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ABSTRACT  

 

Observed 4D effects are influenced by a combination of changes in both pressure and saturation 

in the reservoir. Decomposition of pressure and saturation changes is crucial to explain the 

different physical variables that have contributed to the 4D seismic responses. This thesis 

addresses the challenges of pressure and saturation decomposition from such time-lapse seismic 

data in a compacting chalk reservoir. The technique employed integrates reservoir engineering 

concepts and geophysical knowledge. The innovation in this methodology is the ability to capture 

the complicated water weakening behaviour of the chalk as a non-linear proxy model controlled 

by only three constants. Thus, changes in pressure and saturation are estimated via a Bayesian 

inversion by employing compaction curves derived from the laboratory, constraints from the 

simulation model predictions, time strain information and the observed fractional change in 𝑉𝑃 and 

𝑉𝑆. The approach is tested on both synthetic and field data from the Ekofisk field in the North Sea. 

The results are in good agreement with well production data, and help explain strong localized 

anomalies in both the Ekofisk and Tor formations. These results also suggest updates to the 

reservoir simulation model.  

The second part of the thesis focuses on the geomechanics of the overburden, and the opportunity 

to use time-lapse time-shifts to estimate pore pressure changes in the reservoir. To achieve this, a 

semi-analytical approach by Geertsma is used, which numerically integrates the displacements 

from a nucleus of strain. This model relates the overburden time-lapse time-shifts to reservoir 

pressure. The existing method by Hodgson (2009) is modified to estimate reservoir pressure 

change and also the average dilation factor or R-factor for both the reservoir and overburden. The 

R-factors can be quantified when prior constraints are available from a well history matched 

simulation model, and their uncertainty defined. The results indicate that the magnitude of R is a 

function of strain change polarity, and that this asymmetry is required to match the observed time-

shifts. The recovered average R-factor is 16, using the permanent reservoir monitoring (PRM) 

data. The streamer data has recovered average R-factors in the range of 7.2 to 18.4. Despite the 

limiting assumptions of a homogeneous medium, the method is beneficial, as it treats arbitrary 



iii 

 

subsurface geometries, and, in contrast to the complex numerical approaches, it is simple to 

parameterise and computationally fast. 

Finally, the aim and objective of this research have been met predominantly by the use of PRM 

data. These applications could not have been achieved without such highly repeatable and short 

repeat period acquisitions. This points to the value in using these data in reservoir characterisation, 

inversion and history matching.  
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CHAPTER 

ONE 

 

INTRODUCTION 

 

This chapter lays the foundation and sets out the framework of this thesis. First, the importance of 

integrating 4D seismic data and production data in resolving the challenges of complex reservoir 

characterization is demonstrated, using examples from the literature. Geomechanically active 

reservoirs and the associated challenges in seismic interpretation and analysis are also discussed. 

I also explore the literature on pressure-saturation estimation on chalk reservoirs and the proxy 

model solution. Finally, I provide an overview of the content of this thesis. 
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1.1  Preamble 

Time-lapse seismic or 4D seismic is the investigation of seismic attribute changes by acquiring 

seismic data through different time periods during the production period of a field. The first 

repeated 3D seismic surveys were acquired in North Texas in 1982/1983 to monitor a combustion 

process around an injection well (Mohamed and Samsudin, 2011). Since this seismic study was 

performed as the first is sui generis, and it was ahead of its time, the results did not prove it to be 

an economic method. However, now, nearly forty years after its first beginnings, 4D seismic has 

become commonplace in oil and gas field development as a proven technology. For example, 

nearly 75% of today’s Statoil’s field had acquired 4D seismic surveys by the year 2009 (Sandø et 

al., 2009). Traditionally, time-lapse seismic was used to discover the “low hanging fruits”, such as 

identifying un-swept areas and by-passed oil, to target infill drilling wells and to improve our 

knowledge of the geological framework.  

In recent years, combined with reservoir modelling, time-lapse seismic monitoring enables 

reservoir engineers to improve reservoir characterization and reduce uncertainty in production 

forecasts (Roggero et al., 2012). Pressure and saturation monitoring is key in field development, 

such as assessment of field connectivity, monitoring well performance, drilling infill wells, 

understanding injection and aquifer support and evaluating the average pressure state of the field 

(Corzo et al., 2013). The decomposition of pressure and saturation changes is also crucial to 

explain different physical variables that contributed to similar 4D seismic differences. The oil and 

gas industry is constantly pushing the boundaries of technology and ideas. Figure 1.1 shows the 

value chain of 4D seismic, demonstrating the vast contributions of 4D in different reservoir 

management and operations domains.  
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Figure 1.1: The 4D ‘Value Loop’ (de Waal and Calvert 2003).  

 

An emerging technology known as the seismic permanent reservoir monitoring (PRM) system, is 

paving the way to delivering better quality and higher repeatability seismic data. In the past, the 

majority (in the range of 95%) of offshore seismic time-lapse surveys were acquired using towed 

streamer, but this is now changing. The PRM system has improved repeatability so much that the 

technology has claimed changes in travel time as small as a few hundred microseconds, and 2-3% 

changes in amplitude are detectable above noise level (Bertrand et al., 2014). Figure 1.2 illustrates 

the growth in offshore PRM use since the Foinaven installation, we can see an increase in the 

number of kilometers of installed seismic sensor cables versus the year of installation. The forecast 

does not specify field names. Higher detectability in time-lapse seismic change means better 

operational efficiency, lower reservoir management costs, reduction of overburden drilling risk, 

better monitoring of cap rock integrity and higher success rate in unravelling reservoir dynamic 

changes such as pressure and saturation (Caldwell et al., 2015).  
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Figure 1.2: Summary of seabed PRM projects over the last 20 years and those forecasted for the 

future (Reproduced after Caldwell et al., 2015). 

 

1.2  Integration of Time-lapse Seismic and Engineering data 

The integration of seismic and engineering data has been mainly qualitative, such that anomalies 

are often inferred to be changes in oil, water, or gas saturation (Sønneland et al., 1996; Anderson 

et al., 1997; He et al., 1998), or semi-quantitative, in which the interpretation of reservoir 

performance has been aided by the visual comparison of maps and plots of seismic attributes with 

areal plots of the reservoir simulator output. As a result, the reservoir model can often be improved 

by updating the model in areas of misfit. Semi-quantitative integration of time-lapse seismic and 

production data can be found in Al-Najjar et al. (1999), Waggoner (2001), Staples et al. (2002), 
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Marsh et al. (2003), Landa and Kumar (2011), Ayzenberg et al. (2013), Alerini et al. (2014), 

Ayzenberg and Liu (2014) and Tian et al. (2014). A review of these articles shows that the 

comparison of the 4D signature with the predicted output from a simulation model has been 

successful in locating dynamic barriers, varying fault transmissibility multipliers, altering aquifer 

connectivity, identifying injected water slumping, STOIIP adjustment, well planning and changes 

in production strategies.  

To move towards more quantitative solutions, one would need to merge flow simulation and 4D 

seismic in an attempt to provide vastly improved forecasts of reservoir behaviour and make major 

improvements in geological reservoir models. These developments hold significant impact on the 

future of 4D within the industry. Other examples are from the “global inversion” scheme by El 

Ouair and Stronen (2006) and Lafet et al. (2009); constraining 4D inversion results  to the 

stratigraphy constraints, which honours the reservoir zonation, expected production effects and 

rock-physics trends (Figure 1.3). Seismic inversion is by its nature ill-posed and there are non-

unique solutions. In addition, the inherent errors in the 4D data, as well as the imperfect modelling 

process, will make the inversion unstable. Therefore, the key for a successful 4D inversion lies in 

collaboration among the disciplines.  

 

Figure 1.3: Inverted elastic attributes for a water flooded area by (a) independent inversion of 

baseline and monitor seismic data, (b) a global 4D inversion with a symmetrical 

searching window and (b) a non-symmetrical searching window as constraints 

(Lafet et al., 2009).  
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Quantitative examples such as that of Yin et al. (2015) have involved using well2seis attributes in 

seismic-assisted history matching to honour data from both seismic and engineering domains, and 

remaining consistent with fault interpretation. The well2seis attribute determines the correlation 

between production and seismic data across time. This promoted a 90% reduction in the misfit 

errors and 89% lowering of the corresponding uncertainty bounds after history matching with the 

well2seis attribute (Yin et al., 2015). Figure 1.4 shows that area ‘I’ shows a hardening signal due 

to pressure depletion, and this is not predicted in the simulation model in Figure 1.4 (b). 

 

Figure 1.4: (a) Observed 4D seismic difference between baseline and monitor, (b) simulated 4D 

seismic difference from simulation model using traditional history matching without 

well2seis attribute, (c) simulated 4D seismic difference after direct updating and (d) 

the 4D difference after assisted history matching using well2seis (Yin et al., 2015).  
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1.3  Geomechanically Active Reservoirs 

Reservoir compaction, subsidence and potential fault reactivation are notorious in depleting, weak, 

unconsolidated sandstone and chalk reservoirs. Reservoir compaction has been observed in a wide 

range of geographical locations and reservoir types, such as the North Sea, the Gulf of Mexico, 

California, Canada, South America and Southeast Asia (Bruno, 2002). It can be a positive 

phenomenon, because the compaction mechanism can provide significant energy to drive 

production, analogous to squeezing water from a sponge (Setarri, 2002). The value of the added 

production outweighs the negative effects of compaction, which are chalk production, well failures 

and damage on infrastructure (Barkved, 2012). The geomechanical challenges associated with a 

compacting reservoir are shown in Figure 1.5. Some of these challenges include slip planes in the 

overburden, well failure due to buckling-induced casing damage, a high shear zone in the 

overburden and a risk in seal integrity (Dusseault et al., 2001).  

 

Figure 1.5: Geomechanical challenges both inside and outside the reservoir induced by 

production (Dusseault et al., 2001).  

 

1.3.1 Challenges for time-lapse seismic analysis of a compacting reservoir  

There are many challenges to interpret time lapse seismic signals from a compacting reservoir, due 

to the additional component of porosity reduction making interpretation more ambiguous. This is 
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demonstrated in Figure 1.6: in the event of an injection event at high effective stress in a chalk 

reservoir, we have an interplay of (1) increase of water saturation, (2) pressure build up at injection 

point and (3) compaction due to weakening of the chalk. This results in complex behaviour such 

as cancellation in signals in the relative change of elastic properties and consequently amplitude 

changes and time-shifts.  

 

Figure 1.6: The behaviour of the relative change in P and S-wave velocity in an isolated event 

with different dynamic changes.  

 

As the reservoir compacts, the immediate overburden stretches in response. Often the seabed 

produces subsidence, which means the seismic signal becomes time variant and cannot be 

exploited to match time-lapsed seismic surveys with each other. In the Valhall field, time-shifts up 

to 48ms have been measured from streamer 4D seismic data (Barkved et al., 2003). In order to 

discriminate between subsidence effects, and image subtle time-lapse effects in the reservoir, high 

repeatability is required in the data. This can be achieved by having the locations of both the source 
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and receivers repeated as closely as possible in each survey. This is one of the reasons why many 

compacting reservoirs such as the North Sea chalk fields have a PRM system installed.  

Time-shifts, or travel time differences measured between baseline and monitor, are now 

transformed as an important reservoir characterisation tool especially for compacting reservoirs. 

The very first published 4D seismic example of reservoirs inducing changes in the overburden was 

by Guilbot and Smith (2002). This work provided a detailed interpretation of the towed streamer 

surveys of 1989 and 1999, with strong correlation between time-lapse time-shifts data and 

reservoir compaction. However, this was not always the case in the past, small time-shifts between 

baseline and monitor were often corrected for, instead of being preserved for interpretation, in 

order to improve repeatability. This small time misalignment could be due to acquisition, 

geometry, processing algorithms, velocity models and parameterisation (Johnston, 2013).  

In the Valhall field, challenges in tying wells to seismic using VSP and check shot data from older 

wells were also reported. The mismatch could be 20-30ms, using legacy data. An improvement 

was found when using wells that were newly drilled, with a mismatch of only 2ms. The most likely 

explanation was due to lateral variation in gas charges across a fault, commonly found in many 

compacting chalk fields with gas charges in the overburden (Barkved, 2012). 

Monitoring of stress and strain in compacting reservoirs is also key in making reservoir 

management decisions. This requires accurate prediction of changes in stress and strain due to 

various operations, including production, injection and fracturing, via a geomechanical model. The 

main challenge of geomechanical modelling and prediction is the availability of input data – 

primarily rock strength and in situ stresses. To acquire these data, expensive core logging and 

laboratory tests are required, which also is time consuming. These data are, however, sparse in the 

overburden to characterise the surrounding medium of the reservoir. There are also constitutive 

models which are difficult to parameterise. In Chapter 6 and 7, I will discuss in more depth 

analytical models such as Geertsma’s model (1963, 1977), to characterise stresses and strain in the 

overburden. An analytical or semi-analytical model like Geertsma’s can also be formulated in an 

inversion scheme, to estimate change in pore pressure.  
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1.3.2 Chalk reservoir inversion  

Acoustic impedance inversion can significantly improve data interpretation, since the 

interpretation is now carried out on rock layers and not interfaces. It is also beneficial, in the sense 

that comparison to the simulation model can be made on a cell-by-cell basis instead of using map-

based methods. There are many examples documented in the literature on impedance inversion for 

compacting or slightly compacting chalk reservoirs. The examples here will be focused on North 

Sea chalk reservoirs. In South Arne, both 3D and 4D AVO inversions were carried out. The 

inverted products were the baseline and the ratio of changes of baseline over monitor for acoustic 

impedance and Poisson’s ratio. Then, using a calibrated rock physics model allows translation of 

the changes of acoustic impedance and Poisson’s ratio into reservoir properties, such as changes 

in saturation for water and gas, and allows the changes in porosity to be quantified (Herwanger et 

al., 2010). This example is further elaborated in Section 1.4.  

In Halfdan, the reservoir is relatively thinner than Ekofisk (average thickness of 75m) and relies 

on implementation of long horizontal multilateral wells for completion. The chalk has little or no 

compaction if initial porosity is less than 35%, therefore compaction is expected to have less 

impact on 4D response in most areas of the field (Dons et al., 2007). In Halfdan, an integrated 4D 

inversion, showing time strain was used as a prior model, while inverting for 4D impedance 

changes. The role of time strain is twofold: it was first used to time-align the amplitude in TWT 

and also included as a prior model to estimate the low frequencies of the 4D impedance changes, 

giving a broadband estimation and also to reduce the side-lobes above and below the real 4D 

signal. The inverted relative change in impedance with a prior model looks cleaner, with more 

distinctive signals (Micksch et al. 2014), and is more intuitive to interpret compared to amplitude 

differences. From the inverted impedance difference, hardening signals were observed 

surrounding the injectors representing flood front progression, and softening in the upper part of 

Ekofisk, due to gas exsolution (Calvert et al, 2013, 2014), as shown in Figure 1.7 (a) and (b). This 

observation is not necessarily obvious by looking at changes in 4D seismic amplitude due to tuning 

and interference.  
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Figure 1.7: (a) Map view of inverted acoustic impedance, blue colour corresponding to AI 

increase/hardening and red colour representing AI decrease/softening, (b) section 

view showing Tor formation: blue halo shows water sweep patterns (Calvert et al., 

2014).  

 

In Valhall, the coloured inversion on the data shows the clear signal for pressure increase (a 

reduction in acoustic impedance) due to re-pressurization from a newly-installed injector (shown 

in Corzo et al., 2009). This effect is less apparent from the 4D amplitude anomaly overlaid, as this 
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decrease could be attributed to side lobe interference. In Ekofisk, seismic impedance inversion was 

used as a powerful technique in detailed reservoir characterization. It was used mainly for porosity 

mapping and to understand reservoir layering and diagenesis. The impedance inversion results 

shown in Figure 1.8 reveal detailed stratigraphic facies (EL3 facies, SEE, SED2 facies, tight layer 

and porous layers) in Ekofisk, based on the strength of impedance (Guilbot et al., 2002).  

 

Figure 1.8: (left) Cross-section of amplitude and (right) acoustic impedance inverted from post-

stack inversion - good agreement was found with log data (Guilbot et al., 2002). 

 

In the Dan field, impedance inversion was carried out using Bayesian classification constrained by 

well data and rock physics analysis to define lithological boundaries and fluid distribution. The 

inverted products shown in Figure 1.9 illustrate the gas cap and tilted fluid contact are highlighted, 

where the both 𝐼𝑃, and 𝑉𝑃/𝑉𝑆 are low. This process also helps in updating the interpretation of the 

top structure (Herbet et al., 2013). 
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Figure 1.9: (top) Inverted acoustic impedance, (middle) inverted 𝑉𝑃/𝑉𝑆  ratio and (c) 

hydrocarbon probability for the Dan field (Herbet et al., 2013). 

 

1.4  Pressure-Saturation Estimation using 4D Seismic on Chalk reservoirs 

The quantification of pressure and saturation distribution is an important improvement in the 

interpretation and applicability of time-lapse seismic analysis. The Holy Grail of the 4D seismic 

technology is the ability to separate time-lapse seismic response into pressure and saturation 

changes. In the case of a compacting reservoir, estimation of porosity and stress changes is also 

top on the list of deliverables from 4D seismic. Saturation changes supply information on fluid 

movement and barriers, while pressure changes provide data on the position of barriers and 

compartments, fault sealing and non-sealing, and general connectivity. An accurate estimation of 

pressure and saturation requires a careful time-lapse analysis and a more quantitative integration 

between the engineering and seismic domains. This can be carried out by relating the changes in 

the seismic to corresponding changes in fluid pressure and/or saturation. The workflow presented 

in Figure 1.10 shows how seismic is incorporated into reservoir models: information can be 

compared in three key domains: seismic amplitude trace, impedance or elastic properties and the 

dynamic properties domain.  
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Different studies have shown that the matching in the seismic domain is very difficult (Gosselin 

et al., 2003, and Roggero et al., 2007). This is related to the nature of seismic data, which are very 

different from production data. Furthermore, seismic modelling is often a time intensive process. 

Due to CPU time constraints, reservoir simulation often requires upscaling. Thus the resolution of 

the simulated seismic attributes can be very low in comparison to the resolution of the observed 

seismic. This creates unfavourable comparisons.  

Matching in the impedance or elastic property domain has its pluses and minuses. The drawbacks 

are that acoustic impedances are derived from a preliminary inversion process of the seismic data 

which is generally noisy. In addition, the result of the inversion process is largely dependent on 

the choice of the prior model, and thus is uncertain. However, if the seismic data is of reasonable 

quality, the inverted acoustic impedance, which is an interval property, proves to be an attribute 

that can be compared to the predicted ones more effectively. The petro-elastic model, which is key 

in this process, requires many calibrations from well logs and laboratory stress sensitivity 

coefficients and assumptions (Landrø, 2001, Gosselin et al., 2003, Stephen et al., 2005, Floricich, 

2006, Wen et al., 2006, Amini, 2014). 

The third domain is to compare maps or volumes of the dynamic properties such as pressure and 

saturation changes, inverted from seismic, which can be directly compared to the outputs of the 

simulation model prediction; this helps to reduce ambiguity in interpretation. However, these 

inverted products carry more uncertainties than elastic changes, as the uncertainties associated 

with inverted products from 4D seismic such as elastic properties and time-shifts are used as inputs. 

If pressure and saturation changes can be accurately and effectively extracted from time-lapse 

seismic data, a direct comparison can be made with predictions from the engineering domain. 

There have been other methods that circumvent the complex seismic modelling process to arrive 

at these dynamic properties, which will be provided in Section 1.5.  
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Figure 1.10: A workflow showing how to make a comparison of the seismic data to the reservoir 

model (engineering domain). Comparisons can be carried out in the domains of 

seismic, elastic properties and dynamic properties  
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The majority of pressure -saturation inversion work reported in the literature is mainly focused on 

the development and application of model driven approaches. In these methods, dynamic 

properties are inverted using AVO inversion which is based on the physical principles of seismic 

wave propagation. It is often a two-step procedure, where seismic amplitudes are inverted into 

various elastic properties and, subsequently, using a rock physics transform, these elastic 

properties are translated into pressure and saturation changes. In the work of Herwanger et al. 

(2010), angle-band stacks of baseline and monitor surveys are used as inputs to invert for acoustic 

impedance and Poisson’s ratio and the ratio changes of these parameters. A calibrated rock physics 

model then allows translation of these elastic properties into pressure, water saturation and porosity 

changes. The results from this deterministic 4D AVO inversion work are reported in Figure 1.11. 

In general, model-driven approaches are computation-intensive and could be hard to parameterise. 

Data-driven methods, on the other hand, use production and seismic data at well locations to 

compute some correlations. The correlations established at these sample points are then used to 

estimate pressure and saturation changes from 4D seismic at the un-sampled locations between 

wells. In data-driven approaches, pressure-saturation estimation is driven by what is learned from 

field data, and thus sometimes does not require a rock-physics model. Further examples will be 

given in Section 1.5. In the current literature, most data-driven 4D seismic inversion commonly 

results in 2D maps displaying changes in reservoir pressure and saturation. This represents a major 

shortcoming of the approach when compared to model-driven methods that generate 3D 

volumetric changes in reservoir pressure and saturation. Extending the data-driven method into 

volumetric or into 3D space is one of the goals of this thesis. I will also discuss the rationale of 

breaking way from 2D maps for the Ekofisk field in Section 1.5.  
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Figure 1.11: (a) Water saturation change inverted from 4D AVO inversion compared to (b) 

water saturation predicted from reservoir simulation model. (c) and (d) show 

comparisons for porosity changes from an inversion result and volumetric strain 

from a geomechanical model (Herwanger et al, 2010).  
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1.4.1 Taking advantage of multiple repeated surveys  

The move towards more quantitative interpretation requires analysis of multiple 4D seismic 

attributes to estimate the engineering measures of reservoir change. According to Watts (2011), 

the use of seabed mounted four-component receiver technology will bring 4D seismic data to 

whole new level of data quality, with an unprecedented level of repeatability and multi-azimuth 

sampling of seismic wave field. Therefore, dedicated permanent reservoir monitoring (PRM) data 

could provide an important contribution in this area of development. Well engineers in the Valhall 

Field have been some of the most enthusiastic customers of PRM data (Caldwell et al., 2015). The 

current state of the industry, as highlighted in the red box in Figure 1.12, shows how seabed 

systems have provided a significant step-change in reservoir monitoring. Field operation and 

management decisions are taken on a monthly to weekly basis, where PRM data can effectively 

provide new snapshots of the reservoir in that time frame. 

There are many examples showing the benefits of repeated surveys and a PRM system. One of 

such examples is the Clair field, as illustrated in Figure 1.13, showing a towed streamer data in 

1992, a sparse OBC in 2002 and lastly the high-density OBC from 2006 to present day. What is 

being demonstrated is a significant improvement in data quality from a narrow azimuth acquisition 

to full, coarsely-sampled data, to well-sampled full azimuth data (Davies et al., 2011). It can be 

seen that there is a step change in improving the structural imaging and low frequency of the data.  

Hypothetically, if changes in the dynamic properties of the reservoir can be easily and effectively 

inverted from multiple seismic data across different time periods, this could ultimately replace the 

concept of a simulation model. Building an up-scaled geological model (simulation model) 

requires a tremendous amount of time, effort and data. Moreover, the constrained reservoir models 

obtained by history matching with well production data often yield solutions that are not unique, 

and data is sparse and local. In the Ekofisk field, with dedicated PRM surveys, seismic data are 

acquired and processed as often as every six months (Bertrand et al., 2014). This provides a unique 

opportunity to monitor these reservoirs and retrieve information from the subsurface at an 

unprecedented pace, often surpassing the time required to history match the entire simulation 

model from start to finish.   
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Figure 1.12: Many oil management decisions and interventions are made on a monthly basis. 

This could benefit from input from more frequently acquired seismic data 

(highlighted in red box) than is the current norm (Reproduced after Caldwell et al., 

2015).  

 

 

Figure 1.13: A comparison of seismic quality for (a) a towed streamer, (b) sparse OBC, and (c) 

high-density OBC (taken from Davies et al., 2011).  
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1.5  A Proxy Model Solution 

One branch of active research is the determination of quantitative estimates of pressure and 

saturation changes from observed 4D seismic signals. Myriad techniques have been developed 

over the years, and these fall between two end-members - those based on rock-physics models, 

such as Tura and Lumley (1999), Cole et al. (2002), Landrø et al. (2003), Davolio et al. (2011) and 

Trani et al. (2011), and those relying on statistical calibration against the well or field wide 

production data, such as Landrø (2001), MacBeth et al. (2004), Floricich et al. (2006), Chu and 

Gist (2010), and Falahat et al. (2013). The major challenge with all these methods is that one needs 

to ensure that a forward model can adequately describe time-lapse elastic properties as a function 

of the dynamic reservoir parameters, and that the inverted dynamic properties are realistic and 

engineering consistent (EC).  

 

1.5.1 Rationale of a Proxy Model approach 

The use of a proxy model for inversion, modelling and production optimization is becoming more 

popular. For example, MacBeth et al. (2004, 2006) proposed an approach for inversion of pressure 

and saturation changes, where the linear relationship in Equation 1.1 describes the change of 

pressure and oil saturation with time-lapse seismic attributes.  

∆𝐴(𝑥,𝑦)

�̅�𝑏
≈ 𝐶𝑠∆𝑆𝑜(𝑥, 𝑦) + 𝐶𝑝∆𝑃(𝑥, 𝑦)  (1.1) 

where the constants 𝐶𝑠 and 𝐶𝑝 can be determined by calibration against production data for wells 

or the simulation model. ∆𝐴(𝑥, 𝑦) represents the changes in amplitude at each spatial location, �̅�𝑏 

is the baseline amplitude, ∆𝑆𝑜(𝑥, 𝑦) and ∆𝑃(𝑥, 𝑦) are the changes in oil saturation and pressure at 

each spatial location. The change in time-lapse amplitude difference is normalized by the 

amplitude computed in the baseline survey. Multiple seismic attributes can be used and the above 

linear system is to be solved in the least-squares sense, to invert for pressure changes and saturation 

changes (Floricich et al., 2006). Such a linear relationship is said to be generally valid for a 

petroleum reservoir under production. Work from Alvarez and MacBeth (2013) shows that 

Equation 1.1 can also be written as Equation 1.2: 
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∆𝐴 = 𝐶𝑠∆𝑆𝑤 − 𝐶𝑝∆𝑃  (1.2) 

where the controlling parameters 𝐶𝑠 and 𝐶𝑝 provide the balance between the relative contribution 

of saturation and pressure change to the overall time-lapsed seismic signature. The negative sign 

in Equation 1.2 shows that an increase in water saturation (hardening of impedance) has an 

opposing physical effect on the reservoir, to an increase in pore pressure (softening of impedance), 

when 𝐶𝑠 and 𝐶𝑝 are both positive values.  

The key trends that shape my proposed equation come from Floricich et al. (2006) and Corzo et 

al. (2013), where 4D seismic attributes are directly calibrated against field production data, and 

with the latter, a linear relationship was found between porosity, pressure changes and 4D 

amplitude changes in the compacting Valhall field. Linearity is not a necessary condition for this 

type of approach, as in the presence of complicated rock deformation mechanisms like water 

weakening, non-linear compaction trends can also be captured in the forward modelling procedure 

and subsequently used for inversion.  In the work of Corzo et al. (2013), initial porosity was 

included to solve for pressure changes, specifically pressure depletion: 

∆𝐴 = (𝐶1𝜑𝑖 + 𝐶2)∆𝑃 (1.3) 

where 𝐶1  and 𝐶2  are fixed constants to be determined for a particular reservoir. Initial porosity, 𝜑𝑖 

was considered as an important factor in inverting for pressure depletion in the Valhall field, a 

different mechanical stress sensitivity characteristics, depending on whether the initial porosity is 

above or below 35%. A higher initial porosity gives rise to stronger stress sensitivity, whilst lower 

porosity rocks are less stress sensitive for similar pressure ranges. This is similarly to the case of 

Ekofisk, where different mechanical stress sensitivity is found above and below 28% of initial 

porosity. The relationship between the time-lapse attribute (speed-up) versus pressure depletion as 

a function of initial porosity is shown in Figure 1.14 (a) and (b). The results of the inversion applied 

on the Valhall field are shown in Figure 1.15. The general conclusion from this work is that the 

estimation of pressure depletion from time-lapse seismic differs from the simulation model in some 

areas and the approach is easily implemented and data-driven.  
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Figure 1.14: (a) Correlation between speed-up attribute from 4D seismic and pressure depletion 

from pressure change predicted from simulation model at well perforations and (b) 

the variation of the resultant gradient term (𝐶1) with initial porosity (Corzo et al., 

2013).  

 

Figure 1.15: Estimated pressure change from (a) a coupled geomechanical-fluid flow simulator, 

(b) inverted using 4D seismic amplitude attribute – Largest Positive Value (LPV) 

with initial porosity averaged from certain layers in the reservoir and (c) inverted 

from LPV using initial porosity of one zone only (Corzo et al., 2013).  

 

This technique is also employed by Landa et al. (2015), where the correlation between 4D seismic 

and pressure-saturation information is obtained by calibrating with well data. Uncertainty or 

probabilistic analysis in the map-based estimation of reservoir pressure and saturation changes is 

performed in the calibration process in order to bring forward the uncertainty in this process to the 

final estimation of pressure and saturation changes. These uncertainties include seismic noise, 

location of top and bottom surfaces to compute seismic attributes, and the production data. The 
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pressure and saturation changes estimated for a clastic turbidite reservoir are presented in Figure 

1.16.  

 

Figure 1.16: (a) Maps of inverted pressure change and (b) water saturation change from Landa 

et al., (2015) using a data-driven inversion approach.  

 

I am inspired to break away from the map-based approach into something more suitable for the 

thick, multi-cycle, compacting chalk reservoir of the Ekofisk field. Equation 1.3 applied in the 

Valhall field is not totally applicable to Ekofisk, due to their different production history and the 

nature of the reservoirs, such as their heterogeneity and thickness. Ekofisk had twenty-nine years 

of water injection between 1987 and 2015, whereas the water flooding in Valhall has only been 
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operating for nine years, to date, and full scale water injection only started in 2007. This implies 

the water weakening signal is less dominant in the Valhall field in comparison to Ekofisk. The 

map-based approach of Equation 1.3 works effectively in Valhall, since the main producing Tor 

formation is only 30m thick, which translates to half a cycle on the seismic data (Jack et al., 2010). 

A comparative study between Valhall and Ekofisk is provided in Table 1.1, highlighting the main 

differences between the two neighbouring chalk fields:  

 Ekofisk Valhall 

Thickness Ekofisk formation (100 to 168 metres), 

Tight Zone (20m on average), Tor formation 

(76 to 152 metres) 

Multicycles 

 

Tor is on average 30m, Hod 

is thicker but only contributes 

8% to production  

Half cycle 

Burial depth 2896 – 3261 m 

 

2400 m 

Water 

weakening 

behaviour 

 More substantial in Ekofisk, since 

the thermo-chemical aspect of the 

water weakening is different, with a 

higher reservoir temperature at 130 
oC 

 Do not have seismic information on 

pressure depletion alone as seismic 

acquisition started after water 

injection, as opposed to Valhall.  

 Study shows seawater is able to 

change enhance wettability of the 

chalk towards more water-wet at 

high temperature >100oC 

(Puntervold et al., 2009) 

 

 Reservoir temperature 

is 93 oC 

 

Production 

history  

Production in 1971 

Full field water injection In 1987  (after 17 

years of primary depletion) 

 

Production in 1982 

Water injection in 2007  

(after 26 years) 

20 years on primary depletion 

Table 1.1: Showing a comparison between Valhall and Ekofisk in terms of reservoir thickness, 

burial depth, geomechanical behaviour and production history (Kristiansen and 

Plischke, 2010, Madland et al., 2010).    
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1.5.2 Proxy models in other applications 

The concept of a proxy model is novel in the oil and gas related disciplines, but it has a long and 

pivotal history in the fields of optimisation, statistics and uncertainty quantification. A proxy 

model is used to provide a fast approximation to the actual function (Goodwin, 2015). Some of the 

proxy models used in the oil and gas industry include the surrogate model, the kriging model, 

neural networks, and the regression model. In history matching, response surface proxies are 

commonly used to approximate the functional relationship between the input parameters and the 

aggregated mismatch (Castellini et al., 2006, Friedmann et al., 2003, Landa and Güyagüler, 2003). 

The mismatch function in history matching is the misfit between the simulated data and observed 

data (Tarantola, 2005), which quantifies the degree of consistency of a reservoir model and the 

historical data. Each evaluation of the mismatch function requires a simulation run, making the 

history matching process laborious and computationally expensive. One way to reduce the 

computational cost is to construct a response surface proxy for the mismatch function, which is a 

parameterized mathematical expression that can be calibrated on a set of training data to 

approximate the input to output relations of the mismatch function. After calibration, the response 

surface proxy can be used to replace the simulator to evaluate the mismatch function.  

Other uses of proxy include using an analytical expression to speed up the estimation of seismic 

data using outputs from the reservoir simulator instead of running a full simulator-to-seismic 

workflow. As successfully demonstrated by Fursov (2015), a linear relationship between seismic 

and reservoir dynamic properties: pressure, water and gas saturation change:  

∆𝐴 = (𝑎𝑝∆𝑃 + 𝑎𝑆𝑤∆𝑆𝑤 + 𝑎𝑆𝑔∆𝑆𝑔) ∙ 𝐴0 (1.4) 

was used to generate seismic attributes to speed up the history matching process. 𝐴0 is the seismic 

attribute at baseline survey. The coefficients 𝑎𝑝, 𝑎𝑆𝑤 and 𝑎𝑆𝑔 in the equation are calculated from 

seismic data of the given reservoir from multiple monitors. The left hand side of the equation will 

include all the points of time-lapse attribute maps from all monitors; the right hand side will include 

the points of the reservoir dynamic property maps from the corresponding time steps, scaled by the 

baseline seismic attribute. According to the findings obtained by Fursov (2015), the fast-track 

procedures, conducted by applying a regression between 4D seismic attribute maps and the average 
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maps of the dynamic reservoir properties, are considerably faster than the full-fledged history 

matching. However, the fast track method is more applicable if noise is low, whereas the slower history 

matching workflows are more robust for the situation where there are noisier inputs.  

Map vs. volume 

Thin and thick reservoirs should be treated differently for interpretation. Because many of the sand 

thickness in clastic reservoirs are below tuning thickness, many case studies on 4D amplitude 

interpretation employ a quadrature-phase difference approach (Johnston, 2013). Moreover, for a 

thin reservoir, quadrature amplitude analysis is useful if the reservoir is a half cycle, such as in the 

North Sea clastic Schiehallion field. In that case, changes in amplitude are then directly related to 

the primary changes in impedance. Map-based methods will be sufficient, since averaging across 

a thin reservoir will not compromise the signal too much. In contrast, thick reservoirs will have a 

very different character at both top and base of the reservoir; thus, when looking at maps, this 

reservoir should be interpreted using top and base maps separately and with caution, instead of 

averaging the amplitude difference across the entire reservoir thickness.  

The caveats of interpreting such reservoirs are interference, tuning and side lobe problems. The 

4D signals will comprise of too many destructive and constructive events and will not truly reflect 

primary changes, such as in the case of the Ekofisk field. This is also one of the reasons that 

prompts us to look at volumes instead of maps. Moreover, this is particularly true for long 

wavelength spatial components such as pressure; averaging the time-lapse response across the 

entire reservoir will smear the signal significantly if there is a competing response between 

pressure and saturation. Imagine there is a positive to negative pressure gradient from top to base 

of the reservoir: computing a single map for the entire reservoir will significantly underestimate 

the actual magnitude and spatial distribution of the signal. Table 1.2 shows the common analysis 

carried out for both thin and thick reservoirs, the caveats are associated with the reservoir 

thickness, the effectiveness of the interpretation and the necessity of a volume based approach. In 

this thesis, I will demonstrate a new method to invert for changes in pressure and saturation for a 

thick and multicycle reservoir such as the Ekofisk field, in three dimensions.   
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Reservoir 

type 
Analysis Caveats Interpretation 2D versus 3D 

Thin 

Quadrature 

amplitude 

analysis  

 Effect of 

tuning 

Reflects primary 

impedance 

changes 

 Map-based 

application suffices 

Thick 

 Treat top 

and base 

reservoir 

separately 

 Require 

elastic 

inversion 

 Interference 

 Tuning 

 Side lobes 

complications 

Does not reflect 

primary 

reservoir 

dynamic 

changes 

 Averaging smears 

signals  

 Long wavelength 

spatial component 

of pressure loses 

out 

 Map-based 

application less 

effective  

 Requires 

volumetric analysis 

 

Table 1.2: Showing a compilation of the type of analysis, caveats of those analysis, methods of 

interpretation and 2D versus 3D interpretation on thin versus thick reservoirs.   

 

1.6  Focus of this Thesis  

1.6.1 Outline of the thesis 

This thesis will develop the ideas of monitoring changes inside the reservoir, namely changes in 

dynamic properties, such as pressure and saturation changes, by utilizing time-lapse seismic 

observations from both inside and outside the reservoir. Chapters 4 and 5 focus on using time-

lapse seismic attributes inside the reservoir, whereas Chapters 6 and 7 utilise overburden time-

lapse anomalies induced by production changes.  

Here are the contents of the remaining seven chapters of my thesis, in brief:  

Chapter 2 provides an overview of the literature on the Ekofisk field, covering topics from 

geological setting to field production history and the challenges in geomechanics. I also evaluate 

various rock physics models to establish a suitable rock physics model for the Ekofisk field. This 

rock physics model is calibrated using data from rock mechanics, well logs and mineral moduli 

from the literature.  
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Chapter 3 shows how 4D seismic data are used for dynamic reservoir characterization in the 

Ekofisk field. A summary of the seismic data from both acquisition strategies, streamer and Life 

of Field Seismic (LoFS) is provided. An analysis is carried out to compare and contrast the 

reservoir time-shifts in both types of surveys and the correlation with different production 

mechanisms.  

Chapter 4 presents the formulation of a new equation to invert for pressure and saturation changes 

in a thick, compacting chalk reservoir. A synthetic model is created to understand the impact of 

rock compaction and different dynamic changes on impedance changes. By employing backward 

engineering, the composite impedance change is decomposed to analyse its individual components 

and workings in detail, in order to recreate the same property using a proxy model. Physical 

phenomena such as water weakening and compaction, which are notorious in chalk reservoirs, are 

accounted for in the proxy model, and also described in this chapter. 

Chapter 5 applies the proxy model set out in Chapter 4 to data from the Ekofisk field, in the 

Norwegian North Sea. A stochastic approach via Bayesian McMC is employed to invert for the 

changes in pressure and saturation and to capture uncertainties in the result.  

Chapter 6 shows a different route to estimate pressure changes by using time-lapse information 

from the overburden. The Geertsma pressure inversion method from Hodgson (2009) provides the 

basis for a linear inversion scheme to estimate both pressure changes and also the Hatchell-Bourne-

RØste R-factor. A synthetic example is provided to demonstrate the success of estimating the R-

factor by constraining the inversion result with pressure information from a well-history matched 

simulation model.  

Chapter 7 applies the inversion scheme introduced in Chapter 6 to the Ekofisk field. This chapter 

draws conclusions on the average R-factor recovered in the Ekofisk field. The chapter also discuss 

the R-factors calculated for different regions of pressure build-up and drawdown identified in the 

field, and the results confirm the current understanding determined by laboratory experiments and 

previous studies that the magnitude varies as a function of strain polarity, with the asymmetry 

being at most a factor of three. 
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Chapter 8 presents a summary of the thesis. In addition, recommendations are also made for 

further development of the ideas presented in this thesis.  

 

1.6.2 Publications 

Parts of this thesis have been independently presented in the following publication:  

Wong, M. Y., MacBeth, C., JafarGandomi, A., Bertrand, A., and Amini, H. (2017). An 

Engineering-consistent approach for separating pressure and saturation changes in the Ekofisk 

field. Petroleum Geoscience. (Accepted with revision)  

1.6.3 Conferences with extended abstracts 

Wong M. Y., MacBeth, C., and Amini, H. (2017). Time-shifts Interpretation of legacy and 

frequent repeat seismic data in a compacting chalk reservoir. 79th EAGE Conference and 

Exhibition. 

Wong, M.Y., and MacBeth, C. (2016). R-factor Recovery via Geertsma's Pressure Inversion 

Assisted by Engineering Concepts. EAGE Geophysics and Geomechanics, Jointly Applied to 

Subsurface Characterisation workshop. 

Wong, M.Y., JafarGandomi, A., MacBeth C., and Bertrand, A. (2015). Pressure and saturation 

change inversion using 4D seismic: Application to a chalk reservoir in North Sea, SEG 

International Exposition and Annual Meeting. 

Wong, M.Y., MacBeth, C., and Bertrand, A. (2015). Engineering Consistent Constraints for the 

Inversion of Changes in Pressure and Saturation on Ekofisk. 77th EAGE Conference and 

Exhibition. 

Wong, M.Y., MacBeth, C., and Bertrand, A. (2015). Engineering Consistent Constraints for the 

Inversion of Changes in Pressure and Saturation on Ekofisk. EAGE 4D Workshop: Getting the 

most out of 4D - from reservoir to surface.  
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CHAPTER 

TWO 

 

 AN OVERVIEW: A SUITABLE ROCK PHYSICS MODEL FOR 
THE EKOFISK FIELD  

 

This chapter provides an overview of the literature on the Ekofisk field, and includes the geological 

description, field production history and the associated geomechanical challenges. Specific 

attention is given to the deformations of the reservoir, the surrounding rock and how it affects 

reservoir performance. The success of 4D feasibility studies and inversion depends heavily on the 

robustness of the rock physics model. I will show the calibration of the parameters in the rock 

physics model using rock mechanics and data gathered from the literature. A full description of 

the rock physics model proposed in generating synthetic time-lapse attributes for the Ekofisk, 

along with a summary of different chalk rock physics models in the literature is provided.  
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2.1  Geological Description 

The Ekofisk field is a naturally fractured chalk field situated in the central graben in the southern 

part of the Norwegian sector of North Sea. The location of the field is shown in Figure 2.1. It was 

the first commercial oil and gas field discovered on the Norwegian continental shelf. The chalk 

field is characterized by a four way dip anticline, elongated in a North-South direction. A seismic 

amplitude cross-section is displayed in Figure 2.3 (a) with the major horizons (Top Reservoir, 

Tight Zone and Tertiary Base Unconformity) highlighted. The two major formations in Ekofisk 

are the Ekofisk formation (Danian) and Tor formation (Maastrichtian). Both units separated by a 

relatively impermeable layer of argillaceous, siliceous, cherty chalk known as the tight zone. The 

reservoir has an average thickness of 175 - 300m, with greater thickness at the crest and a thinning 

towards the flank (Keszthelyi et al., 2016). Top reservoir is located around 3050m (10,000ft). A 

well-defined oil-water contact does not exist in the Ekofisk Field due to migration history of oil. 

This is commonly found in many other chalk reservoirs. The base of the hydrocarbon deposit 

appears domed, possibly due to post accumulation salt movement. The cap rock is the highly over-

pressured Paleocene Balder shale (Feazel et al. 1985). 

The porosity distribution in each formation varies both areally and vertically. The average porosity 

in the Ekofisk Formation is 32%. However, porosities of up to 48% have been also been 

encountered. The average porosity in the Tor Formation is 28%, and the maximum porosity 

encountered in this zone is 41%. Porosity is lost towards the flanks, and once the water zone is 

encountered porosity falls to about 15%. Figure 2.3 (b) shows the distribution of the chalk porosity 

in both formations. The reservoir permeability is low, ranging from 0.1 to 5 mD. From the porosity-

matrix permeability correlations the maximum permeability expected in the Ekofisk Field is 8 mD. 

However, well-test results indicate effective permeabilities of up to 150 mD. This enhancement in 

permeability is due to fracturing of the formation.  

The fluid flow characteristics of the reservoir are largely governed by the distribution, orientation 

and interconnectivity of the natural fracture system, forming primary conduits for produced and 

injected fluids (Hermansen, 2008). Three types of fractures, healed, tectonic and stylolite 

associated, have been identified from cores. The healed fractures are filled with a base material 

similar to the chalk and do not provide enhancement of the permeability. The tectonic fractures 
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are those most likely to enhance the effective permeability. It has been found from core studies 

that these fractures are predominantly sub-vertical (60o-75o dip). The intensity of fracturing varies 

both vertically and areally; fracture spacings as small as 10-15 cm have been observed. Stylolite-

associated fractures form adjacent to stylolites. The usual length of such fractures is only 5 cm 

(Brown, 1987). This type of fracture does not have a great influence on the effective permeability.  

The chalk primarily consists of the skeletal remains of coccolithophorid algae. These calcareous 

nannofossils are composed of individual calcareous plates (coccoliths) that form clay to silt-sized 

spherical bodies called coccospheres, shown in Figure 2.2. Complete coccospheres are 

sporadically present within the chalk but the majority are broken up into single coccolith plates or 

laths (Håkansson et al., 1974, Hancock, 1975, Scholle, 1977). Clays and shales with thin 

interlayered limestone or silt are the main composition of the overburden. A detailed description 

of the overburden lithology is provided in Table 2.1.  
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Figure 2.1: Map shows the distribution of various chalk fields and important outcrops in the 

North Sea with hot colours showing deeper burial depth (Hjuler, M. L., 2007).  

 

 

Figure 2.2: (a) a Scanning-electron micrograph (SEM) showing a coccolithophore (Tyrrel and 

Merico 2004); (b) an SEM photo of a rock sample from the Ekofisk formation 

(Gennaro 2011).  
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Figure 2.3: (a) Cross-section showing seismic amplitude of LoFS 2 data from the Ekofisk field. 

(b) A cross-section along the North-South direction of the field showing the porosity 

distribution of the field in both Ekofisk and Tor formation, separated by a relatively 

impermeable layer of argillaceous, siliceous and cherty chalk known as the tight 

zone. The sub-intervals of each formation is also provided.   
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Epoch Lithology 

P
leisto

cen
e
 

N
o
rd

lan
d

 

Sand intervals interbedded with 

claystone 

P
lio

cen
e 

Claystone with traces of coarse 

sand, 98% clay, 2% sand 

M
io

cen
e
 

Claystone with limestone 

intercalations, 95% clay, 2% sand, 

3% limestone 

O
lig

o
cen

e 

H
o
rd

alan
d

 

Claystone/shale with dolomite 

interbeds and traces of sand, 97% 

clay, 1% sand, 2% limestone 

E
o
cen

e 

Shale with limestone interbeds and 

traces of sand/silt, 95% clay, 2% 

sand, 3% limestone 

P
a
leo

cen
e
 

R
o
g
alan

d
 

Balder: Volcanic tuff 

Sele: Claystone with limestone 

stringers 

Lista: Claystone with stringers 

Vale: Marl 

 Ekofisk: Chalk 

Table 2.1: Lithology of the Ekofisk field overburden (Nagel, 1998). 
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2.2  Production Setting  

The estimated stock tank original oil in place (STOOIP) in Ekofisk field is 7.1 billion bbl. The 

prolific reservoir was discovered in 1969, it was initially overpressured and contained an 

undersaturated oil at 7129 psi and 268oF at a datum elevation of 10,400ft subsea (Tolstukhin et al., 

2012). The bubble point pressure was approximately 5545 psig (Agarwal et al., 1999). Figure 2.4 

shows the Ekofisk field historical production and injection plot. Initial production started in 1971 

from the discovery well and appraisal wells. The initial recovery mechanism was primary 

depletion with production supported from gas reinjection. In 1971, laboratory studies were carried 

out to examine the potential of water flooding. A water flood using seawater was piloted in 1981. 

