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ABSTRACT 

This Thesis is concerned with the numerical investigation of the structural response of 

reinforced concrete columns under blast loads, by means of dynamic nonlinear finite element 

analysis. This study provides an in depth understanding of the mechanics underlying 

reinforced concrete structural response under blast loading and studying the effect of certain 

important design parameters on the exhibited behaviour. The numerical investigation was 

carried out through the use of a well-established commercial finite element package (Abaqus) 

and employed a numerical model capable of accounting for the brittle nature of concrete. The 

latter model forms an extension to the ‘brittle crack’ model (already available in Abaqus) and 

was developed in order to overcome the shortcomings of the existing concrete model in 

describing concrete material behaviour in compression. The verification of the validity of the 

numerical predictions is based on a comparative study with relevant experimental data. The 

validated models are then employed to investigate the effect of various parameters on the 

exhibited response and are used to identify the reasons that trigger the experimentally and 

numerically observed change in structural behaviour under high loading rates (compared to 

that established under static loading). On the basis of the predictions obtained from the FE 

analysis a new graphical method was developed, based on building complementary diagrams, 

for the effective derivation of Pressure-Impulse (P-I) diagrams. This method aims to 

overcome the problems associated with their inherent sensitivity to any change in the state of 

the analysed structural system. Through the combined use of the validated FE model and the 

proposed graphical method, P-I diagrams and the associated complementary diagrams are 

presented and the efficiency and applicability of the methodology is demonstrated. 
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Chapter 1:  Introduction 

 

1.1.  Background 

The work described in this Thesis aims at investigating numerically (via dynamic nonlinear 

finite element analysis) the structural response of reinforced concrete (RC) columns under 

blast loads. Concrete is one of the most widely used construction materials. High-rise 

buildings, tunnels, bridges, slab-tracks for high-speed railways, off-shore and marine 

structures, storage and industrial facilities as well as nuclear power-plants are fully or 

partially constructed from RC. As these structures are often integrated into large networks 

any structural integrity and performance issues can lead to disruptions across the whole 

network with potentially detrimental implications for economy and safety. Considering the 

higher construction costs associated with such structures (compared to those of more 

"conventional" ones) and their importance to local and national economy, it is essential that 

they achieve the intended level of resilience in order to sustain the action of loads (such as, 

for example, those generated due to collisions or explosions, natural disasters or even acts of 

terrorism) induced at rates significantly higher than those of the dynamic loads considered by 

current design codes (e.g. earthquakes, loads generated by moving vehicles or trains, wind 

loads).  

In research, the in-depth study of RC structural response under high loading rates, often 

associated with blast problems, relies on the use of complex numerical or experimental 

methods producing data characterised by a high degree of variability and uncertainty. On the 

other hand, in practice resort is usually made to simplified approaches which, however, do 

not accurately account for important characteristics of the problem at hand thus, raising 

questions concerning the validity and effectiveness of the proposed design solutions. As a 

result, it is becoming increasingly necessary for practical structural analysis to accurately 

account for the effect of such loads on RC structural response in order to facilitate the 

development of efficient design solutions (both in terms of both safety and economy) capable 

of safeguarding structural integrity, resilience and performance requirements. To achieve this 

it is essential that a better understanding of the mechanics underlying RC structural response 

under blast loading is achieved and to identify (qualitatively and quantitatively) the effect of 

certain important design parameters (e.g. the amount and arrangement of the reinforcement, 
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the geometry of the specimen, the boundary conditions imposed, the level of axial loading 

applied) on the exhibited behaviour.  

 

1.2.  Research Aim and Objectives 

Considering that the dynamic response of RC structural elements exhibits significant 

departures from that established under static loading, as certain thresholds of applied loading-

rate are surpassed, the proposed work will set out to identify the main reasons that trigger 

these changes. The work in this thesis will numerically investigate the response of RC 

columns when subjected to blast loads, through the use of detailed dynamic nonlinear finite 

analysis (NLFEA), in order to provide insight into the mechanisms underlying RC structural 

response. The numerical investigation will be carried out through the use of a well-

established commercial finite element package (ABAQUS) which is capable of realistically 

accounting for the brittleness characterising concrete material behaviour and the nature of the 

problem at hand: a wave propagation problem within a highly nonlinear material medium.  

Specifically, the aim of this research is to further understanding of structural response of RC 

structures under blast loads. In particular, to develop a method for the reliable prediction of 

structural response and assessment of post blast structural integrity. 

This will be achieved via the main objectives of this research, which are as follows: 

 To overcome the shortcomings of the brittle crack model available in ABAQUS.  

The brittle crack model is purpose-built for describing the behaviour of brittle materials 

dominated by tensile cracking. This is largely true in the case of RC flexural structural 

elements where cracks form within the concrete medium in the tensile region of the 

elements considered. Such cracks gradually extend (into the compressive region) with 

increasing levels of applied loading, ultimately leading to structural failure. The extended 

model will overcome the shortcomings of the existing model which assumes that material 

behaviour in compression is essentially linear elastic. Using the extended ‘brittle crack 

model’, the behaviour of plain concrete prismatic specimens under uniaxial compression 

and tension will be numerically investigated in order to determine the underlying causes 

that trigger the experimentally observed shift in their behaviour with increasing loading 

rates.  
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 To develop finite element models of RC structural elements capable of predicting the 

behaviour exhibited under blast loading.  

The developed numerical models, based on the finite element method, will be capable of 

realistically representing the RC structural configurations considered herein (beams, 

columns) and providing accurate predictions of the behaviour exhibited under blast 

loading. The numerical model will able to realistically account for the brittle behaviour 

characterising concrete material behaviour and the nature of the problem at hand: a wave 

propagation problem with a highly nonlinear medium. The subject models will provide 

insight into the mechanism underlying RC structural response under blast loads. 

 To employ the validated models for the assessment of the effects of specific parameters 

on structural response under blast loading.  

The validated finite element models will be used to conduct parametric investigations in 

order to assess the effect specific parameters (boundary conditions, level of axial loading, 

amount and arrangement of the available reinforcement) on certain important aspects of 

the exhibited structural response under blast loading. Such aspects include the 

deformation and cracking profiles exhibited throughout the loading process, the reaction 

force and displacement time histories, the distribution of stresses and strains at different 

stages of the loading process, the exhibited mode of failure, the residual stiffness and 

load-bearing capacity. 

 To develop a method for more efficient derivation of P-I diagrams, based on building 

complementary diagrams.  

To this end, a new graphical method for more efficient derivation of P-I diagrams, based 

on building complementary diagrams will be developed. This method is based on the use 

of validated numerical models and will account for the effect of multiple parameters. The 

obtained P-I diagrams will be capable of providing accurate predictions of certain 

important aspects of RC structural response exhibited under blast loads. The validity and 

practicality of the proposed methodology will be demonstrated through the comparison of 

its predictions with its numerically and experimentally established counterparts for a 

number of case studies  
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1.3.  Innovative aspects of this research 

The first key innovative aspect of this work is the use of a concrete material model capable 

accounting for the brittle nature of concrete behaviour. The predictions of the subject model 

are validated for a number of problems investigating the behaviour of plain and reinforced 

concrete structural forms under static and high rate loading associated with impact and blast 

problems. An additional advantage of this extended material model is that it is defined by a 

small number of parameters and does not require any recalibration when used for predicting 

the behaviour of different structural configurations under static or dynamic loading 

conditions.  

The second key innovative aspect is the development of a new graphical method as an 

efficient means for derivation of P-I diagrams accounting for the effect of up to two 

parameters on structural response. P-I diagrams can form the basis of a practical tool for the 

assessment of RC structural forms under blast loads, however, they are sensitive to any 

change in the state of the analysed structural system (stemming from the variation of the 

initial load conditions, design parameters, boundary conditions).  Each time a change occurs a 

new P-I diagram has to be built. In this work a novel graphical method is introduced as a 

means to enhance the efficiency of P-I diagrams. This method is based on derivation of 

complementary loading/structural parameter vs. impulse and loading/structural parameter vs. 

pressure diagrams and allows for the derivation of new P-I diagrams from an existing one, 

capable of accounting for the effect of the variation of multiple parameters on certain 

important aspects of structural response. 

The importance of this work is in furthering our understanding of the response of RC 

structures exhibited under blast loads. The research will provide insight into the mechanics 

governing the response of RC structures that will allow a deeper understanding of the 

influence of localised phenomena on the overall global structural response. Various 

parameters affecting the structural behaviour, including reinforcement ratio, boundary 

conditions and different reinforcement modelling approaches, will further contribute to the 

investigation. This will lead to more efficient blast resistant design of RC structures as well as 

to more reliable assessment of their safety in the aftermath of an explosive event. The 

graphical method developed in this work represents a powerful tool for preliminary design as 

well as quick assessment of multiple typical structures or structural elements exposed to 

extreme loads generated by explosions. An additional strength of this method is that it 
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provides immediate graphical information about the influence of various parameters on the 

response of a structure to the blast load, which is especially valuable in engineering practice. 

It can be easily incorporated into relevant standards and design codes and also can be 

suggested for educational purposes. 

1.4.  Contents of the Thesis 

The body of the work is divided into the following chapters: 

Chapter 2 provides an extensive literature review. Blast loads, the physical phenomena as 

well as some notable events are discussed in detail. The assumptions typically made in the 

blast resistant design of various types of structures are presented. Data describing the material 

behaviour of concrete and steel under static and high rate loading conditions are presented 

and discussed. The observed effects of strain-rate in different experimental setups, the results 

and the theories explaining the observed material behaviour are discussed. The available 

(experimental and numerical) methods employed for investigating the response exhibited by 

reinforced concrete structural configurations under blast loads, such as shock tube and drop-

weight testing, nonlinear finite element analysis and alternative simplified methods employed 

in practice are examined alongside their limitations. The chapter concludes with the 

description of the structural response of reinforced concrete members under blast loads 

established experimentally or numerically.  

Chapter 3 includes a comprehensive discussion of the P-I diagram method, a review of the 

existing approaches for derivation of P-I diagrams and an extensive state-of-the-art review of 

existing P-I curve formulae. P-I diagrams are then derived using an analytical model of an 

elastic beam subjected to a transverse load. Different spatial load distributions and time 

histories typically used in modelling of extreme and accidental loading events such as blast 

and impact loads are presented and discussed. The accuracy of several existing P-I curve 

formulae is then critically assessed using the derived P-I diagrams.  

Chapter 4 focuses on the development of a new graphical method for the efficient derivation 

of P-I diagrams. This method is based on building complementary loading/structural 

parameter vs. impulse and loading/structural parameter vs. pressure graphs. An elastic 

beam-column subjected to a transverse pressure load and axial force is used to illustrate and 

benchmark the method. The derived complementary diagrams are used to demonstrate the 

advantages and efficiency of the proposed graphical method in both its forms. 
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Chapter 5 focuses on the development of finite element reinforced concrete models. The 

existing material models available in Abaqus and their limitations are discussed. An 

extension of the existing ‘brittle crack material model’ by use of a user defined subroutine is 

presented. The predictions of the proposed material model are then validated against their 

experimental counterparts obtained from tests conducted on plain concrete prismatic 

specimens subjected to uniaxial compression or tension under increasing loading rates. The 

latter studies provides insight into the reasons that trigger the experimentally observed change 

in plain concrete specimen behaviour (from that exhibited under static loading) once certain 

thresholds of loading rate are surpassed. The advantages of the proposed model compared to 

other existing concrete models built-in in Abaqus are outlined. The proposed material is then 

used to develop finite element models capable of realistically representing RC structural 

configurations and providing accurate predictions concerning the response exhibited under 

static and blast loading. The predictions obtained are validated against their experimental 

counterparts obtained from static, impact or blast tests. The results show that the extended 

brittle crack model is suitable for applications in a wide range of loading scenarios. 

Chapter 6 utilises the findings of Chapter 5 and analyses one of the experiments validated 

under different conditions. The different conditions are used to gain insight into the effects of 

different parameters on the structural behaviour of a column under blast loads. The different 

parameters investigated include blast intensity, initial axial force, ratio of longitudinal and 

transverse reinforcement and boundary conditions. In each case the numerical analyses are 

presented and the results discussed. Following this, the derivation of P-I diagrams using the 

finite element method with the extended brittle crack material model for concrete are 

presented. Complementary diagrams are also built for axial force. The P-I and 

complementary diagrams are then used to demonstrate the new graphical method. The 

advantages of this method are demonstrated and discussed. 

Chapter 7: This chapter discusses the main conclusions and observations drawn from this 

work. Topics for further research in the subject are presented and discussed. 
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Chapter 2 : Reinforced Concrete (RC) Structural Response 

under Blast Loads 

2.1. Introduction 

In this chapter an overview is presented concerning blast loads, how they are generated and 

their effect on RC structures accompanied by some notable cases of explosions on structures. 

The typical assumptions adopted by researchers and engineers when modelling blast loads are 

also discussed. This is followed by a detailed discussion on the effect of loading rate on the 

material behaviour of concrete and steel reinforcement in an attempt to elucidate the main 

reasons that trigger the experimentally and numerically observed shift in specimen behaviour. 

An overview of the methods employed in research and practice for assessing RC structural 

response under high loading rates are discussed and their limitations identified. On the basis 

of the available experimental and numerical data, this discussion is then extended to include 

the effect of high loading rates, often associated with blast problems, on certain important 

aspects of RC structural response.  

 

2.2. Blast Loads 

Explosives were initially used in China during the mid-ninth century when alchemists 

invented gunpowder during an attempt to create an immortality potion [1]. The Chinese used 

gunpowder for fireworks and later on for producing rockets, guns, cannons and bombs. 

Following the Mongol conquest of China in the 13th century the knowledge of gunpowder 

was spread throughout the world. In Early Modern Europe gunpowder was used in many 

military and industrial applications including mining and construction of canals and tunnels. 

Nowadays, many different types of solid, liquid and gaseous explosives have been produced 

(e.g., mercury fulminate, lead azide, nitroglycerine, dynamite, TNT, RDX, ANFO, etc. [2,3]), 

and industry widely uses explosive energy for different applications, such as sheet-metal 

forming, fast coupling of composites, producing electricity, etc [2].  

Although explosive devices have been used for hundreds of years, it was only during and 

after World War II (WWII) that comprehensive research into the effects of blast loads on 

structures and their mitigation began. During WWII a vast amount of data and observations 

were compiled, leading to tens of thousands of reports [4]. Further experience and insightful 

observations as to modes of failure in buildings due to explosions were gained during the 
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Irish Republican Army attacks [4]. The Ronan Point building collapse in London 1968 (see 

Figure 2.1), where a domestic gas explosion demolished a load-bearing wall causing the 

collapse of one entire corner of the building, led to a government commissioned enquiry and 

to major changes in building regulations [5].  

 

Figure 2.1. Ronan Point after the domestic gas explosion 1968 [6] 

Many other occurrences have been well documented and investigated such as the 1995 FBI 

Murrah building in Oklahoma [7] (see Figure 2.2)  and the World Trade Centre in 1993 [8]. 

 

Figure 2.2. The Murrah Building after the explosion 1995 [9] 
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Industrial explosions can cause devastation on a very large scale. The most common facilities 

to suffer explosions are those associated with the defence, energy, food, manufacturing and 

mining industries [10]. Some notable cases include the 1906 Courrières mine disaster in 

France which is still the worst mining accident in Europe [11], the Oppau explosion in 

Germany 1921 (see Figure 2.3) in which a tower silo storing 4500 tonnes of ammonium 

nitrate fertilizer and ammonium sulfate exploded at a BASF plant [12], the Ojhri camp 

disaster in Pakistan in 1988 when a military storage center exploded [10] and the Seest 

fireworks disaster in Denmark 2004 in which a fireworks factory exploded [13]. Dust 

explosions, such as the 1979 German Roland Mill flour dust explosion [10] and the 2008 

Georgia sugar refinery explosion in the US [14], are the most common source of explosion in 

the food industry.  

 

Figure 2.3. The Oppau Explosion 1921 [15] 

Due to its nature, the energy industry suffers a large amount of explosion disasters. These 

include the 1988 Piper Alpha disaster in an explosion and resulting fire on a North Sea oil 

production platform (see Figure 2.4) caused the world's worst offshore oil disaster [16], the 

Hertfordshire Oil Storage fire in 2005 in which a series of explosions at the Buncefield oil 

storage depot devastated the terminal and many surrounding properties [10] and the Lac-

Mégantic derailment in Canada 2013 when a derailment of an oil shipment train subsequently 

caught fire and exploded [17]. 
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Figure 2.4. The Piper Alpha disaster 1988 [18] 

Additionally, in recent times there have been some explosions of nuclear facilities. The most 

notable and documented being the Chernobyl 1986 accident in Ukraine [19] and the 

Fukushima Daiichi nuclear disaster in Japan, following the Tōhoku earthquake in 2011 [19]. 

Apart from the immediate devastation they cause nuclear explosions still cause damage 

decades later due to the release of radioactive materials to the environment. 

 

Figure 2.5. Fukushima Daiichi nuclear disaster in Japan in 2011 [18] 

Apart from the disasters, mentioned above, a number of natural explosions have also been 

recorded. Most of these arise from various volcanic processes [10]. Explosions also occur as 

a result of impact events and in phenomena such as hydrothermal explosions also associated 

with volcanic processes [10].  

Given the impact that explosions have on human lives and the financial implications, whether 

deliberate or accidental, there is a need to improve our understanding of the structural 

response exhibited under blast loads in order to develop innovative techniques capable of 

safeguarding certain required structural performance criteria for new structures and the 

retrofitting existing facilities. 
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2.2.1. Blast Phenomena 

An explosion is characterised by a sudden release of large amounts of energy during the 

detonation process into a space limited to a charge size [2,3,20–24]. The detonation is a very 

rapid and stable chemical reaction proceeding through the explosive material with supersonic 

speed. As a result, the explosive material is converted into a very hot and dense high-pressure 

gas, which expands outwards in all directions from the explosion source with a velocity of 

between 103-104 m/s creating a high intensity blast wave. The range of pressure immediately 

behind the shock front varies between 10-40 GPa [25]. The form (shape and intensity) of the 

blast wave depends on the type of explosive used and the distance from the explosion 

epicentre. As the blast wave propagates from the epicentre it gradually attenuates. There are 

two types of blast waves [20]: shock and pressure waves shown in Figure 2.6. Both types of 

blast waves have two distinct pressure phases: a positive phase (or overpressure) and a 

negative phase [26]. The positive phase is also called “compression”, while the negative 

phase “suction”. The characteristic feature of the shock wave is that the positive phase starts 

with an almost instantaneous rise in pressure to its peak value, followed by a gradual return to 

the ambient pressure level (see Figure 2.6a). On the other hand, the positive phase of the 

pressure wave has a gradual rise in pressure to the peak followed by a gradual decay (see 

Figure 2.6b). The shock wave is usually the result of condensed phase detonations (i.e., solid 

or liquid explosives) or extremely energetic vapour cloud explosions. The pressure wave is 

the result of vapour cloud deflagrations (subsonic explosions with slower burning process) or 

confined dust explosions [20–22]. Extensive data on the high energy condensed phase 

explosives can be found in [25], while vapour cloud explosions are discussed in [21,22,27]. 

  
(a) (b) 

Figure 2.6. Characteristic forms of blast waves: (a) shock wave and (b) pressure wave 
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2.2.2. Blast Load Modelling 

It is usual in civil engineering practice to rely on simplifying assumptions when modelling 

complex loading conditions. Therefore, the positive phase of the blast wave is often 

approximated using linear (Figure 2.7a, b), bilinear (Figure 2.7c, d, e), concave (Figure 2.7f), 

exponential (Figure 2.7g) or sinusoidal (Figure 2.7h) curves (e.g [20–25,25–42]). 

 

(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) 

Figure 2.7. Simplified shapes for modelling of blast loads: (a) rectangular, (b) triangular, (c) 

triangular with finite rise time, (d) bilinear-triangular, (e) bilinear-rectangular, (f) concave, 

(g) exponential and (h) sinusoidal 
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A number of simplified shapes of the pressure time history 𝑃(𝑡) commonly used for the 

modelling of extreme loads are presented in Table 2.1 [2,3,24–28,30,32–52]. 

Load time history 𝑷(𝒕)/𝑷(𝟎) 

Rectangular 

(Fig. 2a) 
{
1 0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0
 

Triangular 

(Fig. 2b) 
{
(𝑡0 − 𝑡)/𝑡0 0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0
 

Triangular with finite rise time 
𝑡𝑃0 
(Fig. 2c) 

{

𝑡/𝑡𝑃0 0 ≤ 𝑡 ≤ 𝑡𝑃0

(𝑡0 − 𝑡)/(𝑡0 − 𝑡𝑃0) 𝑡𝑃0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0

 

Bilinear-triangular with the 

curve break at 𝑡1 (Fig. 2d) 

𝐶𝑟 is the load reduction factor 

{

((𝐶𝑟 − 1)𝑡 + 𝑡1)/𝑡1 0 ≤ 𝑡 ≤ 𝑡1

𝐶𝑟(𝑡0 − 𝑡)/(𝑡0 − 𝑡1) 𝑡1 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0

 

Bilinear-rectangular with the 

curve break at 𝑡1 (Fig. 2e) 

𝐶𝑟 is the load reduction factor 

{

((𝐶𝑟 − 1)𝑡 + 𝑡1)/𝑡1 0 ≤ 𝑡 ≤ 𝑡1

𝐶𝑟 𝑡1 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0

 

Concave (Fig. 2f) 

𝐶𝑛 is the load fitting constant 
{
exp[𝐶𝑛𝑡/𝑡0] (𝑡0 − 𝑡)/𝑡0 0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0
 

Exponential (Fig. 2g) 

𝐶𝑥 is the load fitting constant 
{
exp[−𝐶𝑥𝑡/𝑡0] (𝑡0 − 𝑡)/𝑡0 0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0
 

Sinusoidal (Fig. 2h) {
sin(𝜋𝑡/𝑡0) 0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0
 

Table 2.1. Types of load time history used for modelling of blast loads 

An appropriate choice of 𝑃(𝑡) depends on the type of the event. For example, the triangular 

shape with zero rise time (Figure 2.6b) is recommended for modelling shock waves [20], 

while the triangular shape with a finite rise time (Figure 2.6c) for modelling pressure waves. 

According to UFC 3-340-02 [25] and Dragos et al [52–55], the bilinear-triangular and 

bilinear-rectangular shapes (Figure 2.6d and Figure 2.6e) are suitable for modelling confined 

explosions that may occur in tunnels, subway stations and car parks, inside bunkers and 

buildings with strong walls, etc. In particular, the bilinear-triangular shape is suitable for 

modelling confined explosions in vented spaces, whereas the bilinear-rectangular shape in 

unvented spaces. Technical manuals for blast resistant design [25–27,43] recommend use of a 

bilinear shape with zero rise time (Figure 2.6d) for modelling external blast loads on the walls 
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facing the explosion source, while the triangular shape with finite rise time (Figure 2.6c) for 

modelling blast loads on the side and rear walls and roofs. The negative phase of the blast 

wave is usually neglected in the analysis and design of blast resistant structural elements 

since it is much weaker and more gradual. Detailed guidelines for the characterisation and 

treatment of the negative phase of the blast wave are given in [25], mainly that the effects of 

the negative phase parameters are usually not important for the design of the more rigid type 

structures such as reinforced concrete. 

The primary parameters describing the form of the blast wave are the peak pressure 𝑃0, 

impulse 𝐼 and duration 𝑡0, as presented in Figure 2.6a. In addition, there are also a number of 

secondary parameters, which can be determined based on the primary ones, such as the peak 

reflected pressure 𝑃0𝑅, peak dynamic (or blast wind) pressure 𝑃0𝑊, shock/pressure front 

velocity 𝑈𝑆/𝑃 and blast wave length 𝐿𝐵𝑊 [2,3,20–22,24,25,54].  

When a blast wave generated by an air explosion reaches a surface it is reflected amplifying 

the incident blast wave, see Figure 2.8.  

 

Figure 2.8. Reflection of blast wave at the earth’s surface in an air blast; t1 to t4 represent 

successive times [26] 

The magnitude of 𝑃0𝑅 is determined as: 

P0R = CRP0  (2.1) 
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where 𝐶𝑅 is the reflection coefficient depending on the pressure 𝑃0, the type of blast wave 

and the angle of incidence of the blast wave front relative to the surface [54]. When multiple 

reflections occur, as in the case of a confined explosion, the peak pressure of the blast wave 

may grow extremely high [25] and secondary peaks corresponding to the number of 

reflections develop in the pressure time history [21,22].  

A propagating blast wave generates strong wind, especially in the positive phase [26]. This 

wind exerts dynamic drag pressure on the structure. The peak drag pressure 𝑃0𝐷 is evaluated 

as [20,24,25,54]. 

P0D = CDP0W  (2.2) 

where 𝐶𝐷 is the drag coefficient depending on the Mach number (or Reynold’s number at low 

incident pressures) and the relative geometry of the structure. 𝐶𝐷 for the roof and walls is in 

the range of 0.2-0.4 depending on 𝑃0𝑊 [24]. For open frame civil and industrial structures 

including masts, pylons, lattice towers, truss bridges, etc. the dynamic pressure represents the 

dominant blast effect. 

The reduction factor 𝐶𝑟 incorporated in the bilinear relationships in Table 2.1 defines the 

initial amplification of the pressure due to its reflection during a confined explosion 

[52,53,56,57]. In this case 𝐶𝑟 can be found as 

Cr = Pg/P0R  (2.3) 

where 𝑃𝑔 (≡ 𝑃1 in Figure 2.6d and Figure 2.6e) and 𝑃0𝑅 (≡ 𝑃0) are the peak gas and reflected 

pressure, respectively. When the bilinear curve with zero rise time (Figure 2.6d) is used for 

modelling the blast loading on the front walls in a reflected region [20,24,25], 𝐶𝑟 can be 

found as 

Cr = (P0E/P0R)(t0 − t1)/t0  (2.4) 

where 𝑃0𝐸 (= 𝑃0 + 𝑃0𝐷) is the effective non-reflected peak pressure, and 𝑡1 represents the 

duration of the reflected pressure. 𝑡1 is formulated in [25] depending on the structural 

geometry (width and height) and the velocity of sound. The side and rear walls and the roof 

will experience smaller blast pressure due to lack of reflected pressure and a larger distance 

from the explosion epicentre [20,24,25].  
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The effective peak pressure 𝑃0𝐸 on the side/rear walls and roof can be found as 

P0E = CEP0 + PD  (2.5) 

where 𝐶𝐸 is the effective reduction factor depending on the ratio between the blast wave 

length and the length of the structural element in the direction of the traveling blast wave 

[25]. Since the rear wall load is opposite in its direction to the front wall load, it is used only 

for evaluation of the net overall loading on a structure and often ignored in the analysis [20]. 

The concave and exponential relationships given in Table 2.1 include the constants 𝐶𝑛 and 

𝐶𝑥, respectively. These constants allow further fitting of the shapes of the modelled load time 

histories to the recorded data, which leads to the increase in the accuracy of the analysis. In a 

number of research studies the following values of the constants were used: 𝐶𝑛 = 1 in [48] 

and 𝐶𝑥 = 2.8 in [39,40,48]. 

As the blast wave propagates in the air with supersonic velocities the evaluation of the 

shock/pressure front velocity 𝑈𝑆/𝑃 and the blast wave length 𝐿𝐵𝑊 is extremely complicated. 

