u|y, X, 𝜃−𝑢) ∝ N+(ũ
 σu

2

σv
2 + σu

2
,

σv
2σu

2

σv
2 + σu

2
I𝑁𝑇) (46) 
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If a production frontier is desired instead of a cost frontier, u is drawn from a 

N− distribution (truncated from above at zero). 

 

 𝑢̃ = [(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)𝑦 − Xβ − [lt ⊗ 𝛼] − [lt ⊗ 𝜂]] (47) 

 p(𝜂|y, X, 𝜃−𝜂) ∝ N+(𝜂̃
 σ𝜂

2

σv
2/T + σ𝜂

2
,

σv
2σ𝜂

2/𝑇

σv
2/T + σ𝜂

2
I𝑁) (48) 

   

  𝜂̃ = (𝐼𝑁 − ρW)y̅ − X̅β − 𝛼 − 𝑢̅ (49) 

 

 p(𝛼|y, X, 𝜃−𝛼) ∝ N+(𝛼̃
 σ𝛼

2

σv
2/T + σ𝛼

2
,

σv
2σ𝛼

2 /𝑇

σv
2/T + σ𝛼

2
I𝑁) (50) 

   

  𝛼̃ = (𝐼𝑁 − ρW)y̅ − X̅β − 𝜂 − 𝑢̅ (51) 

 

The only parameter which is not drawn from a well-known distribution with easy 

simulation in modern statistical software packages is the spatial parameter: 

 

 p(ρ|y, X, 𝜃−ρ) ∝ |S| exp (−
𝑣´𝑣

2σv
2

) (52) 

 

 |S|  =  |(𝐼𝑁 − ρW)| (53) 

 

This parameter is drawn using the Random Walk Metropolis-Hastings approach, a well-

established technique in the literature, which poses no problem for estimation in this case 

and is often used in estimating Bayesian spatial econometrics models. In Chapter 5 some 

other techniques will be explored, in a context of more intensive use of rejection 

techniques. However, for simplicity these are not explored in Chapter 4. 

 

4.4.2. Reparametrization approach 

 

Tsionas and Kumbhakar (2014) highlight in the GTRE model that a naïve data 

augmentation technique will not easily explore the true parameter spaces due to the very 
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high autocorrelation between the latent variables. Therefore, the same reparameterization 

is proposed as an alternative and investigated further in this chapter. Unless explicitly 

stated otherwise, the panel data is stacked by order of time first and then unit.  

 

The following priors are defined for the model: 

 

 
1

σZ
2 ~ fG ( 

N̅Z

2
 ,

Q̅Z

2
 ), for Z = v, u, η, α  (54) 

 

 

In practice, this model implies that there are two skew-normal variables associated to this 

model. First, the convolution of the idiosyncratic error and time-varying inefficiency is 

𝜀𝑖𝑡 = 𝑣𝑖𝑡 + 𝑢𝑖𝑡. Separating the two is a typical problem in the literature and considered 

rather straightforward as long as assumptions on the shape of the time-varying 

inefficiency are set: 

 𝑓(𝜀) =
2

σ
φ(

𝜀

σ
)Φ(

𝜔𝜀
σ𝑢

σ𝑣

σ
) 

(55) 

 

And secondly, the convolution between the random effects and the persistent inefficiency 

𝛿𝑖 = 𝜂𝑖 + 𝛼𝑖, which is also a skew normal variable: 

 𝑓(δ) =
2

σδ
φ(

𝛿

σδ
)Φ(

𝜔𝛿
σ𝜂

σ𝛼

σδ
) 

(56) 

 

In this notation, ω = 1 for a cost frontier, and ω = −1 for a production frontier. This 

model can be presented in two different parameterizations, with the first of them being: 

 

 yit = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑁

𝑗=1

+ Xitβ + δi + vit + uit  (57) 

 

This implies that the random effects and the persistent inefficiency components are 

estimated jointly. In a first stage, δ, 𝜌, 𝛽, σ𝑢 and σ𝑣 are estimated without the unnecessary 

added correlation of draws from trying to estimate the individual components of the 
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convolution 𝛿𝑖 = 𝜂𝑖 + 𝛼𝑖. Focus on estimating the remaining parameters from the model 

will be put on the other parameterization of the model. 

 

The draws for the parameters are obtained in the following way, with some differences 

compared to the other approach: 

 

 p(β|y, X, 𝜃−β) ∝ N(b, B) (58) 

 

where b and B are drawn the same way as in the previous approach, except for the 

difference in Sy: 

 

 Sy = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)𝑦 − [lt ⊗ 𝛿] − u (59) 

 

 

 

The conditional posterior of the skew normal δi is:  

 p(𝛿𝑖|y, X, 𝜃−δ) ∝ exp (
(R𝑖 − [lt ⊗ δi])′(R𝑖 − [lt ⊗ δi])

2σv
2

−
δi

2

2σδ
2)Φ(

σ𝜂

σ𝛼
𝜔δi

σδ
2 ) (60) 

 

where R2 =  (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)𝑦 − Xβ − u  , with y, X, u  being matrices of data first 

stacked by unit and then time, with R2 being then calculated and then re-stacked by time 

first and then unit – resulting in R. R𝑖 then relates to a specific unit i under consideration. 

 

It is known that this distribution is skew-normal and log-concave. Simple methods can be 

applied, such as an Adaptive Rejection Sampler (ARS) (Gilks and Wild, 1992), where the 

logarithm of the target density is enveloped using tangents to the log-density. However, 

for computational reasons, draws from this distribution are taken in R using Adaptive 

Metropolis Rejection Sampling, ARMS (Gilks et al., 1995), using the package “dlm” in 

R. This method has an additional Metropolis step (Metropolis et al., 1953) to assure 

stability in the computations in extreme cases, although in all cases this should reduce to 

ARS due to log-concavity. This method does not require analytical derivatives. 

 

An alternative to the use of rejection sampling is a tailored rejection algorithm using 

derivatives. A candidate draw δi
∗ is obtained using a normal distribution with mean equal 
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to the mode of the distribution, and standard deviation s equal to the negative inverse 

second derivative of the distribution evaluated at the mode. This standard deviation is 

guaranteed to be positive, as the second derivative at the maximum is always negative. 

This draw is then accepted with probability: 

 

 
p(𝛿𝑖|y, X, 𝜃−𝛿)/𝑓𝑁(𝛿𝑖|𝛿𝑖

∗, 𝑠2)

p(𝛿𝑖
∗|y, X, 𝜃−𝛿)/𝑓𝑁(𝛿𝑖

∗|δi
∗, 𝑠2)

 (61) 

 

The conditional posteriors of the variances of the idiosyncratic error and the time-varying 

inefficiency are as follows: 

 

 p(σv
2|y, X, 𝜃−𝜎𝑣

) ∝  Inv − χ2(NT + Nv ; ((Qv + v’v)/(NT + Nv))) (62) 

 

 p(σu
2|y, X, 𝜃−𝜎𝑢

) ∝  Inv − χ2(NT + Nu ;  ((Qu + u’u)/(NT + Nu))) (63) 

 

 p(u|y, X, 𝜃−u) ∝ N+(U,
σv

2σu
2

σv
2 + σu

2
𝐼𝑁𝑇) (64) 

 

If a production frontier is desired instead of a cost frontier, u is drawn from a 

N− distribution (truncated from above at zero). 

 

 U =
[(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)𝑦 − Xβ − [lt ⊗ 𝛿]] σu

2

σv
2 + σu

2
 (65) 

 

 p(ρ|y, X, 𝜃−ρ) ∝ |S| exp (−
𝑣´𝑣

2σv
2

) (66) 

 

 |S|  =  |(𝐼𝑁 − ρW)| (67) 

 

 v =  (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ 𝜌𝑊)𝑦 − 𝑋𝛽 − 𝑢 − [lt ⊗ 𝛿] (68) 
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Draws of the spatial lag are taken using a Metropolis-Hastings step where the candidate 

distribution is a normal distribution keeping the rejection rate at a reasonable level.  Note 

that a uniform prior on this parameter is implicit. Any other restrictions on this parameter 

can be easily imposed, for example to force this parameter to be positive between 0 and 

1. 

 

The jointly estimated (and skew-normal) δ𝑖 needs to be separated if there is an interest in 

estimating time-invariant inefficiency. If it has a positive (negative) mean that is rather 

distant from zero in a cost (production) frontier that means there is considerable persistent 

inefficiency. This roughly means that if the estimated mean of δ is zero or very close to 

zero, the random effects dominate and the time-varying inefficiency might be all one 

cares about. If the opposite belief exists for some particular reason and the researcher 

thinks the random effects are negligible, one can proceed with the assumption that δ𝑖 =

η𝑖
+. 

 

The second parameterization is as follows: 

 

 yit = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑁

𝑗=1

+ Xitβ + η𝑖
+ + ζit + uit

+ (69) 

 

This implies that the random effects and the idiosyncratic error are concentrated in a ζ 

parameterization. At this stage, we can estimate η  independently of 𝛼 , reducing the 

correlation of the draws: 

 

 ζ𝑖𝑡 = 𝛼𝑖 + 𝑣𝑖𝑡 (70) 

 

Draws for persistent inefficiency come from the following conditional posterior: 

 

 p(𝜂𝑖|y, X, 𝜃−η) ∝ N+(mi; φ2) (71) 

 

 𝜑2 = 𝜎𝛿
2(1 + 𝜎𝛿

2𝑙𝑡
′∑ 

−1
𝑙𝑡)−1 (72) 

 𝑚𝑖 = 𝜑2𝑙𝑡
′∑ 

−1
𝐷𝑖 (73) 
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 ∑ = 𝜎𝜶
2𝐽𝑇 + 𝜎𝑣

2𝐼𝑇 (74) 

 𝐽𝑇 = 𝑙𝑡
′𝑙𝑡 (75) 

 

Also, 𝐷2 = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)𝑦 − Xβ − u where y, X, u are first stacked by unit and then 

time, with 𝐷2 being then calculated and re-stacked by time first and then unit – resulting 

in 𝐷. For each unit, 𝐷𝑖 has t observations. If a production frontier is desired instead of a 

cost frontier, η is drawn from a N− distribution (truncated from above at zero). 

 

Now, it is straightforward that the draws for the random effects are: 

 

 𝛼𝑖 = 𝛿𝑖 − η
𝑖
+ (76) 

 

With the variance of random effects: 

 

 p(σα
2 |y, X, 𝜃−α) ∝ Inv − χ2(NT + 1 ;  ((Qα + α’α)/NT + 1)) (77) 

 

The draws for the variance of the convolution in the previous parameterization are simply: 

 

 𝜎δ
2 = 𝜎η

2 + 𝜎𝛼
2 (78) 

 

Note that in terms of estimation, the extension to a Durbin model only implies the 

estimation of an additional set of β’s , so the MCMC scheme presented above holds 

without any change.  

 

 

 

4.5. Performance of the model 

 

The performance of the model will be assessed with both aforementioned estimation 

strategies. It is known that in stochastic frontier modelling the information of interest is 

usually not in the parameters associated with the explanatory variables of the production 

or cost function (which still need to be estimated correctly), but instead it is located in the 

inefficiency estimates that are extracted from the error terms. It is also important to assess 
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the performance in small samples, to ensure that the model accurately measures 

inefficiency in situations often seen in applied research in productivity and efficiency 

measurement. 

 

The performance of the model will be assessed with two different scenarios and two 

sample sizes, both with T=10. It is important to consider the performance of the model 

under a reasonably small T, not only given the nature of many stochastic frontier 

modelling applications, but also because of the fact that some applications with larger T 

often ignore the problem of non-stationarity and spurious regression, which should lead 

to consider other modelling approaches that diverge from the methods of this thesis. 

The chosen data generating process for all scenarios is: 

 

 𝑦𝑖𝑡 = 1 +  𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑁

𝑗=1

+ 𝑥𝑖𝑡 + η𝑖 + 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 (79) 

 

𝜌 is chosen to be 0.3 or 0.6 and 𝑥 is generated from a standard normal variable. The 

simple Gibbs sampler approach is computationally efficient and allows faster estimation. 

100,000 draws are taken, with a burn-in of 50,000 and thinning of 5. In the (much slower) 

reparameterization approach, 10,000 draws are taken, with a burn-in of 5,000 and 

thinning of 2. This approach is more inefficient computationally and requires longer 

running times, making a much higher number of draws hardly feasible. Inference is 

conducted on 100 datasets in both cases. Performance is focused on two measures: the 

posterior means and the average correlation between the true values and the estimated 

values (a mean across repetitions). The second measure is particularly appealing as it is 

not enough to accurately find the mean of inefficiency – the relative efficiency ranking 

of units is a common exercise in applied research and highly relies on high correlations 

between true values and estimated values to be a correct one. The panel dimension N will 

be varied between 36 and 100 units that are composed of squared grids (6 x 6 and 10 x 

10 respectively), while T is set to be 10 in both cases. Performance is expected to increase 

with increasing T. In all scenarios, charts with mean bias for each sample size will be 

presented, for both inefficiency components. 

 

The following scenarios are created: 
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Scenario 1: 𝜎𝑣 = 0.1, 𝜎𝑢 = 0.2, 𝜎𝜂 = 0.5, 𝜎𝛼 = 0.2. This scenario is the same as the case 

N=50 of the TK paper and implies moderate signal-to-noise ratios. With not very strong 

ratios there is an expectation of bigger performance degradation as the sample size 

decreases. 

 

Scenario 2: 𝜎𝑣 = 0.05, 𝜎𝑢 = 0.2, 𝜎𝜂 = 0.5, 𝜎𝛼 = 0.1. This scenario has stronger signal-

to-noise ratios and is expected to perform better, particularly in small samples. 

 

The first key result is the poor performance of the TK approach (Tables 1 and 2). The 

figures below show percentage deviations from the true mean for each repetition in each 

case for the Makiela approach. 

 

Figure 4.1. Persistent Inefficiency, % mean bias over 100 repetitions 

 

Figure 4.2. Transient Inefficiency, % mean bias over 100 repetitions  
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Table 4.1. Simulation results for Scenario 1 with N=100 

 

 

 

Table 4.2. Simulation results for Scenario 2 with N=100 

 

 

 

Scenario 1 

N=100 , T=10 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7  

r𝑢 = 0.85  

TK: Q̅𝑣 = Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7  

r𝑢 = 0.85  

TK: Q̅𝑣 = Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

True Est. True Est. True Est. True Est. 

𝛼𝑖  0.001 0.000 0.000 0.000 0.001 0.000 -0.001 0.002 

𝜂𝑖  0.397 0.412 0.402 0.262 0.393 0.410 0.393 0.258 

𝑢𝑖𝑡  0.160 0.162 0.160 0.155 0.159 0.161 0.160 0.157 

𝜎𝑣  0.1 0.098 0.1 0.102 0.1 0.099 0.1 0.101 

𝜎𝑢  0.2 0.204 0.2 0.195 0.2 0.202 0.2 0.197 

𝜎𝜂  0.5 0.520 0.5 0.341 0.5 0.518 0.5 0.336 

𝜎𝛼  0.2 0.185 0.2 0.326 0.2 0.186 0.2 0.320 

ρ 0.3 0.307 0.3 0.308 0.6 0.610 0.6 0.610 

S.D. (𝑢𝑖𝑡) 0.120 0.123 0.120 0.118 0.121 0.122 0.121 0.119 

S.D. (𝜂𝑖) 0.300 0.310 0.302 0.210 0.298 0.309 0.298 0.207 

Correlation between 

true and est. 𝑢𝑖𝑡 
0.7540 0.7532 0.7533 0.7538 

Correlation between 

true and est. 𝜂𝑖 
0.8393 0.8405 0.8301 0.8341 

Scenario 2 

N=100 , T=10 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7  

r𝑢 = 0.85  

TK: Q̅𝑣=Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

Q̅𝑣=Q̅𝛼=0.001 

r𝜂 = 0.7  

r𝑢 = 0.85  

TK: Q̅𝑣=Q̅𝛼 =

Q̅𝑢=0.001 

Q̅𝜂=0.25 

True Est. True Est. True Est. True Est. 

𝛼𝑖  0.000 0.000 -0.000 0.002 0.001 0.000 -0.000 -0.000 

𝜂𝑖  0.403 0.399 0.398 0.255 0.400 0.400 0.404 0.254 

𝑢𝑖𝑡  0.160 0.161 0.160 0.159 0.160 0.160 0.160 0.160 

𝜎𝑣  0.05 0.050 0.05 0.049 0.05 0.049 0.05 0.049 

𝜎𝑢  0.2 0.202 0.2 0.201 0.2 0.201 0.2 0.201 

𝜎𝜂  0.5 0.504 0.5 0.330 0.5 0.506 0.5 0.329 

𝜎𝛼  0.1 0.111 0.1 0.272 0.1 0.105 0.1 0.280 

ρ 0.3 0.303 0.3 0.304 0.6 0.605 0.6 0.605 

S.D. (𝑢𝑖𝑡) 0.120 0.121 0.121 0.121 0.120 0.121 0.121 0.121 

S.D. (𝜂𝑖) 0.303 0.300 0.297 0.201 0.302 0.301 0.306 0.201 

Correlation between 

true and est. 𝑢𝑖𝑡 
0.9006 0.9011 0.8998 0.8999 

Correlation between 

true and est. 𝜂𝑖 
0.9483 0.9361 0.9483 0.9409 
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Two key results become apparent. The first one is the exceptional performance of the 

“naïve” approach in this case, even in small samples. The performance is very similar to 

the non-spatial case, which is encouraging for this modelling extension. The figures show 

that bias is very low and reasonably centred around zero in simulations, even when N is 

as low as 36 (a 6 x 6 grid of units). Correlations between true and estimated inefficiencies 

are also extremely high, so the model seems to capture not only the mean correctly, but 

also the relative ranking structure likely to exist in the data. The second key result is that 

the TK approach suffers from more issues than those found in the non-spatial case in 

Chapter 3, which was to be expected at least to some extent. Although correlations are 

well preserved, mean persistent inefficiency is very poorly estimated even with tuned 

priors. This result is consistent across both scenarios and is present under the use of both 

ARMS and a rejection algorithm when drawing the time-invariant skew-normal variable. 

Identification of mean persistent inefficiency is sensitive to prior choices, but another 

problem is the poor mixing of this approach. As seen in the empirical results of Chapter 

3 for transition economies, the identification of the variance of persistent inefficiency 

under the TK approach is not satisfactory in some conditions.  All of this is in line with 

multiple performance problems found with this approach in Makiela (2016) for the non-

spatial case. Therefore, the TK approach is even less competitive for the spatial case and 

will not be considered in the application of this chapter. 

 

Although the performance of the simple approach seems appropriate, the influence of 

priors is also investigated. For each case, the prior median persistent efficiency is changed 

from 0.7 to 0.6, implying a roughly similar change in terms of mean. As expected, 

Scenario 2 implies less influence of the prior on posterior results, due to a higher signal-

to-noise ratio. However, results are satisfactory for both scenarios, as results are only 

residually influenced by a significant shift in prior efficiency, even with N as small as 36.  

 

Change in mean direct 

persistent inefficiency 

N = 36 

ρ =0.3 

N = 36, 

ρ =0.6 

N = 100 

ρ =0.3 

N = 100 

ρ =0.6 

Scenario 1 0.0355 0.0356 0.0241 0.0291 

Scenario 2 0.0230 0.0249 0.0090 0.0081 

Table 4.3. Influence of prior in the results for both scenarios and sample sizes 

 

Some investigations on the performance of the Spatial Durbin model were conducted, 

leading to similar results, although with residually lower correlations with true values, 
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and less precise identification of mean efficiency. These results, omitted here due to the 

similarity to the results presented above, are encouraging for use in applied research. 

However, it is likely that in some contexts with multiple regressors the Durbin estimation 

procedure is complicated further due to the large number of regressors.  

 

Regarding the time dimension of the panel, reducing the small sample case further to T=5 

leads to performance degradation as expected. In the case of Scenario 1, with ρ=0.6 and 

N=36, the correlation between true and estimated transient inefficiency falls from 0.75 to 

0.71 by reducing T from 10 to 5. Correlations of persistent inefficiency fall less, from 

0.858 to 0.852. No significant impact is seen in mean efficiencies. In the case of Scenario 

2, under similar circumstances, similar changes in both correlations are seen, with a 

bigger impact in transient inefficiency. However, the spread of mean bias across 

repetitions increases as T decreases, pointing that there is less certainty about identifying 

the true parameters with decreasing T. In any case, these results are satisfactory given 

such a small sample size and should be encouraging for estimation by applied researchers 

even in cases of small samples, such as countries or a small set of firms within an industry. 

Obviously, additional challenges can appear in applications with a large number of 

regressors. 

 

 

4.6. An application to European aggregate productivity 

 

The model is now applied to the context of efficiency in aggregate productivity in Europe 

for 43 countries between 1992 and 2005, focusing in particular on the transition 

economies and the transition process as this is a critical period after the fall of the Soviet 

Union. This choice is justified for a variety of reasons. First, this allows to assess the 

progress of the transition economies against the developed Western European economies 

in the critical transition process. Secondly, this also allows to assess if that progress has 

led to convergence between the two country groups before the global financial crisis. 

Given the results from simulations, the Makiela (2016) approach will be used as it is more 

likely to successfully retrieve accurate information about efficiency in the sample. 

 

A Cobb-Douglas specification is used, in the spirit of the neoclassical growth model. 

Consider the following specifications: 
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 (1): 𝑦𝑖𝑡 = 𝑋𝑖𝑡𝛽 − η𝑖
+ + 𝛼𝑖 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡

+ 

 

 (2): 𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡
𝑁
𝑗=1 + 𝑋𝑖𝑡𝛽 + 𝑡 + 𝑡2 − η𝑖

+ + 𝛼𝑖 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡
+ 

 

 (3): 𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡
𝑁
𝑗=1 + 𝑋𝑖𝑡𝛽 − η𝑖

+ + 𝛼𝑖 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡
+ 

 

(1) corresponds to the base GTRE model. (2) and (3) are the Spatial GTRE model with a 

(quadratic) time trend and with no time trend respectively. The Durbin specification could 

be an alternative method, but it renders unstable results and convergence problems, 

meaning that the Durbin specification will not be discussed in the context of this 

application.  

 

The matrix W is a row-normalized inverse distance matrix as other choices of spatial 

weights matrices, for example linked to trade flows, would lead to endogeneity issues. A 

row-normalized matrix loses information on absolute distance. However, the choice to 

row-normalize is made on the basis of distance as a relative concept, as normal journeys 

for people in more outpost locations can be seen as long journeys by people located in 

more central locations. The same analogy applies to economic agents and economic 

relationships between countries. All data is sourced from the Penn Tables version 8.1, 

PWT8.1 (Feenstra et al., 2015).  𝑦𝑖𝑡 is log output side real GDP in 2005 million dollars 

and PPP (rgdpo). 𝑋𝑖𝑡 includes log of employment in millions of people (emp), log real 

capital stock in 2005 million dollars (ck) and the level of net exports in percentage of 

GDP 100*(csh_x+csh_m). This net trade openness measure shifts the frontier and is 

expected to have a positive impact on output, like labour and capital which are more 

traditional independent variables in a production function. This is a similar approach and 

variable choice to the efficiency measurement in aggregate productivity of Glass et al. 

(2016) for a sample of 41 European countries between 1990 and 2011. However, the 

authors do not include time-invariant heterogeneity in their modelling, implying the 

estimation of only one (and hence possibly biased) inefficiency component. Also, 

government spending is not included due to the different paradigms and approaches to 

public spending between developed economies and eastern economies during the critical 

transition period. 

 

The use of stochastic frontier models to assess efficiency in aggregate productivity is 

relatively well established in the literature, for example in a “world stochastic frontier” 
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approach for 75 countries over 50 years (Pires and Garcia, 2012) or to assess efficiency 

of aggregate production in 49 Asian countries between 1965 and 1990 (Kim and Lee, 

2006). Both examples use data from Penn Tables. It is important to notice that the use of 

such stochastic frontier estimation techniques relies on the stationarity of data to avoid 

spurious efficiency results, which is unlikely with large T in these contexts.  Only the 

latter example focuses on spatial dependence and its effects on efficiency measurement, 

but the effects and importance of spatial dependence have been well established in the 

growth literature (that does not focus on efficiency measurement). Kim and Lee (2006) 

use a trans-log production function, while the other example uses a Cobb-Douglas 

production function deeply related to the neoclassical growth model. Some examples of 

this are the use of an empirical reduced form spatial Durbin model specification of the 

Mankiw-Romer-Weil model (Fischer, 2011), a spatially augmented Solow model that 

explicitly models technological interdependence between economies (Ertur and Koch, 

2007) and a modelling approach for technological interdependence and R&D spillovers 

between economies from a Schumpeterian perspective, using a neoclassical growth 

model (Ertur and Koch, 2011).  