A large scale water flood started in 1987 following favourable pilot results. The reservoir 

responded positively to secondary recovery operations such as a very efficient oil displacement 

and limited water breakthrough even after 10 years of waterflood operations.  

The Ekofisk field’s oil is 38°API, and has a viscosity of approximately 0.25 cp. Oil production 

increased from 70 MSTBO/D in 1987 to 300 MSTBO/D by mid-2000. A total of 1.5 billion barrels 

of water has been injected in the first ten years of the operation. However, the full field water 

injection program not only increased the oil production rate and stabilized field pressure, it also 

resulted in the water weakening of chalk. This phenomenon resulted in substantial seafloor 

subsidence. Reinjection of natural gas in excess of sales has been ongoing since 1975 with 1.3 Tcf 

of gas injected as of the year 2000 (Agarwal et al. 2000). This resulted in the decrease of the 

average field gas to oil ratio (GOR) during this period of time from approximately 8000 SCF/STB 

to 1150 SCF/STB (Tolstukhin et al. 2012).  

http://petrowiki.org/Oil_viscosity
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Figure 2.4: Ekofisk field historical production and injection data. Seismic coverage on the 

Ekofisk field with baseline shot in 1989, and streamer monitors on 1999, 2003, 

2006 and 2008. The LoFS was put on stream in 2010. C, Q and OBC represent 

conventional, Q-marine and Ocean Bottom Cable.  

 

2.3  Geomechanical Challenges in Ekofisk  

Various geomechanical challenges were encountered in the Ekofisk field. These geomechanical 

occurrences affected the performance of the reservoir. Several aspects of the geomechanical 

challenges are listed below.  

 

2.3.1 Seabed subsidence 

Over 7.8 metres of seafloor subsidence has occurred at the Ekofisk Field since the start of 

production in 1971. Full water injection was initiated at Ekofisk on a limited scale in 1987. The 

surface subsidence is a result of reservoir compaction, which is considered primarily to be due to 
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pressure depletion until the early 1990’s and water weakening thereafter. “This phenomenon was 

first noticed in 1984, where approximately three metres of seafloor subsidence has occurred at the 

crest of the field”, according to Sylte et al., 1999. The measured subsidence rate averaged about 

33cm/year. Several factors that contributed to the compaction are high porosity, overpressured 

reservoir, large areal extent of the field relative to its burial depth, large thickness of the production 

interval, and large reduction in pore pressure. The incremental efforts of water injection as a 

recovery mechanism and pressure maintenance was expected to slow and eventually arrest 

subsidence at the producing platforms. However, as the pressure began to stabilize in 1993 and 

early 1994, there was little impact on stopping the subsidence rate. The subsidence rate remained 

essentially unchanged through 1998. The continued subsidence after 1994 coupled with laboratory 

and field data indicated that a water weakening phenomenon is responsible for the compaction of 

the field (Sylte et al., 1999). The persistence of subsidence is observed throughout the entire field 

production, this is depicted in Figure 2.5.  

Reservoir compaction and seabed subsidence continues to be a very important consideration in 

Ekofisk Field reservoir management strategies. Efforts to monitor early reservoir compaction and 

seabed subsidence include twice-a-year compaction logging in a monitoring well, daily GPS 

measurements at the platforms, and periodic bathymetry surveys with nine surveys span from the 

year 1970 to 1999 (Guilbot and Smith 2002). Figure 2.6 shows seismic data in time along the well 

2/4-X-09 in an area with strong compaction. The seismic trace along this well shows changes in 

time and amplitude from 1989 (baseline survey) to 1999 (monitor survey) after a decade long of 

water injection activities.  
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Figure 2.5: Seabed subsidence is evident from the progressive sinking of the Ekofisk platform, 

indicated by red up-down arrow (ConocoPhillips internal report).   

 

Figure 2.6: shows the time section along the well 2/4-X-09 at monitor (1999) and baseline 

(1989). The yellow seismic trace is calibrated to the 1999 survey. This is an area of 

strong compaction, a time subsidence effect is observed at top reservoir in 1999 

(Guilbot and Smith, 2002).  
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2.3.2 Reservoir performance and productivity effects 

Reservoir compaction and subsidence was recognised in late 1984, but loss in reservoir 

productivity was not observed. As of today, it has been widely recognised that compaction has 

aided reservoir productivity immensely. In a nearby field - Valhall, we see rock compaction as the 

main driver in contributing to the total cumulative oil contribution compared to other drive 

mechanisms such as oil expansion, aquifer, gas influx and water flooding (Cook et al, 1996). This 

is demonstrated in Figure 2.7.  

 

Figure 2.7: Cumulative oil contribution in MMSTB from various production mechanisms in the 

Valhall field (Redrawn after Cook et al., 1996).  

 

In chalk reservoirs, the water flooding decreases the pore collapse strength, and rock compaction 

accelerates. The overpressure and the mechanically weak structure of the chalk are the elements 

that trigger the rapid reservoir compaction. The compaction has the positive effect of being the 

drive energy to produce fields like Valhall for more than 20 years without any other recovery 

mechanism. Approximately 50% of the drive mechanism has come from the rock compaction 

(Barkved et al., 2003). This compensates for the negative consequences such as chalk production, 

influx failures and casing collapse problems.  
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Waterflooding efforts in Ekofisk have generally been positive and visible. Early water injection 

shows individual wells experienced significant increase in oil rates, dramatic drops in GOR and 

limited water breakthrough (Hermansen et al., 1997). For strongly water-wet areas such as the Tor 

and Lower Ekofisk formations at Ekofisk, the bulk of waterflood displacement is a capillary 

dominated process and the rate of recovery is strongly dependent on the matrix block size and the 

amount of matrix surface area exposed to fractures, with ultimate recovery determined by the 

capillary, gravity, and viscous equilibrium. For less water-wet areas, such as the Upper Ekofisk 

formation at Ekofisk, viscous and gravity forces as well as capillary forces are important. Figure 

2.8 shows an imbibition experiment where water invades a chalk core and displaces oil.  

Apart from the positive hydrocarbon recovery from compaction drive, are there any detrimental 

effects on productivity? The Ekofisk chalk is relatively tight but is naturally fractured, these 

fractures vary in terms of spacing, inclination, length, and conductivity significantly, in both 

vertical and sub-horizontal directions. Increasing stress levels in the reservoir affects the closing 

and opening of fractures. For example, stress components perpendicular to a fracture face tend to 

close the fracture and reduce fracture conductivity. Shear stresses on the other hand may increase 

conductivity and even open new ones. In the work from Sulak and Danielsen (1989), they reported 

that no changes have been observed from productivity that might indicated changes in stress 

affecting the fracture system. Nearby field (West Ekofisk) has a similar depletion history and 

geology with a higher effective stress has also not reported negative productivity changes in the 

field.  
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Figure 2.8: Imbibition experiment was carried out on chalk cores in the Ekofisk field showing 

the water wet chalk shows absorption of water quite effectively at low in situ water 

saturation (ConocoPhillips internal report).  

 

2.3.3 Casing deformation 

One of the geomechanical challenges faced in the Ekofisk field is casing deformation, this was 

first discovered in 1978. Casing deformation was first noticed while routine workover and wireline 

operations were performed. By 1989, about two-thirds of Ekofisk well casings have reportedly 

failed. One of the hypothesis of casing failure was due to excessive matrix acidizing, resulting in 

lack of lateral support around the casing, and causing buckling as it is loaded in compression. Other 

possible failure modes are collapse due to radial stresses, tensile break due to axial tension and 

thread jump resulting from axial compression or tension. Several measures were taken to 

understand failure mechanisms such as running caliper logs through failure casing. Such measures 

were taken in well 2/4 B-10 in the overburden, where it shows ovaling or deformation in the 

overburden. The overburden section of the casing string, close to the top reservoir is under tension 

as a result of compaction inside the reservoir. Other methods of monitoring include using 

radioactive markers placed at various depths in the well and utilizing highly accurate casing collar 

logs to measure changes in the casing length (Yudovich and Morgan 1989).  
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2.3.4 Overburden Stretching 

Reservoir compaction is balanced by changes in the stress state of the overburden. Above a 

compacting reservoir the overburden stress will decrease as the overburden expands to 

accommodate the reduction in reservoir volume. This is accompanied by a reduction in acoustic 

velocity of the overburden rock. An important publication from Guilbot and Smith (2002) on 4D 

constrained depth conversion for reservoir compaction estimation: Application to Ekofisk field, 

shows time-shifts at top reservoir could not be produced by the physical displacement of top 

reservoir alone, as this assumption would result in compaction estimates of 2-4 times greater than 

the reservoir model-based prediction. Guilbot and Smith (2002) shows that without taking into 

account of the changes in overburden interval velocity, there is a 75% error in the compaction 

prediction. More description will be provided in Chapter 6 on how the overburden signals are 

useful in characterizing reservoir dynamic changes. Stress changes in the overburden could also 

lead to redistribution of gas in the shallow overburden (Olav Barkved, personal communication).  

 

2.3.5 Overburden Compaction 

Stress arching in the overburden is also often associated with compacting reservoirs, this 

phenomenon was found in nearby chalk field, Valhall (Barkved, 2012). Since the reservoir 

undergoes significant compaction, a pressure gradient could form from the overpressured 

overburden into the reservoir. Additional compaction and subsidence can arise from this pressure 

gradient leading to depletion of the overburden. The overburden is mainly shales with low 

permeability in the matrix. Drainage of the low permeability overburden sediments would require 

an extensive fracture system or fractures caused by out of zone injection. There is currently no 

data suggesting the existence of such fracture network in the overburden nor is the stress level in 

the overburden suggesting the potential for creation of open fractures (Sulak and Danielsen 1988). 

Compaction monitoring efforts such as radioactive markers show that the overburden is not 

compacting. However, I show that localised time strain data in the overburden contains hardening 

signal on top of injection activities in the reservoir. This does not necessarily suggest physical 

changes in the overburden but re-orientation of stresses. We will evaluate this topic further in 

Appendix D, where some examples on overburden compaction is presented.  
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How can we understand these physical changes in seismic information?  

One way to quantify and understand these phenomenon from seismic is to carry out rock physics 

modelling. A rock physics model is a set of equations and statistics capturing the relationships 

between physical properties for a particular rock type or formation. Essentially, the goal is to create 

synthetic seismic using multiple scenarios from a fluid flow simulator to match the observed 

seismic. It is therefore crucial to have an accurate rock physics model that captures the full physics 

between the reservoir rock and fluid properties and the elastic properties picked up by the seismic 

sound waves.  

 

2.4  An Overview: Rock Physics Modelling  

There are a growing number of publications studying and comparing rock physics models on 

carbonate rocks. Although carbonate reservoirs represent many of the major oil and gas reservoirs 

in the world, the experimental data on carbonate rocks (including chalk samples) have not been as 

thoroughly studied as silici-clastic sedimentary rocks. In some cases, the relations developed for 

sandstones are also applied in carbonates, which does not represent the full physics at best. A close 

examination of the current literature in the subsequent section provides some insights into which 

rock physics model is suitable for the purpose of estimating elastic properties of chalk in the 

present study. I first start with the validity of Gassmann relations in chalk reservoirs? 

 

2.4.1 Validity of Gassmann relations in chalk 

The Gassmann equations make several fundamental assumptions such as that the pore spaces 

between grains are well connected, and this assumption works well in monomineralic rocks. 

Gassmann also assumed no chemical interaction occurs between the rock frame and the pore fluid, 

and that the rock is isotropic (Gassmann 1951). These assumptions mean that these equations are 

most applicable to porous, clean sandstones rather than chalk or other hard carbonate rocks.  

Chalk differs greatly in its composition and structure from clastic rocks. While clastic rocks have 

mainly inter-granular pores, chalk can have various pore types, such as inter-particle, intra-particle, 
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moldic and vuggy pores (Xu et al., 2007). Works from Walls et al. (1998), Borre (1998), Wang 

(2000), Borre and Fabricius (2001), Gommesen, Mavko, Murkerji (2002), Japsen et al. (2004), 

RØgen et al. (2005), Adam et al. (2006), Gommesen et al. (2007), Fabricius et al. (2007), Bhakta 

and LandrØ (2013) and Das et al. (2016) have shown Gassmann’s relationships are valid in both 

fluid substitution and estimation of elastic properties of the chalk. It is argued that, as a 

consequence of the relative homogeneity and high pore-connectivity of the chalk, combined with 

high porosity and permeability (Fabricius et al., 2007), the chalk interacts with sonic waves in a 

low frequency manner, hence Gassmann’s relation can be applied.  

From the work of Adam et al. (2006), it was demonstrated that at seismic frequencies, the brine-

saturated bulk modulus for carbonates rocks (with round pores and vugs) with small differential 

pressure dependence is well estimated by Gassmann. However in his work it was also 

demonstrated that carbonates samples that are strongly influenced by compliant pores and micro 

cracks led to predictions that deviated from the observed ones. The samples that deviates from 

observed values studied by Adam et al. (2006) are less applicable to the present case, as they are 

mostly hard limestone, with some samples that have been dolomitized.   

Another school of thought argues that instead of Gassmann’s relation, inclusion based scattering 

theories would be more appropriate for modelling chalk samples. Reasons for disapproving the 

validity of Gassmann’s relation on chalk include the heterogeneity and pore types of the chalk and 

the sensitivity of shear moduli to fluid (Adam et al., 2005). A full review on why Gassmann’s 

model is not as valid in chalk reservoirs is presented in Misaghi et al. (2010). Different scattering 

models have been presented, such as Kuster-ToksÖz implemented by SØrnes and Brevik (2000), 

self-consistent approximation (SCA), from Berryman (1980) implemented in Bhakta and LandrØ 

(2013) and the differential effective medium (DEM) model and SCA in Misaghi et al. (2010). 

The results from using inclusion based scattering theories interestingly enough, are only 

marginally better than or similar to those predicted by Gassmann’s relations. Larger differences 

between the models with respect to Vs (S-wave velocity) estimation were found rather than 

discrepancies in predictions between Gassmann and scattering theories. A summary of the 

different rock physics models used for fluid substitution and elastic properties modelling in chalk 

reservoirs is provided in Table 2.2; the respective research objectives, conclusions and fields of 
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interest are also provided. Two publications that require special attention are those from Walls et 

al. (1998) and Das et al. (2016). These publications were published by the operator 

(ConocoPhillips) of my field of interest, using laboratory measurements for the Ekofisk chalk.  
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Paper Research questions/Objectives Conclusions/Outputs Field 

Walls et al. (1998) To model seismic velocity of chalk 

reservoir as a function of its porosity and 

fluid saturations  

First application of combined cementation theory and 

modified upper Hashin-Shtrikman model to chalk. The 

model slightly overestimates bulk modulus for low 

porosity chalk. Computed and modelled shear modulus 

are in good agreement. Applied Gassmann’s relations. 

Ekofisk, 

Norwegian Sea 

SØrnes and Brevik 

(2000) 

Challenged the suitability of Gassmann 

model for carbonate fluid substation. A 

workflow using Kuster-ToksÖz to perform 

fluid substitution was carried out.   

The scattering theory falsely let shear moduli be affected 

by the fluids’ bulk moduli, when data suggested otherwise. 

The errors between Gassmann model and Kuster-ToksÖz 

are small.  

Confidential  

RØgen et al. (2005) Acquire acoustic properties of chalk and to 

test whether dry moduli can be predicted 

from measurements on water saturated 

chalk samples.  

Presence of large grains of microfossils and smectite 

influences elastic properties of the chalk. The dry moduli 

calculated via inverse Gassmann’s relations fits the 

measured dry moduli; but underestimates VP and VS. by 2% 

and 4% on average respectively.  

Dan, South 

Arne, Gorm, 

Danish North 

Sea 

Adam et al. (2006) The applicability of Gassmann’s theory on 

carbonate rocks in the context of shear and 

bulk modulus dispersion and rock frame 

sensitivity to saturation. 

Rock shear modulus is sensitive to brine saturation at 

seismic frequencies, this is attributed to weakening of the 

matrix due to possible surface energy loss and/or subcritical 

crack growth at low differential pressure. No positive 

relation is found between weakening of rock shear modulus 

and failure of Gassmann’s theory to predict saturated bulk 

modulus at seismic frequencies. In fact, Gassmann predicts 

quite accurately brine saturated bulk modulus with small 

differential pressure, possibly closing soft fractures and 

pores.  

Confidential  

Gommesen et al. 

(2007) 

To compare the low-frequency Gassmann 

and high-frequency self-consistent 

approximation method on fluid 

substitution to well log data 

Gassmann is applicable in the log frequency domain. 

Predictions from Gassmann and the self-consistent 

approximation method differs marginally. 

Chalk field in 

Danish North 

Sea 
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Fabricius et al. 

(2007) 

An iso-frame (IF) model with combination 

of petrographic data to generate elastic 

properties of impure chalk 

Core sample studies provided mineralogical composition 

and fluid saturations of the rock. The IF parameter was 

found iteratively to fit the elastic modulus log. Paper also 

show how the iso-frame method can be extended to log 

data.    

South Arne, 

Danish North 

Sea 

Misaghi et al. 

(2010) 

Investigated the effectiveness of the 

differential effective medium (DEM) 

model and self-consistent (SC) model to 

model elastic properties of carbonate 

samples  

Both Gassmann and DEM models yield good agreement 

with measured saturated VP, with the later having a better 

accuracy.  

Carbonate and 

sandstone from 

south-west Iran 

Bhakta and LandrØ 

(2013) 

Applicability of Gassmann’s relations for 

chalk and how well shear wave velocities 

can be generated from empirical and rock 

physics models.  

A universal rock physics model for chalk reservoir cannot 

be established. SC approximation and IF model are similar 

to Gassmann estimates for dry P-wave velocity. Larger 

differences between models with respect to Vs estimation 

in comparison to which fluid substitution model is most 

accurate.  

Ekofisk, 

Norwegian Sea 

Das et al. (2016), 

Das et al. (2013) 

An integrated rock physics model based on 

an extended form of Nur’s modified 

Voight’s model, Hertz-Mindlin to model 

pressure change and Gassmann equation 

for fluid substitution is presented 

The model predicts velocities and density fairly accurately 

for high porosity, low water saturation chalk, but 

underestimated for low porosity chalk. A set of parameters 

used for specific layers in the model. 

Ekofisk, 

Norwegian Sea 

Table 2.2: Summary of published rock physics models to compute various elastic properties in different chalk fields.  
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2.4.2 Proposed rock physics model  

Following the selected successful application of Gassmann’s in the petro-elastic model for elastic 

properties estimation, the proposed rock physics model in this study also takes the same approach. 

Unlike the DEM and the iso-frame models, which assume a fixed microstructure independent of 

pressure, the present rock physics model is pressure dependent. This approach is similar to that of 

Das et al. (2016), where the model takes into consideration the combined effect of porosity, 

pressure and fluid saturation on the effective elastic properties.  

My rock physics model employs three main steps. Firstly the compaction-induced porosity change 

is calculated using a compaction model first proposed by Sylte et al. (1999), and also mentioned 

in Smith et al. (2002). The compaction model is illustrated in Figure 2.9 for dry compaction and 

water weakening. The compaction model has a few assumptions based on observations made from 

extensive geomechanical experiments performed in the laboratory. The assumptions of the 

compaction model are that compaction depends on the initial oil filled chalk porosity, and that 

chalk with porosity lower than 28% does not undergo compaction. Compaction also depends on 

the increase in water saturation, in which the compressibility of high porosity, water-weakened 

chalk is many times greater than that for the same chalk in its water-free state. Extensive rock test 

results also indicate that the relative amount of water-weakened chalk is a linear function of water 

saturation, from zero water saturation (i.e., water-free state) to the state with the maximum 

attainable water saturation, at 0.325, when the entire matrix is fully water-wetted and the chalk is 

fully water-weakened. After this point, no additional compaction is induced once the water 

saturation has reached 0.325 from a water-free state. Compaction also occurs when the effective 

stress is greater than 2000 psi (approximately 13.7MPa).  
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Figure 2.9: The compaction model for (a) dry compaction at 0% water saturation and (b) water 

weakening at water saturation of 33%. Below the initial porosity of 28%, the rock is 

insensitive to compaction. The curves in both (a) and (b) show fitting of the 

compaction measurements. The highest porosity rocks has the steepest compaction 

gradient. 

 

The second step is to calculate the elastic moduli as a function of pressure effects on the dry rock 

frame. Stress sensitivity of reservoir rock remains a critical factor in understanding reservoir 

performance through seismic monitoring and feasibility studies. The effect of pore pressure change 

in fluid is easily calculated through the equations of Batzle and Wang (1992), and Han and Batzle 

(2000). To estimate the pressure compliance of the dry rock frame, I follow a pressure model from 

MacBeth (2004), shown in Equations (2.1) and (2.2), that describe the behaviour of the dry frame 

with increasing effective pressure. 

𝐾𝑑𝑟𝑦 =
𝐾𝑖𝑛𝑓

1+(𝐸𝑘𝑒
−𝑃𝑒𝑓𝑓/𝑃𝑘)

 (2.1) 

𝜇𝑑𝑟𝑦 =
𝜇𝑖𝑛𝑓

1+(𝐸𝜇𝑒
−𝑃𝑒𝑓𝑓/𝑃𝜇)

 (2.2) 

 

where the coefficients 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 are the bulk and shear infinity, which control the high pressure 

asymptotes, in which an empirical relation is derived as a function of initial porosity. 𝑃𝑘 , 𝑃𝜇 are the 
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characteristic pressure constants and determine the rollover point beyond which the rock frame 

attains its state of relative insensitivity; in other words, they control the slope of the curve. The 

coefficients 𝐸𝐾 , 𝐸𝜇 determine the intercept of the curves. For the pressure dependence, this model 

takes a form which assumes the compliances to be slowly varying functions of confining pressure. 

In this study, the coefficients of the pressure model proposed by MacBeth (2004) are optimized 

using input data from the rock mechanics tests.  

In order to calculate the effective pressure, the equation from Terzaghi (1923) on the effective 

stress law is employed:  

𝜎𝑖𝑗 = 𝑆𝑖𝑗 − 𝛿𝑖𝑗𝛼𝑃𝑝 (2.3) 

where the effective pressure, 𝜎𝑖𝑗 equals to the applied stress, 𝑆𝑖𝑗 minus the multiplication of the 

effective stress coefficient, 𝛼 and the pore pressure 𝑃𝑝. The effective stress law requires the rock 

to be elastic, depends only on the state of stress, the pore pressure is uniform throughout the pore 

spaces and no hysteresis in the stress-strain cycles. Since no rock is absolutely elastic all effective-

stress laws for rocks are approximations (Mavko et al., 2009). The 𝛼 parameter is proposed as 

Biot’s coefficient in Equation (2.3) by Nur and Byerlee, 1971, and is only valid for volumetric 

strain. Biot’s theory of poroelastitcity (Biot 1941, Geertsma 1857) shows that the effective stress 

coefficient for bulk volumetric strain is a description of how strain is distributed in the porous 

media between the solid matrix and the pore volume. If Biot’s coefficient equals to one means an 

elastically incompressible matrix, and zero corresponds to the case when the pore volume is 

incompressible. The determination of the Biot-coefficient of chalk has been carried out in several 

separate studies. While some of them claim a coefficient as low as 0.7–0.8 (Alam et al., 2012 and 

Kristiansen and Plischke 2010), other experiments indicated a Biot-coefficient of 0.9 (Warpinski 

and Teufel 1992). Since the Biot’s coefficients measures the rock at static condition, there is no 

theoretical justification for extrapolating Biot’s coefficient to elastic moduli and seismic velocities. 

However, a dynamic effective stress coefficient, 𝛼 is calculated from sonic data shows not a 

constant value for chalk but ranges between 0.80 and 0.95 for the studied samples from the Valhall 

field (Alam et al., 2012). Since no laboratory measurements on the effective stress coefficent is 

available, I will assume the effective stress coefficient equal to to 1 for the Ekofisk chalk. The 
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effective stress coefficients for various properties of rocks composed of a number of mineral 

constituents, is summarised in Berryman (1992).  

Since porosity is a dynamic parameter, depending on how the pore pressure changes in the 

reservoir, the porosity can be either reduced, due to pore pressure decrease, or remain constant if 

pore pressure increases. The porosity has a direct impact on the 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 values and the dry frame, 

𝐾𝑑𝑟𝑦, 𝜇𝑑𝑟𝑦 modelling of the rock. This relationship is given in Equations 2.1 and 2.2. As illustrated 

in Figure 2.10, as the rock compacts from point A to point B as a result of dry compaction or water 

weakening, the porosity reduces; in turn, the 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 values will increase and the dry rock frame 

moduli, 𝐾𝑑𝑟𝑦, 𝜇𝑑𝑟𝑦 increase in stiffness. As the rock undergoes depletion without compaction, such 

as for rocks with less than 28% initial porosity, the dry frame of the rock takes the path from point 

B to point C. There is no change in 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 , but there is still an increase in the dry frame 

𝐾𝑑𝑟𝑦, 𝜇𝑑𝑟𝑦 values, but this increase is much less than from point A to point B. Lastly, if there is an 

increase in pore pressure, hypothetically speaking from point C to point D, the 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓stays the 

same as the porosity is constant, but the 𝐾𝑑𝑟𝑦 , 𝜇𝑑𝑟𝑦 becomes smaller.  
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Figure 2.10: A schematic diagram showing how porosity changes 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 values used in rock 

physics modelling.  

 

Why is stress sensitivity calibration important?  

Figure 2.11 shows the sensitivity of P-wave velocity as a function of stress. Depending on the rock 

properties, each field or rock type has very different stress sensitivity characteristics. For example, 

the Ekofisk chalk (North Sea chalk) is a lot more stress sensitive than the West of Shetland 

sandstone, and in comparison, the West of Shetland sandstone is relatively more stress sensitive 

than the Balder sands. The stress sensitivity is also dependent on loading and unloading 

mechanisms and the initial effective stress. The rock is usually more stress sensitive at low 

effective stress and also in unloading events, such as injection compared to depletion. By using 

these description, we can quantify how stress sensitive the rock is due to production changes and 

what percentage change will be manifested in P-wave or even S-wave velocities.  
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The calibration of the MacBeth law (2004) parameters (𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 , 𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇) using data points 

from rock mechanics laboratory measurements provided from the field operator ConocoPhillips 

are shown in the Table 2.3. Each sample was fitted with its individual stress sensitivity parameters 

which are governed by the heterogeneity of the rock sample. In order to translate these parameters 

to describe a rock physics model that will be used for the simulation model, an averaged value or 

correlation with the initial porosity needs to be used. A correlation between (𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓) and initial 

porosity was established from the data, showing a dependency on initial porosity, as shown in 

Figure 2.12. It was found that an exponential relationship between (𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓) and porosity gives 

the best correlation, with a regression R-squared coefficient of 0.9211 and 0.907 for bulk and shear 

infinity respectively.  

The curve fitting using individually optimised parameters (𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 , 𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇) based on their 

respective initial porosity for both bulk and shear modulus is shown in Figure 2.13. No specific 

trends were found between 𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇 and the initial porosity; hence the averaged  𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇 

were initially employed. However, the results shown in Figure 2.14 show considerable discrepancy 

between the data points and the fitting. I revised this approach by optimising the parameters 

 𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇 globally, by using all the data points: essentially using all data points from all samples 

to generate a best fitting  𝑃𝑘 , 𝑃𝜇,𝐸𝐾, 𝐸𝜇 for the model. This has markedly improved the fitting for 

bulk modulus, but less so for shear modulus, as shown in Figure 2.15. The lack of improvement 

for shear modulus is most likely due to poor data quality. The data points for sample 20 has higher 

bulk modulus than sample 9, however, this is the opposite for shear modulus. This could be a 

measurement error in shear modulus for sample 20. The optimization using all data points and the 

goodness of fit for both bulk and shear modulus are illustrated in Figure 2.16. These parameters 

help to describe the stress sensitivity model to generate elastic properties in the simulation model.  
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Figure 2.11: P-wave velocity percentage change as a function of effective stress for Ekofisk 

chalk, West of Shetland and Balder sandstone.  

 

Sample 

Number 

Porosity Res 

Unit 

𝑲𝒊𝒏𝒇 𝑬𝒌 𝑷𝒌 𝝁𝒊𝒏𝒇 𝑬𝝁 𝑷𝝁 

1 0.403 EA 4.61 1.45 8.02 4.03 0.18 15.64 

32 0.375 ED1 6.39 0.94 15.06 4.10 0.79 23.98 

3 0.339 EC 9.69 0.91 9.35 6.67 0.30 12.34 

4 0.339 ED 9.43 0.91 9.35 6.53 0.30 12.9 

20 0.261 EA 11.72 0.45 24.15 8.21 0.20 38.53 

9 0.229 EE 16.54 0.31 25.36 9.32 0.07 12.53 

 Averaged 0.83 15.22 Average 0.31 19.32 

 Optimised 0.49 17.74 Optimised 0.19 21.5 

Table 2.3: Stress sensitivity parameters ( 𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 , 𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝑎𝑛𝑑 𝐸𝜇) calibrated from rock 

mechanic tests.  
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Figure 2.12: Correlation was found for (left) 𝐾𝑖𝑛𝑓 and (right) 𝜇𝑖𝑛𝑓  with initial porosity from the 

data.  

 

 

Figure 2.13: Curve fitting using individually optimised (𝐾𝑖𝑛𝑓 , 𝜇𝑖𝑛𝑓 , 𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇) based on their 

respective initial porosity for both (left) bulk and (right) shear modulus.  
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Figure 2.14: Curve fitting using averaged (𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇) for both (left) bulk and (right) shear 

modulus.  

 

 

Figure 2.15: Curve fitting using newly optimised (𝑃𝑘, 𝑃𝜇,𝐸𝐾, 𝐸𝜇) for both (left) bulk and (right) 

shear modulus.  
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It is commonly known that cores taken from wells do not provide a statistically meaningful 

representation of the 3D heterogeneity of the reservoir, because samples, naturally, are taken from 

the most competent and productive rock. This may, for example, lead to pressure-sensitive 

mesoscale pockets of unconsolidated/consolidated sands, perhaps shales, or even fractures/faults 

being by-passed in the analysis. The samples used in the present rock physics model calibration 

ranged from 22-40% porosity in the Ekofisk formation and 24-37% in the Tor formation. This is 

a fair representation of the field, since the 4D seismic activities were mostly concentrated in these 

porosity regions and the fitting for this porosity range can also be extended to rocks with porosity 

lower than 22%.  

Another argument contributing to the validity of calibrating elastic properties with core samples is 

that in our case, the core samples were taken from different sub-formations in the reservoir, hence 

representing a fair heterogeneity of the reservoir. Furthermore, a good trend was also found 

between the bulk and shear infinity modulus, with the initial porosity. Another issue with cores is 

that they are loaded back to their in-situ stress state do not recover their original velocities, and 

their stress dependence is usually larger than it was in situ (Fjær and Holt, 1999).  Damage resulting 

from core unloading needs to be estimated and subtracted from the rock-frame measurements.  
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Figure 2.16: Optimising the parameters  𝑃𝑘 , 𝑃𝜇,𝐸𝐾, 𝐸𝜇 globally by using all the data points, to 

generate best fitting  𝑃𝑘 , 𝑃𝜇,𝐸𝐾, 𝐸𝜇 for the model. 

 

The fitting model for 𝐾𝑖𝑛𝑓 and 𝜇𝑖𝑛𝑓 with initial porosity is given as Equations (2.4) and (2.5) as 

follows: 

𝐾𝑖𝑛𝑓 = 62.14𝑒−5.915𝜑  (2.4) 

𝐺𝑖𝑛𝑓 = 26.2𝑒−4.402𝜑 

 (2.5) 

These equations represent the empirical correlation between the infinity bulk and shear modulus 

and initial porosity. 
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The third and final step is the fluid substitution to in situ saturations. The fluid properties were 

modelled using the laboratory derived equations from Batzle and Wang (1992) and Han and Batzle 

(2000). The equations from Gassmann’s model (1951) are given as below:  

𝐾𝑠𝑎𝑡 = 𝐾𝑑𝑟𝑦 +
(1−𝐾𝑑𝑟𝑦/𝐾𝑚)2

𝜑

𝐾𝑓𝑙
+

1−𝜑

𝐾𝑚
−

𝐾𝑑𝑟𝑦

𝐾𝑚
2

 (2.6) 

𝜇𝑠𝑎𝑡 = 𝜇𝑑𝑟𝑦 (2.7) 

where 𝐾𝑠𝑎𝑡  and 𝜇𝑠𝑎𝑡 are the saturated bulk and shear modulus, 𝐾𝑚 and 𝜇𝑚 are mineral bulk and 

shear modulus, 𝐾𝑑𝑟𝑦 and 𝜇𝑑𝑟𝑦 are dry-rock bulk and shear modulus, 𝐾𝑓𝑙 is the fluid bulk modulus 

and 𝜑 is the porosity. The difference here compared to a non-compacting reservoir is, that due to 

changes in porosity as a function of pressure depletion and water weakening, the porosity, the dry 

rock bulk and shear modulus are dynamic components that change with time for the same rock. 

The changes in dry rock bulk and shear modulus depends on mechanisms such as depletion-related 

pressure drop and re-pressurisation due to water injection. On the other hand, mineral moduli such 

as 𝐾𝑚 and 𝜇𝑚 are constants, and the most commonly used values from the literature are listed in 

Table 2.4. In the present rock physics model, I employed values that are equal to those in Das et 

al. (2013) and Das et al. (2016). Since the clay distribution in both Ekofisk and Tor formation is 

less than 5%, the rock is assumed as monomineralic, with a composition of 100% calcite.  

Figure 2.17 shows the P-wave velocity log reconstruction at a producer well. The match between 

measured and predicted P-wave velocity is in good agreement except at intervals with bad hole 

and the tight zone interval with higher quartz content. This is where the monomineralic assumption 

could break down.  
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Walls et al.  

(1998) 

Japsen et al. 

(2004) 

Gommesen et 

al. (2007) 

Das et al. (2013, 

2016) 

K chalk 

GPa) 
65 71 71 72 

K clay 

(GPa) 
20.9 25 Not provided n/a 

µ chalk 

(GPa) 
27.1 30 24 36 

µ clay 

(GPa) 
6.85 9 Not provided n/a 

ρ chalk 

(g/cc) 
2.71 2.71 2.71 2.71 

ρ clay 

(g/cc) 
2.85 2.7 Not provided n/a 

Table 2.4: A summary of mineral bulk modulus, shear modulus and density used from other 

published works.  

 

The modelling results are shown for application of the rock physics model to a reservoir simulation 

grid using pressure, temperature, saturation and compaction values at each cell to compute the 

changes in P-velocity, S-velocity, density and two-way time (time-shifts) for a time period of two 

and a half years a part (LoFS 2 – LoFS 6). In Figure 2.18 time-shift results from the present rock 

physics model, and results from the operator, employing a different rock physics model (Smith et 

al., 2003, Smith and Brown 2005, Das et al., 2016), are compared with field observation, where 

the former show a better agreement with field-measured reservoir time-shifts between LoFS 2 to 

LoFS 6. Areas highlighted in yellow demonstrate that my rock physics predictions more closely 

represent the field observations. The southern part of the field, shows hardening signals due to 

depletion and reservoir compaction, this is supported from the prediction from the reservoir 

simulation model. The western part of the field, shows pressure depletion and gas saturation 

increase; however, the gas signals are not conspicuous in the field, due to the masking effects of 

geomechanics. The masking of gas effect is more accurately portrayed in my rock physics 

predicted in Figure 2.18(b) than those predicted in Figure 2.18 (a) when compared to the observed 

reservoir time shifts in Figure 2.18(c). The forward predictions from both rock physics models are 

noise-free hence the overall time-shift values predicted are slightly higher than the observed 
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values. The proposed rock physics model more accurately modelled the overall 4D seismic 

reservoir time-shifts then the operator’s rock physics model. 

 

 

Figure 2.17: Porosity and water saturation logs interpreted from petrophysical evaluation, the 

rock physics model proposed in this chapter is then used to reconstruct the P-wave 

velocity log.  
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Figure 2.18: A comparison between the predicted reservoir time shifts from (a) operator’s rock 

physics model, (b) proposed rock physics model and (c) the observed reservoir 

time-shifts.  

 



64 

 

2.5  Summary  

This chapter has focused on establishing a rock physics model for the compacting chalk reservoir. 

In addition, a critical examination of different rock physics approaches in the literature is also 

provided. I explored the literature to determine the applicability of using Gassmann’s fluid 

substitution theory to estimate the effects of fluids on bulk modulus in a chalk reservoir. The 

majority of the work from literature (SØrnes and Brevik 2000, RØgen et al., 2005, Gommesen et 

al., 2007, Misaghi et al., 2000 etc.) shows that this relation is a valid for chalk samples. Results 

from inclusion based scattering theories are marginally better or comparable to those predicted by 

Gassmann’s relations.  

I then presented a rock physics model for the Ekofisk field; calibrated with data from rock 

mechanics and the literature. The rock physics model proposed comprised of three main 

procedures. A dynamic compaction model calibrated to geomechanical data (Sylte et al., 1999) is 

used to model porosity change due to dry compaction or water weakening. The next step is to 

model the dry rock frame of bulk and shear modulus as a function of effective stress. This is carried 

out by calibrating stress sensitivity parameters from the MacBeth (2004) pressure model to rock 

mechanics data. This allows a field calibrated porosity-dependent pressure relationship for the 

baseline and monitor time, which is crucial for studying time-lapse seismic anomalies. Lastly, 

Gassmann’s relations (1951) are employed to model fluid effects. This workflow was applied to 

model the reservoir time-shifts between LoFS 2 and LoFS 6, where this approach shows better 

agreement to the observed time-lapse time-shifts, compared to the model proposed by the field 

operator. In the next chapter, I will employ this rock physics model for dynamic reservoir 

characterization, primarily using it to model time-shifts measurements from both streamer and 

LoFS data.  
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CHAPTER 

THREE 

 

 DYNAMIC RESERVOIR CHARACTERISATION  

 

This chapter provides an overview of the use of 4D seismic data in dynamic reservoir 

characterization in the Ekofisk field. A summary of the seismic data from both acquisition strategy 

for streamer and Life of Field Seismic (LoFS) is provided. A comparison is then made between 

streamer and LoFS data where a clear evolution of LoFS reservoir time-shifts as a function of 

pressure change was observed, whilst the streamer time-shifts portray signals that are dominated 

by an interplay of pressure and saturation changes. The rock physics model described in Chapter 

2 is employed to compute reservoir elastic properties and time-shifts as a function of pressure and 

saturation changes. Lastly, I provide two separate examples on reconciling the observed and 

modelled reservoir time-shifts in streamer and LoFS surveys by taking into account hysteresis in 

the rock’s stress sensitivity to effective stress.  
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3.1  Life of Field Seismic for Reservoir Monitoring  

The production history of Ekofisk is provided in Chapter 2. Here, I will give a brief description on 

the seismic data acquired in the Ekofisk field. Two separate acquisition strategies were adapted 

through time: streamer and Life of field seismic (LoFS) using ocean bottom cables. There was no 

pre-production seismic data and the first baseline seismic survey was shot in the year 1989 

followed by four streamer monitor surveys in the year 1999, 2003, 2006 and 2008. The first survey 

however coincides with the water injection programme started in 1987 hence it is a good baseline 

survey for monitoring water flooding (Guilbot and Smith 2002). The monitor surveys indicated 

significant time-shifts in the upper reservoir that were related to reservoir compaction. Despite the 

success of these surveys in showing reservoir compaction, the operator determined that this 

challenging field required more frequent surveys with higher repeatability.  The acquisition 

configurations for marine streamer and LoFS time-lapse surveys in the Ekofisk field are provided 

in Table 3.1. The first three seismic surveys are conventional streamer, followed by two surveys 

using Q-marine, point-receiver marine seismic system. The result of using Q-marine technology 

shows lower source-receiver positioning error, with as low as 50m in most of the survey area 

(Haugvaldstad et al., 2011). This improvement is depicted in Figure 3.1. The repeatability 

(NRMSd) of the streamer data and the gas cloud in the overburden which prevents optimal imaging 

is depicted in Figure 3.2 

A permanent seismic monitoring system was installed in 2010 as an effort to acquire more frequent 

and higher-repeatability 4D LoFS data. By 2010, with more than 1 billion STBO planned to be 

produced and more than 80 wells to be drilled during the next 15 years, a dedicated monitoring 

system is necessary to support the drilling programme (Bertrand et al. 2014).  The LoFS data is 

used for the purpose of reservoir surveillance such as to optimize new well locations and 

trajectories, prioritize well interventions, update the reservoir model and monitor the 

geomechanical behaviour of the overburden (Bertrand et al. 2013a). High repeatability (5% 

NRMS) has been achieved (shown in Figure 3.3), resulting in detectable 4D time-shifts of less 

than 200s and amplitude changes of the order 2 to 3%. Currently, the LoFS data are routinely 

used in well planning and reservoir management workflows by the field operator. Nine LoFS 

surveys have been acquired to date, the acquisition is carried out on average once every 6 months.  
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Acquisition 

parameters 
1989, 1999, 2003 2006, 2008 

LoFS (2010 – 

present) 

Technology Conventional Q-Marine OBC 4 components 

Configurations 
1-2 sources / 2-8 

streamers 
1 source / 8 streamers  

Source depth (m) 5 – 6 5  

Source separation (m) 50 50  

Streamer/cable 

separation (m) 
100 50 300 

Streamer depth (m) 6 – 8 6  

Streamer length (m) 3000, 3000, 3600 3600  

In-line bin size 12.5 12.5 12.5 

Cross-line bin size 12.5 12.5 12.5 

Number of sensor 

stations/sensor station 

separation (m) 

N/A N/A 4000 / 50 

Acquisition interval  
11 years, 5 years, 5 

years 
3 years 3 – 6 months 

Table 3.1: Acquisition configurations for Ekofisk field seismic streamer and LoFS data 

(compiled from Haugvaldstad et al., 2011, Bertrand et al., 2014, personal comm. Alex 

Bertrand).  

 

 

Figure 3.1: Source and receiver positioning difference maps showing significantly improvement 

with the employment of Q-marine technology (Haugvaldstad et al., 2011).  
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The acquisition periods and durations of the first six LoFS surveys at the Ekofisk field is shown in 

the Table 3.2.  

Survey Acquisition Duration (days) 

LoFS 1 Nov. 2010 – Jan 2011 71 

LoFS 2 May – June 2011 33 

LoFS 3 Sept – Nov 2011 43 

LoFS 4 June – July 2012 38 

LoFS 5 March – April 2013 36 

LoFS 6 Sept – Nov 2013 56 

Table 3.2: The acquisition period and duration of the first six LoFS surveys at the Ekofisk field 

(Bertrand et al., 2014). 

 

 

Figure 3.2: (top) NRMS difference maps computed at 2500-3500ms and (bottom) top Ekofisk 

time difference maps for 1989 – 2008, 2003 – 2006 and 2006 – 2008. The gas cloud 

is depicted as a black ellipse in the middle of the survey area (Haugvaldstad et al., 

2011).  
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Figure 3.3: (a) NRMS map computed in a 2500 – 3500ms window for LoFS 2 – LoFS 3. (b) 

Time-shifts at top reservoir between LoFS 2 – LoFS 3 acquired 4.5 months apart 

(Bertrand et al., 2014). 
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3.2  Dynamic Reservoir Characterization  

In this section, the proposed rock physics model from Chapter 2 is utilized to better understand the 

production mechanisms in the field under study from both periods of streamer and LoFS, in order 

to relate these dynamic changes to field observations. The accurate estimation of time-shifts and 

amplitude changes is important in the imaging and characterization of changes in reservoir 

properties. Historically in the Ekofisk field, the subtle amplitude changes are noisy and challenging 

to interpret reliably from streamer 4D seismic data; hence, more emphasis is given to time-shift 

measurements (Folstad 2011).  

 

3.2.1 Time-shift methods  

In the reservoir, where the rock is compacted and the path length is decreased, travel time will 

decrease through the reservoir zone. At the same time, compaction will increase the effective stress 

inside the reservoir, which generally increases velocity. The net effect is a decrease in the travel 

time through the reservoir. The opposite is true if the rock is dilated (stretched), as is the case in 

the overburden. The path length will increase, which will increase the travel time. Generally, 

dilation will cause the velocity to decrease, which will also have the effect of increasing the travel 

time. The schematic diagram in Figure 3.4 helps explain this. Of course, apart from geomechanical 

effects, time-shifts can be induced by changes in velocity alone, due to changes in pore pressure 

and saturation.  
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Figure 3.4: Changes in total time-shifts and velocity as a function of compaction and dilation.  

 

Accurate characterization of the different dynamic changes, such as pressure, saturation and 

porosity, relies on signal matching of the 4D seismic data and accurate estimation of the shifts or 

warping function in the 4D data. The time-shift volume is the result of changes in velocity 

properties and from path-length changes both within and outside the reservoir. Many efforts were 

made to resolve the shift function between baseline and monitor surveys. These algorithms include 

cross correlation (Xcorr), nonlinear inversion (NLI) by Rickett et al. (2007), local cross correlation 

(Hale, 2006), the correlated-leakage method (CLM) proposed by Whitcombe et al. (2010), the 

dynamic-warping method (Dwarp) proposed by Hale (2013), and the Multi-Scale and Iterative 

Refinement Optical Flow (MSIROF) algorithm used by Zhang and Du (2016). A comprehensive 

review of the strengths and weaknesses of these different methods can be found in Kanu et al. 

(2016). The window based cross-correlation method has traditionally suffered from the trade-off 

between accuracy and the resolution of the estimated time-shifts. The Rickett et al. (2007) non-

linear inversion method, which depends on a measure of misfit of the 4D signals between baseline 

and monitor trace, gives a more robust estimate of the time-shifts and is free from the trial and 
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error process of determining the optimum window size, since it calculates for the entire seismic 

trace. 