Therefore, there are only limited data describing 𝑈𝑆/𝑃 available in the technical literature. The 

technical manual, TM 5-1300 [25], for instance, provides plots of the shock front velocity 𝑈𝑆 

vs. scaled distance for high energy TNT explosives only. Other manuals (e.g., [20]) 

recommend to conservatively assume that the pressure front velocity 𝑈𝑃 ≈ 𝑈𝑆. According to 

[54], 𝑈𝑆/𝑃 (in m/s) can be approximately found for a low pressure air explosion in normal 

atmospheric conditions as 

US/P = 345(1 + 0.0083P0)0.5  (2.6) 

In similar conditions, TM 5-1300 [25] recommends to approximate 𝐿𝐵𝑊 as 

𝐿𝐵𝑊 = 𝑈𝑆/𝑃𝑡0  (2.7) 

It is important to note that there is much more certainty in correct evaluation of the 

parameters of blast loads generated by standardised types of explosives (e.g., TNT, RDX or 

ANFO). The parameters of accidental industrial explosions, which are most often vapour 

cloud explosions, will strongly depend on the potentially explosive materials handled and the 

manufacturing processes applied [20]. The wide variety of the industrial materials and 

processes combined with the shortage of codes and industrial standards seriously complicate 

the situation. 
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2.3. Concrete Material Behaviour 

Concrete is one of the most widely used construction materials and is commonly used for the 

construction of buildings, highways, bridges, bunkers and nuclear reactors. Concrete is a 

composite material consisting of aggregates (sand and stone) and rehydrated cement. Its 

major advantages are that it is durable, economical and can easily be cast into any shape. The 

primary advantage of concrete is in its compressive strength, however, despite having 

relatively high compressive strength, concrete’s tensile strength is significantly lower (about 

10% of its compressive strength). The practical implication of this is that concrete elements 

subjected to tensile stresses must be reinforced with materials that are strong in tension, such 

as steel or fibre reinforced polymers (FRP). Additionally, concrete is essentially a brittle 

material, and has a low strength-to-weight ratio. Actual concrete properties can vary widely 

depending on the choice of materials used, their proportion and manufacturing process 

adopted [58]. 

Structural behaviour under different loads highly depends on the stress-strain relationship 

expressing the material behaviour and the type of load the structure is subjected to. Under 

static loading such curves are obtained by measuring strain in cylinder tests under increasing 

levels of loading [59]. Although the constituents of concrete (namely aggregates and cement) 

are brittle elastic materials, the stress-strain curve describing the behaviour of concrete in 

compression is nonlinear [60]. This is attributed to internal microcracks that form and extend 

within the concrete medium and the ensuing.   Figure 2.9 shows typical compressive stress-

strain curves for concrete with different peak compressive stresses. 

 

Figure 2.9. Typical compressive stress-strain curves for normal density concrete.[59] 
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All the curves are comprised of an initial elastic part for values of stress approximately equal 

to 40% of the maximum peak compressive stress followed by a nonlinear portion up to the 

maximum peak stress (compressive strength) at strains between 0.002 and 0.003 followed by 

a descending branch. It is important to note that the characteristics of the descending curve 

are highly dependent on the test procedure and on specimen boundary conditions [59]. The 

experimental results may, therefore, express the interaction between the specimen and the 

setup rather than the material properties.  

The direct tensile strength of concrete is only about 7 to 15 percent of its compressive 

strength. The behaviour of concrete in tension is described by the stress-strain curve is 

presented in Figure 2.10. Concrete tensile strength increases with an increase in compressive 

strength. However, as shown in Figure 2.11, the ratio of tensile to compressive strength 

decreases with the increase in compressive strength [60]. 

 

 

Figure 2.10. Concrete behaviour in tension[61] 
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Figure 2.11. Relationship between splitting tensile strengths and compression strengths [60] 

Under biaxial loading conditions the strength and failure mode in concrete varies as a 

function of the combination of the loading stresses, as shown in Figure 2.12. The curve in 

Figure 2.12a describes the behaviour of concrete under biaxial stresses 𝜎1 and 𝜎2. 𝐴 and 𝐴′ 

are the uniaxial compressive strength, whereas 𝐵 and 𝐵′ represent the uniaxial tensile 

strength. If concrete is subjected to biaxial tension (zone 1) the strength is close to the 

uniaxial tension stress and failure is due to tensile fracture perpendicular to the maximum 

principle tensile stress as shown in Figure 2.12b. When one of the loading stresses is in 

compression and the other in tension then the concrete cracks at a lower stress than either of 

the uniaxial stresses (zone 2). In this case failure occurs due to tensile fracture on planes that 

are perpendicular to the principle tensile stresses. The lower strengths suggest that failure is 

governed by limiting tensile strain [60]. In uniaxial compression (zone 3) the failure is due to 

tensile cracks on the planes of maximum principle tensile strain, which are parallel to the 

maximum compressive stresses. In biaxial compression (zone 4) the failure pattern changes 

to parallel fracture surfaces parallel to the unloaded side of the member, as shown in Figure 

2.12d. In this case the concrete ductility increases and the concrete compressive strength 

increases past the uniaxial compressive strength. 

 



20 

 

 

Figure 2.12. Strength and modes of failure on biaxially loaded concrete[60] 

Generally, however, concrete in a structure will be subjected to a multi axial stress state. The 

type of failure under these conditions has been studied using confined concrete cylinders 

subjected to axial compression 𝜎𝑎 [62,63]. The experiments were conducted so as to achieve 

stress states of triaxial compression by increasing the axial compression (𝜎𝑎 > 𝜎𝑐 where 𝜎𝑐 is 

the lateral confining pressure) or triaxial extension by decreasing the axial compression 

(0 < 𝜎𝑎 < 𝜎𝑐). The stress-strain relationships obtained, Figure 2.13, indicate that under 

triaxial compression concrete exhibits gradual reduction in load carrying capacity post the 

ultimate stress whilst the triaxial tension models suffered an immediate loss of load carrying 

capacity. These findings [64] suggest that an unrestrained concrete component under 

compressive stress conditions would suffer a complete loss of load-carrying capacity on 

reaching its maximum strength. Therefore, it can be assumed that brittle failure is a 

characteristic of concrete behaviour at a material level under any state of three-dimensional 

compression. 
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Figure 2.13. Triaxial compression tests on cylinders (a) stress paths used (b) typical stress-

strain relationships [64] 

The cause of nonlinear behaviour exhibited by concrete up to fracture and failure is generally 

deemed to be attributed to pre-existing flaws in the concrete material [64]. These are mainly 

attributed to discontinuities in the cement paste matrix, pores caused by shrinkage or thermal 

movements due to incompatibility between the properties of the various phases present in 

concrete, discontinuities at the boundary between the aggregate particles and voids present as 

a result of incomplete compaction. Due to the nature of these flaws they can be assumed to be 

randomly distributed and orientated.  

When stress and strain are applied at the element boundary a strain field, dependant on the 

distribution of the different concrete components and flaws is generated [64]. Strain 

concentrations are intensified to far higher orders of magnitude due to the presence of flaws, 

particularly those with high aspect ratios and it is these flaws which are the potential sources 

of any load-induced cracking. 

Due to its low tensile strength concrete is often reinforced with steel to form a composite 

material. The ACI Code requires that reinforcement be steel bars or steel wires [65]. 
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2.3.1. Effect of Loading Rate on Concrete Material Behaviour 

The effect of the speed of loading on concrete behaviour is very distinct on the stress-strain 

curves in compression. In Figure 2.14 the stress-strain curves of the same concrete loaded 

with different loading speeds are presented. It can be seen that the descending branch of the 

curves is more pronounced at the faster rates, indicating the further internal cracking [60]. It 

is also shown that the maximum compressive strengths recorded are higher at higher loading 

speeds.  

 

Figure 2.14. Stress-strain curves in compression at various strain rates [66] 

This observed behaviour of concrete under high strain rates has been the subject of much 

interest. Abram was the first researcher to observe rate sensitivity in the compressive strength 

of concrete [67]. Since then, a large number of experiments dealing with the behaviour of 

cylindrical and prismatic concrete specimens have been carried out, the main objective being 

to investigate concrete behaviour under extreme loading conditions. Continuous 

improvements in experiments, equipment and techniques have led to the achievement of 

better results and understanding of the phenomena in recent decades. 

The use of split Hopkinson pressure bars (SHPB), shown in Figure 2.15, to study dynamic 

behaviour of materials was utilised by Kolsky [68].  
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Figure 2.15. Schematic representation of the SHPB test in compression [69] 

SHPB experiments studying the rate dependency of concrete behaviour were recently 

conducted by  Al-Salloum et al [69]. They conducted a series of experiments of solid and 

annular cylindrical cement mortar specimens with different aspect ratios and quasi-static 

compressive strengths using the SHPB, as shown in Figure 2.16. 

 

 

Figure 2.16. SHPB test setup, and specimens [69] 

They found an obvious increase in the compressive stress of the concrete specimens when 

subjected to higher strain rates, as shown in Figure 2.17. The mode of failure of concrete 

observed was ductile failure at high strain-rates and brittle at low strain-rates.  
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Figure 2.17. Stress–strain curves of 40 MPa concrete solid specimen, as shown in Figure 

2.16 [69] 

Hughes and Gregory [70] used drop weight tests to measure concrete compressive strength at 

high loading rates. Yan et al [71] studied the biaxial behaviour of plain concrete subjected to 

dynamic compression with constant lateral stress on a custom designed hydraulic controlled 

machine, shown in Figure 2.18. Their aim was to characterise the biaxial compressive 

behaviour of concrete under a rapidly applied axial load with constant confining pressure, and 

to validate existing strength prediction equations extrapolated from uniaxial test data. The 

importance of these experiments was that although a number of other studies dealing with the 

dynamic properties of concrete the majority of them were conducted in a uniaxial stress state. 

This does not represent the multi-axial stress condition of concrete in RC structures due to 

complex loadings and the confinement of transverse reinforcement. They analysed over 60 

concrete cubes and found that the ultimate strength of concrete under axial and lateral loads 

increases with strain rate. Yan et al also found that the stress-strain curves at various strain 

rates were similar in shape, with a significant increase in tangent modulus in the non-linear 

range of the curves. 
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Figure 2.18. Yan et al testing system [71] 

Chen et al [72] examined the flexural behaviour of large concrete specimens using the 4 point 

bending test under different strain rates. Their results show that the increase in strain rate led 

to the specimens having a more flattened fracture surfaces and more broken aggregates on the 

fractured surface, as shown in Figure 2.19. They correlated the elastic modulus and flexural 

strength of the concrete to the strain rate.  In a different paper Chen et al [73] proceed to use 

the 4 point bending test and a direct tension test to examine the effect of testing method and 

strain rate on stress-strain behaviour of concrete. Their results confirm that the peak stresses 

increase with an increase in the strain rate. It is also observed that this effect is more 

pronounced in direct tensile specimens. In both testing methods under the same strain rate the 

fractured surfaces become more flattened with increasing strain rate. 

 

Figure 2.19. Failure surface of concrete beams at different strain rates (a) 10-6/s, (b) 10-5/s, 

(c) 10-4/s and (d) 10-3/s [72] 

Brara and Klepaczkob conducted tensile tests on cylindrical concrete specimens at different 

strain rates from 10 s−1 to 120 s−1 [74]. The technique used in their experiments combines the 

principles of wave propagation in a Hopkinson bar and phenomenon of spalling, presented in 

Figure 2.20. The setup consists of the gas launcher, the striker, one Hopkinson bar and a 

cylindrical specimen. The striker impacts the Hopkinson bar and the incident compression 
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wave is directly transmitted into cylindrical specimen being in contact with the bar. The 

incident wave is reflected in the specimen as tensile wave triggering spall. 

 

 

Figure 2.20. Schematic test setup [74] 

The specimens used in the experiment were produced using micro-concrete MB50 with a 

very uniform distribution of aggregates resulting in very heterogeneous specimen in relation 

to its dimensions. The tests conducted for both wet and dry micro-concretes at high strain 

rates clearly demonstrate close relation between the critical time to failure and tensile 

strength, as shown in Figure 2.21. As shown, the shorter the loading time the higher the 

concrete strength.  

 

Figure 2.21. Changes of tensile strength for wet and dry micro-concrete as a function of 

critical time to failure [74] 

Erzar and Forquin [75] investigated the dynamic tensile strength of concrete by means of 

spalling tests. The experimental device used for the present spalling tests, as shown in Figure 
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2.22. The setup consists of a projectile, a Hopkinson bar and a concrete specimen, similar to 

the previous experiment discussed. The observations revealed that an enhanced uniformity of 

the strain rate was obtained for positive stresses in the range of 10 to 20 MPa in which the 

dynamic strength is observed and that at high strain-rate failure is the consequence of 

numerous oriented cracks. 

 

Figure 2.22. Experimental device (projectile, input bar, specimen) and instrumentation (light 

sources, photo-diodes, strain gauges, accelerometer, and laser extensometer) [75] 

More recently, with the emergence of new non-destructive techniques such as acoustic 

emission (AE), new types of experimental studies have been carried out. Sagar and Rao [77] 

studied the effect of loading rate in tension on the fracture process in RC structures. They 

observed that the faster the loading rate the quicker cracks propagate. They also found that 

concrete behaviour is relatively more brittle at higher strain rates. The authors do point out, 

however, that AE released during fracture process in real scale components is a relatively 

new field and still needs refinement. 

In conclusion the responses exhibited during dynamic tests have been shown to differ from 

those carried out with static conditions. The difference is mainly the increase of the 

specimens load carrying capability and maximum sustained axial strength. The difference 

becomes more apparent with the increase of the loading rate. However, apart from that 

qualitative statement it must be noted that the experimental data is characterised by 

considerable scatter, both in compression and in tension [78,79], as presented in Figure 2.23 

and Figure 2.24. Additionally, many parameters vary between the different experiments, such 

as technique, shape, size, moisture content, type of concrete used. There is also a basic 

difficulty in interpreting experimental data from dynamic tests due to their short duration 

[78]. Therefore, the experimental data can only describe the qualitative behaviour of concrete 

under increased loading rates. 
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Figure 2.23. Variation of load-carrying capacity with strain rate for concrete in uniaxial 

compression (maxPd=dynamic load carrying capacity, maxPs=load carrying capacity under 

static loading) [78] 

 

Figure 2.24. Variation of load-carrying capacity with strain rate for concrete in uniaxial 

tension (maxPd=load carrying capacity, maxPs=load carrying capacity under static 

loading) [79] 

Although the qualitative observations, namely the increase of strength with the increase in the 

speed of loading, is generally accepted the explanations to the phenomena are not. The 

central questions are whether the strength enhancement of concrete with strain-rate is a 
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genuine material property and what the causes of this phenomenon are. Currently, only a few 

researchers have dealt with these questions [80]. 

Bischoff and Perry [81] argued that the observed rate enhancement of concrete in 

compression might be due to a number of factors. The results might be influenced by the 

testing procedure due to equipment, testing techniques, boundary effects and specimen size 

(which is relatively short) and lateral inertial effect. Additionally, the results could be 

influenced by the specimens’ material makeup, specifically concrete static compressive 

strength, aggregate grade, curing and moisture condition and age. Ožbolt et al [82] further 

stress that capturing the uni-axial tensile behaviour of concrete experimentally is difficult 

even under static load. For that reason, under dynamic loads the problem is often studied 

through indirect tests such as SHPB. In the SHPB the measurement of concrete strength is 

based on the theory of uni-axial wave propagation through elastic media and measurements 

of strain and strain rates in the bar. Though this setup is widely used for determining the 

dynamic compressive and tensile strength for concrete, there are still uncertainties in the 

reliability of such test for concrete materials. Wu et al. [83] commented that the SHPB results 

are reliable only for ductile materials such as metals, whereas the results may contain 

significant errors when measurements are made using SHPB on concrete-like materials, 

mainly caused by the required high rigidity of experimental set up due to the low dynamic 

tensile strength of concrete. Additionally, they note that the brittle nature of concrete 

increases difficulty with data processing and experiment repetition and that there are 

problems ensuring good connections between the concrete specimen and the pressure bar. 

Ožbolt et al [82] point out that no rate sensitivity can be observed in linear elastic materials or 

within the linear elastic range, while significant influence is observed in materials that exhibit 

damage and fracture behaviour, such as concrete. They believe that this indicates that rate 

sensitivity is closely related to damage and softening of the material, i.e. more damage, the 

stronger will be the influence of loading rate on structural response and back this theory by 

experimental results that show concrete-like materials exhibit the highest rate sensitivity 

whereas brittle materials, such as glass, are much less sensitive to the strain rate.  

Several researchers have claimed that under strain rates of 1/s the strength enhancement of 

concrete is due to free water within the material, otherwise known as Stefan effect [84–86]. 

Rossi et al [84] argued that the presence of pore water in the concrete contributed to the strain 

rate effect. Others have claimed that at strain rates over 10/s the observed enhancement is due 

to inertial effects in the loaded specimen [69,78,80,87,88]. When subjected to dynamic loads 
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the body is under dynamic equilibrium and the applied load is balanced by  transmitted 

reactions and also by inertial forces [82]. Until a certain strain rate the inertial contribution is 

small and the loads are roughly equal to the reactions, though higher than the results of a 

static analysis. Once the critical strain rate threshold is passed the impact of the inertial forces 

becomes more prominent and the applied load becomes higher than the reaction. This effect, 

the influence of inertia, increases with the increase of loading rate and is not a material 

property [82]. Therefore, during a dynamic experiment the measured applied load does not 

provide the true strength of the material as there is an inherent inertial component. This 

conclusion was further stressed by Al-Salloum et al [69]. Their research of solid and annular 

cylindrical cement mortar specimens using SHPB concluded that the dynamic increase factor 

(DIF) of annular specimen was lower than the DIF of solid specimens at high strain-rates. 

This phenomenon further strengthens the view that the lateral inertia plays an important role 

in a rapid increase in the DIF at high strain rates. Li and Meng [87] also investigated the 

dynamic compressive strength of concrete and reported that beyond the strain rate of 100/s 

the apparent dynamic strength enhancement is strongly influenced by the hydrostatic stress 

effect due to the lateral inertia confinement in an SHPB test. They warned that the dynamic 

strength enhancement, incorrectly interpreted as strain rate effect, had been adopted in 

dynamic structural design in concrete, leading to over prediction of the dynamic strength of 

concrete. They strongly recommended further experimental and numerical research in order 

to fully understand the effects of strain rate. 

 

2.3.2. Material Models Describing Concrete Behaviour under High Loading 

Rates 

It should be noted that in the case of blast loads strain rates are typically in the range of 102  to 

104 s-1 [23]. In existing codes (such as [25,89]) strain rate is modelled by multiplying the 

stresses using a single DIF. However research has shown that this approach can predict 

unrealistic results resulting in a structure that is stronger than observed structural behaviour 

[90].  

Recent years have seen great advancement in computational capabilities. It is possible to 

perform numerical simulations of concrete structures under severe shock and impact loads 

[91]. Simulations can further enhance experiments by reducing experimental costs and can 

provide additional insight regarding the material response [80]. However, as in all cases when 
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relying on analysis results, a thorough validation process is vital. An accurately representative 

material model capable of capturing the essential mechanical processes of the material under 

varying stress and loading rates is vital in order the successfully simulate structural response. 

In an attempt to provide a fundamental explanation for the sudden increase in concrete 

strength Cotsovos and Pavlovic´ [78] developed a finite element model to reproduce 

experimental data. As the material properties of the concrete were assumed to be independent 

of the loading rate, the effect of the loading rate on the specimen was primarily attributed to 

the inertia effect of the specimen mass. The concrete material model considered was brittle 

and independent of both stress paths and loading rate effects. The analysis was performed 

using a finite element 3D model of a concrete specimen. The results showed that the 

behaviour of concrete specimens under high rates of compressive uniaxial loading was 

considerably different to the behaviour under static loading. The load carrying capacity and 

sustained maximum axial strain exhibited by the specimen increases as the rate of loading 

becomes higher. One of the conclusions of the analysis is that inertia has a significant effect 

on the specimens’ behaviour under high rates of loading.  Another interesting point observed 

was that of the progression of the stress waves in the specimen. For high load rates (loading 

procedure less than 0.0001 seconds) the specimen failure preceded substantial reactions at the 

bottom as the stress wave was unable to reach the bottom within the time of the loading 

procedure. Therefore in such cases the external load does not affect the whole specimen 

extending to a level which the stress wave is able to reach within the loading time. On the 

other hand, when the loading rate is lower the stress wave bounces off the bottom of the 

specimen and starts to travel back and forth along the length of the specimen, trapped by the 

boundary conditions. In such cases it is difficult to predict where the highest concentrations 

of stresses will develop as the internal stress field constantly changes. Comparing the 

simulations to the experimental data revealed good agreement between the two. This 

numerical investigation shows that the change in concrete behaviour when subjected to high 

rates of compressive loading is mainly due to inertia effects. 

In their paper Mu et al [80] discussed whether the compressive strength enhancement of 

concrete-like materials with strain-rate is a material property. They performed a series of 3D 

numerical simulations and concluded that the compressive strength enhancement with 

increased strain-rate is an indirect result of a lateral confining effect. Comparisons between 

their results with pressure-dependent material model and related tests show that the lateral 

confinement is caused by both the lateral inertia and the interface friction between the loading 
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apparatus and the loaded specimen. They also show that the main mechanisms that initiate 

lateral confinement include the material lateral inertia and the interface friction between the 

loading apparatus and the loaded specimen. 

Lu and Li [88] examined the experimental methods for determining tensile strength in 

tension. In order to clarify whether the observed strain rate effect is a material property or a 

structural property (due to inertia and stress triaxility effects) they employed a hydrostatic-

stress-dependent macroscopic model (K&C concrete model) with no strain rate enhancement 

to numerically simulate experiments. Their analyses of three different dynamic tests did not 

show any rate dependency and they conclude that tensile strain rate enhancement is a material 

effect. Further they developed a micro mechanism model and demonstrate their theory that 

microcrack inertia is one of the mechanisms causing the increase of dynamic tensile strength 

with strain-rate. 

Ožbolt et al [82] numerically examined the tensile behaviour of concrete under high loading 

rates by employing 3D FE code for multi body dynamics with fragmentation capability. They 

used a rate sensitive microplane model. Based on the numerical results and their comparison 

with experimental results they concluded that for concrete under high strain rates the apparent 

strength consists of true material strength and a contribution due to the damage of concrete. 

The damage contribution appears once the strain rate exceeds 10/s and can be explained by 

either inertia invoked by material softening or by the fact that in the evaluation of numerical 

or experimentally measured data, damage of concrete is ignored [82]. Further Ožbolt et al 

claim that material strength should be accounted by the constitutive law and that the influence 

of inertia should be automatically introduced in the dynamic analysis. They stress that 

because the progressive increase of apparent stress is always related to failure modes or 

multiple cracks the apparent strength should never be considered as part of the constitutive 

law. They also warn that results of indirect tension tests, such as SHBT, require careful 

interpretation due to the fact that the specimen is damaged and not elastic. 

As a result of their numerical investigation using a three-phase concrete (aggregate, mortar, 

and interface) meso-scale dynamic model into the dynamic failure under different strain rates 

Qin and Zhang [67] reached the following conclusions regarding the increase in concrete 

strength. The first is due to the non-homogeneous properties of concrete and the micro and 

meso defects- under dynamic loading new meso-cracks begin to expand due to propagation, 

reflection, and superposition of stress waves. This is why the failure patterns of concrete 
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under high strain rates have a dispersed formation. An additional mechanism presented is that 

under static/ low strain rates nearly all external work is used to accumulate strain energy 

compared to dynamic loads where additional external energy is needed to cause rupture of the 

concrete leading to further strength enhancement. 

 

2.4. Steel Material Behaviour 

Steel is a ductile material and its behaviour under uniaxial compression or tension is 

described by stress-strain curves such as the schematic representation of structural steel under 

uniaxial tensile loading presented in Figure 2.25. This is usually established through uniaxial 

tensile tests conducted on steel specimens which are considered to represent material units 

from which average material properties can be determined.  

 

Figure 2.25. Stress-strain diagram of structural steel [100] 

The behaviour of steel is characterised by the following four processes: (i) yielding, (ii) strain 

hardening, (iii) necking and (iv) rupture [101]. Steel initially exhibits elastic behaviour 

(during which deformation is recoverable after unloading) until the yield stress (𝑓𝑦)  is 

attained. The post-yielding behaviour of steel is usually characterised by strain hardening 

with the total strain consisting of a recoverable (elastic) and permanent (plastic) component. 

Once the ultimate strength of steel is attained necking initiates (reduction in cross-section of 
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steel specimen).  During this stage, an increase of the applied load results in further reduction 

of the specimen’s cross-section, ultimately leading to rupture. 

2.4.1. Effect of Loading Rate on Steel Material Behaviour 

It has been experimentally established that the behaviour exhibited by steel specimens under 

high loading rates differs from that established under equivalent static loading [101]. For 

example, Singh et al [102] investigated the behaviour of mild steel under increasing rates of 

tensile loading in relation to that established under static load. They used a modified 

Hopkinson bar apparatus for testing under medium and high strain rates. They observed a 

significant increase in the yield strength of the steel with increasing strain rates. However, an 

increase in ultimate strength was observed for the medium strain rates and remained constant 

for the highest strain rates. Therefore, the yield stress of the mild steel was found to be more 

strain-rate sensitive than its ultimate tensile strength. 

Langseth et al [103] investigated the effect of strain rate on the tensile behaviour of mild steel 

commonly used in offshore platforms. A high rate biaxial testing machine was used for 

conducting tensile tests with strain rates of 0.0001 to 25s-1, and a SHPB was employed for 

achieving strain rates of 100 to 1100s-1. They showed that yield strength increased 

significantly with the increase of strain rate. They also noted that the yield stress of mild steel 

is more sensitive than the stresses associated with specific values of strain in the hardening 

region under increasing strain rates.  

In addition to the tests carried out with “dog bone” specimens, reinforcement bar specimens 

are also used for investigating the material behaviour of steel under static and increasing 

loading rates [101]. Malvar and Crawford [104]  gathered and presented data obtained from 

experimental studies investigating the behaviour of reinforcement bars under high strain 

rates, presented in Figure 2.26. In order to quantify the influence of the strain rate on the yield 

stress of steel they defined a dynamic increase factor (DIF) as the ratio of dynamic yield 

stress to static yield stress.  It can be seen that when the strain rate increases beyond a certain 

level the DIF also increases. The influence of strain rate on the DIF is more profound in the 

case of reinforcing bars in which steel is characterised by lower static yield strength values.  
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Figure 2.26. Reinforcing bars under different rates of loading [104]  

However, the available test data fails to accurately quantify the observed shift and provide the 

reasons that cause these differences, as it is characterised by considerable scatter. This scatter 

is due to a number of parameters mainly associated with structural response (e.g. the 

experimental technique employed, the shape and size of the specimens, the different types of 

steel used, etc.) which vary from experiment to experiment. As a result, it is difficult to derive 

laws capable of realistically quantifying the change in the specimen behaviour under 

increasing loading rates [101].  

 

2.5. Methods for Assessing RC Structural Response under Blast 

There is very limited documentation providing engineers and researchers with necessary data 

concerning the design of structures to resist blast loads exists [105]. Therefore, structural 

engineers are in dire need of guidance on how to design structures to withstand various 

explosions. Better understanding of the factors that contribute to a structures blast resistance 

would allow for improvement of the structural performance. Therefore, the need for research 

into this topic is crucial, and the conclusions drawn from it can lead to life saving practises. 

Although there has been a significant amount of research in recent years dealing with the 

behaviour of structural elements and materials under blast loads, there is not much related to 

full scale structures. Most of full scale structures that have been analysed are the structures 

that have actually suffered from explosions. 
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2.5.1.  Experimental Methods 

2.5.1.1. Observations 

Observations and research of actual explosions provide a great deal of data which can be 

utilised in the quest for a deeper understanding of modes of failure of structures. 

During World War II a vast amount of data and observations were compiled, leading to tens 

of thousands of reports [4]. Based on the reports one of the main observations was that the 

most common modes of failure was due to weak beam-column connections, which generally 

failed due to a combination of the prying action resulting from insufficient ability to 

accommodate large beam end rotations and tensile loading. In general, multi storey buildings 

of that period in London were found to have an impressive ability to redistribute loads 

following substantial damage from direct hits. At that time internal partitions where usually 

constructed from thick masonry. The bracing effects of these masonry panel walls were able 

to effectively redistribute loads from badly damaged parts of the frame. These observations 

lead to the conclusion that the effects of the explosions on a building as a whole depend to a 

large extent on its internal planning. 