 

Summary estimation results follow. The spatial models was estimated with the proposed 

MCMC scheme, with 4,000,000 draws, a burn-in of the first 1,000,000 draws and thinning 

of 30 (from each 30 draws, only one was taken to reduce autocorrelation). The large 

amount of draws in this application is mainly justified by the slow exploration of the 

parameter space of the spatial lag. To speed up computations with such a large amount of 

draws, a grid of log-determinants was calculated prior to the MCMC, with calculations 

done in intervals of 0.000015 to keep a level of precision without severely slowing down 

estimation.  
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(1) 

GTRE 

(2) 

Spatial SF 

(3) 

Spatial SF 

No Time Trend 

𝝆  

 
-  

0.5022 

[0.4080 ; 0.5844] 

0.5603 

[0.4845 ; 0.6319] 

𝝈𝒖
𝟐   

0.0261 

[0.0190 ; 0.0341] 

0.0266 

[0.0195 ; 0.0345] 

0.0246 

[0.0181 ; 0.0319] 

𝝈𝒗
𝟐  

0.0053 

[0.0034 ; 0.0076] 

0.0045 

[0.0026 ; 0.0066] 

0.0051 

[0.0034 ; 0.0071] 

𝝈𝛈
𝟐  

0.1875 

[0.1042 ; 0.3073] 

0.1600 

[0.0828 ; 0.2759] 

0.1579 

[0.0813 ; 0.2769] 

𝝈𝜶
𝟐   

0.0134 

[0.0023 ; 0.0384] 

0.0247 

[0.0049 ; 0.0601] 

0.0283 

[0.0066 ; 0.0650] 

𝛃𝑬𝑴𝑷  

 

0.3063 

[0.2231 ; 0.3859] 

0.3349 

[0.2405 ; 0.4284] 

0.3253 

[0.2329 ; 0.4180] 

𝛃𝑪𝑨𝑷  

 

0.6896 

[0.6231 ; 0.7566] 

0.6447 

[0.5733 ; 0.7165] 

0.6515 

[0.5800 ; 0.7230] 

𝛃𝑻𝑹𝑨𝑫𝑬  

 

0.5454 

[0.3538 ; 0.7356] 

0.4479 

[0.2505 ; 0.6455] 

0.4115 

[0.2173 ; 0.6061] 

Cons. 
2.7941 

[2.0013 ; 3.5785] 

-2.2767 

[-3.5094 ; -0.9263] 

-3.0312 

[-3.9071 ; -2.1290] 

𝒕  
0.0073 

[-0.0032 ; 0.0177] 

-0.0088 

[-0.0199 ; 0.0021] 
- 

𝒕𝟐  
0.0009 

[0.0002 ; 0.0016] 

0.0008 

[0.0001 ; 0.0015] 
- 

Table 4.4. Estimation results for sample of 43 European Countries. Note: Bayesian 

credible intervals using 0.025 and 0.975 percentiles. 

 

Specifications (1) and (2) comfortably show signs of convergence according to the 

Geweke convergence diagnostic (Geweke, 1992) with z-scores for all parameters 

between -2 and 2, but some problems are seen in specification (3) with almost half of the 

parameters falling out of that interval. Z-scores for each parameter are in Appendix 4.2. 

A first key result is that in all models the overwhelming majority of inefficiency is 

persistent and that the variance of the random effects is similar to the variance of the time-

varying inefficiency. This implies that using a less complex model that does not account 

for unobserved heterogeneity would bias results, but also implies that solving that 

unobserved heterogeneity problem without accounting for persistent inefficiency would 
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hide the majority of it. As in Glass et al. (2016) the finding is that the coefficient for 

capital is higher than the one for employment. It seems that a part of the unobserved 

heterogeneity captured by the Random Effects in (1) increases once the spatial 

dependence is taken into account, which is possibly due to small corrosion in the 

identification process (the signal-to-noise ratio).  

 

Changing the priors on persistent inefficiency does not significantly impact the results, 

indicating robustness of the obtained results. By changing prior direct median efficiency 

from 0.75 to 0.7, the mean efficiency changes only by 0.0171 and the median efficiency 

changes only by 0.0194, implying that relative rankings and mean efficiencies are not 

severely affected by prior choices, rendering reasonable results considering the extremely 

small sample size. This change in mean efficiency due to the change in the prior 

corresponds to less than a sixth of time-varying inefficiency, and both of the persistent 

inefficiency priors are centred close to the obtained posterior mean persistent inefficiency. 

 

Identification of persistent inefficiency is relatively stable and is in line with that would 

be expected from the simulations. For easier interpretation of results, analysis is 

conducted with country groups. The following groups are considered: CIS (Russia, 

Ukraine, Moldova, Belarus, Georgia and Armenia), Central Europe (UK, France, 

Germany, Italy, Holland, Belgium, Luxembourg, Switzerland, Austria and Denmark), 

Eastern EU members (Poland, Romania, Bulgaria, Croatia, Slovenia, Slovakia, Latvia, 

Lithuania, Estonia), Scandinavia (Finland, Sweden and Norway), Balkans (Bosnia, 

Montenegro, Serbia, Macedonia and Albania) and Southern Europe (Portugal, Spain, 

Malta, Greece and Cyprus). Other countries are included in the sample but not grouped 

with others for analysis due to their peripheral geographic location and lack of similar 

core characteristics linked to the nearest region considered (Turkey and Iceland). 

 

A clear pattern across groups is a clear convergence towards the end of the sample period 

between all groups except Scandinavia and CIS. Another pattern is a decrease of 

efficiency between 2003 and 2005, except for the CIS, during a period of weak economic 

growth and increasing oil prices. The non-eastern EU (most of the EU-15) members 

clearly have the highest efficiency in the sample in the early 1990s. While the Balkans 

quickly converge to the rest of core EU countries by 1997, after the end of the Balkans 

war, the Eastern EU members had a much slower convergence. However, this result is 

quite different from the one obtained regarding efficiency in electricity consumption in 
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Chapter 3, where some divergence was witnessed for this group when compared to others. 

The CIS group bottomed out in 1999, as the crisis dragged on for a decade of recession 

or very slow recovery, only to have a shy recover towards the end of the sample, 

maintaining a large gap to all the other groups. All these patterns are visible on both total 

and direct efficiency, and are not significantly affected by the inclusion or exclusion of a 

quadratic time trend. However, this differs slightly from the (non-spatial) GTRE results 

where the pattern of convergence of most groups towards the end of the sample is not 

clearly visible. Figures 4.3 and 4.4 show direct and total efficiencies for each country 

group, with the same scaling. Figure 4.5 shows less convergence towards the end of the 

sample period in the non-spatial model. 

 

 

Figure 4.3. Efficiency scores across groups (Spatial GTRE with quadratic time trend) 

 

 

Figure 4.4. Direct Efficiency scores across groups (Spatial GTRE with quadratic time 

trend) 
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Figure 4.5. Direct Efficiency scores across groups (Non-Spatial GTRE with quadratic 

time trend) 

 

There is clear regional clustering in the results, with indications that the countries further 

to the East obtain worse efficiency scores. Differences are clear between new EU 

members and those eastern economies that did not join the EU, with a few exceptions, 

such as Bulgaria. These results highlight the gaps between spatial and non-spatial GTRE 

estimation. The inclusion of cross-sectional averages creates very small and negligible 

differences in the patterns seen across the figures, as the variables are not significant in 

both the spatial and the non-spatial case. 

Figure 4.6. Direct efficiency scores map (Spatial GTRE with quadratic time trend) 
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The most efficient countries in the sample are Turkey, Sweden, Greece and Italy, 

followed closely by the UK. However, Scandinavia is the out-performing group as all 

three countries have direct efficiencies above 0.74, while the sample average is only 

around 0.67. Ukraine and Moldova severely lag behind with direct efficiencies below 0.4. 

In a staggering difference between East and West, the bottom six in the average efficiency 

rankings are the six CIS economies in the sample. Furthermore, this group does not show 

strong evidence of convergence over time, deepening the differences between the new 

EU members and those countries left behind in the European integration process. Figure 

4.7 shows the spillovers (differences between total and direct efficiency), highlighting the 

benefits to the Eastern economies.  

 

 

Figure 4.7. Efficiency spillovers per Country (average 1992-2005) 

 

 

 

4.7. Conclusion 

 

This chapter presents a novel stochastic frontier modelling technique to account for 

unobserved heterogeneity and spatial dependence in cost and production functions which 

is estimated using Bayesian methods. The proposed methodology allows estimation of 

time-varying and persistent inefficiency components, while also estimating random 

effects to account for unobserved heterogeneity, and allowing for spatial dependence to 
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be account for as in a Spatial Autoregressive model. Evaluation of the model performance 

shows that performance depends clearly on signal-to-noise ratios present in the data, 

sample size and priors, but it is very encouraging in general for applied researchers, even 

in the context of small samples. The paper presents two alternatives for estimation, with 

a “naïve” approach out-performing a reparameterization approach. It is easy to implement 

in most statistical software packages, which is of great relevance to any applied research 

that can replicate this methodology easily, especially in an age of increasingly powerful 

computing power.   

 

The application of the proposed model to aggregate productivity in the European 

continent between 1992 and 2005 highlights the need to have a more complex (yet 

tractable) model in cases where both unobserved heterogeneity and spatial dependence 

are present, allowing for estimation of both time varying and time invariant inefficiencies 

in a panel setting. This allows a discussion of convergence of efficiency in aggregate 

productivity in Europe, with the CIS region being an exception to this behaviour. The 

non-spatial version of the model does not show such strong signs of convergence across 

regions. 
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Chapter 5. Efficiency Spillovers in New Zealand electricity distribution 

networks: A Bayesian Stochastic Frontier Approach 

 

5.1. Introduction 

 

Firms in an industry are often subject to benchmarking and other research efforts 

regarding their levels of efficiency, for the construction of relative firm rankings, but also 

the measurement of average levels of efficiency and other information relevant to 

regulators and the industry. Extensive efforts have been conducted in the SF literature to 

build panel data models capable of estimating efficiency levels under different 

econometric challenges, such as unobserved heterogeneity. Most of those efforts span 

from the seminal work of Aigner et al. (1977), with the True Random Effects (TRE) and 

True Fixed Effects (TFE) models (Greene, 2005) being some of the most influential 

models for modern empirical research, as well as being easily available on statistical 

software for straightforward estimation. The literature has expanded to consider multiple 

concerns, such as heteroskedasticity, nonparametric estimation, different distributional 

assumptions and determinants of efficiency. However, most of these issues have been 

studied in more detail than spatial dependence. 

 

This chapter focuses on the often unexplored issue of spatial dependence and efficiency 

spillovers between economic agents from a different perspective than that of Chapter 4. 

Spatial dependence in the cross-sections can lead to omitted variable bias. In the case of 

this chapter, a Spatial Error Model (SEM) specification is used to capture spillovers, but 

they are related to the error components and therefore with less of a structural economic 

interpretation than in the case of Chapter 4 with a SAR model. A time-varying version of 

the Spatial Error Model of Areal et al. (2012) is extended to the case of Random Effects 

to account for unobserved heterogeneity, with a computationally efficient MCMC 

scheme. The approach uses a spatial error structure instead of a spatial autoregressive 

structure in order to model spillovers associated to inefficiency more intuitively and also 

measure the strength of the spatial dependence between units.  This chapter also 

investigates alternative methods in Bayesian econometrics, suggesting the use of Guided 

Walk Metropolis (Gustafson, 1998) to take draws from distributions not readily available 

in statistical software packages, due to the need to draw more latent variables from non-
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standard distributions than in other cases in the literature. The performance of the model 

is assessed under different scenarios with relatively small samples. As in other stochastic 

frontier models, performance is encouraging when signal is large relative to noise, in this 

case even under significant levels of spatial dependence. As performance degrades, the 

estimate of the spatial parameter estimate suffers more than the estimate of the parameter 

of the exponential distribution of inefficiency. However, this can have consequences on 

the overall quality of efficiency measurement. Simulation results are encouraging for use 

in empirical analysis of efficiency under a set of reasonable conditions.  

 

Finally, the chapter applies the proposed model to a sample of 27 New Zealand electricity 

distribution firms in a stable post-unbundling period between the 2001 and 2009 fiscal 

years, covering some pitfalls in the multiple perspectives on this topic in the literature and 

adding some insight on the debate of efficiency spillovers in the industry and the purpose 

of efficiency measurement for the regulators. The case of New Zealand is of particular 

interest as it was the first case of a full reform of vertical separation in the power sector 

associated to transparent data reporting of multiple aspects of the operation of distribution 

networks. Some evidence of spillovers exists when a second order neighbour matrix is 

used. 

 

 

5.2. Literature Review 

 

As mentioned in Chapter 4, while the efficiency literature usually considers spatial 

heterogeneity as the differences in efficiency due to location, controlled for by using 

dummy variables or similar approaches, spatial dependence is the relationship between 

efficiency in a firm and efficiency in other firms (Areal et al., 2012). The concepts do not 

overlap, creating the reasoning for the use of spatial approaches in stochastic frontier 

modelling.  

  

Early efforts in the literature are scarce. Druska and Horrace (2004) developed a GMM 

frontier model and apply it to rice farms in Indonesia. The spatial autocorrelation term is 

introduced in the production frontier model as an exogenous variable, shifting the frontier 

technology. Estimation follows the random effects methodology of Schmidt and Sickles 

(1984), meaning that the retrieved efficiency measure is time-invariant and follows the 

implied interpretation of the effects as inefficiency. Schmidt et al. (2009) is another 
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example of work in the field which focuses on the unobserved local determinants of 

inefficiency in farm productivity in the Centre-West of Brazil.  

 

The efforts in the literature can be divided into three key areas: one that relies on Spatial 

Autoregressive models (SAR), another based on Spatial Error models (SEM), and finally 

a category of other mixed models. The first category summarizes works already explored 

in Chapter 4. Affuso (2010) uses a SAR type model to evaluate the impact of agricultural 

extension programmes that have positive effects not only on chosen farmers but also to 

other farmers due to spatial spill-over effects. As a more general and encompassing 

example of the literature, Pavlyuk (2013) derived ML estimators of stochastic frontier 

models with spatial dependence associated to the dependent variable, the idiosyncratic 

error and both. The author does not elaborate on details on firm specific efficiency 

measurement or other aspects of the model besides the magnitude of the spatial 

parameters and the variance of the inefficiency error component. Other contributions to 

the literature include a spatial autoregressive stochastic frontier model for panel data with 

a specification that allows for time-varying efficiency measurement and asymmetric 

efficiency spillovers (Glass et al., 2016). The latter contribution has been explored in 

further detail in Chapter 4. 

 

Some advances in spatial stochastic frontier modelling have also taken place in the 

macroeconomic literature.  Mastromarco et al. (2013) use a two-step approach to 

investigate the channels under which globalisation factors lead to technical efficiency by 

combining a dynamic stochastic frontier model with a time series approach.  Mastromarco 

et al. (2016) propose a framework to accommodate both time and cross-sectional 

dependence by combining the exogenously driven factor-based approach with an 

endogenous threshold efficiency regime selection mechanism. This is applied to a dataset 

of 26 OECD countries over the period 1970-2010. 

 

However, the use of Spatial Error Models in the efficiency literature is rather sparse and 

of particular interest to this chapter. Areal et al. (2012) apply a spatial stochastic frontier 

model with an autoregressive specification of the inefficiency component of the 

compound error term. The model is applied to a sample of 215 dairy farms in England 

and Wales with data between 2000 and 2005, with the estimation of time-invariant 

inefficiency which implies the estimation of a pooled model with a reasonably high 

number of observations. The key contribution of this paper is the direct specification of 
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inefficiency to be spatially autoregressive and including a parameter that measures the 

level of spatial dependence. However, the authors do not show the performance of the 

model in simulations and the conditions in which it performs well and also do not discuss 

how to retrieve unit specific measures of efficiency. Both the lack of performance studies 

and discussion of measurement leave further space for research in the literature.  

 

Fusco and Vidoli (2013) present a similar approach to Areal et al. (2012) with the key 

difference of the use of a half normal inefficiency assumption and estimation using ML 

methods. However, this paper gives additional insights into performance of the model, 

showing a simulation with 107 observations which leads to downward bias of the spatial 

parameter when it is set to 0.8. The variance of the inefficiency is also slightly 

underestimated. Tsionas and Michaelides (2016) propose a latent random effects vector 

that is specified to follow a Spatial Autoregressive process for panel data. The 

idiosyncratic part of inefficiency is assumed to be half-normal and the model is estimated 

using complex Bayesian methods. Tsionas and Michaelides (2016) also consider methods 

for posterior predictive efficiency measurement, including a simple Monte Carlo 

approximation. However, the authors do not consider the performance of the model in 

simulations to assess the fragility of the model in different sample sizes and situations. 

Also, in this case, if the true underlying data contains time-invariant unobserved 

heterogeneity besides time-invariant inefficiency, total efficiency measures are likely to 

be biased. The literature leaves some unexplored space for the evaluation of the influence 

of sample sizes and varying signal-to-noise ratios and the intensity of the spatial 

dependence. 

 

 

5.3. Modelling Approach 

 

The following cost frontier model with random effects and spatial dependence associated 

to the efficiency term is considered, in matrix form: 

 

 𝑦 = 𝑋𝛽 + 𝑣 + 𝑢 + 𝛼 ⊗ 𝑙𝑇 (80) 

 𝑢 = 𝜌𝑊𝑢 +  𝑢̃ (81) 

 𝑣    ~ 𝑁(0, 𝜎𝑣
2𝐼𝑁𝑇) (82) 

 𝑢̃    ~ 𝐸𝑥𝑝(𝜆) (83) 

 𝛼    ~ 𝑁(0, 𝜎𝛼
2𝐼𝑁) (84) 
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y is a (NT x 1) vector of the dependent variable, while X is the (NT x K) matrix of 

exogenous variables, with K regressors, including a constant. v is a (NT x 1) vector of 

traditional idiosyncratic errors of standard linear regression and u is a (NT x 1) vector of 

one-sided errors that capture inefficiency. The inefficiency is then decomposed into two 

components: one that is spatial and reflects spillover effects for a given exogenous and 

known exogenous (N x N) spatial weight matrix W, and another that is idiosyncratic and 

given by a variable 𝑢̃ that follows an exponential distribution. 𝛼 is a (N x 1) vector of 

time-invariant, zero mean random effects which aim to account for unobserved 

heterogeneity. Cross-sectional means of regressors can be added if there are concerns 

about violation of the assumptions of the Random Effects model (Mundlak, 1978). 

 

A Bayesian approach is preferred for a variety of reasons. It allows the use of prior 

information in the model, such as past information about a parameter (for example, past 

inefficiency levels). It also provides inference that is conditional on the data without 

asymptotic approximations, it obeys the likelihood principle and uses MCMC methods 

which make computations tractable for nearly all parametric models (Tsionas and 

Michaelides, 2016). A production frontier is considered by simply switching the sign of 

the inefficiency component in equation (80). A standard Bayesian Stochastic Frontier 

model has been discussed in Koop (2010). The following Gibbs sampler follows the 

Bayesian formulation of the True Random Effects model as in Feng and Zhang (2012), 

with an extension linked to the spatial model of Areal et al. (2012). 

 

The priors are as follows, starting with the variance components: 

 

 p(ℎ𝑣) ∝ 1/𝜎𝑣
2 (85) 

 

 p(ℎ𝛼) ∝ 1/𝜎𝛼
2 (86) 

 

In both cases, symmetric error precisions ℎ𝑣  and ℎ𝛼  are fully determined by the 

likelihood function and are bigger than zero, so they simply correspond to the inverse of 

the variance of each symmetric error component. The prior for 𝑢𝑖𝑡 follows a special case 

of the gamma distribution, the exponential distribution with parameter 𝜆−1. To obtain a 



 100 
 

proper posterior for 𝑢𝑖𝑡, a prior distribution for 𝜆−1 is also necessary (Fernández et al., 

1997): 

 

 p(𝑢𝑖𝑡|𝜆−1) ∝ f𝐺  (1 ; 𝜆−1) (87) 

 

 p(𝜆−1) ∝  f𝐺  (1 ; −𝑙𝑛𝜏∗) (88) 

 

The rate parameterization of the gamma distribution is used throughout this chapter. 𝜏∗ is 

the prior median of the efficiency distribution, which is defined according to the 

researcher’s prior information or beliefs. However, this does not immediately correspond 

to the efficiency estimated by the model, as that will also depend on the spatial weights 

matrix and the strength of the spatial relationship between the units. Therefore this 

hyperparameter defines the prior beliefs about direct inefficiencies, excluding those 

caused by spatial spillovers between neighbours.  

 

Finally, the prior for the spatial parameter is: 

 

 p(ρ) ∝  I(ρ ∈ [0,1]) (89) 

 

This prior implies an indicator function with a uniform distribution for this parameter that 

is assumed to be non-negative, between 0 and 1. This assumption follows Areal et al. 

(2012) and can be relaxed further to allow for a less restrictive interval between -1 and 1. 

However, the assumption stems from the fact that in most applied contexts of the model 

a positive spillover is expected and there is a desire by the researcher to limit the possible 

parameter values to that interval. 

 

The conditional likelihood function is defined as: 

 

 𝑝(𝑦|𝛽, ℎ𝑣 , ℎ𝛼 , 𝜌, 𝑢̃, 𝜆−1) ∝ ℎ𝑣

𝑁𝑇
2 |I𝑁 − ρW|exp [−

ℎ𝑣

2
(𝑦̃ − 𝑋𝛽)′(𝑦̃ − 𝑋𝛽)] (90) 

 

 𝑦̃ = 𝑦 + (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)−1𝑢̃ + 𝛼 ⊗ 𝑙𝑇 (91) 
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Equation (90) follows from the standard form used for efficiency analysis (Koop et al., 

1995). The determinant is added to the likelihood function as in other Spatial Error models 

and Spatial Autoregressive models following Anselin (1988), to account for the fact that 

the joint log-likelihood for a spatial regression does not equal the sum of the log-

likelihoods associated with the individual observations. Conditional posteriors for each 

of the parameters follow, leading to a Gibbs sampler where draws are taken sequentially 

from the conditional posteriors. This is a simple methodology and easily implemented in 

most statistical software packages. For the following Gibbs sampler, the data is stacked 

first by time t and then by unit i. 

 

The conditional posterior for β is: 

 

 p(β|y, X, 𝜃−β) ∝ N[(X’X)−1[X’(y − 𝑋β − 𝑆−1ũ − 𝑙𝑇  ⊗ 𝛼)] ;  hv
−1(X’X)−1] (92) 

 

The conditional posterior for ℎ𝑣 follows a Gamma distribution: 

 p(ℎ𝑣|y, X, 𝜃−ℎ𝑣
) ∝  f𝐺  (

NT

2
; 𝑣′𝑣) (93) 

 S =  (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW) (94) 

 𝑣 = 𝑦 − Xβ − 𝑆−1ũ − 𝑙𝑇  ⊗ 𝛼 (95) 

 

The conditional posterior for the parameter of the exponential distribution of 

inefficiencies is also a Gamma distribution: 

 

 p(𝜆−1|y, X, 𝜃−𝜆−1) ∝ f𝐺  (NT + 1 ;  ũ’𝑙𝑁𝑇  −  ln𝜏∗) (96) 

  

The conditional posterior for the inefficiencies is: 

 p(ũit|y, X, 𝜃−u) ∝ exp[ −
ℎ𝑣

2
 [uit − (yit − X𝑖𝑡β − 𝛼𝑖)]2 − (ũit − uit) 𝜆−1] (97) 

 

Equation (81) is then updated to reflect the new draw for ũ. The conditional posterior for 

the inefficiencies is a non-standard distribution, for which the usual method to obtain 

draws is often Metropolis-Hastings (Metropolis et al., 1953). To improve performance, a 

Guided Walk Metropolis method is used (Gustafson, 1998), allowing for better 
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performance at a wider range of rejection probabilities. The algorithm is explained below. 