 

The NLI method introduced in Rickett et al. (2007) shows that the inversion based approach to 

time-shift calculation yields superior estimates of time strain compared to local cross-correlation 

methods. The stability of the time-shifts derivative is included in the objective function, ensuring 

that the time-shift estimates also give a stable time strain, which is overall less noisy and more 

interpretive. The objective function is given as Equation (3.1):  

𝐸 =  |𝑑 − 𝑓(𝑚)|2 + 𝛼|∇𝑡
2𝑚|2 (3.1) 

where data vector, 𝑑 contains the seismic data volume 𝑥1(𝑥, 𝑦, 𝑡) and the model vector, m contains 

the time-shift volume 𝜏(𝑥, 𝑦, 𝑡) and the nonlinear function, 𝑓(𝑚) applies 𝜏(𝑥, 𝑦, 𝑡) to the second 

survey to give 𝑥2(𝑥, 𝑦, 𝑡 + 𝜏(𝑥, 𝑦, 𝑡) ). The spatial constraints for the time direction is a Laplacian 

∇𝑡
2  used as the vertical constraint operator, since we want the time strain (the first-derivative of 

the time-shifts) to be smooth (Rickett et al. 2007). The weighting coefficient, 𝛼 represents the 

significance of the second term in the objective function; minizing the extra feature in the objective 

function increases the smoothness in the solution. This objective function is minimised using a 

descent-based Gauss-Newton algorithm. The Gauss-Newton algorithm works by linearizing the 

non-linear operator around the current model, solving the resulting linear problem, updating the 

model, and iterating.  

Based on the work of Hodgson (2009), shown in Figure 3.5, it was demonstrated that the inversion 

approach also suffers from similar limitations to the cross-correlation method. There is a similar 

trade-off between the stability and the resolution of the solutions. If the weighting coefficient for 

the second derivative in the objective function is given more importance, the resultant time-shifts 

and time strains are more accurate away from the reservoir, at the expense of resolution inside the 

reservoir interval. This is evident in Figure 3.5, where accuracy outside the reservoir improves 

with a larger weighting coefficient, at the expense of less accurate time strain inside the reservoir. 

This is a result of the underlying assumption in the inversion that the time strain is varying slowly, 

whereas in reality the strain can have extreme changes due to large changes in velocity. If we are 
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only concerned with the time-shift measurements inside the reservoir, then a smaller weighting 

coefficient should be employed at the expense of poorer accuracy in time-shifts of the overburden 

and underburden. Hence, this method should be considered with caution when applied to reservoirs 

with larger time-shifts. The time-strain volume can be calculated by taking the vertical derivative 

of time-shifts. Time strains are more sensitive to noise than time-shifts, but their interpretation is 

more direct and intuitive, since it can be compared to changes in interval velocity. In all subsequent 

analysis, the reservoir time-shifts are calculated using the Rickett et al., (2007) NLI method.  

 

Figure 3.5: A synthetic test to recover time-shifts and time strain using the NLI method. The 

synthetic data is highlighted in grey and the inverted solutions are in blue; 

recovered using different weighting coefficients for the second derivative in the 

objective function (Hodgson 2009).  
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3.2.2 Reservoir time-shifts and production mechanisms 

In this section, I will show the attribute I used in my time-shift analysis for both streamer and LoFS 

seismic data, and also compare and contrast the characteristics of the time-shifts estimated between 

two different types of surveys. The attribute known as the reservoir time-shifts is defined as the 

difference between the top and base reservoir time-shifts. This was first analysed in the Valhall 

field by Barkved (2012), with proven success. In a schematic diagram in Figure 3.6 (left), the 

reservoir time-shifts is given as the difference between point A and B. A positive reservoir time-

shifts is a speed-up being attributed to compaction or impedance hardening. A negative reservoir 

time-shifts is a slow-down due to dilation or impedance softening. The time-shifts volume is 

calculated using Rickett et al., (2007) NLI method discussed in the previous section.  

I computed the reservoir time-shifts attribute for the reservoir interval between 1989 –1999; the 

map in Figure 3.6 (right) shows speed-up or impedance hardening in most areas. One advantage 

of using this attribute is that the reservoir time-shifts has the same polarity convention as 

impedance changes. A speed-up (coloured in blue) corresponds to impedance hardening and a 

slow-down (in red) represents impedance softening. To carry out further analysis, all the data were 

gathered, in the form of seismic, well and production records across different acquisition periods 

for both streamer and LoFS. Seven wells are used in this analysis from the streamer data and ten 

wells from LoFS data. The selection criteria were prominent 4D signals observed around wells, 

large to moderate fluctuations in production data and observable changes from simulation model 

prediction that are also consistent with historic production data. 
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Figure 3.6: (left) Schematic diagram on how reservoir time-shifts are calculated by taking the 

difference between point A and B of the time-shifts of each trace. (Right) Reservoir 

time-shifts map between 1989 and 1999.  

 

Before showing the differences in the time-shifts behaviour between streamer and LoFS data, the 

data quality of these two different surveys are shown. The seismic quality of the streamer data and 

LoFS, which is acquired using ocean bottom cables (OBC), is compared by looking at seismic 

cross-sections and maps for both reservoir and overburden, in Figure 3.7. The Q marine survey 

illustrates improvement in seismic resolution and more refined faults. This improvement is more 

apparent in the OBC, where we see clearer signals with significantly reduced side lobes above and 

below 3D signals. The fault located in the overburden is also more defined, highlighted by the 

yellow arrow. The bottom section in Figure 3.7 shows a map below the reservoir horizon created 

using a 45ms window, mapping the highest amplitude trough. As a consequence of new technology 

such as OBC, the main fault running along the northwest direction is more defined and, as a whole, 

the data are less noisy. 
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Figure 3.7: (top) Comparison of seismic quality between conventional towed streamer (1989), 

Q-marine (2006) and OBC (2011). (Bottom) maps generated below the reservoir 

horizon created using 45ms window tracking the highest amplitude trough.  

 

To interpret these 4D reservoir time-shift signals in a meaningful way, we first need to understand 

the noise floor in these data. Figure 3.8 compares the noise floor for the streamer and LoFS data. 

The noise floor of both data types is computed by taking the average of the reservoir time-shifts 

across all surveys in an area (shown as small black box) which is relatively quiet from well 

activities. The noise floor of the streamer is expected to be higher, more than 3-fold, than the LoFS, 

due to high non-repeatability. The noise floor in the streamer data is calculated to be 0.3ms whilst 

in the LoFS it is 0.08ms (80µs). This means any reservoir time-shift values falling below 0.3ms in 

the streamer data and 0.08ms in the LoFS data will be treated as noise.  
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Figure 3.8: An area that is free from production changes is highlighted (in black rectangle) to 

compute the average background noise for streamer (left) and LoFS (right). 

 

The relationship between reservoir time-shifts and production changes  

Here, I will present a general understanding on the relationship of reservoir time-shifts and various 

production mechanisms in the Ekofisk field as a cross-plot, illustrated in Figure 3.9. In this cross-

plot, the X-axis corresponds to the changes in pressure and the Y-axis shows the polarity of the 

reservoir time-shifts. In the second quadrant, the time-shift signal shows hardening corresponding 

to a decrease in pressure. This can be caused by one of the following scenarios: a pressure 

relaxation situation due to a reduction in injection activities or shutting in of an injector, or a 

pressure depletion such as that from extracting oil from the reservoir. This effect, coupled with 

water invasion, may lead to water weakening, which is known to result in further compaction of 

the chalk. The third quadrant shows an opposite polarity, due to pressure reduction, which is a 

result of pressure going below bubble point resulting in gas exsolution. Fluid replacement of an 

incompressible oil with highly compressible gas creates significant softening; however, in the case 

of this reservoir, which is also geomechanically active, this depends on the amount of gas 

saturation changes and the initial gas saturation, and the amount of pressure drawdown.  
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The fourth quadrant corresponds to injection into the water leg, which causes pressure increase 

and a softening signal on 4D seismic data. One way to create an impedance hardening with 

pressure increase is a change in saturation, such as water replacing oil or gas going back into 

solution or a combination of both - this is highlighted in the first quadrant. A creep effect takes 

place when the state of stress in the rock is kept constant but continual deformation is recorded. If 

4D responses are expected but none are recorded, this is likely to be due to a cancellation between 

pressure and saturation changes. My analysis of the data will be based on these general 

conventions. The undetected 4D seismic signal can also indicate un-depleted regions, which 

provides infill well opportunities or an absence of reservoir hydrocarbon column or poor reservoir 

properties. Brain (2017) also discussed other possible explanations for weak or undetected signals 

such as poor processing workflow. He showed an acquisition consistent approach to statics in the 

Southern North Sea Rotliegend sandstone reservoir, by using a static solution for each source and 

receiver combination which slowly varied along sail lines. This reprocessing step has greatly 

improved the detectability of 4D time-shifts and improved the repeatability.  
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Figure 3.9: Inferred relationship of reservoir time-shifts and various production mechanisms in 

Ekofisk. 

 

I first look at an injector well I3 across the streamer period in the 20 years from 1989 to 2008, 

shown in Figure 3.10. Like many other injectors or producers in the streamer period, wells are 

mostly located in the virgin areas that are pre-water-flood. The water saturation log shows in-situ 

water saturation of around 5%, hence the influence of saturation in the 4D time-shift signals will 

be strong once production starts. I created a polygon (shown in Figure 3.10 as yellow box) around 

the well to extract the average and the standard deviation of the reservoir time-shifts. I then 

compare the average reservoir time-shifts in the polygon to simulate pressure from the fluid flow 

simulator.  

Recorded data such as the historic tubing head pressure (HTHP) is not used as comparison as it is 

not representative of the pressure changes in the reservoir. Figure 3.10 shows that as pressure 
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increases from 1989 to 1999, the reservoir time-shifts recorded a hardening signal of 1.7ms. 

Likewise from 1999-2003 a surge in pressure shows a reservoir time-shift value of 0.9ms. From 

2003-2006 and 2006-2008, a slight drop in pressure resulted in hardening signals of 0.48ms and 

0.3ms. We therefore see an anti-correlation between reservoir time-shifts and pressure data from 

1989-1999 and 1999-2003. This informs us that during the streamer period, or at least from the 

period of 1989 to 2003, pressure increase is not the major contributor to the 4D seismic signal: 

instead the 4D seismic changes are dominated by saturation changes. This is also supported by the 

water saturation log interpreted at most injector wells, showing water saturation close to connate 

water saturation at 0.05.   

To understand the 4D seismic signal in the LoFS data, I analysed a vertical injector well I8 from 

the LoFS period (2010 to 2014) where 4D seismic surveys were acquired on average every 6 

months; this is shown in Figure 3.11. Similarly, I used a polygon (shown in Figure 3.11 as a black 

box) to extract the mean and standard deviation values of the reservoir time-shifts around the well 

of interest. The wells in the LoFS period are mostly water-flooded, hence the 4D seismic signal is 

interpreted to be pressure driven. The water saturation log of I8 shows that the water saturation is 

close to 1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑖. Comparing my 4D reservoir time-shifts and the simulated pressure, a good 

correlation can be observed between the two. As the pressure increases, the 4D reservoir time-

shifts shows a softening signal, and between LoFS 5 –6, as the well is shut in, a hardening signal 

in the time-shifts reflects the pressure relaxation around the well. Between LoFS 3-4, and LoFS 4-

5, although the increases in pressure are relatively similar, a much larger 4D response was recorded 

for the period LoFS 4-5. This is due to the shut-in of a producer well close by, highlighted in 

yellow. It can be observed that as the producer well is shut in the LoFS 4-5, the hardening signal 

around it also reduces, due to gradual pressure build up around the producer.  

It is appropriate to compare the 4D time-shifts signals to the simulated pressure that has honoured 

material balance, if no recorded pressure is found at the well. This comparison between streamer 

and LoFS well activities and their 4D seismic signal signifies the pressure and saturation regimes 

in these different acquisition periods. The streamer 4D seismic signals are mostly a combination 

of both pressure and saturation, whereas in the LoFS period, due to wells positioned in post-water 
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swept areas, the 4D seismic signals are more pressure driven. I carried out the same procedures for 

all the wells selected for this analysis.  
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Figure 3.10: Progressive changes in 4D seismic reservoir time-shifts at well I3 as a function of time for streamer data. (Bottom left) 

Water saturation log of I3. (Bottom right) Historic and simulated production data overlain with reservoir time-shifts 

values for I3. Yellow box shows the polygon employed to extract time-shifts values from seismic, and water and pressure 

change values from simulation predictions.  
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Figure 3.11: Progressive changes in 4D seismic reservoir time-shifts at well I8 as a function of time for LoFS data. (Bottom left) 

Water saturation log of I8. (Bottom right) Historic and simulated production data overlain with reservoir time-shifts 

values for I8. Black box shows the polygon employed to extract time-shifts values from seismic, and water and pressure 

change values from simulation predictions. 
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3.2.3 Streamer versus LoFS production scenarios 

In this section the time-shift information in both the towed streamer and the life of field seismic 

(LoFS) data in the Ekofisk field are compared. Both data sets exhibit notable differences. Such 

differences are manifested as a range of different reservoir time-shift magnitudes, spread, 

repeatability, noise and resolution. By careful selection of the 4D anomalies around a set of 

producers and injectors, we see a clear evolution of LoFS reservoir time-shifts as a function of 

pressure change and these signals are more localised, whilst the streamer data reservoir time-shifts 

portray signals that are more of an intermixture of pressure and saturation changes and the signals 

are more spread out. This is expected as the seismic data was recorded after a long period of 

production in the streamer data. These signals are strongly correlated to production mechanisms 

and the timing of how pressure and saturation propagate in the reservoir. Polygons around the 

wells are used to extract not only reservoir time-shifts values from seismic data but also water, gas 

and pressure changes predicted from a well history matched simulation model and pressure values 

measured at bottom-hole pressure gauges (only available for the LoFS data). For the streamer data 

period, limited bottom-hole pressure values are available, therefore, only the prediction of the 

simulation model is employed. Due to the uncertainties in the simulation model predictions, error 

bars are calculated. Whereas in the LoFS data period, pressure measurements are available from 

bottom-hole pressure gauges, and no error bars are computed for the measured values. The 

standard deviation from the various extracted values (seismic and simulation predicted 

information) defines the error bars and are displayed in Figures 3.12 and 3.13. The noise floor 

calculated in Section 3.2.2 for both streamer and LoFS data are shown as grey rectangle boxes in 

both images.  

Due to the strong saturation effects in the streamer data, water saturation change is plotted as the 

primary x-axis, as shown in Figures 3.12 (a) and (b). Two distinctive trends are observed in the 

cross-plot of reservoir time-shifts versus water saturation changes: the trends are also divided by 

well types. These trends are characterised by an increase in pressure and water saturation, and a 

reduction in gas saturation, as highlighted by the arrows along the x, y and coloured axes. The 

trend on the right is made up of injector wells and the trend on the left are producer wells. The 

former trend has a larger increase in both pressure and water saturation but the same amount of 
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gas going back into solution for the same reservoir time-shifts, compared to the producers, 

suggesting that the effects of pore pressure and water saturation increase cancel out. This 

interpretation is consistent with our observations since larger water influx is expected at the 

injector compared to the producer wells. The noise floor is highlighted as a grey box here, as 

±0.3ms, any data points that fall within this range will not be treated as data and will be excluded 

in all analyses.  
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Figure 3.12: Cross-plots of streamer data reservoir time-shifts versus changes in water 

saturation coloured by (a) pressure change and (b) gas saturation change. Points in 

producer and injector trends are characterised by an increase in pressure and 

water saturation, and a reduction in gas saturation. 
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The LoFS reservoir time-shift data is more pressure driven and by cross-plotting pressure change 

as the primary X-axis with 4D reservoir time-shifts, in Figures 3.13 (a) and (b), two trends are 

observed, both from injector wells. The large pressure variation from the injectors shows a 

relaxation trend and a pressure build-up trend. A cluster of producers shows small hardening 

signals due to pressure depletion; this agrees with the general observation that a pressure depletion 

signal is often less observable compared to pressure build-up, and the complexity of interpreting 

the signal is more due to the interplay of other saturation or geomechanical effects. Pressure 

depletion below initial pore-pressure is much more difficult to detect, except when associated with 

reservoir compaction, or with gas breakout below bubble point. My goal here is also to reconcile 

these reservoir time-shifts using a rock physics modelling approach. These trends are asymmetric, 

showing that the rock undergoing re-pressurization yields a larger response compared to depletion. 

Work from Holt, Nes and Fjӕr (2005) has indicated that during loading the stress sensitivity is 

significantly less and harder to detect compared to unloading. 
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Figure 3.13: Cross-plots of LoFS data reservoir time-shifts versus changes in pore pressure with 

(a) water saturation change and (b) gas saturation change as the colour axis.  
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3.2.4 Reconcile observations with rock physics modelling  

So far, I have addressed the difference between streamer and LoFS data in terms of the 

characteristics of reservoir time-shifts and its relations to production mechanisms; and established 

a working rock physics model for the field of interest. Next, I am interested in reconciling the 4D 

observed reservoir time-shifts with my modelled estimations using the proposed rock physics 

model. There appear to be discrepancies between the observed and modelled reservoir time-shift 

estimates for the streamer data, where the modelled reservoir time-shifts are lower than those 

observed in the field. In order to paint a full picture on the stress evolution of the rock at the 

monitor survey of 1999, I will firstly describe production history from the pre-production to the 

first monitor survey. Prior to the baseline shot in 1989, the reservoir underwent primary depletion 

without any pressure maintenance efforts which resulted in gas exsolution, high effective stress 

and compaction of the chalk. In the subsequent 10 years from 1989 to 1999, water flooding was 

continuously implemented to increase reservoir pressure resulting in large pressure increase, water 

invasion and gas going back into solution.  

I will attempt to model these effects for both producers and injectors from this time period. Cross-

sections of the fluid flow simulator with the corresponding pressure and saturation predictions in 

both 1989 and 1999 are also displayed in Figure 3.14. The location of the injector wells has been 

highlighted, showing a large pore pressure increase from 3500 psi to 8000 psi, 30% of gas going 

back into solution, and changes in water saturation as high as 40%, due to the water flooding 

efforts. Around the producer wells, compaction is expected if the effective stress is high; the 

compaction is aggravated if the wells are also cutting water, resulting in water-weakening.  
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Figure 3.14: Cross-sections of the fluid flow simulator and the corresponding pressure and 

saturation prediction in both 1989 and 1999.  

 

What happens to the rock as a result of this intermixture of pressure and saturation changes?  We 

can look at this from the perspective of the stress-sensitivity of the rock due to the changes from 

effective stress. As shown in Figure 3.15, from 1971 (start of production) to 1989, there is 18 years 

of primary depletion strategy, which resulted in compaction of the chalk, essentially moving the 

stress sensitivity curve of the rock to a lower porosity curve (𝜑71 > 𝜑89), resulting in a stiffer 

bulk and shear modulus (𝐾71 < 𝐾89,  𝜇71 < 𝜇89). The initial effective stress is 22.9 MPa in 1971 

during pre-production and increased towards 53 MPa due to long period of depletion from 1971 

to 1989. From 1989 to 1999, the re-pressurisation programme increased pore pressure in the 

reservoir to as high as 5000 psi or more. The stress sensitivity of the chalk tends towards a lower 

effective stress, around 28 MPa, but never return to its initial stress state. 
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Figure 3.15: Evolution of the dry frame as a function time due to compaction and subsequent 

extension events. Numbers inside the plot represents the year (1971- pre-

production, 1989 – baseline and 1999 – monitor). 

 

3.2.5 Asymmetric relationship between injection and depletion 

Figure 3.15 demonstrates an asymmetric relationship of the rock frame between compaction 

(depletion) and extension (injection). The nonlinear dependence of rocks on stress is generally 

attributed to the deformation of micro-cracks and pores, grain boundary contacts, and fractures 

with changing confining stress (e.g. Rutqvist, 1995, Herwanger and Horne 2009). Rock properties 

also display stress hysteresis (e.g. Helbig and Rasolofosaon 2000, Hueckel et al., 2001, Ferronato 

et al., 2013) and this hysteresis has been observed to occur not only at large strains but also small 

strains. The hysteresis behavior observed in the stress sensitivity behavior is also partly attributed 

to an irreversible compaction. Hatchell and Bourne (2005) shows the crack opening contributes to 

a much larger velocity-strain coupling coefficient outside the reservoir, this could be an important 
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rock characteristic in explaining the asymmetric behavior of 4D seismic observations of producing 

reservoirs. Sayers (2007) points out that the velocity changes depend on the ratio between the 

variations of horizontal and vertical stress, which are functions of reservoir properties and 

geometry, as well as of the surrounding formations. It has been suggested that this asymmetry may 

be due to the different stress-paths followed by the overburden and the underburden (e.g. Sayers, 

2007, Scott Jr, 2007). In addition, if the rock fails and enters the plastic regime, as may occur in 

the reservoir (e.g. Kristiansen et al., 2005, Fjær et al., 2008) then post-failure velocity stress is not 

a phenomenon that is easily (or usually) measured in the laboratory, and therefore not well 

understood. 

Laboratory experiments (Holt et al. 2008, Holt and Stenebråten, 2013) have shown that a rock that 

has gone through an initial cycle of depletion followed by re-pressurisation is different or less 

stress sensitive compared to the same rock undergoing only injection (as shown in Figure 3.16), 

suggesting possible excess deformation due to internal defects from the first process. The strain 

sensitivity for the vertical P-wave or dilation factor is shown to be larger in unloading segments 

than in loading, and also larger during first time unloading than during unloading subsequent to 

loading. This understanding will be tested in the current dataset, since the production mechanisms 

in my dataset demonstrate such behaviour. An unloading event subsequent to a loading event is 

the result of a long period of re-pressurisation from 1989 to 1999, which allows me to calibrate the 

stress sensitivity parameters using observed time-lapse seismic data, to examine if these 

parameters should stay constant.  
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Figure 3.16: (left) Axial P-wave velocity versus axial stress in uniaxial strain test with synthetic 

sandstone sample for simulated injection and simulated depletion and injection 

(Holt et al., 2013). (Right) Modified diagram from Holt et al. (2013) showing 

changes in P and S-wave due to loading, unloading, and unloading subsequent to 

loading events. 

  

3.3  Calibration of Rock Stress-sensitivity Parameters via 4D Seismic  

I modelled the reservoir time-shifts using the initial stress sensitivity parameters calibrated from 

the laboratory measurements in Chapter 2, where both loading and unloading events employed the 

same stress sensitivity parameters. Figure 3.17(a-left) shows the stress path taken by the rock 

during the unloading event from 1989 to 1999, where a decrease in effective stress is shown. Figure 

3.17 (a-right) showcases the increase of pressure, on the x-axis, and the changes in saturation, on 

the y-axis, whereby water increases from 0 to 40% and gas goes back into solution from 30% to 

0%. The coloured bar shows red as softening and blue as hardening. The modelled reservoir time-

shifts for the producer X is 2.12ms, whereas the recorded reservoir time-shifts is 2.5ms. For the 

injector W, the modelled time-shifts is considerably lower, at 1.34ms, compared to the recorded 

time-shifts at 2.65ms. Since this re-pressurisation (unloading) occurred after an event of large 

pressure depletion (loading), the rock could have undergone pore collapse or closing of internal 

cracks, and subsequently become less stress sensitive. 

 

To test this, I implemented Holt’s asymmetric stress sensitivity unloading parameters into the 

modelling. Using the 1989 data point and the modified 𝐸𝑘 (parameter that controls the intercept) 

and 𝑃𝑘 (describes curvature), we can back-calculate the new bulk and shear infinity (controlling 
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the curves’ asymptote). The Holt’s relation 𝐸𝑘and 𝑃𝑘values are 18.7% lower than the initial values 

calibrated using the rock mechanic tests. I applied these new 𝐸𝑘and 𝑃𝑘values for the unloading 

and observed an improvement in the modelled reservoir time-shifts, shown in Figure 3.17(b). Since 

Holt’s experiments were carried out on synthetic high porosity sandstone (mechanically similar to 

shallow, poorly cemented high porosity reservoir sand), which is less relevant to the chalk. The 

stress sensitivity unloading parameters are further modified to match the observed reservoir time-

shifts in Figure 3.17(c). I had to reduce the stress sensitivity by 40% via 𝐸𝑘and 𝑃𝑘values from its 

initial values in order to match the modelled and observed reservoir time-shifts at both well X and 

well W. This demonstrates that after taking into account hysteresis in the rock strain, it reduces the 

overestimation of the softening effect during injection event, and resulted in a better agreement 

between the observed and modelled reservoir time-shifts.  

 



95 

 

 



96 

 

Figure 3.17: (a,b,c - left) Evolution of dry frame as a function of decrease in effective stress 

using original, Holt’s and the modified stress sensitivity parameters. (a,b,c - right) 

shows the modelling of reservoir time-shifts for wells X and W using the original, 

Holt’s and the modified parameters. The tables show comparison between observed 

and modelled reservoir time-shifts for wells X and W for each modelling exercise.  

 

Having successfully reconciled the observed and modelled 4D seismic reservoir time-shifts for the 

streamer data in Figure 3.17, I carried out the same modelling exercise on the LoFS data. The 4D 

seismic signals are predominantly pressure driven with small saturation effects. The two pressure 

effects of interest in the modelling are pressure build up and pressure relaxation, such as those 

shown in the cross-plots (Figure 3.13 a and b). Two different trends are observed from the data 

gathered, injector wells show a trend of pressure relaxation, where the reservoir time-shifts 

indicates hardening when production data shows a drop in pressure. On the other hand, a pressure-

up trend shows wells with a pressure increase coupled with reservoir time-shifts showing 

softening.  

The modelling results for re-pressurisation and relaxation for the two selected injector wells are 

shown in Figure 3.18. My modelling results are consistent with the observed reservoir time-shifts 

recorded at the wells, in which the unloading (pressure increase) effect caused a stronger 4D 

reservoir time-shift signal compared to loading (pressure relaxation). Figure 3.18 (left) shows the 

scenarios of two injectors undergoing pressure increase due to water-leg injection and pressure 

relaxation due to shut-in of a well. The LoFS modelling result shows agreement with the common 

understanding that pressure build-up results in a stronger 4D signal than in pressure relaxation or 

pressure depletion (in the event of no gas exsolution). Some examples from the literature show 

pore pressure increases induced by water injection into hydraulically isolated compartments or 

channels (Alsos et al., 2009) with large 4D responses. In comparison to injection, the effects of 

pore pressure decrease due to primary depletion are less pronounced (MacBeth et al., 2006, Staples 

et al., 2006). 
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Figure 3.18: (Left) production scenario observed in most wells in LoFS period. (Right) 

Prediction of reservoir time-shifts as a function of change in pressure and water 

saturation for injector wells I1 and I2. Table in bottom left shows comparison 

between modelled and observed values.  
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3.4  Summary  

This chapter has been predominantly about how 4D seismic time-shifts are used for dynamic 

reservoir characterization, and showcasing in particular how the reservoir time-shifts change as a 

function of different acquisition strategy. The pursuit of understanding the reservoir level signature 

is an important one, and to do that, we need to have a good handle on the different parameters that 

can affect the predictions of the reservoir signals via a rock physics model. Of all the parameters 

of the petro-elastic model, the rock stress sensitivity is the one which carries the highest 

uncertainty: the main reason for this is the difficulty of measuring this parameter using core 

samples. Core damage, frequency dispersion, geomechanical effects and the selection of the 

effective stress coefficient could lead to underestimation of the rock stress sensitivity, whereas the 

rock drying processes, the presence of shales, imperfect stress recovery and stress asymmetry 

could lead to an overestimation. In this chapter, I have shown how hysteresis or imperfect stress 

recovery could lead to overestimation of the unloading behaviour of the rock, resulting in a lower 

speed-up estimation for the reservoir time-shift attribute.  

I also compared the time-shift information in both the towed streamer and the LoFS data in the 

Ekofisk field. Due to the advances in technology, the frequency of acquiring seismic for reservoir 

monitoring and the interplay of different production mechanisms that had taken place across 

various time periods during field life, the two data sets exhibit notable differences. Such 

differences are manifested as a range of different reservoir time-shift magnitudes, repeatability, 

noise and the observable change due to specific petrophysical changes across time. A clear 

evolution of LoFS reservoir time-shifts as a function of pressure change is observed, whilst the 

streamer data reservoir time-shifts portray signals that are more of an intermix between pressure 

and saturation changes. These signals are strongly correlated to production mechanisms and the 

timing of how pressure and saturation propagate. This understanding is crucial for us to decompose 

pressure and saturation signals from 4D seismic data. I will describe my efforts to pull apart 

pressure and saturation changes using synthetic data in Chapter 3 and application on real data in 

Chapter 5.  
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CHAPTER 

FOUR 

 

 INVERSION FOR PRESSURE AND SATURATION CHANGES: 

A SYNTHETIC EXAMPLE 

 

In this chapter, I formulate a new equation to invert for pressure and saturation changes in a thick, 

compacting, chalk reservoir. This is achieved via synthetic modelling of changes in different 

dynamic properties such as pressure, saturation and compaction, using the fluid flow simulator 

ECLIPSE and then translating them into elastic properties using a petro-elastic model. 

Subsequently, by employing backward engineering, I decompose the composite relative 

impedance to analyse its individual components and workings in detail in order to then recreate 

the composite relative impedance using a simpler approximation or a proxy model. Physical 

phenomena such as water weakening and compaction notorious in chalk reservoirs are accounted 

for in the proxy model, and also described in this chapter. The validation of the proxy model is 

carried out in both forward modelling and inversion, and the benefits of incorporating constraints 

such as engineering concepts and bounding values are also discussed at length.   
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4.1  Introduction 

Chapter 1 introduced various quantitative approaches in estimating the reservoir dynamic 

properties such as pressure and saturation changes, specifically the use of data-driven proxy 

models (MacBeth et al., 2006, Floricich et al., 2006, Corzo et al., 2013, Alvarez and MacBeth, 

2013). These models relate the changes of seismic amplitude to the changes in dynamic properties. 

The inspiration to break away from these map-based models arises from their complicated 

application on the Ekofisk field, which is a thick, multi-cycle, compacting chalk reservoir. This 

chapter describes the derivation of a more appropriate proxy model, through acoustic impedance 

and time-shifts.  

 

4.2  Simulation Model Description 

We can study fluid movements, pressure propagation rates and drainage patterns using a numerical 

reservoir model and simulations to evaluate changes in a reservoir during production. I will first 

describe in detail the characteristics of the Ekofisk reservoir simulation model which will be used 

to generate synthetic elastic properties to help us to better understand how pressure, saturation and 

compaction affect the elastic parameters. This model is unique in that it represents the complex 

dry compaction and water weakening mechanisms that greatly influence how reservoir fluids are 

produced, injected and affect the rock frame.  

The simulation model has 128 x 155 x 22 (436480) grid cells, with an average cell size of 100 x 

110 x 45 m corresponding to an area of approximately 11 km x 6 km. The model is built to be 

consistent with the geological features, flow units and fault planes; hence, the grid uses non-

vertical pillars and irregular cells (corner-point geometry (CPG)). The reservoir model has an 

anticlinal structure. The reservoir is composed of chalk material. The initial porosity ranges 

between values of 0.02 to 0.48 and the horizontal permeability ranges between 0.0007 to 2000mD 

and in the vertical direction ranges between 0.00007 to 200mD. The static parameters are well 

constrained by the large amount of well data. Data from wells and an acoustic impedance 

background trend were used in the porosity modelling. There are 23 geological horizons and 22 

geological layers in the model. The preferential fluid flow patterns and, therefore, the preferential 
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changes in seismic attributes are influenced by the rock types of the model. The simulation model 

with all 22 layers of initial porosity is illustrated in Figure 4.1. The fluid properties and initial 

reservoir conditions are shown in Table 4.1.  

The Ekofisk field has a large variability in reservoir quality. The fracture network indicators are 

characterised deterministically by large amount of data using both static (e.g. fracture distribution) 

and dynamic observations (e.g. well tests, water breakthrough). The effective permeability model 

is a combination of two properties: fracture-enhanced matrix permeability and fracture network 

permeability based on 14 different indicators: interpreted fractures, flow path analysis, distinct 

water breakthrough, tracer, super tracer, temperature anomaly, pressure supported data, 

interference test, rapid gas-oil ratio (GOR) increase, mud loss, PLT kick, fracture, fracture cluster 

and observations from 4D seismic data. These fracture network indicators are mapped directly into 

the flow simulation grid. This deterministic 3D mapping forms the basis of a high-contrast single 

porosity and permeability model, which is used as input for dynamic simulation (Tolstukhin et al., 

2012).  

 

Figure 4.1: The fluid flow simulation for the Ekofisk field with 128x155x22 grid cells in total. 

High porosity regions are found in the crest of the reservoir.    
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Property Description 

System 
Gas, oil, water, dissolved gas in live oil, 

vaporized oil in wet gas 

Oil gravity (API) 38 

Initial reservoir pressure (psia) 7150 

Temperature (oF) 268 

Gas gravity 0.73 

Salinity (ppm) 65,000 

Gas density (lb/ft3) 0.055 

Oil density (lb/ft3) 52.23 

Water density (lb/ft3) 62.37 

Residual oil saturation (Sorw) 0.275 

Connate water (Swi) 0.05 

Residual gas saturation (Sorg) 0.04 

Critical gas saturation (Sgc) 0.36 

Table 4.1 Fluid reservoir properties and initial reservoir conditions used in the reservoir 

simulation.   

 

4.2.1 Rock typing 

The modelled porosity, effective permeability and fracture index are used to calculate the eight 

different rock types in the simulation model, where the function of rock typing is to allocate 

relative permeability and saturation region information for each of the cells in the model. The 

model is a single porosity model; hence the fracture or matrix exchange needs to be covered by 

pseudo relative permeability functions due to the approximation of physics (dual porosity model 

was not employed) and due to discrepancy in scale (as the reservoir simulation model grid cells 

are much larger than geological model cells and core samples) as reported in ConocoPhillips 

Internal Report. The absolute permeability is a property of the reservoir porosity and is a measure 

of the capacity of the rock to transmit fluids. When two or more fluids flow at the same time, the 

relative permeability of each phase at a specific saturation is the ratio of the effective permeability 

of the phase to the absolute permeability (Ahmed, 2010). The same rock type can have varying 

porosity and permeability but correspond to the same relative permeability curves. The mapping 

criteria for the eight different rock types are shown in Table 4.2 below:  
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Rock Type Effective permeability Porosity Description 

20 
>100mD Thief zone 

No collapse 

18 Collapse 

16 
>15mD Fractures 

>32% High porosity 

15 <32% Low porosity 

14 
5mD> & <15mD Intermediate 

>32% High porosity 

13 <32% Low porosity 

12 
<5mD Matrix 

>32% High porosity 

11 <32% Low porosity 

Table 4.2 Rock types in the Ekofisk field are divided based on the effective permeability and 

porosity.  

 

Major fracture corridors along the faults with effective permeability greater than 15mD are 

categorised under rock types 15 and 16, whereas the background matrix is mostly described by 

rock types 11 and 12. Rock types 18 and 20 are thief zones, which are horizontal permeability 

conduits which contribute to early water breakthroughs in producer wells. The rock types are 

shown in Figure 4.2, where majority of the cells are described as matrix.  
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Figure 4.2: A map view of the Ekofisk simulation model (layer 11) coloured by rock types. 

Fractures are highlighted as cyan.  

 

4.2.2 Geomechanical changes handled by reservoir simulation 

The water weakening phenomenon was widely studied in the 90s, with many notable publications 

(Newman, 1983, Schroder and Shao, 1996, Delage et al., 1996, Risnes and Flaageng, et al., 2004, 

Risnes at al., 2005, Austad et al., 2008). The change in pore volume has been shown in laboratory 

experiments where the rock compacts as a function of increase in effective stress, rocks that are 

more porous also underwent more dramatic compaction gradient than less porous chalk. According 

to the compaction model (Sylte et al., 1999) provided by the operator (ConocoPhillips), porosity 

rebound does not occur due to unloading events. This means the rock behaves in an inelastic 

manner, even after pore pressure has increased to its initial condition. The same relations also 

apply to the relationship between permeability and stress: for less porous chalk, there is no change 

in fracture conductivity or matrix permeability as effective stress reduces in the reservoir. Porous 
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chalk will undergo a more severe reduction in permeability in the presence of water coupled with 

pressure depletion compared to only pressure depletion. The dry compaction and water weakening 

mechanisms are incorporated into the simulation by using the keyword ‘ROCKCOMP’ in 

ECLIPSE. The compaction tables are read into the simulator using the ‘ROCKTAB’ keyword.  

 

4.3  Dry Compaction and Water Weakening 

Dry compaction is where the rock reduces in pore volume when the fluid pressure falls or the 

effective stress increases. This behaviour can have both positive and adverse effects on the 

reservoir, such as adding significant energy to the reservoir but also causing massive compaction 

which translates into subsidence of the seafloor. However, some rocks, typically chalks, will 

exhibit additional compaction when the water meets oil bearing rock, even at constant stress. 

Laboratory work by Newman (1983) and Loe et al. (1992) on North Sea chalk showed immediate 

and dramatic weakening of water-free chalk when injected with sea water. From the work of Smith 

et al. (2002), based on an extensive database of chalk core measurements, it has been shown that 

the pressure drawdown mechanism or dry compaction creates a gentler compaction trend 

compared to water weakening, at the same effective stress. It also showed that both compaction 

mechanisms are weaker for chalk with lower initial porosity.  

Laboratory tests also indicate that the relative amount of water weakened chalk is a linear function 

from zero water saturation to the critical water saturation, which is when the entire matrix is fully 

water wet and the chalk is fully water weakened. The critical water saturation or the maximum 

attainable water saturation (𝑆𝑤𝑚𝑎𝑥) has been determined as 0.325 in the Ekofisk field (Smith et 

al., 2002), although it was initially reported to be 0.25 (Sylte et al., 1999). The rock is known to 

be ‘fully-wetted’ when the maximum water saturation is reached, as shown in Figure 4.3. The 

chalk does not need to be saturated at 1-𝑆𝑜𝑟𝑤 (residual oil saturation) to be consider fully wetted. 

The fully wetted stage is when the chalk undergoes maximum compaction after water invasion 

from 0 to 33% at a given effective stress for a specific porosity. The maximum attainable water 

saturation (𝑆𝑤𝑚𝑎𝑥) is unique to the water weakening phenomenon. The deformation mechanisms 

described here are paramount in capturing the changes of porosity as a function of effective stress 

and changes in fluid composition. The effects of water weakening are first visible in samples of 
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oil saturated chalk appear to be 2-3 times as strong as water saturated samples (Risnes and 

Flaageng, 1999), as illustrated in Figure 4.4. This further complicates the stress-strain behaviour 

of chalk, as samples with the same porosity, will display different curves for different water 

saturations (shown in Figure 4.5). 

Figure 4.3: Porosity reduction is more dramatic in the event of water weakening compared to 

dry compaction (Smith et al., 2002).  

 

 

Figure 4.4: Illustrated in Risnes and Flaageng (1999), showing the Mohr-Coulomb failure 

diagram for both oil and water saturated chalk samples.     
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Figure 4.5: Stress and strain relationship as a function of water saturation for a sample with 

36% initial porosity of a chalk sample. A fully water weakened chalk shows higher 

strain at the same stress level compared to a dry chalk (Chin and Nagel, 2004).     

 

4.4  Separating Pressure and Saturation changes in a thick versus thin reservoir 

In this section, I outline how the thickness and heterogeneity of the reservoir determine techniques 

carried out in 4D seismic data interpretation, and more importantly, in efforts to separate pressure 

and saturation changes. I will also explain some of the advantages of working in the impedance 

domain instead of the reflectivity domain. Figure 4.6 shows a spectrum of the different types of 

reservoir from ultra-thin to thick, heterogeneous, compacting reservoirs. My field of interest, 

Ekofisk is categorised under thick, heterogeneous and compacting reservoirs, similar to reservoirs 

such as Luconia, Sleipner and the Dan field. The reservoir thickness is determined by the tuning 

thickness, which is one-quarter wavelength. The limit of separability of bed thickness depends on 

the velocity at reservoir interval and dominant frequency.  
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Figure 4.6: Different reservoirs categorised based on reservoir tuning thickness and 

heterogeneity.  

 

Two synthetic examples are generated to demonstrate why impedance are the most suitable 

attributes to decompose pressure and saturation signals for a thick and heterogeneous reservoir as 

compared to seismic amplitude. In the first case, shown in Figure 4.7, I modelled a thin reservoir 

with an injector injecting water into an oil leg, and observed an intermixture of pressure and 

saturation changes in the compartment. The change in pressure is assumed to be 1000psi and the 

change in water saturation is 30%. The reservoir is thin; hence the gravitational effects of fluids 

are less apparent. As shown in Figure 4.7 (a) and (b), pressure diffuses across the entire reservoir 

and water slumps due to the gravitational effect. Assuming there is a producer up dip of the injector 

(a typical scenario), the pressure gradient is shown in Figure 4.7(b), and water is shown to have 

migrated towards the producer, potentially with water coning around the producer. The pressure 

effect is more dominant than saturation changes; therefore, an overall decrease in impedance of -

3% is observed at the injector based on rock physics modelling.  

The seismic profile in Figure 4.7(c) at the injector well shows the quadrature phase (-90o) 

amplitude of the baseline (the blue trace) and of the monitor (the red trace). The dashed black line 

is the difference in amplitude of the quadrature phase before warping, and the solid black line is 

the time aligned quadrature phase difference in amplitude, which shows a negative value. In the 

case of any zero-phase data, the energy peaks at interfaces, which are at the top and bottom of the 

reservoir. The reason I convert seismic difference to quadrature phase (-90o) is to display the 

energy difference within the reservoir interval, and it is also useful for facilitating volume-based 

interpretation techniques (Johnston, 2013).  

From a map view of a seismic attribute such as the difference in root mean squared amplitude 

shown in Figure 4.7 (d), it can be seen that both top and base of the reservoir show a softening 
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response and it will not be possible to separate these changes easily. If the reservoir is thinner than 

tuning thickness, the base of the reservoir might not be resolved. If there is prior knowledge that 

the injection is in an oil leg and not the water leg, such that the depth of the original oil-water 

contact is known, it can be inferred that the softening is attributed to a combined effect of both 

pressure and saturation. Moreover, if the reservoir corresponds to a half cycle of the seismic 

amplitude, these softening responses can be mapped spatially. In the case in point, I cannot proceed 

further in terms of separating pressure and saturation solely by analysing the amplitude difference, 

unless I invert the amplitude difference to impedances and subsequently carry out a rock physics 

transform to separate the individual dynamic properties.  

 

Figure 4.7: (a) A cross-section of a thin heterogeneous reservoir with an injector providing 

pressure maintenance into the oil leg. (b) Pressure profile from a producer (up dip) 

to the injector in (a). (c) Seismic trace profile at injector location. (d) Showing 4D 

response if a dRMS map of the reservoir is made between baseline and monitor.  
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Figure 4.8: (a) A cross-section of a thick heterogeneous reservoir with an injector providing 

pressure maintenance into the oil leg. (b) Pressure profile from a producer (up dip) 

to the injector in (a); the slumping effect is more prominent compared to a thinner 

reservoir. (c) Seismic trace profile at injector location. (d) Showing 4D response if 

a dRMS map of the reservoir is generated at different intervals between baseline 

and monitor.  

 

With a thick and heterogeneous reservoir, for which there is potentially a vast amount of 

information, it is apparently more complicated to interpret the seismic anomalies, and the same 

anomalies can be explained by many different production mechanisms. In Figure 4.8 (a), using the 

same example as the thin reservoir with an injection into the oil leg, a different anomaly is 

observed. I assumed a greater gravitational effect in the thick reservoir, where a longer transition 

zone exists between oil and water, as shown in Figure 4.8 (b). Again, assuming a producer up dip 

of the injector, we expect to see slumping of the heavier reservoir fluid (water) at the injector well, 

and water coning at the producer well. Of course, the coning is subjected to production rate at the 

well. On the other hand, we expect pressure to diffuse uniformly throughout the reservoir interval. 
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The top reservoir therefore will have a stronger pressure signal compared to the bottom of the 

reservoir, because the water coning effect is stronger at the base of the reservoir. In the thick, 

heterogeneous reservoir, I can observe both the changes in pressure and saturation, spatially, and 

also the vertical extent of the injection. This is due to the varying impedance contrast of the 

different chalk layers, which is an intrinsic property of the rock, like porosity and permeability. 

Figure 4.8 (c) shows the quadrature difference as a solid black line. A softening signal (negative 

amplitude difference) near the top of the reservoir is observed, whereas a hardening (positive 

amplitude difference) is observed at the base of the reservoir. Both of these signals are highlighted 

by the red and blue solid arrows. These are genuine signals caused by dynamic changes. The 

hardening and softening responses in the middle of the reservoir are due to side-lobe interference.  

In multiple stacked reservoirs similarly to those demonstrated in this synthetic example, the side 

lobes can interfere with or be confused with the primary difference signal. The solution for such 

quadrature shortcomings is 4D model-based stochastic seismic inversion. Although I cannot 

accurately separate the pressure and saturation signals within the reservoir completely, it helps us 

to interpret the vertical extent of the water propagation, based on the polarity of the amplitude 

difference. More sophisticated methods, such as impedance inversion will be required to ultimately 

separate both of these effects. If I tackle this problem from a map-based method, as illustrated in 

Figure 4.8 (d), different responses will be seen at distinct interfaces of the reservoir. The separation 

of pressure and saturation is case-dependent with this type of reservoir, such that the top reservoir 

and perhaps the intra-reservoir layer will yield softening responses due to pressure and the base 

reservoir shows hardening due to water saturation. This interpretation strategy is also applied in 

the Andrew field. From the 4D difference cross-section in Figure 4.9(a), the extent of gas and 

water changes can be visually inferred from the polarity alone. 4D water and gas migration maps 

were computed by summing the positive and negative differences across the oil column (Trythall 

et al., 2003). The map generated for the top reservoir in Figure 4.9(c) shows gas saturation changes 

based on the softening signals and vice versa for the map generated from the base of the reservoir, 

shown in Figure 4.9(b), where hardening is correlated to water injected.  

In the case of Sleipner, due to the nature of the reservoir with many intra-reservoir shales in the 

Utsira sandstone, the extensive propagation of gas was effectively revealed by the shales when the 
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gas was trapped beneath thin shale layers. Thus, the thick, intra-shale reservoir enabled the 

successful qualitative monitoring of the migration of carbon dioxide gases (Figure 4.10). Thus, 

there are also many advantages to a thick, heterogeneous reservoir and careful interpretation can 

help us to gain insights into the dynamic changes of the reservoir without impedance inversion, to 

a qualitative extent. However, due to the interference of side-lobes and without prior knowledge 

regarding the geology, it will be difficult to interpret the seismic anomalies, it is henceforth 

beneficial to use a layer property such as impedance instead of an interface property like amplitude.  