Several insightful observations were also made after the IRA attacks and documented by 

Peter Rhodes, who worked for the government in Northern Ireland [4]. He noted that concrete 

framed structures frequently sustained severe damage to their frames, including severing of 

beams from columns, without leading to progressive collapse. As observed before, panel 

walling and diaphragm walls played a vital role in bracing severely damaged structures. The 

adequate tying of beams to columns is of particular importance as RC frames were found to 

fracture at the joints between those members when reinforcement lapped. When subjected to 

reverse uplift loads this area presents a significant zone of weakness as structural elements 

can become dislodged if not properly tied together. Two incidents, with two very different 

outcomes, may be used to demonstrate these points. The first incident is the bombing of the 

Dropping Wells Bar in Ballykelly on December of 1982. In this case blast from a small 

quantity of high explosive caused inadequately tied precast concrete slab units to become 

dislodged from their supports, crushing people and resulting in 17 deaths [106]. The other 

incident is the bomb attack on the Exchange’s office, 30 St. Mary Axe London, on April 

1992 in which 3 people were killed. In this case, although significant damage was caused to 

the perimeter frame, there was no progressive failure. This is mainly due to the monolithic 
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nature of the frame providing significant redundancy via a combination of three dimensional 

vierendeel actions and bracing from panel walling.  

Another case which had huge impact on the structural field and led to many investigations 

dealing with the nature of the collapse was that of the FBI Murrah building in Oklahoma City 

in 1995 [7]. The blast destroyed three columns located on the front face of the building. 

These columns supported transfer beams that supported intermediate columns this in turn led 

to a widening of the zone that collapsed and to a greater destruction [4].  

With limited research into the response of full scale structures to blasts several researchers 

have used data from real incidents to research this topic. Mlakar et al [7] investigated the 

bombing of the Murrah building and Luccioni et al [107] studied the collapse of the AMIA 

building in Buenos Aires which is further discussed in Subsection 2.5.2. 

2.5.1.2. Experiments 

In recent years there has been much experimental research into the behaviour of structural 

elements under blast load, which can be divided into two main types: explosive experiments 

and blast simulator experiments. 

There is very limited availability regarding blast experiments on full scale structures. One of 

those available is the a full-scale blast test on a four-story building (24.4 by 14 metres) at the 

White Sands Missile Range in New Mexico [108]. The experiment was conducted as part of a 

research and development contract from the Defence Threat Reduction Agency (DTRA) to 

test windows, walls and structural elements under realistic blast conditions. The front face of 

the structure was solid and planar. Glass windows were installed along most of the width of 

the fourth floor. The structure was exposed to a large detonation which loaded the front face 

in a mostly uniform manner [109]. Woodson and Baylott [110] conducted a quarter scale 

experiment on a two storey two by one frame as part of the U.S. Army Engineering Research 

and Development Centre. Precast panels were tested in a collaborative research between the 

US Air Force Research Laboratory and the Portland Cement Association [111]. They 

examined the blast resistance of a conventional off-the-shelf insulated concrete sandwich 

wall construction under full-scale blast demands in a three-story reaction structure.  

Large- scale testing is very expensive and incurs many safety risks. Usually these 

experiments are conducted by the military, and therefore only limited information is available 
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to non-military researchers. Therefore, there is more information available regarding blast 

experiments on structural elements, such as plates, beams and columns.  

Cendón et al [112] conducted a series of blast loading experiments. Their experimental setup, 

see Figure 2.27, allowed them to test up to four concrete elements simultaneously under the 

same blast load. The main advantages in the set up were the reduction of scattering on 

detonation tests and cost effectiveness. Cendón et al proceeded to develop numerical models 

and suggested, based on both experimental and numerical tests, that the ability of RC 

structures to withstand blast loads is primarily governed by their tensile strength. 

 

 

 

Figure 2.27. Cendón et al [89] experimental set up 

Wang et al [113] investigated the behaviour of one-way square RC slabs subjected to a blast 

load through experiments and numerical simulations. The experiments were conducted under 

a close-in blast loading with various amounts of TNT. Different damage levels and modes 

were observed, mainly showing that with an increase of the explosive charge the failure mode 

of the RC slab gradually changed from overall flexural to localised punching mode. Wang et 

al [114] also conducted experiments on scaled down slabs to reduce the complications and 

costs associated with full scale experiments and proposed empirical equations to correct 

results when scaling up from a scaled down model to real size slabs. 

In cooperation with the Czech Army corps and Police of the Czech Republic, Foglar and 

Kovar [115] were able to perform blast tests using real scale RC precast slabs with varying 

fibre content and concrete strength class. The specimens were designed to the scale of a small 

span bridge and were placed on timber posts which were fixed in position by steel tubes.  

Kakogiannis et al [116] studied hollow slabs used in the construction of car park roofs. The 

experimental setup consisted of two tunnel RC elements with the slab located underneath, 

fixed on metal supports, see Figure 2.28.  
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Figure 2.28. Kakogiannis et al [93] experimental setup 

RC slabs were also tested under blast conditions by Wu and Hao [117] to compare normal 

strength concrete with ultra-high strength concrete.  

Reduced scale RC beams were experimentally investigated by Zhang et al [118] under close-

in varying blast loads, as shown in Figure 2.29. They noted that with an increase in 

deflection, tensile fracture at the back face and compressive fracture at front face occurred.  

 

Figure 2.29. Zhang et al [97] experimental setup 

In order to avoid dangers and complications associated with the use of explosives there have 

been a number of researches aimed at developing methods to experimentally simulate blast 

behaviour. One of these set ups is achieved by using impact to simulate blast-like loads. It has 

been shown that this method is capable to generate repeatable loading similar to field testing 

with live explosives [119]. An additional advantage of impact loading is the possibility of 
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using a high speed camera for collecting data as tested specimens are not obscured by a 

fireball. One such simulator is located at the University of California, San Diego (UCSD). 

The simulator is capable of generating blast-like loading on structures by using hydraulic 

rams; the loading can be tailored by controlling its peak load, duration and shape [119]. 

Freidenberg et al [119] compared results obtained using this blast simulator with 

corresponding field tests with live explosives that demonstrated the capability of the blast 

simulator to generate blast-like loading. 

 

Figure 2.30. Stud wall and masonry in the Blast Simulator[119] 

A similar approach was adopted by Li et al [120] in the Protective Engineering Laboratory at 

Nanyang Technological University, Singapore. Using the built-in Conwep suite in LS-Dyna a 

validated numerical model was used to predict the residual lateral deflection of RC columns 

subjected to an explosive attack. Three hydraulic actuators were installed horizontally to 

reproduce the predicted target residual lateral deflection, as shown in Figure 2.31.  



41 

 

 

Figure 2.31. Hydraulic actuators at the Protective Engineering Laboratory in Nanyang 

Technological University, Singapore [120] 

2.5.2. Nonlinear Finite Element Analysis 

Dynamic response of blast loaded structures is very complex to analyse  [23], as it involves 

effect of high strain rates, the nonlinear inelastic behaviour of the structural material, 

uncertainties of blast load calculations and time dependant deformations. Results of such an 

analysis are also hard to verify. However, due to the costs, risks and complications involved 

with experimental testing, a huge amount of research into blast loads has been conducted 

numerically. Simulation capabilities to accurately predict both the blast loading and 

subsequent structural response are important for generating improvements in blast protection. 

Computational methods in the field of blast engineering are generally divided into those used 

to predict the blast loads on the structure and those used to calculate the structural response. 

These programs use both first-principle and semi-empirical methods. Programs using the 

first-principle method can be categorised into uncoupled and coupled analyses. Uncoupled 

analysis calculates blast loads on a rigid structure and then transfers the obtained loads to a 

responding model of the structure. This method often leads to over prediction of the loads, 

particularly if significant motion or structural failure occurs [23]. In a coupled analysis the 

blast simulation module is directly linked with the structural response module. Using this 

method the displacements in the structure are constantly calculated during the blast 

calculation allowing the pressures and failure of the structure to be more accurately captured. 

Table 2.2 summarises computer programs currently used in the field [23]. 

It is recognised that the prediction of a blast induced pressure field on a structure and its 

response involves highly nonlinear behaviour and therefore it is essential to validate 
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computational methods to available experimental data. Once validated numerical analysis 

provides an extremely powerful tool as it can provide further insight into the damage 

mechanisms which cannot be observed in experiments. 

Considerable studies have been conducted on the dynamic response of RC structural 

components in recent years [121]. Xu and Lu [122] numerically studied the damage 

behaviour of concrete plates subjected to air blast loads and presented an empirical spallation 

criterion that took the complex three-dimensional stress conditions of concrete into account.  

Yuan et al [123] analysed the response of RC slabs under close blast and studied the effects 

of explosive charge weight and reinforcement arrangement on the damage modes. Lin et al 

[124] investigated RC panels subjected to blast loading using the finite element code LS-

Dyna, and explored the effects of charge weight, standoff distance, panel thickness and 

reinforcement ratio on the blast resistance of RC panels. Tai et al [125] analysed a reinforced 

concrete slab under a blast load using the nonlinear finite element analysis software LS-

DYNA. The geometry and results of the finite element model are shown in Figure 2.32. 

Name Purpose and type of analysis Author/ Vendor 

BLASTX Blast prediction, CFD code SAIC 

CTH Blast prediction, CFD code Sandia National Laboratories 

FEFLO Blast prediction, CFD code SAIC 

FOIL Blast prediction, CFD code 
Applied Research Associates, 

Waterways Experiment Station 

SHARC Blast prediction, CFD code 
Applied Research Associates, 

Inc. 

DYNA3D 
Structural response + CFD 

(Coupled analysis) 

Lawrence Livermore National 

Laboratory (LLNL) 

ALE3D Coupled analysis 
Lawrence Livermore National 

Laboratory (LLNL) 

LS-DYNA 
Structural response + CFD 

(Coupled analysis) 

Livermore Software technology 

Corporation (LSTC) 

Air3D Blast prediction, CFD code 
Royal Military of Science 

Collage, Cranfield University 

CONWEP Blast prediction (empirical) 
US Army Waterways 

Experiment Station 

AUTODYN 
Structural response + CFD 

(Coupled analysis) 
Century Dynamics 

ABAQUS 
Structural response + CFD 

(Coupled analysis) 
Simulia Inc. 

Table 2.2. Computer programs that are currently being used for modelling blast effects on 

structures [23] 
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(a) (b) 

Figure 2.32. Finite element slab (a) geometry and (b) damage for a 10 kg charge at a 0.5m 

distance [125] 

Tai et al found that mesh size is very sensitive to shock wave propagation, and that the 

location of damage in the slab is dependent on the amount of reinforcement present in the 

slab. For low reinforcement ratios damage occurred at centre slab, however for increased 

ratios the damage occurred at the supports. 

Additionally,  researchers have conducted numerical simulations in order to investigate the 

dynamic response of RC columns or beams under blast loads [121]. Li and Hao [126] carried 

out numerical simulations on RC columns subjected to blast loading and investigated the 

effects of column dimensions and reinforcement ratio. Shi et al [127] numerically 

investigated a RC column, based on the quarter scale experiment conducted by Woodson and 

Baylot [110]. They used LS-Dyna for the structural assessment, whilst obtaining the blast 

loads acting on the column front face using AUTODYN. After validating the model they 

carried out parametric studies to investigate the effect of column dimension, concrete 

strength, longitudinal and transverse reinforcement ratio on the structural response of the RC 

column. 

Yan et al [121] carried out numerical investigation to study the damage mechanisms of RC 

beams under blast loading (see Figure 2.33). They used experimental results to validate their 

analysis which was conducted using the finite element program LS-Dyna.  
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Figure 2.33. Geometry of the RC beam [121] 

They found good agreement between results of the numerical model and the experiments. 

They observed that in this case the tensile stress wave reflected from the free bottom surface 

of the beam was the major reason for concrete spalling at the bottom. The development of 

two vertical cracks, initiating from the compressive and tensile zones, which met up led to 

spalling of the side-cover concrete, see Figure 2.34. This research demonstrates that 

numerical analysis can add additional information regarding the damage mechanisms 

observed in experiments. 

 

Figure 2.34. Damage comparisons between the experiment and simulation [121] 

When considering complex structures, it is important to consider which components need to 

be taken into account and how to model the material behaviour in these components. On the 
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one hand, as shown in the actual results from bombing, non-load bearing structural elements 

can play a role in the distribution of loads, but on the other hand a very detailed model 

becomes very complex and calculations time consuming. The same thing can be said of 

material modelling - there is a need to find an optimal material model, i.e. the one that will 

give sufficiently accurate results but not lead to complex time consuming analysis. In their 

research Hao et al. [128] note that masonry infills are usually considered as secondary 

structures and excluded from calculations as they introduce unwanted analytical 

complexities. However, neglecting them may lead to inadequate assessment of the structural 

damage of the frames when subjected to intensive ground motions resulting from explosions. 

A two-storey RC frame was used to illustrate this point. The models considered were: a bare 

frame, infill on top floor, infill on bottom floor, full infill on both floors and infill on both 

floors but with openings. The ground motion in this work was derived from a numerically 

simulated underground explosion. The main conclusion of this work is that the stability and 

integrity of RC frames are enhanced with a masonry infill wall; however, the influence of 

masonry infill on the frame response depends on the physical properties as well as the 

geometry of the wall. Besides the response level, the presence of masonry infill also alters the 

damage pattern of the RC frame.  

 

Figure 2.35. Finite element model of RC two storey frame with masonry infill [128] 

Wu  et al  [129] linked a 3D numerical model to the computer program Autodyn3D and 

explored the effect of underground explosions on a two storey masonry structure, a two-

storey and a six-storey RC frame (shown in Figure 2.36) filled with masonry walls. Only 

structural material damage was considered, while possible out of-plane damage of the 

masonry wall owing to rigid body movement was not taken into account. In the two-storey 

RC frame infilled with masonry major damage was in the infilled masonry walls at the first 

storey, while the second storey infilled walls suffered only moderate damage. Compared to 
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the masonry structure damage was less severe in the masonry walls at the first storey. This is 

probably because the stress wave energy propagates along the RC frame to the second storey 

more easily than along the masonry structure so that damage in the infilled masonry walls at 

the second storey was more severe. The RC columns at the first storey suffered major damage 

while the second storey columns experienced only slight damage, implying the vibration 

level of the second storey was smaller than that of the first storey. The RC frame also acts as 

a filter to further reduce the ground motion energy from transmitting to the second storey. 

 

Figure 2.36. Numerical model of a six-storey building [129] 

Wu and Hao [130] investigated two low-rise and one medium-rise RC frames with masonry 

infilled walls. Airblast pressures on the building front face simulated from AUTODYN and 

those on sidewalls, roof and rear walls estimated by the US Army’s empirical formulas were 

used as input in the analysis. The computer program LS-DYNA3D was used in numerical 

calculations. The scaled distances corresponding to the different damage levels of the three 

structures’ models were determined from the numerical analysis. Calculations were carried 

out to determine the corresponding scaled distances to various structural damage levels for 

the different buildings. It was found that under the blast loads from a surface explosion of the 

same scaled distance, the low-rise and medium-rise structures behaved differently, as shown 

in Figure 2.37. For the eight-storey building it is observed that the first-storey columns are 

not blown off, but seriously damaged by the airblast loads, resulting in the collapse of 

structure. Damages to the columns of the building are not as significant as to the columns of 

the one-storey and two-storey buildings because the sizes and reinforcement ratio of the 

columns of the eight-storey building are much larger than those of the low-rise buildings. It 
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was also found that the infilled masonry walls of the medium-rise building suffer more 

damage than those of the low-rise buildings. This is because the RC frame of the medium-rise 

building is more flexible than the low-rise structures, resulting in larger displacement 

response and larger storey drift and therefore more severe damage to the infilled masonry 

walls. 

 

 

 

 

 

 

(a) (b) 

Figure 2.37. Displacements of the (a) two storey and (b) 8 storey buildings at at 1sec after 

explosion at scaled distance 0.5m/kg1∕3 [130] 

An approximate validating  approach was used by Luccioni et al. [107] who numerically 

simulated the collapse of the AMIA building in Buenos Aires, which was attacked by 

terrorists in July 1994. The research was conducted using the hydro code Autodyn. In the 

simulation the complete RC and masonry building was modelled, including non-structural 

elements which were shown to play an important role in the propagation of the pressure 

wave. The blast loading was performed in two stages using the uncoupled approach. The first 

stage simulated the explosion itself and the second part analysed the blast wave generated in 

the first stage and its effect and interaction with the building. Validation of the simulation 

was shown by obtaining a good agreement between the results and photographs of the actual 
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damage in the building. Similarity is also shown between the distribution of the building 

remains and the final stage of the demolition. It is important to recognise that such 

simulations are time consuming, with this the simulation taking 310 hours to complete. 

 

 

Figure 2.38. Finite element model of the AMIA building [107] 

In his research, Esper [131] used both numerical modelling validated by laboratory and on 

site testing to investigate the dynamic response and the assessment of damage to buildings 

and their floor slabs during blast loading. A full 3D finite element model of the building was 

created using ANSYS. The model allowed investigation of the global response of the 

structure and to ascertain if there was any twisting of the structural frame. One of the main 

conclusions, due to the unpredictability of blast load effects was that it was more cost and 

time effective to implement methods such as finite elements to highlight areas of hidden 

damage prior to undertaking extensive intrusive structural investigations. It was also found 

that good detailing of beam-column connections greatly enhanced the building structural 

response to blast loads.  
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2.5.3. Methods Employed in Practice 

2.5.3.1. SDOF Models 

Single degree of freedom (SDOF) models have been widely used for predicting the dynamic 

response of RC structures subjected to blast loading [132]. The SDOF method is the most 

commonly approximate method used in industry for blast loading [133]. The relative 

simplicity and fewer required inputs of the SDOF method make it a popular and cost 

effective approach to blast resistant design. The ease of calculation also led to the SDOF 

method being widely adopted in design codes, such as the US TM codes [134].The results are 

highly dependable on how closely the response mode shape and resistance function resemble 

actual material and structural behaviour [132]. 

The SDOF method originally proposed by Biggs [135] uses a series of factors to evaluate the 

parameters of the system to be analysed, namely mass (M), stiffness (k), damping (c) and 

external applied force (F), so that the SDOF system is equivalent to the analysed structure. 

 

Figure 2.39. Simple SDOF system [133] 

In this method the parameters of the governing equation of motion corresponding to 

distributed mass are replaced by equivalent values of a simple lumped-mass spring system. 

Such equivalency is based on energy approximations that rely on an assumed deflection 

shape of the RC structure (usually corresponding to the first eigenvector of the response).  

Despite its popularity, this method is associated with complications since even the application 

of static loading to concrete structures can lead to cracking and the development of a complex 

triaxial stress field within the highly nonlinear concrete medium [136]. In the case of blast 

loading the complexity is further accentuated since the stress wave is formed by application 

of external load propagation from the blast source point throughout the concrete medium. 
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Using simplified methods such as the SDOF iso-damage curves can be quickly generated. 

The most common in the area of blast studies is the pressure-impulse (P-I) diagram which 

provides an easy way to mathematically relate a specific damage level to a combination of 

blast pressures and impulses imposed on a particular structural element, see Figure 2.40. This 

method will be extensively covered in Chapter 3. 

 

Figure 2.40. Pressure-Impulse diagram 

 

2.5.3.2. Equivalent Static Methods 

The truss analogy (TA), which was originally developed over a century ago [137], forms the 

basis of the design procedures which are present in most current Codes of Practice 

[89,138,139]. In the 1970s the use of the TA method was extended to describe RC structures 

at their ultimate limit state by incorporating concepts such as strain softening, aggregate 

interlock and dowel action [140]. A simple description of an RC beam at its ultimate limit 

state as a truss is presented in Figure 2.41. The structure starts behaving like a truss once 

inclined cracking occurs, with the compressive zone and the flexural reinforcement forming 

the longitudinal struts and ties, respectively, the stirrups forming the transverse ties, whereas 

the cracked concrete of the element web is assumed to allow the formation of inclined struts. 

 

Figure 2.41. Truss modelling function of an RC beam at its ultimate limit state [140] 
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Although widely used due to its simplicity, the TA method is not without drawbacks. There 

are examples indicating that the concepts of the TA method, which form the basis of current 

codes of practice, do not account for the observed unexpected premature brittle types of 

failure suffered by RC structures in situations of overload [140]. Such examples include the 

collapse of the “Sleipner 4” platform in the North Sea which has been attributed to the 

inadequacy of the ACI shear design provisions [141] and the collapse of a multilevel car park 

in Wolverhampton due to punching of the top level flat slab under dead load only [142], see 

Figure 2.42. 

 

Figure 2.42. Pipers Row Car Park, Wolverhampton Partial Collapse, March 1997[143] 

A widely acknowledged alternative method of assessment is the compressive-force path 

(CFP) method. This method, developed by Kotsovos [140], is based on the beams’ loading 

capacity and failure mechanism being related to the region of the member containing the path 

of the compressive stress resultant which develops within the beam due to bending, just 

before failure occurs. This method provides a realistic description of the causes which dictate 

the various types of beam behaviour as established by available experimental data.  

The CFP method assumes that an RC structural element at its ultimate limit state behaves 

essentially as an arch-like structure (for the case of a simple supported beam) or a system of 

arch-like structures connected at the point of contraflexure (in the case of more intricate 

structural configurations characterised by static indeterminacy). The latter type of behaviour 

is enforced by the available reinforcement. The CFP method [140] accounts for the brittle 

nature and triaxiality characterising concrete material behaviour. It assumes that the area of 

the compressive zone has a significant effect on shear capacity while the contribution of 

aggregate interlock and dowel action is ignored. Failure is considered to occur due to the 
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development of transverse tensile stresses at specific locations along the path followed by the 

compressive force. These locations are dependent on the value of the shear span-to-depth 

ratio. Four distinct behaviour patterns can be identified. 

Type I behaviour is characterised by a flexural mode of failure preceded by longitudinal 

splitting of the concrete in the compressive zone of the beam. This occurs when concrete 

strength in the compressive zone is exhausted due to the development of transverse tensile 

stresses induced by volume dilation of concrete in the adjacent regions which include primary 

flexural cracks. This allows the maximum stresses developing within the compressive zone of 

the beam to attain values approximately equal to 1.5 times the uniaxial compressive strength 

of concrete fc. 

Type II behaviour is characterised by a brittle mode of failure usually caused by tensile 

stresses developing either in the region of change of the CFP direction (location 1 in Figure 

2.43) or in the region of the cross-section where the maximum bending moment combines 

with the shear force (location 2 in Figure 2.43). The transverse stress resultant at location 1 is 

considered numerically equal to the acting shear force, and, its effect is considered to spread 

over a distance d, on either side of location 1. 

 

Figure 2.43. RC beam exhibiting type II behaviour 

Type III behaviour, for which location 1 coincides with location 2 (i.e. the compressive zone 

into the shear span degenerates into a cross section within the shear span) is characterised by 

a brittle mode of failure caused by the deep penetration of the inclined crack into the 

compressive zone of the beam. This crack reduces the strength of the uncracked concrete in 

the compressive zone on the region where the inclined and the horizontal compressive path of 

the model meet (region 1, Figure 2.43), which causes a reduction on the flexural capacity of 

the beam.  
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Type IV behaviour can be characterised by two modes of failure linked with either failure of 

the horizontal element of the CFP model or failure of the uncracked end portion of the beam 

(inclined leg of the ‘frame’ of the CFP model) in compression. From the moment equilibrium 

of the free body in Figure 2.44, the flexural capacity (Mf) can be easily calculated and 

consequently the associated load-carrying capacity can be determined. 

 
 

(a) (b) 

Figure 2.44. Internal actions developing in a RC beam exhibiting (a) type III and (b) type IV 

behaviour  

 

2.6. Limitations of Existing Assessment Methods 

Experimental Methods: Due to the complexity of setup, safety issues and cost there are only a 

limited number of available experiments related to structures subjected to explosions. Full-

scale experiments are mostly conducted by the military, and therefore only limited 

information is available to non-military researchers. More data can be found regarding blast 

experiments on structural elements, such as plates, beams and columns; however, the amount 

is still limited. In recent years there have been some experiments which aim to simulate blast 

loads, such as blast load simulators and impact experiments. 

The main limitations with such experiments are due to the extremely fast loading and 

destructive effect on the structural elements. Such tests are difficult to conduct as the 

intensity of the loads generated increases rapidly (in a few msec) from zero to a maximum 

value often leading to explosive brittle forms of failure which can in turn damage the 

instruments employed for measuring structural response. Data obtained from such tests is 

characterised by considerable scatter partly due to a wide range of parameters (associated 

with the experimental setup and the specimen) which differ from test to test [144–146]. This 

scatter predominantly reflects the difficulty in correlating the measured response to the actual 

physical state of the specimens; in fact, the measured maximum value of imposed load 

frequently corresponds to a specimen physical-state characterised by high concrete 
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disintegration as well as low residual load-bearing capacity and stiffness [145,146]. This 

stage of structural response has little practical significance as it depends heavily on post-

failure mechanisms for transferring the applied loads to the specimen supports.  

Methods Employed in Practice: In order to simplify the analysis and design procedures, many 

design codes employ equivalent simple lumped mass-spring systems for modelling individual 

structural elements with distributed mass and loading [147]. The equivalence is based upon 

energy approximations that rely on an assumed deflected shape (the first eigenvector or the 

deflected shape under equivalent static loading). The latter methodology relies on a number 

of simplifications/assumptions concerning both material behaviour and structural response. 

These include the use of simple uniaxial material laws, the description of post-failure 

behaviour, empirical amplification factors attributed to the strain-rate sensitivity of concrete 

behaviour, assumptions concerning the deformed shape of the structural elements and the use 

of elastic or elasto-plastic laws for describing structural behaviour. However, such 

simplifications do not allow the methodology to account for the brittle nature of concrete and 

its sensitivity to triaxial stress conditions, the true mechanics governing RC structural 

response as well as the localised response often exhibited.  

Furthermore, as a structure responds to blast loads primarily at their local modes [127] these 

may govern the structural damage, especially when the blast load is of short duration. 

Therefore, the use of an SDOF model may not be suitable to analyse structural damage under 

blast loads. Moreover, the SDOF model is not suitable to model multi-failure modes of a 

structural component either. For example, a column might be damaged owing to shear failure 

initially and subsequently by flexural failure to collapse. Therefore, pressure–impulse 

diagrams generated from the analysis of a SDOF system may not give an accurate prediction 

of structural damage. 

Nonlinear Finite Element Analysis: Detailed nonlinear finite element analysis is a widely 

used efficient method for investigating a wide range of structural forms, materials and loads. 

It is capable of providing more detailed insight on the mechanisms underlying RC structural 

response under blast loads. These results are limited by the element and material assumptions 

employed by each finite element program. Detailed modelling is very complex and is limited 

by computational methods and assumptions and requires an experienced analyst [148]. 

Additionally, as it usually employs dense 3D finite element meshes, combined with complex 
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constitutive material laws implemented through the use of iterative solution strategies, the 

required computational resources are high.  

 

2.7. Concluding Remarks Concerning RC Structural Response under Blast 

Damage can affect both the global structural behaviour and the local structural behaviour. 