First, a candidate draw for the current state of the variable Y is taken as: 

 

 𝑌 = X + 𝑃. |𝑍| (98) 

 

where X is the existing state of the variable, P takes values -1 or 1, and 𝑍 = 𝑐. 𝑁(0,1), 

with c being a positive tuning parameter to adjust the algorithm and avoid over-rejection 

or under-rejection of the candidate draws. Secondly, the draw Y has an acceptance 

probability 𝜋(𝑌)/𝜋(𝑋) . If the draw is accepted, then the new value of the variable 

becomes 𝑌 and the sign of P remains the same. If the draw is rejected, the previous value 

X is kept and the sign of P is inverted. This can allow for better exploration of the 

parameter space and faster convergence than standard Metropolis-Hastings methods 

under a wide interval of proposed rejection rates. This is particularly applicable when no 

good starting values can be determined and there is no knowledge of how far they are 

from the true values. This method has been sparsely used in applied research, with only 

a few examples such as the marketing literature (Ansari et al., 2008) and has not been 

used in the field of econometrics. Note that for parameters using this method, any 

acceptance rate between 15% and 85% should lead to satisfactory results. This implies 

that, unlike the classic Metropolis-Hastings method which is more sensitive to acceptance 

rates, the draws can be taken using a unique tuning parameter as in most cases this will 

allow for acceptance rates that are spread across an acceptable interval. The exception to 

this will be cases with large inefficiencies (extreme values above 40% or 50%) where the 

spread in true values will mean an increasingly unacceptable spread of the acceptance 

rate vector under a single tuning parameter for the entire inefficiency vector. 

 

The conditional posterior of the spatial parameter also follows a non-standard 

distribution: 

 

 p(ρ|y, X, 𝜃−ρ) ∝ |I𝑁 − ρW|exp (−
𝑣´𝑣

2σv
2

) (99) 

 

Draws for this parameter are taken using Guided Walk Metropolis as above. For 

numerical stability, the distribution can be log-transformed and in that case the algorithm 

acceptance probability is exp (𝜋(𝑌) − 𝜋(𝑋)). To take draws of the vector random effects, 
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the data is re-stacked first by time and then by unit (unlike the other parameters), with 

draws taken from a normal distribution as follows: 

 

 p(𝛼𝑖|y, X, 𝜃−𝛼) ∝  N(𝛼̅
σv

2σ𝛼
2

σv
2(σv

2 + Tσ𝛼
2 )

 ;  
σv

2σ𝛼
2

(σv
2 + Tσ𝛼

2 )
IN) (100) 

 𝛼̅ = (𝛼1̅̅ ̅, … , 𝛼𝑁̅̅ ̅̅ )   , 𝛼𝑖̅ = ∑(𝑦𝑖𝑡 − 𝑋𝑖𝑡𝛽 − 𝑆−1𝑢̃𝑖𝑡)  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖

𝑇

𝑡=1

   (101) 

 

The conditional posterior related to the variance of the random effects is as follows: 

 

 p(ℎ𝛼|y, X, 𝜃−ℎ𝛼
) ∝ f𝐺  (N/2 ;  𝛼′𝛼/2) (102) 

 

If the random effects are dropped from the model, the model is reduced to a time-varying 

efficiency version similar to the model in Areal et al. (2012). This approach might be 

more appropriate when dealing with panels with small T and with little expectation of 

time-invariant unobserved heterogeneity in the sample. If the spatial component is 

dropped from the model, the model is then reduced to the Bayesian Random Effects 

Stochastic Frontier model in Feng and Zhang (2012).  

 

Although Areal et al. (2012) focused mostly on the issue of the measurement of the degree 

of the spatial relationship between the units, it might be of interest to the researcher to 

determine efficiency scores and efficiency rankings. A simple Monte Carlo 

approximation is proposed. The measure is based on the exponential of equation (81). 

Suppose ũit
(𝑠) is a draw from the conditional posterior of ũ for the 𝑠𝑡ℎ pass of the MCMC 

scheme. That leads to the following vectors of posterior means of total relative and direct 

efficiency: 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  = 𝑆−1 ∑
(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ(𝑠)W)

−1
exp [ũ 

(𝑠)]

𝑚𝑎𝑥[(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ(𝑠)W)−1exp [ũ 
(𝑠)]]

𝑆

𝑠=1

 (103) 

 𝐷𝑖𝑟𝑒𝑐𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑆−1 ∑ exp [ũ 
(𝑠)]

𝑆

𝑠=1

 (104) 

This relative efficiency measure has been proposed for the frequentist case by Glass et al. 

(2016) and can be decomposed into direct and indirect efficiency, as discussed in Chapter 
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4. The indirect effects matrix summarizes the effects that efficiency levels of the 

neighbours have on a firm’s own efficiency. This is of great importance to the applied 

researcher, as it makes it possible to measure the magnitude and the sign of efficiency 

exchanges between the units. For example, a firm can “import” or “export” efficiency 

depending on its location.  

 

For the purpose of efficiency analysis, efficiency is calculated in the same spirit as 

Chapter 4, similar to equation (32): 

 

 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑆−1 ∑
(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ(𝑠)W)

−1
exp [ũ 

(𝑠)]

𝑚𝑎𝑥[(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρ(𝑠)W)−1𝑙𝑢]

𝑆

𝑠=1

 (105) 

 

Note that it is also possible that some persistent inefficiency exists. In fact, the use of a 

random effects model opens the way for this research path, unlike fixed effects which 

make the separation of noise and inefficiency more difficult. However, this adds a new 

layer of complexity to the model and will not be pursued as it falls out of the scope of the 

chapter. 

 

 

5.4. Model Performance 

 

5.4.1. Performance under different scenarios 

 

The assessment of model performance in Stochastic Frontier models should aim to be 

mostly directed towards small sample performance, as most of the empirical work in the 

literature relies on relatively small panels. Therefore, two scenarios are created, for two 

sample sizes: N=100 / T=10 (a square grid of 10 x 10 units) and N=36 / T=10 (a square 

grid of 6 x 6 units). For both scenarios, two exogenous regressors are considered in the 

DGP, a constant and a standard normal variable, with both coefficients equal to 1. The 

spatial parameter 𝜌 is considered to be 0.3 or 0.6 to represent lower and higher levels of 

dependence in efficiency between the units. The scenarios are as follows: 

 

Scenario 1: 𝜎𝑣
2 = 0.01 , 𝜆−1 = 4   and 𝜎𝛼

2 = 0.05 ; 

Scenario 2: 𝜎𝑣
2 = 0.01 , 𝜆−1 = 10 and 𝜎𝛼

2 = 0.05 ; 
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Scenario 1 has a high signal-to-noise ratio with some unobserved heterogeneity. 

However, Scenario 2 has a much lower signal-to-noise ratio and keeps the moderate 

amount of unobserved heterogeneity of Scenario 1. The expectations of worse 

performance are therefore centred on Scenario 2. Besides showing the means of efficiency 

to highlight that the model renders relatively small average bias, the correlations between 

estimated and true individual scores are also crucial for relative firm rankings. Therefore, 

both the mean correlation across repetitions and the smallest correlation seen across all 

repetitions are shown. All examples have a prior assuming 80% direct efficiency. 

Changing this prior does not significantly change results except in extremely small 

samples. 

 

 N=36 / T=10 N=36 / T=10 N=100 / T=10 N=100 / T=10 

Means Est. True Est. True Est. True Est. True 

𝑢𝑖𝑡  0.246 0.251 0.234 0.251 0.246 0.251 0.237 0.251 

𝜆−1  4.109 4 4.319 4 4.078 4 4.231 4 

𝜎𝛼
2  0.050 0.05 0.050 0.05 0.050 0.05 0.050 0.05 

𝜎𝑣
2  0.011 0.01 0.017 0.01 0.012 0.01 0.016 0.01 

𝜌  0.286 0.3 0.597 0.6 0.278 0.3 0.602 0.6 

𝛽0  1.005 1 1.031 1 1.019 1 1.031 1 

𝛽1  1.000 1 1.001 1 1.001 1 1.001 1 

s.d.(𝑢𝑖𝑡) 0.247 0.250 0.240 0.251 0.248 0.251 0.243 0.251 

Mean Correlation 

between est. and 

true 𝑢𝑖𝑡 
0.925 0.923 0.926 0.925 

Worst Correlation 

between est. and 

true 𝑢𝑖𝑡  across 

repetitions 

0.885 0.878 
0.901 

 
0.901 

Table 5.1. Simulation results for Scenario 1 

 

In this scenario, there is a very high correlation between estimated and true inefficiency 

error components, meaning that relative efficiency rankings should be well preserved. 

There is a small downward bias in the average of the estimated component, but always 

within 10% or less of the true value. The spatial parameter is also estimated correctly, 

although with some instability as the true value decreases. This performance issue will 

contaminate indirect efficiency measurement if the spillovers are not fully detected. A 

possible reason for this is the increased difficulty of identifying the spillovers of 

efficiency as they become increasingly irrelevant. When N is increased from 36 to 100, 

the correlations between true and estimated values increase, while the 𝜆−1  parameter 

approaches the true value further. However, the improvements are small or not noticeable 

for other parameters of the model, as the performance in this scenario is already very 

encouraging in small samples. Increasing T to 20 also shows further improvements in 
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estimation results. In all four columns, the average correlation between true and estimated 

values rises above 0.93 with larger T. 

 

 N=36 / T=10 N=36 / T=10 N=100 / T=10 N=100 / T=10 

Means Est. True Est. True Est. True Est. True 

𝑢𝑖𝑡  0.101 0.100 0.102 0.100 0.100 0.101 0.100 0.101 

𝜆−1  10.296 10 10.155 10 10.091 10 10.099 10 

𝜎𝛼
2  0.050 0.05 0.050 0.05 0.050 0.05 0.050 0.05 

𝜎𝑣
2  0.010 0.01 0.011 0.01 0.010 0.01 0.012 0.01 

𝜌  0.211 0.3 0.478 0.6 0.196 0.3 0.483 0.6 

𝛽0  1.009 1 1.044 1 1.020 1 1.057 1 

𝛽1  1.000 1 1.000 1 1.000 1 1.000 1 

s.d.(𝑢𝑖𝑡) 0.101 0.100 0.102 0.100 0.101 0.100 0.101 0.100 

Mean Correlation 

between est. and 

true 𝑢𝑖𝑡 
0.741 0.751 0.743 0.753 

Worst Correlation 

between est. and 

true 𝑢𝑖𝑡  across 

repetitions 

0.615 0.623 0.679 0.689 

Table 5.2. Simulation results for Scenario 2 

 

In this scenario the signal-to-noise relationship fundamentally changes as the level of 

inefficiency decreases considerably, making it harder to separate the error components. 

The correlations between true and estimated values are lower and more volatile than in 

the first scenario, which is an expected result. The spatial relationship is underestimated, 

leading to identification problems of indirect efficiency results although the idiosyncratic 

component of inefficiency is estimated correctly (on average). However, the correlations 

between true and estimated values are improved when the time dimension increases to 

T=20.  

 

Due to the disappointing results related to the spatial parameter in Scenario 2, the 

relationship between the spatial parameter and the underlying signal in the data is 

investigated further. For the case N=100, T=10 and 𝜌=0.3, a wide grid of 200 inefficiency 

exponential distribution parameters are used to assess the changes in performance as 

inefficiency decreases in size versus the variances of the components 𝜎𝛼
2 = 0.05 and 

𝜎𝑣
2 = 0.01 as before. 
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Figure 5.1. Model performance with varying size of inefficiency components. 

Note: 5th order polynomials used for fitting the curves. 

 

In general, there are negligible distortions in the estimate of 𝜆−1 , with increasing 

distortion as the parameter increases and inefficiency becomes smaller. There is upwards 

bias, resulting in a downward bias of average estimated inefficiency, which is a typical 

result in Stochastic Frontier models when signal is small compared to noise. The 

comparison of estimated spatial parameters with the average of true inefficiency 

components renders more insightful results. The spatial parameter is identified correctly 

for a large set of high average true values, and decreases rapidly when the average true 

values of inefficiency decrease. As standard deviation is equal to the mean in the case of 

the exponential distribution, interpretation becomes straightforward. An average true 𝑢 

of 0.1 is equivalent in this case to a very low signal-to-noise ratio of 1, leading to a visible 

downward bias in 𝜌 which however is not accompanied by a severe bias in  𝜆. An average 

true 𝑢 of 0.4 is equivalent to a signal-to-noise ratio of 4, leading to reasonable results 

which improve as the ratio increases further. Although 𝜆−1  seems to be estimated 

correctly under a wide range of underlying true values, a correct identification of average 

𝑢 with a bias in 𝜌 suggests there might be some contamination in the correlation between 

true and estimated 𝑢. Changing the signal-to-noise ratio from 1 to 2 in this case increases 

that correlation from approximately 0.7 to 0.9, with correlations as high as 0.98 as the 

ratio keeps increasing further. 

 

With ρ=0.6, it is clear that the performance of the model varies greatly according to 

signal-to-noise ratios. Performance degradation is faster in smaller samples as the signal 

is reduced. As the spatial parameter increases, some positive bias in the estimated 

parameter is observed in general, but of relatively small proportions. 
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Figure 5.2. Model performance with varying size of inefficiency components and 

different variances of error components 

 

In general, these findings point for good overall model performance, but with some issues 

to have in mind for the empirical researcher. The model is expected to perform worse 

with lower levels of signal-to-noise ratios. However, in this case, performance 

degradation is more visible on the spatial parameter than on the average of the 

idiosyncratic component and it might be difficult to identify small amounts of dependence 

in efficiency between the units, even with relatively large sample sizes. 

 

  

5.4.2. The added value of Guided Walk Metropolis 

 

The Guided Walk Metropolis (GWM) algorithm (Gustafson, 1998) presents an 

alternative to the classic RWMH algorithm. The author shows that the algorithm 

outperforms RWMH in a variety of examples, including a standard normal, a multivariate 

normal, a more complicated bivariate distribution and an exchangeable multivariate 

normal distribution. In all cases, relative error is reduced by using GWM, and it is shown 

that the method performs well in a wide range of acceptance rates. The reasoning for 

discussion and use of this method in this context is twofold: first, it allows for some 

performance gains against RWMH under various acceptance rates, and secondly, those 

gains might be more important in this case, as there is both a spatial parameter and also 

an NT vector of latent variables to estimate using rejection techniques in this case. This 
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implies a much larger set of values to be drawn using these techniques than in other 

stochastic frontier models and therefore a bigger role of improvements in the use of such 

techniques in the results of interest. 

 

To assess the performance of the competing methods in this specific case, a simulation is 

set to compare the absolute cumulative deviations (hereafter ACD) from the true value 

for the spatial parameter with the example N=100, T=10 and in the case of Scenario 1 for 

ρ = 0.6. Starting value is defined as ρ = 0.4. A grid is set with 200 different tuning 

parameters for the draws of ρ, representing a large spectre of rejection probabilities 

between approximately 5% and 95%. The ACD from the two approaches is compared 

graphically for 500 draws and the next 1500 draws after the first 500 are taken. GWM is 

used to draw the inefficiency components in both cases, with the same tuning parameter 

in all cases. The curves in Figure 5.3 are constructed using a fifth order polynomial to fit 

the 200 ACD points after 500 draws have been taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Performance of competing rejection methods 

 

As pointed by Gustafson (1998) for different examples, the GWM method seems to 

perform well for a very wide range of acceptance rates as it runs towards the true value 

faster if the starting value is distant. The GWM approaches the target distribution faster, 

resulting in lower cumulative deviations across most of the spectre of acceptance rates. 

This implies that the method requires a smaller burn-in to ensure convergence. In the 

same exercise, evaluated in the range between 2000 and 10000 draws, the two fitted 
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curves are flat and similar, pointing that once the algorithms have approached the true 

value sufficiently, there is no significant difference between the two. However, due to the 

size of the inefficiency component vector to draw using one of the two methods, 

significant changes might occur once the NT vector is drawn using different methods. 

Therefore, the methods are also fully separated to assess the performance of the draws of 

the inefficiency component, and also the correlations between estimated and true values 

(with 200 repetitions). The RWMH method struggles in three dimensions: lower 

estimated average inefficiency, lower correlation between estimated and true values 

(0.917 vs 0.925) and also more inaccurate quantiles of estimated inefficiency error 

components. Both approaches struggle to detect that some of the true values are extremely 

close to zero, as the uncertainty of the estimates and the lower bound of the draws at zero 

create some distortions often seen in this type of models. However, RWMH pushes the 

quantiles closer together than GWM, with the latter already having quantiles that are less 

spread out than in the true values. The 10th percentile for the true values of 𝑢𝑖𝑡 is 0.0265, 

while the corresponding GWM percentile is 0.074, and the RWMH percentile is 0.089. 

These results are not very sensitive to small changes in tuning parameters of the 

underlying algorithms. 

 

 

 

5.5. Model Application to cost efficiency of Electricity Distribution Networks 

 

The proposed modelling approach is now applied to the context of energy economics. 

The New Zealand case of liberalization and restructuring of the electricity sector in 1998 

forced a vertical separation of the electricity supply industry (ESI) with respect to 

ownership (also known as ownership unbundling). The primary motive of ownership 

unbundling is to prevent any discriminatory behaviour of network owners and facilitate 

market entry and competition (Nepal et al., 2016). The process was concluded in 2000. 

This case study has been the subject of research in the efficiency literature from a series 

of different perspectives. 

 

Nillesen and Pollitt (2011) examine the impact of this policy on electricity prices, quality 

of service and costs. The authors estimate a Cobb-Douglas cost function and find a 

significant effect of the unbundling dummy variable on costs, implying that the 

unbundling of the industry managed to drive down costs of the industry. Nepal et al. 
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(2016) also find that the unbundling of the industry has contributed to a fall in the 

frequency and duration of outages, but has no effect in reducing distribution losses in the 

industry. 

 

Ozbugday and Nillesen (2012) estimate a cost frontier function for distribution networks 

between 1998 and 2010, estimating a compound annual growth rate of over 2% using a 

time-varying decay frontier model. Filippini and Wetzel (2014) estimate a cost frontier 

with data between 1996 and 2010, with both variable cost and total cost as dependent 

variables, with the results suggesting a positive one-off shift in efficiency levels when 

ownership unbundling is introduced. The authors estimate the model using the Battese 

and Coelli (1995) approach with and without fixed effects, allowing for the introduction 

of explanatory variables in the inefficiency component equation (a feature which is not 

possible in many SF models). As expected, when the fixed effects are included, the 

variance of the inefficiency component is reduced, as some persistent inefficiency might 

be diluted into the fixed effect. The average efficiency level is measured at approximately 

82%. Filippini et al. (2016) introduce the measurement of persistent inefficiency to this 

dataset using the GTRE model, and involving regulation and imperfect information 

concepts to explain the necessity for the regulator to consider the level of persistent 

inefficiency in the sample. The model is estimated using the Filippini and Greene (2016) 

estimation approach with MSL. Despite the lengthy theoretical background given by the 

authors, some concerns about the practicality of the estimation and interpretation of 

persistent inefficiency appear in this context and will be explored later in this section. 

 

However, it is also possible to analyse the problem from a spatial perspective, where the 

industry is defined by a cost function which takes into account time-invariant differences 

between the distribution networks, but also tries to quantify spatial spillovers of 

inefficiency across distribution networks. These effects could appear due to interactions 

between managerial practices or other factors in the cost structure in a competitive 

industry, where distribution units can learn from each other and be affected by the 

efficiency of their neighbours. This is a particularly important effect in an industry which 

has been recently unbundled and is dealing with an unusually competitive environment 

in the sector, as New Zealand was one of the first countries in the world to apply this kind 

of reform. The application of the model focuses on time-varying inefficiency estimation, 

to assess how efficiency levels have evolved since the introduction of the reform. 
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The dataset is a balanced panel from 2001 to 2009 fiscal years (yearly data), across 27 

electricity distribution networks, with a total of 216 observations. The data starts in 1st 

April 2000 and ends in 31st March 2009. The only company missing from this dataset is 

Otago Power (a relatively small network) due to gaps in the data. All variables are 

logarithmically transformed as usual for stochastic frontier analysis, implying that the 

coefficients can be interpreted as elasticities. The dataset has been compiled by the author 

of this thesis and is a subset of the data published in the article of Nepal et al. (2016) to 

exclude the years before vertical separation of the industry. The research question at hand 

is the spatial relationship between units in terms of efficiency, exclusively post-

unbundling, instead of the effects of the unbundling process in a particular variable of 

interest. The data was compiled using information in the “NZ EDB Database” from 

Economic Insights, as in other papers of the literature. The data is augmented for the year 

2009 by using Electricity Information Disclosures but not extended further due to the 

existence of natural disasters and climate effects possibly affecting results in later years, 

such as the Christchurch earthquake which devastated local areas in the fiscal year of 

2011. Operating Expenditure data for 2008 is also taken from Electricity Information 

Disclosures instead of the Economic Insights database as it is more likely to be up to date. 

However, this implies some revisions to the data which will be discussed further in this 

section. Data is available in Appendix 5.2. 

 

A Cobb-Douglas function is estimated. In the model, Variable Cost (VC) of the firm i at 

time t is a function of a constant, the energy delivered by the firm (ENERGY), the number 

of costumers (CUSTOMERS), the load factor (LOADFACTOR), the System Average 

Interruption Duration Index (SAIDI), customer density (CUSTDENSITY) and a measure 

of capital of the network (CAPITAL). Cross-sectional averages of the variables are also 

added to relax the assumptions of the random effects model. A quadratic time trend is 

also included in the model.  
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Variable Description Mean Std. Dev. 

VC 

Total Operational Expenditure, deflated 

by the OECD energy consumer price index 

for New Zealand (base year=2005)12, in 

New Zealand dollars 

1.10e+07 1.83e+07 

ENERGY 

Energy delivered in KWh, calculated as 

the energy entering the network minus 

losses 

984.67 1794.37 

CUSTOMERS Number of customers 63980.68 116783.6 

LOADFACTOR 

Amount of electricity entering the system 

divided by the maximum demand 

multiplied by the total number of hours in 

the year 

62.75 6.85 

SAIDI 
Average total duration of interruptions 

experienced by the customer 
220.40 207.43 

CUSTDENSITY 
Length of business unit lines in km per 

each customer of the business unit 
11.35 7.43 

CAPITAL 
Maximum system demand in KW (proxy 

for capital stock) 
193.16 355.78 

Table 5.3. Description of dependent variable and explanatory variables 

 

Operational Expenditure includes general management, administration and overhead 

expenses, system management and operations, routine and preventive maintenance, 

refurbishment and renewal expenses and fault and emergency maintenance expenses, 

besides pass-through costs. Due to data availability issues, input prices are not included 

in the cost function. As the specification does not include these prices and contains 

outputs such as energy delivered and other controls, a short run Leontief cost function is 

being estimated. As a result, it is assumed that input quantities are fixed in the short run 

or change in fixed proportions. More energy delivered should lead to higher expenditure, 

as well as having more customers, particularly if they are more scattered across the 

operational area, as that implies longer lines to supply a customer. The maximum system 

demand acts as a proxy for the capital stock of the distribution firm. A larger SAIDI 

indicates more interruptions and malfunctions which are associated with more 

expenditure. 

 

Two spatial weights matrices are built for estimation of the model. The first reflects first 

order contiguous neighbours where the spatial weight is 1 if a unit is a direct neighbour 

of the unit under consideration and 0 otherwise. The second is a second order matrix 

where the spatial weight is 1 if a unit is a direct neighbour of the unit under consideration 

                                                      
12 Different deflation procedures exist in the literature. Nillesen and Pollitt (2011) deflate cost by a PPP 

index, while Filippini and Wetzel (2014) deflate cost by the OECD consumer price index for New Zealand. 