 

Figure 4.9: (a) Showing the 4D difference in the Andrew field, with good correlation with PLT 

flow; large scale increase in impedance (blue) from the OOWC shows water 

fingering. (b) and (c) are maps generated to map water and gas differences between 

baseline and monitor by summing the positive and negative differences across the 

oil column (Trythall et al., 2003)..  
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Figure 4.10 Left: showing raw stack seismic data of the Sleipner field in 1994. Right: showing 

the seismic event at monitor time in 1999, where velocity pushdown beneath the 

injection point can be seen, and many constructive and destructive events above the 

injection point, due to the shale intervals in the Utsira formation.  
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4.5  Pressure and Saturation Sensitivity on Elastic Properties 

In this section, I will present the responses in various elastic properties influenced by primary 

production mechanisms in the Ekofisk field, modelled for the LoFS surveys. This sensitivity 

analysis was carried out to understand the different production mechanisms in isolation, 

particularly for pressure, saturation and porosity changes. The modelling was carried out for a 

chalk sample with an average porosity of 35%, with no shale content at a burial depth of 3100 

metres (top reservoir). The synthetic time-lapse response in Figures 4.11 and 4.12 are generated 

using the calibrated rock physics model described in Chapter 2. Figure 4.11 shows that compaction 

resulting from water weakening and water flooding has the highest impact on P-wave and S-wave 

velocity changes. The water weakening behavior in Figures 4.11 and 4.12 are modelled by only 

considering porosity reduction due to changes in pore pressure, without taking into account of the 

changes in elastic properties due to water saturation changes. Smaller changes are observed due to 

dry compaction and pressure build-up. Unlike other clastic reservoirs, where pressure depletion in 

the oil leg is often not detectable above noise, in the Ekofisk field, the pressure depletion is coupled 

with porosity reduction; hence pressure depletion is often associated with a strong hardening 

signal. This, of course, depends on the pressure draw-down and the initial porosity of the rock. 

Figure 4.11 show how changes in P-wave velocity correlate well with compaction and saturation 

changes, whilst changes in S-wave velocity largely depend on pore pressure perturbation.  

Similar observations are made for time-shifts, and the percentage change in P-impedance, 

compaction due to water weakening and sole water saturation changes plays a major role in 

increasing both of these attributes, as shown in Figure 4.12. Dry compaction, pressure build up 

and gas coming out of solutions present weaker signals in both the relative change of P-impedance 

and in time-shifts. In these plots, changes in time-shift and impedance due to gas saturation 

increases are not predicted to be as large as the changes induced by compaction or water saturation 

alone. This is because the initial gas saturation is already quite high (10%) in the LoFS surveys, 

therefore the non-linear portion of the property versus saturation behaviour curve is not accessed. 

Based on the prediction from the fluid flow simulator, the gas saturation increase is minimal in the 

LoFS period, around a fraction of 0.3. These plots are useful to help in understanding the time-

lapse signals measured from the LoFS surveys.  
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Figure 4.11: Showing the sensitivity of the percentage change of P-wave velocity and S-wave 

velocity to various production mechanisms that were modelled in isolation.  

 

Figure 4.12: Shows the sensitivity of the percentage change of P-impedance and time-shifts to 

various production mechanisms that were modelled in isolation.  



116 

 

4.6  Derivation of a Proxy model via Synthetic Modelling 

I have previously highlighted the rationale of a proxy model in various applications from reservoir 

characterization to seismic history matching. Most of this proxy model focuses on the relationship 

between the changes in dynamic properties and the difference in 4D seismic amplitude. Whilst the 

relation observed between dynamic properties and amplitude differences are encouraging, this 

particular approach is not the only one available, nor the most obvious choice for a thick, multi-

cycle reservoir like Ekofisk. Another possibility is to relate dynamic changes to the relative change 

in impedances (
∆𝐼𝑃

𝐼𝑃
× 100) or other elastic properties which are interval properties. Impedances 

are usually modelled by a petro-elastic model to convert dynamic changes from the simulation 

model.  

The relative change in impedance was chosen instead of seismic amplitudes, since it is also 

intuitive, and shows the relative strength of saturation or pressure changes in the 4D signals. The 

relative change in impedance is easier to interpret compared to the difference of impedance for 

baseline-monitor. It is more meaningful to look at this attribute than the difference in impedance, 

which is in the range of very large numbers. It is much more meaningful to quote that a 300psi 

change in pressure resulted in 1% change in impedance than 75000 m/s.kg/m3 change in 

impedance between baseline and monitor. Seismic amplitude is an interface or contrast property, 

whilst impedance is a layer or rock interval property; thus the latter is more easily related to 

dynamic properties. In the following sections, I will demonstrate the formulation of this proxy 

model using a synthetic model.   

 

4.6.1 Synthetic model description 

To analyse the individual impact of pressure, saturation and porosity reduction, the relative 

changes in impedances are modelled for a sector model of the Ekofisk field simulation model. This 

is carried out using the simulation-to-impedance procedure of Amini et al. (2011), which from 

here on will be simply known as ‘sim2imp’. The sector model in Figure 4.13(a) has the same 

heterogeneity as the real data, and was simulated in a way that follows the production history of 
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the actual dataset by limiting the number of wells to six injectors and six producers. Figure 4.13(b) 

illustrates the production evolution of field pressure, field oil, gas production rate, water cut and 

water injection rate. During the first 18 years of production, due to the nature of the oil and the 

initial pressure being close to bubble point, the gas came out of solution rapidly with poor pressure 

maintenance. In parallel to the real data, a water injection programme was initiated later to 

maintain pressure, resulting in an increase in oil production rate and water cut. Having simulated 

the dynamic changes, such as pressure, gas, water and oil saturation at different time steps, I then 

put these results into the sim2imp workflow to generate impedances.  

In order to study the impact of compaction (dry compaction and water weakening) on pressure and 

saturation and, in turn, on the impedances, I ran the fluid flow simulator in two separate scenarios: 

(1) no compaction, and (2) compaction; this workflow is shown in Figure 4.13(c). In this approach, 

petroelastic parameters were firstly calibrated from the wireline logs (P- and S -wave velocities, 

density, water saturation and gamma logs) and fluid properties obtained directly from PVT data. 

The dry frame properties for the chalk were derived from laboratory rock-mechanics tests and 

stress-sensitivity curves coefficients were also taken from the laboratory and put into the stress-

sensitivity model of MacBeth (2004). Fluid acoustic properties are calculated using black-oil PVT 

data in combination with the Batzle and Wang (1992) equations and are then mixed using a 

harmonic average. Calibrated chalk parameters are then used to perform fluid substitution. The 

petroelastic model used in the sim2imp procedure has been thoroughly described in Chapter 2.  
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Figure 4.13: (a) A sector model of the Ekofisk full fluid flow with location of producer and 

injector wells. (b) Field production profile as a function of time. (c) The fluid flow 

simulation is carried out in three separate scenarios: no compaction, dry 

compaction and, lastly, water weakening.  

 

Here, I demonstrate the results from my synthetic model for the individual contribution of pressure, 

saturation and compaction for case number 2, by including dry compaction and water weakening. 

Figure 4.14 (left panel) shows the dynamic changes such as gas, pressure and water by taking into 

account of compaction. Here, the term compaction encompasses physical changes such as dry 

compaction and water weakening. Figure 4.14 (right) shows the changes in P-impedance as 

percentages for the individual dynamic changes. Figure 4.14 (b – right, and c – right) depicts the 

effects of compaction due to pressure depletion and water invasion. The hardening signals in the 

relative change of impedance was amplified due to porosity reduction in those regions.  



119 

 

 

Figure 4.14: Cross-sections for the sector model showing (left) simulation model prediction and 

(right) percentage change of P-impedance from sim2imp for (a) gas, (b) water 

saturation and (c) pressure change. This is generated for the case of water 

weakening. 

 

4.6.2 Reverse Engineering 

Reverse engineering or backward engineering is, by definition, the process of extracting 

knowledge or design information and re-producing it based on that acquired information. In this 

case, I am trying to decompose the composite impedance from sim2imp to analyse its individual 

components and workings in detail, and recreate it using a simpler approximation. Modelling 

provides a way to examine the impact of pressure, gas, water saturation changes and 

geomechanical responses on the petroelastic parameters by independently isolating each of these 

controlling changes during the petroelastic modelling step, as shown in Figure 4.14. I can examine 

the effect of these different dynamic and geomechanical changes on the change of elastic 

properties, in the cases of no compaction, versus compaction. For simplicity the percentage change 

of any elastic properties are annotated in this chapter using the symbol ‘𝛿’: 
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𝛿𝐼𝑃 =
∆𝐼𝑃

𝐼𝑃
× (100)  (4.1) 

In the case of no compaction, I anticipated the composite impedance response might be 

decomposed as a sum of individual responses: 

𝛿𝐼𝑃(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔) = 𝛿𝐼𝑃(∆𝑃, 0,0) +  𝛿𝐼𝑃(0, ∆𝑆𝑤, 0) +  𝛿𝐼𝑃(0,0, ∆𝑆𝑔)  (4.2) 

where ∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔 are changes in pressure and water and gas saturation respectively. By adding 

the independent 𝛿𝐼𝑃  due to gas, water and pressure changes, the end product predicts the very 

same changes as if one ran running the full petro-elastic model. This is found to be accurate in the 

model across a wide range of geological and fluid conditions to within an error of 2% for P-

impedance. This suggests that, in the case of no compaction, the system is additive for 

simultaneous pressure and saturation changes, and these changes honour the principle of 

superposition. This linearly additive behaviour forms the initial framework of the proposed proxy 

model equation.  

The principle of superposition states that in all linear systems, the net response caused by two or 

more stimuli is the sum of the response caused by each stimulus individually. The relationship 

between the composite 𝛿𝐼𝑃 from sim2imp is linearly related to the sum of the respective 𝛿𝐼𝑃 

computed from different dynamic changes. This is clearly demonstrated in Figure 4.15, with the 

cross-plotting of  𝛿𝐼𝑃(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔) versus 𝛿𝐼𝑃(∆𝑃, 0,0) +  𝛿𝐼𝑃(0, ∆𝑆𝑤, 0) + 𝛿𝐼𝑃(0,0, ∆𝑆𝑔). The 

goodness of fit is reflected in a high coefficient of determination, 𝑅2 of 0.91. 𝑅2 indicates how 

well a model obtained by linear regression fits the data.  Therefore, the equation can be written in 

the form: 

𝛿𝐼𝑃 = 𝛼∆𝑃 + 𝑏∆𝑆𝑤 + 𝑐∆𝑆𝑔  (4.3) 

 The coefficients of 𝛼, 𝑏 and 𝑐  are obtained via linear regression of the individual dynamic changes 

and their respective impedance changes, while they are modelled in isolation of gas, water and 

pressure.  
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Figure 4.15: Showing the linear relationship between 𝐼𝑃(∆𝑃, ∆𝑆𝑤 , ∆𝑆𝑔) and 𝛿𝐼𝑃(∆𝑃, 0,0) +

 𝛿𝐼𝑃(0, ∆𝑆𝑤, 0) + 𝛿𝐼𝑃(0,0, ∆𝑆𝑔) for the case of no compaction.  

 

The actual system contains compaction due to both dry compaction and water weakening, 

therefore, the same procedure is carried out by running the full simulator, but this time taking 

account of these geomechanical effects. In the sim2imp procedure, I then isolate the effect of each 

controlling factor, such as pressure, water saturation, gas saturation and porosity changes on the 

elastic parameters. In the water weakening system, the composite relative change in impedance 

can be similarly decomposed as:  

𝛿𝐼𝑃(∆𝑃′, ∆𝑆𝑤
′, ∆𝑆𝑔

′, ∆𝜑) = 𝛿𝐼𝑃(∆𝑃′, 0,0, ∆𝜑) +  𝛿𝐼𝑃(0, ∆𝑆𝑤
′, 0, ∆𝜑) +  𝛿𝐼𝑃(0,0, ∆𝑆𝑔

′, ∆𝜑)  (4.4) 

where ∆𝜑 represents the change in porosity; this extra term is attributed to compaction.  

Additionally, the impact of compaction on the changes of gas reflected as relative changes in P-

impedance inside the reservoir can be studied by taking the difference of the functions derived 

from the compaction case and those from the no compaction case for gas: 𝛿𝐼𝑃(0,0, ∆𝑆𝑔
′, ∆𝜑) −
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𝛿𝐼𝑃(0,0, ∆𝑆𝑔, 0). The difference between 𝛿𝐼𝑃(0,0, ∆𝑆𝑔
′, ∆𝜑) − 𝛿𝐼𝑃(0,0, ∆𝑆𝑔, 0) in Figure 4.16(a) 

shows compaction results in less gas liberation and in turn an increase in the relative change of P-

impedance. Likewise, for the impact of pressure on the relative change in P-impedance as a 

function of compaction, in Figure 4.16(b): 𝛿𝐼𝑃(∆𝑃′, 0,0, ∆𝜑 ) − 𝛿𝐼𝑃(∆𝑃, 0,0,0). Thus, as a result 

of pore collapse and higher compressibility, there is an increase in pore pressure and an increase 

in relative P-impedance. Moreover,𝛿𝐼𝑃(0, ∆𝑆𝑤
′, 0, ∆𝜑 ) − 𝛿𝐼𝑃(0, ∆𝑆𝑤, 0,0) in Figure 4.16(c) 

shows that the intrusion of water results in further pore collapse and reduction in permeability, 

which causes a greater overall relative change of P-impedance. Figure 4.16(d) shows the changes 

in porosity due to compaction. The change in porosity, ∆𝜑 is given as the difference between initial 

porosity and the updated porosity (in the monitor survey). By comparing the effects of compaction 

on pressure, water and gas, I found the influence on pressure and water is much greater, with 

approximately 3% increase in relative impedance, while for gas it was slightly below 0.2%.  

 

Figure 4.16: Cross-sections for the sector model, showing the 𝛿𝐼𝑃 between the cases of 

compaction and no compaction for (a) gas, (b) pressure (c) water saturation and 

(d) porosity change.  

 

To assess if the composite impedance, 𝛿𝐼𝑃(∆𝑃′, ∆𝑆𝑤
′, ∆𝑆𝑔

′, ∆𝜑) is indeed linearly correlated to 

the sum of the individual impedances from dynamic and porosity changes, 𝛿𝐼𝑃(∆𝑃′, 0,0, ∆𝜑) +
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 𝛿𝐼𝑃(0, ∆𝑆𝑤
′, 0, ∆𝜑) +  𝛿𝐼𝑃(0,0, ∆𝑆𝑔

′, ∆𝜑), both terms are cross-plotted in Figure 4.17. The best 

fit, linear regression yields a goodness of fit, 𝑅2 of 0.85, which shows that these terms are linearly 

related. 

 

Figure 4.17: Showing the best fit, linear relationship between 𝛿𝐼𝑃(∆𝑃′, ∆𝑆𝑤
′, ∆𝑆𝑔

′, ∆𝜑) and 

𝛿𝐼𝑃(∆𝑃′, 0,0, ∆𝜑) +  𝛿𝐼𝑃(0, ∆𝑆𝑤
′, 0, ∆𝜑) +  𝛿𝐼𝑃(0,0, ∆𝑆𝑔

′, ∆𝜑) for the case of 

compaction.  
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In addition, I assessed the linearity behaviour between compaction versus the change in impedance 

resulting from porosity reduction. This linear relation is depicted in Figure 4.18, by cross-plotting 

the effect of compaction on 𝛿𝐼𝑃(∆𝑃′, 0,0, ∆𝜑) versus the changes in porosity, ∆𝜑. The linear proxy 

function for the compaction case can be written as: 

𝛿𝐼𝑃 = 𝛼∆𝑃′ + 𝑏∆𝜑 + 𝑐∆𝑆𝑤
′ + 𝑑∆𝑆𝑔

′
 (4.5)  

 

 

Figure 4.18: Cross-plotting of the change in porosity ∆𝜑 versus the relative change in 

impedance due to compaction 𝛿𝐼𝑃(∆𝑃′, 0,0, ∆𝜑) also yields a linear relationship.  

 

In the case of compaction, by adding the independent relative impedance changes due to gas, water 

and pressure changes, as shown in Figure 4.19(b), the end product predicts the same change as 

through the full petro-elastic model, as illustrated in Figure 4.19(a). This shows that the principle 

of superposition is also applicable in the case of compaction, and that the approximation of the 

petro-elastic model as a single equation is valid for the modelling of relative change in P-

impedance. 
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Figure 4.19: Comparison of the cross-sections for the composite impedance difference in 

percentages between baseline and monitor from sim2imp to the sum of individual 

difference in impedance, in percentages.  

 

4.6.3 Linearisation of compaction curves  

Apart from providing a faster way to compute the relative changes in elastic properties, the other 

objective of this proxy model is to estimate porosity reduction efficiently and intuitively. This is 

achieved by incorporating rock mechanics laboratory data as constraints into the proxy model 

equation. The crucial parameters that describe porosity reduction can be computed via a set of 

compaction curves for dry compaction and water weakening. These curves are similar to those 

used in the fluid flow simulation model. The changes in porosity can be described as the difference 

between porosity during the initial and subsequent time steps:  

∆𝜑 = 𝜑𝑖 − 𝜑𝑢𝑝𝑑𝑎𝑡𝑒𝑑 (4.6)  

Here, 𝜑𝑖 represents the initial porosity and 𝜑𝑢𝑝𝑑𝑎𝑡𝑒𝑑 represents the porosity after simulation 

conditions, whereby 𝜑𝑢𝑝𝑑𝑎𝑡𝑒𝑑 < 𝜑𝑖, as the compaction process is irreversible. 𝜑𝑢𝑝𝑑𝑎𝑡𝑒𝑑 can also 

be expanded as the partial differentiation of porosity to changes in pressure: 

∆𝜑 = 𝜑𝑖 − [
𝜕𝜑

𝜕𝑃
∙ ∆𝑃 + 𝜑𝑖] (4.7) 

∆𝜑 = −
𝜕𝜑

𝜕𝑃
∙ ∆𝑃 (4.8) 
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The compaction curves for both dry compaction and water weakening mechanisms provided by 

the field operator are displayed in Figure 4.20(a-left) and 4.20(a-right). These curves were 

calibrated using well data to interpolate the compaction gradient for each of the initial porosity 

classes. In work from Sylte et al. (1999) and Janssen, Smith and Byerley (2006) radioactive marker 

bullets were instrumented in wells and repeatedly logged to monitor strain and displacement in 

relation to reservoir compaction, and these data were used to calibrate the compaction model. I 

first linearized the compaction curve for each porosity curve in both dry compaction and water 

weakening behaviours, essentially replacing the gradient for each initial porosity member with a 

constant. Using a stepwise algorithm, I replaced 
𝜕𝜑

𝜕𝑃
 by two numerical functions called 𝐹𝑝 and 𝐹𝑤𝑤, 

each describing the gradient for initial porosity based on the amount of change in pressure; this 

captures the reduction of porosity for both dry compaction and water weakening. These functions 

are depicted in Figure 4.20(b).  

𝐹𝑝 = −
𝜕𝜑|∆𝑃

𝜕𝑃
 (4.9) 

𝐹𝑤𝑤 = −
𝜕𝜑|∆𝑠𝑤

𝜕𝑃
 (4.10)  
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Figure 4.20: (a-left) Compaction curves derived from laboratory measurements of chalk cores 

under dry condition showing how compaction occurs when pressure is drawn down 

during production. (a-right) Compaction curves for cores under simulated water-

flood conditions. (b) After linearizing the compaction gradient for curves in (a-left) 

and (a-right), two separate functions describing the compaction gradient (y-axis) 

for each porosity class (x-axis) for dry compaction (𝐹𝑃) and water weakening 

(𝐹𝑊𝑊) are given. 
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The 𝐹𝑤𝑤  case occurs when the maximum attainable water saturation (𝑆𝑤𝑚𝑎𝑥) is reached. The 

model was first put forward by Sylte et al. (1999), showing no additional compaction for 𝑆𝑤 > 

0.325 when water invasion occurs. Therefore, even when the water saturation exceeds the 

maximum attainable water saturation (𝑆𝑤=0.33), there will be no additional compaction (Das et 

al. 2016). However, in many cases, the increase in water saturation does not exceed this value, and 

hence a new function is introduced to avoid overestimation of the relative change in impedance 

due to maximum water weakening. This pseudo function �̂�𝑤𝑤 manipulates the correct amount of 

compaction of the two end members 𝐹𝑤𝑤 and 𝐹𝑝  by weighting each one with the ratio of 

(
∆𝑆𝑤

𝑆𝑤𝑚𝑎𝑥−𝑆𝑤𝑖
); this function is shown in Figure 4.20(b). The pseudo-function is described as: 

�̂�𝑤𝑤 = (
∆𝑆𝑤

𝑆𝑤𝑚𝑎𝑥−𝑆𝑤𝑖
) (𝐹𝑤𝑤 − 𝐹𝑝) (4.11) 

The equation can be re-written by including the pseudo function �̂�𝑤𝑤 as:  

𝛿∆𝐼𝑃 = 𝛼∆𝑃′ + 𝑏(𝐹𝑝 + �̂�𝑤𝑤)∆𝑃′ + 𝑐∆𝑆𝑤
′ + 𝑑∆𝑆𝑔

′
 (4.12) 

If we expand on the pseudo function �̂�𝑤𝑤: 

𝛿𝐼𝑃 = 𝛼∆𝑃′ + 𝑏 [𝐹𝑝 + (
∆𝑆𝑤

𝑆𝑤𝑚𝑎𝑥−𝑆𝑤𝑖
) (𝐹𝑤𝑤 − 𝐹𝑝)] ∆𝑃′ + 𝑐∆𝑆𝑤

′ + 𝑑∆𝑆𝑔
′
 (4.13) 

Since the initial water saturation, 𝑆𝑤𝑖 in the Ekofisk field is low, at 0.05, it can be treated as 

negligible and the equation is further simplified as:  

𝛿𝐼𝑃 = 𝛼∆𝑃′ + 𝑏 [𝐹𝑝 + (
∆𝑆𝑤

𝑆𝑤𝑚𝑎𝑥
) (𝐹𝑤𝑤 − 𝐹𝑝)] ∆𝑃′ + 𝑐∆𝑆𝑤

′ + 𝑑∆𝑆𝑔
′
 (4.14) 

A condition of 𝑆𝑤𝑖 < 𝑆𝑤𝑚𝑎𝑥 is also incorporated for the forward and backward modelling of the 

proxy model, so that the maximum compaction is not exceeded. In summary, the proposed proxy 

model is derived analytically through modelling and reverse engineering and a comprehensive 

synthetic modelling exercise. To predict the relative changes in impedance, the proxy model 

requires a set of calibrated coefficients (𝑎, 𝑏, c and 𝑑) from the petro-elastic model, changes in 
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pressure (∆𝑃) and saturation (∆𝑆𝑤), and compaction curves from the laboratory, expressed as 

functions (𝐹𝑤𝑤 and 𝐹𝑝) of initial porosity (𝜑𝑖). The procedure used to construct the proxy model 

for the relative change in P-impedance, 𝛿𝐼𝑃 is also carried out for S-impedance, 𝛿𝐼𝑆, P-wave 

velocity, 𝛿𝑉𝑃, S-wave velocity, 𝛿𝑉𝑆, and density, 𝛿𝜌. A different proxy model equation for each 

of the elastic parameters can be derived separately, where the general form is similar but 

coefficients 𝑎, 𝑏, 𝑐 and 𝑑 have different magnitudes.  

 

4.6.4 Validating the proxy model  

One way to cross-check the validity of the proxy model, is to compare the porosity reduction 

estimated from the fluid flow simulator with that calculated from the proxy model. The input 

parameters required in the proxy model are the changes in pressure and water saturation, and the 

initial porosity; these are readily available as outputs from the fluid-flow simulator. Figure 4.21 

shows a comparison between the results from the simulator (left) and the linearised compaction 

functions (right). In general, I obtained a good agreement between both estimations, with marginal 

discrepancies, the maximum percentage difference is 2%. The unevenness of the porosity change 

generated from the fluid simulator is caused by rock typing in the model. As previously mentioned 

in Section 4.2.1, the different rock types are assigned with different relative permeability and rock 

compaction information although they can have the same porosity and permeability ranges. The 

compaction functions on the other hand, are irrespective of rock typing and the compaction 

gradients employed are only a function of the initial porosity.  

 

Figure 4.21: (Left) porosity reduction simulated from ECLIPSE compared to (right) porosity 

reduction calculated from 𝐹𝑃 and 𝐹𝑊𝑊 functions.  



130 

 

Another way to gauge the accuracy of the estimation from the proxy model is to calculate the 

percentage error between the percentage change in P-impedance from the sim2imp procedure and 

the proxy model for the individual components of gas, water and pressure. The percentage error is 

described as:  

(𝛿𝐼𝑃)𝑠𝑖𝑚2𝑖𝑚𝑝−(𝛿𝐼𝑃)𝑝𝑟𝑜𝑥𝑦

(𝛿𝐼𝑃)𝑠𝑖𝑚2𝑖𝑚𝑝
× (100) (4.15) 

The percentage error between the full sim2imp procedure and the proxy model is generally small, 

with errors less than ± 5%. The percentage error is shown in Figure 4.22 (a, b, and c) for the 

respective changes in P-impedance as a function of gas and water saturation and of pressure 

change.  

 

Figure 4.22: Showing percentage error of the percentage change of P-impedance estimated for 

(a) gas saturation, (b) water saturation and (c) pressure change between sim2imp 

and proxy model  
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4.7  Solving the Inversion Problem with a Proxy Model 

I will next demonstrate how the proxy model is applied in inversion. Modelling and inversion are 

closely related: in modelling we seek to reproduce an observation (or measurement) by perturbing 

parameters that are somehow related to such observations. Inversion uses a series of observed 

measurements to calculate those parameters we are interested in, by calculating a series of 

predictions from an established model and comparing them to the observations (Menke, 1989). In 

both cases, the core of the process is to establish a model which relates the measurements with the 

parameters we wish to estimate and vice versa. In this section, I would like to demonstrate the 

following propositions:  

1. The inversion scheme using the proposed proxy model produces realistic results for the 

synthetic data.  

2. Constraints and prior information are crucial in narrowing the search space and 

subsequently provide us with better estimates of the model parameters. 

 

4.7.1 The inverse problem and the optimisation solution 

The inverse problem, as described by Menke (1989), can be mathematically defined as an integral 

function that relates the measurements 𝑑𝑖   to the parameters we wish to estimate, 𝑚(x), through 

𝐺(𝑥), which relates the two: 

𝑑𝑖 = ∫𝐺(𝑥)𝑚(𝑥)𝑑𝑥 (4.16) 

where 𝑑 is the data observation vector and 𝑚 is given as the parameter vector and 𝐺 is the data 

kernel matrix. Here, I attempt to solve the inverse problem on a sample by sample or cell by cell 

basis in the simulation model, the data epresents the synthetic elastic properties: the percentage 

changes in P-impedance, S-impedance, P-wave velocity, S-wave velocity and density generated 

using the sim2imp procedure. The model parameters are pressure and saturation changes and the 

data kernel matrix, 𝐺 is the forward operator relating the two. Given the proposed proxy model 

equation takes a non-linear form, this inherently makes the inverse problem particularly difficult. 

There are two reasons: firstly that nonlinear error propagation is a difficult problem, and secondly, 

it introduces non-uniqueness in the solutions. If the forward problem is linear, and if a L2-norm is 
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used for the calculation of the misfit, the misfit function has a parabolic dependence on the model 

parameters, and therefore the misfit function has a single minimum. Any type of descent method 

will lead to this unique minimum. When the forward problem is non-linear, the misfit function can 

have multiple minima. The problem with these local minima is that search methods for the global 

minimum may misidentify a local minimum as the global minimum. In that case the estimated 

model is not the model that gives the best data fit.  

The idea of an optimisation is to achieve the best possible result in acceptable conditions. Since 

the problem is described as non-linear, I cannot solve this via the linear least squares solution and 

need to tackle this deterministically, using other numerical optimization solutions. Typically, one 

seeks to recover the model parameter, 𝑚,  based on observations, 𝑑, where both are related by a 

forward modelling operator 𝐺, as discussed earlier. The problem is to find m such that the misfit 

is less than a certain tolerance: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒‖𝐺(𝑚) − 𝑑‖ (4.17) 

I start off by assuming that a local optimal solution exists for this problem, and a local search 

algorithm will suffice for my cause. I will talk more about using global algorithms in the 

subsequent section; this sort of algorithm is computationally expensive and is capable of looking 

at objective function values more exhaustively in the search space. The traditional local algorithms 

are subdivided into two main classes: direct (search) and gradient-based methods (Reklaitis et al., 

1983, Deb,1995, 1998). In direct methods, only the objective function and constraints are used to 

guide the search strategy. The gradient-based methods use the first and/or second-order derivatives 

of the objective function and/or constraints to guide the search process. These algorithms can 

converge quickly to the solution. For quasi-linear problems, these algorithms are a good selection. 

I will be employing the Trust-Region Reflective algorithm available from the MATLAB 

optimisation toolbox, which is a subclass of the gradient-based methods. The Trust-Region 

Reflective algorithm used in the optimization is described in Coleman and Li (1994, 1996). Each 

iteration involves the approximate solution of a large linear system using the method of 

preconditioned conjugate gradients (PCG) (MATLAB documentation). A typical simple definition 

of the objective function is through the sum of squared differences:  

https://uk.mathworks.com/help/optim/ug/lsqnonlin.html#buul76x-1
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𝑓 = ∑ (𝑑𝑘
𝑜𝑏𝑠 − 𝑑𝑘

𝑚𝑜𝑑)2𝑁𝑑
𝑘=1  (4.18) 

where the sum is taken over all available observed data, 𝑑𝑘
𝑜𝑏𝑠, and 𝑁𝑑  is the total number of these 

data. The objective function of this problem is solved cell-by-cell, it can be written in the same 

format as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔)       

where 

𝑓(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔) = [𝛿𝐼𝑃 − 𝐺𝐼𝑝(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔)]
2
+ [𝛿𝐼𝑆 − 𝐺𝐼𝑠(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔)]

2
+ [𝛿𝑉𝑃 −

𝐺𝑉𝑝(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔)]
2
+ [𝛿𝑉𝑆 − 𝐺𝑉𝑠(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔)]

2
+ [𝛿𝜌 − 𝐺𝜌(∆𝑃, ∆𝑆𝑤, ∆𝑆𝑔)]

2
 (4.19) 

𝐺 is the forward operator and represents the proxy model equation, which is unique to generate 

different elastic properties such that the coefficients in the proxy model for P-impedance will be 

different from S-impedance, P-wave velocity, S-wave velocity and density. The inversion of 

various data sets was done jointly. Joint inversion is carried out in this case to produce mutually 

consistent estimates of the unknown parameters. As demonstrated in Equation 4.19, one objective 

function is to be optimized from the summation of individual objective functions representing 

various data sets. In this synthetic example, given that the data is generated and not measured from 

the field, the quality of the data is consistent. However, for the actual field data, the quality of the 

different types of measurement may differ, such as for time-shifts, amplitude and the inverted 

elastic properties. The component objective functions should therefore be multiplied by weight 

factors giving them the correct contribution for determining the model parameters (Drahos, 2008). 

This is discussed further in the next chapter when using actual field data. As previous researchers 

(Floricich, 2006; Alvarez, 2014) observed, in obtaining reliable estimations of ∆𝑃 and ∆𝑆𝑤, 

especially with the highly correlated nature of the 4D signals, incorporating additional constraints 

into the inversion scheme is helpful. There will be several possible combinations of Δ𝑆𝑤 and Δ𝑃 

which will produce the same change in petro-elastic properties, for example, both a decrease in 

pore pressure and an increase in water saturation will generate a hardening signal. The implication 

of this is that the inversion problem is ill-posed and hence it is required to provide constraints in 

order to find a solution that falls within the expected ranges of change. 
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4.7.2 Constraints 

To find a unique solution, one must add some constraints in the solution space. For example, in 

order to aid the convergence of the optimisation, a good initial guess or starting point in solving 

the optimisation problem is helpful. In this case, I used the mean value from the simulation model 

prediction for gas, water and pressure changes (∆𝑃̅̅̅̅ , ∆𝑆𝑊,̅̅ ̅̅ ̅̅  ∆𝑆𝑔
̅̅ ̅̅ ̅) as the initial starting point. 

Another way to ensure a better feasible solution is by setting boundaries for the parameter 

estimates. If one knows the bounds on the location of an optimum, one can obtain faster and more 

reliable solutions by explicitly including these bounds in the problem formulation. For example, 

the change in water and gas saturation cannot exceed 0 and 1, respectively, with further constraints 

in certain compartments of the reservoir, such that no water saturation changes should be expected 

in the water leg, since the water saturation is already unity or at its maximum. Moreover, it is 

unlikely for other types of reservoir fluid to replace water in the aquifer due to density variation, 

where water is denser than oil and gas. On rare occasions, the injectors could push oil into the 

aquifers, however this is not the norm and will not be considered in this modelling. In most parts 

of the reservoir, the water saturation change is constrained to: 0 ≤ ∆𝑆𝑤 ≤ (1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑖𝑟𝑟 ≈

0.675). In the Ekofisk field, the irreducible water saturation, 𝑆𝑤𝑖𝑟𝑟 is given as 0.05 and the residual 

oil saturation, 𝑆𝑜𝑟 has a value of 0.275. Below the oil-water contact, the change in water saturation 

is ∆𝑆𝑤 = 0.  

Based on the prediction of the simulation model for gas changes, the maximum value peaks at 0.6, 

and no gas was expected to go back into solution, due to a significant overall pressure depletion in 

the reservoir. Therefore, the expected gas saturation change is limited to 0 ≤ ∆𝑆𝑔 ≤ 0.6. On the 

other hand, the pore pressure change in the reservoir can also be constrained by studying the 

production history of the field. Based on the minimum and maximum estimates of the change in 

pressure predicted from the simulation model, the bounds set on pore pressure change is between: 

−20 ≤ ∆𝑃 (𝑏𝑎𝑟) ≤ 0. These constraints can be incorporated into the optimisation problem in the 

form of an equation such as 𝐻𝑚 ≥ ℎ: 
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1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1]

 
 
 
 
 

[
∆𝑆𝑤

∆𝑆𝑔

∆𝑃

] ≥

[
 
 
 
 
 

0
0.675

0
0.6
−20
0 ]

 
 
 
 
 

 (4.20) 

Since I know the location of the original oil-water contact prior to production, the constraints in 

the water leg are given as the equations below.  Below the oil-water contact, the water saturation 

will always be 1, and no change is assumed to occur; the model parameter for ∆𝑆𝑤 equals to 0. 

Below the oil water contact, the optimisation problem is solved subject to these conditions:  

−20 ≤ ∆𝑃 (𝑏𝑎𝑟) ≤ 0 (4.21) 

∆𝑆𝑤 = 0, ∆𝑆𝑔 = 0 (4.23) 

 

4.8  Results and Discussion 

The non-linear inversion solution is a non-unique one, given there are a multitude of models that 

explain the data equally well. My approach here is to reconstruct an estimated model (proxy model) 

that still captures the full physics as the true model, for the use of forward modelling and inversion. 

The proxy model is capable of forward modelling a series of different elastic properties with good 

agreement to the data estimated from the true model, which in this case is represented by the 

sim2imp procedure. Of course, one can also argue that a different rock physics model will give a 

different set of data. In this case, the true model is assumed as the rock physics model calibrated 

with well measurements in the sim2imp procedure, which is used as a benchmark for estimation 

of elastic properties. In this section, I will carry out two separate inversions, highlighted in two 

separate routes as ‘1’ and ‘2’ in Figure 4.23. The first route involves using the data from the proxy 

model to invert for the model parameters. The second route uses data estimated from the full 

physics model but inverted back to the respective model parameters using the proxy model.  

Figure 4.24(a) shows the comparison between the dynamic changes predicted from the simulation 

model and Figure 4.24(b) shows the inverted dynamic changes using the proxy model from data 
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generated from the same proxy model in route 1. Route 1 is also known as ‘inverse crime’ (Wirgin, 

2004), when the same (nearly same) theoretical ingredients are employed to synthesize as well as 

to invert data in an inverse problem. In general, route 1 managed to reproduce the pressure and 

saturation changes, even in places where these changes overlap (close to the crest of the reservoir, 

where gas accumulates and pore pressure reduces). The model data are uniquely resolved with 

very small residual errors. This is expected, as the same data kernel (G’) is used in both forward 

and backward modelling. This procedure is useful to investigate the stability of the inversion 

solution in the presence of noise and to assess the effectiveness of the proxy model in an 

underdetermined problem. To truly assess the robustness of the proxy model, the inversion is 

carried out using data generated from the full physics model, as described in route 2.  

 

Figure 4.23: The workflow comprising the forward modelling and inversion routes using the full 

physics model (sim2imp) versus the proxy model.  
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Figure 4.24: Cross-sections showing (left) dynamic changes generated from simulation model 

compared to (right) inversion results using proxy model for (a) gas, (b) water 

saturation and (c) pressure change. The input data for the inversion are generated 

from the proxy model equation.  

 

Inversion results from the second route are displayed in Figure 4.25(a, b, and c). In general, the 

inversion results shows greater discrepancy between the inverted model parameters and with those 

simulated from ECLIPSE, as compared to the results shown in Figure 4.24(a, b, and c). This is 

particularly apparent in places where there are overlaps between pressure and saturation changes, 

such as the gas cap, and around the injector well I4. However, on a positive note, overall the 

polarities of the inverted dynamic changes are comparable to those simulated from ECLIPSE, 

which is essential for interpretation. These discrepancies are expected, since a different data kernel 

is used in forward and backward modelling.  



138 

 

The residuals and the convergence criteria are assessed in this section. The residual error is the 

value of the objective function at solution, which can be calculated for the independent observed 

data (𝛿𝐼𝑃, 𝛿𝐼𝑆, 𝛿𝑉𝑃,𝛿𝑉𝑆, 𝛿𝜌). On the other hand, the exit criteria show the reason for the solver to 

stop the calculation. These exit criteria are unique in the MATLAB optimisation package. When 

the optimisation solver completes, it sets an exit criterion. The exit criterion is an integer that 

describes the reason the solver has halted its iterations. In general, positive criteria corresponds to 

successful solutions and negative ones are not. The zero exit criterion represents a solution that is 

computed by exceeding an iteration limit or limit on the number of function evaluations 

(MATLAB documentation). The exit criteria are colour-coded from -2 to 4 and explained in Table 

4.3. 

Exit Criterion Colour Description 

1  
The function converged to a solution 

2  
Change in solution was less than the specified tolerance 

3  
Change in the residual was less than the specified tolerance 

4  
Magnitude of search direction was smaller than specified 

tolerance 

0  
Number of iterations exceeded predefined value 

-1  
Stopped by output function 

-2  
Bounds are inconsistent and the problem is infeasible. 

Table 4.3: The exit criteria and their description for the non-linear optimisation solver 

(MATLAB documentation).  

 

Figure 4.26(a) to (e) shows the residual error (in route 2) for each of the predicted elastic properties 

at the objective function when a solution is found, and Figure 4.26(f) represents the exit criteria 

for each cell in the model. I observed that the residual errors for the different elastic properties are 

generally small, with higher residuals in composite elastic properties such as P and S-impedance. 

Because these result from the multiplication between P, S-wave velocity and density, the residual 

error is also amplified in these elastic properties. The residual errors are expected because the 

coefficients derived for the proxy model are calculated by linear regression between elastic 

properties from the sim2imp and simulation estimated dynamic properties, which might not be 

able to capture all the scatter in this approach. However, this regression is considered a robust 
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calibration, as in the derivation of the proxy model and its coefficients, all data points were used 

in the regression exercise.  

 

Figure 4.25: Cross-sections showing (left) dynamic changes generated from simulation model 

compared to (right) inversion results using proxy model for (a) gas, (b) water 

saturation and (c) pressure change. The input data for the inversion are generated 

from the sim2imp procedure.  

 

The exit criterion show mostly ‘1’, which informs us that the solver stopped because it has 

converged to a solution. In some cells, where the exit criterion is numbered as ‘3’, this shows the 

change in the residual norm is very small; hence the solution is accepted. Given this is a non-linear 

problem, this could suggest that there could be multiple local minima. Thus, a different solution 

can be applied, such that one could make inferences from a range of models and search in many 
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directions. This brings us to the next section, where I suggest an alternative solution, although the 

current solution shown in Figure 4.26 has already yielded minor discrepancies compared to the 

true model parameters.  

 

Figure 4.26: Cross-sections showing the residual error for percentage change in (a) P-

impedance, (b) S-impedance, (c) P-wave velocity, (d) S-wave velocity and (e) 

density for the inversion (route 2) that uses input data from the sim2imp procedure. 

(f) shows the exit criteria colour coded from -2 to 4, described in Table 4.3.   
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4.8.1 Generation of populations that fit the data 

An alternative approach is to compute the misfit for a very large class of models and to use the 

data fit, possibly in combination with Bayesian statistics, to make inferences about the range of 

models that explain the data in a certain sense (e.g. Mosegaard and Tarantola, 1995, Gouveia and 

Scales, 1997, 1998, Mosegaard 1998). Obviously, this approach requires a numerical approach to 

create such ensembles, but if the forward modelling can be easily computed, like the proxy model, 

computation time can be greatly reduced. An important concept in the generation of ensembles of 

models is the randomness in the search method that one employs. This stochastic approach will be 

applied to the actual data in Chapter 5.  

 

4.9  Summary 

This chapter first addressed the need for a proxy model to invert for pressure and saturation 

changes in the impedance domain. Pressure and saturation changes are more easily decomposed 

from the elastic properties rather than from seismic amplitude differences. The aim of the 

remainder of the chapter was to show the derivation and the validation of the proxy model on a set 

of synthetic data.  

The proxy model derived in this chapter is set to achieve the aforementioned goals, which are to 

provide a fast-track method to both forward model elastic properties and invert for pressure and 

saturation changes in a compacting chalk reservoir. The analysis reported in this chapter has 

validated the competence of the proxy model approach for both forward and backward modelling, 

by comparing the discrepancy in estimated elastic properties with the true model, which is the 

sim2imp procedure. Marginal differences were observed between the predicted elastic properties 

between the proxy model and those calculated by sim2imp. Similarly, the porosity reduction 

calculated using the proxy model was also comparable to those predicted from the ECLIPSE 

simulation model. This confirms that the compaction behaviours can be simplified into analytical 

equations and be embedded in the proxy model.  

The inversion problem is cast as an optimisation problem, where for each cell, multiple forward 

modelling is allowed, to minimize the misfit between the predicted data and the observed data. 
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Crucially, by including constraints such as bounding values and statistical information from the 

simulation model, the optimisation process to solve for pressure and saturation changes is 

expedited. I have kept the use of prior information to the minimum. In practice, the selection of 

bounding constraints and prior information depends on data availability. For the actual data I will 

also explore possible a priori information from a well history-matched simulation model and 

engineering concepts.  The inversion using the proxy model equation shows promise, and the 

inverted solutions are also considered stable. The residual errors are less than ±2% for all estimated 

data.   
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CHAPTER 

FIVE 

 

 INVERSION FOR PRESSURE AND SATURATION CHANGES: 

 APPLICATION TO THE EKOFISK FIELD 

 

This chapter is dedicated to a real data application by using the proxy model derived in Chapter 4 

to invert for changes in pressure and saturation. First, I will describe the seismic data that will be 

use as inputs into the inversion engine. Next, I will introduce the engineering consistent constraints 

and additional information that will help stabilize the inversion solution. Finally, the results from 

a stochastic approach via Bayesian McMC is presented showing the estimates of changes in 

pressure and saturation. The interpretation of the result is aimed to provide insights into well 

performance and pressure distribution inside the reservoir. Quantitative interpretation on this field 

using the inversion results shows good agreement with well production data and helps to explain 

strong localized anomalies in both the Ekofisk and Tor formations. 
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5.1  Introduction  

 This chapter will bring together the material presented thus far in Chapter 4 and perform the 

inversion on the 4D geophysical parameters: relative changes in elastic properties and time-shift 

measurements, into variations in pressure and saturation in the Ekofisk field. The 43 years of 

production history of Ekofisk is well documented in the literature. I have given a brief description 

of the field and the production mechanisms associated with the field in Chapter 2. Next, I present 

some description on the area of interest, the type of seismic data made available such as the relative 

change in 𝑉𝑃, 𝑉𝑆, 𝜌 and time-shifts.  

 

5.2  Area and Time period of Interest 

Ekofisk is a large reservoir with a coverage area of 49 km2. In order to make the study manageable, 

I will focus on a sub-area of the field to perform the inversion. Figure 5.1 shows a map of the 

reservoir time-shifts across the entire field and the area of interest is delineated in the black box. 

The northern part of the area of interest intersects the central region which is notorious for 

overburden gas cloud, also known as the seismic obscured area (SOA) delineated by the yellow 

polygon. Inside the SOA, the gas cloud prevents optimal imaging and the seismic data quality 

greatly deteriorates, in this area I will show how engineering constraints are useful to make 

educated inferences. Outside the SOA, clean and well-delineated 4D signals can be observed at 

injector and producer wells operating between the LoFS (Life of Field Seismic) surveys. The SOA 

is smaller in the LoFS surveys compared to the towed streamer due to better repeatability and the 

installation of permanent seabed seismic system, acquisition of wide-azimuth, long-offset 

multicomponent data for powerful imaging and processing techniques. Velocity model building 

workflow using FWI and joint PP-PS tomography applied in combination with wide-azimuth 

multicomponent processing has reduced the extent of the SOA for both PP and PS data (Bertrand 

et al., 2013b).  

The inversion is applied to the second and the sixth of the LoFS surveys acquired two and a half 

years apart. The study is restricted to LoFS 2 and LoFS 6 because the historic production data from 
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wells shows sufficient fluctuations between this time period. The wells also operate long enough 

to create significant 4D seismic anomalies on the data. The area of interest (AOI) is 4.32 x 5.17km. 

 

Figure 5.1: The subarea selected for the study is shown in the black rectangle. The map shows 

the reservoir time-shifts between Lofs 2 and Lofs 6. The area consists of 330 x 400 

seismic bins, with a spacing of 12.5m in both inline and crossline directions.  

 

5.3  Data Description: Time-lapse Time-shifts and Time strain  

In this section the geophysical data and parameters that are used for characterization of pressure 

and saturation changes in the reservoir are described. The data contains time-shifts and time-strains 

obtained from analysis of baseline and monitor seismic data as well as corresponding elastic 

parameters obtained from 4D pre-stack inversion. Both of these attributes have been obtained from 

previous data analyses by the ConocoPhillips Geophysical Implementation Team, and inversion 

results by Lafet et al. (2009). Time-lapse time-shifts are not only used to time-align different 
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vintages of time-lapse seismic surveys, but also have a diagnostic value in monitoring reservoir 

compaction. The dominant 4D seismic effects are strongly represented in the time-shifts and time 

strain in both maps and sections. In highly porous chalk fields such as Ekofisk, 4D changes are not 

limited to the reservoir but are also transmitted into the overburden due to reservoir compaction. 