Generally, the global response is a consequence of transverse loads with long exposure time 

and is usually associated with global membrane (bending) and shear responses [23]. Within 

the four different modes of shear failure that can occur during both static and dynamic 

loading (diagonal tension, diagonal compression, punching shear, and direct shear) direct 

shear is associated with transient short duration dynamic loads that result from blast waves 

and depends mainly on the intensity of the pressure waves. The high shear stresses may lead 

to direct global shear failure and may occur within a few milliseconds of shock wave arrival 

to the frontal surface of the structure which can be prior to any significant bending 

deformations [149]. This shift in the deformation profile, as compared to the static case, 

means that the effects of cracking are felt closer to the supports and that the cracking 

mechanism is different. As the codes used to design structures to withstand blast loads [134] 

assume the same cracking process as in the static case, this is something that requires further 

investigation. The effect of steel reinforcement in the concrete is also crucial for the energy 

absorbing capacity of the structural concrete elements, and thereby the capacity to withstand 

blast and fragment loading and avoid structural collapse [149].  

Local failure depends mainly on the distance of the blast source and the relative strength and 

ductility of the structural elements. Local failure such as localised shear or flexural failure 

can occur in the closest structural elements. Localised shear failure takes the form of 

punching and spalling, which produces low and high speed fragments. The punching effect is 

well known in high velocity impact applications and close range explosions. This type of 

failure is usually accompanied by spalling and scabbing of concrete covers as well as 

fragments and debris. Generally local damage does not lead to global failure, and indeed a 

certain amount is allowed to occur. The presence of reinforcing steel bars may limit the 

damage done by spalling and scabbing since they hold the concrete in place [149]. 
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Chapter 3:  Pressure Impulse Diagrams 

3.1. Introduction 

The pressure-impulse (P-I) diagram method is a effective tool widely used for the analysis, 

assessment and preliminary design of structures subjected to extreme loads such as those 

generated during explosions. P-I diagrams are used for relating the structural response (e.g. 

beams, plates, shells) to certain characteristics of the imposed loading (peak load, duration, 

loading rates, etc.) [1]–[3]. Each curve of the P-I diagram describes a certain level of damage 

sustained by the structural component or structure considered and can be potentially used for 

assessment of structural safety and resilience. This method is recommended by various 

design codes [4]–[12].  

This chapter begins with a comprehensive discussion of the P-I diagram method, a review of 

the existing approaches for the derivation of P-I diagrams and an extensive state-of-the-art 

review of existing formulae used for analytically describing the form of the curves consisting 

the P-I diagrams. These approaches are classified and discussed on the basis of the techniques 

and algorithms used, while the formulae (which describe analytically the subject P-I 

diagrams) are categorised according to the procedures adopted for their 

formulation/derivation.  

Further in the chapter, the efficiency of the P-I diagram method is examined using an elastic 

beam subjected to a transverse load. Different spatial load distributions and time histories 

typically used in modelling of extreme and accidental loading events, such as blast loads, are 

presented and discussed. P-I diagrams are built for the elastic beam under a uniformly 

distributed pressure load and a number of different time histories. The accuracy of several 

existing P-I curve formulae is then assessed using the derived P-I diagrams.  

3.2. Literature Review 

The analysis of (i) data obtained from extensive air blast tests conducted during 1940’s and 

1950’s at Aberdeen Proving Ground in Maryland, USA [13] and (ii) the damage caused to 

houses by bombs dropped on the UK during the Second World War [14] indicated that P-I 

diagrams were well suited to describe the damage caused by explosions. In early applications, 

the P-I diagrams derived from the analysis of the level of damage sustained by masonry  

houses when subjected to blast loads were successfully applied for the assessment of small 

civil and industrial buildings [14]. Further attempts to derive P-I diagrams for structures, 
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humans and military targets using experimental, analytical and numerical methods were made 

in 1950’s [15], [16], 60’s [17]–[21] , 70’s [1]–[3], [22]–[28] and 80’s [4], [29], [30]. It was 

reported in [3], [4] that the level  of damage sustained by structures or structural components 

due to blast loads can be predicted using a unique scaling law which was formulated 

depending on the normalised target distance and the explosion intensity (associated with the 

quantity and type of the explosive material used to generate the explosion). The extent of 

damage was found to be highly sensitive to the form of the pulse and the load rise time [15], 

[25].  

Nowadays, the P-I diagram method is a well know and widely used technique for assessing 

the peak load and the residual (post-loading) behaviour (e.g. stiffness, load-bearing capacity) 

of a structure or a structural element subjected to a blast load [5]–[12], [15], [24], [28], [29], 

[31]–[47], [47]–[64] as well as the evaluation of the safe stand-off distance by overlaying 

additional ‘range-charge weight’ curves [28], [32], [42]. The P-I diagrams are usually built 

for certain types of individual structural elements, e.g., beams, columns, walls, plates, etc., 

though the application of P-I diagrams to frames [4] and even whole buildings [65] is also 

possible. Since the description of the load in the P-I diagram method includes the load time 

history, both maximum pressure and impulse can be evaluated for a chosen failure criteria. 

Essentially, the P-I diagram is an iso-damage curve [24], [29], [32], [66]  since, the P-I curve 

represents a specific level of damage caused to the structure by different combinations of 

pressure and impulse. It can be seen as a boundary between states characterised by different 

levels of damage. Each P-I curve is built for a unique combination of loads acting on a 

specific structural configuration/form and for a specific level of damage and type of failure. 

Even slight variations in structural geometry, material parameters or in the time history of the 

load immediately invalidate the diagram. This high sensitivity of the P-I diagrams to various 

parameters has been intensively studied. The following lists the specific aspects influencing 

the P-I diagrams: 

 geometrical dimensions [38], [58], [60], [67]–[70] 

 ductility [35], [51], [57], [68] 

 strain rate [51] 

 damping ratio [35], [50] 

 longitudinal and hoop reinforcement ratios [16], [38], [58], [70] 

 reinforcement configuration [55], [69] 
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 material nonlinearity [54], [61], [63], [64], [71] 

 concrete strength [16], [38], [58], [70], [71] 

 reinforcement strength [16], [38] 

 strength and thickness of FRP retrofitting wraps and strips [53] 

 axial force [39], [41], [44] 

 number of degrees of freedom [57] 

 load time history [25], [28], [30], [33], [34], [36], [41], [45], [46], [59], [63], [71] 

Consequently, the P-I diagram method lacks flexibility to a certain extent and could be quite 

cumbersome especially when it is used for a multi-parametric structural analysis, e.g., for 

assessment of different degrees of damage in similar structures under different load cases. In 

this situation a number of P-I curves representing different degrees of structural damage for 

each geometry, material properties or loading conditions have to be built [13], [16], [20], 

[35], [38], [39], [41], [42], [44], [46], [50], [51], [53]–[55], [57]–[60], [63], [67]–[71]. 

It is necessary to point out that the P-I diagram is actually a particular case of a more general 

load-impulse diagram [66]. Abrahamson and Lindberg [28] called the P-I diagram the “peak 

load-impulse characterisation scheme”. The peak load vs. impulse diagram was used in [35], 

[67] for assessing the response exhibited by a reinforced concrete (RC) beam when subjected 

to a concentrated impact load. The popularity of the P-I diagram method led, nevertheless, to 

the use of this term even when other types of loads were considered [29], [32], [35], [67]. 

A typical form of the P-I diagram, as illustrated in Figure 3.1 and its shape forms a close fit to 

a rectangular hyperbola. 
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Figure 3.1. Normalised P-I diagram 

In Figure 3.1, 𝐺 is the limit state function representing the degree of structural damage 

sustained due to the application of a specific load type which can be expressed as [33], [34], 

[36], [40], [47], [47], [48], [72] 

G(I, P) = λ/λmax  (3.1) 

where  is the failure criterion. The region of the diagram for which  𝐺  1 corresponds to the 

state of structural failure. 𝐺 can also represent the degree of structural resilience/safety if its 

formulation in Eq. (3.1) is changed to 𝐺(𝐼, 𝑃) = 1 − 𝜆/𝜆𝑚𝑎𝑥 [15], [41]. Different studies 

have adopted different definitions for  associated with different aspects of the exhibited 

structural response such as: the principle deflection at mid-span of a structural element [4], 

[24], [28], [29], [33], [34], [38], [40], [41], [43]–[46], [50], [52], [55], [57], [61], [63], [64], 

[68]–[71], [73] or at its supports [40], [50], [52], [60], [70], the maximum sideway 

deflections and maximum rotations [4], the residual axial load-carrying capacity [37], [38], 

[53], the maximum strain [56], [74], von-Mises yielding criterion [24], [29] and Tresca 

yielding criterion [30]. It is important to note here that the maximum mid-span displacement 

is not a reliable parameter to measure in a damaged structure, especially when brittle modes 

of failure are exhibited. Therefore, the residual axial load-carrying capacity and other 

structural parameters, such as residual flexural and shear strength represent a much better 

choice in the evaluation of the structural damage level. 
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A typical P-I curve can be divided into a vertical asymptote, a hyperbolic curve and a 

horizontal asymptote as shown in Figure 3.1. These three parts represent the following 

regimes: (I) an impulsive regime, (II) a dynamic regime and (III) a (quasi-)static regime [29], 

[33], [38], [39], [42], [46], [49], [53], [57], [64]. In the case of a normalised P-I diagram the 

position of the horizontal asymptote varies from 0.5 to 1.0 and strongly depends on the initial 

part of the load time-history [66]. When the load increases slowly without generating any 

inertia effects, the asymptote crosses the normalised pressure axis at 1.0 and is called static. 

When the load has zero rise time, i.e., step load, the inertia effects are generated and the 

asymptote crosses the normalised pressure axis at 0.5. The latter asymptote is called quasi-

static. For a load with a relatively short rise time (time from load start to peak) the position of 

the (quasi-)static asymptote is in between 0.5 and 1.0 depending on the degree of the inertia 

effects generated [66]. Further in this work, the horizontal asymptote is referred to as static or 

quasi-static depending on the form of the imposed pulse load. When the loading regime is not 

defined as either static or quasi-static, the asymptote is referred to as (quasi-)static. The P-I 

curve in the dynamic domain is also sensitive to the load rise time, thus loads with finite rise 

time may result in series of peaks and dips in the elbow of the curve [66]. This is 

demonstrated by the P-I diagram generated using the sinusoidal time history later shown in 

Section 3.5.  

The impulsive and (quasi-)static asymptotes are distinctive features of the P-I curves. The 

orientations of the asymptotes in parallel to the abscissa and ordinate practically eliminate 

influence of impulse or pressure in the (quasi-)static and impulsive regimes, respectively, 

while in the dynamic regime both pressure and impulse are important. Therefore, these three 

regimes are also called: (I) impulse controlled, (II) pressure-impulse controlled and (III) 

pressure controlled regime [11]. As mentioned earlier in this section, the shape of the impulse 

affects only the pressure-impulse controlled regime in a normalised P-I diagram [33]–[35], 

[66].  

The impulsive, dynamic and (quasi-)static regimes depend on the load duration t0 and the 

time of maximum structural response tm Figure 3.2. A structure is considered to be in the 

impulsive regime (Figure 3.2a) when its maximum response occurs in the post-loading phase, 

well after the loading ends, i.e., t0<<tm. In the (quasi-)static regime the maximum structural 

response develops at the early stage of the loading phase (i.e., t0>>tm), while the load P0 

remains approximately constant (Figure 3.2b). In the dynamic regime, the structure reaches 

its maximum response near the time of the load end, i.e., t0≈tm (Figure 3.2c). 
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(a) (b) (c) 

Figure 3.2. Load-response regimes: (a) impulsive, (b) quasi-static and (c) dynamic 

It is important to note that the P-I diagram is commonly applied to describe the response of 

structures subjected to pulse pressure loads generated by external blast loads. The 

applicability of P-I diagrams for internal (confined) blast loads is complicated by the fact that 

typical confined explosions  are characterised by very irregular pressure time histories with 

multiple peaks, longer lasting gas pressure and so without any distinguishable pulse load 

shape [62]. The reason for the irregularity of the pressure time history lays in multiple 

reflections of the blast waves from surrounding surfaces. This topic is not be considered  in 

this work. 

3.3. Derivation of P-I diagrams 

The process of deriving P-I diagrams usually consists of two stages. The first stage focuses 

on assessing experimentally, analytically or numerically the degree of damage sustained by 

the structural element considered, thus creating a point on the P-I plane. In the second stage 

the next most suitable point on the P-I plane is searched for using an algorithm. Due to the 

high sensitivity of P-I diagrams to various factors associated with the form of the imposed 

load and the structural form considered, the choice of a suitable: (i) method for 

studying/predicting/determining the structural response and (ii) search-algorithm is essential 

for the derivation of the P-I diagram. The methods employed for predicting the structural 

response and the search algorithms adopted are discussed below. 

3.3.1. Methods of investigating structural response 

There are three methods employed for predicting structural response exhibited under high 

rate loading conditions (i.e. associated with blast and impact problems) that are commonly 

applied for the derivation of single points on the P-I plane. They can be classified as 

experimental (i.e. drop-weight or shock-tube tests), analytical or semi-analytical (i.e. based 

on the use of simplified models that can provide analytical expressions describing certain 
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aspects of structural response) and numerical modelling (based on the use on nonlinear 

dynamic finite element analysis). 

3.3.1.1. Experimental methods 

The experimental methods employed for the assessment of the structural response (see 

Section 2.5.1) exhibited due to blast loading have many restrictions mostly introduced by the 

safety requirements during tests involving explosions and budget constraints. Furthermore, as 

a result, the number of tests is usually limited and the test data are not sufficient for 

derivation of whole P-I curves. Additionally, experimental results are often obtained with a 

significant degree of scatter due to the uncertainties associated with materials, geometry, 

supporting and loading conditions, etc. This scatter predominantly reflects the difficulty in 

correlating the measured response to the actual physical state of the specimens; in fact, the 

measured maximum value of imposed load frequently corresponds to a specimen exhibiting 

high concrete disintegration as well as low residual load-bearing capacity and stiffness [75], 

[76]. This stage of structural response has little practical significance as it depends heavily on 

post-failure mechanisms for transferring the applied loads to the specimen supports. In view 

of the above, it is difficult to obtain detailed insight into the mechanisms underlying RC 

structural response from available test data.  

The aforementioned drawbacks led to the development of  supporting techniques that extend 

limited sets of test data for derivation of whole P-I curves [68], [69], [71], [74]. This 

technique is based on using a single-degree-of-freedom (SDOF) system which has been 

calibrated using available test data. 

3.3.1.2. Analytical methods of structural analysis 

The most basic analytical method utilises a SDOF system [11], [24], [28], [29], [32]–[34], 

[36], [38], [40], [42], [45], [52], [55], [57], [61], [63], [64], [71], [77]. A typical SDOF 

system simulates the response of an individual structural component and consists of an 

equivalent mass, stiffness and often damping. The stiffness is modelled using a resistance-

deflection relationship, which can differ in complexity (e.g., linear, bilinear and multi-linear) 

and can account for material and/or geometrical nonlinearities. The SDOF system is 

formulated to simulate the dominant response of a structure, which in the case of dynamic 

analysis is the fundamental mode of vibration. As a result, the SDOF system is modelled to 

fail in accordance with the dominant mode of structural failure. Since local modes of failure 

may be governing the response of the structure to the blast load, the SDOF model may lead to 
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an invalid estimate of the post-loading structural condition, especially when the loading is 

impulsive [38], [40], [52], [55], [57]. Additionally, the SDOF system cannot be used for 

modelling multiple interacting modes of failure. Special techniques were developed to 

overcome these drawbacks. For example, a model consisting of two loosely coupled SDOF 

systems was applied to take into account both the shear and flexural modes of failure of RC 

beams subjected to localised impact loads [52] and RC slabs under uniformly distributed 

blast loads [47]. Another technique was developed based on considering transverse velocity 

fields generated during failure of a rigid-plastic beam [40]. This enabled multiple shear, 

flexural and combined modes of failure to be taken into account (see Section 3.4.1 for further 

discussion).  

3.3.1.3. Nonlinear finite element analysis (NLFEA) 

The most popular numerical approach for derivation of P-I diagrams is the finite element 

(FE) method [37], [38], [43], [44], [49], [53], [55], [56], [78]. It utilises advanced numerical 

algorithms and is the most versatile and robust modelling approach. Several advantages of the 

FE method include high level of structural detailing, the possibility of capturing multiple and 

combined failure modes, the use of separate complex nonlinear material models in one FE 

model, and the use of complex interaction models, e.g., for modelling the bond between 

concrete and steel reinforcement. The major drawback of the FE method lies in the fact that 

the increasing model complexity leads to a dramatic increase in computation time. This can 

further increase when multiple analyses are needed due to the probabilistic nature of the 

problem. NLFEA is used as a safer and more efficient method for investigating a wider range 

of RC structural forms. It is capable of providing more detailed insight on the mechanisms 

underlying RC structural response under high-rate loading compared to drop-weight testing. 

However, as it usually employs dense 3D finite element meshes, combined with complex 

constitutive material laws implemented through the use of iterative solution strategies, the 

required computational resources are high. As a result, its use is generally limited to the 

analysis of relatively simple structural forms. Moreover, its ability for providing realistic 

predictions of RC structural behaviour is, in most cases, linked with the use of case-study 

dependent constitutive models often incorporating empirical amplification factors to account 

for the effect of strain-rate sensitivity on concrete material behaviour [79]. 
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3.3.1.4. Combined methods 

One possible method for the reduction of computational time is based on derivation of an 

equivalent SDOF system [37], [42], [46], [59], [66] from a detailed FE model. In this method 

a displacement-controlled nonlinear static FE analysis of a structural element is applied to 

obtain a displacement-resistance function, equivalent load and mass characteristics needed 

for the SDOF model. Li and Hao [80] developed a two-step method, which represented a 

symbiosis between the analytical and numerical methods, to improve computational 

efficiency in the modelling of structures under blast loads. This method was based on the 

separation of the analysis process into the forced and free vibration phases. The forced 

vibration phase was analysed using an elastic-plastic SDOF system while the free vibration 

phase using a detailed FE model. The authors improved the SDOF system originally 

proposed by Biggs in [77] by including the shear mode of failure additionally to the flexural 

one. The continuity between the phases was achieved through the application of the 

deflection and velocity profiles obtained from the SDOF model as initial conditions in the FE 

model. As a result, this method did not lose the accuracy of the results due to inherent 

assumptions of the SDOF system. 

El-Dakhakhni et al [57] developed another computationally efficient numerical method which 

was based on a multiple degree of freedom (MDOF) system derived using a lumped mass 

approach. The MDOF model was obtained through the discretisation of a structural element 

into a number of segments. The mass, material and mechanical properties of each segment 

are concentrated at its centre (i.e., node) leading to a model consisting of a series of discrete 

connected nodes. Dynamic analysis of this model was carried out using the finite difference 

technique. 

3.3.2. Search Algorithms 

The derivation of P-I diagrams using linear analytical models, e.g., an elastic SDOF model, is 

usually straightforward and requires only algebraic manipulations on the analytical 

expressions of model deflections. An illustrative example of such procedure is given below in 

Section 3.5.2. Complex nonlinear analytical models, as well as the experimental and 

numerical methods, require application of search algorithms for tracing the P-I limit states. 

These search algorithms can be generally divided into basic and advanced ones. Although 

any experimental, analytical or numerical method can potentially be used with any search 

algorithm, the application of certain methods together with certain algorithms can be limited 
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by a number of practical and economic factors. For example, it is common to apply the 

experimental methods in combination with a basic search algorithm because the limited 

budget of a test programme and the uncertainties associated with the procedure render the 

application of more advanced search procedures impossible ([68], [69], [71], [74]). In current 

practice, both the sophisticated SDOF and FE models are used together with the basic search 

algorithms (e.g., [37], [38], [49], [53], [55], [56]), while only the SDOF models are used with 

the advanced ones ([47], [48], [72]). 

The basic algorithms rely on generating a sufficient number of threshold points followed by 

curve fitting using single or multi-parametric regression analysis techniques. In this case each 

point on the P-I curve may be the result of a large number of tests or analyses. This may be 

expensive in the case of the experimental method or time consuming when the FE method is 

used. The derivation of P-I diagrams can be carried out using either a pressure-controlled, an 

impulse-controlled or a mixed one-directional searching algorithm, as shown in Figure 3.3.  

 

Figure 3.3. Numerical derivation of P-I diagrams 

The pressure-controlled search is based on the gradual increase of the duration of the blast 

load 𝑡0 (and hence its impulse) in each simulation, while maintaining the peak pressure 𝑃0 

constant (see Figure 3.4a). The duration 𝑡0 is increased till the limit state condition (e.g., 𝐺 ≤ 

1, see Eq. (3.1)) is satisfied. This search results in a horizontal series of points on the P-I 

plane for each 𝑃0 (see Figure 3.3). The impulse-controlled search is based on the gradual 
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increase of 𝑃0 in each simulation till 𝐺1. In this case, 𝑡0 is gradually decreased in order to 

keep the impulse 𝐼 constant (see Figure 3.4b). This searching algorithm results in a vertical 

series of points on the P-I plane generated for each 𝐼 (see Figure 3.3). In the mixed search 

both 𝑃0 and 𝐼 (and so 𝑡0) gradually increase in accordance with a certain linear 

proportionality rule 𝑃0 = 𝛼𝐼 (see Figure 3.4c), where 𝛼 is a proportionality coefficient. This 

searching algorithm results in a series of points along an inclined line emerging from the 

origin of the P-I coordinates (see Figure 3.3). The inclination angle of the line is governed by 

𝛼.  

   

(a) (b) (c) 

Figure 3.4. Search algorithms for the derivation of P-I diagrams: (a) Pressure-controlled, (b) 

impulse-controlled and (c) mixed search algorithms 

It is important to emphasise again that each point on the P-I plane represents the result of a 

single computational simulation of an explosion incident. It is highly unlikely that any point 

on the P-I plane calculated using the FE analysis will exactly correspond to the case when 𝐺 

= 1 (see Figure 3.3). Therefore, linear or nonlinear interpolation methods are used by 

researchers to realistically determine the location of each threshold point on the P-I curve. 

Figure 3.3 shows an arbitrary example of the derivation of a P-I diagram for 70% structural 

damage (𝐺 = 0.7). As can be seen, the pressure-controlled approach is in essence a horizontal 

searching algorithm, the impulse-controlled approach is a vertical searching algorithm, 

whereas the mixed approach is a polar search algorithm. The pressure-controlled search is 

especially suitable for derivation of the impulsive asymptote, the impulse-controlled search 

for the (quasi-)static asymptote, while the mixed search for the part of the P-I curve in the 

dynamic regime. Shi et al [38], for example, applied pressure-controlled and impulse-

controlled searching algorithms for the derivation of the impulsive and static asymptotes for 

20%, 50% and 80% of structural damage in a RC column. The asymptotes were further used 
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as input for the closed-form P-I diagram (presented below in Eq.(3.28) of Section 3.4.1). 

Finally, it should be noted that the combination of these three search algorithms seems to be 

the most efficient approach for the derivation of P-I diagrams. However, despite its potential 

efficiency the combined searching algorithm is not used. In practice, the pressure-controlled 

search is the most popular approach used in many studies (e.g., [37], [38], [49], [53], [55], 

[56]), probably due to the convenience of changing only one parameter, i.e., 𝑡0. 

The advanced search algorithms employed for the derivation of P-I diagrams [47], [48], [72] 

were originally developed using analytical methods. They can be divided into two types of 

sophisticated search procedures: the point-to-point progress (two directional searching) and 

single point search (one directional searching). In the former procedure, the search for a new 

point depends on the locations of previously found points, while in the latter there is no such 

dependency. These algorithms also differ in computational intensity and stability. 

Rhijnsburger et al [72] developed the branch-tracing algorithm, which consists of the 

predictor and corrector stages. In the predictor stage, a new point is located using 

extrapolation of the slope obtained from the previously calculated points. In the corrector 

stage, the point location is further adjusted through step by step converging onto the P-I curve 

until the limit state condition of Eq. (3.1) is satisfied within a certain tolerance. 𝐺 was 

formulated similarly to [33] as the ratio between the maximum displacement calculated for 

the pressure and impulse at the current point, to the displacement at yield. This algorithm was 

found to be unstable due to necessity of time discretisation [35], [47]. 

Soh and Krauthammer [47] proposed a search algorithm based on a large number of dynamic 

analyses performed for combinations of each pressure and impulse sets within limits 

specified by the impulsive and (quasi-)static asymptotes. This method is numerically stable, 

but considerably more expensive computationally.  

Ng and Krauthammer [47] developed the ‘threshold curve’ algorithm which is similar to the 

bisection method. In this numerical procedure each new point is found by setting a new 

constant value of pressure and gradually converging onto the P-I curve from both sides by 

increasing/decreasing the impulse with smaller and smaller increments till 𝐺(𝐼, 𝑃) ≈ 1. This 

method is also computationally expensive since a large number of analyses are needed to 

generate a sufficient amount of points on a P-I curve.  

Blasko et al [48] derived normalised P-I curves using the bisection method in a polar 

coordinate system. This method starts by setting the origin (pivot point) of the polar 
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coordinate system in the ‘damage’ zone, i.e., where 𝐺(𝐼, 𝑃) > 1. The region of searching is 

on the P-I plane and the angle of increment, which is directly related to the number of 

searched points, is defined. Each point of the P-I curve is searched for on a line connecting 

the polar origin and the abscissa 𝐼 or the ordinate 𝑃 using the bisection method till 𝐺(𝐼, 𝑃) ≈

1. New points are found by increasing the angle of line inclination and repeating the search. 

The authors noted that the ideal location of the polar origin lay on the line connecting the 

origin of the P-I coordinate system and the point of intersection of the impulsive and (quasi-

)static asymptotes. A randomly selected origin might reduce the efficiency of the method, 

since the origin could be too close to or too far from one or both asymptotes. 

3.4. Classification of P-I diagrams 

The final step in the process of derivation of a P-I diagram is the fitting of the points obtained 

on the P-I plane to derive a formula describing the whole P-I curve. Various formulae 

describing the P-I diagram have been proposed in the literature starting from 1950’s. 

Generally, the P-I curve equations can be divided into three groups: closed-form, open-form 

consistent and open-form mixed formulations. 

3.4.1. Closed-form formulation 

A P-I curve equation is classified here as closed-form when all the impulsive, dynamic and 

(quasi-) static regimes are described by a single analytical expression. One of the first closed-

form P-I diagram formulae was suggested by Sperrazza [13] based on the analysis of the 

results of blast tests 

(𝑃0 − 𝑃𝑐𝑟)(𝐼 − 𝐼𝑐𝑟) = 𝐶   (3.2) 

where 𝑃0 is the peak pressure, 𝐼 is the total impulse delivered by the blast, i.e., the area under 

the pulse load time history 𝑃(𝑡), 𝑃𝑐𝑟 and 𝐼𝑐𝑟 are the step load and zero duration impulse 

required to produce the critical displacement, e.g., at the onset of plastic deformations, and 𝐶 

is the constant determined from the fitting to experimental results. The total impulse 𝐼 was 

defined in an integral form as 

I = ∫ P(t)dt
tf

ts

 
  (3.3) 

 

where 𝑡𝑠 and 𝑡𝑓 are the times of the start and finish of the part of the 𝑃(𝑡) curve with 𝑃(𝑡) >

𝑃𝑐𝑟.  
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Expression (3.2) was found to be sensitive to the shape of the 𝑃(𝑡) curve [2], [6], [9]. 