Note that in this case the price index was rebuilt using the average of quarterly data corresponding to the 

New Zealand fiscal year, finishing 31st of March each year, instead of the OECD calendar year data. Choice 

of deflators has little impact on time-varying behaviour of estimated average efficiency. 
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or the neighbour of a neighbour of the unit under consideration and 0 otherwise. Networks 

from different islands are never considered as being neighbours. The number of 

neighbours in this second spatial weights matrix varies between 2 and 11 depending on 

the firm under consideration, with a sample average of 6.9 neighbours. The first order 

matrix has a lower sample average of 3.1 neighbours per unit. 

 

 
First order 

neighbours W matrix 

Second order 

neighbours W matrix 

ρ  
0.100 

[0.004 ; 0.272] 
0.229 

[0.019 ; 0.468] 

𝛽CONSTANT  
 2.107 

[-3.388 ; 7.216] 
2.094 

[-3.353 ; 7.226] 

𝛽ENERGY  
0.219 

[-0.096 ; 0.531] 
0.233 

[-0.081 ; 0.543] 

𝛽CUSTOMERS  
0.548 

[0.218; 0.887] 
0.535 

[0.205 ; 0.873] 

𝛽LOADFACTOR  
-0.161 

[-0.418 ; 0.120] 
-0.148 

[-0.405 ; 0.125] 

𝛽SAIDI  
0.066 

[0.032 ; 0.100] 
0.066 

[0.032 ; 0.100] 

𝛽CUSTDENSITY  
-0.310 

[-0.618 ; -0.004] 
-0.316 

[-0.623 ; -0.010] 

𝛽CAPITAL  
-0.068 

[-0.174; 0.032] 
-0.065 

[-0.171 ; 0.035] 

𝛽TIME TREND  
-0.001 

[-0.031 ; 0.030] 
0.002 

[-0.031 ; 0.036] 

𝛽TIME TREND2   
-0.000 

[-0.003 ; 0.003] 
-0.001 

[-0.004 ; 0.003] 

𝜎𝛼
2  0.037 0.037 

𝜎𝑣
2  0.008 0.007 

𝜆−1  11.075 10.963 

Signal-to-

noise ratio 
1.085 1.110 

Table 5.4. Cost Frontier regression results. Note: Credible interval between 2.5% and 

97.5% percentiles in [brackets] 

 

Both specifications comfortably show signs of convergence according to the Geweke 

convergence diagnostic (Geweke, 1992) with z-scores for all parameters between -2 and 

2. Although some coefficients contain zero in the credible interval due to uncertainty in 

parameter estimates of this small sample, all coefficients follow the sign expected from 

economic theory. Operating expenditure is expected to increase with the amount of 

energy delivered and the number of customers served. Units with a higher load factor are 

expected to use their line investment better, which could lead to a decrease in operating 

costs. Units with longer average interruptions of service imply higher costs, due to 

maintenance and emergency fixes. Higher customer density implies more customers 

concentrated in a given area, and less service to isolated customers, which can lead to 
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lower operating costs. Higher capital stock can also lead to lower operating expenditure, 

holding all else constant. The time trend components appear to not significantly influence 

results. Four of the six cross-sectional mean regressors inserted to relax assumptions of 

the random effects model are significant. No variable that is not significant at the 5% 

level becomes significant at the 10% level. Alternative estimation using time dummies or 

a linear trend instead of a quadratic time trend indicates no changes in the general pattern 

of average efficiency detected over time. The estimated signal-to-noise ratio is close to 1, 

as in Scenario 2 of the simulations, which points to possible difficulties in the 

identification of the spatial parameter. However, there are strong signs of the presence of 

a positive spatial parameter when a second order neighbour matrix is used. Simulations 

conducted in the previous section point that it is likely that there is some downward bias 

in the estimated spatial parameter, supporting the theory of positive spatial spillovers 

further. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Density plots for spatial parameter with different W  

 

One of the key assumptions in the estimation is a non-negative spatial parameter, to 

represent positive spillovers of efficiency between the distribution networks. Although 

there is no intuition for negative spillovers in this case, the assumption is relaxed to assess 

the changes in results. For the first order neighbour matrix, there is clear indication that 

there is no spatial relationship between the units, with a mean of -0.012 and a credible 

interval at the 95% level between -0.28 and 0.23. In the case of the second order 

neighbourhood matrix, the mean becomes approximately 0.18 with only 15% of the draws 
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having negative values. However, the negative tail of the distribution is rather irregular 

and unintuitive, with the first 0.5% of the draws spread between -1 and -0.4, suggesting 

that the identification of the model becomes problematic without the appropriate 

restriction. Nevertheless, the correlation between the vectors of relative efficiency 

measures of the restricted and unrestricted models is 0.9997. This reinforces the 

consideration of a non-negative restriction, besides helping with the interpretation of 

results. 

 

There were clear gains in efficiency between 2003 and 2007, as the first years of the 

industry as a competitive business unfolded and improvements became visible. The gains 

dwindled away in the last two years of the sample period. However, there are data 

revisions in OPEX between sources towards the end of the sample period, leading to a 

possible break in the data in 2008 or 2009, depending on the choice of data source for 

2008. The nine firms with significant upward revisions in OPEX data between the 

Economic Insights database and the Economic Disclosures for the year 2008 appear to 

have an impact on the time-varying average efficiency scores for that year exclusively. 

The figure below shows the results with and without those nine firms. However, the 

downward trend is still clear and confirmed in 2009. Therefore, the inversion of the 

efficiency gains of previous years seems to be confirmed by the data in both cases. 

Regarding outages, 2007 was the most problematic year, but also the most efficient year 

for the industry. 2008 and 2009 are years with above average levels of SAIDI. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Time-varying average efficiency for full and restricted sample (second order 

neighbourhood matrix) 
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There is strong evidence of positive skewness of the random effects, pointing that there 

could be a reasonable amount of persistent inefficiency, as investigated by Filippini et al. 

(2016). However, there are two reasons why estimation of separated time-invariant error 

components is not attempted in this context. Firstly, the identification of all the 

components of the model would be complicated, given the small size of the panel in both 

of its dimensions. These could lead to unstable results which can become meaningless 

due to identification issues. Secondly, there are some theoretical considerations to have 

in mind when estimating the model. Even if extreme positive skewness of the random 

effects in the distribution network cost function exists, its meaning might not intuitively 

point for the separation of a time-invariant convolution. These distribution networks 

operate in extremely different geographical locations, with different contexts of supply in 

flat or mountainous terrain, and regions that persistently experience different issues in 

winter months or with vegetation and wild life. It is extremely difficult to account for 

these factors, and it is possible that an attempt to estimate a complete model would simply 

capture extreme geographical and climatic difficulties of supply instead of meaningful 

managerial practices and cost efficiency issues which are of interest to a regulator. The 

firms with the most positive random effects in the results above are Buller Electricity and 

Marlborough Lines. In a scenario of a large signal-to-noise ratio of persistent inefficiency 

and low or negligible influence of a zero-mean random effect, these should be the firms 

diagnosed as being more inefficient. These firms are located in the northern half of the 

South Island. Both firms contain National Parks inside their operational areas and also 

operate in colder than average and considerably more mountainous areas than other 

distributors in New Zealand. These are underlying conditions of the terrain in which the 

distributors operate and can hardly be attributed to cost inefficiency for regulation 

purposes just because they are not accounted for in the regression. A regulator could then 

take these findings and penalize the firms for factors that are out of their control. Filippini 

et al. (2016) find a positive correlation between persistent efficiency and the inverse of 

SAIDI, which again can be a circular argument if difficult climate and terrain conditions 

not entirely confined to the zero mean random effect cause outages, and those regions are 

also diagnosed as being more inefficient by a one sided error assumption. The authors 

quantify the inefficiency from a GTRE model in this context, but do not show individual 

firm rankings, making it impossible to assess if their results also point in this direction. 

Their analysis spans from 1996 to 2011, including pre and post-unbundling sample 

periods, as well as years with significant natural disasters such as the Christchurch 

Earthquake. The large standard deviation of persistent inefficiency in relation to the 
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standard deviation of the random effects points that the signal-to-noise ratio is large. 

Therefore, if the random effects resemble the ones presented above, the aforementioned 

pitfalls of the analysis might apply. 

 

 

5.6. Conclusion 

 

This chapter proposes a strengthening of the links between the spatial 

econometrics and stochastic frontier modelling literatures with a Bayesian Spatial Error 

model placing spatial dependence in the efficiency component while also accounting for 

unobserved heterogeneity. A simple and easily implementable MCMC is presented, 

allowing for flexible priors on mean efficiency and estimation of inefficiency assuming 

an exponential distribution. The measurement of efficiency in absolute and relative terms 

is discussed under different conditions. There is also a contribution to the applied 

Bayesian econometrics literature by proposing a Guided Walk Metropolis method to take 

draws from the non-standard distributions of the spatial parameter and the vector of the 

one sided error components, a method which allows for quick and easy computation but 

also faster convergence. This is an attractive alternative to the classic rejection methods 

that are well established. The model appears to perform well under a variety of contexts 

and sample sizes, while suffering from identification problems when signal-to-noise is 

increasingly low, a usual drawback in SF models.   

The modelling approach is applied to the context of cost efficiency in New 

Zealand electricity distribution networks, a well-known and previously studied case in 

the energy regulation literature. In this case, focus is on the post-unbundling period 

between 2001 and 2009, estimating time-varying inefficiency while accounting for 

unobserved heterogeneity. A spatial relationship in cost efficiency between firms is 

detected, particularly when using a more encompassing spatial weights matrix with 

second order neighbours. This suggests some level of interaction with other firms in the 

industry. An argument is made for not considering persistent inefficiency in this empirical 

case, but it is definitely a path for future research in terms of modelling technical and cost 

efficiency.  
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Chapter 6. Conclusion 

         6.1. Summary 

 
This thesis conducted a literature review and a description of the key concepts in 

Stochastic Frontier Analysis, followed by three essays in Bayesian Stochastic Frontier 

modelling, applied to contexts of measurement of persistent inefficiency and/or spatial 

dependence in production and cost functions, with a particular focus on model 

performance in small samples. The literature review concluded that while the field is 

expanding quickly in multiple directions, there are still a few gaps and some distance 

between the state of the art modelling and the state of empirical work in multiple contexts. 

Besides that, there is no up to date survey on spatial stochastic frontier models, and some 

of the existing surveys also ignore important parts of the literature. As a whole, it appears 

that measurement of persistent inefficiency, the issues associated to spatial econometrics 

and some issues associated with dynamics are relatively unexplored. The thesis then 

continues with Chapter 3, where an electricity demand function is modelled as a cost 

frontier to measure aggregate efficiency in electricity consumption in transition 

economies between 1994 and 2007, along with five other OECD developed economies 

in the sample. The chapter discusses and addresses some of the issues overlooked in the 

previous literature on aggregate energy efficiency measurement. Two alternative GTRE 

MCMC approaches are considered for this purpose, finding that a more complicated and 

computationally slower reparameterization approach that exists in the literature has no 

competitive advantages over a “naïve” approach with a different prior suggested recently. 

There is evidence of convergence between most country groups independently of the 

approach considered. Chapter 4 then extends the Bayesian GTRE approach to a Spatial 

Autoregressive model which incorporates a spatial structure into the model. Performance 

of the model in simulations is encouraging, but only for the “naïve” approach as the 

reparameterization performance degrades further than in the non-spatial case. The 

formula for efficiency measurement is discussed in the spatial context and the approach 

is then applied to aggregate productivity in European countries, where evidence of 

convergence over time is also found. Finally, the spatial structure is seen from a different 

perspective in Chapter 5, as it is now placed on the inefficiency error component, 

resembling a Spatial Error model. In this case, only time-varying inefficiency is 

considered in a model with Random Effects. Performance of the model is again 

encouraging and the conditions for good performance regarding signal-to-noise ratios and 

sample sizes are investigated. The approach is then applied to the context of cost 
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efficiency measurement of electricity distribution networks in New Zealand after a 

vertical separation (unbundling) policy. Some spatial dependence in efficiency between 

the firms is seen as the ranges of the neighbour relationships widen. All three essays focus 

on inspecting performance of the proposed approaches in small samples, to give the 

applied researcher an idea of the problems he might be facing when conducting estimation 

with other data. Signal-to-noise ratios are crucial, as learned many times in the past in 

(often simpler) Stochastic Frontier models. 

 

In a brief summary, this thesis has explored the theory and practice of Bayesian Stochastic 

Frontier models. It explored the gaps in the literature and identified research paths and 

topics requiring further attention, making an empirical exploration of the well-known 

GTRE model, and extended this model to the context of spatial econometrics. All chapters 

had a clear focus on small sample performance and evaluating the influence of decreasing 

sample size and priors in results, with encouraging results for use in small samples with 

some caution regarding signal-to-noise ratios. The thesis has also successfully explored 

alternative rejection techniques versus traditional rejection techniques by using Guided 

Walk Metropolis successfully to improve performance in Chapter 5. 

 

 

 

       6.2. Lessons and implications of the research 

 

There are general lessons to take from this thesis, both in terms of Econometrics and also 

Energy and Transition Economics. This thesis has shown that further extensions to SF 

models are possible from an estimation point of view without serious degradation of the 

performance of the models. This is shown in simple simulations with a few parameters, 

but also in applications of the modelling approaches which show stable and intuitive 

results. The role of priors is important and needs further care and understanding in the 

efficiency and productivity literature. The thesis has shown that Bayesian econometrics 

in this setting is not about playing with priors until the pre-defined objective efficiency 

result is obtained – it is mostly a process in which we identify efficiency levels from little 

data with a possibly weak signal. Understanding that process is crucial. 

 

It is also shown that the standard literature in persistent inefficiency estimation in 

Bayesian Stochastic Frontier models needs refreshing. The benchmark (published) paper 
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of Tsionas and Kumbhakar (2014) contains several errors and simulations that I have been 

unable to replicate, leading to very different results. The (unpublished) effort of Makiela 

(2016) to shed some light and solutions on these issues is also very welcome and has 

inspired one of the extensions in this thesis towards spatial econometrics. However, 

spatial models have increased implications in terms of interpretation, becoming an 

entirely legitimate challenge on their own. There is little study in this field and hopefully 

this thesis has advanced some of the knowledge in the field. 

 

Some lessons were also learned in the field of Energy Economics and Transition 

Economics while this thesis was carried out. First, working with data of transition 

economies is very challenging. Data collection, particularly on prices, is particularly 

complicated and requires compiling data from multiple sources. Choices on deflation and 

measures of the economy are scarce and all have their own merits and problems. 

Measuring and including weather effects and the structure of the economy is also 

complicated, but necessary up to some extent. Many other problems can plague the 

results, and even if all of them are considered, only some of them can be efficiently 

addressed. However, the pattern of convergence seen across the economies is seen both 

in efficiency in electricity consumption and in aggregate productivity as measured by two 

different stochastic frontier models with different purposes, dependent variables and 

exogenous regressors. This is largely in line with previous literature, but also adds to it 

from different perspectives. Also, an examination about variations in efficiency levels 

since the vertical separation of electricity distribution networks in New Zealand allows to 

see no consistent gains in efficiency levels, but detects some level of spatial dependence 

in efficiency between the networks, a result which might of interest to the regulators when 

considering policy making. 

 

In all of these studies, there was a particular focus in relatively small samples. Gaining 

understanding about how those models work with little data is important, as most 

researchers in the productivity and efficiency literature often have to deal with scenarios 

like this. A lesson for the future of the literature is that proposals for modelling and 

estimation approaches should be accompanied by at least some sort of simulation work 

to gain an understanding of the circumstances in which the measurement of efficiency is 

reliable and makes sense. 
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       6.3. Further research and concluding remarks 

 

This thesis outlined a series of contributions in the SF literature but also in the Energy 

Economics literature. The research paths leave some additional steps to be unfolded in 

the future, if time allows. 

 

Chapter 2 outlined a literature review which highlighted some gaps in the literature. 

However, these are quickly being closed in the literature. A generally observed pattern is 

the construction of several alternatives for tackling econometric challenges in modelling 

which are then not followed by applied research by other authors. Chapter 3 outlines a 

method to estimate efficiency in electricity consumption across transition economies. 

Future research paths could include further investigations into a more complete dataset 

and alternative measures of energy prices, as well as considering modelling the rebound 

effect. In Chapter 4, the proposed approach opens new paths for research in Stochastic 

Frontier models in more challenging contexts. Possible paths for future research include 

the adaptation of techniques of estimation of the spatial weights matrix to avoid incorrect 

specification, as in Bhattacharjee and Jensen-Butler (2013) and Ahrens and Bhattacharjee 

(2015), to the stochastic frontier framework. Another interesting path of research is the 

consideration of stochastic spatial metafrontiers to estimate group specific frontiers and 

envelope it over groups to be able to measure the distance of a unit to the group frontier 

and also the global frontier (O’Donnell et al., 2008). Finally, the exploration of different 

and more flexible distributional assumptions of inefficiency and distributional 

assumption choice criteria is also a possible extension of the model. Chapter 5 presents 

another proposal for modelling spatial dependence of efficiency in production or cost 

functions in a scarce literature. The extension of the model with time-varying and 

persistent inefficiency with an exponential distribution assumption (Griffiths and 

Hajargasht, 2016) to the spatial case (where the spatial structure is associated to only one 

of the two inefficiency components) is straightforward in terms of intuition, but will raise 

further challenges. The spatial structure will have to be considered carefully, leaving the 

question if the spatial dependence parameter is unique for both kinds of inefficiency or is 

parameterized in a more flexible way. This growth in complexity and number of 

parameters will cause performance issues, at least in small samples. 

 

The choice of a Bayesian path to this thesis can be discussed in the context of competing 

approaches. Many Bayesian applications in the Stochastic Frontier literature have 
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marginally different results from the corresponding ML approaches (if different at all) 

due to the use of diffuse priors. This means that many of those applications are merely 

demonstrations of the existence of their ML counterparts, producing little more than an 

alternative method to maximize a likelihood function and then calling it something else 

(Greene, 2008). The GTRE model can also be estimated in two steps, where the first step 

estimates the frontier accurately and the second step separates the residuals from the first 

step. A frequentist econometrician can then argue that this produces more robust results 

than one step approaches which can compete against the gains of Bayesian approaches. 

It is also true that very informative priors can distort results if the underlying data is scarce 

and without strong underlying signal. If that is the case, one should consider why the 

model is being estimated at all. However, the Bayesian approach has merits in its favour, 

even in the context of these issues. Some Bayesian applications highlight problems in 

Stochastic Frontier modelling that receive little or no attention in the classical literature. 

As highlighted by this thesis, it is also possible to introduce techniques to improve the 

estimation further, such as Guided Walk Metropolis. Regarding the two-step approach in 

the classical literature, this implies an unknown amount of information loss between the 

steps, something that can be countered in Bayesian econometrics by looking at the 

sensitivity of the results with different priors. 

 

Many other aspects of efficiency and productivity measurement are not considered in 

these essays. This thesis is a drop in a glass of literature. We are yet to know how full the 

glass is and, as we push the frontier, we hopefully never will. Most importantly, 

something transparent and useful must come out of all of our efforts, with important and 

informed policy decisions resulting from them. 
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Appendices 

Appendix 3.1. Geweke convergence diagnostic z-scores for each parameter 
 

 

 

 

 

 

 

 

 

Note: Outliers outside of the interval between -2.3 and 2.3 in red. Considering the 

outlier in the second column of results, the Geweke diagnostic has been attempted also 

with a first split of the data at the 5th percentile instead of the 10th. That makes all z-

scores within the interval of -2 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset 2 

(excluding 

Norway) 

 

Q̅𝑣=0.001 

Q̅𝛼=0.01 

r𝜂 = 0.7  

r𝑢 = 0.85  

𝐐̅𝒗=0.001 

𝐐̅𝜶=0.01 

𝐫𝜼 = 𝟎. 𝟔           

𝐫𝒖 = 𝟎. 𝟖𝟓     

Q̅𝑣=0.001 

Q̅𝛼=0.01 

r𝜂 = 0.5           

r𝑢 = 0.85    

TK: 

Q̅𝑣=0.001 

Q̅𝛼 = 0.01    

Q̅𝑢=0.01 

Q̅𝜂=0.25 

𝛽  -0.70828 -0.96588  

0.44643 -0.77939  

1.00358  0.82910  

1.13901  0.05442 

-0.74369 -0.72594  

0.73409  0.63558  

0.75245 0.34208  

0.77498  0.88616  

0.66359  0.48300  

0.55892  0.17896  

1.09100  0.95204 

-0.25433  1.48583 

-0.32178  0.59572 

-0.64925 -0.02308 

1.0635  0.1165  

0.3498 -1.7786  

1.4281  2.0864  

3.4501  1.3038  

0.1386 -1.6585  

0.6801  0.4173  

0.6765  0.9933  

0.6912 1.4460  

1.1129  1.3661  

1.4796  0.5991  

0.9151  0.9110  

-1.2430 -1.0901 

-0.2510 -0.5572 

-2.1083  1.4294 

-1.15369  1.33449 

-0.50005 -0.08861  

1.23811 -0.36246 

-0.97600  2.30293 

-0.29377 -1.19872 

-1.72481 -1.58321 

-1.26046 -0.92789 

-0.95818 -0.39452 

-0.99955 -1.04993 

-1.24311 -1.05419 

-1.56943 -0.62772  

0.92513  0.87743  

0.17527  0.78580 

0.75223  0.25746 

0.53390  0.84891  

0.30252 -2.36312  

3.91490  2.55414  

2.16867  1.25583     

-2.04565  0.45665  

2.48611  1.65903  

2.48999  2.48150  

2.46764  2.93370  

1.62807  2.04311  

1.75783  1.39730  

0.53303  2.26276      

-0.43318  1.39241     

-1.15129 -0.48796  

0.02205 -0.99601    

𝜎𝑣  -1.255 1.159 -0.05584 1.918 

𝜎𝑢  -0.1887 0.864 -0.6302 -1.228 

𝜎𝜂  -0.7133 0.07871 0.5243 -2.461 

𝜎𝛼  1.233 -1.341 -0.2224 1.496 
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Appendix 3.2. Correct TK paper equations 

 

 

 

Equation (8) of the paper is rebuilt in this thesis as: 

 

p(𝛿𝑖|y, X, 𝜃−δ) ∝ exp (
(𝑅𝑖 − [lt ⊗ 𝛿𝑖])′(𝑅𝑖 − [lt ⊗ 𝛿𝑖])

2σv
2

−
δi

2

2σδ
2)Φ(

σ𝜂

σ𝛼
𝜔𝛿𝑖

σδ
2 ) 

 

where 𝑅𝑖 =  yit − X𝑖𝑡β − uit. 