The compaction-induced geomechanical changes in the overburden result in large 4D effects, 

measured as changes in two-way travel-time between surface and top reservoir. The overburden 

time-shifts is defined as the cumulative time-shifts measured at top reservoir. Joint interpretation 

of the five Ekofisk 3D seismic streamer surveys (1989, 1999, 2003, 2006 and 2008) has revealed 

overburden travel time differences as large as 20ms. This is contributed by various production 

mechanisms inside the reservoir such as a pressure depletion event from 1971-1989 causing 

substantial subsidence.  From 1989-1999, a full field water injection program caused field scale 

geomechanical responses such as water weakening and other dynamic changes such as gas going 

back into solution due to re-pressurisation.  

In the LoFS surveys with high signal to noise ratio and low NRMS, detectable travel-time 

differences as small as 200𝜇𝑠 are observed at wells which have been active for less than a year. 

Previously in the streamer data at Ekofisk, the NRMS was about 12% (Haugvaldstad et al., 2011) 

whereas in the LoFS data the recorded NRMS is as low as 5% (Bertrand et al., 2014). The 𝑁𝑅𝑀𝑆𝐷 

is often used as a quality control for 4D seismic data and to assess noise levels above the zone of 

interest. The calculation of 𝑁𝑅𝑀𝑆𝐷 is given below: 

𝑁𝑅𝑀𝑆𝐷 =
𝑅𝑀𝑆(𝐷)

1

2
(𝑅𝑀𝑆(𝐵)+𝑅𝑀𝑆(𝑀))

  (5.1) 

where B and M are the baseline and monitor volumes respectively. The use of the 𝑅𝑀𝑆 operation 

on the difference cube (D) means that this is an absolute measurement only and that the polarity 

of the difference is not preserved by this attribute. 

The time-shift measurements were made using the non-linear inversion method by Rickett (2007). 

In this technique, time-shift traces between the base traces and the monitor traces are calculated 

by solving a nonlinear system based on 4D differences and Tikhonov regularization. It used a 

Gauss-Newton algorithm which optimises the NRMS value calculated between the base and the 
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monitor data after the estimated time-shift has been applied back to the monitor data. The strength 

of the method also lies in maximizing the smoothness of the time-shift function as part of the 

objective function and as a result produces a more stable estimate of the time-strain. Another 

objective of the 4D time-shift estimation is to align the monitor to the base survey before 4D 

amplitude inversion, in order to remove very low frequency time-lapse effects linked to the 

geomechanics that subsequent impedance inversion will not take into account.  Time-shift maps 

between LoFS 2 and LoFS 6 for intra Ekofisk and Balder formations are presented in Figures 5.2 

(a) and (b).  

 

Figure 5.2: Maps showing (a) reservoir time-shifts and (b) overburden interval-Balder time-

shifts. Balder is the overlying overburden shale adjacent to the reservoir. The SOA 

is pointed out by the red arrow, showing poor seismic quality.  

 

5.4  Data Description: Amplitude changes and Relative change in 𝑽𝑷,𝑽𝑺 and 𝝆 

A second and subtler component of the 4D signal is an amplitude difference caused by impedance 

changes occurring as the reservoir responds to water injection and pressure depletion. Although 

noisy on streamer seismic data, this 4D signal is important in planning new wells that are targeting 

specific intra-reservoir zones (Folstad 2010). Furthermore, the reservoir is relatively thick, and the 
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seismic suffers from interference of side lobes and tuning. This is also one motivation to carry out 

impedance inversion for more direct interpretation. Another motivation is that amplitudes have 

been used with success elsewhere - for example, the successful case study on South Arne 

(Herwanger et al., 2010) shows that time-lapse AVO (amplitude versus offset) inversion and rock-

physics analysis can be employed to accurately monitor preferred fluid pathways inside the 

reservoir.  

 

Figure 5.3: Maps of percentage change of (a) 𝑉𝑃, (b) 𝑉𝑆, and (c) ρ averaged across the Ekofisk 

formation. These products are generated via a 4D simultaneous pre-stack elastic 

inversion.  
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The pre-stack elastic properties are obtained from the joint multi-vintage inversion provided for 

Ekofisk by Lafet et al. (2009). Their inversion of the LoFS data incorporates all angle stacks from 

the baseline and monitor surveys, and deploys a convolutional model and the full Zoeppritz 

equation. The multi-vintage, global inversion starts by building an initial layered model using a 

stratigraphic grid framework defined in two-way time and common to all surveys. It is populated 

by different distributions of P-wave velocity,𝑉𝑃, S-wave velocity, 𝑉𝑆 and density, ρ, at each survey 

time. During the inversion, the model properties are iteratively perturbed to find a global solution 

that simultaneously optimises the match between the input angle stacks and the corresponding 

synthetics for all seismic vintages. In the inversion procedure, the model building process also 

included low frequencies from both the well logs and a high quality migration velocity model. The 

accuracy of this low frequency model was confirmed by running localised-inversions at the 

location of blind-wells. This also provides us with a confidence measure in the quality of elastic 

inversion results not only at the well locations but also away from the wells. Access is given to 

these results, and we use the percentage changes of ∆𝑉𝑃/𝑉𝑃, ∆𝑉𝑆/𝑉𝑆 and ∆𝜌/𝜌 output from this 

inversion procedure (see Figure 5.3) as input data into our method for estimating pressure and 

saturation changes.  
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5.5  Assumptions 

Three assumptions are implicit in this technique. Firstly, creep behaviour is not taken into account. 

Creep in chalk weakens the rock without any drop in pressure following the invasion of water. The 

rock will thus have a greater compaction later in time when pressure eventually drops (Barkved et 

al., 2003). Secondly, gas saturation changes is excluded as a model parameter. There are several 

points that we consider why gas saturation is not prominent in our inversion scheme and these are 

presented below. Our observations from the predictions of the coupled fluid-flow and 

geomechanical simulator shows gas saturation changes accumulate around producers only, and is 

negligible away from the locality of the wells. This suggests that effect of compaction compensates 

for the original pressure drop due to oil production, and gas is not liberated from solution in the 

inter-well space. Secondly, evidence from recorded gas-oil ratio (GOR) during the LoFS period 

shows minimal fluctuations, suggesting little changes in free gas volume.  

Furthermore, time-shifts and impedance changes due to gas saturation increases are not predicted 

to be as influential as those changes induced by compaction alone. The observed data shows a net 

hardening in the seismic time-shifts and P-wave velocity maps around these producers. This is also 

because the initial gas saturation in our baseline (LoFS 2) is already quite high at 10%, and the 

non-linear portion of the property versus saturation behaviour is not accessed. The synthetic 

impedance and time-shifts modelling in Section 4.5 also supports this argument. It is widely known 

that the abrupt reduction in 𝑉𝑃 with the first few percent of gas dominates the P-wave seismic 

response, as illustrated in Figure 5.4. A small amount of gas increase typically less than 5% 

saturation from 0% cause a significant drop in the effective fluid modulus, and consequently a 

significant drop in the saturated bulk modulus of the rock. A clear departure from non-linear 

behaviour is observed between the gas saturation with 𝑉𝑃  after 10% gas saturation, any increase of 

gas saturation from 10% gas is less apparent from 𝑉𝑃. Therefore it is a challenge to detect gas 

saturation changes with P-wave seismic or time-shifts in the reservoir in the presence of 

compaction. 
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Figure 5.4: Change in 𝑉𝑃 and density with change in gas saturation for a gas-brine mixture. The 

curve for 𝑉𝑃 is calculated using the Gassmann fluid substitution recipe.  

 

Similar observations were also documented in nearby chalk field Valhall, where at some of the 

well perforations, gas comes out of solution due to localized pore-pressure decline below bubble 

point, causing a reduction in impedance. The exact position of these regions is difficult to detect 

in the acoustic impedance attribute due to the masking effect of compaction and inter-well 

interference (Huang et al. 2011), shown in Figure 5.5. Historically in Valhall, rock compaction 

was recorded as the main driver in contributing to the total cumulative oil compared to other drive 

mechanisms. Although producers have produced excess gas however the recorded GOR 

development has been otherwise small. It was also shown that contribution to oil produced from 

gas influx mechanism flattens out when rock compaction becomes abnormally high (Cook et al. 

1996). Also, this is similarly inferred in the deep water BC-10 Brazilian field (Galarraga et al. 

2015). At some producers, absence of gas was observed when the pressure is very low (below 

bubble point) with high cumulative oil production. This absentee in gas is attributed to increase in 

compressibility of the rock.  
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Figure 5.5: Maps showing production wells on the south flank of Valhall overlaid on (a) mapped 

AI change between monitor Lofs10 and baseline and (b) time-shift attribute. The 

positive AI change and negative time-shifts points towards a hardening response 

due to compaction resulted from pressure depletion. The dotted circular areas in (a) 

is inferred as zones of gas evolution from the technique well2seis. However, the gas 

signals are masked by the geomechanical response (Huang et al., 2011)..  

 

Thirdly, since we are inverting the LoFS survey data and there is no pre-production PRM seismic, 

it is difficult to know the initial stress state of the rock. Compaction due to depletion from a specific 

initial porosity and effective stress state cannot be directly mapped onto depletion at the same 

initial porosity. An approximation is simply to use the curves as they are, assuming independence 

from the initial stress state. I find that this assumption creates minor errors (less than 5% error) in 

the modelling of the compaction. It is true that the use of compaction curve irrespective of initial 
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stress state is precarious since inverting pressure from an initial stress state of high effective stress 

(low pore pressure) will be different from low effective stress (high pore pressure), whereby the 

former has a higher compaction gradient than the latter. The average pore pressure in the LoFS 

period is approximately 5500-6000psi.  The pressure change in the LoFS period is within +/- 1500 

psi resulting in an effective pressure of 4500-5000psi, this falls within the linear part of the 

compaction curves, hence the compaction gradient is not largely dependent on the initial state and 

the linearization of the compaction curves hold true. If the pressure change is enormous like those 

in the earlier days of Ekofisk (1971-1989, 1989-1999), this assumption will be quite flawed as the 

initial state takes a major role in deciding the amount of compaction in the chalk. The present study 

on the LoFS period has strain rates that are small and the average field effective stress is lower 

compared to the streamer period.  

 

5.6  Inversion Workflow 

In this section, the process of an inversion for reservoir pressure and saturation change is described. 

The workflow is summarized in Figure 5.6. The workflow starts with using inputs of the relative 

change of 𝑉𝑃, 𝑉𝑆, and ρ inverted from the observed amplitude difference after time-shifts 

correction. However, this step could create errors after time-shifts correction, as the waveform re-

construction only takes into account of the kinematics and not changes in amplitude. This remains 

a challenging issue in both computing and correcting for time-shifts. In the subsequent step, based 

on knowledge from 4D seismic interpretation around wells and from prominent 4D seismic 

signals, I get a better understanding on how pressure and saturation affects the 4D seismic 

anomalies for both the relative change of petro-elastic parameters and time strain. I then map the 

elastic properties and time-strain onto the reservoir grid. The pressure-saturation change inversion 

starting model is the history matched pressure and saturation change results from the simulation 

model, these changes are inherently smooth in nature. I also carefully designed some engineering 

consistent constraints to stabilize the inversion. Apart from using the elastic properties as input, 

time strain is also included to yield constraint. The first stage of the inversion is to assess how 

additional information like time strain and EC constraints make a difference to the pressure and 

saturation change. The next step is to perform the inversion via a stochastic approach to provide 
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some measure of uncertainty. Results from both deterministic and stochastic approach is step 1 

and 2 are shown in subsequent sections.  

 

Figure 5.6: The hierarchal workflow proposed to invert for changes in pressure and saturation 

as outlined in this thesis.  

 

5.7  Inversion Implementation 

The formulation of an inference problem can be split into two components. One component is the 

identification of a suitable, accurate forward operator that can adequately describe the physics that 

represents the observed relative change in different elastic properties as a function of the reservoir 

dynamic properties. This is explicitly described in the previous section as a proxy model. The 

second component is how the problem is being posed and how the inversion problem can be solved 

effectively for example by including constraints to expedite the convergence of a solution.  
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I first describe how the input seismic data are treated. Firstly, the observed change in amplitude 

after time-shift removal is inverted to relative changes in the elastic properties such as: 

%
∆𝑉𝑃

𝑉𝑃
, %

∆𝑉𝑆

𝑉𝑆
, %

∆𝜌

𝜌
. Then, data from both seismic: (%

∆𝑉𝑃

𝑉𝑃
, %

∆𝑉𝑆

𝑉𝑆
, %

∆𝜌

𝜌
) and from engineering 

domains and the flow-simulation model (∆𝑃, ∆𝑆𝑤, 𝜑𝑖) were registered into a common grid in 

depth. Because the simulation model is built with reference to pre-production in 1976, the grid is 

retained in pre-production depth. Due to chalk compaction, normal static parameters like porosity 

are dynamic in the Ekofisk field, and over time the reservoir has compacted considerably. In order 

to accurately map seismic properties into the simulation grid, the simulation model grid was 

compacted to fit the seismic horizons in depth (Reidar Midtun, personal communication). Figure 

5.7 shows the grid (a) before and (b) after compacting the cells, the later version shows the grid 

now conforms with the newly picked horizons in the monitor time after compaction. The 

simulation predictions are also used to build a prior model in the inversion.  
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Figure5.7: (a) shows mapping of the reservoir property such as porosity into the reservoir, the 

results seems far from satisfactory. In order to accurately map seismic properties 

into the simulation grid, the simulation model grid was compacted to fit the seismic 

horizons in depth as shown in (b). 

  

5.7.1 Engineering consistent constraints 

There are many ways to incorporate a priori information into the inverse problem. In this section, 

I will present some engineering consistent constraints to condition the prior model. It is generally 

understood that 4D seismic signatures are sensitive to changes in reservoir pressure, water and gas 

saturation caused by fluid extraction or injection from wells. Therefore, 4D seismic data cannot be 

unambiguously interpreted without a clear understanding of the production and injection history. 

However there are several unknown parameters such as pressure, saturation, porosity, and 

compaction that can be calibrated by only a small amount of spatially coarse data from wells. In 

practice, useful information from well logging and well tests are called “ground truths” and could 

be included. However, there will be limitations in terms of the number of sample points in time 
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and space. One source of information to tap into is the simulation model prediction and engineering 

concepts that are valid in specific fields. The simulation model is capable of providing spatial 

constraints in a three dimensional sense, which is helpful in significantly reducing the number of 

possible solutions for a non-unique problem for each spatial location, and retains the most plausible 

ones.  

 

Figure 5.8: An inequality constraint is applied to the non-water leg regions, where the change in 

water saturation should follow a statistical expression (min and max) retrieved from 

the reservoir simulation post-history matched result, shown as a histogram in (a). 

Figure 5.8(b) shows this constraint is reasonable as it falls within the range of 1 −
𝑆𝑜𝑟 − 𝑆𝑤𝑖𝑟𝑟.  

 

The first engineering consistent (EC) constraint imposed is in the water leg. No change is expected 

in saturation in the water leg from pre-production to current state hence it is only logical to impose 

∆𝑆𝑤 = 0 as the water saturation is always unity. However, it is permissible to have pressure signals 

within the water leg, so the constraint on pressure is not imposed in the water leg. In other words, 

the assumption is that above the oil water contact, changes in saturation are allowed, hence an 

inequality constraint above the water-leg of -0.10≤ ∆𝑆𝑤 ≤0.5 was applied to this section of the 

solution space. The upper and lower boundaries are extracted from simulation model statistics 

(minimum and maximum values) and shown in Figure 5.8(a). Figure 5.8(b) shows that this is 

engineering consistent as it falls within the range of 1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑖𝑟𝑟. The 𝑆𝑤𝑖𝑟𝑟, irreducible water 

saturation is defined as the minimum water saturation obtainable or the fraction of the effective 

porosity that contains water that will not flow out of the rock. The 𝑆𝑜𝑟, residual oil saturation is 
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described as the remaining oil saturation after the reservoir has been fully flooded. It is evident 

that all or most North Sea Chalk fields have difficulty in identifying transition zone, tilted or blurry 

oil-water contact (Megson and Hardman 2001) such as in the Tyra, South Arne, Joanne, Halfdan 

field and so on, thus the constraint impose on the water leg has to be carried out in a conservative 

manner. In this field, the engineering consistent constraint is implemented based on the original 

oil water contact (OOWC) defined in 1971 (pre-production) using the reservoir simulation model 

which was built by integrating petrophysical well logs and well tests information. I only impose 

∆𝑆𝑤 = 0 below the OOWC at pre-production by giving a flag value of ‘0’, as shown in Figure 

5.9(a). Above the OOWC, the flag is ‘1’ and the changes in water saturation is free to fall within 

the range of 1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑖𝑟𝑟. Figure 5.9(b) shows the location of the water leg in the cross-section 

of the model after the applying this constraint on the inversion.  

 

Figure 5.9: (a) The location of the water leg is flagged in red colour. The result from inversion 

shows that the water leg region will not have changes in water saturation as a 

result of the constraint, shown in (b).  

 

For the second EC constraint, I create a spatially-varying upper and lower bound for the prior 

model in each grid cell. I first evaluate on a well-by-well basis the relative misfit between the 

historic bottom hole pressure (BHPH) and the simulated bottom hole pressure (BHP), and the 

historic water injection rate (HWIR) and the simulated water injection rate (WIR). Apart from 4D 

seismic history matching, other data such as static pressure recorded during field shut downs, 

Repeat formation testers (RFT), Production logging tools (PLT), well interference tests, well 

production or injection tests and tracer data are also frequently used to match the dynamic changes 

recorded at the wells. Usually the well pressures have to match the HBHP within the range of 

300psi. If the relative misfit is within this margin of error, the statistical measure of pressure and 
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saturation changes close to well perforations was extracted from the simulation model using a  

Gaussian window. This in turn imposed a tight upper and lower bound for changes in pressure and 

saturation as estimated from the reservoir simulation predictions displayed in Figure 5.10 (a) and 

(b). Instead of extracting a single value of pressure or saturation changes between each time step 

on the historic production plot, I extract the upper and lower bound of pressure or saturation 

changes in cells around the wells from the simulation model. These constraints are realistic given 

that the simulation model is relatively well history matched. If the well performs badly in terms of 

its relative misfit, the prediction around the well is excluded. Although one might question the 

reliability of the model compared to observed data from seismic, the application here does not 

disregard the seismic, but in turn allows some statistical control on possible ballpark values of 

changes of both pressure and saturation. For example, in the case of the inter-well space, the prior 

model is heavily reliant on the seismic instead of the simulation model prediction.  

 

Figure 5.10: (a) The Gaussian window is drawn around each of the well perforations that were 

active during LoFS 2 - LoFS 6. (b) The constraints are only applied to a well with 

an excellent history matched profile of the production data, with a tighter bound at 

the well perforation and a wider bound away from the well.  
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5.7.2 Additional Information: time strain 

Additional information for the inversion, apart from the proxy model, is the use of the time-strain. 

Since the elastic properties such as 𝑉𝑃 and 𝜌 are relatively correlated, reservoir time-strain is also 

included as a separate observation. For example, a well which is a controlled injector with sound 

history-matched pressure and saturation shows a good match between the measured time-strain 

versus the computed time-strain. Figure 11 (a) shows the good match between the observed and 

computed time strain using inputs from the well history match simulation model. Figure 11(b) 

shows the empirically derived correlation between time strain and the changes on the dynamic 

properties. This strong correlation was added to the joint objective function of the inversion.  

 

Figure 5.11: A good fit is found between the (a) computed time strain and the observed time 

strain at well W1. (b) The relationship of the observed time strain with water 

saturation and pressure changes is linear and is given in the equation. 
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5.7.3  Inversion using deterministic gradient-based optimisation 

I first invert for the dynamic changes using a deterministic gradient-based optimisation, proposed 

in Chapter 4. The objective function of the problem is solved on a cell-by-cell basis and the joint 

objective function using the relative change in elastic properties and time-shifts is written as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(∆𝑃, ∆𝑆𝑤)   

𝑓(∆𝑃, ∆𝑆𝑤) = 𝑤1[%∆𝑉𝑃 − 𝐺𝑉𝑝(∆𝑃, ∆𝑆𝑤)]
2
+ 𝑤2[%∆𝑉𝑆 − 𝐺𝑉𝑠(∆𝑃, ∆𝑆𝑤)]2 + 𝑤3[%∆𝜌 −

𝐺𝜌(∆𝑃, ∆𝑆𝑤)]
2
+ 𝑤4 [

∆𝑡

𝑡
− 𝐺∆𝑡

𝑡

(∆𝑃, ∆𝑆𝑤)]
2

 (5.2) 

where 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are the weight factors. The weight factors are computed from the standard 

deviation of the data (Drahos 2008) as:  

𝑤1 =
1

2𝜎1
2, 𝑤2 =

1

2𝜎2
2, 𝑤3 =

1

2𝜎3
2, and 𝑤4 =

1

2𝜎4
2 (5.3) 

where 𝜎 is the standard deviation of the data. The intention is to weight each measurement in 

proportion to its error, for example there is more uncertainty in the density estimate output from 

the pre-stack elastic inversion compared to P and S-wave velocities. The task of inverting for 

density values from seismic data has remained an elusive task. In general, P- and S-impedance or 

P- and S-wave velocity can be reasonably estimated from P-P and P-S seismic inversion (Downton, 

2005, Mahmoudian, 2006). Reliable determination of density from seismic data requires long 

offsets, or it can be determined from measured converted waves; and long offset data are 

notoriously noisy. In the deterministic approach, a lower weighting factor is prescribed to the 

objective function component of density since there is less reliability on this data.  

 

5.7.4 Bayesian Framework 

Inversion being a highly non-unique problem, a wide range of models can satisfy the data and a 

single model will lack predictive power. This is where the stochastic approach will facilitate more 
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reliable dynamic properties. In this Bayesian inversion, a stochastic approach is pursued. Bayes 

theorem (Bayes, 1763) provides a robust framework to address the uncertainties in the data and 

assimilate the prior information into the inversion problem. In this framework the solution to the 

inverse problem is represented by a posterior probability density function (PDF) for the model 

parameters (Tarantola, 2005). This requires prior knowledge of the range of uncertainty in the 

model parameters, and outputs in turn a posterior probability of the model parameters conditioned 

to the measured data. The final goal is therefore to estimate the posterior distribution 

𝑝(∆𝑃, ∆𝑆𝑤|𝐷) = 𝑝(∆𝑃, ∆𝑆𝑤, 𝐻|𝑥)𝑝(𝐷|∆𝑃, ∆𝑆𝑤, 𝐻)  (5.4) 

Where 𝑝(∆𝑃, ∆𝑆𝑤, 𝐻|𝑥) represents the prior PDF and 𝑝(𝐷|∆𝑃, ∆𝑆𝑤 , 𝐻) is the likelihood. Data here 

is represented by the multiple time-lapse seismic data (D) with different levels of uncertainties. 

The hyper-parameters (H) are parameters of the prior distribution.  

As described previously, I incorporate the prior information (x) into the inversion problem through 

EC constraints and information given from the history matched simulation model. Upper and lower 

bounds were created using the spatial constraints and feasible values from the history-matched 

simulation prediction. These bounds are prior information fed into the inversion procedure. 

Incorporating prior information can speed up the convergence of the inversion process towards the 

most probable solution. A multivariable Gaussian pdf is used to describe the likelihood, 

𝑝(𝐷𝑖|∆𝑃, ∆𝑆𝑤, 𝐻): 

𝑝(𝐷𝑖|∆𝑃, ∆𝑆𝑤, 𝐻) =
1

√2𝜋| 𝑖|
𝑒𝑥𝑝 {−

1

2
[𝐷𝑖 − 𝑓𝑖(∆𝑃, ∆𝑆𝑤)]𝑇휀𝑖

−1[𝐷𝑖 − 𝑓𝑖(∆𝑃, ∆𝑆𝑤)]}  (5.5) 

Where 휀𝑖 represent the uncertainties in the 𝑖𝑡ℎ data with a diagonal covariance function, 휀, fi is the 

forward modelling procedure represented by the proxy model equation. The posterior PDF is two-

dimensional, representing the pressure and saturation changes. The posterior PDF is simulated via 

the Metropolis method (Metropolis et al., 1953) which is a Markov-chain Monte Carlo (McMC) 

algorithm. More information on Metropolis method is described in Appendix A. The algorithm is 

set up in a way similar to JafarGandomi and Curtis (2012).  
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The mechanics of the Metropolis-Hastings algorithm starts with the initial values for 

𝑚𝑖 (∆𝑃, ∆𝑆𝑤) and calculates corresponding time-lapse seismic data 𝐷(𝑚𝑖) by modelling via the 

proxy model equation. A new candidate parameter vector 𝑚𝑖+1 is proposed by randomly selecting 

a candidate of the dynamic properties from the prior distributions using a proposed Gaussian 

distribution. The corresponding time-lapse seismic parameter 𝐷(𝑚𝑖+1) and the likelihood 𝐿(𝑚𝑖+1) 

are subsequently calculated. A proposal Gaussian distribution is suggested since it resembles the 

actual posterior distribution of the dynamic parameters, similar to the time-lapse seismic data. The 

Metropolis rule is used to accept or reject the new candidate model by the acceptance probability 

of,  

𝑃 = 𝑚𝑖𝑛 [1,
𝐿(𝑚𝑖+1)

𝐿(𝑚𝑖)
]  (5.6) 

Where 𝐿(𝑚𝑖+1)/𝐿(𝑚𝑖) indicates the ratio of the current and candidate likelihood. If the candidate 

model configuration is rejected, the current model remains for the next iteration, otherwise, 𝑚𝑖+1 

is accepted as the next model sample. These steps are repeated until the required number of 

samples in the set 𝑆 = {𝑚1, 𝑚2, … ,𝑚𝑁} are obtained. The set 𝑆 contains a set of samples that 

approximately samples the posterior PDF. By calculating the sample density in 𝑆, an estimate of 

the posterior distribution is obtained. More information on the convergence test can be found in 

Gelman et al. (1996) for Efficient Metropolis jumping rules.  

Data uncertainties quantification are essential in the inversion procedure where they act as 

regularisation term or weights in the objective function. Here I assume that the accuracy of the 

time-lapse seismic data is correlated with survey repeatability, hence I apply less confidence to the 

data if it is associated with a higher 𝑁𝑅𝑀𝑆𝐷. 𝑁𝑅𝑀𝑆𝐷 refers to the energy in the difference cube. 

I construct a spatially varying uncertainty estimate for each measured data, 𝐷𝑜𝑏𝑠 from the non-

repeatability of the overburden at the same vertical location, assuming vertical stationarity of the 

4D noise level. The seismic data used in this analysis are acquired with a highly repeatable 

Permeant Reservoir Monitoring (PRM) system and have been processed with a mature processing 

flow optimized through several vintage processing. In particular the data has gone through an 

effective de-multiple flow which minimized the presence of non-stationary coherent noise with 

depth. This is confirmed by very high-repeatability (less than 5% 𝑁𝑅𝑀𝑆𝐷). Therefore, these 
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seismic data do not show noticeable non-stationary noise with depth. Additionally, using a window 

close to the target, whilst avoiding the target formation itself, this ensures the estimated uncertainty 

for geophysical parameters are fit for the purpose.  

I account for the uncertainties in the elastic properties by calculating the standard deviation of 

those elastic properties based on the 𝑁𝑅𝑀𝑆𝐷 from a 1s gate in the overburden. Having identified 

an area (𝑋) with very low 𝑁𝑅𝑀𝑆𝐷, we calculate the mean of the standard deviation (�̅�𝑁𝑅𝑀𝑆𝐷) in 

this area, which is then used to calibrate the uncertainty values for  %
∆𝑉𝑃

𝑉𝑃
, %

∆𝑉𝑆

𝑉𝑆
 and 

∆𝑡

𝑡
 spatially. 

In Equation (5.7), we calculate the standard deviation of the noise level (𝑁𝑅𝑀𝑆𝐷) in X, annotated 

as 𝜎𝑁𝑅𝑀𝑆𝐷, and the standard deviation of the geophysical attribute in the same area X is annotated 

as 𝜎𝑝 (shown in Figure 5.12). Using the ratio of these quantities, we can calculate a spatially 

varying standard deviation for any given geophysical attribute: 

𝜎𝑝(𝑥,𝑦,𝑧) =
𝜎𝑝

𝜎𝑁𝑅𝑀𝑆𝐷
𝑁𝑅𝑀𝑆𝐷(𝑥, 𝑦, 𝑧)  (5.7) 

 

Figure 5.12: LoFS2/LoFS6 NRMSD map (a) computed in a 1s gate at 2500-3500ms window in 

the overburden. The area in bright colour with high NRMSD values is seismically 

obscured because of an overburden gas cloud. The standard deviation map (b) 

computed for the relative change of S-velocity is computed spatially by using area 

‘X’ to calibrate the uncertainty values to the NRMSD.  
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The convergence of the McMC sampling depends on the prior range and the width of the Gaussian 

proposal distribution. If one is very close to the solution, then a wider proposal of perturbation will 

delay the convergence. However if one is far from the solution then a wider proposal will 

accelerate the convergence. The estimated uncertainties for 𝑉𝑃, 𝑉𝑆 and time-strain are projected to 

the estimated pressure and saturation changes through the McMC inversion engine using the 

diagonal covariance function. These uncertainty bounds were relatively wide which helped the 

inversion engine to search for optimal solutions. Figures 5.13 (a) and (b) show examples of search 

chains where the posterior distribution is explored by 15,000 iterations with a Metropolis algorithm 

with a “burn-in” period of 5000 iterations for both pressure and water saturation change. It was 

observed that the parameters start to converge at around 5000 iterations for several runs across 

different cells inside the model. I decided to run 15000 iterations since the McMC samples 

converge to a stationary distribution at this number of iterations. I choose to calculate the mean, 

median and mode of the posterior distribution, which may be used to represent the best model 

estimate. Associated uncertainties with each estimated model parameter are represented by the 

standard deviation of the posterior distribution.  
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Figure 5.13: Statistical behaviour of the McMC chains for one sample point for both changes in 

saturation (a) and pressure (b). The burn in occurs at 5000 iterations, in which the 

parameters become stable and starts to converge.  
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5.8  Results and Discussion 

Here I describe the key results of the inversion and will associate them with qualitative and 

quantitative interpretations. A fast track deterministic inversion described in Section 5.7.3 is 

performed to understand the contributions of both EC constraints and time strain information in 

the inversion results. Figure 5.14 shows clear evidence of the progressive improvements in the 

results by including constraints and subsequently adding additional data such as time strain. Figure 

5.14 (a - left) depicts the estimated pressure and saturation changes from inversion of elastic 

parameters without using EC constraints. In the constrained scenario (Figure 5.14a - middle), I 

apply spatial constraints and extracted the upper and lower bounds on the potential range of 

unknowns (∆𝑃, ∆𝑆𝑤) with greater confidence around the well perforations. In Figure 5.14 (a - 

right), after including time-strain as additional independent information, a clearer delineation in 

pressure and saturation around the wells is observed. The result shows that the polarity of pressure 

change from the inversion results is consistent with well locations. Results show pressure build-

up is found around the injectors and majority of the producers show pressure depletion. Although 

there is arguably less improvement in the prediction of the water saturation changes after adding 

constraints into the inversion process (Figure 5.14 b from left to right), the magnitude of the 

saturation changes are more balanced and considered to be of the same approximate magnitude.  
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Figure 5.14: Above, the progressive improvement on the results for (a) pressure change and (b) 

water saturation in an unconstrained situation, followed by adding EC constraints 

and additional information such as time strain.  

 

Having carried out this sensitivity study, I proceed to run the inversion in a stochastic manner, 

taking into account of the uncertainties in the data. The stochastic results (Figures 5.15a and b) are 

computed by taking the posterior median solution obtained from the simulations after a period of 

burn-in for both changes in pressure and saturation. In Figures 5.16(a) and (b) shows the posterior 

uncertainty is represented by one standard deviation - around 2MPa for pressure and a fraction of 

0.05 for water saturation. Large uncertainties are estimated at regions where there is a considerable 

misfit between seismic observation and the simulation model prediction. These regions also 

indicated a lower level of confidence in the estimates.  
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Figure 5.15: The stochastic result for changes in (a) pressure and (b) water saturation. 

 

 

Figure 5.16: Posterior standard deviation after stochastic inversion for (a) changes in pressure 

and (b) changes in water saturation. Areas with bright colours correspond to lower 

confidence in the inversion result.  
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The validity of the inversion can also be checked by using the inverted pressure and saturation 

changes to compute changes in reservoir thickness (𝑑𝑧) via the fast proxy model equation derived 

in Chapter 4. The changes in thickness can be expressed as:  

𝑑𝑧 =
[𝐹𝑝+(

∆𝑆𝑤
∆𝑆𝑤𝑚𝑎𝑥

)(𝐹𝑤𝑤−𝐹𝑝)]∙∆𝑃

(1−𝜑1)
∙ 𝑧1 (5.8) 

The full derivation of Equation 5.8 is provided in the Appendix E. Having inverted pressure and 

saturation changes from 4D seismic attributes, I can use the proxy model to calculate changes in 

reservoir thickness using Equation (5.8). I then compare the modelled change in reservoir thickness 

with the interval-reservoir time-shift maps. The comparison is shown in Figure 5.17 and Figure 

5.18 for Ekofisk and Tor formations respectively. Maps in Figure 5.17 and Figure 5.18 illustrate 

that comparable trends with compaction are expected in some of the major producers and injectors 

situated in oil producing areas in both formations. However, a closer look also reveals differences, 

partly due to the timing of pressure and saturation changes. The comparison reveals stronger 

compaction in the time-shift data – this could arise if water intrusion occurs before pressure build-

up due to fracture flow. Other possible explanations are that the static parameters are not 

adequately captured in the original reservoir model or that there are other physical processes 

affecting changes in compaction such as creep. 
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Figure 5.17: Computed changes in thickness (feet) for Ekofisk formation (right) using the proxy 

model equation and inputs from the inverted results, compared against the 

measured interval Ekofisk formation time-shifts (left).  

 

 

Figure 5.18: Computed changes in thickness (feet) for Tor formation (right) using the proxy 

model equation and inputs from the inverted results, compared against the 

measured interval Tor formation time-shifts (left).  
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Using the inverted results, some observations close to wells in an area of the field with strong 4D 

seismic signals is explained as shown in Figure 5.19. Here, I describe three cases (amongst many) 

that the inversion results are in good agreement with the measured data from production. Firstly, 

a potential pressure sink is observed around producers P1, P2 and P3, which is also measured in 

both reservoir and overburden time-shifts as hardening signals in Figures 5.19(a –left and right). 

In terms of the magnitude shown in Figure 5.19(b - left), the pressure drawdown predicted from 

this inversion is close to 4MPa. Based on field records, the absolute formation pressure from the 

downhole pressure gauge at baseline and monitor time period are consistent with this 

understanding. Secondly, large softening anomalies from strong pressure increases around the 

injectors I1 and I2 are observed. Lastly, there is a sweep pattern visible as water encroachment 

towards the producer P2 and P3 from the injector I2, shown as a blue line in Figure 5.19(b –right). 

Most of the interpretations are supported by repeat formation tester (RFT) and downhole pressure 

gauge measurements acquired every 6 months at the wells.  

The RFT data in Figure 5.20(b) shows that both injectors I1 and I2 were originally water flooded, 

hence the 4D signal is predominantly pressure-related. The water saturation log for both injector 

wells I1 and I2 show highly water saturated with 𝑆𝑤𝑖 close to 1 – 𝑆𝑜𝑟. The 𝑆𝑜𝑟 is given as 0.275 in 

this field, hence the maximum water that can displace oil is given as 0.725. It is engineering 

consistent not to expect any change in water saturation as the wells are already nearing the 

maximum water flooded state. The production data in Figure 5.20(a) also demonstrated that the 

injectors I1 and I2 are put on stream after LoFS2, and inject at a high constant rate. As a 

consequence, I expect a large pressure increase which is also shown in the inversion, whereby an 

increase in pressure greater than 10MPa was recorded. The producers P2 and P3 intersected an oil 

filled zone in both Ekofisk and Tor formations. The production data for P2 in Figure 5.20(c) reveals 

a steady increase in water cut and potentially an increase in gas production rate. These infer a drop 

in pressure and that water from the nearby injectors could have invaded the producers and raised 

the water cut. 
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Figure 5.19: (a) A display of the time-shift maps of interval Ekofisk formation (left) and interval 

Balder formation (right). Wells labelled as ‘I’ are injectors and ‘P’ are producers. 

(b) The inverted changes in pressure (left) and water saturation (right) are also 

displayed. The red circles represent pressure anomalies from the inversion and 

have a good match with the observed time-shifts in both reservoir and overburden. 

The blue arrow represents a sweep pattern from the injector I2 to P2. 
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Figure 5.20: HWIR is the historic water injection rate, HBHP is the historic bottom hole 

pressure and HGPR represents the historic gas production rate. (a) Downhole 

pressure gauges and production data between LoFS 2 and LoFS 6 show both I1 and 

I2 recorded a large increase in HWIR and HBHP. (b) The RFT data for both of 

these injectors also shows along the trajectory of the wells, it is originally water 

flooded so 4D signals are predominantly pressure driven. (c) In the well P2, 

production data shows an increase in gas production rate which is indicative of a 

drop in pressure, and the recorded increase in water cut could point towards water 

coming from the nearby injector.  

 

Figure 5.21 depicts a cross-section through 4 wells (I2, P1, P2 and P3) for (a - left) time-strain, (a 

– right) changes in amplitude, (b) percentage changes in elastic properties, (c) simulated prediction 

from fluid flow simulator, (d and e) inverted pressure and saturation changes from deterministic 

and stochastic approaches and (f) the associated uncertainties. The inversion results suggest an 

anomalous pressure increase along the injector I2 and slight pressure drop along producer P2. 

Water was also shown to be encroaching towards P2 from the injector. Production data indicated 

a steady increase in water cut, and an increase in gas production rate in P2, supporting the claim 

that water from the nearby injectors could have invaded the producer, which is consistent with the 
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inversion results. The water cut in P2 is also shown in production logging tool (PLTs) acquired in 

2006, showing a 55% contribution from TA (first reservoir unit within the Tor formation) in Figure 

5.21 (top right table). Whilst agreement between the simulator and the 4D seismic data is not 

necessarily expected, as the model may not be correct - the water sweep pathway is shown in the 

inversion result but not in the simulation model. This connectivity between injector and producer 

was not predicted by the simulator but was shown in the seismic data. This result supports the 

water breakthrough of 55% detected in the TA formation by the PLT. This shows that seismic data 

helps support well data in suggesting a potential area for model updating, such as including a 

preferred fluid pathway between both wells.   

Areas located inside the seismic obscured area (SOA) has no signal recorded in the observed data 

because the signals are erroneous and was removed during processing, therefore the inversion 

solutions in those areas are biased towards the prediction of the simulation model. The EC 

constraint is applied to the entire trajectory of this well, hence this shows a prediction inside the 

SOA when there is actually no reliable seismic data. At the toe of the injector I2, a pressure increase 

signal was found to be consistent with the measured time-shifts and changes in amplitude. This 

anomaly is not predicted by the simulation model, but is in visual agreement with the seismic data. 

This reveals a spread of the injection response into the tighter and lower permeability chalk 

sediments in TB and TC formations. Water injection in an area of low permeability will result in 

a relatively strong pressure signal, this is also supported by Darcy’s law where that a lower 

permeability results in a higher pressure for the same input flow rate. Also, depending on the matrix 

permeability of the rock and the fracture gradient, such injection could also develop fractures. In 

which both cases of injecting into a low permeability rock in water leg that could potentially create 

permeability corridors point towards a softening signals. Furthermore, it is originally water flooded 

hence the 4D signal is very likely to be pressure driven 



176 

 

 

Figure 5.21: (a) Time-strain (left) and amplitude difference after time-shift correction (right). (b) 

Inverted fractional changes in S-velocity (left) and P-velocity (right). (c) Changes in 

pressure (left) and water saturation (right) from simulation model. (d) Stochastic 

results for changes in pressure (left) and water saturation (right). (e) Posterior 

uncertainty for changes in pressure (left) and water saturation (right) with one 

standard deviation in (f). In top right, the table shows the individual contribution of 

water saturation in the PLT perforation in P2. 
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Lastly, I would like to demonstrate the impact of the EC constraints in Figures 5.22(a) and (b). 

Figure 5.22(a) evaluates the objective function at the solution; the map shows small values of the 

objective function when the solution is found indicating first-order optimality was fulfilled. The 

first-order optimality is a measure of how close the solution is to optimal. At the location(𝑥, 𝑦, 𝑧), 

the objective function is calculated for a range of solutions reported in Figure 5.22(b), the initial 

guess is given as the red point, and the final solution that converged at global minimum is given 

as the cyan point. The EC constraint is represented by the black dotted line box, which firstly 

constrained the solution space and secondly guided the initial solution to the global minimum. 

Figure 5.22(b) also shows the limit of the deterministic solution such that it has a narrow sampling 

path in the solution space. Secondly, in either the proxy model or full physics model there could 

be regions in the solution space that is highly non-unique (i.e. a flat global minimum), a stochastic 

solution will ensure an exhaustive search and that the best estimate of the solution and the 

corresponding uncertainty will be extracted. 

 

Figure 5.22: (a) The objective function values at the solution for the deterministic inversion 

results of the Ekofisk formation and (b) represents the initial and final solution 

bounded by EC constraints at location (x,y,z).  
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5.9  Conclusions 

The engineering-constrained inversion method developed in a Bayesian framework shows 

considerable promise. The goal of this chapter was to verify that the theoretical basis for the 

inversion pressure and saturation changes using the proxy model described in Chapter 4 produced 

reasonable results when used with real data. Uncertainties from the seismic and from the 

engineering domain are included in the Bayesian framework thus giving an additional robustness 

to the technique, providing a measure of the uncertainty related to the inverted pressure and 

saturation changes. Quantifying these uncertainties is an important factor for further quantitative 

interpretation of the results. The data uncertainties and constraints are of special interest since they 

both influence the convergence and outcome of the inversion process. The resulting changes of 

dynamic properties from probabilistic inversion show an improvement from the history matched 

flow-simulation model. Although the stochastic method required higher computational effort, it 

has the added advantage of capturing uncertainties in its predictions, and is not sensitive with 

respect to local minima.  

Application of this inversion workflow to the Ekofisk field has revealed encouraging results 

suggesting potential areas for model updating. Inconsistency with current interpreted conductive 

pathways between well I2 and P2 has suggested a different perspective in current understanding 

of reservoir dynamics. The inverted attributes provide the critical lateral information away from 

the wells where the confidence in the reservoir model properties is lower. The result also has a 

good match with well production data, which explains strong localized pressure, saturation and 

compaction anomalies. By transforming the 4D seismic data into the engineering domain, 

quantitative maps of pressure and saturation may be used to update the simulation model, or as a 

direct aid for making more informed reservoir management decisions. One of the greater 

implications is also to use these estimates of pressure and saturation to update the simulation model 

to reduce the misfit between 4D seismic and the prediction of the simulation model, or as additional 

constraints in history matching. The inverted dynamic properties from 4D seismic have good 

spatial coverage and resolution compared to the well data. This provides a pragmatic way to close 

the loop between reservoir dynamic properties and 4D seismic data.   
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Application of the method in a volumetric 3D manner has proven that this technique can effectively 

help to detect preferential conduits between producers and injectors, weakened zones in the 

producing formations due to pressure draw-down and invasion of water and determine the 

efficiency of well injections. These effects are paramount in 3D interpretation especially if the 

reservoir is thick such as in the case of Ekofisk. Previous methods that work effectively on maps 

lacked the vertical resolution for both pressure and saturation analysis. Working in 3D volumes 

also shows the greater possibility of understanding communication between different stratigraphic 

layers in the reservoirs and gives greater confidence in the selection of well paths for more effective 

well planning.  

Lastly, I would like to highlight the advantage of the proxy model in providing a fast-track 

computation for the relative changes in elastic properties by honouring the physical relationship. 

The computing costs for the forward method are linearly proportional to the number of model 

parameters, and in this case, it only depends on the distribution of the changes of pressure, 

saturation, and the individual coefficients that weight the relative contribution of each term in the 

proxy model equation. The strength of this workflow lies in its ease of parameterization and fast 

run time, making it amenable to exhaustive sampling methods like McMC.   
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CHAPTER 

SIX 

 

PRESSURE INVERSION USING OVERBURDEN STRAIN:  

A SYNTHETIC EXAMPLE 

 

Here, I will demonstrate how time-lapse information outside the reservoir can be employed to 

estimate vertical strain, and subsequently infer pressure changes inside the reservoir. The 

Geertsma’s pressure inversion method (Hodgson et al., 2007) provides the basis for a linear 

inversion to both pressure changes and also the Hatchell-Bourne-RØste R-factor. I will demonstrate 

two synthetic studies, first to infer which data should be extracted in the overburden for Geertsma’s 

solution and secondly to validate Geerstma’s solution with numerical modelling. The remainder 

of the chapter focuses on a proposed method to invert for the R-factor apart from pressure changes, 

by calibrating the results with pressure information from a well-history matched simulation model. 
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6.1  Introduction 

In Chapter 4 and 5, I demonstrated the use of reservoir time-lapse information such as time-shifts 

and the relative change of elastic properties to characterise reservoir dynamic properties. In this 

chapter, I will shift my focus to using information from the rocks surrounding the reservoir under 

production. Production or injection of fluid volumes in a hydrocarbon reservoir leads to subsurface 

deformation and changes in the strain state not only of the reservoir, but also the surrounding rocks. 

It has been demonstrated in several field studies that summation schemes based on Geertsma’s 

analytical solution are capable of modelling this strain distribution (e.g. Toomey et al., 2015), and 

also inverting for changes in reservoir pressure from time-shifts measured by time-lapse seismic 

data (Hodgson et al., 2007). These schemes provide a simple yet effective approach for tackling 

the small to moderate magnitude strains detected in many applications of time-lapse seismic data. 

In this chapter, I will extend the work of Hodgson et al. (2007) to infer reservoir dynamic changes 

with the aid of reservoir engineering concepts. However, before embarking on the extension of the 

current theory, I will first call attention to a compilation of work in the literature, specifically those 

involving non-reservoir time-lapse information in compacting reservoirs.  

 

6.2  Summary on Overburden Time lapse information for Reservoir 

Characterisation 

Some of the key publications on using overburden seismic data for reservoir characterization are 

highlighted in Figure 6.1. The pioneering work of Geertsma (1966, 1973) shows the relationship 

between stress and strain of permeable fluid-saturated materials, assuming linear-poroelastic 

behaviour of the solid skeleton. It was pointed out by Lubinski (1954), that similar stress-strain 

relations in thermoelasticity exist that provide the effect of changes in pore pressure on the bulk 

stress-strain system. This popular formulation from the work of Geertsma (1966, 1973) who 

developed an analytical solution for surface and subsurface displacements for a compacting 

reservoir was then widely adapted. Segall (1992, 1994) extended Geertsma’s method for arbitrarily 

shaped reservoir in computing poroelastic stress changes due to fluid extraction. His application 
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on the deep Lacq gas field in southwestern France shows good agreement between the predicted 

vertical displacements with the subsidence observed from leveling data.  