Capitalising on the analysis of rigid-plastic structures (beams, circular plates, circular and 

cylindrical shells, etc.) under transient distributed and localised loads, Youngdahl [25] 

suggested that the shape dependency could be effectively eliminated by introducing an 

additional parameter derived from the pulse load time history, namely, the characteristic time 

𝑡̅ defined as:  

t̅ =
1

I
∫ (t − ts)P(t)dt

tf

ts

 
  (3.4) 

 

Note that 𝑡̅ represents the location of the centroid of the critical pulse loading area 

corresponding to the time of the onset of the critical displacement, 𝑡𝑠. To determine 𝑡𝑠 and 𝑡𝑓 

in the case of a complex shape of the 𝑃(𝑡) curve, Youngdahl introduced an iterative 

procedure based on the equality 

𝑃𝑦(𝑡𝑓 − 𝑡𝑠) = ∫ 𝑃(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑠

 
  (3.5) 

 

where 𝑃𝑦 is the static yield load. This procedure was based on the condition of zero initial 

velocity. As expression (3.2) was already widely used in the military engineering community, 

Youngdahl adjusted the extended description of the blast-induced structural damage to 

(P̅ − Pcr)(I − Icr) = C   (3.6) 

where �̅� is the normalised pressure defined as  

P̅ = I/(2t)̅   (3.7) 

It is necessary to point out that Eqs. (3.2), (3.4) and (3.7) transform an arbitrary load time 

history to an equivalent rectangular shape with the constant pressure �̅� and duration 𝑡̅. 

Youngdahl validated the developed method for elimination of shape sensitivity using the 

rectangular, triangular with zero and finite rise time, exponential and sinusoidal load time 

histories. 

Schumacher and Cummings [27] recommended to simplify the expression (3.6) by setting 

𝑃𝑐𝑟 = 𝐼𝑐𝑟 = 0 when 𝑃𝑐𝑟 and 𝐼𝑐𝑟 were not known. Consequently they obtained 

P̅ ∙ I = DN   (3.8) 

where 𝐷𝑁 is the damage number, which depends only on the pulse pressure. 
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Abrahamson and Lindberg [28] modified the expression (3.2) into the form of a rectangular 

hyperbola 

(P0/Pcr − 1)(I/Icr − 1) = 1  (3.9) 

They obtained the normalised P-I diagram by plotting Eq. (3.2) in the 𝑃0/𝑃𝑐𝑟 − 𝐼/𝐼𝑐𝑟 plane. 

The authors noted that the relationship (3.2) approximated well only the response of simple 

structures such as beams and plates, which can be accurately represented by equivalent linear 

elastic and rigid plastic SDOF systems. The analysed load time histories included the 

rectangular, triangular (with zero rise time), exponential and sinusoidal shapes (see Fig. 2.2). 

It was reported that the impulsive and static parts of the P-I curves derived for linear elastic 

SDOF systems coincided for the all three load time histories. The deviation of the P-I curves 

in the dynamic regime was between 20-40%. The authors also proposed to use combined iso-

damage curves for assessment of complex structures such as shells, which can only be 

accurately represented by multiple-degree-of-freedom systems. These iso-damage curves 

were obtained as the most conservative envelops of combinations of the iso-damage curves 

corresponding to each degree of freedom. 

Li and Meng [33] developed an empirical form of the normalised P-I diagram, which was 

almost insensitive to the pulse shape. The P-I curves were derived for the rectangular, 

triangular and exponential pulse shapes using the limit state function 𝐺(𝑖, 𝑝) = 𝑢𝑚/𝑢𝑐𝑟 = 1, 

where 𝑢𝑚 is the maximum deflection achieved by the structure. The expression of the 

normalised P-I diagram was postulated as 

p = n1/(i − 1)n2 + 0.5   (3.10) 

where 𝑝 and 𝑖 are the non-dimensional equivalent pressure and impulse, defined as 

p = P0/(ucrK)   (3.11) 

i = I/(ucr√MK) = p ∫ P(τ)/P0dτ
τ0

0

 
  (3.12) 

In Eqs. (3.11) and (3.12) 𝑢𝑐𝑟 is the critical structural deflection. The non-dimensional 

parameter 𝜏0 is defined as 

τ0 = t0/√M/K   (3.13) 

where 𝑡0 is the loading duration. The definitions of 𝑝 and 𝑖 are close to similar dimensionless 

parameters introduced earlier in [24], [29]. Li and Meng [33] derived the non-dimensional 

parameters 𝑛1 and 𝑛2 in second order polynomial form by using the least-square fitting of the 
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formula (3.10) to the response of an undamped elastic SDOF system with mass M and 

stiffness K. The values of 𝑛1 and 𝑛2 found in [33] for the rectangular, triangular and 

exponential load time histories are presented in Table 3.1.  

Load time history 𝒏𝟏 𝒏𝟐 

Rectangular 

(Fig. 2.2a) 
0.035 0.850 

Triangular with zero rise time 

(Fig. 2.2b) 
0.150 0.700 

Exponential (Fig. 2.2g) 

𝐶𝑥 = 2.8 defined in Table 3.2  
0.300 0.700 

Table 3.1. Coefficients n1 and n2 for the normalised P-I diagram [33] 

The authors adopted Youngdahl’s approach [25] to formulate the coefficients 𝑛1 and 𝑛2 as 

functions of a single geometric characteristic of the pulse shape, and the location of the 

centroid. The proposed method proved to be efficient for elastic structures and structural 

elements subjected to pulse loads of rectangular, triangular and exponential shapes usually 

associated with external blast loads. However, later studies [35], [46], [63] reported certain 

limitations of this empirical method, which were attributed to the single-parameter definition 

of the load shape and the sensitivity of the normalised iso-damage curves to the relationship 

between the load function and the structural response. The uniqueness of the load-response 

relationship becomes especially pronounced in the dynamic and the quasi-static regions of the 

P-I curve.  

Later Li and Meng [34] extended their approach to elastic-plastic SDOF systems where the 

linear resistance given as 𝑅 = 𝐾𝑢 was substituted by a bilinear elastic-perfectly plastic 

resistance function 𝑅(𝑢). It was noted that the response of the elastic-plastic SDOF system 

was highly dependent on the dimensionless parameters �̅� = 𝑃0/𝑅𝑐𝑟  and 𝜐 = 𝑅𝑐𝑟/(𝑢𝑐𝑟𝐾) , 

where 𝑅𝑐𝑟 is the critical resistance. Three regimes of structural response of the SDOF model 

were distinguished in the 𝜐-�̅� domain: elastic, elastic-perfectly plastic and rigid-perfectly 

plastic response. A closed-form expression of the dimensionless P-I diagram was developed 

for the rigid-perfectly plastic response of the SDOF model based on Youngdahl’s idea [25] 

given in Eqs. (3.4) and (3.7). It reads 

1/�̅� + (𝑢𝑚/𝑢𝑐𝑟)(2/𝑖2) = 1/𝜐   (3.14) 
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with 

�̅� =
𝑖

(2𝜏̅)
 

  (3.15) 

𝜏̅ =
𝑝

𝑖
∫ 𝜏𝑃(𝜏)/ 𝑃0𝑑𝜏

𝜏0

0

 
  (3.16) 

where 𝑝 and 𝑖 are defined in Eqs. (3.11)-(3.13). The parameters 𝑖, 𝜏̅ and �̅� are the 

dimensionless effective impulse, characteristic time and effective pressure corresponding to 

Youngdahl’s parameters 𝐼, 𝑡̅ and �̅�, respectively, given in Eqs. (3.3), (3.4) and (3.7). The 

ratio 𝑢𝑚/𝑢𝑐𝑟 is similar to the ratio 𝜆/𝜆𝑚𝑎𝑥   apprearing in Eq. (3.1) and represents the level of 

structural damage. The dimensionless parameter 𝑟 can be seen as a measure of ductility of a 

structure. It is necessary to note that the ratio 𝑅𝑐𝑟/𝐾 in the expression for 𝜐 represents the 

elastic yield defection, which is constant for a given material. As a result, in addition to the 

loading shape the P-I diagram of Eq. (3.14) is influenced by 𝑢𝑐𝑟 (through 𝜐) even when 

𝑢𝑚/𝑢𝑐𝑟 = 1. The authors eliminated this influence by transforming the limit state function 

𝐺(𝑖, 𝑝) into 𝐺(𝑖/ℎ2(𝜐), 𝑝/ℎ1(𝜐)), where ℎ1(𝜐) and ℎ2(𝜐) were the quadratic functions of 𝜐 

derived for the rectangular, triangular and exponential load time histories using the method of 

least squares. The validity of such normalisation of 𝑝 and 𝑖 is questionable when a different 

time history is considered. 

Nystrom [45] analysed linear and rigid-plastic SDOF systems subjected to the load with 

rectangular, triangular and quadratic decaying time histories. The author proposed to derive 

the P-I diagram in two forms depending on the known initial data as 

𝐼/𝐼𝑐𝑟 = 𝑓𝑃(𝑃0/𝑃𝑐𝑟) when 𝑃𝑐𝑟 and 𝑃0 are known  (3.17) 

𝑃0/𝑃𝑐𝑟 = 𝑓𝐼(𝐼/𝐼𝑐𝑟) when 𝐼𝑐𝑟 and 𝐼 are known  (3.18) 

where 𝑃𝑐𝑟 = 𝑅𝑐𝑟/2 = 𝐾𝑢𝑐𝑟/2 and 𝐼𝑐𝑟 = 𝑅𝑐𝑟/√𝐾/𝑀 in the case of the linear elastic material 

and 𝑃𝑐𝑟 = 𝑅𝑐𝑟 and 𝐼𝑐𝑟 = √2𝑅𝑐𝑟𝑢𝑐𝑟𝑀 in the case of the rigid-plastic material, 𝐼 is defined in 

Eq. (3.3); 𝑓𝑃 and 𝑓𝐼 (𝑓𝑃 ≠ 𝑓𝐼) depend on the type of system resistance and the shape of pulse 

loading. 

The main disadvantage of the simplified analytical formulations based on the SDOF system, 

e.g., [28], [33], [34], [36], [45], lays in the limitation of the mechanism of structural failure to 

a single mode. Since multiple mode failures occur in real structures, the P-I diagrams 

generated using the SDOF system may provide invalid estimates of the post loading 
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condition of the analysed structure. Ma and colleagues [40] derived closed-form expressions 

of the P-I diagrams for shear and bending failure of simply supported and fully clamped 

rigid-plastic beams subject to a rectangular pulse (see Fig. 2.2a) using the mode 

approximation method. The authors extended the model originally proposed by Jones [81] 

using the transverse velocity fields corresponding to bending modes of beam failure. The 

improvements included incorporation of the shear modes of failure through allowing for 

development of shear hinges at the supports. This formulation led to five distinct modes of 

failure, corresponding to five transverse velocity fields, including development of: (i) shear 

hinges at supports, (ii) a shear hinge at supports and a bending hinge at mid-span, (iii) 

stationary bending hinges at supports, (iv) shear hinges at supports and a dynamic bending 

hinge zone at mid-span, and (v) a dynamic bending hinge zone at mid-span. The analysed 

beam was considered as passing through different phases of motion depending on the 

complexity of the transverse velocity profile and so the mode of failure. The failure modes of 

the beam depended on the end support conditions, the bending strength of the beam 𝑀𝑐𝑟, the 

half span of the beam 𝐿, the applied constant pressure 𝑝0 (in the rectangular pulse) and the 

dimensionless shear-to-bending strength ratio 𝜐 = 𝐿𝑉𝑐𝑟/2𝑀𝑐𝑟 (originally introduced in [81]). 

The normalised P-I diagrams were separately found for the bending and shear types of failure 

depending on the failure modes as 

α/ie
2 + 1/pe = f1(υ) for shear failure  (3.19) 

kβ/ie
2 + 1/pe = f2(υ) for bending failure  (3.20) 

where 𝑖𝑒 and 𝑝𝑒 are the dimensionless impulse and pressure defined as  

ie = I/√2mVcr = I√L/4mνMcr   (3.21) 

pe = p0L/Vcr = p0L2/(2νMcr)   (3.22) 

𝛼 = 𝑢𝑠/𝐿 and 𝛽 = 𝑢𝑚𝑠/𝐿 are the normalised beam deflections at the supports 𝑢𝑠 and mid-

span 𝑢𝑚𝑠, 𝑓1(𝜐) and 𝑓2(𝜐) are the parameters depending on the end support conditions (either 

simply supported or fully clamped), the mode of failure and its transverse velocity profile, 𝑉𝑐𝑟 

the shear strength of the beam, 𝑀𝑐𝑟 is the bending strength of the beam and 𝑚 the mass per 

beam unit length. The parameter 𝑘 equals 2/3 when the beam fails by developing bending 

hinges at the supports, otherwise 𝑘 = 1. The P-I diagrams of Eqs. (3.19) and (3.20) were built 

using the limit state function given in Eq. (3.1). In the case of the bending failure, the failure 

criterion is defined as 𝜆 = 𝑢𝑚𝑠 and 𝜆𝑚𝑎𝑥 = 𝐿𝛽, while the shear failure is characterised by 

𝜆 = 𝑢𝑠 and 𝜆𝑚𝑎𝑥 = 0.8𝛾𝑣ℎ. Here 𝛾𝑣 is the average critical shear strain across the beam 
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section and ℎ the height of the beam cross-section. Values of 𝛽 and 𝛾𝑣 are given in Table 3 

for different levels of damage. Both the formulas (3.19) and (3.20) are valid for both simply 

supported and fully clamped beams but in different ranges of the 𝜐-𝑝0 domain.  

Parameter Light damage 

(%) 

Moderate damage 

(%) 

Severe damage 

(%) 

𝛽 2.5 6 12.5 

𝛾𝑣 1 2 3 

Table 3.2. Coefficients β and γ_v for the P-I diagrams for the bending and shear failure of 

beams, Eqs. (3.19) and (3.20) 

Ma et al. compared their P-I diagrams with those obtained using an elastic-plastic SDOF 

model and reported a good agreement for the simple bending failure especially in the case of 

large peak pressure and impulse or severe damage. It should finally be mentioned that since 

in real structures the combined shear-flexural failure could be equally expected, the 

uncoupling of the shear and bending resistance introduced in the model used for derivation of 

the P-I diagrams (3.19) and (3.20) limits their applicability. 

Ma and colleagues [50] implemented the mode approximation method developed in [40] for 

the analysis of RC buried structures subjected to underground blast loads. They analysed a 

buried beam with a box-type cross-section, which was sufficiently long to assume that the 

blast loaded side wall of the structure mainly worked in the vertical (shortest) direction. This 

assumption allowed the study of the response of the side wall using a single vertical unit 

strip. This unit strip was described using the simply supported, rigid-plastic beam model 

proposed by Ma and colleagues in [40]. The soil-structure interaction was simplistically 

incorporated into the unit strip beam model as the effect of damping. The beam had the same 

five transverse velocity profiles and therefore the five modes of failure as discussed in [40]. 

The authors derived P-I diagrams for the shear and bending failures of the structure buried in 

different soils including dry sands, dense sands and saturated sandy clay. It was shown that 

the P-I diagrams are highly sensitive to the degree of damping. 

Huang and colleagues [54] studied simply supported RC beams subjected to blast loads with 

a rectangular time history using the approach proposed in [40]. To adjust Ma and colleagues’ 

beam for the analysis of RC columns, they introduced a multi-linear elastic-softening 

resistance-deformation relationship into the beam formulation instead of the rigid-plastic one. 

This complex material nonlinearity required the addition of the elastic and post-elastic 
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regimes for the evaluation of each failure mode in the loading and post-loading phases. Since 

the RC beams were unlikely to develop moving plastic hinges, the two modes featured in this 

failure type were excluded from the original five mode approximation method [40] and the 

RC beam was modelled to fail in the shear, bending and combined shear-flexural modes only. 

The normalised P-I diagrams were built for these three failure modes using the failure criteria 

based on the beam deflections at the supports and midspan [40]. The authors investigated the 

influence of the resistance-deformation relationships of different complexity, which included 

rigid-plastic, elastic-rigid-plastic and multi-linear curves, on the P-I diagrams. All the P-I 

diagrams were found to be sensitive to the material nonlinearity especially in the part of the 

diagram corresponding to the dynamic regime. 

Shi and colleagues [52] carried out an extensive analytical analysis of simply supported and 

fully clamped rigid-plastic beams subjected to a triangular pulse (see Fig. 2.2b). The authors 

applied the method developed in [40] by extending it to include twelve combined shear-

flexural response patterns (i.e., modes of failure). In this study two or three modes of failure 

were associated with each of the five distinct transverse velocity fields introduced in [40] 

depending on the complexity and sequences of the beam motions during the failure. All the 

failure modes were formulated as functions of the supporting conditions, the peak pressure 

𝑝0, the collapse pressure 𝑝𝑐 = 2𝑀𝑐𝑟/𝐿2 and the dimensionless shear-to-bending strength ratio 

𝜐. The authors derived the normalised P-I diagrams in the following generalised forms 

[φ1(pe) ∙ α/ie
2]λ1 + k1/pe = f1(υ, pe) for shear failure  (3.23) 

[φ2(pe) ∙ β/ie
2]λ2 + k2/pe = f2(υ, pe) for bending failure  (3.24) 

where 𝑓1, 𝜑1, 𝜆1 and 𝑓2, 𝜑2, 𝜆2 are two sets of parameters depending on the end support 

conditions, the type of failure and its transverse velocity profile. The definitions of 𝑝𝑒, 𝑖𝑒, 𝜐, 

𝛼 and 𝛽 are similar to the ones in Eqs. (3.19) and (3.20). The P-I diagrams were built using 

the failure criteria similar to those used for Eqs. (3.19) and (3.20), where 𝛽 = 12.5% and 

𝛾𝑣 = 0.3% in accordance with [40], [73]. It is necessary to mention that the P-I diagrams of 

Eqs. (3.19) and (3.20) represent a particular case of the P-I diagrams given above. The 

authors compared their method with an equivalent SDOF model describing the beam failure 

in pure shear and bending. It was reported that the SDOF approach yielded accurate results 

for pure shear failure modes (corresponding to 𝜐 ≤ 1) and bending failure modes 

(corresponding to 𝜐 ≥ 1.5), while the estimates generated by the SDOF model for the 

combined shear-bending modes of failure (corresponding to 1 ≤ 𝜐 ≤ 1.5) were inaccurate. 
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Fallah and colleagues [36] applied Li and Meng’s approach [33] for the elimination of the 

shape dependency of the P-I diagrams derived using the response of continuous simply 

supported beams to rectangular, triangular, exponential and concave pulse loads. The elastic-

perfectly plastic beams were able to develop plastic hinges at the supports and mid-span. The 

influence of neighbouring spans was modelled by elastic-plastic rotational springs of the 

stiffness 𝐾𝜃 located at the supports. The Li and Meng’s empirical P-I diagram, Eq. (3.10) was 

used in its generalised form as 

p = n1/(i − C)n2 + C   (3.25) 

Using the least-square fitting of the beam response to the formula (3.25), Fallah et al. found 

that the constant 𝐶 equals 1 for elastic and 10 for elastic-perfectly plastic beams. The 

additional increase in the accuracy of fitting was further achieved by extending the 

polynomial form of 𝑛1 and 𝑛2 (second order in [33]) to the third order. The dimensionless 

equivalent pressure 𝑝 and impulse 𝑖 defined in Eqs. (3.11)-(3.13) took the following forms in 

the continuous elastic-plastic beam formulation 

p = P0l4/(ucrpEI)   (3.26) 

i = I/ (ucrp√EIm/(κl2))   (3.27) 

where 𝑢𝑐𝑟𝑝 is the critical plastic deflection, 𝑙 is the beam length and 𝐸𝐼 is the beam bending 

stiffness. The dimensionless parameter 𝜅 = 𝐾𝜃𝑙/𝐸𝐼 defines the structural configuration of the 

beam, that is, the order of development of the plastic hinges either first at the supports or at 

the mid-span or simultaneously in all three locations. The authors noted that the suggested 

method is limited by the fixed positions of the plastic hinges. 

Shi and colleagues [38] carried out an extensive numerical study on RC columns subjected to 

a blast generated uniform pulse with a triangular time history (see Fig. 2.2b). They developed 

a detailed FE model of the column and carried out an extensive parametric study. The P-I 

diagrams were derived using the least-square curve fitting of the numerical results in the form 

(P0 − Pcr)(I − Icr) = C(Pcr/2 + Icr/2)D   (3.28) 

where 𝐶 and 𝐷 are the constants obtained for three degrees of damage: 20%, 50% and 80%. 

Here 20% damage was considered to be the boundary between low and medium damage, 

50% as the boundary between medium and high damage, while 80% as the boundary between 

high damage and structural collapse. Similar damage classification can be found elsewhere 

[37], [50], [54], [77]. The values of 𝑃𝑐𝑟, 𝐼𝑐𝑟, 𝐶 and 𝐷 are given in Table 3.3.  
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Damage 𝑷𝒄𝒓 (kPa) 𝑰𝒄𝒓 (kPa ms) 𝑪 𝑫 

20% 900 2500 11.5 1.45 

50% 1200 3500 12 1.49 

80% 1500 6000 12.5 1.54 

Table 3.3. Values of Pcr, Icr, C and D for the P-I diagram for RC columns subjected to a 

blast with a triangular time history, Eq. (3.28). 

Shi and colleagues [38] suggested to use the following approximate values 𝐶 = 12 and 𝐷 =

1.5 for the P-I diagram of Eq. (3.28). It should be pointed out that the form of Eq. (3.28) is 

similar to the formulas suggested in [66], [72] for the approximation of the dynamic region of 

the P-I curve (see Section 3.3.2). The FE analysis showed that the failure mode of the RC 

column depended on the loading regime. In the impulsive loading regime the column failed 

in shear, in the static loading regime it failed in bending and in the dynamic loading regime it 

failed in the combined shear-flexural mode. In the parametric study, the authors investigated 

the influence of various geometrical and material parameters of the RC column on the P-I 

diagram. The parameters included the transverse 𝜌𝑠 and longitudinal 𝜌𝑙 reinforcement ratios, 

the concrete compressive strength 𝑓𝑐, column height ℎ and depth 𝑑 and the width 𝑤 of the 

cross-section. The parameters were varied in the following ranges 𝜌𝑠 = 0.006-0.032, 

𝜌𝑙 = 0.01-0.03, 𝑓𝑐 = 30-50 MPa, ℎ = 3.6-5.4 m and 𝑑 = 𝑤 = 0.4-0.8 m. These ranges define 

the validity limits of the P-I diagram of Eq. (3.25), since the P-I curves have been observed to 

be influenced by the studied parameters in a highly nonlinear manner. The location of the P-I 

diagram of Eq. (3.28) on the P-I plane is defined by the location of the static 𝑃𝑐𝑟 and 

impulsive 𝐼𝑐𝑟 asymptotes. The expressions for 𝑃𝑐𝑟 and 𝐼𝑐𝑟 were derived in [38] using the 

least-square fitting method as highly nonlinear functions of the degree of damage. 𝑃𝑐𝑟 and 𝐼𝑐𝑟 

were for example given for 50% damage as 

Pcr(50%) = 143 ln (
ρs

0.01
) + 320 ln (

ρl

0.01
) + 63 exp (

fc

30
) + 

+ 1000 (
h

4
)

−1.39

+ 2639 (
d

0.6
) + 318 ln (

w

0.6
) − 2271 

 

  (3.29) 

Icr(50%) = 837 (
ρs

0.01
) + 36 (

ρl

0.01
) + 235 exp (

fc

30
) + 

+ 1000 (
h

4
)

−0.274

+ 2271 exp (
d

0.6
) − 998 ln (

w

0.6
) − 5286 

  (3.30) 
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In derivation of the P-I curves Shi and colleagues used the limit state function similar to the 

one given in the Eq. (3.1), where 𝜆 represented the residual load-carrying capacity of a 

damaged RC column and 𝜆𝑚𝑎𝑥 the design load-carrying capacity of an intact column 

according to ACI Code [82]. The authors further used a method proposed in [41] for 

derivation of an equivalent elastic-perfect plastic SDOF model of the RC column, which was 

used to generate the P-I curves for different levels of damage. The maximum mid-height 

column deflection 𝑢𝑚 was used in this case as the failure criterion. The values of 𝑢𝑚 

corresponding to three boundary levels of damage were found using the detailed FE model of 

the 4m high column with 𝑑 = 𝑤 = 0.5 m, 𝜌𝑠 = 𝜌𝑙 = 0.01 and 𝑓𝑐 = 40 MPa. 𝑢𝑚 < 20mm 

corresponded to the low damage (<20%), 20 mm < 𝑢𝑚 < 40 mm to the medium damage (20-

50%), 40 mm < 𝑢𝑚 < 60 mm to the high damage (50-80%), while 𝑢𝑚 > 80mm leads to 

column collapse (>80%). This damage evaluation procedure seems to be rather arbitrary and 

further stresses the weakness of the damage criterion based on the maximum midspan 

deflection. The obtained P-I curves were compared with those derived in Eq. (3.28). The 

discrepancy between the P-I curves produced by different models was especially pronounced 

in the static and dynamic regions. This was attributed to the material idealisation and the 

neglecting of the strain rate effects in the SDOF model. 

Hao and colleagues [78] carried out reliability analysis on RC columns subjected to blast 

generated loads. The P-I diagram of Eq. (3.28) developed in [38] together with the formulas 

for 𝑃𝑐𝑟 and 𝐼𝑐𝑟 corresponding to different levels of damage were used as the limit state 

criterion for the probabilistic assessment of the damage developed in the analysed columns. 

Thiagarajan and colleagues [55] developed P-I diagrams for four types of RC columns 

subjected to blast loads with triangular time histories using advanced detailed FE analysis and 

a SDOF model developed in [83]. The columns had a 350 mm by 350 mm square cross-

section, a height of 3480 mm, eight 25 mm diameter longitudinal reinforcing bars and 10 mm 

diameter stirrups which differed in spacing and configuration. The configurations of the 

stirrups included two types of rectangular ties, spiral and seismically detailed transverse 

reinforcement. The authors used the damage criterion based on the mid-height deflection of 

the column. This may be seen as a drawback, since more adequate failure criteria, e.g., based 

on the axial load carrying capacity [37], [38], [53], are readily available in the case of 

detailed FE modelling. The P-I diagrams were built for each column for low, medium and 

high levels of damage in order to investigate the effect of confinement developed by the 
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analysed transverse reinforcement configurations. It was found that mainly the parts of the P-

I curve in the impulsive and dynamic regions were influenced by the configuration of the 

stirrups. The column with the seismically detailed transverse reinforcement showed superior 

resistance to the blast loads as it provided the highest degree of concrete confinement at the 

plastic hinge regions and the highest lateral support for the longitudinal reinforcement. The 

authors also reported high discrepancy between all the results provided by the detailed FE 

model and the SDOF model especially in the impulsive and dynamic regions of the P-I 

diagrams. The SDOF model tended to overestimate the strength of the RC columns. The 

authors also derived a closed-form analytical expression for the P-I diagram using multi-

variable nonlinear regression analysis. Better correlation was achieved when the impulse 𝐼 in 

the formula was substituted with the load duration 𝑡0. As a result, the P-I diagram in terms of 

reflected pressure 𝑝𝑟 vs. 𝑡0 was given as 

log(pr) = A + B × ∆ + C × Col + D × log(t0) + E × log(t0
2) + F

× log(t0
3) 

  (3.31) 

where 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 are regression coefficients depending on the configuration of stirrups 

and ∆ (= 0.1 ÷ 5.25%) is the damage level of the column. Unfortunately, Thiagarajan et al. 

did not provide in their paper the values and meanings of the parameters 𝐹 and  𝐶𝑜𝑙. 