 

 

 

Equation (11) of the paper is rebuilt in this thesis as: 

 

uit= 
[yit−X𝑖𝑡β−[lt⊗𝛿𝑖]] σu

2

σv
2+σu

2  
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Appendix 3.3. Results with the inclusion of Norway in the sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset 1 

(including 

Norway) 

 

𝐐̅𝒗=0.001 

𝐐̅𝜶=0.01 

𝐫𝜼 = 𝟎. 𝟔  

𝐫𝒖 = 𝟎. 𝟖𝟓  

𝛽𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -18.840 

[-26.69;-12.27] 

𝛽𝐺𝐷𝑃    0.2138 

[0.16;0.27] 

𝛽𝐸𝑙𝑒𝑐.  𝑃𝑟𝑖𝑐𝑒 -0.0578 

[-0.09;-0.03] 

𝛽𝑊𝑒𝑎𝑡ℎ𝑒𝑟   0.0767 

[-0.08;0.23] 

𝛽𝑈𝑟𝑏.𝑅𝑎𝑡𝑒  0.9978 

[0.61;1.36] 

𝛽𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  0.6435 

[0.34;0.89] 

𝛽𝑀𝑎𝑛𝑢𝑓.  𝑆ℎ𝑎𝑟𝑒  0.1062 

[0.04;0.18] 

𝛽𝐶𝑜𝑛𝑠𝑡𝑟.  𝑆ℎ𝑎𝑟𝑒  0.0390 

[-0.00;0.08] 

𝛽𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑆ℎ𝑎𝑟𝑒  -0.0042 

[-0.09;0.08] 

Mean(𝜂𝑖) 0.601 

Mean(𝑢𝑖𝑡) 0.098 

𝜎𝑣  0.0172 

[0.010;0.027] 

𝜎𝑢  0.1339 

[0.122;0.146] 

𝜎𝜂  0.7495 

[0.537;1.037] 

𝜎𝛼  0.1659 

[0.043;0.407] 

Mean 

Efficiency   

(0-100%) 

54.3% 
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Appendix 3.4. Chapter 3 core dataset 

 

 

  
 

 

 