 

Figure 6.1: The timeline of the literature using overburden information for reservoir 

characterisation, specifically in the pursuit of pressure, permeability distribution 

and velocity sensitivity to stress of the reservoir.  

 

The solution from Segall (1992) was also used by Carnec and Fabriol (1999) in Cerro Prieto 

geothermal field in Mexico. Apart from forward modelling of strain and displacement, Du and 

Olson (2001) developed an inverse procedure to relate surface subsidence to reservoir pressure 

change in a synthetic study. Work from Vasco and Ferretti (2006) shows a method for inferring 

reservoir volume change and flow properties, such as permeability, using subsidence and satellite-
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derived InSAR observation from Wilmington field, California. This study serves as an early 

attempt in reconciling reservoir production and surface deformation data for real data. In 2005, the 

dilation factor or the R-factor was determined by both RØste et al., 2005 and Hatchell and Bourne 

2005 independently. The R-factor is a constant used in relating strain to the fractional change in 

vertical P-wave velocities. It provides a link between time-lapse seismic and geomechanics, where 

one can easily relate the vertical strain component, 휀𝑧𝑧 to changes in vertical P-wave velocity and 

time-shifts. The strain model proposed by Hatchell and Bourne (2005) consider the changes in 

travel time due to small changes in layer thickness and velocity as:  

∆𝑡 = (
𝜕𝑡

𝜕𝑧
)∆𝑧 + (

𝜕𝑡

𝜕𝑧
)∆𝑣  (6.1) 

with 𝑧 representing thickness and 𝑣, P-wave velocity and the travel time for a normal incidence P-

wave as 𝑡. Evaluating the partial derivatives for 𝑡 = 𝑧/𝑣 leads to:  

∆𝑡

𝑡
=

∆𝑧

𝑧
−

∆𝑣

𝑣
  (6.2) 

In the case of normal incidence P-wave, the fractional changes in velocity is proposed to occur in 

propotion to fractional change sin path length, such that 
∆𝑣

𝑣
= −𝑅휀𝑧𝑧. The model now relates time 

strain to vertical strain using the R-factor:  

∆𝑡

𝑡
= (1 + 𝑅)휀𝑧𝑧  (6.3) 

This provided Hodgson (2009) with the foundation to invert for reservoir dynamic property such 

as pressure change, ∆𝑃 using time strain, 
∆𝑡

𝑡
 information – by firstly using the R-factor to convert 

time strain measurements to vertical strain, this is shown in section 6.4.1. Equation 6.4 shows the 

forward modelling equation, where the operator 𝐺 is given as the Geertsma Green’s function to 

estimate time strain from the changes in pore pressure. Results are presented from application of 

the method to Genesis field in the Gulf of Mexico in Figure 6.2. The pressure changes inverted 

from time strain information compares favourably to those from the reservoir simulator predictions 

(Hodgson et al., 2007). 
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(
∆𝑡

𝑡
)
𝑀

= (1 + 𝑅)∑ ∆𝑝𝑛𝐺𝑛,𝑚
𝑧𝑧𝑁

𝑛=1  (6.4) 

 

Figure 6.2: (right) Pressure change inverted from Geertsma and (left) pressure change predicted 

from a fluid flow simulator (Hodgson et al., 2007).  

 

An adaptation to this solution was suggested by Garcia and MacBeth (2013) where instead of using 

an analytical equation to capture the complicated geology of the subsurface, a method based on 

transfer functions is propose in which the function itself is calibrated using numerically generated 

overburden strain deformation using a selected number of reference sources. This was applied in 

the South Arne field where the reservoir strain using the transfer function which is a Wiener 

operator shows higher definition compared to the Geertsma’s solution.  
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6.3  Theory 

The Geerstma’s solution (1966, 1973) that is employed in this chapter is based on the theory of 

poroelasticity (Biot, 1941, Rice and Cleary, 1976), where the equations are listed in Appendix F. 

The simple geomechanical model employed by Geertsma assumes a linear poroelastic medium 

and material isotropy. In the pure compliance formulation (in which strain is one dependent 

variable), the sum of the mean normal stresses is: 𝜎𝑘𝑘 = (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)/3. In an isotropic 

poroelastic medium, the solid volume strain, 휀𝑘𝑘 as a function of 𝜎𝑘𝑘  and pore pressure, 𝑝 can be 

written as:  

휀𝑘𝑘 =
𝜎𝑘𝑘

3𝐾
+

𝛼𝑝

𝐾
 (6.5) 

Where 𝐾 is the bulk modulus and 𝛼 is the Biot’s coefficient, ranges between 0 and 1, and is 

generally an increasing function of porosity. Equation 6.5 reveals that if the rock is free from 

constraints (𝜎𝑘𝑘 = 0) it will tend to contract by an amount of 𝛼𝑝/𝐾 in a pore pressure draw-down 

scenario. On the other hand, if the reservoir is completely constrained volumetrically (휀𝑘𝑘 = 0) 

then it will be driven into extension by 𝜎𝑘𝑘 = −3𝛼𝑝 (Segall 1992). In reality what we expect is 

the rocks surrounding a reservoir to provide an incomplete constraint, when the rock is restrained 

from its reference stress state or pre-stress state, it contracts by less than 𝛼𝑝/𝐾 and its surrounding 

is put under extension. The common approach used in the industry is to assume uniaxial 

compaction, when the lateral extent of a reservoir is much larger than thickness. Thus, lateral strain 

can be neglected (휀𝑥𝑥 = 휀𝑦𝑦 = 0), and the reservoir deforms only in the vertical direction. The 

second assumption is that the total vertical stress acting on the reservoir remains constant during 

production. In this condition, the constitutive equation can be expressed using stress components 

as the dependent variables and solved for the vertical stress as:  

𝜎𝑧𝑧 =
2𝜇(1−𝑣)

1−𝑣
휀𝑧𝑧 − 𝛼𝑝  (6.6) 

Solving for the vertical strain gives: 

휀𝑧𝑧 =
𝜎𝑧𝑧

𝐾𝑣
+

𝛼𝑝

𝐾𝑣
   (6.7) 
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where 𝐾𝑣 is called the drained vertical incompressibility. The deformation and pore pressure field 

are coupled through the equilibrium equations for the solid and the equation governing pore fluid 

flow. Generally, the pressure change can be generated from a fluid flow simulator and for most 

consolidated clastic reservoirs. Although the equations in Appendix F show the changes in fluid 

mass and displacements are coupled in a linear poroelastic medium; in practice the flow equation 

is solved independently from the stress equation in the fluid flow simulator, or in other words, 

there is no coupling between these two sets of equations, and information is passed in only one 

direction. A full coupling approach is preferred but is often challenging because a large system of 

nonlinear coupled partial differential equations incorporating all the relevant physics need to be 

derived (Minkoff et al., 2003). In strongly compacting reservoirs, a loosely coupled or fully 

coupled approach should be taken, as the stress changes are generally non-negligible and the 

changes in effective stress alters the static properties of the reservoir, such as porosity and 

permeability.  

In my work, I assume deformations due to reservoir pressure change as quasi-static, which means 

a steady state has been achieved. The time period that I will investigate is between LoFS 2 and 

LoFS 6, which is 18 months apart; this is sufficient for pressure to equilibrate inside the reservoir 

- of course the pressure diffusion ultimately depends on the permeability and porosity of the 

reservoir. Between the LoFS surveys, the pressure perturbations are small, therefore the strain in 

the reservoir and the surrounding rocks is also small; hence, linearity could be assumed between 

pressure change and strain. In addition, due to short acquisition period in the LoFS period, we can 

assume that any change in applied stress is followed instantaneously by the corresponding 

deformation and stress is imaged. This will be further discussed in the application on the Ekofisk 

data in Chapter 7. However, in the streamer period, where large pressure changes and compaction 

events took place (observed time-shifts as large as 15ms), the relationship between strain and pore 

pressure is more likely to be non-linear. In addition, the time period between baseline and 

subsequent monitor or between monitor pairs in the streamer data has a time gap of several years, 

which means time-dependent effects such as creep could have taken place. This means the pressure 

inverted using time-shift measurements affected by creep could be overestimated.  
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6.4  A Green’s Function Solution 

In this section, I attempt to use the observed quasi-static displacements to infer the distribution of 

pressure change within the reservoir. The approach of using time strain information from time-

lapse seismic was first applied by Hodgson et al. (2007) and Hodgson (2009). Geertsma (1966, 

1973) and Segall (1992) show the displacement in a poroelastic medium can be generated by a 

distribution of centres of dilation with a magnitude proportional to 𝛼∆𝑝(휁, 𝑡); the volumetric strain 

in the reservoir can be estimated using Equation (6.8). Segall (1992) shows that displacement 

tensor of 𝑖𝑡ℎ, at an observation point 𝑥 in the subsurface at time 𝑡, given by a centre of dilation 

located at 휁 is:  

𝑢𝑖(𝑥, 𝑡) =
𝛼

𝜇
∫ ∆𝑝(휁, 𝑡)𝑔𝑖(𝑥, 휁)𝑑𝑉
𝜐

 (6.8) 

where 𝑔𝑖(𝑥, 휁) can be thought of as the displacement at x resulting from a unit pressure at 휁 in 

volume element 𝑑𝑉, which is also the Green’s function for the displacement. This is solved by 

Geertsma (1966), who provided an analytical Green’s function for a nucleus of strain in a 

homogeneous linear poroelastic half space. The half space is represented as 𝑥 > 0,−∞ < 𝑦 < ∞. 

A depletion of the pore pressure causes the stresses and strains both inside and outside the reservoir 

to be changed. Linear elastic properties are assigned to both reservoir and surroundings, provided 

there is no material contrast. The displacements caused by a bounded volume of reduced pore 

pressure using the nucleus concept in a half-space with a traction-free surface was solved 

independently by Mindlin and Cheng (1950) and Sen (1943). Combinations of point forces are 

known generally as nuclei of strain (Love, 1944). The Green’s function for the displacement field 

due to a point source of pressure change of fluid volume is identical to the displacement field due 

to a centre of dilatation.  
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Figure 6.3: Geometry for the Geertsma solution. �⃗�  is the unit vector in the z-direction. If z=0, 

�⃗�  and 𝑅1
⃗⃗⃗⃗  are codirectional (modified after Fjær, 1992). 

 

The boundary condition is that the surface at 𝑧 = 0 is a traction free surface which means that 

vertical stress must be zero. As illustrated in Figure 6.3, outside a nucleus at depth of burial 𝑧 = 𝑐, 

the displacement 𝑢𝑒⃗⃗⃗⃗  at a radial distance 𝑟 from the nucleus amounts to: 

𝑢𝑒⃗⃗⃗⃗ =
𝑐𝑚

4𝜋
[
𝑅1⃗⃗⃗⃗  ⃗

𝑅1
3 +

(3−4𝑣)𝑅2⃗⃗⃗⃗  ⃗

𝑅2
3 −

6𝑧(𝑧+𝑐)𝑅2⃗⃗⃗⃗  ⃗

𝑅2
5 −

2�⃗� 

𝑅2
{(3 − 4𝑣)(𝑧 + 𝑐) − 𝑧}] (6.9) 

where ∆𝑝 is the volume of pressure change, 𝑅1
2 = 𝑟2 + (𝑧 − 𝑐)2, 𝑅2

2 = 𝑟2 + (𝑧 + 𝑐)2 and �⃗�  is the 

unit vector in z-direction and 𝑟 is the distance from the volume element to the observation point. 

𝑐𝑚 is the uniaxial compaction coefficient, which is given by Wang (2000) as: 

𝑐𝑚 =
𝛼(1−2𝑣)

2𝜇(1−𝑣)
  (6.10) 

The vertical displacement, 𝑢𝑧⃗⃗⃗⃗  is:  
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𝑢𝑧⃗⃗⃗⃗ =
𝑐𝑚

4𝜋
[
𝑧−𝑐

𝑅1
3 −

4𝑣(𝑧+𝑐)−(𝑧+3𝑐)

𝑅2
3 −

6𝑧(𝑧+𝑐)2

𝑅2
5 ] (6.11) 

The components of the strain tensor are found by taking the derivative of the displacement Green’s 

function. For example, the vertical component of strain is the vertical derivative for the vertical 

displacement, given as:  

𝜕𝑢𝑧

𝜕𝑧
= 휀𝑧𝑧 =

𝑐𝑚

4𝜋
[

1

𝑅1
3 −

3(𝑧−𝑐)2

𝑅1
5 +

4𝑣−1

𝑅2
3 +

3(𝑧+𝑐)(4𝑣(𝑧+𝑐)−(𝑧+3𝑐))

𝑅2
5

−6{
(𝑧+𝑐)2

𝑅2
5 +

2𝑧(𝑧+𝑐)

𝑅2
5 −

5𝑧(𝑧+𝑐)3

𝑅2
7 }

] (6.12) 

These are the basic equations of the nucleus of strain method, a full derivation can be found in 

Geertsma (1966, 1973). The displacements at the surface can be determined numerically by adding 

up the contribution from the different elements of the reservoir. Hypothetically, if the reservoir 

takes the form of a contracting sphere within an infinite medium, the displacement field around 

the reservoir will be spherically symmetric and given by: 

𝑢 =
𝑢0𝑅𝑜

2

𝑟2  (6.13) 

Here, 𝑟 is the radial distance from the centre of the sphere (reservoir), 𝑢 is the radial displacement, 

𝑢0 is the displacement at the surface of the sphere, and 𝑅0 is the radius of the sphere (reservoir). 

What we observe from this equation is that as we move away from the source, the displacement 

field disappears, with one over radius squared (1/𝑟2), as mentioned in Fjær et al. (2008).   

Using the approach in Hodgson (2009), which accounts for arbitrarily shaped reservoirs. The 

analogy of non-overlapping cuboids to cells in a reservoir model grid is used. The equation can be 

written as a summation over 𝑁 cuboids as:  

𝑢𝑖 =
𝛼

𝜇
∑ Δ𝑝𝑛

𝑁
𝑛=1 ∫ 𝐺𝑖(𝑥, 휁)𝑑𝑉𝑛𝑉𝑛

 (6.14) 

where 𝐺𝑖 represents the Green function for displacement at 𝑥 resulting from a unit pressure at 휁 in 

volume element 𝑑𝑉𝑛. The volume integral is achieved by using a numerical method provided by 
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Stroud (1971). Assuming the volume integral has been performed as part of the Green’s function 

calculation, the vertical strain can be expressed as a linear system of equations: 

휀𝑧𝑧,𝑀 = ∑ ∆𝑝𝑛𝐺𝑛,𝑀
𝑧𝑧𝑁

𝑛=1  (6.15) 

where 휀𝑧𝑧,𝑀 is the 𝑀𝑡ℎ observation, and ∆𝑝 is the reservoir pressure changes. In a forward 

modelling procedure to calculate strain, the change in pressure is the average pressure change over 

each cuboid discretized in the simulation model. Equation (6.14) can be applied to any component 

of displacement, stress and strain if the Green’s functions for these components are available.  The 

diagram in Figure 6.4 shows how a rectangular reservoir is divided into four equal cuboids. At 

each observation point, the strain is summed over the four cuboids.  

 

Figure 6.4 shows the representation of a reservoir as four non-overlapping cuboids. The 

pressure change in each cube is summed over to yield the observed strain. 

(Redrawn after Hodgson 2009).  

 

6.4.1 Using overburden deformation to infer reservoir pressure change  

In the inversion procedure outlined by Hodgson (2009) and Hodgson et al., (2007), additional 

constraints are also added into the inversion, such as using engineering data (well-based pressure 
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measurements) and a regularisation term to ensure the solution is smooth. Equation (6.15) is solved 

using a least squares objective function with a smoothing constraint, which employs a Laplacian 

finite-difference operator.  

𝐸 = ‖𝐺∆𝑝 − 𝑑‖2 + 𝛼2‖𝐿∆𝑝‖2 (6.16) 

𝐺 is the forward operator that relates the data 𝑑, given as time strain, to the model parameter, ∆𝑝. 

The second term is the regularisation term; having this in the objective function means minimizing 

𝛼2‖𝐿∆𝑝‖2 penalises pressure change distributions that are rough in the second derivative and 

requires the solution to be smoothly varying.  

The input data for this inversion engine is time strain and, hence a conversion has to take place to 

relate time-strain to physical strain. The simplest relation is the linear relationship between 

fractional change in time-lapse time strain and the physical strain, with a constant factor known as 

the R-factor, proposed by Hatchell and Bourne (2005). Equation (6.15) can be rewritten as 

Equation (6.18) by substituting the vertical strain with the relationship given in Equation (6.17).  

∆𝑡

𝑡
≈ (1 + 𝑅)휀𝑧𝑧 (6.17) 

(
∆𝑡

𝑡
)
𝑀

= (1 + 𝑅)∑ ∆𝑝𝑛𝐺𝑛,𝑚
𝑧𝑧𝑁

𝑛=1  (6.18) 

In Hodgson’s (2009) work, the value of R is assumed to be 5, as proposed by Hatchell and Bourne 

(2005) for most non-reservoir rocks. A constant R is assumed throughout the overburden. This is 

a huge uncertainty, as in more recent work R is found to be not only a function of lithology but 

also initial stress state and strain polarity, meaning that R values can be different for the same rock 

undergoing loading (compaction) versus unloading (extension). Another method to obtain R is to 

compare modelled strain values from the geomechanical simulator to observed time strain value. 

The ratio of the observed physical strain to the time strain gives the R-factor. However, this 

requires good estimates of pressure information from the simulator and good calibration for the 

geomechanical properties in the reservoir model.  
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6.5  Velocity Stress/Strain Relationship  

It is established from laboratory observations that a change in the stress state of a rock will cause 

a change in elastic velocity. Laboratory data also shows that velocities initially increase rapidly at 

low effective stresses, but that this increase will gradually reach a plateau at higher stresses before 

sample destruction. Many rock models exist to describe the variation of various rock properties 

under a host of different conditions, however, many of these models require the parametrization 

of a large number of unknowns. The complexity and uncertainty of rock models is one explanation 

for the prevalence of empirical relationships in the oil industry. 

The observed mechanical properties of a rock such as strength and elastic wave velocities depend 

largely on the rock heterogeneity. Rocks have heterogeneities on many different length scales. For 

example, layering and faulting exist on macroscopic scales, while micro cracks, mineralogy and 

porosity exist on the microscopic scale. For seismic properties we are interested in length scales 

on the order of tens of metres which are generally described in terms of continuum mechanics, i.e. 

the rock is described as a homogeneous elastic material. The aim of microscopic rock models is to 

describe the macroscopic properties based on the microscopic behaviour. The observed stress 

dependency of acoustic wave velocities implies a non-linear stress-strain relationship, because for 

a linear material the acoustic velocity would be constant. Holt et al. (2005) give an overview of 

the sources of non-linearity in sedimentary rocks: Change in porosity with stress, the existence of 

sharp grain contacts and the presence of cracks and fractures. These nonlinearities can be 

incorporated in macroscopic models, that use the framework of continuum mechanics, or 

microscopic models which deal with nonlinearities on the scale of particles or microscopic 

inclusions. 

 

6.5.1 Rock physics: Third order elasticity 

One approach to link stress and strain tensor to anisotropic velocity is using the third order 

elasticity. The model developed by Prioul et al. (2004) includes the effects of triaxial stress changes 

on the full anisotropic stiffness tensor. The added advantage is that the effects of stress-induced 

anisotropy and variations in larger offset time-shifts can be incorporated in this model. This 
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mathematical model however does not directly address the microstructural properties of the rock. 

The model fits two linear trends for both low and high stress regions between the non-linear stress 

versus velocity relationship, shown in Figures 6.5 (a) and (b). Furthermore, the model can only be 

parameterised with triaxial stress velocity measurements whereby such experiments are limited in 

the literature and makes it hard to parameterize. Since these data are scarce and empirical, it has 

little use for application. Also, the cut-off for low and high stress regions is arbitrary and varies 

for different rock types (Verdon, 2012). These factors limit the general applicability of the model. 

 

Figure 6.5: 3rd order elasticity is employed to model the nonlinear elasticity of a North Sea 

shale. Two linear fits are given, divided by low and high stress regions (from Prioul 

et al. 2004).  

 

In the work of Herwanger (2008), it was concluded that production induced horizontal stress and 

strain changes have a marked influence on vertical velocity. It was concluded that the overburden 

deforms under a zero volumetric strain condition (휀11 = 휀22 > 0, 휀33 < 0), which yields a higher 

change in vertical velocity for the same amount of vertical stress change compared to the reservoir 

under uniaxial compression (휀11 = 휀22 = 0, 휀33 < 0). His work also goes to show that there are 

repercussions when neglecting the influence of horizontal strains on the vertical velocity.  
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6.5.2 R-factor 

The most commonly used approach in relating stress or strain to velocities is the R-factor. The 

model assumes proportionality between the fractional changes in vertical P-wave velocity and the 

vertical strain. The vertical P-wave velocities are the most commonly measured property in 

conventional seismic surveys; and often the characteristic feature of the compaction process is that 

it is more or less uniaxial, therefore the changes in vertical stress and strain will be the largest 

geomechanical effects for a compacting reservoir. The coupling of geomechanics and time-lapse 

seismic by Hatchell and Bourne (2005) shows the problem in a new light. If the R-factors can be 

obtained independently whether by theory or experiment, the vertical strain can be determined 

from zero offset time-shifts and vice versa. The collective work by Hatchell and Bourne (2005) on 

various types reservoirs shows consistent R-factors (1-3 for reservoir rock, 4-6 for non-reservoir 

rock), although the R-factors varied for rocks experiencing compressive strain and extensional 

strain, with the former being 5 times smaller. Some recent work show that R-factor is also a 

function of lithology (Staples et al., 2007, De Gennaro et al., 2008). Also, the R-factors have been 

found to be dependent on stress path (Holt et al., 2008), types of deformation and on the magnitude 

of applied stress (Pal-Bathija and Batzle, 2007). Despite the ease of use of the R-factor, different 

R-factors are required for extension and compaction, for different applied stress magnitudes, and 

different triaxial stress state. This means that this approach does not lend itself to model scenarios 

where the stress changes during production are not known in advance. The R-factor model does 

not adequately describe the full, triaxial, anisotropic, non-linear response from seismic velocities 

as the model is only limited to both vertical P-wave velocity and vertical strain.  

The R-factor bypassed a complicated system to relate key 4D seismic parameters to geomechanical 

via one parameter. However, experimental evidence shows that the propagation velocity of 

compressional waves (and shear waves) is dependent on changes in the triaxial stress state (or in 

an alternative formulation, change in strain) of the rock (Mavko et al., 1998). Additionally, we 

know from geomechanical modeling that stress and strain changes in the subsurface during 

reservoir production are triaxial, and cannot be adequately described using “mean” stress 

(Herwanger and Horne, 2005). It must, therefore, be instructional to investigate the effect of 

horizontal stress and strain changes on vertical velocity. We will show the comparison of the 

Geertsma strain prediction and a numerical geomechanical modelling, to demonstrate that if the 
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horizontal strains and stresses are small, the influence on vertical strain is negligible (shown in 

Section 6.5.2).  

Extending the work by Fuck and Tvanskin (2011) and Herwanger and Koutsabeloulis (2011) that 

introduced a two parameter R-factor model, with a formulation based on independent contributions 

from volumetric and deviatoric components of the strain tensor, Rodriguez-Herrera et al. (2015) 

presents a more generalised velocity-strain relationship. To calculate the time-shifts, one would 

require the initial P-wave velocity, 𝑉𝑝
0, velocity sensitivity parameters 𝑅1 and 𝑅2, volumetric (휀𝑣𝑜𝑙) 

and vertical (휀33) strain estimates from a coupled geomechanical model.  

∆𝑡|(𝑧1,𝑧2) ≈ ∫ 33

𝑉𝑝
0 𝜕𝑧

𝑧2

𝑧1
+ ∫

1

𝑉𝑝
0 (𝑅1휀33 + 𝑅2(휀𝑣𝑜𝑙 − 휀33))𝜕𝑧

𝑧2

𝑧1
 (6.19) 

The velocity sensitivity parameters 𝑅1 and 𝑅2 in Equation (6.19) are taken from a first order 

approximation of the “third-order” elastic constants, resolving into the strains acting parallel (𝑅1) 

and perpendicular (𝑅2) to the wave propagation direction.  

𝑅1 = −
1

2𝑐33
0 𝑐111 (6.20) 

𝑅2 = −
1

2𝑐33
0 𝑐112 (6.21) 

The axial, 𝑐111 and orthogonal, 𝑐112 third order elasticity constants have to be derived empirically. 

This was applied to the Dalia field, offshore West Africa, where the predicted time-shifts compares 

well with the observed time-shifts.  

Table 5.1 shows a compilation of R-factors from various methods. The different methods are 

colour coded different in the table. It is clear that there is an apparent discrepancy between 

laboratories derived versus field measured R-factors. In Section 6.6, I will describe the proposed 

method by Wong and MacBeth (2016), and the full application of the method on the Ekofisk field 

is provided in Chapter 7.    
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Dilation 

R+ 

Compressive 

R- 
Data Stress (MPa) Method Lithology Reference 

4 – 6  

4D seismic 

In situ Scaling between 4D seismic 

and geomechanical model 

 

Shale Hatchell and 

Bourne (2005) 

 
1 – 3  In situ 

Sandstone or 

carbonate 

1 – 5  4D seismic 

 

In situ 

 

4D seismic (Valhall field) 

 

Chalk RØste et al. (2005) 

 2 – 6  Shale 

2  
4D seismic, 

compaction 

logs, 

bathymetry 

In situ 

 

Scaling 4D seismic between 

estimates of overburden strain 

from compaction logs and 

repeat bathymetry 

(Ekofisk field) 

Chalk 

Janssen et al. (2006) 

 4 – 6  Shale 

20  4D seismic  

Scaling of velocity changes 

between 4D seismic and 

geomechanical model 

(Snorre field) 

Shale RØste et al.(2015) 

1 – 3    Velocity-porosity model various Hatchell and 

Bourne (2005) 

 
2 – 10    Microcrack model  

4.4 – 5.4   
5 – 40 

(differential) 
Asperity-deformation model Shale Carcione et al. 

(2007) 

 
2 – 2.3   5 – 40 Hertz-Mindlin Model Shale 

4.25 – 5   5 – 40 Hertz-Mindlin Model Sand 

304  Velocity, 

strain 

 

2.4 – 8.2 

(vertical 

compressive) 
Laboratory uniaxial strain 

 

Finest-grained 

sand Vega (2003) 

 
283  4.3 – 10.3 Fine-grained 

147  2.6 – 8.1 Coarse-grained 

729  Velocity 0.7 (uniaxial) Laboratory uniaxial stress 
Dry Berea 

sandstone block 
Sarkar et al. (2003) 

40 – 45  Velocity 
7 – 14 

(differential) 

Laboratory hydrostatic stress 

(North Sea) 

Brine-saturated 

shale cores 
Wang (2002) 

 10 – 30  Chalk cores Various Laboratory (Ekofisk field) Chalk  Janssen et al. (2006) 
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6 – 91  Cores 

63 – 7 

(differential), 

7 – 56 

(uniaxial) 

Laboratory ultrasonic and 

deformation 
Sandstones 

Bathija et al. (2009) 

 

6.3 – 

10.6 

 

 
Cores 

49 – 7 

(differential), 

3.5 – 7 

(uniaxial) 

Laboratory ultrasonic and 

deformation 
Shale 

13 6 
North Sea 

shale core 
 

Laboratory ultrasonic and 

deformation 

 

Shale Holt (2008) 

16 

4D seismic 

 

In situ 

 

Scaling between Geertsma’s 

inversion pressure change and 

pressure from well history-

matched fluid flow simulator 

(Ekofisk field) 

 

A half space of 

average material 

of shale and chalk 
Wong and MacBeth 

(2016) 

 
207.5, 

31.2, 

35.7, 

11.6 

68.8, 10.0, 

11.5, 3.4 

End members of 

shallow shale, 

soft chalk, 

compacted shale 

and stiff chalk 

Table 6.1 Summary of R-factor values taken from various methods, colour-coded in yellow (scaling between time lapse seismic and 

geomechanical model), green (rock physics model), blue (laboratory) and red (Scaling the pressure from Geertsma’s 

inversion and a well history matched flow simulator).  
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6.6  Synthetic Studies 

In this section, two separate synthetic examples are given to investigate different components of 

the Geertsma method. The first study is a resolution test to decide which horizon in the overburden 

should be incorporated in the inversion procedure to yield the most accurate pressure change 

response. I will use the mechanical properties and reservoir geometry of the Ekofisk field. The 

synthetic model is made up of many cuboids and has an anticlinal structure, with an elevation of 

100m (shown in Figure 6.6). A pressure source is located in the centre of the reservoir to model 

the strain response at difference distances away from the reservoir. Three scenarios are tested, 

where observations were generated at reflectors at 500m, 1000m and 2000m away from the 

pressure source. 

 

Figure 6.6: (Left) the synthetic model with an anticlinal structure and the location of the 

reflectors at different distances away from the pressure source, (right) plan view of 

the pressure sources with the coloured bar for pressure difference.  

 

6.6.1 A resolution experiment 

I have also considered different shapes for the pressure source, apart from a unit impulse, such as 

four impulses and a line. Figures 6.7, 6.8 and 6.9 show that in all the tests the strain response is 
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progressively blurred out as the observation is made further from the source. The observed strain 

measurements at different distances away from the source are used to invert for the pressure change 

inside the reservoir. The pressure change inverted using observation points furthest away from the 

reservoir shows that the inverted result is most diffused and with the highest error. This synthetic 

modelling demonstrates that a deeper horizon or a horizon that is closer to the reservoir helps to 

recover higher resolution pressure change. 

 

Figure 6.7: (a) The input pressure and (b) the modelled strain at reflector 500m away from the 

source and (c) the inverted pressure using the strain information.  



200 

 

 

Figure 6.8: (a) The input pressure and (b) the modelled strain at reflector 1000m away from the 

source and (c) the inverted pressure using the strain information. 
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Figure 6.9: (a) The input pressure and (b) the modelled strain at reflector 2000m away from the 

source and (c) the inverted pressure using the strain information. 

 

6.6.2 Validating Geertsma’s solution with the numerical approach 

I showed in the previous section on using the Green’s function method, the calculation of strain 

and recovery back to pressure change for a homogeneous elastic half-space. For a general 

heterogeneous poroelastic medium, analytical solutions are not available and one must then resort 

to numerical methods. In the next synthetic example, I will show a different method, which is 

purely numerical, by finite element to compare results from two different solutions. The general 

method for solving the governing equations is based on the numerical solution using finite 

differences or finite elements (Mitchell and Griffiths, 1980). Here, I will compare the results of 
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small displacements calculated from a finite element simulator (VISAGE) to the analytical 

Geertsma’s solution, and assess the error between them.  

I employed two different constitutive models in VISAGE. For the chalk, the constitutive model is 

the ISAMGEO chalk model, which provides different criteria for failure in shear, compression or 

tension, as determined by the local stress state induced by depletion and injection. The constitutive 

model of chalk is a proprietary model developed by the German company ISAMGEO, which is 

also available in the VISAGE geomechanical simulator. The yield surface is a combination of the 

Mohr-Coulomb criterion with a pressure cap proposed by Papamichos et al. (1997). A full 

description of the constitutive model for the partially saturated collapsible chalk is beyond the 

scope of the thesis, and I refer to Papamichos et al. (1997) for details. The yield surface used in 

this current work is shown in Figure 6.10. The original Mohr-Coulomb and the Mohr-Coulomb 

with pressure cap is shown in a plane of isotropic mean effective stress, 𝑝 versus the shear stress 

intensity, 𝜏. The surrounding shale is simulated as elastic material. In this modelling exercise, all 

parameters for the ISAMGEO model are taken as default values from the simulator since 

triaxial/uniaxial compressive or hydrostatic compression laboratory tests are not available.  

  



203 

 

 

Figure 6.10: Illustration in the 𝜏 − 𝑝 plane of the original Mohr-Coulomb and the Mohr-

Coulomb with a pressure cap yield surface (Papamichos et al., 1997). The 

parameters 𝑞 and 𝑝𝑐 represent the size of the yield surface, and are also identified 

as the intercepts of the yield surface with a positive (tension) and negative 

(pressure-cap) 𝑝-axis, respectively.  

 

This synthetic study is designed using a sector model from the Ekofisk field fluid flow simulation 

model. The porosity variation in this sector model is modified such that the lateral and vertical 

porosities are smoothly varying, so that the similar assumption of a homogeneous medium is also 

applied in this method. Three wells (2 vertical and 1 horizontal) were simulated to show three 

different pressure patterns within 1.5 years, which is similar to the time difference between LoFS 

2 and LoFS 6. Different pressure change patterns are modelled by controlling the trajectories and 

the injection timing and rate of the wells. Figure 6.11(a) shows different pressure patterns at the 

locations of both injectors, where the producer has an elongated pressure change pattern (similarly 

to those created by long, horizontal producers in the field data). This is achieved by imposing a 

longer production and injection rate at I1 and P0 to generate a widespread pressure change pattern; 

whilst injector I2 was turned on a few months before monitor time to create an impulse response. 

The production and injection profile as a function of time provided from the fluid flow simulator 

is shown in Figure 6.11(d).  
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Overburden horizons, as shown in Figure 6.11(b), are used to build the structural frame of the 

overburden, whilst the underburden horizon was graded to match that of the bottom reservoir 

horizon shape. The model is populated with rock mechanical properties from Table 6.2 for 

reservoir, overburden, and sideburden, that are isotropic elastic materials. The reservoir is 

populated with chalk mechanical properties whilst the overburden, sideburden, and underburden 

are populated with shale mechanical properties; this is illustrated by the geomechanical model in 

Figure 6.11(c). Five layers are used to construct the overburden, and the underburden is made from 

one single layer. To reduce the impact of boundary constraints, the overburden was extended to 

the seafloor and the base of the model was extended to 24,000ft (approximately 7.3km). Five rows 

of elements are added on each side of the original reservoir grid to construct the sideburden. In 

Geertsma’s method, which assumes no material contrast in the reservoir and the surroundings, an 

average is taken from chalk and shale in this modelling procedure.  

The model is then initialised with the initial pore pressure and the initial stress state as boundary 

conditions. The next step is to predict the deformation changes in the reservoir and surroundings 

at the monitor time. This is done by using pore pressure and saturation information from the 

reservoir flow model prediction. The finite element model then calculates the changes in stress and 

resulting strain and displacements.  
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Figure 6.11 (a) One layer of the sector model and the modelled pressure change. (b) Shows the horizons used in construction of the 

geomechanical model. (c) Shows the cells inside the geomechanical model (red-overburden, cyan-reservoir, and pink-

underburden). (d) Displays the bottom-hole pressure of the injectors (I1 and I2) and producer (P0). 
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 Reservoir Overburden, sideburden and 

underburden 

Number of Layer(s) 22 5, 1 

Young’s Modulus (MPa) 224800*exp(-11.2φ) 270 

Shear Modulus (MPa) 1301.1 - 73348 108 

Poisson’s ratio 0.26-0.19φ 0.2 

Porosity 0.1-0.46 0 

Biot-Willis parameter 1 1 

Table 6.2 Mechanical properties of the reservoir, overburden, underburden and sideburden used 

in my model.  

 

Figure 6.12 shows the estimation of strain from the finite element model – VISAGE, where Figure 

6.12(a) shows the plan view of the pressure change information. Two vertical cross-sections are 

constructed along the reservoir, given as A to A’ and B to B’. Figures 6.12(b) and (c) show the 

predicted strains. Negative strain change is observed inside the reservoir at the injection location, 

which corresponds to dilation, whereas the immediate overburden and underburden at the locations 

of injection (I1, I2) show positive strain, which corresponds to compaction. The opposite effect is 

observed at the location of producer P0, the strain estimation shows that, due to pressure 

drawdown, the reservoir compacts and the surrounding rocks dilate. Figure 6.12(c) shows the flip 

of polarity between the top reservoir and top Balder (overburden) at the locations of the injectors 

(I1, I2) and the producer (P0).  

The comparison between the strain estimates from VISAGE and Geertsma is given in Figures 6.13 

(a and b), where the latter shows higher estimates at the well locations. There is overall good 

agreement, and the errors between both modelling approaches are small. This agreement is 

attributed to the fact that pressure changes are small, therefore the deformations themselves are 

small, and likely to be within the elastic region. Subsequently, the strain information from both 

methods are then used as input into Geertsma’ pressure inversion. Figures 6.13 (c and d) shows 

the inversion results from using strain estimates calculated from Geertsma and VISAGE; the 

recovered maps for pressure change between the two methods are agreeable. The different pressure 

change patterns are equally well-resolved. Thus, Geertsma’s modelling result is comparable to 

those from the numerical simulator - it also has the advantage of requiring less computational time 

and effort for parameterisation. Similar work was also presented by Toomey et al. (2015), as shown 
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in Figure 6.14, demonstrating the overburden displacement modelled using the Geertsma approach 

and that using FEM are comparable.  

Unlike the FEM which requires vast amount of data, Geertsma’s modelling is easy to parameterize 

and to implement for forward and backward modelling. Although core data are now more widely 

available, high-quality core from above a reservoir is rare, and cores from beyond the flanks or 

beneath a reservoir are never obtained. Thus, no matter how good the models are, there is a 

fundamental level of uncertainty that makes the forward prediction challenging. Thus, Geertsma 

is a good choice if the forward modelling needs to be tied regularly to real data, such as time-lapse 

seismic data of high spatial resolution.  

 

Figure 6.12: (a) Plan view of the geomechanical model with pressure change information. (b) 

Shows the two cross-section A-A’ and B-B’. (c) Displays the strain prediction at top 

reservoir horizon and top Balder horizon.  
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Figure 6.13: Strain prediction from (a) Geertsma’s method and (b) VISAGE. Pressure change 

inverted from Geertsma’s method using strain input from (c) Geertsma and (d) 

VISAGE.  

 

 

Figure 6.14: (left) Subsidence prediction for 2005 from a FEM (Kristiansen and Plischke, 2010) 

and (right) the subsidence prediction using Geertsma’s analytical approach.  
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6.7  Proposed Method for R-factor Estimation 

In the previous section, the inversion was carried out using strain estimates from two different 

methods: Geertsma and VISAGE. However, in real data, strain estimation is not acquired and is 

often predicted from a numerical simulator which requires calibration with data. As proposed by 

Hatchell and Bourne in 2005, R-factors can be used to convert time strain measurements from 

time-lapse seismic to vertical strain. This provides Hodgson (2009) the foundation to invert for 

pressure change using time strain information. The R-factors can be measured directly in the 

laboratory (Holt and Stenebråten, 2013) or inferred by comparing measurements from observed 

4D seismic data to modelled geomechanical deformations (Hatchell et al. 2003), but consensus on 

the exact values to use has not yet been reached and they may still be considered uncertain. Unlike 

previous work which requires calibrated R-factors from matching geomechanical responses to 

time-shifts data. I propose a Geertsma-based inversion with prior constraints from a history 

matched simulation model. Compared to the geomechanical model, there are more data employed 

to calibrate and construct the fluid flow simulation model.  

Unlike full geomechanical simulation, the formulation in Equation (6.18) provides an opportunity 

to close the loop between the measured time-shifts and pressure changes in a quick modelling and 

inversion study. It is then possible to build up statistics to quantify the R-factors by using 

knowledge of the pressure changes from a well-conditioned simulation model as a constraint, 

combined with a range of subsurface mechanical properties. The simulator honours material 

balance in the reservoir and is adequately matched to the historical well data via history matching. 

Therefore, it is assumed that the resultant pressure predictions are at least statistically accurate, 

and should possess more accuracy than an R-factor guess for a particular field. The R-factors are 

determined by scaling the pressure change solution such that the histograms of pressure estimated 

from the inversion scheme and the predictions from the simulator coincide. This process is 

depicted by the schematic diagrams in Figure 6.15. The blue histogram represents the inversion 

solution from Geertsma’s method, by scaling the method of the blue histogram to the red, which 

correspond to pressure change information from a well history match model, one can calculate the 

R-factor. In the subsequent section, I will demonstrate the proof of concept for the proposed 

method.  
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Figure 6.15: (a) Inversion solution from Geertsma’s solution in blue and the pressure change 

from a well history matched simulator in red. (b) By scaling of the mean values of 

both histograms, the R-factor can be obtained.  

 

6.8  Proof of Concept and Results 

It is commonly known that a well history match simulation model gives a good estimate of field 

pressure. The question I try to answer is whether the mean pressure change from the well history 

matched simulation model is the best engineering metric to scale the histogram or is there another 

parameter more suitable for this purpose? The engineering metric will be assess by observing how 

stable is the mean pressure change in a range of models which are fairly history matched to the 

base case by still having an appropriate degree of statistical diversity in the models. I will generate 

a series of synthetic models with varying reservoir properties, but still honour material balance and 

maintain a low history matching misfit. I then study the stability of the mean of pressure change 

compared to the base case. The base case here is defined as the actual well history matched Ekofisk 

model.  

The notion is to replicate several history matched models with small differences in local geology 

and then study the behaviour of the mean pressure change during a certain period of the field cycle. 

In most history matching procedures, multiple history matched reservoir models are often 

generated with the inclusion of both geological uncertainty and varying levels of trust in the 

production data. Subsequently, the geology of the mean of all these models will be used as the 

base case.  
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In the Ekofisk model, there is a correlation between porosity and permeability. The model is 

described by a classification of six porosity and permeability rock types, with their respective 

saturation regions and relative permeability tables, as detailed in Chapter 4, Section 4.2.1. Porosity 

and initial water saturation are kept constant in order not to affect the reserve of the reservoir. 

Since the rock types also correspond to different saturation regions and their respective relative 

permeability tables, this perturbation also re-distributes this information in the model. Each rock 

type is associated with a different colour, this is shown in Table 6.3.  

Rock 

Type 
Effective permeability Colour Porosity Description 

16 
>15mD Fractures 

 >32% High porosity 

15  <32% Low porosity 

14 5mD> & 

<15mD 
Intermediate 

 >32% High porosity 

13  <32% Low porosity 

12 
<5mD Matrix 

 >32% High porosity 

11  <32% Low porosity 

Table 6.3 Rock types in the Ekofisk field are divided based on the effective permeability and 

porosity.  

 

In this experimental design, I perturb the permeability of the base model in three separate ways: 

enhance the matrix permeability of the chalk matrix, change the effective permeability of the 

‘fracture’ rock type, and lastly perturb the effective permeability at both high and low porosity 

regions. The amount of perturbation is given in Table 6.4. Figure 6.16 (a) shows the porosity-

permeability cross-plot of the base case, whilst Figures 6.16 (b and c) demonstrate the changes in 

the saturation region as the permeability is changed in the model for cases 4 and 6. Figure 6.17 

shows the distribution of permeability of all the models (1 – 6) compared to the base case. 

Subsequently, the dynamic changes such as pressure and saturation of the models with varying 

permeability are generated from the reservoir fluid flow simulator.   
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Rock type Case number Case colour Perturbation 

 Base case  No perturbation 

Chalk matrix (<5mD) 
1  + 0.1 mD 

2  + 1.0 mD 

Fractures (>15mD) 
3  + 10 mD 

4  + 100 mD 

High porosity regions 

(Porosity> 35%) 
5 

 
+10 mD 

Low porosity regions 

(Porosity<35%) 
6 

 
+10 mD 

Table 6.4: Perturbation of permeability for the different rock types corresponding to different 

case numbers.   

 

 

Figure 6.16: Permeability versus porosity cross-plot for (a) base case, (b) case 4 and (c) case 6. 

The colours in the cross-plots correspond to rock types described in Table 6.3. 
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Figure 6.17: Permeability maps for the base case and the perturbed cases of 1 to 6.  
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Assessing the history matching quality of the different models to the base case 

No real rules of thumb are in place for determining the quality of a model history match, but the 

duration of a history match period is important (Rietz and Palke, 2001). There are also other 

guidelines to determine the quality of match, such as global reservoir pressure and saturation. I 

will assess the models by inspecting the length of the history matched period and the global match 

in reservoir pore pressure, field oil production rate, field water production rate and the material-

balance match. The principle of material balance is based on simple mass balance of the fluids in 

the reservoir. Figure 6.18 describes in words the material balance equation first presented in 1941 

by Schilthuis: 

{

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑𝑠
𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦

(𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑣𝑜𝑙. )
} − {

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 = 𝑡

(𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑣𝑜𝑙. )
} = {

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑𝑠 
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

𝑎𝑡 𝑡𝑖𝑚𝑒 = 𝑡
(𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑣𝑜𝑙. )

} 

Figure 6.18: The principle of the material balance equation.  

 

The material balance calculation can be performed provided the oil and gas formation volume 

factors and gas solubility as a function of the reservoir pressure at initial and at 𝑡𝑖𝑚𝑒 = 𝑡 are 

available. The pressure used is the volumetric average pressure of the entire reservoir. In all the 

models, the amount of fluid initially is the summation of the fluid produced and the fluid remaining 

at 𝑡𝑖𝑚𝑒 = 𝑡. In this work, the predictions of the base case are treated as historic data, and the 

different models are perturbed to match the base case. In terms of the duration of the history match 

period, I will be mainly focused on the quality of the history match of all models with reference to 

the base case during LoFS2 – LoFS6. Figure 6.19 shows the field reservoir pressure of the base 

case superimposed with all other cases. Generally, I observed a reasonable match of the field 

pressure throughout the duration of the field production, with increasing discrepancies from the 

year 2000 onwards. Apart from case number 5 (pink curve), all cases are considered having a 

reasonable match to the field reservoir pressure, following a similar trend in pressure change 

compared to the base case.  
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Next, I evaluate the match to water production rate for all cases (Figure 6.20). A large increase in 

water production is observed for case number 4 (blue curve), due to the enhanced permeability of 

the fractures; this resulted in greater mobility of water. This is also reflected in Figure 6.21 for oil 

production rate, where again case number 4 (blue curve) shows a reduction in oil production at 

later stages of the field production. The chalk is water wet and in a fracture system, the relative 

permeability of water and oil is different. Water cannot progress in the fractures before the 

spontaneous imbibition of the matrix is fulfilled. In fractures, the S𝑜𝑟𝑤 is also higher compared to 

the matrix. Therefore, if floods are carried out at too high a flow rate on water-wet cores, the 

trapping mechanisms present in the reservoir are not allowed to occur. Instead of entering small 

pores preferentially by capillary forces, the water flows at a relatively higher velocity through 

larger pores, thus tending to bypass ‘groups’ of smaller pores containing oil. This is essentially 

what happens in case number 4, where enhanced permeability in the fractures promoted earlier 

water breakthroughs in the wells and resulted in lower field oil production rate.  

 

Figure 6.19: The field reservoir pressure of all cases compared to base case (in red).  
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Figure 6.20: The field water production rate of all cases compared to base case (in red).  