 

3.4.2. Open-form consistent formulation 

The first type of the open-form consistent approach is built on describing a P-I diagram using 

two different analytical expressions. Zhu and colleagues [30] analysed three different types of 

simply supported rigid perfectly plastic structures subjected to uniform pressure loads with 

rectangular, triangular (with zero and finite rise time) exponential and sinusoidal time 

histories (see Fig. 2). The structures included a beam, a circular plate and a cylindrical shell 

reinforced by circular rings. The authors used Youngdahl’s approach [25] for the elimination 

of load shape sensitivity in development of the normalised P-I diagrams (termed 

“characteristic curves” and plotted in the 𝑃𝑦/�̅� − 𝐼/𝐼𝑐𝑟 plane) that were given as 

6

5
(

I

Icr
)

2

(1 −
Py

P̅
) = 1 

when 𝑃𝑦/�̅� ≤ 2  (3.32) 

(
I

Icr
)

2

(1 −
4Py

5P̅
) = 1 

when 𝑃𝑦/�̅� ≥ 2  (3.33) 
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where 𝐼 and �̅� are respectively given in Eqs. (3.3) and (3.7). The static yield load 𝑃𝑦 was 

estimated using the Tresca yield criterion. The expressions (3.32) and (3.33) were validated 

using all three types of the analysed structures under the rectangular load time history and 

produced P-I curves with a scatter of less than 5%. To eliminate the uncertainty concerning 

the integration limits 𝑡𝑠 and 𝑡𝑓 in Eq. (3.4), Zhu and colleagues proposed to calculate 𝑡̅ by 

integrating over the whole time interval, i.e., [0, ∞). In this case 𝑡̅ takes the following form 

t̅ =
1

I
∫ tP(t)dt

∞

0

 
  (3.34) 

Despite being convenient this approach resulted in high discrepancy in the dynamic and 

impulsive parts of the P-I curves derived for different load time histories. 

The second type of the open-form consistent approach is based on three different analytical 

expressions describing the P-I diagram in the three different regimes. In this method rigorous 

formulas are derived for the impulsive and (quasi-)static asymptotes, while the curve in the 

dynamic regime is approximated by an analytical expression. 

Krauthammer and colleagues [35], [66] derived the expressions for the impulsive and static 

asymptotes of the P-I curve from the free and forced vibration responses of an undamped 

elastic SDOF system subjected to a rectangular load pulse as 

p sin(0.5i/p) = 0.5 1 ≤ i ≤ 0.5π impulsive asymptote   (3.35) 

p = 0.5 i > 0.5π static asymptote   (3.36) 

where 𝑝 and 𝑖 are defined in Eq. (3.10). The transition between the asymptotes takes place at 

the point (𝑖 = 0.5𝜋, 𝑝 = 0.5). The same technique was applied for the undamped elastic 

SDOF system subjected to a triangular pulse, which resulted in the following expressions for 

the impulsive and static asymptotes, respectively, 

(2i/p2)2 = 2 + (2i/p)2 − (4i/p) sin(2i/p) − 2 cos(2i/p) 1 ≤ i ≤ 1.166  (3.37) 

(2i/p) = tan[(2i/p)(1 − 0.5/p)] i > 1.166  (3.38) 

Another method for derivation of the P-I curves is based on the principle of conservation of 

mechanical energy [24], [29], [35], [41], [58], [66]. In this method the impulsive and (quasi-

)static loading regimes are described by two distinct energy formulations. In the impulsive 

regime the maximum response of the undamped elastic SDOF system occurs in the free 

vibration (i.e., post-loading) phase. As the duration of the load is very short as compared to 

the time of the maximum response (see Figure 3.2a), the system displacement at the end of 
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the forced vibration phase can be ignored. Therefore, the energy of the pulse load is delivered 

to the system only through the initial velocity, i.e., the kinetic energy 𝑇. In the conservative 

SDOF system, 𝑇 is balanced by the potential energy represented in terms of the total strain 

energy 𝐸 stored in the system at the time of the maximum response [27], [28], [58]. This 

leads to the following condition for the impulsive asymptote of the P-I curve: 

T = E impulsive asymptote  (3.39) 

In the quasi-static loading regime the peak system response occurs at the beginning of the 

forced vibration phase, while the maximum applied load (e.g., maximum pressure 𝑃0) 

remains approximately constant and the dynamic effects can be ignored (see Figure 3.2c). 

Under these conditions the maximum work 𝑊 done by 𝑃0 to move the conservative SDOF 

system to its maximum displacement 𝑢𝑚 equals the total strain energy gained by the system. 

This yields the (quasi-)static asymptote of the P-I curve as 

W = E quasi-static asymptote  (3.40) 

𝑇, 𝐸 and 𝑊 in the case of the undamped elastic SDOF system [35] with mass 𝑀 and stiffness 

𝐾 have the following forms 

              T = I2/2M    (3.41a) 

              E = Kuf
2/2      (3.42b) 

W = P0uf        (3.43c) 

In the case of a SDOF system with an elastic-perfectly plastic displacement-resistance 

function, the final system deflection 𝑢𝑓 is divided into its elastic 𝑢𝑒𝑙 and plastic (𝑢𝑓 − 𝑢𝑒𝑙) 

parts. The expression for 𝐸 takes the following form [58] 

E = Kuel(uf − uel/2)   (3.44) 

The dimensionless impulsive and static asymptotes can be obtained as 𝑖 = 1 and 𝑝 = 0.5, 

respectively, after substituting the Eqs. (3.41a) into Eqs. (3.39) and (3.40). The expressions of 

the impulsive and (quasi-)static asymptotes derived for several other simple SDOF systems 

can be found elsewhere [47], [61], [66]. 

The described open-form methods can only be a convenient tool for derivation of the P-I 

curves in the impulsive and (quasi-)static domains. The curves in the dynamic domain are 

approximated by a number of analytic functions. Commonly, hyperbolic functions are used 

for approximation of the systems subjected to triangular and exponential load pulses. Baker et 
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al. [24], [29] suggested to approximate the dynamic structural response using the hyperbolic 

tangent squared relationship that reads 

E = W tanh2 √T/W   (3.45) 

Note that for the small values of the argument tanh √𝑇/𝑊 ≈ √𝑇/𝑊 and the expression 

(3.45) approaches the impulsive asymptote of Eq. (3.39), while for the higher values of the 

argument tanh √𝑇/𝑊 ≈ 1 and Eq. (3.45) reduces to the quasi-static asymptote of Eq. (3.40). 

Oswald and Skerkut [84] developed an approximate formula describing the iso-damage curve 

in the dynamic region by fitting of the response of a SDOF system to a rectangular pulse 

loading 

(p − Ap)(i − Ai) = 0.4(0.5Ap + 0.5Ai)
1.5

   (3.46) 

where 𝐴𝑝 and 𝐴𝑖 are the values of the static and impulsive asymptotes, respectively. 

Krauthammer [66] further generalised this expression to 

(p − Ap)(i − Ai) = C(Ap + Ai)
D

   (3.47) 

where 𝐶 and 𝐷 are constants. Krauthammer estimated the constants in the expression (3.41a) 

by fitting it to the P-I curves derived for an undamped perfectly elastic SDOF system 

subjected to the rectangular and triangular pulses. Thus, the following sets of values were 

reported 

Ap = 0.5, Ai = 1.0, C = 0.01, D = 1.0 for rectangular pulse  (3.48) 

Ap = 0.5, Ai = 1.0, C = 0.08, D = 0.3 for triangular pulse  (3.49) 

 

3.4.3. Open-form mixed formulation 

An open-form approach for constructing the P-I diagrams is classified in this paper as 

‘mixed’ when the impulsive and (quasi-)static asymptotes are given as analytical expressions 

derived using, for example, the energy balance method. The P-I curve in the dynamic domain 

is then derived numerically using curve fitting to the results of FE analyses or various search 

algorithms. Such an approach allows to build P-I diagrams for SDOF systems with more 

complex (e.g., bilinear) resistance-displacement functions. 

Fallah and Louca [41] adopted the approaches from Li and Meng [33] and Baker et al. [24], 

[29] in deriving the normalised P-I diagrams based on the dimensional analysis of a SDOF 
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system with bilinear elastic-plastic hardening/softening resistance displacement function. The 

conventional set of load time histories including the rectangular, triangular and exponential 

shapes was considered. The static and impulsive asymptotes were defined in terms of three 

dimensionless parameters as 

p = η(1 − φψ2) + 0.5φ(ψ2 − φη2 + η2ψ2) static asymptote  (3.50) 

i = √2η(1 − φψ2) + φ(ψ2 − φη2 + η2ψ2) impulsive asymptote  (3.51) 

where 𝑝 and 𝑖 are respectively defined in Eqs. (3.11) and (3.12), 𝜂 = 𝑢𝑦/𝑢𝑐𝑟 is the inverse 

ductility, 𝜓2 = 𝐾ℎ(𝑠)/𝐾 is the hardening/softening index, while 𝑢𝑦 is the deflection at the 

yielding and 𝐾ℎ(𝑠) is the hardening/softening stiffness. The hardening/softening parameter 𝜑 

was set equal to 1 for elastic-plastic hardening and -1 for elastic-plastic softening model. The 

P-I curve in the dynamic domain was obtained by fitting the bilinear response of the SDOF 

system to the nonlinear response of the FE model of a three pitch corrugated stainless steel 

blast wall. At least one point in the dynamic domain was required for completing the fitting 

procedure, which was based on numerical integration of the bilinear and nonlinear resistance-

displacement functions. It should be pointed out that the proposed method is only valid for 

rectangular, triangular and exponential pulse shapes while for other pulse shapes new sets of 

differential equations have to be solved and new normalised P-I curves have to be derived 

[61]. 

The derivation of the dynamic part of the P-I curve was carried out using advanced search 

algorithms [47], [47], [48], [72] discussed in detail in Section 3.3.2. It is necessary to point 

out that the calculation of the asymptotes is not required for the algorithms suggested in [47], 

[48], these numerical procedures can be applied for derivation of entire P-I curves. However, 

the asymptotes are usually located due to their effectiveness in establishing the position of the 

pivot point (see Section 3.3.2). Colomboa and Martinelli [58] applied the search algorithm 

proposed in [48] for derivation of the P-I diagrams describing the response of RC and fibre-

reinforced concrete circular plates under blast loads. The plates were either simply supported 

or resting on a Winkler-type soil. The parametric study was carried out where the effects of 

different material characteristics, plate radius and Winkler’s constant were analysed. The 

authors formulated the static and impulsive asymptotes based on the energy based approach 

described in Subsection 3.4.2 as 
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P =
Rcr(uf − uel/2)

Lel
∗ uel + Lpl

∗ (uf − uel)
 

static asymptote  (3.52) 

I = [
2mRcr(uf − uel/2)

πr2
]

1/2

 
impulsive asymptote  (3.53) 

where 𝑅𝑐𝑟 = 𝐾𝑢𝑒𝑙 is the critical (yielding) resistance force, 𝑢𝑓 and 𝑢𝑒𝑙 the final and elastic 

deflections, 𝑚 the mass per unit area and 𝑟 the plate radius. 𝐿𝑒𝑙
∗  and 𝐿𝑝𝑙

∗  are the elastic and 

plastic load multiplier coefficients obtained using load generalisation with shaper functions. 

Li and Hao [70] implemented their two-step method proposed in [80] (see Section 3.5.3 for 

further discussion) for the sophisticated analysis of simply supported RC beams under blast 

loads. The authors developed partial P-I diagrams for direct evaluation of the damage degree 

and extent of the zones of structural damage at the end of the blast loading phase. The elastic-

plastic SDOF system applied for the analysis at the blast loading phase could capture both 

shear and flexural modes of the RC beam failure. The damage criteria for shear and bending 

types of failure were based on maximum deflections at supports and midspan, respectively. 

As the blast loading phase was very short, the generated P-I diagrams captured only the 

brittle shear damage. The latter represented only the initial part of the overall damage 

developing in the second free vitiation phase. The data obtained from the first phase were 

further used in the second phase for detailed FE modelling of the initial state of the analysed 

RC beam. It was reported that the partial P-I diagrams derived for the damage levels between 

10%-50% were fitted using a simple linear equation 

P = a × I + b   (3.54) 

where the coefficients 𝑎 and 𝑏 were found through fitting the results of the parametric 

analysis using multi-parametric regression analysis. Li and Hao considered parameters 

similar to the ones used in their earlier study [38]. 𝑎 and 𝑏 were expressed, for example in the 

case of 50% damage, in the following forms; 

a50% = 0.45fc + 26.6
l

1000
− 240

d

1000
− 87.5

w

1000
+ 3.79

ρl

0.001

+ 6.86
ρs

0.001
+ 57.9 

  (3.55) 

b50% = exp [0.65fc + 6.44
l

1000
− 4.99

d

1000
− 87.5

w

1000
+ 3.79

ρl

0.001

+ 6.86
ρs

0.001
+ 57.9] 

  (3.56) 
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where 𝑙 is the length of the beam, while the definitions of the rest of the parameters are 

similar to those in Eqs. (3.29) and (3.30). The level of damage obtained from the partial P-I 

diagrams was then used in the free vibration phase to decrease the Young’s modulus of 

concrete in the shear damage zone and the concrete strength. The developed partial P-I 

diagrams were used by Li and Hao in their later study [85] for the analysis of three story RC 

frames subjected to blast loads. 

 

3.5. Sensitivity to load time history  

3.5.1. Analytical model 

This section starts with a short description of an analytical model of an elastic beam subjected 

to a non-harmonic transverse load that is further used for derivation of P-I diagrams. The 

model utilises a continuous system formulation based on the Euler-Bernoulli beam theory. 

Since structural elements such as beams usually have light damping [77], [83], [86], the 

amount of energy it can dissipate in the short duration of motion is quite small. Thus, the 

effect of damping can be ignored [77], [86]. 

 

Figure 3.5. Case study beam: geometry, loading and boundary conditions 

The continuous Euler-Bernoulli beam formulation leads to a system consisting of a partial 

differential equation of motion, an external force function, and boundary and initial 

conditions. This system is solved using eigenfunction expansion (i.e., mode superposition 

method). Herein the main equations for the analytical model are described, for the detailed 

equation development see the Appendix. According to the Euler-Bernoulli beam theory the 

response of the beam to the applied transverse load is described by the following differential 

equation [83] 

𝐸𝐼𝑢′′′′ + 𝑚�̈� = 𝑃(𝑥, 𝑡)   (3.57) 

where 𝑢(𝑥, 𝑡) is the transverse deflections, 𝑢′ represents a partial derivative with respect to 

the space variable 𝑥 and  �̇� with respect to time t, 𝐸𝐼 is the flexural stiffness of the beam, 𝑚 is 

l

P(x,t)
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the mass per unit length of the beam and 𝑃(𝑥, 𝑡) is the excitation force. In order to simplify 

the solution of Eq. (3.57) the following parameters are used 𝑙 = 𝐸𝐼 = 𝑚 = 1. Since the 

described system is linearly elastic the use of adequate material parameters and geometrical 

dimensions will only introduce a certain scaling factor into the solution, which is not 

important for the context of this section. The effect of 𝑃(𝑥, 𝑡) on the beam highly depends on 

its spatial distribution 𝑝(𝑥) and its time history 𝑓(𝑡). Therefore, it is convenient to present 𝑃 

in the separable form 

𝑃(𝑥, 𝑡) = 𝑃0𝑝(𝑥)𝑓(𝑡)   (3.58) 

where 𝑃0 is the peak pressure. The solution of Eq. (3.57) for the maximum deflection at the 

midspan of the simply supported beam shown in Figure 3.5 can be expressed as [87]  

𝑢𝑚 = 𝐸𝐼𝑃0 ∑ 𝛤𝑖𝜙𝑖,𝑚𝐷𝑖,𝑚

∞

𝑖=1

 
  (3.59) 

where Γ𝑖 is the modal participation factor [86], 𝜙𝑖,𝑚 is the maximum value of the ith principal 

mode of vibration at the beam midspan, and 𝐷𝑖,𝑚 is the maximum value of the ith mode 

deformation response. In the current formulation, Γ𝑖 represents the effect of  𝑝(𝑥) on 𝑢𝑚 [87]. 

The upper limits for 𝐷𝑖,𝑚 can be expressed as 

𝐷𝑖,𝑚 =
1

𝜔𝑖
𝐼𝑖(𝑡𝑚,𝑖) 

for the forced vibration phase  (3.60) 

𝐷𝑖,𝑚 =
1

𝜔𝑖

√𝐼𝑖
2 + (𝐼�̇�/𝜔𝑖)

2
 

for the free vibration phase  (3.61) 

where 

𝐼𝑖 = ∫ 𝑓(𝜏) 𝑠𝑖𝑛[𝜔𝑖(𝑡0 − 𝜏)] 𝑑𝜏
𝑡0

0

 
  (3.62a) 

𝐼�̇� = 𝜔𝑖 ∫ 𝑓(𝜏) 𝑐𝑜𝑠[𝜔𝑖(𝑡0 − 𝜏)] 𝑑𝜏
𝑡0

0

 
 (3.74b) 

In Eqs. (3.60)-(3.62) 𝜔𝑖 is the ith natural frequency of the beam, 𝑡0 is the loading duration, 

𝑡𝑚,𝑖 is the time of the maximum deflection of ith principal mode of vibration, and 𝐼𝑖(𝑡𝑚,𝑖) can 

be obtained from Eq. (3.62a) by substituting 𝑡0 with 𝑡𝑚,𝑖. To produce a reasonable accuracy 

(error less than 1%) it is enough to consider only the first mode of vibration in the static 

regime, the three firsts modes of vibration in the dynamic regime and the first ten in the 

impulsive regime [87]. 
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3.5.2. Derivation of P-I diagrams and Discussion 

In this section the procedure for the derivation of the P-I diagrams for the elastic beam shown 

in Figure 3.5 is described. One of the most popular failure criteria used to generate P-I 

diagrams is the maximum structural deflection at midspan [4], [24], [28], [29], [33], [34], 

[38], [40], [41], [43]–[46], [50], [52], [55], [57]–[61], [63], [64], [68]–[71], [73]. This 

criterion in the form 𝜆 = 𝑢𝑚 is used here to define the degree of structural damage. It is also 

assumed that 𝜆𝑚𝑎𝑥=1, which is taken to represent the limit state 𝐺=1 corresponding to 100% 

structural damage (see Eq. (3.1) and Figure 3.5). 

The procedure for calculation of the P-I diagram can be summarised as follows: 

1. The initial value of impulse (or, equivalently, 𝑡0) is set. 

2. 𝑢𝑚1 and 𝑢𝑚2 are calculated using Eqs. (3.59)-(3.61). 

3. Two values of 𝑃0 are calculated from the equations 𝜆𝑚𝑎𝑥 = 𝑢𝑚1 and 𝜆𝑚𝑎𝑥 = 𝑢𝑚2, 

where the subscript 1 corresponds to the forced vibration phase while 2 to the free 

vibration phase. 

4. The steps 1-3 are repeated for increasing impulse till sufficient number of points are 

generated for building two curves corresponding to 𝜆𝑚𝑎𝑥 = 𝑢𝑚1 and 𝜆𝑚𝑎𝑥 = 𝑢𝑚2. 

5. The two curves are overlaid (see Figure 3.6) and a decision is made about their 

validity in different regimes. The 𝜆𝑚𝑎𝑥 = 𝑢𝑚1 curve is valid in the static regime, the 

𝜆𝑚𝑎𝑥 = 𝑢𝑚2 curve in the impulsive regime and both in turn in the dynamic regime. 

The final P-I curve is a combination of these two curves. 
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Figure 3.6. Derivation of P-I diagram for the case study beam 

The P-I curves calculated for the described beam under a uniform pressure load with 

rectangular, triangular, concave, exponential and sinusoidal time histories are shown in 

Figure 3.7.  

 
Figure 3.7. P-I diagrams for the pressure load with different time history shapes 
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As can be seen the analysed time histories, with the exception of the sinusoidal one, result in 

P-I curves which are close to the conventional hyperbolic shape. Additionally, the divergence 

between the P-I curves generated for the load time histories with zero rise time (i.e., 

rectangular, triangular, concave and exponential) mainly develops in the dynamic part of the 

P-I curves. As can be seen, the higher rate of the load decay (or the smaller value of the 

delivered impulse) corresponds to the smoother P-I curve in the dynamic regime. 

The unconventional shape of the P-I curve generated by the pressure load with the sinusoidal 

time history can be attributed to the additional sensitivity of the P-I curve to the load rise time 

𝑡𝑃0(= 𝑡0/2), which depends in this case on the load duration 𝑡0 (see Fig. 2.2i). Initially, the 

growing 𝑡0 results in larger values of impulse delivered to the beam. This situation continues 

till 𝑡0 becomes equal to the time of the maximum structural response 𝑡𝑚 and the P-I curve 

approaches the static asymptote (see Figure 3.7). From this point on only a part of the 

impulse, from the load start to time 𝑡𝑚, contributes to the maximum structural response (𝑢𝑚 

in the case analysed in this section). This part of the impulse is called the effective impulse in 

[61]–[64] and was extensively used in the development of methods for derivation of P-I 

diagrams describing confined explosions. In the period between 𝑡0 = 𝑡𝑚 and 𝑡𝑃0 = 𝑡𝑚 the 

effective impulse decreases with growing 𝑡0. This leads to the need of increasing the peak 

pressure 𝑃0 in order to achieve the limit state condition 𝐺 = 1 (see Eq. (3.1)). In this period 

the P-I curve ascends towards the quasi-static asymptote (see Figure 3.7). Starting from time 

𝑡𝑃0 = 𝑡𝑚, the P-I curve converges on the quasi-static asymptote, 𝑡𝑚 always coincides with 

𝑡𝑃0, 𝑃0 remains constant while the effective impulse starts growing again with increasing 𝑡0. 

In the period when 𝑡0 ≥ 𝑡𝑚 ≥ 𝑡𝑃0 the condition 𝐺 = 1 occurs during the different natural 

periods of the beam vibration. This leads to the development of a series of peaks and dips in 

the late dynamic regime of the curve. The influence of 𝑡𝑃0 on the effective impulse can be 

represented in the case of a sinusoidal time history by the relative peak load vs. maximum 

response ratio 𝜏𝑟0 = 𝑡𝑃0/𝑡𝑚 = 𝑡0/2𝑡𝑚, which is similar in its essence to the relative load-

response relationship 𝜏𝑟 = 𝑡0/𝑡𝑚 introduced by Krauthammer and colleagues in [35] and 

extensively used by Dragos and colleagues in [61]–[64]. 

Each of the generated P-I curves is then compared with the P-I curves yielded by five closed-

form expressions: Sperrazza [13], Youngdahl [25], Schumacher and Cummings [27], 

Abrahamson and Lindberg [28] and Shi et al. [38]. The aim of this comparison is to examine 

the fitting ability and applicability the P-I curve formulae given by Eqs. (3.2)(3.6)(3.8)(3.9) 
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and (3.28). To allow fitting the Abrahamson and Lindberg’s P-I curve formula (3.9) was 

modified into 

(P0/Pcr − 1)(I/Icr − 1) = C   (3.63) 

where 𝐶 is the fitting constant. The results of the comparison are shown in Figure 3.8 

toFigure 3.12.  

 

 
Figure 3.8. Comparison of P-I diagrams for rectangular time history 
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Figure 3.9. Comparison of P-I diagrams for triangular time history 

 

 
Figure 3.10. Comparison of P-I diagrams for concave time history 
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Figure 3.11. Comparison of P-I diagrams for exponential time history 

 

 
Figure 3.12. Comparison of P-I diagrams for sinusoidal time history 
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𝑃𝑐𝑟 and 𝐼𝑐𝑟, which were required for the analysed P-I curve formulae, were approximately 

evaluated using the beam model under the loads with large values of pressure and impulse, 

respectively. The values of the constants in the P-I curve formulae (3.2)(3.6)(3.8)(3.28) and 

(3.63) obtained from fitting the analytical P-I curves generated for the rectangular, triangular, 

concave, exponential and sinusoidal time histories are given in Table 3.4.  

P-I curve formula 
Sperrazza 

[13] 
Youngdahl 

[25] 

Schumacher 
and 

Cummings 
[27] 

Abrahamson 
and Lindberg 

[28] 

Shi et al. 
[38] 

Constant C C DN C C D 

Lo
ad

 t
im

e 
h

is
to

ry
 

Rectangular 4 10 100 0.015 1 0.1 

Triangular 80 20 100 0.25 0 1.4 

Concave 20 35 100 0.07 1 0.9 

Exponential 150 1 100 0.5 1 1.6 

Sinusoidal 5 10 100 0.01 1 0.5 

Table 3.4. Fitted values of constants in P-I curve formulas 

Figure 3.8 to Figure 3.12 demonstrate that the P-I curve formulae [13], [28] and [38] can very 

accurately fit most of the analytical P-I diagrams except the unconventional P-I curve 

generated for the sinusoidal pulse shape. Youngdahl’s [25] and Schumacher and Cummings’ 

[27] P-I curve formulae are only consistently accurate in prediction of the impulsive 

asymptote. The modification introduced by Youngdahl in [25] to account for the effect of 

shape dependency and further simplifications proposed by Schumacher and Cummings [27] 

result in a loss of accuracy in the fitting of the P-I curves in the dynamic and static regimes. 

Consequently, Youngdahl’s [25] and Schumacher and Cummings’ [27] P-I curve formulae 

are suitable for the analysis of pressure loads in the impulsive regime only. 

3.5.3. P-I diagram for finite load rise time history 

All of the analysed P-I curve formulae were unable to fit the late dynamic and the early 

quasi-static parts of the P-I curve generated for the sinusoidal pulse shape (see Figure 3.12). 

To take into account the unconventional (non-hyperbolic) shape of this P-I diagram it is 

proposed to modify the static asymptote 𝑃𝑐𝑟 in the P-I curve formula (3.28) into 

P̅cr = Pcr[1 − (A/I)B]   (3.64) 

where 𝐴 and 𝐵 are the fitting constants. The curve fitting of the analytical P-I diagram using 

the P-I curve formula (3.8) with the modification (3.64) yield 𝐴 = 5 and 𝐵 = 0.85. The 

resulting P-I curve is shown in Figure 3.12. 



104 
 

It is seen that Sperrazza’s [13], Abrahamson and Lindberg’s [28] and Shi and colleagues’ 

[38] P-I curve formulae proved to be very well adapted for the derivation of the P-I diagrams 

describing structures subjected to pressure loads with decaying time histories, e.g., the shock 

waves. Shi and colleagues’ P-I curve formula (3.25) with the proposed modification [80] can 

be successfully used for the generation of P-I diagrams describing structures subjected to 

pressure loads with varying time of peak pressure in their time histories, e.g., pressure waves. 

Finally, it is necessary to point out that the described structural system is linear and the drawn 

conclusion may not hold in the case of more complex structural behaviour. 
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3.6. Sensitivity to axial loads 

As previously discussed, each P-I curve represents the same degree of damage caused to a 

structure or a structural element by the loads with different combinations of peak pressure (or 

sometimes another type of loading) and impulse on the structure. Thus, the P-I curves are 

also termed iso-damage curves and accurate modelling of the load time history is especially 

important for their validity. It is necessary to point out that the P-I diagram is similar to a 

certain degree to the response spectrum. The main difference lies in the fact that the response 

spectrum represents the variation of a structural parameter (i.e., displacements) in different 

loading regimes. On the other hand, the P-I diagram is built for a certain failure criterion, 

such as maximum structural deflection at mid-span or at supports or residual axial load-

carrying capacity. The most popular failure criterion however is the maximum structural 

deflection mostly due to the simplicity of its application with single-degree-of-freedom 

(SDOF) systems.  

P-I diagrams using the analytical method (described above and fully demonstrated in the 

Appendix) were derived using the beam mid-span deflection as the failure criterion, i.e., 𝜆 =

𝑢𝑚. The level of axial force and the shape of the time history are defined, and then the 

procedure previously described for the derivation of P-I diagrams is used. The beam is 

subjected to the same three levels of axial preload, i.e., zero axial force, 0.5𝑁𝑏1 and 0.9𝑁𝑏1. 