country

country

code year

Elec_Cons

_KTOE

Weather

_Linear Population

Urbanizati

on Rate nonenergyvappp

manuf_

share

cons_

share

primary_

share

Real_Elec

_PriceInde

x_noPPP

ALBANIA  1994 158.0 73.7 3384367.2 38.4 842930332.3 3.5 8.5 33.5 128.2
ALBANIA  1995 174.0 76.6 3357856.9 38.9 1018932716.4 3.4 9.1 33.1 173.0
ALBANIA  1996 238.0 80.9 3341042.3 39.5 1289420784.2 3.3 9.5 30.1 137.5
ALBANIA  1997 181.0 78.4 3331316.0 40.0 966806026.3 2.4 8.4 26.6 72.0
ALBANIA  1998 192.0 80.9 3325456.4 40.6 1102860074.3 3.4 6.9 27.0 63.7
ALBANIA  1999 372.0 78.4 3317942.4 41.2 1365590783.0 3.8 7.6 25.9 69.4
ALBANIA  2000 366.0 76.9 3304947.1 41.7 1405356255.2 3.8 10.5 26.3 55.5
ALBANIA  2001 349.0 73.0 3286083.7 42.4 1540649457.3 3.8 12.9 24.9 55.7
ALBANIA  2002 383.0 70.0 3263597.3 43.5 1688300603.7 3.7 14.8 24.2 67.8
ALBANIA  2003 376.0 86.5 3239385.9 44.6 2077358288.8 4.5 17.5 23.8 90.5
ALBANIA  2004 458.0 74.9 3216197.4 45.7 2648526911.7 5.0 17.8 24.1 92.0
ALBANIA  2005 444.0 81.0 3196130.2 46.7 2877982745.3 5.8 18.0 23.0 100.0
ALBANIA  2006 299.0 79.4 3179573.4 47.8 2954679081.4 6.5 18.8 22.5 109.3
ALBANIA  2007 316.0 76.0 3166223.1 48.9 3596151058.3 6.8 19.2 21.0 123.9
ARMENIA 2 1994 278.0 114.0 3289943.8 66.3 482380423.0 26.1 9.4 31.0 35.3
ARMENIA 2 1995 262.0 107.9 3223173.7 66.1 529256966.0 24.9 8.2 30.1 47.9
ARMENIA 2 1996 294.0 107.8 3173423.9 65.8 556602294.8 24.1 9.9 29.4 59.2
ARMENIA 2 1997 367.0 112.0 3137652.1 65.5 552979097.3 24.0 10.1 27.6 77.9
ARMENIA 2 1998 311.0 108.1 3112958.6 65.2 619182018.5 22.3 10.6 29.6 106.5
ARMENIA 2 1999 313.0 104.3 3093818.8 64.9 602738098.8 22.2 10.9 28.7 101.5
ARMENIA 2 2000 309.0 114.7 3076098.8 64.7 608565989.1 22.5 13.3 26.9 100.1
ARMENIA 2 2001 299.0 106.4 3059959.6 64.4 656646362.2 21.3 12.8 27.6 92.8
ARMENIA 2 2002 294.0 110.7 3047001.1 64.3 725522672.0 21.9 16.0 25.3 93.9
ARMENIA 2 2003 316.0 116.0 3036031.0 64.3 856286205.1 21.9 20.1 22.7 87.7
ARMENIA 2 2004 342.0 112.8 3025651.5 64.2 1048597642.6 17.2 21.2 23.7 85.7
ARMENIA 2 2005 358.0 115.4 3014916.3 64.2 1424536308.3 16.1 23.3 22.6 100.0
ARMENIA 2 2006 389.0 120.6 3002910.3 64.1 1851768508.6 13.7 27.5 19.6 106.2
ARMENIA 2 2007 410.0 118.9 2989882.6 64.1 2585102122.7 12.3 28.8 19.1 122.4
AZERBAIJAN 3 1994 1073.0 91.6 7596997.3 52.5 551137460.2 17.9 1.5 22.1 223.4
AZERBAIJAN 3 1995 1104.0 89.5 7685001.7 52.2 488419516.8 16.2 1.9 23.7 129.0
AZERBAIJAN 3 1996 1056.0 96.9 7763001.5 51.9 495000395.7 15.1 4.0 24.3 134.9
AZERBAIJAN 3 1997 1049.0 94.3 7838249.0 51.6 603721833.9 14.4 6.3 21.3 141.6
AZERBAIJAN 3 1998 1147.0 95.2 7913003.2 51.3 654038934.2 13.6 8.9 21.2 132.1
AZERBAIJAN 3 1999 1220.0 88.0 7982751.1 51.2 663054926.4 13.2 8.4 21.2 132.9
AZERBAIJAN 3 2000 1242.0 94.0 8048599.1 51.4 734471249.6 13.1 7.9 21.7 119.2
AZERBAIJAN 3 2001 1296.0 87.8 8111199.0 51.6 758640557.9 12.8 7.8 22.5 117.4
AZERBAIJAN 3 2002 1246.0 89.4 8171947.4 51.8 830197531.3 12.3 12.6 21.3 108.8
AZERBAIJAN 3 2003 1416.0 91.9 8234101.0 52.0 969047278.8 12.3 16.4 19.8 106.4
AZERBAIJAN 3 2004 1457.0 89.0 8306496.9 52.2 1152577758.5 12.1 19.8 18.4 99.7
AZERBAIJAN 3 2005 1551.0 93.0 8391853.0 52.4 1460380770.0 13.0 18.7 18.3 100.0
AZERBAIJAN 3 2006 1689.0 100.0 8484548.9 52.6 1860183042.9 12.7 18.2 16.5 92.3
AZERBAIJAN 3 2007 1363.0 99.6 8581296.1 52.8 2541555418.4 12.5 18.9 15.4 262.6
BELARUS 4 1994 2399.0 124.8 10226992.2 67.5 5020109634.7 21.3 10.7 15.0  
BELARUS 4 1995 2177.0 123.7 10194001.6 67.9 4729576592.0 20.8 7.8 15.9  
BELARUS 4 1996 2193.0 132.2 10159993.4 68.3 4867467119.1 21.3 7.1 15.8 4799.0
BELARUS 4 1997 2302.0 128.5 10117005.9 68.7 4512580320.5 22.9 7.8 13.6 2146.7
BELARUS 4 1998 2358.0 124.6 10068994.3 69.1 4772420521.5 23.5 8.3 12.5 903.1
BELARUS 4 1999 2333.0 122.8 10035001.2 69.5 3761703160.5 24.6 7.8 11.1 114.7
BELARUS 4 2000 2303.0 104.1 10004995.9 70.0 3879047652.2 25.1 7.2 11.4 149.5
BELARUS 4 2001 2296.0 127.1 9928007.5 70.5 3692183299.1 25.6 6.4 11.0 86.1
BELARUS 4 2002 2268.0 122.6 9864999.3 70.9 4247659107.9 26.4 6.8 10.8 148.7
BELARUS 4 2003 2297.0 125.2 9797008.0 71.4 5030250293.7 27.3 7.2 10.9 117.6
BELARUS 4 2004 2342.0 122.2 9730004.8 71.9 6268958316.1 29.9 7.6 11.2 101.1
BELARUS 4 2005 2380.0 121.8 9662999.1 72.4 7947547520.2 31.2 8.2 10.5 100.0
BELARUS 4 2006 2448.0 125.2 9603998.9 72.8 9490313179.3 32.0 9.3 10.0 106.4
BELARUS 4 2007 2468.0 115.7 9560008.2 73.3 11193161853.6 32.3 10.4 9.8 119.7
BOSNIA 5 1994 296.0 90.7 3659408.4 39.4 621158611.3 15.1 7.6 22.1  
BOSNIA 5 1995 310.0 96.7 3520994.5 39.4 903523628.6 15.4 7.7 21.3  
BOSNIA 5 1996 355.0 104.3 3485573.6 39.4 1073669180.5 15.3 7.5 24.5  
BOSNIA 5 1997 419.0 96.8 3535999.2 39.4 1437306452.7 14.8 7.4 20.4  
BOSNIA 5 1998 494.0 101.1 3640819.7 39.3 1588554738.0 16.1 8.3 18.9 64.7
BOSNIA 5 1999 467.0 94.0 3752002.4 39.3 1945376697.4 13.1 6.1 14.3 91.6
BOSNIA 5 2000 504.0 88.8 3834365.1 39.3 2237065814.7 12.4 6.8 10.0 73.6
BOSNIA 5 2001 545.0 92.7 3879352.5 39.3 2237488279.8 12.5 6.3 10.5 91.7
BOSNIA 5 2002 584.0 88.1 3897578.9 39.3 2550855601.9 12.8 5.8 11.1 101.2
BOSNIA 5 2003 620.0 107.9 3895780.3 39.2 3147477955.4 12.7 5.7 10.0 109.6
BOSNIA 5 2004 636.0 95.3 3886721.8 39.2 3658813750.7 12.6 5.5 10.9 118.1
BOSNIA 5 2005 665.0 100.2 3879829.8 39.2 3820212667.0 12.9 5.8 11.1 100.0
BOSNIA 5 2006 668.0 92.9 3875155.7 39.2 4043770315.0 14.1 5.5 11.1 108.9
BOSNIA 5 2007 667.0 94.0 3868664.2 39.2 4828188198.2 14.8 5.8 10.6 124.8
BULGARIA 6 1994 2279.0 93.0 8443591.8 67.6 4878294948.7 16.9 5.2 8.1 1224.2
BULGARIA 6 1995 2467.0 98.8 8406070.5 67.8 6526684775.7 17.2 5.1 8.8 1159.7
BULGARIA 6 1996 2571.0 103.9 8362828.0 68.0 4508640032.1 14.3 4.2 8.4 840.2
BULGARIA 6 1997 2315.0 100.4 8312067.7 68.2 4737675303.3 14.6 3.9 11.9 39.4
BULGARIA 6 1998 2248.0 99.5 8256787.1 68.5 5521467757.6 15.9 5.4 12.1 41.9
BULGARIA 6 1999 2046.0 93.5 8210623.7 68.7 5062214587.4 15.4 6.6 13.9 47.7
BULGARIA 6 2000 2086.0 93.1 8170170.8 68.9 4744819413.4 16.7 6.3 11.8 54.0
BULGARIA 6 2001 2115.0 94.7 8020279.5 69.2 4940461031.5 17.0 6.4 11.4 53.2
BULGARIA 6 2002 2071.0 91.8 7868469.3 69.5 5468341510.2 17.0 6.3 11.4 50.3
BULGARIA 6 2003 2162.0 107.7 7823559.2 69.9 6793218485.7 17.8 6.2 10.8 69.2
BULGARIA 6 2004 2142.0 90.3 7781161.0 70.2 8110375947.2 17.6 6.2 10.7 75.0
BULGARIA 6 2005 2212.0 95.1 7739900.4 70.6 8857965786.5 17.4 6.5 9.3 100.0
BULGARIA 6 2006 2312.0 94.7 7699020.1 70.9 9660470693.3 17.5 7.0 8.6 97.7
BULGARIA 6 2007 2340.0 94.3 7545335.3 71.3 11760823235.7 18.5 7.4 5.9 93.2
CROATIA 7 1994 825.0 82.4 4650000.5 54.8 20.9 5.1 6.8 115.0
CROATIA 7 1995 853.0 86.3 4669001.5 54.9 14814536624.1 17.3 5.8 6.6 124.2
CROATIA 7 1996 884.0 93.9 4493999.0 55.0 15215949897.6 16.4 6.6 6.3 114.7
CROATIA 7 1997 951.0 86.9 4572001.4 55.2 14967710283.4 16.3 7.1 6.1 97.6
CROATIA 7 1998 954.0 90.5 4500998.9 55.3 15841349731.1 16.1 6.8 6.4 91.7
CROATIA 7 1999 1007.0 85.9 4553998.8 55.4 14504573783.8 16.7 6.1 6.1 85.7
CROATIA 7 2000 1018.0 77.4 4426001.5 55.6 12989397568.6 17.4 5.8 6.1 87.9
CROATIA 7 2001 1032.0 84.3 4439999.1 55.7 13443507060.5 17.0 6.0 6.0 113.7
CROATIA 7 2002 1092.0 80.3 4439999.1 55.9 15050874307.9 17.0 6.1 6.0 63.6
CROATIA 7 2003 1116.0 99.4 4439999.1 56.0 19123665376.7 16.7 7.2 5.3 82.3
CROATIA 7 2004 1178.0 87.2 4438999.9 56.2 22264506485.7 16.8 7.8 5.6 100.0
CROATIA 7 2005 1240.0 90.6 4441998.2 56.4 23870934593.3 16.6 8.2 5.3 100.0
CROATIA 7 2006 1297.0 83.9 4439999.1 56.6 25371685370.9 16.4 8.4 5.5 103.1
CROATIA 7 2007 1323.0 82.2 4435999.5 56.8 28647798615.5 16.6 8.4 5.0 109.2
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ESTONIA 8 1994 412.0 143.8 1462513.8 70.5 2888337719.4 14.4 6.4 7.2 40.5
ESTONIA 8 1995 392.0 133.3 1436634.1 70.3 3081911690.1 15.3 7.0 7.1 59.0
ESTONIA 8 1996 420.0 149.6 1415594.6 70.1 3165376586.1 14.9 7.3 6.7 51.1
ESTONIA 8 1997 444.0 137.6 1399534.8 69.9 3316615559.1 15.3 7.5 6.3 49.1
ESTONIA 8 1998 443.0 141.9 1386156.0 69.7 3707489611.7 15.2 8.4 6.0 54.8
ESTONIA 8 1999 415.0 129.9 1380620.2 69.5 3696636688.2 15.0 7.0 5.3 53.0
ESTONIA 8 2000 431.0 123.5 1379342.4 69.4 3586266980.0 16.3 7.5 5.6 60.9
ESTONIA 8 2001 444.0 138.3 1373510.2 69.2 3857834644.1 17.5 7.1 4.8 65.8
ESTONIA 8 2002 459.0 132.7 1367508.4 69.1 4292469734.8 17.8 7.5 4.6 64.7
ESTONIA 8 2003 481.0 139.3 1361565.2 69.0 5537910608.0 17.9 7.7 4.6 72.8
ESTONIA 8 2004 509.0 134.5 1356153.5 68.9 6527643420.3 17.4 7.8 4.0 88.0
ESTONIA 8 2005 519.0 134.4 1351231.0 68.7 7385651881.1 17.4 9.0 3.7 100.0
ESTONIA 8 2006 558.0 129.2 1346035.0 68.6 8502552079.3 17.6 8.8 3.3 101.0
ESTONIA 8 2007 584.0 126.2 1342330.2 68.5 10602769738.3 17.2 9.1 3.5 102.0
GEORGIA 9 1994 803.0 101.7 4861600.4 54.1 967213640.3 8.1 1.8 49.9 217.8
GEORGIA 9 1995 568.0 93.3 4734000.7 53.8 977201018.9 9.9 2.4 33.7 181.3
GEORGIA 9 1996 435.0 101.9 4616098.2 53.6 1112648960.4 17.1 2.7 26.4 104.1
GEORGIA 9 1997 490.0 101.6 4531600.6 53.4 1204902093.0 16.4 3.8 25.6 107.6
GEORGIA 9 1998 542.0 96.7 4487301.0 53.1 1234085022.5 14.7 4.9 23.0 117.3
GEORGIA 9 1999 547.0 96.8 4452499.4 52.9 940250916.4 14.1 3.8 24.0 84.4
GEORGIA 9 2000 541.0 101.8 4418300.7 52.6 986916861.2 14.3 3.9 21.1 118.9
GEORGIA 9 2001 453.0 96.4 4386401.3 52.4 1025755621.9 13.4 4.1 21.6 108.5
GEORGIA 9 2002 464.0 98.6 4357000.4 52.3 1070522142.5 14.3 5.5 20.1 159.0
GEORGIA 9 2003 490.0 102.8 4328898.6 52.4 1245043392.9 13.7 7.2 19.8 105.0
GEORGIA 9 2004 506.0 96.9 4318301.7 52.4 1548240760.4 14.0 9.3 17.3 92.8
GEORGIA 9 2005 531.0 102.3 4361398.8 52.5 1930543255.9 14.1 9.4 17.2 100.0
GEORGIA 9 2006 488.0 106.9 4397999.9 52.5 2262123588.6 15.0 9.3 13.9 140.2
GEORGIA 9 2007 502.0 103.0 4388401.3 52.6 2863205161.2 15.6 9.6 12.9 167.7
HUNGARY 10 1994 2372.0 94.3 10343361.5 65.3 30975006056.8 15.5 4.7 4.5 55.7
HUNGARY 10 1995 2386.0 95.3 10328969.7 65.2 32233062228.4 16.8 4.9 4.6 65.6
HUNGARY 10 1996 2467.0 104.2 10311234.4 65.1 31610402297.5 17.6 4.6 4.8 67.0
HUNGARY 10 1997 2480.0 97.1 10290486.9 65.0 30645917712.5 19.5 4.8 4.6 78.0
HUNGARY 10 1998 2492.0 96.1 10266569.1 64.8 30723934094.5 20.5 5.0 4.6 81.9
HUNGARY 10 1999 2489.0 96.3 10237531.0 64.7 30602985300.9 21.2 5.1 4.6 85.5
HUNGARY 10 2000 2532.0 86.2 10210970.5 64.6 28699645278.5 21.0 5.4 4.0 82.5
HUNGARY 10 2001 2627.0 95.8 10187567.9 64.7 30035751327.5 21.3 5.6 4.4 81.1
HUNGARY 10 2002 2708.0 94.0 10158617.6 65.1 36319561958.8 21.7 6.0 3.5 82.6
HUNGARY 10 2003 2700.0 113.2 10129556.5 65.5 45621977496.4 22.5 5.7 3.5 90.1
HUNGARY 10 2004 2736.0 93.9 10107150.1 65.9 55128731498.2 22.8 5.5 5.0 97.7
HUNGARY 10 2005 2781.0 97.7 10087063.3 66.4 59707936607.0 23.0 5.7 4.5 100.0
HUNGARY 10 2006 2858.0 94.9 10071376.0 66.9 58846978680.1 23.6 5.3 4.0 103.2
HUNGARY 10 2007 2902.0 92.3 10055770.7 67.4 69153119077.1 25.3 5.0 3.2 111.9
KAZAKHSTAN 11 1994 4955.0 162.9 16095210.3 55.9 5706666957.8 14.6 8.0 15.3 1126.9
KAZAKHSTAN 11 1995 4438.0 148.3 15815633.6 55.9 5362257131.4 14.9 5.4 12.6 310.9
KAZAKHSTAN 11 1996 3933.0 171.6 15577890.9 55.9 5384517754.2 15.2 4.2 12.0 209.4
KAZAKHSTAN 11 1997 3344.0 148.8 15333716.4 56.0 5565038500.6 15.9 4.5 11.7 225.9
KAZAKHSTAN 11 1998 3110.0 170.1 15071304.8 56.0 5493221420.1 15.6 5.6 9.6 260.8
KAZAKHSTAN 11 1999 3143.0 148.9 14928427.7 55.9 4126374651.2 15.5 5.9 11.4 164.0
KAZAKHSTAN 11 2000 3026.0 153.1 14883620.5 55.7 4313562561.4 16.4 6.2 10.2 122.2
KAZAKHSTAN 11 2001 3347.0 152.0 14858348.0 55.5 5126538592.1 16.3 7.0 10.5 112.8
KAZAKHSTAN 11 2002 3395.0 140.7 14858943.1 55.3 5590912898.5 16.1 7.6 9.9 118.4
KAZAKHSTAN 11 2003 3607.0 154.2 14909021.2 55.1 6868734159.9 15.9 7.6 9.2 115.0
KAZAKHSTAN 11 2004 3720.0 145.7 15012976.9 54.9 9372790865.3 15.9 7.9 8.4 107.6
KAZAKHSTAN 11 2005 5226.0 153.5 15147039.5 54.7 12125360314.6 15.4 10.0 8.1 100.0
KAZAKHSTAN 11 2006 5610.0 150.5 15308088.5 54.5 16792833584.6 14.9 12.3 7.7 109.9
KAZAKHSTAN 11 2007 5976.0 147.9 15484193.4 54.3 21698282784.4 14.4 12.8 7.6 131.4
KYRGYZSTAN 12 1994 719.0 171.7 4515100.3 36.6 437369056.7 19.0 2.8 27.9 313.7
KYRGYZSTAN 12 1995 790.0 169.0 4560400.6 36.3 395158654.8 12.0 5.1 31.0 295.5
KYRGYZSTAN 12 1996 754.0 173.2 4628401.2 36.1 405735026.3 11.6 5.0 35.1 503.9
KYRGYZSTAN 12 1997 707.0 156.7 4696398.9 35.8 387087874.1 17.1 3.8 35.7 362.8
KYRGYZSTAN 12 1998 670.0 164.9 4769001.0 35.5 353643442.9 17.1 2.7 36.3 78.8
KYRGYZSTAN 12 1999 729.0 162.9 4840398.2 35.3 289099283.9 20.7 2.3 34.6 44.7
KYRGYZSTAN 12 2000 691.0 159.9 4898398.9 35.3 308698725.2 17.8 2.9 33.9 40.7
KYRGYZSTAN 12 2001 593.0 157.8 4945101.3 35.3 337099619.0 18.4 2.8 34.4 56.2
KYRGYZSTAN 12 2002 567.0 157.7 4990701.9 35.3 347285247.8 16.5 2.9 35.7 123.2
KYRGYZSTAN 12 2003 692.0 158.6 5043298.3 35.3 406111304.9 18.2 2.6 34.5 117.7
KYRGYZSTAN 12 2004 600.0 146.9 5104699.0 35.3 449453078.3 17.6 2.6 34.0 95.6
KYRGYZSTAN 12 2005 585.0 154.4 5162601.3 35.3 479746127.1 14.8 3.1 33.0 100.0
KYRGYZSTAN 12 2006 590.0 150.3 5218397.7 35.3 531308154.8 12.4 3.6 32.8 102.6
KYRGYZSTAN 12 2007 632.0 147.1 5268402.3 35.3 693658650.9 12.2 4.5 30.8 121.8
LATVIA 13 1994 379.0 132.0 2520741.5 68.9 2863297987.8 14.8 3.0 5.9 71.2
LATVIA 13 1995 384.0 120.7 2485054.8 68.8 2892345582.1 14.9 2.7 6.4 99.2
LATVIA 13 1996 356.0 140.4 2457223.0 68.6 3034825609.5 14.9 2.8 5.7 100.5
LATVIA 13 1997 360.0 128.0 2432851.5 68.6 3284183914.0 16.0 3.2 5.7 105.9
LATVIA 13 1998 387.0 126.6 2410020.0 68.5 3542944613.3 15.7 4.6 5.1 104.4
LATVIA 13 1999 384.0 120.1 2390483.0 68.2 3806458742.7 14.6 5.4 4.7 103.5
LATVIA 13 2000 385.0 109.1 2367550.1 68.1 4187552033.8 14.3 5.9 5.2 96.3
LATVIA 13 2001 394.0 127.7 2337170.6 67.9 4261389424.3 14.4 5.4 5.3 92.5
LATVIA 13 2002 420.0 124.5 2310173.0 67.8 4636461989.2 15.1 5.6 5.3 93.6
LATVIA 13 2003 447.0 129.0 2287956.0 67.8 5562152163.1 14.4 5.4 4.7 99.4
LATVIA 13 2004 465.0 123.9 2263121.4 67.9 6698712629.3 14.4 6.0 4.6 108.1
LATVIA 13 2005 493.0 125.5 2238799.7 68.0 7805952885.4 13.6 6.6 4.4 100.0
LATVIA 13 2006 528.0 121.2 2218356.2 68.0 9422819116.2 13.1 9.4 3.8 97.3
LATVIA 13 2007 568.0 115.3 2200324.7 67.9 13205708299.6 11.7 13.4 3.7 104.2
LITHUANIA 14 1994 560.0 124.0 3657144.1 67.3 3980295461.3 20.0 7.1 7.9  
LITHUANIA 14 1995 547.0 117.7 3629102.8 67.3 4130429939.2 17.3 7.4 8.7 52.0
LITHUANIA 14 1996 561.0 133.9 3601613.0 67.2 4321913323.0 17.3 7.4 9.2 47.7
LITHUANIA 14 1997 579.0 123.4 3575136.0 67.2 5182518541.6 17.4 7.4 9.2 60.2
LITHUANIA 14 1998 581.0 115.8 3549330.9 67.1 5720398055.3 18.3 8.1 8.0 57.3
LITHUANIA 14 1999 563.0 115.3 3524236.3 67.0 5584731259.2 17.8 7.3 6.8 56.8
LITHUANIA 14 2000 533.0 98.1 3499536.1 67.0 5669216717.0 19.1 6.0 6.9 62.4
LITHUANIA 14 2001 554.0 121.5 3470819.3 66.9 6053756648.9 19.6 5.9 5.9 63.6
LITHUANIA 14 2002 578.0 117.6 3443067.0 66.8 6875248463.6 19.2 6.4 5.9 79.5
LITHUANIA 14 2003 617.0 122.2 3415214.2 66.7 8674947752.5 20.0 7.2 5.8 95.7
LITHUANIA 14 2004 658.0 118.3 3377074.3 66.6 10537750160.3 20.9 7.6 5.4 97.6
LITHUANIA 14 2005 686.0 118.6 3322527.4 66.6 12068830569.5 21.2 8.2 5.0 100.0
LITHUANIA 14 2006 725.0 118.4 3269909.1 66.7 13382465603.9 21.6 9.7 4.2 86.0
LITHUANIA 14 2007 762.0 110.5 3231292.7 66.8 17204677130.6 20.3 11.2 4.2 97.4
MACEDONIA 15 1994 412.0 91.0 1968851.5 59.8 1410205591.1 14.7 7.5 14.7 87.2
MACEDONIA 15 1995 427.0 96.6 1967012.3 59.6 1860463375.0 13.1 7.3 14.9 77.2
MACEDONIA 15 1996 446.0 101.3 1975206.3 59.4 1817400444.9 13.6 7.1 14.4 83.1
MACEDONIA 15 1997 459.0 99.0 1991687.4 59.2 1543081564.6 13.6 6.9 13.8 93.7
MACEDONIA 15 1998 470.0 100.9 2013117.1 59.0 1451090311.8 13.2 7.2 13.8 98.1
MACEDONIA 15 1999 440.0 97.3 2034486.4 58.8 1485068491.0 12.9 7.5 13.3 88.0
MACEDONIA 15 2000 448.0 95.6 2052129.4 58.5 1393390788.9 13.8 7.5 13.0 132.5
MACEDONIA 15 2001 432.0 94.9 2065098.6 58.3 1297993023.0 13.7 6.7 12.1 97.4
MACEDONIA 15 2002 428.0 95.6 2074441.0 58.1 1397196463.8 13.3 6.7 12.1 109.2
MACEDONIA 15 2003 490.0 106.7 2080866.6 57.9 1678975058.6 13.7 6.7 12.1 112.6
MACEDONIA 15 2004 496.0 92.8 2085728.3 57.7 1863816212.7 14.1 6.7 12.1 116.1
MACEDONIA 15 2005 536.0 99.6 2090043.2 57.5 1879247786.2 12.0 6.6 12.1 100.0
MACEDONIA 15 2006 554.0 98.9 2093801.8 57.4 1923310217.3 15.1 6.8 12.0 112.3
MACEDONIA 15 2007 580.0 97.9 2096619.2 57.2 2334883957.9 15.2 6.8 12.1 122.7
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MOLDOVA 16 1994 653.0 101.8 3693998.5 46.4 565988976.6 16.8 5.1 20.1 416.4
MOLDOVA 16 1995 619.0 109.2 3675097.5 46.3 525204369.5 17.4 4.3 21.2 238.8
MOLDOVA 16 1996 584.0 120.5 3667748.2 46.2 516977023.8 17.4 4.7 18.9 187.3
MOLDOVA 16 1997 549.0 111.0 3654208.6 46.1 567419008.0 15.2 4.0 21.3 253.8
MOLDOVA 16 1998 510.0 106.1 3652731.3 46.0 489230668.0 13.2 3.5 20.8 260.5
MOLDOVA 16 1999 467.0 104.8 3647002.0 45.9 356320583.8 12.5 3.7 20.0 158.4
MOLDOVA 16 2000 470.0 95.8 3639590.8 45.8 362378734.2 15.0 2.7 21.2 109.8
MOLDOVA 16 2001 580.0 106.1 3631460.4 45.7 402608289.1 15.0 3.1 21.7 130.2
MOLDOVA 16 2002 604.0 104.0 3623061.4 45.6 443492961.8 14.4 3.1 21.2 142.7
MOLDOVA 16 2003 621.0 119.6 3612872.5 45.5 506403717.6 16.3 3.5 18.1 119.3
MOLDOVA 16 2004 555.0 99.6 3603945.9 45.4 648049927.5 16.3 4.1 20.3 113.7
MOLDOVA 16 2005 578.0 102.8 3595185.4 45.3 704711213.1 16.0 4.0 19.6 100.0
MOLDOVA 16 2006 601.0 106.3 3585208.3 45.2 765784502.7 14.8 4.6 18.5 85.6
MOLDOVA 16 2007 548.0 104.6 3576909.4 45.1 946906307.4 14.5 5.5 11.9 92.4
MONGOLIA 17 1994 160.0 190.3 2280518.9 56.9 191421113.2 8.7 2.7 42.4  
MONGOLIA 17 1995 164.0 189.0 2298063.3 56.8 290397458.7 11.0 2.9 42.1  
MONGOLIA 17 1996 166.0 200.7 2316597.5 56.8 273727274.5 8.9 2.8 41.5  
MONGOLIA 17 1997 162.0 188.4 2335722.2 56.7 225781620.7 7.8 2.7 43.5  
MONGOLIA 17 1998 166.0 180.6 2355618.0 56.7 211572498.5 7.8 2.6 45.1  
MONGOLIA 17 1999 161.0 188.9 2376197.7 56.6 196941498.4 7.3 2.6 45.5  
MONGOLIA 17 2000 164.0 205.7 2397473.8 57.1 194532746.6 7.5 2.3 40.3  
MONGOLIA 17 2001 168.0 200.0 2419669.5 58.2 202892956.5 10.3 2.6 33.1 126.4
MONGOLIA 17 2002 175.0 196.3 2443230.7 59.3 224809172.9 12.1 3.0 27.5 128.3
MONGOLIA 17 2003 189.0 197.7 2468595.9 60.4 258136605.1 12.6 4.2 26.3 116.2
MONGOLIA 17 2004 203.0 188.9 2496247.1 61.4 298768229.9 11.6 3.8 29.0 104.7
MONGOLIA 17 2005 219.0 207.1 2526503.2 62.5 366059186.5 8.8 4.1 30.1 100.0
MONGOLIA 17 2006 232.0 188.3 2559495.0 63.5 476154371.7 9.2 3.9 29.8 99.7
MONGOLIA 17 2007 244.0 184.6 2595067.5 64.6 594335926.3 10.2 3.7 30.0 93.5
POLAND 18 1994 7338.0 103.4 38542636.2 61.4 64689713617.9 14.8 9.6 3.8 71.8
POLAND 18 1995 7713.0 108.5 38595013.8 61.5 80665813666.8 15.9 9.6 3.9 70.7
POLAND 18 1996 8162.0 118.7 38624396.9 61.5 88369606535.5 16.4 9.3 3.8 70.4
POLAND 18 1997 8305.0 109.1 38649674.1 61.6 86618905759.6 16.9 9.7 3.7 71.1
POLAND 18 1998 8355.0 101.0 38663462.1 61.6 93942189997.5 17.0 9.9 3.7 73.8
POLAND 18 1999 8263.0 99.4 38660291.0 61.7 90124401342.0 16.8 9.7 3.6 78.6
POLAND 18 2000 8484.0 85.8 38453786.6 61.7 90333155452.9 17.2 9.2 3.5 79.2
POLAND 18 2001 8494.0 109.4 38248093.0 61.8 98300836133.6 17.1 8.8 3.7 88.6
POLAND 18 2002 8388.0 103.7 38230369.9 61.8 98634014134.1 17.1 8.0 3.6 93.9
POLAND 18 2003 8702.0 110.5 38204565.4 61.7 107684094842.1 18.5 7.6 3.6 101.1
POLAND 18 2004 9001.0 102.8 38182200.9 61.6 122314502014.8 19.9 7.2 3.7 97.4
POLAND 18 2005 9066.0 104.6 38165454.4 61.5 143812236141.4 19.7 7.4 3.6 100.0
POLAND 18 2006 9553.0 106.4 38141294.2 61.3 158374001355.7 21.7 7.6 3.2 102.2
POLAND 18 2007 9850.0 96.6 38120566.6 61.2 191221066130.3 22.6 7.6 3.0 100.7
RUSSIA 19 1994 54635.0 261.7 148336069.9 73.4 187878020111.2 19.7 7.4 7.3 1322.4
RUSSIA 19 1995 53176.0 256.6 148140977.6 73.4 188299193586.4 19.5 6.2 7.0 470.8
RUSSIA 19 1996 51701.0 270.0 147738880.1 73.4 186215868306.9 19.4 5.3 6.8 410.3
RUSSIA 19 1997 50730.0 263.7 147303875.3 73.4 189312203587.2 19.5 4.9 6.8 381.4
RUSSIA 19 1998 49753.0 259.6 146899008.3 73.4 126709711385.7 19.3 4.8 5.8 252.0
RUSSIA 19 1999 50965.0 259.4 146308999.8 73.4 89127103759.8 20.2 4.9 6.5 55.3
RUSSIA 19 2000 52333.0 255.9 146302860.8 73.3 110877110240.1 20.9 5.3 6.7 37.4
RUSSIA 19 2001 53151.0 250.9 145950009.4 73.3 127041972381.8 20.9 5.6 7.2 56.5
RUSSIA 19 2002 53168.0 260.9 145300056.9 73.3 137833859479.7 20.9 5.5 7.0 71.0
RUSSIA 19 2003 54372.0 246.1 144598933.2 73.4 160269596127.8 21.3 5.8 6.5 83.3
RUSSIA 19 2004 55516.0 261.6 143849875.1 73.4 211783575522.8 21.7 6.0 6.2 91.6
RUSSIA 19 2005 55898.0 239.9 143150014.4 73.5 252246734347.2 21.4 6.2 5.8 100.0
RUSSIA 19 2006 58600.0 244.7 142500027.4 73.5 283244267969.0 20.9 6.5 5.5 108.3
RUSSIA 19 2007 60281.0 259.8 142099961.2 73.6 366344721831.2 20.5 6.7 5.0 116.7
ROMANIA 20 1994 2941.0 97.7 22730204.0 53.9 16857947933.8 22.9 7.8 14.1 712.6
ROMANIA 20 1995 3126.0 107.1 22684251.4 53.8 19232378387.6 23.1 7.9 13.9 514.4
ROMANIA 20 1996 3417.0 111.1 22619012.7 53.6 18793527019.1 23.6 8.0 13.0 335.2
ROMANIA 20 1997 3305.0 107.5 22553961.4 53.5 18453101753.1 23.2 7.0 13.8 159.3
ROMANIA 20 1998 3147.0 106.0 22507334.9 53.3 21454900118.8 23.0 7.1 13.0 148.0
ROMANIA 20 1999 2917.0 103.0 22472031.7 53.2 18375235715.2 22.3 6.9 13.1 140.3
ROMANIA 20 2000 2919.0 97.8 22442990.1 53.0 18811386719.4 23.2 6.9 10.4 100.4
ROMANIA 20 2001 3121.0 102.3 22131949.7 52.9 19061139342.3 24.6 7.3 12.8 79.3
ROMANIA 20 2002 3060.0 98.9 21730513.4 52.8 21461284974.2 24.5 7.5 11.3 87.1
ROMANIA 20 2003 3225.0 117.9 21574322.4 52.9 26668836542.9 24.6 7.5 11.4 87.4
ROMANIA 20 2004 3335.0 100.8 21451757.6 53.0 32138277430.4 25.0 7.7 12.6 82.9
ROMANIA 20 2005 3342.0 104.3 21319679.8 53.2 41107129066.0 24.8 8.2 10.0 100.0
ROMANIA 20 2006 3523.0 103.3 21193750.7 53.3 45841001186.2 25.0 9.4 9.6 107.1
ROMANIA 20 2007 3524.0 100.2 20882968.9 53.4 59296079038.7 25.2 11.6 7.7 125.9
SLOVAKIA 21 1994 1748.0 101.0 5346332.8 56.6 12600037662.7 13.1 8.8 4.6 67.1
SLOVAKIA 21 1995 1869.0 109.3 5361998.4 56.5 16321062197.6 16.0 7.3 4.1 59.9
SLOVAKIA 21 1996 2019.0 113.4 5373362.6 56.5 17024584271.9 15.7 9.7 3.8 59.5
SLOVAKIA 21 1997 1964.0 110.2 5383292.7 56.4 17079191873.7 14.9 8.7 4.0 59.8
SLOVAKIA 21 1998 1806.0 107.6 5390515.8 56.4 17615832350.6 16.4 9.1 3.9 59.0
SLOVAKIA 21 1999 1956.0 103.2 5396019.3 56.3 17731050763.5 15.1 7.7 3.3 64.0
SLOVAKIA 21 2000 1893.0 93.5 5388722.0 56.2 15951410741.4 17.3 8.1 3.5 77.4
SLOVAKIA 21 2001 2017.0 109.6 5378869.1 56.2 16182595503.2 18.9 6.9 4.1 86.5
SLOVAKIA 21 2002 1957.0 103.9 5376909.9 56.0 17845116637.3 18.5 8.3 4.4 85.6
SLOVAKIA 21 2003 1977.0 114.3 5373372.8 55.9 23068027619.3 21.1 6.9 4.4 99.6
SLOVAKIA 21 2004 2066.0 105.8 5372281.5 55.7 27190579273.1 24.0 7.1 4.2 101.7
SLOVAKIA 21 2005 1965.0 107.8 5372809.2 55.6 28856685322.3 24.9 7.2 3.8 100.0
SLOVAKIA 21 2006 2034.0 105.5 5373055.1 55.4 30882035611.8 26.0 8.0 3.8 103.5
SLOVAKIA 21 2007 2113.0 100.7 5374623.4 55.3 36695294921.0 26.3 8.2 3.9 112.0
SLOVENIA 22 1994 793.0 95.4 1989443.5 50.6 12051509394.6 22.3 6.5 3.9 113.3
SLOVENIA 22 1995 803.0 102.3 1989872.4 50.6 16710240466.1 22.0 6.8 3.8 108.9
SLOVENIA 22 1996 817.0 107.8 1988627.9 50.6 16436086158.3 22.5 7.3 3.8 99.7
SLOVENIA 22 1997 847.0 98.7 1985955.6 50.7 15515110547.1 23.1 7.3 3.9 116.5
SLOVENIA 22 1998 868.0 103.6 1981628.8 50.7 16139286954.0 22.9 7.1 3.7 112.3
SLOVENIA 22 1999 891.0 98.6 1983044.8 50.7 16295928691.0 22.5 7.7 3.3 94.8
SLOVENIA 22 2000 905.0 89.2 1988925.6 50.8 14479696445.9 23.5 7.3 3.2 75.8
SLOVENIA 22 2001 941.0 100.3 1992059.7 50.8 14652893625.4 23.6 7.0 3.1 58.8
SLOVENIA 22 2002 1005.0 93.8 1994530.9 50.8 16090661345.6 23.9 6.9 3.4 68.4
SLOVENIA 22 2003 1036.0 112.9 1995733.4 50.7 20054124294.1 24.4 7.1 2.4 84.7
SLOVENIA 22 2004 1079.0 102.0 1997012.9 50.6 22403334806.1 24.5 6.8 3.0 100.9
SLOVENIA 22 2005 1096.0 105.1 2000474.4 50.5 23314229284.0 24.6 6.8 2.7 100.0
SLOVENIA 22 2006 1132.0 100.5 2006868.1 50.4 24722998482.1 24.8 7.3 2.5 99.1
SLOVENIA 22 2007 1141.0 93.6 2018122.7 50.3 30029335775.5 25.0 8.0 2.5 100.7
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TAJIKISTAN 23 1994 1232.0 159.9 5702610.6 29.4 350823778.6 27.3 5.9 21.4  
TAJIKISTAN 23 1995 1192.0 158.3 5784332.1 28.9 312503225.9 27.1 5.9 21.3  
TAJIKISTAN 23 1996 1171.0 156.4 5862347.4 28.3 258148913.4 25.0 6.6 21.1  
TAJIKISTAN 23 1997 1031.0 146.7 5937178.3 27.8 222017649.7 24.3 6.5 21.7  
TAJIKISTAN 23 1998 1067.0 150.6 6012935.6 27.3 315185584.4 24.9 6.3 21.9 58.7
TAJIKISTAN 23 1999 1137.0 144.6 6094661.9 26.8 257710577.4 25.0 6.5 21.6 184.3
TAJIKISTAN 23 2000 1141.0 149.5 6186153.6 26.5 189461462.9 29.1 3.0 23.7 138.8
TAJIKISTAN 23 2001 1150.0 146.1 6289338.7 26.5 235625853.9 29.1 4.8 23.0 125.1
TAJIKISTAN 23 2002 1169.0 144.1 6404119.2 26.4 254685811.1 30.1 3.6 24.4 111.5
TAJIKISTAN 23 2003 1189.0 118.3 6529607.2 26.4 326016010.5 28.9 5.0 23.6 134.2
TAJIKISTAN 23 2004 1212.0 107.7 6663931.5 26.4 422313910.8 25.8 4.7 24.8 107.3
TAJIKISTAN 23 2005 1248.0 122.8 6805651.8 26.4 457843316.6 25.6 5.1 23.8 100.0
TAJIKISTAN 23 2006 1262.0 127.6 6954523.3 26.4 541904053.1 25.0 5.1 23.5 90.9
TAJIKISTAN 23 2007 1266.0 130.6 7111024.1 26.5 687942942.5 21.4 5.3 23.4 120.5
TURKMENISTAN 24 1994 433.0 106.8 4095510.3 44.7 1611322649.3 40.6 6.9 33.2  
TURKMENISTAN 24 1995 430.0 109.0 4188008.9 44.8 1479101018.2 58.7 6.1 17.0  
TURKMENISTAN 24 1996 403.0 116.9 4267690.8 45.0 1403569497.8 59.5 10.8 13.2  
TURKMENISTAN 24 1997 335.0 114.5 4335992.8 45.2 1398289512.8 37.0 12.1 21.4  
TURKMENISTAN 24 1998 450.0 114.5 4395291.2 45.5 1486888100.9 31.7 13.8 26.6 400.9
TURKMENISTAN 24 1999 414.0 100.2 4449426.2 45.7 1431560936.7 30.4 12.4 25.2 202.9
TURKMENISTAN 24 2000 502.0 115.5 4501419.6 45.9 1649571823.0 33.7 6.9 23.4 187.8
TURKMENISTAN 24 2001 534.0 109.2 4551762.7 46.1 1888925356.8 35.2 5.8 25.2 168.3
TURKMENISTAN 24 2002 537.0 104.8 4600171.9 46.4 2323413436.2 33.0 8.3 22.4 123.8
TURKMENISTAN 24 2003 532.0 104.4 4648036.4 46.6 3020498346.1 33.2 6.8 20.7 117.2
TURKMENISTAN 24 2004 590.0 97.4 4696873.7 46.8 3372052546.0 32.3 6.7 19.8 110.7
TURKMENISTAN 24 2005 639.0 110.6 4747840.4 47.0 4047381557.7 29.9 6.6 19.1 100.0
TURKMENISTAN 24 2006 666.0 116.4 4801594.2 47.3 4984321585.9 29.0 6.1 17.8 92.5
TURKMENISTAN 24 2007 717.0 109.5 4858235.5 47.6 5989942382.0 30.5 6.5 19.4 87.0
UKRAINE 25 1994 12920.0 112.3 51921005.2 66.9 15569211356.0 17.4 10.7 12.8 1324.6
UKRAINE 25 1995 12341.0 114.3 51512334.9 67.0 13775179048.8 17.9 8.4 14.2 534.3
UKRAINE 25 1996 11111.0 127.4 51057190.8 67.0 12231444000.1 19.5 6.3 14.5 462.2
UKRAINE 25 1997 10677.0 120.3 50594101.2 67.0 13309992821.2 19.9 6.0 15.1 320.0
UKRAINE 25 1998 10165.0 116.3 50143914.0 67.1 11050420627.2 20.2 6.0 13.6 267.2
UKRAINE 25 1999 9896.0 112.0 49673377.8 67.1 8094303826.9 21.8 5.7 13.3 169.5
UKRAINE 25 2000 9760.0 103.0 49175825.1 67.1 7670171868.8 22.0 5.2 14.4 117.6
UKRAINE 25 2001 9264.0 114.4 48683906.4 67.2 9554298835.5 21.7 4.9 13.8 116.0
UKRAINE 25 2002 9340.0 110.4 48202516.2 67.3 10604630475.6 22.5 4.6 13.2 135.5
UKRAINE 25 2003 9819.0 121.7 47812990.1 67.4 12666784239.2 23.4 5.1 10.4 133.8
UKRAINE 25 2004 10323.0 106.3 47451585.2 67.6 16331369590.4 22.8 5.4 10.9 122.7
UKRAINE 25 2005 10587.0 108.4 47105129.5 67.8 20320376336.9 22.9 4.8 11.0 100.0
UKRAINE 25 2006 11149.0 116.9 46787789.1 68.0 24528590664.0 23.3 4.5 10.5 121.0
UKRAINE 25 2007 11613.0 110.0 46509386.9 68.1 32214869544.4 23.3 4.7 9.0 130.0
UZBEKISTAN 26 1994 3286.0 125.8 22376993.9 38.8 2957419279.6 24.3 6.6 28.5  
UZBEKISTAN 26 1995 3260.0 116.3 22784983.1 38.4 2924135300.0 23.8 6.6 30.1  
UZBEKISTAN 26 1996 3310.0 131.4 23224983.7 38.1 2945226437.8 24.3 6.6 28.4  
UZBEKISTAN 26 1997 3349.0 118.6 23666979.6 37.8 3069346102.7 23.5 6.4 28.5 262.3
UZBEKISTAN 26 1998 3336.0 126.6 24051008.3 37.7 3058849739.1 22.9 6.3 28.7 227.3
UZBEKISTAN 26 1999 3308.0 112.0 24311642.5 37.6 3435033654.2 22.5 6.1 29.0 111.2
UZBEKISTAN 26 2000 3420.0 121.4 24650401.1 37.4 2694394632.7 22.2 6.1 29.0 51.9
UZBEKISTAN 26 2001 3409.0 116.8 24964435.7 37.3 2176596075.1 22.0 6.0 29.0 56.5
UZBEKISTAN 26 2002 3497.0 110.0 25271864.5 37.1 1829849189.0 21.8 5.9 29.5 49.4
UZBEKISTAN 26 2003 3503.0 115.1 25567664.1 37.0 1885865417.7 21.4 5.9 30.0 58.2
UZBEKISTAN 26 2004 3546.0 109.1 25864360.6 36.8 2182782334.1 20.9 5.7 30.7 84.6
UZBEKISTAN 26 2005 3490.0 121.5 26166995.5 36.7 2498070348.0 20.6 5.6 30.6 100.0
UZBEKISTAN 26 2006 3612.0 120.9 26488273.4 36.5 2867495363.3 20.2 5.5 30.5 88.8
UZBEKISTAN 26 2007 3472.0 117.8 26868018.1 36.4 3624597990.8 19.9 5.4 29.8 92.7
UNITED KINGDOM 27 1994 24447.0 100.7 57865751.1 78.3 1440124134046.4 16.4 7.9 0.9 118.9
UNITED KINGDOM 27 1995 25346.0 97.9 58019037.1 78.4 1564319686035.1 16.1 7.7 0.8 115.2
UNITED KINGDOM 27 1996 26605.0 108.2 58166959.8 78.4 1586437623267.4 15.9 7.7 0.8 110.8
UNITED KINGDOM 27 1997 26763.0 95.7 58316928.0 78.5 1684578314574.1 15.8 7.5 0.8 103.0
UNITED KINGDOM 27 1998 27148.0 99.0 58487136.6 78.5 1789305479123.7 15.4 7.4 0.7 98.3
UNITED KINGDOM 27 1999 27756.0 96.2 58682460.4 78.6 1818467719413.9 15.0 7.3 0.8 96.5
UNITED KINGDOM 27 2000 28330.0 99.1 58892476.7 78.7 1715141962348.1 14.8 7.1 0.7 90.5
UNITED KINGDOM 27 2001 28614.0 102.6 59107978.9 78.8 1646770214857.7 14.3 7.0 0.6 88.3
UNITED KINGDOM 27 2002 28672.0 95.7 59362074.9 79.0 1758892402298.9 13.6 7.3 0.7 87.0
UNITED KINGDOM 27 2003 28915.0 95.5 59637734.4 79.3 2044577719564.5 12.9 7.3 0.7 85.3
UNITED KINGDOM 27 2004 29149.0 95.9 59978360.7 79.6 2320095698246.0 12.8 7.5 0.6 88.7
UNITED KINGDOM 27 2005 29986.0 96.5 60388046.0 79.9 2391051181326.1 12.4 7.1 0.7 100.0
UNITED KINGDOM 27 2006 29690.0 93.5 60828368.2 80.2 2459847076706.2 12.3 6.9 0.6 119.3
UNITED KINGDOM 27 2007 29382.0 95.1 61296915.4 80.5 2824944657303.5 12.1 6.9 0.6 119.4
FRANCE 28 1994 29024.0 73.2 59325741.0 74.7 1802118530241.4 12.8 6.4 2.1 130.4
FRANCE 28 1995 29485.0 76.9 59540670.8 74.9 2027823345253.1 13.1 6.3 2.1 126.7
FRANCE 28 1996 30602.0 82.2 59752048.9 75.1 1993896100415.4 13.0 6.0 2.2 126.3
FRANCE 28 1997 30569.0 71.1 59963833.9 75.3 1761665668537.2 13.3 5.7 2.2 117.9
FRANCE 28 1998 31600.0 75.8 60185207.7 75.4 1786819268196.8 13.5 5.5 2.2 114.4
FRANCE 28 1999 32246.0 75.2 60495490.3 75.6 1754225351068.2 13.6 5.5 2.2 111.6
FRANCE 28 2000 33102.0 69.5 60911031.0 75.9 1539858615465.2 13.7 5.7 2.1 105.1
FRANCE 28 2001 34037.0 76.5 61355751.9 76.1 1490109897682.6 13.7 5.8 2.0 103.7
FRANCE 28 2002 33840.0 68.5 61803248.1 76.4 1557944593243.7 13.5 5.7 2.1 103.1
FRANCE 28 2003 35122.0 85.2 62242491.0 76.6 1947685245873.4 13.7 5.6 1.8 103.4
FRANCE 28 2004 36134.0 77.8 62702075.7 76.9 2212318507598.8 13.7 5.6 2.1 102.9
FRANCE 28 2005 36358.0 80.1 63176258.4 77.1 2211799558552.0 13.7 5.6 1.9 100.0
FRANCE 28 2006 36716.0 78.6 63617979.2 77.4 2235559258032.4 13.7 5.6 1.9 99.5
FRANCE 28 2007 36637.0 69.0 64012587.4 77.6 2474689575394.7 13.6 5.7 1.8 113.3
GERMANY 29 1994 38147.0 93.0 81438348.4 73.3 2626316447314.4 22.9 6.9 0.9 109.7
GERMANY 29 1995 38804.0 101.4 81678065.7 73.3 3028706419396.1 22.3 6.5 0.9 107.4
GERMANY 29 1996 39419.0 111.0 81914895.8 73.2 2870274024321.7 21.5 6.1 0.9 97.8
GERMANY 29 1997 39709.0 97.8 82034819.2 73.2 2535961598901.8 21.9 5.9 0.9 96.1
GERMANY 29 1998 40087.0 89.0 82047181.2 73.1 2541132744629.9 21.7 5.6 0.9 94.5
GERMANY 29 1999 40719.0 90.2 82100249.2 73.1 2449476685708.6 21.5 5.4 1.0 89.4
GERMANY 29 2000 41577.0 81.4 82211506.3 73.1 2164671621721.9 22.4 5.2 0.9 77.5
GERMANY 29 2001 42593.0 97.1 82349925.5 73.1 2120828139128.1 22.3 4.8 0.8 81.8
GERMANY 29 2002 43732.0 91.1 82488421.0 73.2 2196936706811.5 21.8 4.6 0.8 84.8
GERMANY 29 2003 44257.0 102.6 82534218.1 73.2 2541249054937.3 22.2 4.4 0.9 92.2
GERMANY 29 2004 44829.0 93.7 82516273.8 73.3 2768725826869.6 22.8 4.2 1.1 94.2
GERMANY 29 2005 44915.0 91.0 82469385.7 73.4 2701324947849.0 23.0 4.0 0.8 100.0
GERMANY 29 2006 45405.0 95.0 82376475.3 73.5 2740501530754.4 23.9 3.8 0.7 104.4
GERMANY 29 2007 45525.0 82.1 82266406.6 73.7 3074137499882.9 24.1 3.7 0.9 109.7
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CZECH REPUBLIC 30 1994 3867.0 103.2 10333580.8 74.8 33367376229.7 16.3 10.8 3.2 90.2
CZECH REPUBLIC 30 1995 4135.0 111.3 10327255.9 74.6 40247203092.0 17.2 11.2 2.7 84.0
CZECH REPUBLIC 30 1996 4324.0 122.1 10315247.3 74.5 42901064667.6 18.9 11.2 2.5 79.6
CZECH REPUBLIC 30 1997 4269.0 109.6 10304137.1 74.4 38273912297.7 20.1 9.9 2.4 80.0
CZECH REPUBLIC 30 1998 4203.0 102.5 10294373.9 74.3 40770741866.7 20.6 9.4 2.5 86.9
CZECH REPUBLIC 30 1999 4138.0 102.4 10283854.9 74.1 38887689026.0 21.8 8.1 2.6 90.2
CZECH REPUBLIC 30 2000 4247.0 93.4 10255061.4 74.0 36250561217.9 23.1 7.2 2.5 93.4
CZECH REPUBLIC 30 2001 4376.0 110.2 10216600.5 73.9 37750524628.9 23.4 6.9 2.4 92.7
CZECH REPUBLIC 30 2002 4371.0 103.0 10196918.6 73.8 44873144288.6 24.0 7.0 2.3 96.6
CZECH REPUBLIC 30 2003 4507.0 113.8 10194001.6 73.7 52362851708.6 23.7 7.0 2.3 93.8
CZECH REPUBLIC 30 2004 4630.0 106.1 10197093.6 73.7 60958194493.7 24.8 7.3 2.5 94.9
CZECH REPUBLIC 30 2005 4755.0 106.3 10211223.6 73.6 69496776003.3 27.0 7.1 2.6 100.0
CZECH REPUBLIC 30 2006 4903.0 107.5 10238898.1 73.5 77245560359.6 30.4 6.6 2.2 107.8
CZECH REPUBLIC 30 2007 4922.0 97.0 10298832.0 73.5 90186477867.5 30.8 6.5 1.6 113.5
FINLAND 31 1994 5594.0 176.3 5088333.9 80.7 131717550761.2 18.2 7.9 4.1 85.4
FINLAND 31 1995 5609.0 169.7 5107791.2 81.0 166699790507.7 18.8 6.8 3.9 86.1
FINLAND 31 1996 5719.0 177.0 5124570.6 81.2 165264085572.0 18.8 7.4 3.6 93.4
FINLAND 31 1997 6062.0 172.8 5139836.4 81.5 153782673250.1 19.5 7.6 3.6 90.5
FINLAND 31 1998 6264.0 183.4 5153496.1 81.7 157568310713.6 20.5 7.7 3.1 91.0
FINLAND 31 1999 6387.0 170.4 5165472.5 81.9 157062717963.6 21.6 7.1 3.0 87.4
FINLAND 31 2000 6508.0 154.8 5176207.9 82.2 142454047362.5 23.3 6.8 3.1 81.1
FINLAND 31 2001 6655.0 173.5 5188009.5 82.4 144073332446.8 23.6 6.1 2.9 82.2
FINLAND 31 2002 6852.0 172.6 5200596.8 82.5 152220243584.8 24.1 6.1 2.9 86.9
FINLAND 31 2003 6953.0 172.4 5213015.7 82.6 185762503152.2 24.5 6.4 2.8 104.5
FINLAND 31 2004 7147.0 166.2 5228171.0 82.8 204755823238.4 24.7 6.5 2.6 104.9
FINLAND 31 2005 6943.0 159.4 5246096.3 82.9 211049668825.9 25.0 6.6 2.7 100.0
FINLAND 31 2006 7397.0 163.4 5266267.4 83.0 215011617823.0 26.8 6.6 2.6 102.2
FINLAND 31 2007 7402.0 161.1 5288719.6 83.2 246364439997.8 27.8 6.4 2.6 99.5
DENMARK 32 1994 2645.0 108.4 5206179.4 85.0 226257036591.6 16.7 5.7 1.6 83.1
DENMARK 32 1995 2656.0 112.3 5233374.0 85.0 262225571442.9 17.0 5.8 1.6 81.7
DENMARK 32 1996 2725.0 126.9 5263074.1 85.0 257888969895.8 16.1 6.0 1.6 86.0
DENMARK 32 1997 2741.0 111.4 5284988.5 85.0 232309232546.8 17.0 5.6 1.6 86.4
DENMARK 32 1998 2756.0 113.2 5304221.4 85.1 232794039743.6 17.0 6.0 1.6 93.9
DENMARK 32 1999 2767.0 105.7 5321798.4 85.1 232494519580.7 16.7 6.3 1.5 93.0
DENMARK 32 2000 2791.0 103.6 5339617.0 85.1 207956061178.8 16.6 6.1 1.6 97.6
DENMARK 32 2001 2801.0 113.5 5358782.9 85.2 205360490090.3 16.7 5.6 1.6 97.8
DENMARK 32 2002 2796.0 103.9 5375930.6 85.2 212903027705.2 16.2 5.7 1.6 99.2
DENMARK 32 2003 2784.0 108.4 5390572.3 85.4 262877583819.2 15.7 5.8 1.5 101.7
DENMARK 32 2004 2836.0 107.6 5404522.1 85.6 289521865614.4 15.7 5.8 1.6 99.8
DENMARK 32 2005 2878.0 108.2 5419433.0 85.9 301464225193.9 15.4 5.8 1.4 100.0
DENMARK 32 2006 2906.0 101.9 5437272.5 86.1 306750567323.2 15.6 6.0 1.4 104.9
DENMARK 32 2007 2879.0 100.2 5461438.0 86.3 335929398057.0 15.6 5.7 1.5 100.0
AUSTRIA 33 1994 3922.0 104.8 7936121.4 65.8 234287607624.3 19.1 8.5 1.8 100.7
AUSTRIA 33 1995 4017.0 117.2 7948278.2 65.8 274471119207.0 19.5 8.3 1.7 100.1
AUSTRIA 33 1996 4155.0 123.5 7959018.8 65.8 264662580370.5 19.4 8.3 1.7 105.5
AUSTRIA 33 1997 4206.0 110.6 7968041.2 65.8 232655103178.6 19.7 8.1 1.7 109.8
AUSTRIA 33 1998 4275.0 109.5 7976792.4 65.8 236356753990.2 19.5 8.0 1.7 109.0
AUSTRIA 33 1999 4374.0 110.3 7992326.2 65.8 233290984068.5 19.7 7.8 1.7 87.9
AUSTRIA 33 2000 4433.0 101.0 8011564.7 65.8 205300570535.4 20.3 7.6 1.6 79.2
AUSTRIA 33 2001 4611.0 113.3 8042292.1 65.8 205169823405.2 20.7 7.3 1.6 81.0
AUSTRIA 33 2002 4631.0 103.7 8081957.7 65.8 213932078200.0 20.1 7.2 1.5 84.0
AUSTRIA 33 2003 4783.0 119.7 8121423.9 65.8 255593295840.6 20.0 7.5 1.5 56.8
AUSTRIA 33 2004 4883.0 112.7 8171963.0 65.8 285365068610.2 20.1 7.5 1.6 100.9
AUSTRIA 33 2005 5014.0 116.4 8227829.1 65.8 296965993739.5 20.4 7.3 1.5 100.0
AUSTRIA 33 2006 5239.0 114.6 8268638.5 65.8 300319285303.9 21.2 6.9 1.4 100.9
AUSTRIA 33 2007 5331.0 102.2 8300787.3 65.8 345457761698.8 22.0 6.9 1.5 110.5
NORWAY 34 1994 8755.0 180.0 4336613.1 73.5 187716475050.8 14.4 6.0 2.4 85.7
NORWAY 34 1995 8924.0 178.9 4359182.4 73.8 216598388174.2 14.0 6.2 2.5 86.0
NORWAY 34 1996 8870.0 184.6 4381334.2 74.0 218688510978.4 14.1 6.3 2.4 87.3
NORWAY 34 1997 8935.0 172.4 4405156.9 74.3 210534638505.1 14.1 6.6 2.3 87.9
NORWAY 34 1998 9412.0 180.8 4431462.5 74.4 210062528897.9 13.5 6.8 2.2 80.0
NORWAY 34 1999 9397.0 173.8 4461914.8 75.1 205972441981.9 13.3 6.7 2.2 74.3
NORWAY 34 2000 9420.0 166.6 4490965.7 76.1 182439013223.0 13.0 6.6 2.1 69.8
NORWAY 34 2001 9648.0 179.9 4513752.8 76.6 181743696408.6 12.7 6.4 2.0 89.2
NORWAY 34 2002 9384.0 171.5 4538157.0 77.0 205203872110.7 12.5 6.5 2.2 91.4
NORWAY 34 2003 8871.0 169.8 4564856.3 77.2 234459267409.8 12.7 6.6 2.1 120.1
NORWAY 34 2004 9281.0 169.0 4591909.7 77.3 252718194716.2 12.8 6.6 2.2 105.5
NORWAY 34 2005 9523.0 168.5 4623292.6 77.5 271232043355.8 12.8 6.7 2.2 100.0
NORWAY 34 2006 9236.0 165.4 4660678.0 77.9 278212806832.3 12.6 6.9 2.2 121.9
NORWAY 34 2007 9516.0 170.1 4709154.0 78.2 323235808150.1 12.4 7.2 2.2 92.7
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Appendix 4.1. A Spatial Autoregressive True Random Effects Model 