 

Figure 6.21: The field oil production rate of all cases compared to base case (in red).  
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In general, all cases show a high degree of conformance to the base case (in red) in terms of 

reservoir pressure profile for the period of Lofs2 to Lofs6, with the exception of case number 5 (in 

pink). However, it is the mean value of the pressure change from the simulation predictions that is 

used in comparing the mean of the pressure change solution inverted from Geertsma’s method, not 

the absolute pressure. Figure 6.22(a) displays the histogram of the pressure difference between 

Lofs2 and Lofs6, Figure 6.22(b) shows the mean values of all cases compared to the base case (in 

red). Apart from case number 5 (pink histogram), all other cases are in agreement with the base 

case. Therefore, in practice, if the history matching of the pressure profile of the model is good, 

the mean of the pressure change from the model is a stable metric to use in scaling the histograms. 

This shows the proposed method has a stable metric and remains a reliable approach if more than 

one history matched model is present.  

 

Figure 6.22: (a) Shows all the histograms from all cases compared to the base case. (b) 

Compares the mean value of the pressure change of the respective case to the base 

case, in red.  

 

6.9  Summary 

This chapter began with the summary of work found in the literature using overburden time-lapse 

information for reservoir characterisation. The remainder of the chapter focused on a link between 

strain and pressure change, using a simple, computationally inexpensive geomechanical model and 

the recovery of the R-factor, using some engineering constraints. The mathematical description of 

the displacement due to a nucleus of strain under pore-pressure reduction for a homogeneous 
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poroelastic medium has been published by Geertsma (1966, 1973) and various other authors. I 

have demonstrated, using a synthetic model, that the resolving power of the inversion lies in the 

distance between the source (pressure change in the reservoir) and the observation (reflector from 

which the measurement is taken). A synthetic study was also carried out to validate the results of 

Geertsma by comparing it to those modelled by a heterogeneous, iteratively coupled, finite element 

model. The strain estimations from these two methods are comparable. The semi-analytical 

formulation, when compared to finite element modeling, makes the modelling simple, fast and 

computationally cheap for both forward modeling and inversion. 

Geertsma’s method for pressure changes was applied by Hodgson (2009) for reservoirs of arbitrary 

shapes by the superposition of many cuboids. However, this approach requires prior knowledge of 

the R-factor to convert time strain to physical strain, which will be used as input into the inversion 

procedure. In this chapter, I have proposed an alternative method that utilises overburden time 

strain to estimate vertical strain and thus invert for reservoir pressure changes of the reservoir, and 

in that process quantify the R-factors by seeking agreement with the solution and prior constraints 

obtained from a well history matched simulation model. Since the simulator honours material 

balance in the reservoir and is adequately matched to the historical well data via history matching, 

it is therefore assumed that the resultant pressure predictions are at least statistically accurate, and 

should possess more accuracy than an R-factor guess for a particular field. In order to determine 

which statistical metric is best suited to scale the pressure estimates from the inversion procedure 

to those predicted from the history matched model, I carried out a study to examine the stability 

of the mean pressure of different history matched models. Multiple reservoir models with a small 

degree of variation in the permeability were generated with adequate well history matched quality 

to the pressure profile of the base case. The study shows that the mean pressure is a stable metric, 

and if the models are well history matched, the mean pressure values remain close to the base case, 

yet exhibits an appropriate degree of statistical diversity. In the next chapter, the Geertsma pressure 

inversion will be carried out for the Ekofisk field to estimate both pressure change in the reservoir 

and the field average R-factor.  
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CHAPTER 

SEVEN 

 

PRESSURE INVERSION USING OVERBURDEN STRAIN:  

APPLICATION TO THE EKOFISK FIELD 

 

The inversion approach introduced in Chapter 6 is applied to the Ekofisk field to estimate pressure 

change and the Hatchell-Bourne-RØste R-factor using a reservoir engineering constraint. The 

uncertainty on the R values is captured by running the inversion multiple times using a range of 

mechanical properties for the field of interest. In the Ekofisk field, the average R for the reservoir 

and overburden appears to be in the range 7 to 22. R-factors are also calculated for regions of 

pressure build-up and relaxation identified in the field, and the results confirm the current 

understanding determined by laboratory experiments and previous studies that the magnitude 

varies as a function of strain polarity, with the asymmetry being at most a factor of three. These 

results are validated with full geomechanical modelling followed by time-shifts modelling. 
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7.1  Introduction  

I apply the technique proposed in Chapter 6 on the Ekofisk field by utilising time-lapse seismic 

signals in the overburden to estimate vertical strain, and thus invert for reservoir pressure changes. 

The benefit of using a Geertsma-based inversion is that the R-factors can be quantified when prior 

constraints are available from a well history matched simulation model, and their uncertainty 

defined. My results indicate that the magnitude of R is a function of strain change polarity, and 

that this is indeed necessary to simulate the observed time-shifts.  

Is this applicable in the Ekofisk field?  

This method is proposed on the Ekofisk field because of the geology of the overburden and the 

time scale within which the data is acquired. The overburden velocity is relatively constant with 

little varying geology. The mean velocity in the overburden is around 2000m/s. The overburden is 

described by Ottemöller et al., (2005) as mainly under-compacted, weak shale and mud rock with 

low shear strength (μ < 1 GPa). Although the contrast between reservoir and overburden still exists, 

the R-factor that I intend to recover is an average R-factor for both reservoir and overburden. In 

the LoFS surveys, I observed time strain magnitudes that are small (±1000𝑝𝑠𝑖), and thus can 

assume the strain-pressure relationship to be linear between small time steps. The time strain 

measurements are robust due to the data acquired by a permanent reservoir monitoring system 

with high signal-to-noise ratio.  

 

7.2  Data Description 

To carry out the inversion, the following data are required: overburden time strain, pressure 

changes predicted from a well history matched simulation model, top reservoir horizon, reservoir 

thickness and the mechanical properties of both reservoir and overburden for the field of interest. 

The inversion is applied to the second and the sixth of the LoFS surveys acquired two and a half 

years apart.  
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7.2.1 Overburden time strain computed from 4D seismic 

The overburden time-shifts are computed using the non-linear inversion method proposed by 

Rickett et al. (2007). The time strain is the derivative of time-shifts, and is an interval property that 

is easier to interpret in comparison to time-shifts. The inversion method outlined in Chapter 6 

relates time-lapse time strain to vertical strain via the equation from Hatchell and Bourne (2005):  

∆𝑡

𝑡
= (1 + 𝑅)휀𝑧𝑧 (7.1) 

This provides a linear relationship between the input data (overburden time strain, 
∆𝑡

𝑡
) and the 

desired transformation to vertical strain, 휀𝑧𝑧. Given time strain is the derivative and is prone to 

noise, I prefer to work with time-shifts measurements, which, in this case, can be calculated by 

integrating the time strain over a specific interval in the overburden. The time-shifts of a given 

interval in depth ∆�̃�(𝑧) can be computed by integration of the previous equation as follows:  

∆�̃�(𝑧) =
2(1+𝑅)

𝑉
∫ 휀𝑧𝑧 (

2𝑧

𝑉
)𝑑𝑧

𝑡′𝑉

2
𝑡0𝑉

2

  (7.2) 

where ∆�̃�(𝑧) is the time-shifts in the depth domain. The transformation for time, 𝑡, to depth, 𝑧, is 

given as: 

𝑧 =
𝑡𝑉

2
 (7.3) 

which is also expressed in the upper and lower limits of the integral. Equation (7.2), with the new 

limits can be written as:  

∆�̃�(𝑧) =
2(1+𝑅)

𝑉
∫ 휀𝑧𝑧 (

2𝑧

𝑉
)𝑑𝑧

𝑧

𝑧𝑜
 (7.4) 

The geology of the overburden is rather homogeneous, therefore the velocity, 𝑉 is approximately 

constant with depth. The above equations will not hold true if the velocity varies greatly as depth 

increases. The time-shifts of a specific overburden layer are integrated over a 50ms window above 

and below a picked horizon. The summation over a 100ms window ensures enhancement of signal-
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to-noise ratio.  In this work, the integration of time strain over a small interval of the overburden 

will be referred to as the interval overburden time-shifts (IOT). The maps calculated for four 

horizons in the overburden are illustrated in Figure 7.1. The horizons chosen, in the order from 

closest to furthest from the reservoir are: Balder, Eocene, Top Eocene and Upper Oligocene 4. It 

is apparent that, for information observed away from the source (reservoir), the signal becomes 

more diffused and the magnitude reduces. The magnitude of the IOT diminishes from Balder to 

the surface furthest from the pressure source shown in Figure 7.1. This implies that as the IOT 

becomes negative (overburden compacts), it is likely that the underlying reservoir undergoes 

dilation, due to pressure increase. The horizons employed to create such IOT maps are shown in 

Figure 7.2. 
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Figure 7.1: Interval overburden time-shifts (IOT) maps calculated for Balder, Top Eocene, 

Eocene and Upper Oligocene 4. The colour bar shows a reduction in IOT as red 

and an increase in IOT as blue. 
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Figure 7.2: Overburden horizons in depth domain provided by ConocoPhillips. The gas cloud 

over the crest of the reservoir creates poor imaging of the data (this area is known 

as the seismic obscured area). 

 

7.2.2 Top reservoir horizon and reservoir thickness 

In order to compute the Green’s functions, which requires the distance between observation points 

in the overburden and the pressure sources (reservoir), the top reservoir depth map is required. The 

depth map of the top of the reservoir is extracted along the Top Ekofisk horizon shown in Figure 

7.2. In this inversion approach, the reservoir is laterally subdivided into equally spaced cuboids, 

but the cuboids vary in thickness. The variations in the integrated volume come from cells of 

different thicknesses, where the reservoir thickness is obtained by calculating the difference 

between the depth horizons of Top Ekofisk and the Tertiary Base Unconformity (Base reservoir). 

The reservoir thickness will yield the information regarding the thickness of each cuboid. The 

reservoir thickness map and the top reservoir depth map used as input data are depicted in Figures 

7.3 (a) and (b). The volumes of individual cuboids of the reservoir are computed to perform the 

numerical integration of the cells inside the reservoir. If there are errors in the interpretation of the 

top and base of the reservoir, this could propagate errors into the volume integration. However, 
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given the overburden deformation at any given observation point is the sum of the contributions 

of all cuboids, the error can be distributed over the other cuboids in the reservoir. This hypothesis 

was tested by Hodgson (2009), where small errors in the reservoir thickness had a negligible effect 

on the overall inverted results.  

 

Figure 7.3: (a) The reservoir thickness between Top Ekofisk and the Tertiary Base Unconformity 

(TBU), whilst (b) shows the top reservoir depth.  

 

7.2.3 Static moduli of rock types in reservoir and overburden  

The mechanical moduli for both reservoir and overburden are required in order to describe the 

poro-elastic medium of the half space. Given the assumption that there is no material contrast 

between the different layer properties between overburden and reservoir in Geerstma’s inversion 

scheme, an average will be taken using the values from both reservoir and overburden provided in 

Table 7.1. I calculated the Young’s Modulus and Poisson’s ratio for chalk using the porosity-

dependent correlations, whilst properties for the shales were computed based on the stratigraphic 

age, using the relations proposed by Zhang et al., (2011). The younger shales are characterised by 

lower Young’s modulus and Poisson’s ratio, due to higher ductility, and vice versa for the deeper 

shales.  
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Mechanical 

properties 

Correlation Chalk 

𝝋: 0.35 – 0.46 

Shale (Miocene – 

Paleocene) 

Young’s Modulus 

(MPa), 𝐸 

 

224800*exp(-11.2𝜑) 4460 – 1310 270 – 1500 

Poisson’s ratio, 𝑣 

 
0.26 – 0.19 𝜑 0.17 – 0.19 0.20 – 0.25 

Shear Modulus 

(MPa), 𝜇 

 

𝐸

2(1 + 𝑣)
 1874 – 559.8 108 – 577 

Table 7.1: Mechanical properties of the end members: chalk and shale (Zhang et al., 2011). 

 

In this study, the rocks are characterised using static mechanical properties, the reason being that 

the static counterpart is more representative of in-situ stress states. In the next section, I will discuss 

further the importance of static and dynamic moduli, and the causes for discrepancy between the 

two.   

 

7.2.4 Static and dynamic moduli  

If we measure the compressional and shear wave velocities of a rock from well logs or seismic 

data, along with the density, we can calculate the elastic modulus of the rocks as experienced by 

the elastic wave. This is the dynamic modulus which differs from the static elastic modulus 

calculated from stress and strain measurements in rock mechanics tests. Moduli obtained from 

rock mechanical tests, which are responding to the static, slowly varying stresses with larger 

amplitude, are often found to be substantially lower than those obtained by acoustic measurements 

(dynamic moduli). The origins of this difference are likely to be differences in strain amplitude 

and the heterogeneity of the rock microstructure, as discussed in Fjær et al. (2008). The strain 

amplitudes for seismic waves are of the order of 10−6 to 10−7, while in a rock mechanical test they 

are typically 10−2 to 10−3 (Fjær et al., 2008). 

Tests have shown that when the rock mechanical tests are conducted in such a way that strain 

amplitudes are lowered, by performing a short unloading-reloading cycle, then static moduli 

measured under these conditions tend towards the dynamic moduli (Fjær et al., 2008). There are 

several reasons proposed in the literature as to why such a difference exists between static and 
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dynamic moduli, these are summarised in Table 7.2. Causes of discrepancy also include cracks 

and heterogeneous microstructure. For example, a homogeneous elastic material such as steel has 

no difference between the dynamic and static moduli (Ledbetter, 1993). It is thought that the cracks 

in the rocks created these discrepancies, such that, during loading, crack surfaces slide past each 

other but the amplitudes of sound waves are not capable of creating frictional sliding; this theory 

is supported by Ide (1936), Walsh (1965), King (1983), Van Heerden (1987), Eissa and Kazi 

(1988), and Tutuncu et al. (1998).  

The aim here is to report some correlations between static and dynamic moduli for sedimentary 

rocks, which will be useful for the Ekofisk field. Most if not all of the relations in the literature are 

derived empirically. The general trend shows that the dynamic Young’s modulus calculated from 

acoustic velocity and density is higher than those computed from static tests. I compiled some 

conversion factors between static and dynamic Young moduli (𝐸𝑠𝑡 and 𝐸𝑑𝑦𝑛) for both carbonate 

and clastic rocks. These are reported in Figure7.4, which shows a cross-plot comparing static and 

dynamic Young’s moduli for carbonate and chalk samples only. Yale and Jamieson (1994) 

reported the saturated dynamic Young’s modulus can be 15-70% or 1.15 to 1.7 higher than the 

static counterpart. This is also in agreement with Olsen et al. (2008), where the saturated chalk 

samples from the Stevn outcrop in Denmark showed a dynamic to static conversion of 1.2 to 1.5. 

Henriksen et al. (1999) show a much larger conversion factor for dynamic to static at 2 to 4, for a 

water saturated North Sea chalk. Gommensen and Fabricius (2001) also reported a similar 

conclusion that the static bulk modulus is significantly lower than the corresponding dynamic 

modulus for water saturated chalk, although no conversion factor was proposed in that article. 

Figure 7.5 compares the dynamic-static conversion factors of chalk and carbonates to other rock 

types, such as clastics, igneous and metamorphic rocks. The dynamic-static conversion factors of 

clastic rocks are in agreement with those from Yale and Jamieson (1994) and Olsen et al. (2008). 

This study shows igneous and metamorphic rocks have higher dynamic to static conversion factors 

in comparison to sedimentary rocks, which is comparable to the findings of Henriksen et al. (1999). 

Therefore, the bounds estimated for Young modulus from Yale and Jamieson (1994) and Olsen et 

al., (2008) should be more relevant to the Ekofisk field. 
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Figure 7.4: Plot of the relationship between static and dynamic Young’s moduli for carbonate 

and chalk rocks.  

 

Figure 7.5: Plot of the relationship between static and dynamic Young’s moduli for both 

sedimentary and non-sedimentary rocks.  
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Causes of 

discrepancy 

Description Sources 

Cracks  Granular microstructure causes nonlinear response 

 During loading, crack surfaces slide past each other, frictional resistance 

occurs, energy is lost and hysteresis is observed in stress-strain curve 

 Amplitude of sound wave is not sufficient to cause frictional sliding 

 

Tutuncu et al., 1998, Van 

Heerden, 1987, Ide, 1936, 

King, 1983, Eissa and 

Kazi, 1988, Walsh, 1965 

Presence and 

type of 

cementation 

 Dynamic to static ratio is lower for samples with high quartz overgrowth 

cementation and high degree of grain suturing and embedment 

Yale et al., 1995 

Strain 

amplitude 
 Most popular hypothesis 

 Dynamic measurements are made in the order of 10-8 to 10-6 and static test is 

made in the order of 10-4 to 10-2 

 Displacement across crack surfaces are of the order of inter-atomic spacing and 

no frictional sliding occurs in strain amplitude less than 10-6 

 Young’s modulus decreases with increased strain amplitude 

 

Winkler et al., 1979, 

Tutuncu et al., 1994, 

Sharma and Tutuncu, 

1994, Tutuncu, 1998, 

Hilbert et al., 1994 

Definition of 

static 
 A need to emphasize a clearer definition of static. The consistent definition of 

static modulus should be the one calculated from the minor cycles where the 

loading and unloading portions of the cycle trace each other 

 

Plona and Cook, 1995 

Frequency   In fluid-saturated samples, frequency dependence of the wave velocities and 

attenuation are observed at much lower frequency 

 An increase in moduli from seismic to ultrasonic frequencies accounts for the 

relative motion of fluid with respect to the solid skeleton and squirt flow   

 The frequency differences between dynamic (104 to 105 Hz) and static (104 to 

102 Hz) are large enough to allow significant viscoelastic deformation in static 

tests and not in the deformation time frames of acoustic wave passage. 

 

Spencer, 1981, Winkler, 

1983, Tutuncu et al., 1998, 

Winkler, 1979, Biot, 1956, 

Mavko and Nur, 1979, 

Murphy et al., 1986 

Table 7.2: Summary of the causes of discrepancy between static and dynamic moduli.  

  



230 

 

7.2.5 Inversion Workflow 

The proposed method is Chapter 6 is carried out on the Ekofisk field data. Figure 7.6 shows a flow 

chart of the different forward and inversion routes typically performed in the industry. To model 

physical strains and stresses, Geertsma’s method or FEM/FDM are routinely carried out, however 

the complexity of FEM/FDM models caused an increase in the time needed for the construction 

and the computation. The R-factor is then used to convert physical strain to time strain by assuming 

a linear relationship between velocity and strain. In the inversion route, Geertsma’s method is 

favoured due to its efficiency to perform multiple forward modelling. The method that I will use 

to invert for pore pressure changes do not require an initial guess of the R-factor. Defining R-factor 

values for a specific field from other 4D seismic analysis could be erroneous. The R-factor 

estimated via this method is a by-product of the pressure inversion and it is lithology and strain 

polarity dependent.  
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Figure 7.6: Flow chart shows the forward and inversion route typically carried out in the 

industry, my proposed method inverts for pore pressure changes directly from time 

strain without guessing the R-factor. The R-factor is a by-product of the pressure 

inversion.  

 

This section describes the inversion workflow to extract both pressure changes and the R-factor. 

The workflow of the inversion is described in Figure 7.7. The input data for the inversion are IOT 

surfaces from the overburden, and maps of top reservoir and reservoir thickness. Having defined 

the static mechanical properties of the end-member rocks in both the reservoir and overburden, in 

Section 7.2.3, multiple Geertsma inversions are carried out using different combinations of the 

end-members’ mechanical properties. The end-members are defined as: soft or porous chalk 

(𝜇=0.56GPa and 𝑣=0.17), stiff chalk (𝜇=1.86GPa and 𝑣=0.19), shallow shale (𝜇=0.10GPa and 

𝑣=0.20) and deep and compacted shale (𝜇=0.58GPa and 𝑣=0.25). From each of the Geertsma 

inversions, an R-factor is calculated by scaling the inversion result to the pressure changes 
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estimated from a well history matched model. This allows us to build statistics on the R-factor as 

a function of different rock mechanical properties. I then compute the average R which is an equal 

weighting of all four end members. Subsequently, the average R is applied as a rock physics 

transform to convert the overburden time strain to physical strain, and invert the physical strain to 

changes in pressure, using the same Geertsma’s inversion procedure. Both smoothing and well 

measurements were used as constraints were applied to stabilise the results of the inversion.  

 

Figure 7.7: Workflow for Geertsma’s pressure and R-factor inversion (Modified after Hodgson, 

2009).  

 

7.2.6 Constraints from history matched well predictions  

The inversion procedure outlined by Hodgson (2009) and Hodgson et al. (2007) shows how 

constraints are added into the objective function. The objective function is given as:  

𝐸 = ‖𝐺∆𝑝 − 𝑑‖2
2 + 𝛼2‖𝐿∆𝑝‖2

2 + 𝛽‖𝛿𝑖∆𝑝𝑖 − 𝑑𝑖‖2
2  (7.5) 
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where 𝐸 is the objective function, 𝛼 is the weighting coefficient for the smoothness constraint 

whilst 𝛽 is the weighting coefficient for the prior data 𝑑𝑖. 𝑑 is given as data, 𝐿 is the Laplacian 

operator, 𝑝 is pressure changes and 𝛿 represent certain cells with known pressure change, 𝑝𝑖. The 

first term represents the smoothness constraint. The solution’s smoothness can be implemented by 

quantifying the roughness by the second derivative. Minimising the first term penalizes the 

pressure changes that are rough in the second derivative sense, meaning the expected solution is 

smoothly varying and not flat (Menke, 2012). The second term is a ‘hard data’ constraint, which 

includes known pressure information (prior data) in certain regions in the reservoir. The prior data 

is defined as a pressure difference map, with regions of known or reliable data from the simulation 

model. My prior data is calculated by extracting pressure change information from the simulation 

model in regions with good history match quality. For each well, a measure of misfit is computed 

between the measured and predicted production data. Since we are only interested in the pressure 

change, I calculated the misfit between the simulated Bottom Hole Pressure (𝐵𝐻𝑃𝑠𝑖𝑚) and historic 

Bottom Hole Pressure (𝐻𝐵𝐻𝑃) at each well. The misfit is given as: 

𝑚𝑖𝑠𝑓𝑖𝑡 =  
𝐻𝐵𝐻𝑃−𝐵𝐻𝑃𝑠𝑖𝑚

𝐻𝐵𝐻𝑃
 (7.6) 

Subsequently, wells with poor misfit are discarded and will not be included in the prior data.  

 

7.3  Results 

The pressure inversion is applied to two seismic vintages acquired two and a half years apart. 

According to the Geertsma formulation, the inverted pressure change also scales with the choice 

of the shear modulus and Poisson’s ratio assigned to the average half-space representing the 

reservoir and overburden. This, therefore, poses an interesting possibility: the best choice R-factor 

can be found by performing many inversions for different combinations of shear modulus (𝜇) and 

Poisson’s ratio (𝜐), and then finding the R that matches the estimates to the simulator predictions 

(matching the means of the histograms). 
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In the case of Ekofisk, a range of lithology dependent mechanical properties are available. Initially, 

a half-space consisting of 100% shallow shale (𝜇=0.10GPa and 𝜐=0.20), soft chalk (𝜇=0.56GPa, 

𝜐=0.17), compacted shale (𝜇=0.58GPa, 𝜐=0.25), and stiff chalk (𝜇=1.86GPa, 𝜐=0.19) are all 

considered, together with a range of properties between these end points. The inversion with 

scaling adjustment gives R-factors of 127, 19, 22 and 7 for the four end member property, as shown 

in Figure 7.8. The R-factor recovered for chalk and shale is consistent with Janssen et al. (2006), 

where a smaller R-factor for chalk under compaction is recovered compared to a larger R-factor 

value for the overburden shale under dilation. However, a half-space composed completely of 

shallow shale is considered unlikely. The spread of R-factors recovered for different material 

properties helps define a range of possible uncertainty, as shown in Figure 7.9. All possible 

combinations of shear modulus (0.1 – 2GPa) and Poisson’s ratio (0.15 – 0.25) is employed to 

calculate the R-factors. The final result in Figure 7.9 is determined by using a property average 

that is an equal weighting of all four end-points (𝜇=0.78, υ=0.20), for which a R-factor of 16 is 

recovered.  
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Figure 7.8: End members (stiff chalk, soft chalk, shallow and deep shale) and the distribution of 

these members in the space of shear modulus and Poisson’s ratio. 
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Figure 7.9: The average R is extracted by equal weighting of all four end points; at 𝜇=0.78 and 

𝑣=0.2, the average R-factor is 16. All combinations between shear modulus of 0.1 

to 2.0 GPa and Poisson’s ratio of 0.15 to 0.25 are generated to build statistics on 

the R-factor.  

 

Having recovered the average R that is representative of the half space medium, the average R-

factor is then used to convert the time strain into physical strain:  

휀𝑧𝑧 (
2𝑧

𝑉
) =

𝑉

2(1+𝑅)

𝑑∆𝑡(𝑧)

𝑑𝑧
  (7.7) 

The Geertsma inversion is then carried out using the physical strain to invert for changes in pore 

pressure. The pressure change, inverted without and with a smoothing constraint, is shown in 
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Figures 7.10(a) and (b). Figure 7.10(b) shows a more realistic estimation of pressure change since 

pressure change has inherent smoothness characteristics.  

 

Figure 7.10: (a) Showing inversion result without smoothing constraint and (b) after applying 

smoothing constraint in the objective function, the latter is more realistic.   

 

 

Figure 7.11: (a) Showing prior information extracted from a well history matched simulation 

model and (b) inversion result after incorporating the prior information.  
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The prior information from the well history matched simulation model is shown in Figure 7.11(a) 

and the inverted pressure change incorporating this prior information is reported in Figure 7.11(b). 

Comparing the result in Figure 7.11(b) to Figure 7.10(b), the former has a stronger pressure 

difference around wells compared to areas with no 4D seismic changes. As mentioned in the 

previous section, four horizons were chosen to compute the IOT. These horizons were chosen 

based on their distance from the reservoir, the need to include as much data as possible, and the 

signal-to-noise ratio at each. In Figure 7.12, (a) and (b) demonstrate the difference between using 

a single horizon versus using all the horizons which gives a higher signal-to-noise ratio, and more 

robust estimates of the pressure change. The inversion results presented in Figure 7.12(b) show 

good agreement between the polarity of the pressure change anomalies and the location of the 

producers and injectors. As expected, a large pressure response pattern is inverted for where 

several injector wells have been put in place.  

 

Figure 7.12: (a) Inverted pressure change using a single IOT (Balder) and (b) pressure change 

inverted using all four IOT maps from the overburden.  

 

7.4  The Asymmetry R-factor and its Implication on Time-shifts 

Due to the non-linear behaviour of the grain boundary stiffness with compressive stress, the 

seismic response to variations in the reservoir pressure is not symmetric: such that the response to 
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an increase in pore pressure differs from that for depletion. The nonlinear velocity behaviour of 

rocks as a function of stress is observed in laboratory measurements, and this behaviour is 

generally attributed to the deformation of micro cracks and pores, grain boundary contacts, and 

fractures with changing the confining stress (e.g. Rutqvist, 1995, Herwanger and Horne, 2009). At 

low effective pressures, seismic velocities are dominated by the changes in number density of 

small cracks or discontinuities between grain boundaries; whilst at higher effective pressures, these 

cracks close and velocities increase. Another explanation is stress hysteresis, which is also evident 

in rock properties, as mentioned in Helbig and Rasolofosaon (2000), Hueckel et al. (2001) and 

Ferronato et al. (2013).  

In the work of Hatchell and Bourne (2005), an asymmetric R, as a function of strain polarity, is 

proposed as a way of interpreting the magnitude of the observed time-shifts with different observed 

strain deformations. Rocks that are undergoing an extensional strain change (often in overburden 

rocks) show larger fractional velocity changes in comparison to regions undergoing compressive 

strain changes (often, but not exclusively, in the reservoir). This behaviour is also similar to that 

observed in laboratory measurements (Holt et al., 2008, Holt and Stenebråten, 2013). In Holt and 

Stenebråten (2013), it was reported that the R-factor of a rock that has gone through an initial cycle 

of depletion followed by re-pressurisation is different compared to the same rock undergoing only 

injection; suggesting possible excess deformation due to internal defects from the first process. 

This understanding can be tested in this dataset by selecting two regions with different 

production/recovery mechanisms, predominantly influenced by either (a) reservoir depletion or 

pressure relaxation and (b) pressurisation. 

A similar procedure was performed, but the inversion was limited to only areas with pressure 

increase and pressure depletion. R-factors were calculated by independent inversion of each 

region, using the average mechanical properties from the previous study. In order to ensure 

minimal overlap between these areas of pressure increase and decrease, the regions were selected 

around wells. This was also guided by the historic production data of the well, to avoid ambiguity. 

The results of this process are shown in Figure 7.13, indicating that the R for expansion (R+) is 3 

times larger than that for compression (R-) – a similar asymmetry to that quoted in the previous 

publications (Holt et al., 2008 and Hatchell et al., 2003). Figure 7.13 shows as the R-factors 
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recovered for different rock types for the entire field, as the dotted black line, whilst the blue and 

red bold lines represent the compression (R-) and expansion (R+). Figure 7.14 summarised the R-

factors calculated using this approach and compared with other methods, it is clear that the major 

inconsistencies in R-factor values from 4D seismic studies, theoretical modelling, and core 

analysis are apparent. The average R-factor recovered is 16, which is a reasonable estimate since 

it is found within the ballpark values from other R-factors estimated using 4D seismic data.  

 

Figure 7.13: R-factor results corresponding to the different lithologies and strain polarities (+ is 

dilation and – is compressive) in the field study.  
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Figure 7.14: A compilation of R-factors from various methods. Refer to Table 6.1 in Chapter 6 for references.    
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To validate this finding for this particular field, time-shifts modelling was performed using a 

synthetic fluid flow simulation and a full geomechanical model with similar properties to the field. 

The flow simulation model consisted of two injectors and one producer with similar production 

history to the actual wells. For the geomechanics, the reservoir model was fully encased in a shale 

overburden, sideburden and underburden. Mechanical properties were assigned according to 

Zhang et al. (2011). This geomechanical model is described in Chapter 6 (Section 6.5.2). The time-

shifts were calculated by firstly converting physical strain to time strain and subsequently 

computing the cumulative time strain; assuming both symmetric and asymmetric R-factors. The 

symmetric R is a function of lithology. Different R-factor values are applied to the reservoir, and 

the surrounding rocks. The asymmetric R is not only a function of lithology but also strain polarity, 

which means the same rock will be assigned different R-factors based on whether it is undergoing 

compression or dilation.  

The R-factors required to populate the model in Figures 7.15 and 7. 16 were taken from the cross-

plot in Figure 7.13. In Figure 7.15(b) the model is strictly dependent on lithology; the R-factors 

required for shale are higher than for chalk. In Figure 7.16(b), the R-factors are not only a function 

of lithology but also depend on strain change polarity. The overburden shallow shales have the 

lowest mechanical properties, hence a large R is assigned. The shale layer (Balder) adjacent to the 

reservoir is stiffer, hence a smaller R is assigned compared to that for the shallower shale. The 

Balder shale is also divided into compressive and dilating regions, where a larger R is assigned for 

expansion above the producer and a smaller R for the injector. The chalk in the reservoir is the 

stiffest material, and it has the smallest R-factor. The chalk undergoing compaction around the 

producer has a smaller R-factor than the chalk under dilation around the injector. Figure 7.15 gives 

the results for R+ = R-, and Figure 7.16 for the case of R+ = 3R, determined from previous findings. 

The asymmetric R-factors produce time-shifts that appear more consistent with the real field 

observations. A positive time-shifts is generated below the reservoir, implying a strong 

accumulation of time-shifts in the overburden relative to that in the compacting reservoir. This 

would not be the case unless the R-factor is asymmetric.  
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Figure 7.15: (a) Physical strain from geomechanical simulation (b) lithology dependent R and 

(c) modelled time-shifts. 

 

Figure 7.16: (a) Physical strain from geomechanical simulation (b) lithology and strain polarity 

dependent R and (c) modelled time-shifts. 

 

Restricting the time-shifts analysis to the top of the reservoir in both Figure 7.15(c) and Figure 

7.16(c) avoids this complexity. The positive time-shifts at the base reservoir event implies that 

velocity response to strain in the reservoir is smaller than in the overburden; if not we would expect 

zero or negative time-shifts at the base of the reservoir; hence, asymmetric R should be taken into 

account – this is evident by looking at time-shift characteristics below the base of the reservoir in 

real field examples. Field examples published in Hatchell and Bourne (2005) and Hatchell et al., 

(2007) reported a North Sea HTHP clastic, a Malaysia carbonate field, a North Sea chalk field 
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(Valhall) and a Danian chalk field, with the computed and modelled time-shifts are shown in 

Figure 7.17. All cases demonstrated a positive time-shifts or slow-down at the base of the reservoir 

to the underburden in the presence of field pressure depletion. The convention of the polarity for 

time-shifts in Figure 7.17 is counter-intuitive, where the slow-down response is represented in blue 

whilst speed-up is in red. The observed time-shifts cannot be created unless an asymmetry in the 

R-factor is present.  

 

Figure 7.17: Observed time-shifts from various fields. Most depleting fields show a slow-down 

response in overburden, reservoir and underburden, suggesting the dilation 

mechanism in the overburden has far greater effect on the velocties than the 

compression mechanism in the reservoir (Hatchell and Bourne, 2005, Hatchell et 

al., 2007).  

 

7.5  Time Dependent R-factor  

Using a similar procedure to that outlined in Section 7.2.5, R-factors are also recovered for the 

streamer data for the periods of 1989-1999, 1999-2003, 2003-2006 and 2006-2008. The seismic 

data acquired in 2003, 2006, and 2008 were co-processed, using a similar processing workflow 

and cross-equalised (personal comm. Alex Bertrand). The results for the R-factor were calculated 
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as an equal weighting of all the end member rock types for all streamer data (see Figure 7.18). A 

trend is observed from 1989 to 2008, showing a decrease in the R-factor as a function of time. This 

can be explained by two processes: firstly that the pressure maintenance in the reservoir has 

improved over time, resulting in less strain and fewer velocity changes in the reservoir and 

overburden, therefore a smaller R-factor has been recovered; secondly, as compaction accumulates 

with time, the chalk becomes stiffer and less porous, and as a result, the rock becomes less sensitive 

to velocity changes, and a smaller R-factor has been estimated. 

The recovery of the R-factor on the streamer data was carried out assuming that the mechanical 

properties of both chalk and shale remained constant throughout time. Of course, this is not true, 

especially in the early period of field production, where large compaction events take place. 

Therefore, the Poisson’s ratio and the shear modulus of the chalk will increase with time, as the 

rock undergoes compaction. Using available core data provided from the operator, the shear 

modulus and Poisson’s ratio of the chalk were calculated as a function of increasing effective 

stress. I observed a consistent increase in the shear modulus for the chalk with porosity from 32% 

to 37%, as shown in Figure 7.19(a). As the effective stress increases, the porosity of the chalk 

reduces, due to dry compaction. These samples did not undergo any changes in fluid type during 

laboratory testing. In contrast, Figure 7.19(b) shows the Poisson’s ratio behaviour of the chalk 

from the same porosity group. Overall there is an increasing trend, but there are also conflicting 

results, showing a reduction in Poisson’s ratio. This is due to a faster varying S-wave velocity 

compared to P-wave velocity during the stressing process. Most laboratory derived Poisson’s ratios 

are subject to error, as core plugs undergoing de-stressing and re-stressing procedures results in 

hysteresis, suggesting that some grain bounds are broken by coring and subsequent testing.  

In my work, I assume Poisson’s ratio of the chalk increases with an increase in effective stress, as 

proposed by Zhang et al. (2011) in Valhall. If this is the case, it is assumed that the Poisson’s ratio 

and the Shear modulus should have been lower during the streamer period than in the LoFS period. 

The supposedly lower R-factor is annotated as black arrows in Figure 7.18. The effective stress 

was lower in the beginning, therefore the R-factor will yield larger values than those, represented 

as a black cross in Figure 7.18. Since no pre-production seismic or cores are available, the initial 
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stress state is not known in this reservoir. Thus, it is not possible to extrapolate to the initial 

Poisson’s ratio and shear modulus of the rock at pre-production time.  

 

Figure 7.18: R-factors recovered for different vintages of the streamer data from (a) 1989 – 

1999, (b) 1999 – 2003, (c) 2003 – 2006, and (d) 2006 – 2008.  
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Figure 7.19: (a) Shear Modulus behaviour of Ekofisk chalk within 32% to 37% porosity as a 

function of increasing effective stress and (b) showing the corresponding behaviour 

of Poisson’s ratio. These values are derived from laboratory measurements. 
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7.6  Discussion 

The Ekofisk field was a challenging field in which to test this inversion scheme. This is due to the 

complex relationship between pressure and strain, porosity reduction, and chemical weakening of 

the rock. However, the results of the Ekofisk inversion are promising. There are similarities 

compared to the pressure change inverted in Chapter 5 and the magnitude of the results is also in 

agreement. Below I discuss several reasons for the limitations to this method. 

Results for pressure depletion could be inaccurate 

The relationship between pressure and strain is assumed to be linear in this inversion scheme. This 

could be assumed in the LoFS surveys due to the small changes in pressure and strain, but this 

assumption will breakdown for the streamer surveys where large variation of pressure has been 

recorded. Although suitable constitutive models exist to capture the non-linear relationship 

between pressure and strain, the parameterisation of such models is highly uncertain, due to limited 

measurements. The inversion result is reliable in pressure build-up regions, but uncertainties 

remain for the inverted pressure depletion due to the water weakening phenomenon. This is 

because, with the same amount of pressure decrease, with and without the intrusion of water, the 

strain at the reservoir will be vastly different, resulting in non-uniqueness in the inversion results 

in areas of pressure drawdown. The relationship between pressure and strain in this scheme does 

not include the water weakening dependence on changes in water saturation. For example, the 

pressure decrease inverted from the Geertsma’s procedure might have been overestimated if water 

weakening is present, and this is not accounted for in the inversion procedure. This creates 

uncertainties in the pressure depletion zones from the inversion. This uncertainty can be minimized 

by cross-checking with the location of injector wells and predictions from the simulation model to 

deduce areas with possible water saturation changes. It is suggested that interpretations using 

pressure changes in those regions should be treated with caution.  

Faults and changes in stress regime 

The Ekofisk field is a highly faulted reservoir, with some faults extending to the overburden. The 

presence of faults is not considered in the model or inversion. Stress effects on faults will affect 
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the distribution of stress and strain in both reservoir and overburden. Discontinuity modelling 

involves introducing existing fault and discrete fracture network models into the geomechanical 

model, which is not accounted for in the current inversion scheme. Parameterising constitutive 

mechanical models for discontinuity objects is highly uncertain. These problems are also faced by 

geomechanicists conducting finite element (FE) or finite difference (FD) modelling to forward 

predict deformation and stresses in both reservoir and the surrounding medium. At present, I can 

only speculate that some of the disagreement between the inverted results and reality results from 

transference of stress to the overburden, due to faults.  

Accuracy of time strain from NLI method 

As mentioned in Chapter 3, there is a tradeoff between the accuracy of the time strain in the 

reservoir and resolution of the time strain result in the overburden, based on the weighting 

coefficient. Since this technique is applied to actual data, it is not possible to truly evaluate the 

optimum weighting coefficient to satisfy both a good resolution in the reservoir and an accurate 

time strain in the overburden. This creates uncertainties in the time strain result in the overburden, 

which is used as an input into the inversion scheme to produce pressure changes. However, by 

integrating the time strain over a specific interval in the overburden, as demonstrated in Equation 

(7.4), this could reduce the errors and reduce small jitters in the overburden time strains calculated 

from the Rickett et al. (2007) Non-Linear Inversion method.  
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7.7  Summary 

The technique applied in the Ekofisk field not only inverts for pressure changes but also estimates 

the field dependent Hatchell-Bourne-RØste R-factors. This is achieved by constraining the 

inversion result by pressure change estimates from a well history matched simulation model. This 

method was carried out multiple times in order to build statistics regarding the R values, given the 

mechanical properties of the rocks in reservoir and overburden. The average R-factor recovered in 

the Ekofisk field was 16. R-factors were also calculated for regions of pressure build-up and 

drawdown/relaxation identified in the field, and the results confirm the current understanding 

determined by laboratory experiments and previous studies that the magnitude varies as a function 

of strain polarity, with the asymmetry being at most a factor of three. These results were validated 

with synthetic modelling of strain and time-shifts, showing that the observed time-shifts cannot be 

created unless this asymmetry is present. Comparisons with time-shifts from other fields show that 

a positive time-shifts or slow-down at the base of the reservoir to the underburden is often found 

in the presence of field pressure depletion, and the same response can only be replicated if an 

asymmetric R is accounted for in forward modelling.  

I also extended the inversion to streamer data, where one would expect a larger R-factor during 

pre-production time, since the effective stress is lower. This is assuming the relationship between 

pressure and strain is still linear in streamer surveys, which is not likely to be true. There are many 

constitutive models that can describe non-linear deformation; however, parameterizations of these 

models remain sparsely constrained. Several reasons have been provided in the discussion to 

highlight drawbacks and uncertainties in the inversion results.  

  



251 

 

 

 

 

 

CHAPTER 

EIGHT 

 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

 

 



252 

 

8.1  Conclusions 

The motivation of this research is to use numerical modelling and field data (time-lapse seismic 

data and production data) calibration to estimate dynamic changes of pressure and saturation in a 

compacting chalk reservoir. The data-driven methods implemented in this thesis and a summary 

of the different subjects of this research are presented in this chapter. The technical findings can 

be categorized into information from the reservoir and overburden:  

Reservoir: As presented in Chapter 4 and 5, the inversion and analysis employed reservoir time-

lapse seismic signals such as the percentage change in elastic properties and time strain to infer 

pressure and saturation changes. The inversion workflow not only combined elastic properties and 

time strain information but also constrained the results using engineering concepts and production 

data. Instead of performing cross-domain comparisons which are widely performed in qualitative 

model-based 4D seismic interpretation, I compared the inverted changes in pressure and saturation 

directly with those predicted from the simulation model. This provides the opportunity to perform 

detailed quantitative assessments; such comparison can also be fed into the seismic history 

matching workflows, which allows repetitive assessment and update of the simulation model based 

on 4D seismic data in a semi-automated manner. The inversion carried out on the Ekofisk field 

also provided insights into well performance and pressure distribution.  

Overburden: Chapter 6 and 7 focused on the approach from Hodgson et al. (2007) and Hodgson 

(2009), which uses a simple geomechanical model: Geerstma’s nucleus of strain to relate pressure 

change to overburden deformation. The departure from this method involves calibrating the 

inversion result with reliable pressure change information from the engineering domain to estimate 

an average R-factor for the assumed homogeneous, elastic half space. This is an innovation from 

the existing method since the R-factor recovered is field dependent, and is more accuracy than an 

R factor guess for a particular field 

The proxy model formulated in Chapter 4 bypassed the rock physics model which requires 

extensive calibration and exhaustive modeling of various data to describe the rock and fluid 

properties. It was derived analytically through modelling and reverse engineering of synthetic data. 

The proxy model has three separate terms: a pressure term, a saturation term and a cross term 
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between pressure and saturation that describes the water weakening behaviour of the compacting 

chalk. The strength of the proxy model leads to an accelerated estimation of the percentage change 

in elastic properties. Most importantly, it is amenable to inversion.  

The pressure-saturation decomposition method using the proxy model presented in Chapter 5 

employs a stochastic approach via Bayesian McMC. This is because uncertainty of such 

predictions is usually high; henceforth the solution of such an inverse problem is not limited to a 

single set of predicted parameters but represented by a probability density function in model space. 

The application in Chapter 5 demonstrated that the Bayesian framework provides a suitable 

platform to incorporate data uncertainties and prior information. The stochastic results were 

compared with those derived from a deterministic approach using least-square optimization. The 

changes of dynamic properties from both deterministic and Bayesian inversion methods are in 

agreement, and both results show discrepancies compared to the predictions from the history 

matched fluid flow simulation model. Areas of discrepancy between the inverted (deterministic 

and stochastic) and predicted dynamic properties (from simulation model) provides an opportunity 

to update the static properties of the reservoir model. Quantitative interpretation of this field using 

the inversion results have good agreement with well production data, and help explain strong 

localized anomalies in both the Ekofisk and Tor formations.  

In Chapter 6 and 7, I draw on the work from Hodgson et al. (2007), Hodgson (2009), and Hatchell 

and Bourne (2005) to invert for not only reservoir pore pressure change but also the average R-

factor between reservoir and overburden. This approach also demonstrated a new way of defining 

the uncertainty on the R-values, by defining the range of mechanical properties and the region of 

different production mechanisms. The R-factors calculated for regions of pressure build up and 

drawdown/relaxation identified in the field, confirm the current hypothesis (supported in the 

literature by laboratory experiment and previous studies) that the magnitude varies as a function 

of strain polarity and lithology. My calculation of R-factors in different pressure regimes shows 

the R-factors in areas of extension are three times larger than R-factors in compression. Unlike full 

geomechanical simulation, the new formulation in Chapter 6 and 7 provides an opportunity to 

close the loop between the measured time-shifts and pressure changes in a quick modelling and 

inversion study. Of course, there are limitations with this method, such as not allowing mechanical 
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stratigraphy, which limits its application to a reservoir with a complex overburden and reservoir 

geometry. Suggestions on further research are provided in Section 8.3.  

 

8.2  Novel Contributions 

This thesis contributes several novel ideas to the estimation of pressure and saturation change in 

geomechanically active chalk reservoirs. In particular, the integration of engineering data to 

expedite the inversion process. This includes the incorporation of prior data into the inversion 

problem using constraints such as the water leg, predictions from the history matched simulation 

model, and linearization of the compaction curves into the forward modelling equation.  

 

8.2.1 EC (Engineering-consistent) constraints 

In the inversion scheme introduced in Chapter 4, and subsequently applied in the Ekofisk field in 

Chapter 5, the prior information are incorporated into the inversion problem through EC 

constraints. The source of prior information is given from the history matched simulation model 

and through reservoir engineering concepts. The first EC constraint imposed is in the water leg. It 

is assumed that no changes in saturation are possible in the water leg, and only a pressure signal 

could occur in the water leg. An inequality constraint (above water-leg, -0.10≤ Sw≤0.5) was 

applied, with the upper and lower boundaries extracted from simulation model statistics. For the 

second EC constraint, the solution space close to well perforations was constrained using a 3D 

Gaussian window; imposing tight upper and lower bounds for changes in pressure and saturation 

as estimated from the reservoir simulation. These constraints are realistic given that the model is 

relatively well history matched. The impact of these constraints in expediting the solution is 

demonstrated in Section 5.8.  
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8.2.2 Linearization of compaction curves  

Another use of the engineering data is the compaction curves derived from laboratory data, 

subsequently calibrated with well data, radioactive marker bullets and repeated logging 

measurements (Sylte et al., 1999, Janssen, Smith and Byerley, 2006). The derived proxy model is 

based on the basic form of the rock physics trends expected from the reservoir. Generally, changes 

in water saturation and in some instances pressure (if small changes from initial pressure is expect) 

can be linearly related to the relative change in impedance. However compaction behaviour such 

as water weakening shows a clear departure from linearity. Henceforth a cross term between 

pressure and saturation change is required to capture this geomechanical effect. The novel idea is 

the incorporation of the compaction curves into the proxy model equation. Two separate functions, 

𝐹𝑃 and 𝐹𝑊𝑊 were created from the compaction curves for dry compaction and water weakening. 