The calculated P-I diagrams are shown in Figure 3.13. As can be seen, the axial loading 

influences both the location and shape of the P-I diagrams. The growing axial load shifts the 

P-I curve towards the origin of the coordinate axes signifying the decreasing peak pressure 

and impulse required to cause failure of the analysed structural system. 
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Figure 3.13. P-I diagrams for the axially preloaded simply supported beam subjected to 

uniformly distributed transverse blast loading with a rectangular time history. 
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3.7. Conclusions 

Pressure-impulse (P-I) diagrams are an efficient tool widely used for preliminary assessment 

and prediction of damage (or survivability) of structures subjected to extreme and accidental 

loads. In this chapter a detailed description of the P-I diagram method and its strengths and 

weaknesses are presented. The methods of structural analysis and search algorithms applied 

in the derivation of P-I diagrams are discussed in detail and classified based on their 

complexity. Further, a comprehensive overview and classification of the existing formulae 

used for the approximate formulation of P-I curves is presented. The P-I curve formulae are 

divided into the closed-form, open-form consistent and open-form mixed categories based on 

the methods of their formulations. 

A full and detailed analytical solution of an elastic beam subjected to a transverse load is 

presented. In this solution the beam is modelled using the continuous formulation based on 

the Euler-Bernoulli beam theory. The response of the beam to the excitation is decomposed 

into natural modes of vibration and the number of modes needed for accurate analysis is 

estimated. The P-I diagrams are derived for the beam under a uniform transverse pressure 

load with rectangular, triangular, concave, exponential and sinusoidal time histories. The 

sensitivity of the P-I diagram to the shape of the load time history is demonstrated. The P-I 

diagrams were then derived for different levels of axial force. It was shown that the P-I 

diagram is highly sensitive to the level of the axial force.  

The efficiency of several closed-form P-I curve formulae is then examined. The P-I curve 

formulae introduced by Sperrazza [13], Abrahamson and Lindberg [28], and Shi et al. [38] 

are found to be very flexible in use and provide the best approximations of the P-I curves 

built for structures subjected to pressure loads with decaying time histories. It is also shown 

that the P-I diagram has an unconventional (non-hyperbolic) shape when it describes a 

structure subjected to pressure loads with a varying load rise time. The causes of the 

unconventional shape of the P-I curve are explained. All the analysed P-I curve formulae are 

found unable to fit the late dynamic and the early quasi-static parts of the P-I diagram 

generated for the sinusoidal load time history. A new P-I curve formula that fits such shapes 

is then proposed based on Shi and collegues’ P-I curve formula [38]. In the proposed formula 

certain modifications are made to the parameter describing the position of the quasi-static 

asymptote. 
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Chapter 4 : Graphical Method for the Derivation of P-I 

Diagrams 

 

4.1.  Introduction 

This chapter focuses on the development of a new graphical method for the efficient 

derivation of P-I diagrams. This method is based on building complementary 

loading/structural parameter vs. impulse and loading/structural parameter vs. pressure 

graphs that describe the structural response in impulsive and (quasi-)static loading regimes. 

An elastic beam-column subjected to a transverse pressure load and axial force is used to 

illustrate and benchmark the method. In this case the axial force is chosen as the loading 

parameter generating the force-impulse (F-I) and force-pressure (F-P) diagrams. The 

techniques and algorithms necessary for implementation of the graphical method in its 

dimensional and normalised forms are discussed. Several P-I, F-I and F-P diagrams are 

derived for the beam-column subjected to different levels of axial force. It is demonstrated 

that while the P-I curve corresponding to the analysed structural system has a traditional 

hyperbolic shape, the F-I curve can be accurately approximated by a parabolic function and 

the F-P curve by a linear function. The derived P-I, F-I and F-P diagrams are used to 

demonstrate the advantages and efficiency of the proposed graphical method in both its 

forms. 

 

4.2.  New Graphical Method 

As discussed at length in Chapter 3, the underlining idea of the P-I diagram approach is that 

every point on the P-I curve corresponds to the same level of damage caused to the structure 

by different combinations of pressure and impulse. It can also be seen as a boundary (or a 

threshold) between the damaged and undamaged structural states.  

A typical P-I curve can be divided into a vertical asymptote, a hyperbolic curve and a 

horizontal asymptote as depicted in Figure 4.1. These three parts represent the following 

regimes: (I) impulsive regime, (II) dynamic regime and (III) (quasi-)static regime. The 

vertical asymptote is also called impulsive while the horizontal asymptote can be static or 

quasi-static depending on the load rise time in the load time history [1]. It should be noted 
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that further in the chapter the horizontal asymptote is referred to as (quasi-)static when the 

loading regime is unclear. 

 

Figure 4.1. P-I Diagram 

In Figure 4.1 𝑃𝑐𝑟 and 𝐼𝑐𝑟 are, respectively, the critical pressure and critical impulse required to 

cause structural failure. The position of each point of the P-I curve is controlled by a limit 

state function 𝐺 representing structural damage. 𝐺 can be expressed as 

𝐺(𝐼, 𝑃) = 𝜆/𝜆𝑚𝑎𝑥  (4.1) 

where  represents the failure criterion.  

In a structure subjected to a blast load every structural element is already carrying a specific 

set of static loads generating internal forces and moments. Therefore, a combined action of a 

principal static load (or force) relevant to a particular structural element and the pressure 

pulse rather than the effect of the pressure pulse alone has to be considered in design or post-

blast loading assessment. It is necessary to point out that each P-I curve is built for a unique 

combination of loads acting on a specific structure and for a specific level of damage and 

type of failure. Even slight variations in structural geometry or in the time history of the load 

immediately invalidate the curve. The effect of a specific loading/structural parameter on the 

P-I diagram, e.g., the degree of structural damage, can be taken into account by drawing 
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additional curves reflecting the variation in this parameter. Instead of building multiple P-I 

diagrams, the effect of the variation of a single parameter (e.g., axial force F, level of damage 

D, or post-blast fire exposure time T) was proposed to be taken into account using a P-I band 

[2] or by building a three dimensional F-P-I diagram [3] a P-I-D diagram [4], or a P-I-T 

diagram [5]. It is suggested in [2] that the P-I bands can be used for rapid safety/survivability 

assessment of damaged structures. At the same time, the three dimensional diagrams, as 

presented by different authors such as [4], [3] and [5], have a very limited practical 

application providing only visual information on the influence of a corresponding parameter 

on the position and shape of the P-I curve. When the simultaneous effect of two parameters, 

e.g., different degrees of damage in similar structures with different load cases has to be 

considered, the P-I diagram becomes quite cumbersome and loses its flexibility. Currently, 

there is a lack in a reliable and efficient method that can take into account the simultaneous 

effect of two loading and/or structural parameters on the P-I diagram. 

As the P-I diagram is very sensitive to any change in the state of the analysed structural 

system, a new P-I diagram has to be built each time a change occurs. In this section a novel 

graphical method is introduced as a means enhancing the efficiency of P-I diagrams. This 

unique method is based on the fact that the positions of the impulsive and (quasi-)static 

asymptotes are influenced by numerous loading and structural parameters. This influence can 

be directly taken into account by building complementary loading/structural parameter vs. 

impulse and loading/structural parameter vs. pressure diagrams. These two diagrams 

describe the structural response in the impulsive and (quasi-)static loading regimes and 

therefore define the positions of the corresponding asymptotes. It should be pointed out here 

that the variations in the positions of the asymptotes are limited to certain regions on the 

abscissa and ordinate of the P-I diagram near the origin (see Figure 4.2).  
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Figure 4.2. Graphical method 

Any loading/structural parameter influencing the analysed structural system can be 

considered using the proposed method. For example, the applied force (F) or the developed 

structural damage (D) can be chosen as such parameter creating, respectively, the force-

impulse (F-I) and force-pressure (F-P) diagrams or the damage-impulse (D-I) and damage-

pressure (D-P) diagrams. These diagrams are schematically shown in Figure 4.2 as extensions 

of the P-I diagram. As an elastic beam-column subjected to an axial force and a transverse 

pressure load is further considered as a benchmark, the new method is introduced hereafter 

using the F-I and F-P diagrams. A typical normalised F-I (and F-P) diagram is shown in 

Figure 4.3a, where 𝐹 and 𝐹𝑐𝑟 are the applied and critical axial forces, 𝐼 and 𝐼𝑐𝑟 the applied 

and critical impulses, and 𝑃 and 𝑃𝑐𝑟 the applied and critical pressures.  
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(a) (b) 

Figure 4.3. (a) Basic and (b) extended F-I (F-P) diagrams 

The proposed graphical method is further divided in its dimensional and normalised forms. 

The dimensional method is especially efficient for the derivation of new P-I diagrams while 

the normalised method for the assessment of a structure in different structural states. 

 

4.3.  Dimensional method 

The F-I diagram is suitable for the assessment of structural damage or survivability in the 

impulsive regime while the F-P diagram describes the structural capacity in the (quasi-)static 

regime. Therefore, the F-I and F-P diagrams define, respectively, the positions of the 

impulsive and (quasi-)static asymptotes for every practical level of the applied force. The 

dimensional method can utilise this feature for the derivation of P-I curves in two ways 

depending on the formulation of the P-I diagram. The P-I curve can be defined analytically 

using a formula that includes the terms 𝐴𝑃 and 𝐴𝐼 representing, respectively, the static and 

impulsive asymptotes ([6], [7], [8] and [9]). For example, Shi and colleagues [9] introduced 

the following P-I relationship based on an extensive numerical study on RC columns 

subjected to blast loads 

(𝑃0 − 𝐴𝑃)(𝐼 − 𝐴𝐼) = 𝐶(𝐴𝑃/2 + 𝐴𝐼/2)𝐷  (4.2) 
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where 𝑃0 is the peak pressure, 𝐼 is the impulse delivered by the blast to a structure, and 𝐶 and 

𝐷 are the fitting constants. In this case a new P-I curve can be simply obtained by calculating 

new values of 𝐴𝐼 and 𝐴𝑃 using, respectively, the F-I and F-P relationships. 

To implement the graphical method, the complementary diagrams and one P-I curve have to 

be initially derived. Each new P-I curve can then be drawn by copying the existing P-I curve 

to a new position defined by the F-I and F-P diagrams and scaling each point of the P-I curve 

along the axes. The scaling is carried out using the following scaling ratios: 

 𝐴𝐼,𝑁𝐸𝑊/𝐴𝐼,𝑂𝐿𝐷 along the Impulse axis 

 𝐴𝑃,𝑁𝐸𝑊/𝐴𝑃,𝑂𝐿𝐷 along the Pressure axis 

where the subscripts NEW and OLD represent the new and old values of 𝐴𝐼 and 𝐴𝑃. The 

presented graphical method assumes that the P-I curves generated for a structural system 

under scaled loads have the same basic shape. This assumption is supported by the findings 

reported by various authors ([10], [11], [9], [12], [13], [14] and [15]). 

The essential advantage of the described method lays in the fact that it also allows to account 

for the simultaneous effect of two loading/structural parameters on the P-I diagram. For 

example, P-I curves describing different degrees of damage can be drawn for a blast loaded 

column under different levels of axial force. For that purpose the different degrees of 

structural damage have to be incorporated into the F-I and F-P diagrams by building 

additional curves as schematically shown in Figure 4.3b. Another strength of this method is 

that it represents a convenient tool for quick assessment (in terms of safety and survivability) 

of typical structures or structural elements in a building (e.g., a floor supported by typical 

columns) subjected to different combinations of static, dynamic and impulsive loads. 

 

4.4.  Normalised method 

The dimensional method loses its efficiency when a large number of structural states (e.g., a 

column under different levels of axial force developing various degrees of damage) are 

needed to be examined. In this situation the normalised method is more suitable. This method 

requires normalisation of the P-I diagram while the F-I and F-P diagrams can be used in the 

non-normalised or normalised forms. The normalised P-I diagram is obtained from an 

existing diagram by scaling it along the coordinate axes using the following normalisation 

factors 
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 1/𝐴𝐼 along the Impulse axis 

 1/𝐴𝑃 along the Pressure axis 

where 𝐴𝐼 and 𝐴𝑃 are respectively defined using the F-I and F-P diagrams (or corresponding 

relationships). When the F-I and F-P diagrams are normalised (see Figure 4.3a), the 

calculated normalised values of the asymptotes 𝐴𝐼 and 𝐴𝑃 have to be respectively multiplied 

by 𝐼𝑐𝑟 and 𝑃𝑐𝑟. 

The system composed of the three diagrams can now be used for the assessment/prediction of 

safety of a structure in a certain structural state subjected to a certain blast load. The F-I and 

F-P diagrams define the structural state (e.g., the degree of damage and the level of axial 

force) through the normalisation factors. 

The algorithm for the assessment of safety of the structural state can be summarised as 

follows: 

1.  F-I and F-P diagrams and at least one P-I diagram are derived. 

2.  The P-I diagram is normalised using the normalisation factors 1/𝐴𝐼 and 1/𝐴𝑃 suitable 

to the structural state the P-I diagram describes. 

3.  A structural state and a blast load are chosen for examination. 

4.  The blast load described in terms of 𝐼 and 𝑃 is normalised using the normalisation 

factors 1/𝐴𝐼 and 1/𝐴𝑃 corresponding to the examined structural state. For example, 

𝐴𝐼 and 𝐴𝑃 can be respectively calculated for the elastic beam-column loaded by a 

certain axial force and developing a certain degree of damage using Eqs. (4.8) and 

(4.11). 

5.  A point (𝐼/𝐴𝐼 , 𝑃/𝐴𝑃) corresponding to the normalised 𝐼 and 𝑃 is positioned on the 

normalised P-I diagram. 

6.  A check is made whether the point is in the safe or unsafe zone of the normalised P-I 

diagram leading to a conclusion whether the analysed blast load will cause the failure 

of the structure in the examined state. 

The obvious advantage of the normalised graphical method is that it eliminates the need in 

deriving new P-I diagrams. Only one normalised P-I diagram is required and represents all 

the other necessary P-I diagrams. The assessment or prediction of the safety of a certain 

structural state can be carried out by mapping the values of 𝐼 and 𝑃 corresponding to the 

assumed or applied blast loads onto the normalised P-I plane (𝐼/𝐴𝐼 , 𝑃/𝐴𝑃). Therefore, the 
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normalised graphical method can be used in at least two ways. First, this method can provide 

clear limits for multiple combinations of loads that can be applied on a structure designed to 

withstand a certain degree of damage. Second, this method is very efficient when multiple 

typical structures or structural elements (e.g., typical columns in a building floor) under 

varying loads (e.g., axial loads) have to be designed to or quickly assessed after an extreme 

event such as exposure to a blast load. 

Both the dimensional and normalised methods are demonstrated in the following section. 

 

4.5.  Case study: axially preloaded beam under blast load 

In this section the proposed graphical method for derivation of the P-I diagrams is discussed 

in detail using as a benchmark an elastic beam-column subjected to an axial force and a 

transverse load shown in Figure 4.4.  

 

Figure 4.4. (a) Beam-column model and (b) load time history 

As the primary purpose of columns is to carry axial loads, the axial force is used in the 

derivation of the complementary diagrams which will be renamed to N-I and N-P diagrams. 

The response of the beam-column to a combined action of the axial force and transverse 

pulse load is described using analytical modelling. This model utilises a continuous system 

formulation based on the Euler-Bernoulli beam ([16], [17]). It is assumed that the beam-

column is statically preloaded by the axial force. The transverse load is modelled as pressure 

distributed uniformly over the beam-column height. The triangular load time history with 
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peak pressure 𝑃0 at the start and duration 𝑡0 is chosen. The model of the beam-column and 

the time history of the pulse load are shown in Figure 4.4b. The beam-column of the height 𝑙 

has pinned-pinned supports. If light damping is assumed, the amount of energy it can 

dissipate in the short duration of motion is quite small. Thus, its effect on the maximum 

response of the beam-column to a single pulse excitation can be ignored [16]. 

The response of the beam-column to the applied loads can be described by the differential 

beam equation [17]  

𝐸𝐼𝑢′′′′ + 𝐹𝑢′′ + 𝑚�̈� = 𝑃(𝑥, 𝑡)  (4.3) 

where 𝑢(𝑥, 𝑡) is the beam deflection, 𝑢′ represents a partial derivative according to the space 

variable 𝑥 and  �̇� according to time t, 𝐸𝐼 is the flexural stiffness of the beam, 𝐹 the axial 

force, 𝑚 the mass per unit length of the beam and 𝑃(𝑥, 𝑡) the excitation force. 𝐸𝐼 and 𝑚 are 

assumed constant along the beam. 

The detailed solution of Eq. (4.3), which has been carried out using the eigenfunction 

expansion method (i.e., the decomposition into the modes of vibration), is given in the 

Appendix. The maximum value at the beam-column mid-height 𝑢𝑚 equals (see Eqs. (A.26) 

and (A.27)) 

𝑢𝑚 = 𝐸𝐼𝑃0 ∑ Γ𝑖𝜙𝑖,𝑚𝐷𝑖,𝑚

∞

𝑖=1

 
 (4.4) 

where 

𝐷𝑖,𝑚 =
1

𝜔𝑖
𝐼𝑖(𝑡𝑚,𝑖) 

for the forced vibration phase (4.5a) 

𝐷𝑖,𝑚 =
1

𝜔𝑖

√𝐼𝑖
2 + (𝐼�̇�/𝜔𝑖)

2
 

for the free vibration phase (4.5b) 

The derivation of these expressions as well as the definitions of all the parameters involved 

can be found in the Appendix. 

Since the described structural system is linearly elastic, the use of adequate material 

parameters and geometrical dimensions will only introduce a certain scaling factor into the 

solution, which is not important in the context of the paper. Therefore, to simplify the 
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analysis all the calculations are made for an abstract non-dimensional column with 𝑙 = 𝐸𝐼 =

𝑚 = 1. As in the real structures 𝑁 is limited to the first Euler buckling force 𝑁𝑏1, three 

different levels of the axial force, i.e., zero axial force, 0.5𝑁𝑏1 and 0.9𝑁𝑏1, are chosen as 

representing three characteristic loading situations. 

4.5.1. P-I diagram 

As the new graphical method is based on generating new P-I curves from the existing ones, a 

few P-I curves are initially derived using Eqs. (4.4) and (4.5a). The most popular structural 

characteristic used as the failure criterion in building the P-I curves is the principal deflection 

of a structural element (see Section 4.2). Therefore, the maximum beam-column deflection 

occurring at the mid-height is used here to define the degree of structural damage. In such 

formulation the failure criterion takes the form 𝜆 = 𝑢𝑚. Additionally, it is assumed that 𝜆𝑚𝑎𝑥 

= 1, which represents the limit state 𝐺 = 1 corresponding to 100% structural damage (see 

Figure 4.1). The P-I curves calculated for three different levels of the axial load, i.e., zero 

axial force, 0.5𝑁𝑏1 and 0.9𝑁𝑏1, are shown in Figure 4.5.  

 

Figure 4.5. P-I diagrams 

As can be clearly seen, the variation in the axial force significantly influences the positions of 

the P-I curve. The positions of the impulsive and static asymptotes shift towards the 

coordinate axes with increasing axial force. The nature of the relationships between the 
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impulsive and static asymptotes and the axial load is investigated in the following sections 

using N-I and N-P diagrams. 

4.5.2. N-I diagram 

The F-I diagram provides the information on the degree and nature of the sensitivity of the 

beam-column to the axial force in the impulsive regime (see Figure 4.2). It is constructed 

here using the same failure criterion applied in the previous section for the derivation of the 

P-I diagrams. The N-I diagram is additionally normalised in order to simplify the derivation 

of the N-I relationship. The points of the normalised N-I diagram and the fitted curve are 

shown in Figure 4.6. The least-square curve fitting of these points results in the parabolic N-I 

relationship 

𝑁

𝑁𝑏1
+ (

𝐼

𝐼𝑐𝑟
)

2

= 1 
 (4.6) 

where 𝐼𝑐𝑟 is the critical impulse causing failure of the beam-column subjected solely to the 

transverse pressure load.  

 

Figure 4.6. Normalised N-I diagram 

It is necessary to note that the parabolic form of the N-I curve corresponds to the specific 

structural system analysed here. The shape of the curve may depend on numerous loading 
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and structural parameters such as the structural geometry, the complexity of the resistance-

displacement relationship, the supporting and loading conditions, etc. The normalisation of 

the N-I diagram using 𝑁𝑏1 and 𝐼𝑐𝑟 introduces a clear reference scale for the levels of the 

applied axial force and impulse. If the analysed column is short, which is, for example, the 

case of the majority of reinforced concrete columns [18] buckling is not likely to happen. It 

may be suggested that for such columns 𝑁𝑏1 in Eq. (4.6) should be more appropriately 

substituted by the axial carrying capacity. 

As in certain situations it is important to be able to assess/predict the degree of damage 𝑑 

caused by a blast to a structure, 𝑑 can be easily incorporated into the N-I diagram by 

introduction of additional curves. The additional N-I curves describing different degrees of 

structural damage can be built using the modified limit state function (see Eq.(4.1)) 

𝐺(𝐼, 𝑃) = 𝜆/(𝑑 ∙ 𝜆𝑚𝑎𝑥)  (4.7) 

𝑑 is always in the range between 0 and 1 with 𝑑 = 1 representing the state of structural failure 

(100% damage). Figure 4.7 shows the N-I curves built for 𝜆𝑚𝑎𝑥 = 1 and 𝑑 = 1/3, 2/3 and 1. 

The N-I relationship given in Eq. (4.6) can be extended to include 𝑑 in the following form 

𝑁

𝑁𝑏1
+ 𝑑−2 (

𝐼

𝐼𝑐𝑟
)

2

= 1 
 (4.8) 

 

Figure 4.7. Extended normalised N-I diagram 
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It should be pointed out that 𝑑 is always bigger than zero in the formulations of 𝐺 presented 

in Eq. (4.7) and the N-I relationship in Eq. (4.8). In real structures 𝑁 is never bigger than 𝑁𝑏1 

so for 𝑖 ≥ 3 the ratio 𝑁/𝑁𝑏𝑖 ≅ 0. Thus, the axial force has a profound influence mostly on 

the first mode of vibration of the beam-column, which is the dominant mode of the column 

response [19]. An implicit analytical form of the N-I diagram can be derived using the first 

mode of vibration. This formulation is equivalent to using a first mode SDOF system. After 

substituting 𝑖 = 1 into Eqs. (4.4) and (4.5a) and some algebraic manipulations the following 

expression is obtained 

𝑁

𝑁𝑏1
+ (

𝐼1̅

𝐼1̅,𝑐𝑟

)

2

= 1 
 (4.9) 

where the parameter 𝐼1̅,𝑐𝑟 =
�̅�1𝑢1,𝑐𝑟

𝐸𝐼𝑃0Γ1𝜙1,𝑚
 can be described as the contribution of the first mode 

to the impulse required to produce the critical displacement 𝑢1,𝑐𝑟 in the beam-column loaded 

by the transverse pressure only. 𝐼1̅ = √𝐼1
2 + (𝐼1̇/𝜔1)

2
 is the first mode implicit representation 

of the applied impulse. It should be pointed out that the parabolic form of Eq. (4.9) is similar 

to the form of the N-I diagram obtained in Eq. (4.6) and shown in Figure 4.6. 

4.5.3. N-P diagram 

The N-P diagram describes the sensitivity of the beam-column on the axial force in the static 

regime and defines the position of the static asymptote. It is also constructed using the failure 

criterion applied in the derivation of the P-I diagrams. The normalised N-P diagram and the 

fitted curve are shown in Figure 4.8.  
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Figure 4.8. Normalised N-P diagram 

Given that the elastic beam-column is in the static regime and its response is linear, the 

resulting N-P diagram has a linear shape. The least square curve fitting results in the 

following linear function 

𝑁

𝑁𝑏1
+

𝑃0

𝑃𝑐𝑟
= 1 

 (4.10) 

where 𝑃𝑢 is the critical pressure causing failure of the beam-column loaded solely by the 

transverse pressure. The shape of the N-P diagram entirely depends on the degree of 

nonlinearity of the considered structural system. For example, the response of the simply 

supported linear elastic beam-column under the simple static load case shown in Figure 4.4 is 

characterised by the linear N-P curve given in Figure 4.8. The N-P curves can be highly 

nonlinear when the analysed structure has complex geometry, supporting and loading 

conditions and/or a complex nonlinear response-displacement relationship. 

If it is additionally necessary to assess/predict the degree of structural damage, the N-P 

diagram can be extended to include extra curves in a way similar to the extended N-I diagram 

shown in Figure 4.7 and described in the previous section. Similarly to Eq. (4.8) the N-P 

relationship in Eq. (4.10) can be modified to include the degree of damage 𝑑 as 
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𝑁

𝑁𝑏1
+ 𝑑−1

𝑃0

𝑃𝑐𝑟
= 1 

 (4.11) 

where 𝑑 is always in the range (0,1]. Figure 4.8 shows the N-P curves built for 𝑑 = 1/3, 2/3 

and 1. 

It is necessary to note that the P-I diagram is very sensitive to the shape of the load time 

history. This phenomena has been observed by a large number of researchers, such as [7], [8], 

[20], [21], [22], [23], [15], [24] and [25]. The N-I diagram, on the other hand, is utterly 

insensitive to the load time history and depends only on the amount of impulse delivered to a 

structure by the blast. The N-P diagram is only sensitive to the early part of the load time 

history corresponding to the load rise time since it defines whether the structure is in the 

static or quasi-static regime. 

4.5.4. Dimensional graphical method 

The dimensional graphical method is demonstrated using the P-I curves and shown in Figure 

4.5. For this purpose two new P-I curves corresponding to the beam-column loaded by the 

0.5𝑁𝑏1 and 0.9𝑁𝑏1 axial forces and developing 100% damage (i.e., 𝑑 = 1) are derived from 

the P-I curve corresponding to the zero axial force and 𝑑 = 1 by scaling the coordinates of 

every point of the curve using the scaling ratios 𝐴𝐼,𝑁𝐸𝑊/𝐴𝐼,𝑂𝐿𝐷 and 𝐴𝑃,𝑁𝐸𝑊/𝐴𝑃,𝑂𝐿𝐷. The new 

and old values of 𝐴𝐼 and 𝐴𝑃 are calculated using, respectively, Eqs. (4.6) and (4.10). The new 

curves generated using the graphical method are compared with the original curves in Figure 

4.9.  
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Figure 4.9. Dimensional graphical method 

As can be seen from the figure the graphical method yields P-I curves identical to the 

previously calculated ones. Additional P-I curves can now be easily derived for any desirable 

degree of damage (0 < 𝑑  1) and any practical level of the axial force (0  𝑁  𝑁𝑏1) by 

applying Eqs. (4.8) and (4.11). 