 

Consider the following model, which is an extension of the True Random Effects model 

of Greene (2005) in a cost frontier (Bayesian) framework: 

 

𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑗≠𝑖

+ 𝑋𝑖𝑡𝛽 + 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 

   𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2)       𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢

2)           𝛼𝑖~𝑁(0, 𝜎𝛼
2) 

 

Note that this model is nested in the model presented in the paper – as it is just missing 

the components of persistent inefficiency. If we have unobserved heterogeneity in the 

data, the slope coefficients (the parameters of the cost or production function) are biased, 

which leads to serious bias in the inefficiency estimates of 𝑢𝑖𝑡. Ignoring this can be a 

serious problem in applied econometrics. One can think of this model as a spatial 

autoregressive model with random effects, where besides that inefficiency is disentangled 

from the error term.  

 

Posteriors for each of the parameters follow: 

 

 p(β|y, X, 𝜃−β) ∝ N(b, B) 

Where: 

b =(X’X + σv
2A)−1(X’Sy + σv

2Ac) 

B = σv
2(X’X + σv

2A)−1 

Sy = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)y − u − 𝑙𝑇 ⊗ 𝛼 

 

 

p(σv
2|y, X, 𝜃−𝜎𝑣

) ∝ Inv-χ2(NT+Nv ; ((Qv+v’v)/(NT+Nv))) 

 

   v = (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)y − Xβ − u − 𝑙𝑇 ⊗ 𝛼 

 

p(σu
2|y, X, 𝜃−𝜎𝑢

) ∝ Inv-χ2(NT+Nu ; ((Qu+u’u)/(NT+Nu))) 

 

     p(u|y, X, 𝜃−𝑢) ∝ N+(U,
σv

2σu
2

σv
2+σu

2) 
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U= 
[(𝐼𝑁𝑇−𝐼𝑇⊗ρW)y−Xβ−𝑙𝑇⊗𝛼] σu

2

σv
2+σu

2  

    p(ρ|y, X, 𝜃−ρ) ∝ |S| exp (−
𝑣´𝑣

2σv
2) 

 

|S| = |(𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW) |  

 

  v =  (𝐼𝑁𝑇 − 𝐼𝑇 ⊗ ρW)y − Xβ − u − 𝑙𝑇 ⊗ 𝛼 

 

    p(𝛼𝑖|y, X, 𝜃−𝛼) ∝  N(𝛼̅
σv

2+σu
2

σv
2  ;  (σv

2 + σu
2)IN) 

     𝛼̅ = (𝛼1̅̅ ̅, … , 𝛼𝑁̅̅ ̅̅ )   , 𝛼𝑖̅ = ∑((𝐼𝑁𝑇 − 𝐼𝑇 ⊗ 𝜌𝑊)𝑦𝑖𝑡 − 𝑋𝑖𝑡𝛽 − 𝑢𝑖𝑡)  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖

𝑇

𝑡=1

   

 

p(σα
2|y, X, 𝜃−𝜎α

) ∝ Inv-χ2(NT+Nα ; ((Qv+α’α)/(NT+Nα))) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 149 
 

Appendix 4.2. Geweke convergence diagnostic z-scores for each parameter 

 
 Model (1) 

GTRE 

Model (2) 

Spatial Lag SF 

Model (3) 

Spatial Lag no time 

trend 

𝜌  
 

-  0.08326 -1.145 

𝜎𝑢
2  -0.7836 -0.7457 -3.793 

𝜎𝑣
2  0.8292 0.6888 4.612 

𝜎η
2  -0.5636 -0.1169 -1.432 

𝜎𝛼
2  0.3913 0.49 0.925 

Cons. -0.7325832 -0.46750 2.731 

β𝐸𝑀𝑃  
 

-0.0009032 0.06288 -4.002 

β𝐶𝐴𝑃  
 

0.5392724 0.82358 3.866 

β𝑇𝑅𝐴𝐷𝐸  
 

-0.7326538 0.29375 1.777 

𝑡  1.0314887 0.13448 - 

𝑡2  -1.2542880 -1.828 - 

 

Note: Outliers outside of the interval between -2.3 and 2.3 in red. 
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Appendix 5.1. Geweke convergence diagnostic z-scores for each parameter 

 

 
 First order neighbours W 

matrix 

Second order neighbours W 

matrix 

ρ  -1.907 -0.7687 

𝛽  -0.01502  0.80671 -0.35617  

0.05712  1.61766  0.33351      

0.46697 -0.24283 -0.15267    

0.34636 -0.30156 -0.27850    

1.56329           1.34136          -0.38266 

-0.10101  0.80997  0.23982                    

-0.31531  1.00339  1.25552         

0.94031  0.07836 -0.47561         

0.21151 -0.56180 -0.14403         

1.86767  1.21058  -0.23661 

𝜎𝛼
2  -0.3941 -0.7075 

𝜎𝑣
2  -0.3947 -1.09 

𝜆−1  -0.354 0.761 

Note: Outliers outside of the interval between -2.3 and 2.3 in red. 
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Appendix 5.2. Chapter 5 dataset 

 

 
 

 

 
 

 
 
 