Figure 8.1 shows how 𝐹𝑃 and 𝐹𝑊𝑊 captures the behaviour of the chalk under separate conditions 

of dry compaction and water weakening. A higher initial porosity will have a higher compaction 

gradient for both dry compaction and water weakening, as illustrated in Figure 8.1.The advantage 

of this integration is to allow the compaction component to be part of the analytical equation, 

instead of relying on numerical calculation from the simulation model.  
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Figure 8.1: The compaction functions are showed as a function of water saturation and 

compaction gradient. The compaction gradient of these functions increase with an 

increase in initial porosity.  

 

8.2.3 R-factor recovery by scaling with engineering constraint - Material balance 

The single parameter R-factor reported in Hatchell and Bourne (2005) varies by only a narrow 

range for a wide variety of lithologies and basins around the world. These characteristics make the 

R-factor popular and widely used in the industry. However, this is not always supported in 

experimental measurements (for example Bathija et al., 2009, Janssen et al., 2006). My work of 

estimating the R-factor from Geertsma’s pressure inversion also shows the R-factor has a much 

wider range of magnitude for different lithologies. The extension R-factors recovered for 

individual lithologies of different mechanical properties vary from 11.6 to 207.5; and a narrower 

range is recovered for the compressive R-factors: 3.4 to 68.8. This scatter for individual lithologies 

can be explained by the varying burial history and heterogeneity. The novelty of this approach is 

that the inversion result from Geerstma’s relations was constrained using pressure change 
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information from the simulation model, and the R that matches the estimates to the simulator 

predictions is calculated. The simulator honours material balance in the reservoir and is adequately 

matched to the historical well data via history matching. It is assumed that the resultant pressure 

predictions from the simulator are at least statistically accurate, and should possess more accuracy 

than an R-factor guess for a particular field. This not only provides us a method to estimate R-

factor values for an average mechanical property of the subsurface but also for a range of different 

lithologies. It is shown in Chapter 7 that different lithologies have a range of sensitivity to stresses 

and strains, reflected in the R-factor ranges.  

Hard data such as bottom-hole pressure, downhole deformation measurements, time-lapse 

production logging tool, seafloor subsidence and tilt measurements can also be integrated into the 

objective function of the inversion, as additional constraints, in order to estimate a better pressure 

change solution. As opposed to R-factors that are derived from time-shifts to strain predictions 

predicted from an often poorly calibrated geomechanical model, the new method has the added 

advantage of using various available hard data to calibrate the output of the simulation model and, 

in turn, lend more confidence to the pressure information and the R-factor estimated from it. 

However, it is not explicitly proven in this thesis that the R-factors estimated using the newly 

derived method are more accurate than the conventional R-factors from matching geomechanical 

simulated predictions. Despite its minimal constraints and computationally fast and 

straightforward implementation, this method is, however, limited to reservoirs with homogeneous 

overburden and with the availability of a well history matched simulation model, calibrated with 

pressure information from wells.  

 

8.3  Suggestions for Further Research  

The methodology presented in this thesis were tested on both synthetic and real field data. 

However, further research and investigation are required to better define the cases where the 

assumptions for these methods are no longer adequate; and to refine the workflow of these 

methods. This further research could be addressed under the following categories:  
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8.3.1 A complete Seis2sim workflow for compacting reservoirs 

The 4D seismic inversion research is a class of its own, as some of the existing 4D global or 

simultaneous inversion schemes include El Ouair and Stronen, 2006, Haaland et al., 2008, Lafet 

et al., 2009 and Tian, 2014 invert for multiple offsets and vintages simultaneously. Most of these 

methods invert for absolute and/or the difference in elastic parameters; and subsequently a rock 

physics transform is required to translate these parameters into reservoir dynamic properties. If we 

were to implement these inversion schemes on a compacting reservoir, it will be further 

complicated by the geomechanical component inside the reservoir and the reservoir response to 

the deformation in the overburden, which creates further non-uniqueness in the inversion problem. 

The pressure-saturation inversion workflow presented in Chapter 4 and 5 only focused on the 

reservoir. The inversion requires interval parameters such as relative change in elastic properties 

and time strain as inputs in the proxy model. The challenge here is to directly use time-lapse pre-

stack or post-stack seismic data to invert for dynamic properties of the reservoir for a thick, multi-

cycle, geomechanically active reservoir instead of the hierarchical approach that I have adopted. 

A complete Seis2sim workflow for this type of the reservoir needs to take full numerical 

geomechanical modelling into account in the forward modelling process for completeness, and be 

solved iteratively in a model-based inversion process. In a compacting reservoir, it is necessary to 

couple traditional reservoir simulation with a geomechanical simulation. The Sim2seis workflow 

for compacting reservoir estimates deformation and time-lapse seismic changes not only in the 

reservoir but also in the overburden (Herwanger and Horne, 2009), shown in Figure 8.2. However, 

calibration and parameterisation of the geomechanical model has always been challenging due to 

limited data and expensive computational time. Also, in a model-based inversion workflow the 

forward modelling should be quick to compute, because at every update of the reservoir strain, a 

new geomechanical model has to be run and from this the pressure change is inverted. The current 

run time of a geomechanical simulation is still not sufficiently quick to be considered for inversion. 

In addition, it has to be investigated whether a combined inversion of time-shifts and amplitude 

changes improves the pressure and saturation change estimation. Apparent lateral shifts induced 

by overburden deformation and velocity change (Cox and Hatchell, 2008), might be an additional 

constraint when interpreting the reservoir changes.  
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Figure 8.2: Workflow proposed by Herwanger and Horne (2009) to predict anisotropic seismic 

velocity changes and time-lapse seismic attributes.  

 

8.3.2 Data and modelling uncertainties 

The proxy model requires a set of calibrated coefficients (𝑎, 𝑏,and 𝑐) from the petro-elastic model, 

changes in pressure (∆𝑃) and saturation (∆𝑆𝑤), and compaction curves expressed as functions (𝐹𝑤𝑤 

and 𝐹𝑝) of initial porosity (𝜑𝑖). However, uncertainties in the petro-elastic model (i.e. stress 

sensitivity parameters, mineral moduli, mixing law), and the petrophysical parameters (i.e. 

porosity) will impact the 4D pressure-saturation inversion result. This was addressed in Veire et 

al. (2006), Chu and Gist (2010), Trani et al. (2011) and Shahraeeni (2012). It was reported that an 

accurate petrophysical forward function is required for pressure-saturation change inversion; any 

error in the petrophysical forward function can result in large uncertainties in the estimated 

parameters. I suggest we should first understand how big these uncertainties are, and secondly 

investigate the propagation of these uncertainties into the inversion results. In addition to noise in 

the data, data uncertainties here also refer to input data such as the initial porosity estimated in the 

simulation model, either through kriging or cokriging between well-derived porosity logs, post-

stack seismic inversion and other geostatistical techniques. One method of capturing the 

uncertainty of the initial porosity is to use the mean and standard deviation of the initial porosity 

extracted from multiple history matched models. The modelling uncertainties are represented by 

different rock physics models, and the discrepancy between using a full simulator to impedance 

workflow versus a proxy model. All these uncertainties could be characterised under a Bayesian 

scheme.  
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8.3.3 Correlated noise and uncertainties 

The inversion scheme implemented in Chapter 5 assumes the noise and the data (seismic inverted 

parameters) are uncorrelated in space and have a normal distribution with a standard deviation of 

𝜎. This is because the inversion was carried out on a point-wise manner to reduce computational 

time, and the uncertainties of the seismic inverted data was not provided by the seismic inversion 

practitioner for this particular data set. The noise is taken as uncorrelated Gaussian noise with 

different standard deviations for each seismic inverted parameter. In reality, the errors in the 

seismic inverted parameters and the data itself are likely to be correlated, the objective function 

would then require application of the full data error covariance matrix, 𝐶𝑤.  

𝑓 = (𝑑𝑜𝑏𝑠 − 𝑑𝑚𝑜𝑑)𝑇𝐶𝑤
−1(𝑑𝑜𝑏𝑠 − 𝑑𝑚𝑜𝑑) (8.1) 

The inverted seismic parameters are correlated because the inversion procedure that estimated 

these parameters has a high degree of coupling in the forward modelling. Both correlated and 

uncorrelated noise (such as ambient noise) exist in seismic data. Some larger correlation noise due 

to multiples, ground roll and other physical phenomenon can be filtered out in processing 

workflows, but most uncorrelated, random noise will persist in the data. It is however difficult to 

estimate the correlated noise in the data; we can estimate 𝐶𝑤 by assuming a functional form of 𝐶𝑤 

and allow the parameters that define this function to vary, such that certain point is going to be 

influenced by points that are very close to it. Accounting for correlated noise in the data and 

propagating this error into the objective function will yield more realistic estimates of the model 

parameters and not under-estimate our uncertainties.  

 

8.3.4 Limitations of the simple geomechanical model / Improvement to Geertsma’s 

solution 

The geomechanical model adopted in Chapter 6 and 7 is the simple, semi-analytical Geertsma’s 

relation (1966, 1973), which assumes linearity between pressure and strain in a homogeneous, 

poroelastic half space. These assumptions are not valid for a wider application such as in heavily 

faulted reservoirs and reservoirs with complex overburden. The calculation of the Green’s function 
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for a fully heterogeneous medium would require computation using a numerical method such as 

finite elements. More work is required to better define the cases where the assumption of a 

homogeneous medium is no longer sufficient.  

The analytical model by Rudnicki (1999) uses the Eshelby (1957) solution to calculate the stress 

and strain changes inside an ellipsoidal inhomogeneity, due to imposed far-field changes such as 

pressure within the inhomogeneity. The material of the inhomogeneity is, however, assumed to be 

a linear, isotropic poro-thermo-elastic solid, such as in the case of Geertsma’s model, which is 

very much idealised. However, this inhomogeneity can be a more representative model for a 

reservoir, aquifer or even a fault zone compared to Geertsma’s homogeneous half space. The 

inclusion of Rudnicki’s (1999) model is in an infinite medium, therefore we are restricted to 

reservoirs whose depth is much greater than their width, so that the effect of the free surface is 

negligible. His work shows an ellipsoidal inclusion or inclusions in an infinite elastic body; by 

manipulating the size and shape of the inclusion, the stress and strain in the inclusion changes, but 

only the deformation of the inclusion (i.e. reservoir) can be calculated. The conceptual model by 

Eshelby (1957) is shown in Figure 8.3. This method is useful to study how the reservoir geometry 

and the contrast between the reservoir and the surroundings affect the reservoir strain, but does not 

allow the investigation of how material contrasts, mechanical stratigraphy and geometrical effects 

affect the overburden deformation.  
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Figure 8.3: A sequence of cutting and welding operations used by Eshelby (1957) to determine 

the elastic field of an inclusion.  

 

The work from Tempone et al., 2010 extends Geertsma’s solution for a rigid layer in the basement. 

The rigid basement could be represented by crystalline basement rocks underlying a sedimentary 

basin or a stiff carbonate sequence under the reservoir interval. According to Tempone et al. 

(2010), modelling of the rigid layer in the underburden causes an increase in subsidence and 

vertical displacement above the reservoir, since the the rigid basement will act as force keeping all 

movements downwards, shown in Figure 8.4 . The rigid basement causes a decrease in time-shifts 

under the reservoir. This hypothesis could be one of the potential explanations for the over or 
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underestimation of time-shifts in some case studies. This work could potentially be extended to 

capture heterogeneity or to aid interpretation in the overburden such as in the Shearwater field, 

where stiffer chalk materials were found above the reservoir interval.  

 

 

Figure 8.4: Vertical displacement calculated using (left) rigid basement and (right) Geertsma 

model (Tempone et al., 2010).  

 

8.3.5 Interval R-factor  

The technique developed for the Ekofisk field to estimate R-factor using a reservoir engineering 

constraint can also be extended to estimate interval R-factors. Reservoirs with heterogeneous 

overburden such as Shearwater (van Bergen et al., 2013), Elgin, and Franklin (Hawkins, 2008) 

have vertically varying lithology with chalk formations (Ekofisk, Hod, Tor and Herring) of 

interbedded argillaceous materials and clay formations (Kimmeridge Clay and Heather). In order 

to estimate the interval R-factors, in the same data-driven inversion procedure, the inversion is 

carried out using the interval overburden time-shifts (IOT) computed at different sections of the 

overburden, to compute a range of average R (𝑅𝑎𝑣𝑔1, 𝑅𝑎𝑣𝑔2, 𝑅𝑎𝑣𝑔3…) between the reservoir and 

overburden medium. Subsequently, the interval R-factors for individual layers can be computed 

using some form of averaging method such as harmonic, distance, arithmetic and so on from the 

range of average R-factors. The research problem here is what type of averaging function or 

relation accurately captures the relationship between the interval R-factors and the average R-

factors. The proposed method shown in Figure 8.5 is similar to that of layer stripping in velocity 
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estimation, such that each time one layer is analyzed for its accurate velocity, starting from the top 

layer, down to the deeper layers. In contrast, to recover the interval R, we start from the deepest 

layer closest to the source (reservoir).  

 

 

Figure 8.5: (left) Geertsma’s pressure inversion is carried out to recover the average R in the 

homogeneous elastic half space. (b) While comparing the modelled time-shifts using 

the average R to the observed time-shifts, the interval R can be estimated 

separately.  

 

8.3.6 Effects of horizontal stress and strain on R-factor 

The current model of relating vertical strain to the fractional change in P-wave velocity assumes a 

linear relationship (Hatchell and Bourne, 2005). However, laboratory measurements show that the 

propagation velocity of compressional waves (and shear waves) is dependent on changes in the 

triaxial stress state of the rock (Mavko et al., 1998). Additionally, geomechanical modelling shows 

that stress and strain changes in the subsurface during reservoir production are triaxial, and cannot 

be adequately described using “mean” stress (Herwanger and Horne, 2005). In addition, 

Herwanger (2008) predicted that for the same amount of vertical stress change, the change in 

vertical velocity under zero volumetric strain conditions is found to be markedly higher than under 

uniaxial compression. A similar conclusion was presented by Sayers (2006). This might explain 
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why the R-factor observed in the overburden is at least twice the R-factor observed in the reservoir. 

Therefore, it is necessary to investigate the effect of horizontal stress and strain changes on vertical 

velocity. The R-factor approach is only valid if the changes in vertical stress and strain are the 

most dominant effect, and horizontal stresses and strains are negligible. This approach is only 

relevant to a subset of geomechanical scenarios; and further investigation should be carried out to 

understand the limits of this application. Reservoirs of a more complex geometry such as dipping 

layers has more significant later shifts induced by production. From the work of Cox and Hatchell, 

2008 ignoring the horizontal shift will introduce systematic errors in the measurement of vertical 

time-shifts. In the Shearwater field, it can be observed that on the downdip side of the reservoir 

that the estimated vertical time-shifts are smaller than they should be, while on the updip side the 

vertical time-shifts are larger; this effect also increases in depth. The question is then on how to 

accurately estimate vertical and lateral shifts and that whether these changes are anisotropic and/or 

offset dependent and lastly, how will it affect the R-factors.  

 

8.4  Final Remarks 

The purpose of this research was to generate a pragmatic, integrated and data-driven approach to 

estimate pressure and saturation change for a compacting chalk reservoir. Information measured 

from dedicated PRM data provides an important contribution in the realms of reservoir 

characterisation, inversion and even history matching. The increased 4D repeatability and higher 

detectability of time-lapse seismic anomalies of the LoFS creates the opportunity to apply the fast-

track pressure and saturation prediction methods proposed in this thesis. Besides, the higher 

frequency of the acquired seismic monitors will be beneficial, as the relationship between pore pressure 

change and strain can be assumed to be approximately linear. This work constitutes just another step 

towards understanding the pressure, saturation and geomechanical interplay in challenging fields such 

as Ekofisk, which will hopefully lead to further quantitative studies in 4D seismic interpretation and 

analysis.  
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APPENDIX A 

 

BAYESIAN MCMC FORMULATION FOR 

PRESSURE AND SATURATION INVERSION 

 

 

The Bayesian formulation for the inversion of pressure and saturation changes using time-lapse 

seismic data is described in this appendix. The “Bayesian approach” to inverse problems, describes 

the unknown model, 𝑚𝑡𝑟𝑢𝑒 that we would like to uncover as a random variable, and the solution 

takes the form of a probability distribution for the model parameters called the posterior 

distribution. In a Bayesian approach, the prior information about the solution is incorporated into 

the data; this prior information can range from hard additional constraints to experience-based 

intuition. This is expressed mathematically as a prior distribution of the model. The posterior 

probability distribution of the model parameters is given as 𝑞(𝑚|𝑑): 

𝑞(𝑚|𝑑) =
𝑓(𝑑|𝑚)𝑝(𝑚)

𝑐
 (A1) 

where the data, 𝑑 in our inversion scheme are represented by the inverted relative change in P-

wave velocity, S-wave velocity and time strain. The model parameters, 𝑚 are the change in 

pressure (∆𝑃),  and saturation (∆𝑆𝑤). The prior distribution is denoted as 𝑝(𝑚), and the 

conditional probability distribution expressed as 𝑓(𝑑|𝑚). 𝑐 simply normalizes 𝑞(𝑚|𝑑) so that its 

integral in model space is one. One simplification is to assume the prior distribution is 

uninformative. This indicates a prior distribution where all model parameter values have equal 

likelihood. In which case, Equation (A1) is simplified to: 

𝑞(𝑚|𝑑) ∝ 𝑓(𝑑|𝑚) (A2) 
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and the posterior distribution is precisely the likelihood function, 𝐿(𝑚|𝑑). Under the maximum 

likelihood principle, the model, 𝑚𝑀𝐿 that maximizes 𝐿(𝑚|𝑑) will be selected. In the application 

reported in Chapter 5, the data noise are independent and normally distributed, since data errors 

are independent, the likelihood functions can be written as:  

𝐿(𝑚|𝑑) = 𝑓(𝑑|𝑚) = 𝑓(𝑑1|𝑚) ∙ 𝑓(𝑑2|𝑚)…𝑓(𝑑𝑛|𝑚)  (A3) 

The likelihood function, 𝑓(𝑑|𝑚) is presented as:  

𝑝(𝐷𝑖|∆𝑃, ∆𝑆𝑤, 𝐻) =
1

√2𝜋| 𝑖|
𝑒𝑥𝑝 {−

1

2
[𝐷𝑖 − 𝑓𝑖(∆𝑃, ∆𝑆𝑤)]𝑇휀𝑖

−1[𝐷𝑖 − 𝑓𝑖(∆𝑃, ∆𝑆𝑤)]}  (A4) 

The data here are represented by the multiple time-lapse seismic data (D) with different levels of 

uncertainties. The hyper-parameters (H) are parameters necessary to arrive at a solution but are of 

no direct interest to the inference problem, such as the coefficients in the proxy model and the 

linearised compaction functions. The 휀𝑖 represent diagonal covariance of the uncertainties in the 

𝑖𝑡ℎ dataset, whereas fi is the forward modelling procedure represented by the proxy model 

equation. Uncertainties in the data are provided from the NRMSD (for definition refer to Appendix 

C) calculated in the overburden using a 1s gate. The NRMSD map is then used to calculate the 

uncertainties for each data type spatially, assuming vertical stationarity of the 4D noise level. The 

prior distribution is represented as 𝑝(∆𝑃, ∆𝑆𝑤, 𝐻|𝑥) and the prior information is 𝑥 (shown in 

Equation A5). The prior distribution is represented by the engineering constraints (EC) described 

in Chapter 5. Upper and lower bounds were created using the spatial constraints and feasible values 

from the history-matched simulation prediction. These bounds are prior information fed into the 

inversion procedure. Incorporating prior information can speed up the convergence of the 

inversion process towards the most probable solution. The final goal is to draw samples from the 

posterior distribution represented as:  

𝑝(∆𝑃, ∆𝑆𝑤|𝐷) = 𝑝(∆𝑃, ∆𝑆𝑤, 𝐻|𝑥)𝑝(𝐷|∆𝑃, ∆𝑆𝑤, 𝐻) (A5) 

In this approach, we draw samples from the posterior distribution using a McMC algorithm. At 

the end of 1990s, Monte Carlo integration and sampling have become firmly established as the 

technique of choice for Bayesian inversions for non-linear problems (Sambridge and Mosegaard, 
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2002). The McMC method depends only on the forward model and the associated likelihood 

calculations, making it easy for implementation. The Markov chain Monte Carlo methods can be 

used to directly simulate the posterior PDF (probability density function), which is, draw random 

samples distributed according to the posterior PDF, and from these calculate Bayesian estimates 

of constraint and resolution. For this implementation, the Metropolis-Hastings sampler 

(Metropolis et al., 1953) is used. There are three parts to this technique:  

1. Monte Carlo 

2. Markov Chains 

3. Metropolis-Hastings 

The Monte Carlo represents the method that generates random numbers. A Markov chain is a 

sequence of numbers where the current number depends on the previous number in the sequence. 

This refers to the number generated from a proposed distribution. Whereas, the Metropolis-

Hastings algorithm is used to decide which proposed value to accept or reject from the proposal 

distribution.  

𝑟(𝑘𝑛𝑒𝑤, 𝑘𝑡−1) =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑘𝑛𝑒𝑤 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑘𝑡−1 
  (A6) 

The posterior probability distribution is calculated by multiplying the likelihood function and prior 

distribution. If the posterior probability of the new value, (𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑘𝑛𝑒𝑤) is 

greater, the ratio of the probability will be greater than 1, and the new value of 𝑘 will be accepted. 

If the posterior probability of the previous value (𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑘𝑡−1) is greater, the 

new value might not necessarily be discarded. Ratios that are less than one will be treated as an 

acceptance probability. The acceptance probability is given as:  

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛼(𝑘𝑛𝑒𝑤, 𝑘𝑡−1) = min [𝑟(𝑘𝑛𝑒𝑤, 𝑘𝑡−1), 1]  (A7) 

In the case where the ratio is less than 1, then a uniform random number is drawn, and the new 

value of 𝑘 will be kept if the random number is less than the acceptance probability. This procedure 

is described as: 
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𝐷𝑟𝑎𝑤 𝑢 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  (A8) 

𝐼𝑓 𝑢 < 𝛼(𝑘𝑛𝑒𝑤, 𝑘𝑡−1)      𝑡ℎ𝑒𝑛 𝑘𝑡 = 𝑘𝑛𝑒𝑤 

𝐼𝑓 𝑢 > 𝛼(𝑘𝑛𝑒𝑤, 𝑘𝑡−1)      𝑡ℎ𝑒𝑛 𝑘𝑡 = 𝑘𝑡−1  

The McMC Metropolis-Hastings method depends on the starting values, and the number of 

iterations can be reduced by discarding the burn-in period. The burn-in period is the time taken for 

the chain to stabilize. The values of 𝑘 are correlated because they are generated from Mavko 

process. Excessive autocorrelation may indicate problems with model specification, but a thinning 

process is useful in reducing the autocorrelation. The thinning process refers to increasing the 

McMC sample size, and drawing samples at regular intervals.  
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APPENDIX B 

 

A SENSITIVITY ANALYSIS FOR FRACTURE GRADIENT  

ESTIMATION AND UNCERTAINTIES 

 

 

This appendix presents a sensitivity study for fracture gradient and the changes due to different 

production mechanisms for a clastic reservoir. The issue of drilling into depleted areas is increasing 

in importance as more wells are drilled in mature or brown fields. A knowledge of fracture gradient 

prediction methods is also useful in everyday operations such as cementing, sand consolidation, 

matrix and fracture acidizing, and hydraulic fracturing. Another important application is in 

secondary recovery. In most injection operations, it is desirable to stay below the fracture pressure, 

to prevent channeling from injector to producer. Different lithologies will have a different pore 

pressure and fracture pressure due to the variation in Poisson’s ratio and permeability. The initial 

safety drilling window during the pre-drill condition is between the fracture gradient of the 

reservoir and the pore-pressure of the overburden to avoid blow out from the shales and mud losses 

in the reservoir. After pressure declines in the reservoir, the pore pressure and fracture gradients 

in both reservoir and overburden reduces, this subsequently narrows the safety drilling window 

after production, shown in Figure B1.  Therefore, it is crucial to predict the changes of fracture 

gradient in reservoir after production. The prize includes establishing better safety drilling margin, 

ensuring the license to operate, managing the risk of the drilling opportunity and reducing rig 

operational costs.  
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Figure B1: Conceptual diagram showing fracture gradient and pore pressure gradient before 

and after production.  

 

The commonly used model is the elastic uniaxial strain model developed by Eaton (1969) to 

predict minimum stress as a function of depth and rock lithology. The dependence of the horizontal 

stress, 𝜎𝐻𝑚𝑖𝑛 on rock lithology results from the dependence of Poisson’s ratio, 𝜈 on rock lithology, 

as shown below: 

𝜎𝐻𝑚𝑖𝑛 =
𝜈

1−𝜈
(𝜎𝑉 − 𝛼𝑃𝑝) + 𝛼𝑃𝑝 + 𝜎𝑡𝑒𝑐  (B1) 

where 𝜎𝑉 is the vertical stress, which is dependent on bulk density logs, and in most cases we 

assumed the vertical stress to remain constant throughout the period of production. The Biot’s 

coefficient,𝛼, is assumed to be unity for mostly porous, permeable rocks. The pore pressure, 

𝑃𝑝, can be obtained from seismic velocity via different routes, including tomography and full 

waveform inversion. The third term, 𝜎𝑡𝑒𝑐 is the tectonic stress, which could be zero in tectonically 

relaxed areas, but can be important in tectonically active areas. A fracture will take the path of 

least resistance and open up against the least horizontal stress; hence the fracture gradient can be 

equivalent to the minimum horizontal stress.  
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We can envisage how the minimum horizontal stress changes as a function of production, as the 

pore pressure and the fluid type changes in the reservoir. The changes in the minimum horizontal 

stress can be estimated using the equation: 

∆𝜎𝐻𝑚𝑖𝑛 =
∆𝜈

1−∆𝜈
(𝜎𝑉 − 𝛼∆𝑃𝑝) + 𝛼∆𝑃𝑝 + 𝜎𝑡𝑒𝑐  (B2) 

by assuming there are no significant changes to the vertical stress, Biot’s coefficient and the 

tectonic stresses. This assumption will not hold true if fault reactivation, reservoir compaction, and 

other geomechanical effects are expected. In order to quantify the uncertainties associated with the 

model and input variables. This sensitivity analysis was carried out using a generic petro-elastic 

model representing a typical North Sea clastic reservoir. The sensitivity analysis in Figure B2 

shows the percentage change in the minimum horizontal stress and other elastic properties, such 

as P-impedance, S-impedance and Poisson’s ratio, as a function of pore pressure, water saturation, 

Biot’s coefficient, depth and lithology. The base value of each modelling case is highlighted in 

blue. The model shows high sensitivity towards Biot’s coefficient. In most reservoirs, the Biot’s 

coeiffient can be assumed to be one. However, in low permeability and shaly rocks, the value of 

Biot’s coefficient is rarely equal to unity, and has to be calibrated. Water saturation, variation in 

lithology and pore pressure also show considerable influence on the fracture pressure. A low side 

estimate of fracture gradient can be defined as an oil-saturated, clean, porous sandstone, which 

will derive the lowest minimum horizontal stress. 
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Figure B2: The percentage change in minimum horizontal stress due to different in-situ 

conditions.  

 

Having assessed the influence of geology, pressure and saturation on the horizontal stress, I 

evaluate how the minimum horizontal stress changes as a function of production, shown in Figure 

B3. An injection event into the water leg that resulted in only pore pressure increase will 

subsequently increase the relative change in minimum horizon stress, this is vice versa for a 

depletion event without any changes in fluid type. A water flood scenario will also increase the 

minimum horizontal stress, which will stiffen the rock frame, and the rock is less likely to fracture. 

When there are coupled effects from both pressure and saturation changes, the changes in 

minimum horizontal stress is further complicated. For example, an injection into oil leg, not only 

results in increase in pore pressure but also water saturation, which means the increase in minimum 

horizontal stress will be twofold.  
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Figure B3: The percentage change in minimum horizontal stress due to production changes. 
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APPENDIX C 

 

MODELLING TIME-SHIFTS WITH NOISE 

 

 

This appendix investigate in detail the influence of noise on time-shift measurements using three 

separate methods: Rickett’s Non-linear inversion (2007), Correlated Leakage method (Whitcombe 

et al., 2010), and cross correlation (Hale, 2006). We first examine the definition and relationship 

between percentage of noise, energy in the difference cube (NRMSD) and signal to noise ratio 

(SNR). Despite some limitations as reported in Kragh and Christie, (2002), the NRMSD is a widely 

used attribute to assess noise levels in seismic data. The NRMSD is defined as:  

𝑁𝑅𝑀𝑆𝐷 =
𝑅𝑀𝑆(𝐷)

1

2
(𝑅𝑀𝑆(𝐵)+𝑅𝑀𝑆(𝑀))

  (C1) 

RMS is the root mean square, B and M are baseline and monitor seismic data. The signal to noise 

ratio is calculated as:  

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑅𝑀𝑆(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑅𝑀𝑆(𝑛𝑜𝑖𝑠𝑒)
)  (C2) 

The percentage of noise is the normalized random noise scaled by the maximum value of the 

seismic trace. The relationship between these definitions are reported in Figure C1. The equivalent 

of SNR and NRMSD for different percentage of noise is provided in Table C1. 
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Figure C1: The relationship between NRMSD, SNR and percentage in noise.  

 

Percentage of noise (%) SNR NRMSD 

0.1 25.8 0.25 

1 15.8 2.5 

3 11.0 7.5 

5 8.8 12.5 

10 5.8 24.9 

15 4.1 36.7 

20 2.8 48.0 

25 1.8 58.3 

Table C1: The equivalent of SNR and NRMSD to the percentage of noise.  

 

The focus is to understand the expected noise level in the LoFS surveys and how does it affect the 

time-shift measurement. As the survey interval is decreased such as in the LoFS, reservoir changes 

will become smaller and more difficult to detect. Baseline synthetic seismic traces are generated 

at a well location using well logs and the chalk petro-elastic model described in Chapter 2. For the 

monitor trace, a similar workflow is undertaken, after increasing the pore pressure in the monitor 
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‘scenario’ by 300pis. The expected background noise level is generated using the NRMS noise 

level (Kragh and Christie 2002), where we assumed the signal to noise ratios of the base and 

monitor traces to be equal and band-limited random noise is added to the synthetic seismograms. 

This yields baseline and monitor pairs with the desired NRMSD levels. Since we are only looking 

at a single trace, correlated noise is not accounted for. Figure C2 shows the results of the modelling 

for NRMSD of 5% or SNR of 13.2. Baseline and monitor traces are showed in column ‘1’, the 

baseline and monitor pair after added noise is reported in column ‘2’. Column ‘3’ shows the 

theoretical time-shifts calculated from the changes in velocity. There is no travel time difference 

above ‘top reservoir’ but an increase in time-delay is observed below ‘top reservoir’ due to the 

increase in pore pressure. Subsequently, the time-shifts are calculated using three separate methods 

from the seismic traces without noise, this is shown in column ‘4’. The equivalent time-shifts 

calculated from noise added seismic traces are reported in column ‘5’.  

The NLI method shows the most accurate results as it replicates the theoretical time-shifts. Less 

confidence is placed on methods such as the correlated leakage method and cross-correlation. As 

the noise in the seismic waveform increases, the departure from the theoretical time-shifts also 

increases for all three methods. Figure C3 shows the comparison of the three methods to the 

theoretical measurement as a function of the NRMSD. A  NRMSD of 5% is representative of the 

repeatability expected from a permanent OBC system. Figure C3 shows that at NRMSD of 5%, 

the measured time-shifts using NLI is around 0.35ms, whereas the actual time-shifts is 0.45ms. 

Therefore, any signal below 0.35ms will not be treated as signal. This is in agreement with the 

noise floor chosen at ±0.08ms in Chapter 3 for the LoFS surveys - any data points that fall within 

this range will not be treated as signal and will be excluded in all analyses. The information in 

Figure C3 can also be used as a guide for designing noise floors for a range of different NRMSD 

and SNR such as for streamer data. This also demonstrates the advantage of PRM system, with 

low non-repeatability and an increase in signal detectability, as demonstrated in Janssen et al., 

2006, showed in Figure C4.  
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Figure C2: (1) Seismic trace of baseline-monitor, (2) Seismic trace of baseline-monitor with 

noise, (3) Time-shifts calculated from changes in velocity, (4) Measured time-shifts 

from seismic trace of baseline-monitor without noise and (5) Measured time-shifts 

from waveform with added noise.  
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Figure C3: Reservoir time-shifts as a function of NRMSD.  

 

 

Figure C4: The results of detectability modelling from for the Ekofisk field (Janssen et al., 2006), 

any signals within 6 months require a NRMS of 7% for detection.   
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APPENDIX D 

 

 

ANALYSIS OF THE OVERBURDEN 

TIME-LAPSE RESPONSE USING SEIS2SEIS 

 

The work in Chapter 6 and 7 resulted in two major implications: firstly, the R-factor is recoverable 

using Geertsma inversion and prior constraint from the engineering; provided a fairly well history 

matched model is available. Secondly, although the technique appears to work with the real data, 

there are scenarios where the technique has failed due to unexpected overburden signal. These 

anomalous signals indicate that the overburden compacts and extends together with the reservoir 

contrary to normal geomechanical expectations. These anomalies together with some early 

hypotheses are presented in this appendix.  

The method I used to examine the relative time-lapse seismic behaviour of the overburden to the 

reservoir is Seis2Seis, which is correlating seismic attributes from different parts of the field 

(overburden versus reservoir) at each spatial location. The workflow that demonstrates this 

technique is shown in Figure D1. Firstly, time-shift maps of the reservoir and a specific interval 

of the overburden are computed across all seismic baseline-monitor and monitor-monitor pairs. At 

each spatial location (𝑖, 𝑗), the normalized cross correlation between the reservoir and overburden 

map is calculated - this attribute is known as ‘NCC’. This procedure is repeated for different 

horizons in the overburden, starting from the overburden interval closest to the reservoir to the 

furthest. By analysing the NCC maps, it gives a vertical description of how the time-shifts in the 

overburden change relative to the time-shifts in the reservoir.  
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Figure D1: Workflow of Seis2Seis to investigate the relationship between reservoir and 

overburden time-shifts across different seismic vintages.  
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Figure D2: (a) NCC map generated for Balder-Ekofisk, (b) plots showing a positively and 

negatively correlated area and (c) horizons of Balder and Ekofisk in depth (ft).  

 

Figure D2(a) shows the NCC map generated using time-shifts maps from Ekofisk (reservoir) and 

Balder (overburden interval closest to the reservoir). A positive NCC represents positive 

correlation, this is shown in Figure D2(b) where the time-shifts value at the spatial location 

increases and decreases consistently for both reservoir and overburden across all seismic pairs. 

The contrary is observed when the NCC shows a negative value, indicating negative correlation. 

Figure D2(c) shows the respective horizons. The positive correlation is counter intuitive to the 

expected geomechanical behavior. It is expected that as the reservoir undergoes compaction, the 

adjacent overburden extends. To monitor this behavior, NCC maps for all overburden intervals 

were computed from the order of deepest to shallowest overburden layer (shown in Figure D3).  
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Figure D3: Maps of NCC calculated for the pairs of (a) Eocene-Ekofisk, (b) Top Eocene-Ekofisk, 

(c) Upper Oligocene 4-Ekofisk, (d) Upper Oligocene 1-Ekofisk, (e) Top Lower 

Miocene-Ekofisk and (f) Near Top Middle Miocene-Ekofisk. 
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Figures D3(a) to (c) show maps with positive and negative NCC, these maps are generated using 

time-shifts information closer to the reservoir. The positive NCC anomalies are found to be 

concentrated around the crest. Whilst Figure D3 (d) to (f) shows only negative NCC, where a 

reversal of polarities is observed in the shallower overburden.  

Assuming these measurements are accurate and not biased due to the parameterization of time-

shifts calculation method; the observations presented have a variety of geomechanical hypotheses: 

firstly the chalk could be a very stress and strain sensitive material, and can change the orientation 

and magnitude of the principal stresses, which in turn cause a change in the overburden velocity. 

This offers an explanation for the apparent difference in P-wave velocity stress-sensitivity between 

overburden and reservoir. The difference in stress sensitivity is caused by the influence of stress 

path such as the opening and closing of both horizontal and vertical fractures on vertical velocity. 

From the work of van Bergen et al. (2013), it was demonstrated that the fractures in the overburden 

chalk has caused changes in the azimuth and magnitude of the principal stresses. The stiff chalk 

material in the Shearwater field overburden for example, compacts instead of expands due to the 

closing and opening of fractures at different orientations.  

In Valhall, pressure depletion acoustically hardens the reservoir and the stress and velocity in the 

overburden is reduced immediately above the strongly compacting parts of the reservoirs. In areas 

with much less compaction, however, vertical and lateral stress redistribution in the overburden 

can result in opposite effect (Jack et al., 2010). Figure D4 by Kristiansen et al., 2005 shows the 

development of stress arching around a horizontal well in the Valhall field. This creates 

compressive stresses at the above and below the reservoir highlighted by arrow 1 and 3, which 

could be another contender for the anomalous reservoir-overburden behaviour estimated using 

Seis2Seis. Other supporting reasons include the anomalies concentrated around the crest which are 

highly stressed during the doming process suggesting that the anomalies could be related to the 

fracture network. Creep could be another explanation, due to the very complicated microstructure, 

chalk is a very strain-rate sensitive material, laboratory data has shown that even at constant stress 

or increased in pressure with the invasion of water, there could still be deformation occurring. 

Fractures and faults could have propagated upwards into the overburden, thus causing pressure 

communication between both intervals. This means pockets of large fractures or production 
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reactivated faults allowing pressure communication with the overburden. Hence the same polarity 

is observed in both the overburden and reservoir. Another explanation is the nature of how chalk 

compacts: forming concentrated stress regions and resulting in an ‘isolated’ arching effect similar 

to that observed in the Valhall field. These hypotheses will have to be developed further to unveil 

the likely contenders. 

 

Figure D4: A cross section at a horizontal between two LoFS surveys showing how a stress arch 

is developing above the compacting chalk, the green colour (speed up) increase in 

intensity over time. This could be on explanation for the unexpected overburden-

reservoir geomechanical behaviour (Kristiansen et al., 2005).  
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APPENDIX E 

 

 

COMPACTION COMPUTATION 

 

In order to verify the accuracy of our inversion result, we can also back-calculate the amount of 

compaction that has occurred in the reservoir by simply using the inversion results as inputs into 

the proxy model equation. Assuming the volume of the rock’s skeletal frame, 𝑉 does not change 

between time steps or in time, and that 𝑉 is made up of the area, 𝐴 and height, 𝑧: 

𝑉(1 − 𝜑) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (E1) 

𝐴 ∙ 𝑧(1 − 𝜑) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (E2) 

𝐴 ∙ 𝑧1(1 − 𝜑1) = 𝐴 ∙ 𝑧2(1 − 𝜑2) (E3) 

The porosity, 𝜑 between time steps changes as a function of the changes of pressure and saturation, 

we can substitute the porosity and thickness in the second time step as: 

𝑧1(1 − 𝜑1) = (𝑧1 − 𝑑𝑧)[1 − (𝜑1 − 𝑑𝜑)] (E4) 

If we simplify the equation: 

𝑑𝑧(1 − 𝜑1) = 𝑑𝜑(𝑧1 − 𝑑𝑧)  (E5) 

𝑑𝑧

(𝑧1−𝑑𝑧)
=

𝑑𝜑

(1−𝜑1)
  (E6) 
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Since the seismic data were acquired every six months through a PRM system, we can assume 

small changes in the thickness due to production related changes, we can further simplify it as:  

𝑑𝑧

𝑧1
=

𝑑𝜑

(1−𝜑1)
  (E7) 

As described in Chapter 4, Section 4.6.3, change in porosity is captured as functions of dry and 

wet compaction curves for each porosity class, we can substitute the equation with:  

𝑑𝑧 =
[𝐹𝑝+(

∆𝑆𝑤
∆𝑆𝑤𝑚𝑎𝑥

)(𝐹𝑤𝑤−𝐹𝑝)]∙∆𝑃

(1−𝜑1)
∙ 𝑧1  (E8) 

This allows us to quantify the change in thickness between time step 1 (baseline) and time step 2 

(monitor).  
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APPENDIX F 

 

 

DEFORMATION IN POROELASTIC MEDIUM 

 

The simple geomechanical model employed by Geertsma (1966, 1973) assumes a linear 

poroelastic medium and material isotropy. The constitutive equations for this model presented by 

Biot (1941) and Rice and Cleary (1976) are as follows:  

2𝜇휀𝑖𝑗 = 𝜎𝑖𝑗 −
𝑣

1+𝑣
𝜎𝑘𝑘𝛿𝑖𝑗 +

(1−2𝑣)𝛼

1+𝑣
𝑝𝛿𝑖𝑗 (F1) 

∆𝑚 =
(1−𝑣)𝛼𝜌0

2𝜇(1+𝑣)
[𝜎𝑘𝑘 +

3

𝐵
𝑝] (F2) 

where Equation (F1) relates strain 휀𝑖𝑗, to stress 𝜎𝑖𝑗, acting on the material element and the pore 

pressure, 𝑝. Equation (F2) relates the changes in fluid mass per unit volume, ∆𝑚  to the mean 

normal stress, 𝜎𝑘𝑘 and pore pressure, 𝑝. Other variables in the equations are shear modulus, 𝜇, 

Biot’s coefficient, 𝛼, Skempton’s coefficient, 𝐵 and Poisson’s ratio, 𝑣. Biot’s coefficient can be 

thought of as the ratio of increment of fluid content to change in bulk volume when pore fluid 

remains at constant pressure (drained condition), shown in Equation F3. Biot’s coefficient is 

exactly one if all the bulk strain were due to pore volume change (i.e., the solid phase is 

incompressible). It is less than one for a compressible solid phase, because the change in bulk 

volume is greater than the change in pore volume by the amount of change in the solid volume 

(Biot and Willis, 1957, Nur and Byerlee, 1971). The Biot’s coefficient varies between 0 and 1. The 

equation for Biot’s coefficient can be derived: 

𝛼 = 1 −
𝐾

𝐾𝑔
 (F3) 
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where is 𝐾 is the frame bulk modulus and 𝐾𝑔 is the bulk modulus of the solid grain. It is also 

important to understand how pore pressure responds to a change in the mean stress under undrained 

conditions, which is introduced as Skempton’s coefficient. In the undrained condition, fluid is 

constrained from flowing in and out of the material during deformation. Skempton’s coefficient is 

nearly zero if gas fills the pores, as the load is supported by the frame; if water fills the pores, the 

coefficient is typically between 0.5 and 1.0, and 1.0 for fluid saturated soil and the load is supported 

by the fluid.  

Using these constitutive relationships we can derive the equations that give the displacements 

induced in a poroelastic medium by a change in pore-fluid mass due to extraction or injection of 

fluid. Assuming the material can be treated as continuum and neglecting inertial forces, then 

conservation of linear momentum leads to the equilibrium equation of:  

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
− 𝑏𝑖 = 0 (F4) 

where 𝑏𝑖 is the external body forces, such as gravity. The kinematic relation between strain and 

displacement is: 

휀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (F5) 

The volumetric strain, 휀𝑘𝑘 as a function 𝜎𝑘𝑘 of can be written as:  

휀𝑘𝑘 =
𝜎𝑘𝑘

3𝐾
+

𝛼𝑝

𝐾
  (F6) 

By substituting Equations F6 and F5 to Equation F1, we can rewrite stress as a function of strain 

and pore pressure as:  

𝜎𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) +

2𝜇𝑣

(1−2𝑣)

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 − 𝛿𝑖𝑗𝛼𝑝 (F7) 

The undrained Lamé parameter, 𝜆𝑢 can be related to Poisson’s ratio, 𝑣 and shear modulus, 𝜇 as:  
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𝜆𝑢 =
2𝜇𝑣

(1−2𝑣)
 (F8) 

The equilibrium equation of F4 can be rewritten in terms of stress and strain by using the strain 

and displacement relation (F5) and the transformation in Equation F8, together with the 

constitutive equation (F1) to give the governing equation:  

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] +

𝜕

𝜕𝑥𝑗
[𝜆𝑢

𝜕𝑢𝑘

𝜕𝑥𝑘
] 𝛿𝑖𝑗 − 𝛼

𝜕𝑝

𝜕𝑥𝑖
− 𝑏𝑖 = 0 (F9) 

Solving the forward problem in Equation (F9) requires finding the pore pressure distribution on 

the left hand side of the equation. This is achievable by combining Darcy’s law with the 

conservation of fluid mass. For an isotropic material, ignoring body forces acting on the fluid, 

Darcy’s law shows the fluid mass flux is a function of:  

𝑞𝑖 = −
𝜌0𝑘 𝜕𝑝

𝜕𝑥𝑖
 (F10) 

where 𝑞𝑖 is the fluid mass flux, 𝑘 is the permeability, 𝜌0 is the fluid density and 휂 fluid viscosity. 

Conservation of fluid mass requires: 

𝜕𝑞𝑖

𝜕𝑥𝑖
+

𝜕𝑚

𝜕𝑡
= 0 (F11) 

Combining these equations with a compatibility condition, 

∇2𝜎𝑘𝑘 +
2𝛼(1−2𝑣)

(1−𝑣)
∇2𝑝 = 0 (F12) 

(Rice and Cleary 1973) yields a diffusion equation in fluid mass content as:  

𝑐∇2𝑚 =
𝜕𝑚

𝜕𝑡
 (F13) 

where 𝑐 is the hydraulic diffusivity which is a spatially variable function of porosity, permeability, 

fluid compressibility and fluid viscosity. As given in Rice and Cleary (1976), Equation F13 can be 

written to a diffusion equation in a linear combination of pore pressure and mean normal stress as:  
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𝑐∇2 (𝜎𝑘𝑘 +
3

𝐵
𝑝) =

𝜕

𝜕𝑡
(𝜎𝑘𝑘 +

3

𝐵
𝑝)  (F14) 

These equations show the interaction between pore-pressure field and the strain field. A more 

comprehensive derivation of these equations can be found in Geertsma (1966) and Rice and Cleary 

(1976).   
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