edb year edbno VC Energy Customers LoadFactor SAIDI CustomerDensity Capital

Alpine Energy 2000 1 3339661.46 496.52 27828.89 71.50 82.00 7.67 83.45
Alpine Energy 2001 1 3831550.08 537.63 27806.08 72.00 113.00 7.43 89.35
Alpine Energy 2002 1 3832929.69 522.33 28376.03 68.40 81.00 7.70 94.36
Alpine Energy 2003 1 3936844.22 586.73 28248.06 72.70 204.00 7.63 98.02
Alpine Energy 2004 1 4457416.96 589.68 28408.96 69.48 115.00 7.62 103.50
Alpine Energy 2005 1 4638167.91 576.46 28697.06 70.96 79.00 7.60 103.06
Alpine Energy 2006 1 4892627.31 625.91 29163.11 68.80 81.00 7.64 110.79
Alpine Energy 2007 1 8441157.49 659.18 29367.09 68.68 1138.00 7.65 112.78
Alpine Energy 2008 1 9702168.74 665.52 29849.10 61.86 149.50 7.43 129.30
Alpine Energy 2009 1 11312965.33 708.94 30266.90 64.28 200.94 7.45 130.00
Dunedin Electric ity 2000 2 8717734.87 1117.40 69494.30 56.50 208.00 16.10 240.40
Dunedin Electric ity 2001 2 9733752.08 1159.75 70208.17 55.70 82.00 15.15 252.78
Dunedin Electric ity 2002 2 10308403.56 1160.89 71431.20 53.90 89.00 15.06 262.70
Dunedin Electric ity 2003 2 11167965.33 1219.48 72794.09 54.60 101.00 14.93 271.85
Aurora Energy 2004 2 11753480.88 1189.39 73971.86 58.88 97.30 14.71 246.19
Aurora Energy 2005 2 12947069.15 1262.62 75116.84 57.52 80.50 14.59 266.86
Aurora Energy 2006 2 14693855.92 1269.26 76400.15 57.19 96.50 14.55 268.98
Aurora Energy 2007 2 17014219.61 1296.68 77712.39 56.33 101.40 14.51 275.53
Aurora Energy 2008 2 23040636.06 1274.41 79811.27 54.47 140.10 14.64 283.19
Aurora Energy 2009 2 27327388.53 1266.22 80685.97 55.84 68.01 14.55 274.83
Buller Electric ity 2000 3 1396626.16 40.55 4241.00 65.00 366.00 7.34 7.60
Buller Electric ity 2001 3 1161415.41 41.55 4258.00 66.00 314.00 7.19 7.84
Buller Electric ity 2002 3 1537026.09 40.24 4108.00 63.00 290.00 6.91 8.06
Buller Electric ity 2003 3 1803049.58 37.87 4187.00 63.00 370.00 7.03 7.75
Buller Electric ity 2004 3 1814535.37 40.08 4171.00 64.29 256.00 6.85 7.82
Buller Electric ity 2005 3 1662544.80 41.17 4178.00 65.91 134.00 6.99 7.90
Buller Electric ity 2006 3 2116469.65 40.59 4211.00 66.32 196.00 7.17 7.85
Buller Electric ity 2007 3 2351090.92 42.46 4258.00 67.75 355.00 7.22 7.68
Buller Electric ity 2008 3 3401509.97 43.54 4320.00 64.43 428.00 7.21 8.38
Buller Electric ity 2009 3 2577936.94 45.17 4395.00 64.81 273.26 7.30 8.64
Centralines 2000 4 1080905.85 85.43 7454.00 59.90 746.00 4.83 17.00
Centralines 2001 4 1443122.89 102.25 7432.00 62.56 438.00 4.60 20.29
Centralines 2002 4 1383697.75 102.91 7431.00 30.40 361.00 4.60 41.72
Centralines 2003 4 1391732.59 109.06 7442.00 71.80 260.00 4.81 18.72
Centralines 2004 4 1530278.04 104.34 7457.00 67.22 388.00 4.55 19.02
Centralines 2005 4 1562519.28 106.02 7532.00 68.28 171.39 4.57 19.02
Centralines 2006 4 1723469.55 106.47 7692.00 65.31 153.20 4.61 19.84
Centralines 2007 4 2207077.94 103.64 7775.00 68.34 246.60 4.56 19.01
Centralines 2008 4 2604053.95 105.47 7958.00 63.66 157.09 4.65 20.51
Centralines 2009 4 3701467.79 109.37 7981.00 64.19 198.76 4.51 20.63
Counties Power 2000 5 4959175.23 367.23 30470.06 60.26 124.00 9.70 75.15
Counties Power 2001 5 4602545.14 379.09 30546.03 60.06 132.00 9.13 77.80
Counties Power 2002 5 4392152.57 388.03 30816.95 55.62 62.00 9.10 85.81
Counties Power 2003 5 5238103.17 409.31 31213.94 63.02 92.00 9.44 79.90
Counties Power 2004 5 5289794.73 417.97 32780.86 63.68 96.45 10.10 80.13
Counties Power 2005 5 5921734.77 440.30 33930.85 62.97 59.60 10.50 85.26
Counties Power 2006 5 7339270.44 444.49 34813.13 62.13 61.73 10.68 87.10
Counties Power 2007 5 8258305.67 457.00 35544.83 60.49 109.49 12.00 91.51
Counties Power 2008 5 11732226.32 464.87 35613.14 61.05 167.78 11.97 92.43
Counties Power 2009 5 13475583.82 472.77 35969.98 60.91 171.68 11.95 94.09
Eastland Network 2000 6 5001407.85 264.51 25680.06 56.59 235.00 7.35 54.45
Eastland Network 2001 6 6736358.13 264.92 26127.93 57.99 1043.00 7.38 56.95
Eastland Network 2002 6 4631540.07 269.06 25551.98 58.06 190.00 6.95 57.08
Eastland Network 2003 6 3612389.42 275.20 25264.11 61.11 427.00 6.72 55.46
Eastland Network 2004 6 3803377.33 273.99 24876.03 62.85 356.32 6.85 53.85
Eastland Network 2005 6 4218372.72 287.26 24855.89 62.78 282.53 6.77 55.70
Eastland Network 2006 6 4772686.92 283.16 24864.09 61.75 358.95 6.78 55.89
Eastland Network 2007 6 6148016.09 290.92 24962.00 59.79 261.50 6.84 59.21
Eastland Network 2008 6 6225846.66 283.72 25195.99 59.82 258.13 6.90 57.90
Eastland Network 2009 6 8432720.55 280.74 25300.01 61.19 248.82 6.90 55.95
Electra 2000 7 3721919.17 340.64 36651.15 52.47 100.00 18.60 79.55
Electra 2001 7 4195696.86 352.95 37301.92 54.58 142.00 17.56 79.18
Electra 2002 7 4663701.48 358.38 38292.14 52.24 66.00 18.00 83.89
Electra 2003 7 5002408.23 369.22 39014.94 56.01 61.00 18.30 80.64
Electra 2004 7 4950949.83 368.91 39540.87 54.96 133.47 18.41 82.02
Electra 2005 7 4877434.88 388.34 39905.92 51.92 83.86 18.43 91.41
Electra 2006 7 5295457.84 384.99 40458.01 51.23 93.99 18.57 91.93
Electra 2007 7 6954642.64 406.23 40860.13 50.43 185.26 18.67 98.00
Electra 2008 7 8382694.83 402.37 41512.09 52.03 193.90 16.23 95.00
Electra 2009 7 10999715.87 401.42 41761.08 51.79 683.10 16.31 95.00
Electric ity Ashburton 2000 8 2367393.22 270.16 13843.00 53.30 147.00 5.69 62.43
Electric ity Ashburton 2001 8 2464402.64 326.09 14285.00 57.49 131.00 5.67 69.29
Electric ity Ashburton 2002 8 2330259.05 319.13 14558.00 52.43 229.00 5.64 74.62
Electric ity Ashburton 2003 8 3214524.49 413.35 14789.00 55.57 319.00 5.54 83.92
Electric ity Ashburton 2004 8 2991483.57 367.10 15049.00 58.33 198.63 5.51 91.21
Electric ity Ashburton 2005 8 3469704.54 357.99 15311.00 52.25 132.69 5.52 95.58
Electric ity Ashburton 2006 8 4618128.06 471.48 15975.01 56.12 150.20 5.70 104.02
Electric ity Ashburton 2007 8 6996565.89 477.20 16090.99 56.97 1918.00 5.67 99.62
Electric ity Ashburton 2008 8 6663463.82 477.74 16732.01 47.90 199.27 5.86 123.07
Electric ity Ashburton 2009 8 8228711.51 524.92 17218.01 45.95 337.32 5.96 136.00
Electric ity Invercargill 2000 9 1763268.95 237.11 16733.00 54.90 34.00 24.08 53.38
Electric ity Invercargill 2001 9 2002025.55 244.52 16701.00 51.60 35.00 24.35 57.87
Electric ity Invercargill 2002 9 1914180.21 246.36 16847.00 48.60 96.00 24.49 62.11
Electric ity Invercargill 2003 9 1716949.97 261.21 16961.00 54.40 21.00 24.44 59.69
Electric ity Invercargill 2004 9 1969558.57 253.54 16922.00 52.55 49.60 25.03 60.07
Electric ity Invercargill 2005 9 2134685.74 262.53 16842.00 53.41 15.40 24.79 60.61
Electric ity Invercargill 2006 9 2628463.47 259.61 16889.00 54.67 19.80 24.78 57.86
Electric ity Invercargill 2007 9 3780511.97 280.38 16943.00 51.55 36.70 24.94 63.70
Electric ity Invercargill 2008 9 4218625.83 267.48 17012.00 50.92 54.66 26.50 62.40
Electric ity Invercargill 2009 9 5202760.98 269.60 17126.00 50.91 51.43 26.29 61.36
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Horizon Energy 2000 10 2967706.53 555.27 23061.04 73.30 205.00 10.32 90.23
Horizon Energy 2001 10 2268546.78 562.05 23046.06 76.48 129.00 9.74 87.56
Horizon Energy 2002 10 2755005.51 571.97 23091.96 84.71 258.00 9.69 80.11
Horizon Energy 2003 10 2603507.16 579.47 23303.99 76.71 192.00 9.74 89.57
Horizon Energy 2004 10 2927267.64 559.37 23458.07 76.53 219.00 9.75 86.44
Horizon Energy 2005 10 4132445.83 571.01 23571.89 73.22 987.00 9.85 92.61
Horizon Energy 2006 10 5166107.18 586.66 23887.01 73.35 292.00 9.94 94.07
Horizon Energy 2007 10 7131769.94 587.10 23971.96 74.27 315.00 9.96 94.15
Horizon Energy 2008 10 8194305.34 540.53 24219.90 67.13 345.52 10.34 96.05
Horizon Energy 2009 10 9654068.59 512.09 24254.08 71.59 201.98 10.36 84.78
MainPower 2000 11 3272746.18 334.55 24140.11 59.09 117.00 5.84 68.23
MainPower 2001 11 3840564.81 382.93 25637.98 68.77 152.00 6.01 67.50
MainPower 2002 11 3661377.50 359.18 25047.02 63.84 214.00 5.79 68.34
MainPower 2003 11 4093660.03 396.46 25997.09 62.00 284.00 6.41 77.58
MainPower 2004 11 4797953.35 433.65 29081.86 69.69 99.64 6.96 74.43
MainPower 2005 11 6338546.24 449.60 30282.95 70.84 115.57 7.25 76.62
MainPower 2006 11 6390416.47 460.73 30670.91 69.66 109.17 6.94 79.57
MainPower 2007 11 8600750.29 466.52 31666.04 66.23 236.53 7.07 84.74
MainPower 2008 11 9003104.32 492.00 32545.03 69.02 110.67 7.52 86.00
MainPower 2009 11 12331407.24 509.15 33248.00 69.01 146.16 7.55 89.00
Marlborough Lines 2000 12 3875402.17 270.73 20572.00 58.20 172.00 7.07 52.98
Marlborough Lines 2001 12 4308455.31 289.91 20804.99 62.60 178.00 6.90 56.22
Marlborough Lines 2002 12 4386402.62 286.26 21037.99 62.30 208.00 6.90 55.61
Marlborough Lines 2003 12 4121715.43 303.37 21416.99 73.90 201.00 6.53 55.09
Marlborough Lines 2004 12 5194339.33 306.42 22250.95 67.83 222.40 7.09 54.81
Marlborough Lines 2005 12 6675602.36 320.28 22547.06 67.99 224.90 7.11 57.59
Marlborough Lines 2006 12 8071339.41 331.24 22932.03 68.65 260.20 7.14 58.23
Marlborough Lines 2007 12 9724120.44 332.68 23134.96 64.57 353.10 7.09 63.19
Marlborough Lines 2008 12 17294342.80 348.15 23583.91 60.79 265.30 6.81 70.00
Marlborough Lines 2009 12 19325770.07 353.08 23870.05 60.67 249.88 7.19 70.00
Nelson Electric ity 2000 13 646934.29 140.38 8476.00 59.40 77.00 35.46 28.22
Nelson Electric ity 2001 13 778987.28 140.84 8579.00 58.70 41.00 35.30 28.80
Nelson Electric ity 2002 13 717874.47 143.38 8575.00 55.05 39.00 35.58 30.47
Nelson Electric ity 2003 13 1241970.76 142.33 8614.00 57.73 100.00 35.60 29.77
Nelson Electric ity 2004 13 1273551.48 137.67 8735.00 56.09 53.20 36.55 29.80
Nelson Electric ity 2005 13 1428606.43 146.63 8876.00 58.48 51.00 36.68 30.12
Nelson Electric ity 2006 13 1732420.29 145.43 8915.00 56.30 122.00 36.54 31.07
Nelson Electric ity 2007 13 2150756.07 149.98 8900.00 56.58 249.90 36.33 31.67
Nelson Electric ity 2008 13 2245165.96 150.11 8881.00 52.58 16.93 36.04 34.23
Nelson Electric ity 2009 13 2582064.94 148.42 8943.00 54.05 185.40 36.21 32.81
Network Tasman 2000 14 3394577.96 595.03 30246.02 63.65 215.00 9.71 116.52
Network Tasman 2001 14 4190120.29 646.40 30790.15 65.29 173.00 9.86 117.89
Network Tasman 2002 14 3446879.89 661.62 31293.01 63.30 115.00 10.02 123.50
Network Tasman 2003 14 4599738.44 699.36 32205.10 66.12 151.00 10.19 126.10
Network Tasman 2004 14 4973080.38 703.73 33334.89 64.39 164.10 10.28 129.29
Network Tasman 2005 14 5903169.69 742.57 33829.89 65.14 210.15 10.42 134.98
Network Tasman 2006 14 6669663.72 739.98 34399.94 63.21 224.66 10.54 138.75
Network Tasman 2007 14 7554318.92 740.44 34910.05 62.68 285.41 10.58 140.02
Network Tasman 2008 14 8302689.03 594.25 35416.04 48.40 172.00 10.69 147.95
Network Tasman 2009 14 11674879.03 575.23 35828.90 59.71 342.31 10.76 148.40
Network Waitaki 2000 15 1327489.34 164.36 11408.99 69.89 46.00 6.02 28.82
Network Waitaki 2001 15 1311392.36 165.26 11371.99 65.18 72.00 5.98 31.36
Network Waitaki 2002 15 1366481.85 164.58 11341.00 69.15 78.00 5.93 29.03
Network Waitaki 2003 15 1662511.55 183.57 11400.00 71.04 92.00 5.91 31.26
Network Waitaki 2004 15 1821862.71 183.27 11491.00 61.24 187.00 5.94 36.21
Network Waitaki 2005 15 2070084.53 183.37 11974.99 66.03 104.85 6.17 33.56
Network Waitaki 2006 15 2669148.32 190.45 12006.00 67.95 102.31 6.02 33.99
Network Waitaki 2007 15 3270783.12 202.00 11944.00 57.39 505.55 5.96 42.57
Network Waitaki 2008 15 3319052.80 230.00 11970.00 60.74 94.67 6.10 46.42
Network Waitaki 2009 15 4146768.86 233.73 12256.00 59.17 69.36 6.56 47.28
Northpower 2000 16 5876430.04 801.02 44674.14 73.18 131.00 8.46 129.26
Northpower 2001 16 5699961.62 823.09 45588.92 74.85 183.00 8.63 128.09
Northpower 2002 16 6443548.79 813.88 46712.17 74.85 220.00 8.75 129.98
Northpower 2003 16 6547933.10 863.90 47785.14 77.38 182.00 8.80 131.56
Northpower 2004 16 7197900.90 867.72 48851.97 77.87 145.32 9.21 131.88
Northpower 2005 16 8795229.23 876.31 49819.91 76.37 113.24 9.19 135.34
Northpower 2006 16 11461337.81 929.94 50753.20 76.20 119.23 9.09 143.80
Northpower 2007 16 14047851.16 939.05 51668.83 76.67 151.33 9.15 144.01
Northpower 2008 16 18465413.50 970.00 52875.74 74.20 783.08 9.19 154.00
Northpower 2009 16 22023486.28 965.35 53330.84 75.36 254.34 9.48 151.00
Orion New Zealand 2000 17 16929699.43 2601.24 162543.35 57.70 52.00 14.11 541.61
Orion New Zealand 2001 17 18176316.26 2683.34 166556.52 61.30 62.00 14.52 525.65
Orion New Zealand 2002 17 19348781.42 2758.87 168454.34 58.60 46.00 14.64 564.82
Orion New Zealand 2003 17 21187035.09 2914.24 170489.67 58.00 102.00 14.37 603.40
Orion New Zealand 2004 17 23828192.59 2928.91 174449.40 62.44 43.40 13.39 563.12
Orion New Zealand 2005 17 27836815.47 3036.99 177717.41 63.15 52.90 13.36 577.37
Orion New Zealand 2006 17 33424175.05 3097.92 180540.43 62.54 64.00 13.13 594.71
Orion New Zealand 2007 17 40086092.03 3125.02 183199.32 59.55 154.50 12.91 630.03
Orion New Zealand 2008 17 45354048.37 3155.80 186029.40 60.01 53.76 12.92 631.60
Orion New Zealand 2009 17 52076794.27 3263.00 190285.34 62.15 62.85 17.90 625.00
Powerco 2000 19 19747747.65 1893.94 156219.91 63.26 110.00 10.11 243.33
Powerco 2001 19 24464655.47 1941.50 157120.77 63.91 96.00 10.26 372.09
Powerco 2002 19 22981038.02 1955.19 157451.07 63.50 160.00 9.87 373.23
Powerco 2003 19 36382920.30 3775.71 293478.60 71.70 296.00 11.84 466.00
Powerco 2004 19 42718387.24 3796.23 296164.40 67.18 370.41 11.88 692.25
Powerco 2005 19 57575057.36 4052.41 298665.65 67.35 208.32 11.14 727.42
Powerco 2006 19 60424789.45 4235.29 304470.66 75.67 235.80 11.24 677.26
Powerco 2007 19 59722536.32 4106.43 306125.37 67.24 220.60 11.23 753.03
Powerco 2008 19 73123474.37 4430.07 305071.06 66.67 358.76 11.15 776.00
Powerco 2009 19 80218121.41 4376.46 315378.88 67.34 320.09 10.77 764.00
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Scanpower 2000 20 1007154.92 79.10 6675.00 67.40 123.00 6.71 14.41
Scanpower 2001 20 1214751.39 81.08 6707.00 67.95 70.00 6.73 14.74
Scanpower 2002 20 1135030.41 82.46 6615.00 67.80 165.00 7.59 14.90
Scanpower 2003 20 1154352.34 86.63 6638.00 70.43 110.00 7.60 15.09
Scanpower 2004 20 973467.77 86.69 6719.00 69.99 185.20 7.80 15.23
Scanpower 2005 20 1117450.15 91.32 6753.00 67.88 71.31 7.84 16.47
Scanpower 2006 20 1441046.29 89.88 6694.00 67.30 68.59 7.74 16.35
Scanpower 2007 20 1461918.25 90.56 6686.00 62.97 46.67 7.68 17.61
Scanpower 2008 20 2352266.76 89.83 6748.00 63.45 58.31 7.64 17.35
Scanpower 2009 20 2539327.91 80.51 6831.99 61.03 35.57 7.65 16.24
The Lines Company 2000 21 2746121.20 265.07 25259.06 60.25 473.00 5.30 53.99
The Lines Company 2001 21 2755997.49 262.90 25845.97 62.81 574.00 5.79 51.58
The Lines Company 2002 21 3072032.65 265.64 25711.92 52.63 564.00 5.59 62.09
The Lines Company 2003 21 3586150.85 276.64 25045.01 51.92 729.00 5.18 65.24
The Lines Company 2004 21 3456855.78 278.08 25196.99 59.77 400.20 5.28 57.32
The Lines Company 2005 21 4728648.55 291.45 25535.12 64.61 305.60 5.84 55.58
The Lines Company 2006 21 5395846.24 294.80 26181.02 65.09 284.90 5.94 55.70
The Lines Company 2007 21 6069033.96 306.39 23359.06 64.35 368.50 5.33 58.44
The Lines Company 2008 21 7018710.01 301.19 23227.91 57.49 267.31 5.33 65.00
The Lines Company 2009 21 9097225.18 293.75 24185.05 59.75 297.13 5.48 61.00
The Power Company 2000 22 4483345.10 493.67 30272.95 65.00 446.00 3.62 97.83
The Power Company 2001 22 4489985.36 526.01 31004.88 66.50 147.00 3.70 101.63
The Power Company 2002 22 4958679.33 546.65 31799.95 60.70 139.00 3.77 114.32
The Power Company 2003 22 6013815.72 602.19 31944.01 68.20 167.00 3.78 110.96
The Power Company 2004 22 6138985.14 601.93 31875.09 67.89 157.30 3.76 110.52
The Power Company 2005 22 7521829.87 615.16 31967.02 68.29 125.50 3.76 112.17
The Power Company 2006 22 8942448.58 621.16 32243.12 67.48 161.20 3.78 114.01
The Power Company 2007 22 11265550.51 646.26 32568.15 69.93 182.90 3.81 113.92
The Power Company 2008 22 11436608.04 629.47 32997.93 64.10 294.78 3.87 121.53
The Power Company 2009 22 14599093.56 649.87 33692.14 64.02 217.34 3.93 128.04
Top Energy 2000 23 3210894.13 255.91 25700.10 62.00 495.00 7.00 52.00
Top Energy 2001 23 3960496.68 273.73 26233.96 63.40 329.00 7.05 55.00
Top Energy 2002 23 3870057.80 286.75 27043.99 62.00 674.00 7.20 58.00
Top Energy 2003 23 4361296.79 302.93 27590.04 63.00 420.00 7.27 59.00
Top Energy 2004 23 5412599.31 313.55 27075.11 65.08 352.90 7.07 59.00
Top Energy 2005 23 7501098.24 322.13 27656.06 67.47 496.20 7.15 59.00
Top Energy 2006 23 9097771.03 324.68 28486.06 67.78 556.10 7.14 59.00
Top Energy 2007 23 9673976.47 336.25 29073.14 64.68 487.80 7.16 64.00
Top Energy 2008 23 10969617.90 323.33 29972.93 63.95 818.30 7.32 62.76
Top Energy 2009 23 13643721.36 324.55 30453.01 64.21 915.16 7.94 63.29
Unison 2000 24 6385880.89 784.13 56594.10 61.13 104.00 14.80 154.59
Unison 2001 24 7395926.99 802.04 57331.19 59.57 385.00 14.81 162.20
Unison 2002 24 6578320.32 819.63 58069.74 58.62 102.00 14.88 168.90
Unison 2003 24 11466725.91 1479.26 102492.00 59.11 97.00 12.77 300.70
Unison 2004 24 13870848.98 1523.88 102299.49 65.81 202.00 11.15 276.88
Unison 2005 24 18174862.21 1581.08 103347.25 63.45 156.00 11.15 302.01
Unison 2006 24 22748732.78 1606.53 104578.16 62.92 134.00 11.22 307.72
Unison 2007 24 24501625.00 1592.51 105819.49 60.13 140.00 11.29 318.88
Unison 2008 24 27735396.30 1569.03 108139.79 56.73 117.80 12.10 332.56
Unison 2009 24 29580916.54 1562.51 107484.29 55.01 129.24 13.61 341.93
Vector 2000 26 30349178.27 4423.65 259577.35 59.26 59.00 29.80 889.90
Vector 2001 26 36207614.50 4765.46 265895.86 62.11 50.00 31.48 917.20
Vector 2002 26 35002148.39 4884.94 273999.07 59.41 56.00 31.94 982.91
Vector 2003 26 79309620.74 9170.54 633756.44 67.43 80.00 25.68 1605.22
Vector 2004 26 91777708.56 9773.77 643997.42 59.81 107.94 23.30 1957.78
Vector 2005 26 112585106.97 10243.03 650996.80 58.81 83.09 23.47 2085.09
Vector 2006 26 129230733.96 10289.03 660346.52 59.13 119.81 23.65 2088.86
Vector 2007 26 151793256.75 10695.86 671675.09 57.17 244.38 23.62 2241.80
Vector 2008 26 146440535.06 10650.12 679613.82 57.59 220.20 23.68 2221.76
Vector 2009 26 128951896.83 8244.00 522144.68 57.37 172.34 29.77 1711.00
Waipa Networks 2000 27 2051455.30 275.76 19824.01 60.33 300.00 10.52 55.77
Waipa Networks 2001 27 2117125.86 281.87 20050.01 62.41 280.00 11.46 55.29
Waipa Networks 2002 27 2136308.72 296.89 20293.01 65.23 375.00 11.50 56.06
Waipa Networks 2003 27 2660434.46 302.88 20510.00 66.79 247.00 11.60 55.21
Waipa Networks 2004 27 2754068.97 303.22 20772.99 64.98 491.04 10.92 56.81
Waipa Networks 2005 27 3374102.77 313.63 21107.00 63.09 278.74 10.47 60.56
Waipa Networks 2006 27 4540510.46 315.16 21538.00 65.38 176.23 11.02 58.73
Waipa Networks 2007 27 4982787.34 321.12 22005.99 67.35 541.43 11.11 58.14
Waipa Networks 2008 27 5007212.85 318.80 22702.04 64.00 497.29 11.30 60.77
Waipa Networks 2009 27 6410706.24 318.48 22896.97 63.83 236.99 11.13 61.14
WEL Networks 2000 28 9004905.12 922.18 70201.85 60.10 116.00 16.55 185.00
WEL Networks 2001 28 9183601.45 912.70 71473.35 59.20 158.00 15.59 186.20
WEL Networks 2002 28 9072242.18 915.23 72942.01 58.50 76.00 15.55 187.87
WEL Networks 2003 28 10553625.41 956.92 73959.28 62.27 94.00 15.60 184.45
WEL Networks 2004 28 9387785.62 971.89 75595.35 57.63 68.48 15.51 202.34
WEL Networks 2005 28 10207976.68 1017.64 77480.38 61.10 132.43 15.86 200.00
WEL Networks 2006 28 12582908.72 1041.70 79195.12 56.41 69.63 15.93 223.00
WEL Networks 2007 28 16154835.91 1102.83 81461.03 57.63 103.43 16.31 231.00
WEL Networks 2008 28 18988232.44 1160.24 81312.09 58.05 80.13 16.09 236.55
WEL Networks 2009 28 22189949.08 1152.54 83714.71 64.35 88.74 16.20 214.27
Westpower 2000 29 3304547.14 185.38 11729.00 65.30 156.00 6.11 185.00
Westpower 2001 29 2655782.78 190.43 11995.99 66.30 235.00 6.11 186.20
Westpower 2002 29 3160434.26 186.90 12072.00 63.40 140.00 6.12 187.87
Westpower 2003 29 3207299.94 201.75 12077.00 63.10 122.00 6.10 184.45
Westpower 2004 29 4126499.39 192.73 11931.00 65.65 205.49 6.03 36.02
Westpower 2005 29 4398965.69 196.82 12031.00 64.22 372.06 6.01 37.17
Westpower 2006 29 5070043.73 210.98 12010.00 65.02 151.12 5.94 39.29
Westpower 2007 29 6530212.22 215.67 12192.00 62.06 309.87 5.85 42.10
Westpower 2008 29 8224022.48 245.12 12414.00 67.71 150.52 5.96 44.00
Westpower 2009 29 9694119.28 271.92 12617.01 69.03 382.47 5.96 47.29