 

4.5.5. Normalised graphical method 

The normalisation process described in Section 4.4 is demonstrated using the two P-I curves 

in Figure 4.5 corresponding to the beam-column under the zero and 0.9𝑁𝑏1 axial forces and 𝑑 

= 1. The values of 𝐴𝐼 and 𝐴𝑃 corresponding to 𝑁 = 0 and 𝑁 = 0.9𝑁𝑏1 are respectively 

calculated using the N-I and N-P relationships in Eqs. (4.6) and (4.10). Figure 4.10 depicts 

that both normalised curves are identical. The normalised P-I curve is further fitted using the 

P-I relationship given in Eq. (4.2). The use of the following set of values 𝐴𝑃 = 1.0, 𝐴𝐼 =

1.0, 𝐶 = 0.12, 𝐷 = 1.0 resulted in a very accurate fitting. The fitting curve is also presented 

in Figure 4.10. 
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Figure 4.10. Normalised graphical method 

The normalised graphical method is now applied for evaluation of the structural state of three 

columns subjected to zero, 0.5𝑁𝑏1 and 0.9𝑁𝑏1 axial forces and the same blast load with 𝐼 =

20 and 𝑃 = 22. The P-I diagrams drawn for 100% damage and the defined levels of axial 

force together with the point (𝐼 = 20, 𝑃 = 22) describing the applied blast load are given in 

Figure 4.5. As can be seen from the figure, this point lays on the P-I curve corresponding to 

0.5𝑁𝑏1 axial force. It can therefore be concluded that the axially unloaded beam-column will 

develop only limited damage after application of the analysed blast load while the beam-

columns loaded by the 0.5𝑁𝑏1 and 0.9𝑁𝑏1 axial forces will fail. The point (𝐼 = 20, 𝑃 = 22) is 

then mapped onto the normalised plane (𝐼/𝐴𝐼 , 𝑃/𝐴𝑃) three times in accordance with the three 

sets of values 𝐴𝐼 and 𝐴𝑃 corresponding to the three analysed levels of the axial force. 𝐴𝐼 and 

𝐴𝑃 are respectively calculated using the N-I and N-P relationships given in Eqs. (4.6) and 

(4.10). The results of mapping are shown in Figure 4.10. Point 1 in the figure represents the 

structural state of the beam-column under zero axial force, Point 2 under 0.5𝑁𝑏1 axial force 

and Point 3 under 0.9𝑁𝑏1 axial force. Conclusions similar to the ones for the non-normalised 

P-I diagram can now be made, i.e., the axially unloaded beam-column (Point 1) develops 



132 

 

only limited damage, while the beam-columns loaded by the 0.5𝑁𝑏1 and 0.9𝑁𝑏1 axial forces 

(Points 2 and 3) fail. Various structural states of the beam-column corresponding to different 

levels of axial force and different degrees of damage can now be examined using the 

extended N-I and N-P diagrams or relationships given in Eqs. (4.8) and (4.11). It is important 

to stress here that in order to assess the state of a structure only the N-I, N-P and normalised 

P-I diagrams need to be built and only points representing analysed blast loads are mapped 

onto the normalised P-I plane. This is much more efficient and less time consuming than 

building numerous P-I diagrams and then assessing the structural conditions. Note, the curve 

in the Figure was derived analytically and is not described by any of the existing formulas. 
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4.6.  Conclusions 

A new graphical method is proposed in this chapter as an efficient means for derivation of P-I 

diagrams or assessment of multiple structural conditions. This method is based on derivation 

of complementary loading/structural parameter vs. impulse and loading/structural parameter 

vs. pressure diagrams. These new diagrams describe, respectively, the structural response in 

the impulsive and (quasi-)static regimes and define the position of each P-I diagram. The 

proposed graphical method is presented in its dimensional and normalised forms. The 

techniques and algorithms necessary for the implementation of the both forms of the new 

method are explained in detail. The advantages and efficiency of the graphical method are 

examined using an elastic beam-column subjected to an axial force and a transverse blast load 

as a benchmark. The complementary diagrams formulated in this case are the axial force-

impulse (N-I) and axial force-pressure (N-P) diagrams. The P-I, N-I and N-P diagrams are 

built for different levels of axial force and different degrees of structural damage. Analytical 

expressions are obtained for the N-I and N-P curves using least-square curve fitting. It is 

found that the N-I curve corresponding to the analysed structural system can be efficiently 

described by a parabolic function while the N-P curve by a liner function. The dimensional 

graphical method is demonstrated to be efficient for derivation of new P-I diagrams from an 

existing one, especially when the simultaneous effect of two loading/structural parameters on 

the P-I diagram has to be considered. The normalised graphical method is shown to be an 

effective means for the assessment of safety of a structure in different structural states 

including different load cases and different degrees of damage. Finally, it is concluded that 

the graphical method represents a powerful tool for preliminary design as well as quick 

assessment of multiple typical structures or structural elements exposed to extreme loads 

generated by explosions. 
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Chapter 5 : Finite Element Modelling of Reinforced Concrete 

Structures 

 

5.1.  Introduction 

This chapter focuses on the development of finite element reinforced concrete models. 

Abaqus is often used by scientists and engineers for modelling of reinforced concrete (RC) 

structures, e.g., [1]–[5]. The choice of material models of concrete is limited in Abaqus to the 

smeared cracking model, the brittle cracking mode and the damaged plasticity model [6]. 

Each model is designed for a particular type of usage. The smeared cracking model can 

handle only monotonic loading and low confining pressures. This limits the range of its 

applicability. The damaged plasticity model is by far most complex concrete model 

incorporated in Abaqus that can be used in any loading regime. However, it is not ‘user 

friendly’, includes multiple parameters and its calibration can be very challenging. 

Additionally, this model does not allow damaged elements to be deleted form the finite 

element (FE) analysis. The brittle cracking model can be used only in the explicit loading 

scheme and is very ‘user friendly’ and easy to calibrate. The main disadvantage of this model 

is that it assumes linear elastic material behaviour in compression. As a result, the model can 

be reliably used only in the cases where the concrete behaviour is dominated by the tensile 

failure. The limited choice of the built-in concrete models combined with their shortcomings 

often resulted in new models introduced in Abaqus through user-defined subroutines, e.g., 

[1], [2]. In this paper, the brittle cracking model is extended to include the nonlinear 

compressive behaviour using the user subroutine VUSDFLD. The new material model is 

compared with the original brittle cracking model and the damaged plasticity model. It is then 

used to examine strain rate effects [7], [8] and also to simulate a number of benchmark cases 

including a three point bending test [9], a standard brittle failure test [10] and RC columns 

under blast [11], [12]. The limitations of model application are examined. 
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5.2.   Reinforced concrete models in Abaqus 

5.2.1. Available models 

Currently three models exist in the commercial software finite element package Abaqus 

specifically for concrete. They include the concrete smeared cracking model, the cracking 

model for concrete and the damaged plasticity model [6]. Each model is designed for a 

particular type of usage within a defined time integration scheme.  

The smeared cracking model is intended for use in implicit models with monotonic loading 

and low confining pressures. The brittle cracking model is designed for applications in which 

the behaviour is dominated by tensile cracking within the explicit time scheme. The damaged 

plasticity model is perhaps the most comprehensive of the three models, designed for use in 

both explicit and implicit analyses with a range of different loading intensities. The model is 

a continuum, plasticity-based, damage model for concrete. It assumes that the main two 

failure mechanisms are tensile cracking and compressive crushing of the concrete material. 

Apart from these models more general Abaqus capabilities can be used for the description of 

concrete behaviour. For example the Modified Drucker- Prager/ Cap model, which is 

typically used in the modelling of granular type materials, such as soils and rock, can be 

adapted to describe concrete behaviour [13]. Additionally, in Abaqus there is also the 

possibility of writing one’s own material model via a user subroutine code. 

In the analysis of structures subjected to extreme loads, such as blast loads the most suitable 

models are the latter two. This is mainly due to the limitations of both the first models- the 

smeared cracking model is not designed for dynamic load cases, whereas the brittle cracking 

model uses elastic behaviour in compression which is unsuitable when discussing extreme 

loads on compressive structural members, such as columns. Due to these limitations the 

models widely used in Abaqus to describe concrete under extreme loading are either the 

damaged plasticity or the Drucker- Prager models. Of these models the smeared crack model 

is fundamentally unsuitable for dynamic analysis. The remaining two models are discussed in 

the following sections. 
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5.2.1.1. Damaged plasticity model 

The damaged plasticity model in Abaqus implements a damaged plasticity material model for 

concrete [14] which was then further modified [15]. The model is suitable for modelling 

concrete material under dynamic loading. The underlying constitutive theory of the model 

assumes that concrete behaves in a brittle manner under low confining pressure and the main 

modes of failure are cracking in tension and crushing in compression. However, if the 

confining pressure is large enough to prevent crack propagation then the concrete no longer 

behaves in a brittle manner. In this case failure is that of a ductile material with work 

hardening. 

The main advantages of using this material model is that different behaviour can be specified 

in tension and compression in order to capture the fundamentally different behaviour, 

including different yield strengths, softening in tension compared to hardening followed by 

softening in compression and different elastic stiffness degradation in tension and 

compression. 

As a result of the failure mechanisms in the concrete, caused by cracking and crushing, the 

elastic stiffness suffers a decrease in value. As the model is based on the scalar-damage 

theory this degradation is isotropic and characterised by a single variable, as shown below. 

The stress- strain relation is presented in the following equation: 

𝜎 = (1 − 𝑑) ∙ 𝐷0
𝑒𝑙(𝜀 − 𝜀𝑝𝑙) = 𝐷𝑒𝑙(𝜀 − 𝜀𝑝𝑙)   (5.1) 

where 𝐷0
𝑒𝑙 is the initial undamaged elastic stiffness of the concrete and 𝐷𝑒𝑙 = (1 − 𝑑) ∙ 𝐷0

𝑒𝑙 is 

the degraded elastic stiffness of the concrete. 𝑑 is the scalar stiffness degradation variable, the 

range of which is 0 ≤ 𝑑 ≤ 1 where the value 0 corresponds to undamaged material and 1 to 

fully damaged material. 

The effective stress is defined as: 

𝜎 = 𝐷0
𝑒𝑙(𝜀 − 𝜀𝑝𝑙)   (5.2) 

and is related to the Cauchy stress through the scalar degradation variable: 

𝜎 =
𝜎

(1 − 𝑑)
   (5.3) 

The hardening variables 𝜀�̃�
𝑝𝑙

 and 𝜀�̃�
𝑝𝑙

 represent the equivalent plastic strains in tension and 

compression. The micro-cracking and the crushing of concrete are represented by increasing 
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the values of these variables, in this way these variables control the evolution of the yield 

surface and the degradation of the elastic stiffness. 

Uniaxial stress-strain curves are converted into stress-plastic strain curves of the following 

form: 

 

Figure 5.1. Response of concrete to uniaxial loading in tension (a) and compression (b)[6] 

As shown in Figure 5.1, if unloading occurs on the strain softening branch the unloading 

response is weakened and the elastic stiffness degraded. The degradation of the elastic 

stiffness differs between compression and tension tests and is more pronounced as the plastic 
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strain increases. This response is expressed by using two independent damage variables, 𝑑𝑡 

and 𝑑𝑐, which are functions of the plastic strains, temperature and field variables. 

When subjected to uniaxial cyclic conditions the degradation mechanisms in concrete, 

including opening and closing of previously formed micro-cracks and their interaction, 

become significantly more complex. Weight factors which are part of the material definitions, 

𝑤𝑡 and 𝑤𝑐, control the recovery of the tensile and compressive stiffness upon load reversal, as 

shown in the following figure. 

 

Figure 5.2. Uniaxial load cycle (tension-compression-tension) assuming default values for 

the stiffness recovery factors: 𝑤𝑡 = 0 and  𝑤𝑐 = 1. [6] 

The postfailure behaviour of concrete under direct strain is modelled using tension stiffening. 

If in the model there are regions of concrete with no reinforcement the tension stiffening 

model defined by the stress-strain curve introduces mesh sensitivity problems into the 

analysis [6]. In order to overcome this failure in tension is defined by using a fracture energy 

cracking model. This is modelled in Abaqus by specifying the postfailure stress as a function 

of the cracking displacement, see Figure 5.3. 
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Figure 5.3. Postfailure stress-displacement curve [6] 

This model seems very advantageous as it allows for different failure mechanisms in both 

tension and compression. The main disadvantage is that the model requires for a lot of user 

input and is therefore harder to calibrate. Another disadvantage is that there is no possibility 

to define a failure criterion removing failed elements from the analysis which could lead to 

numerical issues due to large deformations in the elements. Due to this cracks along the 

reinforcement cannot be explicitly modelled, therefore phenomena such as concrete spalling 

and scabbing can’t be modelled, which might be advantageous in blast load analyses. 

Additionally it will be shown in the case studies that the results under blast loads are not 

satisfactory for this constitutive model. 

 

5.2.1.2. Brittle cracking model 

The brittle cracking model is only available in the explicit numerical time integration scheme 

and uses a smeared crack model to represent the characteristically discontinuous brittle 

behaviour in concrete. It is an elastic cracking model with concrete between cracks 

considered as an isotropic linearly elastic material. In this model, the initiation and evolution 

of individual cracks is not tracked. Instead, a smeared crack method is utilised to present the 

material discontinuities. The material calculations take into account cracks via stress and 

material stiffness at the material point. The constitutive calculations are performed 

independently at each material point within the finite element model. All cracks are assumed 

to be fixed and orthogonal with a limit of three cracks in a 3D model. The first crack at a 

material point is assumed to have formed once the maximum principle tensile stress exceeds 

the tensile strength of the concrete. In the numerical scheme implemented in Abaqus crack 
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initiation is detected by a simple Rankine criterion. Once a crack is formed at a point, its 

orientation is stored for subsequent calculations. A new crack can form at the same point only 

in a direction orthogonal to the direction of an existing crack. Therefore, this model is called 

a fixed orthogonal crack model. Cracks are modelled as irrecoverable. They may close and 

reopen, but remain throughout the rest of the analysis.  

If the post failure behaviour is specified using stress as a function of strain along the crack in 

cases with minimal or no reinforcement, the mesh will not converge. This is because finer 

mesh leads to narrower crack bands. In such cases it is best to characterise the concrete 

behaviour using a stress- displacement response [16]. Using this approach, the length of a 

sufficiently developed crack is primarily determined by the crack opening and is not 

dependent of the length of the concrete member. 

The concrete model considers two modes of behaviour; Mode I and Mode II [6]. Mode I is 

the tension, softening/ stiffening behaviour and the crack detection scheme is based purely on 

this mode. Mode II is the shear softening/ retention behaviour and is based on the observation 

that shear behaviour is dependent on the amount of crack opening. The postcracked scheme 

takes into account both of these behavioural modes. 

The tension softening in the direction normal to a crack is described based on the Hillerborg 

cohesive crack model [16], in which a stress-displacement curve is adopted from CEB-FIP 

Model Code 2010 [13]. Additionally, the effect of the amount of crack opening on the shear 

response of concrete is formulated using the shear retention model. As shown in Figure 5.4, 

the larger the crack the less interlocking there is so shear resistance decreases. In this model, 

the post-cracked shear stiffness is defined as a power function of the strain across an opening 

crack, reducing as the crack opens. 

 

Figure 5.4. Principle of shear friction in concrete crack with unbroken aggregates [17] 
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Although crack initiation is based on Mode I fracture the postcracked behaviour includes 

Mode II behaviour. Mode II shear behaviour depends on the amount of crack opening – the 

shear modulus reduces as the crack opens [6]. In this model, the post-cracked shear stiffness 

is defined as a power function of the strain across an opening crack, shown in Figure 5.5 and 

taking the form of: 

ρ(𝑒𝑛𝑛
𝑐𝑘 ) = (1 −

𝑒𝑛𝑛
𝑐𝑘

𝑒𝑚𝑎𝑥
𝑐𝑘 )

𝑝

 
  (5.4) 

where ρ(𝑒𝑛𝑛
𝑐𝑘 ) is the shear retention factor, 𝑒𝑛𝑛

𝑐𝑘  is the crack opening strain and p and 𝑒𝑚𝑎𝑥
𝑐𝑘  are 

material parameters [6]. 

 

Figure 5.5. Power law form of the shear retention model [6] 

Great care and understanding of the likely structural behaviour and potential failure 

mechanisms is required when using this material model. The advantage of a failure criterion 

removing an element deemed to have failed by the brittle crack criterion might not always be 

a valid assumption - if for example the load will reverse the analysis will not take into 

account the potential compressive stress capacity of the element (e.g. seismic events). 

The model is suitable for the modelling of reinforced concrete as it can be used in 

conjunction with embedded rebar. If a concrete element were to fail according to the brittle 

failure criterion its contribution to the stress carrying capacity is removed, however the rebar 

contribution remains until the rebar failure criteria is satisfied. 

The brittle cracking model is designed for cases where tensile cracking governs the overall 

behaviour of the structure examined. The model assumes that the behaviour of concrete in 

compression is always linear elastic. 
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In this work all the tensile input in the brittle cracking models was developed by using the 

known concrete properties, as given in experiment reports, and the FIB Model Code [17]. In 

tension the concrete behaviour was implemented according to the tensile stress-opening crack 

relationship for short term loading ([17], Section 5.1.8.2). 

 

Figure 5.6. Schematic representation of the stress-crack opening relation for uniaxial tension 

[17] 

 

5.2.1.3. Extended brittle cracking model 

As discussed in the previous section, the main drawback of the brittle cracking model is that 

its behaviour in compression is linear elastic. This renders it inapplicable in cases where the 

compressive behaviour is important, either during the main loading or in the post loading 

analysis. 

In order to overcome this shortcoming in the model a user defined subroutine was 

incorporated into the model. One of the great advantages of the finite element package 

Abaqus is that it allows the user to code and add different user subroutines. These subroutines 

need to be within a certain framework dictated by the program and available input and 

required output is also defined by the framework. 

In this case, due to the behaviour of the brittle cracking model deemed satisfactory in tension 

and the material model weakness only being in compression, it was decided to add a user 

subroutine to improve only the behaviour in compression. The user subroutine scheme 

chosen for this task was the VUSDFLD scheme, which is only valid within the explicit time 

scheme. This subroutine allows certain field variables to be redefined at a material point as a 
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function of time or other material point quantities, such as stress, strain, temperature etc. The 

field variable is updated at each analysis step and the value of the relevant material property 

is recalculated. In this study, the nonlinear compressive behaviour of concrete is introduced 

into the brittle crack model by formulating the modulus of elasticity of concrete (Ec) as a 

function of strain (εc). To define the Ec – εc function, the stress-strain (c – εc) relationship 

describing the uniaxial compression behaviour of concrete is adopted from the CEB-FIB 

Model Code 2010 [17]. The code implicitly adopts concrete softening properties. 
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where 1cc   , εc1 is the strain at the maximum compressive stress fcm, εc,lim is the strain at 

crushing of concrete in compression, 1cci EEk   is the plasticity number, Eci is the initial 

modulus of elasticity of concrete and Ec1 is the secant modulus obtained by connecting the 

diagram origin to the curve peak, i.e., (εc1, fcm). The Ec – εc relationship can be obtained from 
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In Eq. (5.6), Ec is the secant modulus obtained by connecting the diagram origin to a point on 

the c – εc curve. The c – εc and Ec – εc curves yielded by Eqs. (5.5) and (5.6) are 

schematically shown in Figure 5.7. 

 

Figure 5.7. The c – εc and Ec – εc curves describing Eqs. (5.5) and (5.6) 
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It is important to note that the subroutine accesses the material point properties at the start of 

an increment and is therefore not influenced by the results obtained during the increment  [6]. 

This is usually not a concern as in dynamic explicit analysis the stable time increment is 

sufficiently small. 

The variables that require user definition are the field variables at material points. These get 

passed into the user subroutine with values interpolated from the end of the current 

increment. The updated values are then used to calculate those material properties dependent 

on them. 

An additional advantage of the extended and original brittle crack models is that they can be 

used together with the erosion algorithm in compression. This addition to the user subroutine 

finds the principle strains in each element checks if they are smaller than the allowed 

maximum strain (for example, 𝜀𝑐,𝑚𝑎𝑥 = 0.0035) and removes any failed elements, where the 

maximum strain has been reached, from the FE model. 

5.2.2. Verification Studies 

In all FE simulations discussed hereafter, concrete was modelled using 8-node linear brick 

elements (C3D8R) with reduced integration to prevent over-stiff elements and enhanced 

hourglass control to avoid spurious deformation modes in the model mesh [6]. The elements 

were controlled during the analysis to prevent excessive distortion of the mesh. 

In order to examine the concrete behaviour using the different material models described a 

single element cube was analysed. The cube was 1x1x1m. The bottom face of the block was 

constrained against the vertical movement. Additional constrains where applied at three 

corners of the block to prevent its rotation and movement in the plane parallel to the bottom 

face. Such boundary conditions allowed avoiding the development of an arching effect in the 

block. The displacement load was applied to the top face of the block in order to stabilise the 

procedure of the numerical solution.  The model, boundary conditions and load for tension is 

shown in Figure 5.8. 
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Figure 5.8. The single element concrete cube with tensile loading 

Three FE models using the extended brittle cracking model, the original brittle cracking 

model and the damaged plasticity model were compared. The concrete materials were taken 

from an Abaqus benchmarked solution to a three point bending test [6], which will be further 

discussed in this chapter. The benchmarked solution used the damaged plasticity model and 

all the material parameters were taken in accordance. The general concrete parameters and 

the damaged plasticity parameters are presented in Table 5.1 and Table 5.2. 

Concrete 

Young's modulus (GPa) Poisson's ratio Density (kg/m3) 

30 0.2 2400 

Table 5.1. General concrete properties 

Concrete Damaged Plasticity 

Compressive Behaviour Tensile Behaviour 

Yield Stress 

(MPa) 

Inelastic Strain Yield Stress 

(MPa) 

Displacement 

(m) 

Damage 

Parameter 

20 0 3.33 0 0 

30 0.0015 0.333 7.447e-5 0.9 

Table 5.2. Damaged Plasticity concrete properties 

The parameters were then modified for use in the brittle crack model. In this case there is no 

option for entering the concrete behaviour for compression, so only the tensile properties 

were used. 

Finally, the material model was modified to use with the extended brittle crack model. For 

tensile behaviour no changes were needed and the tensile properties previously used were 
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adopted. In compression the stress- strain relationship provided by the damaged plasticity 

model was adapted by adding more reference points for stress and strain and then calculating 

the secant modulus of elasticity for each point. The results were then used as input for the 

user subroutine, and are presented in the following table where field 1 is representative of the 

strain. 

Concrete Extended Brittle Crack 

Compressive Behaviour 

Young's secant 

modulus (GPa) 

Field 1  

(plastic strain) 

30.00 0 

30.00 0.000667 

28.10 0.000703 

24.12 0.000802 

21.53 0.001001 

20.00 0.0011 

17.82 0.0013 

16.05 0.001503 

12.98 0.0021 

12.04 0.0024 

10.51 0.002806 

10.00 0.0029 

8.85 0.003305 

8.03 0.003607 

7.51 0.003907 

6.97 0.004209 

5.97 0.004913 

5.00 0.0058 

4.01 0.007327 

3.00 0.009749 

2.00 0.014505 

0.10 0.02 

Table 5.3. Extended brittle crack concrete properties for user subroutine 
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Additionally, the user subroutine allows the user to remove elements once maximum strain is 

reached in the concrete. For the following analyses using the brittle crack model the 

maximum allowable strain in compression was 𝜀𝑚𝑎𝑥,𝑐 = 0.015. 

As a further check the moduli of elasticity were compared for the damaged plasticity and the 

extended brittle crack model. The results are identical and presented in Figure 5.9. 

 

Figure 5.9. Comparison between Elastic moduli for the concrete models 

The results for the single element cube in tension and compression are presented in the 

following sections. 
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5.2.2.1. Concrete cube under tension 

The results for the concrete cube test in tension for the three different material models are 

presented in Figure 5.10. 

 

Figure 5.10. The single element concrete cube results for tensile loading 

The performance of the three concrete models under uniaxial tension and compression was 

examined by applied a displacement load perpendicularly to the top face of the block. All the 

models behaved similarly under tension with a slight difference between the damaged 

plasticity model and the brittle cracking models developing in the part of the curves 

corresponding to the crack opening. 
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5.2.2.2. Concrete cube under compression 

The results for the three models in compression, presented in Figure 5.11, vary significantly. 

 

Figure 5.11. The single element concrete cube results for compressive loading 

As presented, the behaviour of models highly diverged under compression. Figure 5.11 

shows that the brittle cracking model exhibits an elastic response. The two remaining models 

behaved similarly until the designated maximum strain of 0.015 (corresponding to a 

displacement of 0.015 m), when the extended brittle cracking model failed. The damaged 

plasticity model failed at the strain just under 0.02 (a displacement of 0.02 m). Following its 

failure, the damaged plasticity model exhibited an unstable response with a series of sharp 

partial recoveries and failures. As a result, this model may not be entirely reliable in 

simulating the post-failure behaviour of concrete structures. It is important to note that the 

elastic-plastic response shape is determined by the benchmarked material properties of the 

damaged plasticity model, as previously elaborated on [6].  
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5.2.3. Strain Rate 

Strain rate was examined for both tension and compression. The extended brittle cracking 

model does not explicitly include the effect of the rate of load application. The sensitivity of 

the material model to strain rate was examined using a standard concrete prism, as employed 

by Cotsovos and Pavlović [8], with a height of 253 mm and a cross-section of 100 mm by 

100 mm [7]. Each edge of the prism cross-section was discretised into 5 elements, while the 

prism was discretised into 13 elements along its height. This gives 125 elements with the 

dimensions of 20 mm  20 mm  19.5 mm. The uniaxial compressive strength of concrete is 

assumed to be fcm = 30 MPa, Poisson’s ratio equal to  = 0.2 and the concrete density to 

 = 2400 kg/m3. The bottom face of the prism was fixed and the load was applied to the top 

face at different rates. 

 

 

Figure 5.12. Finite element model of concrete prism 

Initially, the effect of the tensile strain rate was examined using a displacement load. The 

displacement load was selected to stabilise the numerical solution during concrete failure in 

tension. Six different displacement rates between 10 mm/sec and 20,000 mm/sec 

(corresponding to the strain rates between 0.0005 sec-1 and 3 sec-1, respectively) were 

considered. The results are presented in Figure 5.13. The increase in the tensile stresses was 

observed with growing strain rate.  
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Figure 5.13. Strain rate results in tension 

The strain rate results were plotted on a graph with all the known strain rate experimental 

data, as compiled by  Cotsovos and Pavlović [7] and presented in Figure 5.14. The abscissa 

the diagram in the figure is in a logarithmic scale, and the ordinate is the maximum dynamic 

reaction force, Pd, at the top face of the prism normalised by the maximum static reaction 

force, Ps. As can be seen, the numerical results fall within the experimental scatter, and the 

Pd / Ps ratio increases more rapidly for the strain rates larger than 0.1 sec-1. It is also 

necessary to note that the displacement loads with the rates larger than 20,000 mm/sec 

(corresponding to the strain rate of 3 sec-1) caused distortion of the finite elements, rendering 

the results unreliable. 
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Figure 5.14. Strain rate results for tension compared to experimental results [7] 

Figure 5.15 to Figure 5.20 show the development of displacements in tension until the time 

when maximum stress is observed. It is shown that in the lower displacement rates the 

displacement at the top influences the whole specimen. However in the four highest 

displacement rates only the top layer of the specimen is affected – the rate of loading is so 

high that the reaction does not have time to propagate down the specimen and the majority of 

the specimen remains unaffected by the load. 

  
   

Figure 5.15. Displacement in tension for displacement rate of 10 mm/sec at t= 0, 25%, 50%, 

75% and 100% of time to maximum observed stress 

Max displacement = 1.69e-2mm 
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Figure 5.16. Displacement in tension for displacement rate of 100 mm/sec at t= 0, 25%, 

50%, 75% and 100% of time to maximum observed stress 

     

Figure 5.17. Displacement in tension for displacement rate of 1,000 mm/sec at t= 0, 25%, 

50%, 75% and 100% of time to maximum observed stress 

     

Figure 5.18. Displacement in tension for displacement rate of 2,000 mm/sec at t= 0, 25%, 

50%, 75% and 100% of time to maximum observed stress 

     

Figure 5.19. Displacement in tension for displacement rate of 10,000 mm/sec at t= 0, 25%, 

50%, 75% and 100% of time to maximum observed stress 

Max displacement = 1.45e-2mm 

Max displacement = 1.2e-3mm 

Max displacement = 1.2e-3mm 

Max displacement = 1.2e-3mm 
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Figure 5.20. Displacement in tension for displacement rate of 20,000 mm/sec at t= 0, 25%, 

50%, 75% and 100% of time to maximum observed stress 

It is worth noting that this research aims to understand concrete, and in particular reinforced 

concrete, at a structural level. In order to fully investigate strain rate in concrete under tension 

more work would be required at a meso-scale level with suitable mesh detailing due to the 

localised effects observed. It is recognised, therefore, that in the analyses presented there may 

be a certain displacement rate after which the analysis under or over estimates the concrete 

response. 

The effect of the compressive strain rate was examined using the pressure load with the rates 

between 10,000 MPa/sec and 4,000,000 MPa/sec (corresponding to the strain rates between 

0.01 sec-1 and 70.8 sec-1, respectively). Figure 5.21 shows the results of numerical 

simulations.  

 

Figure 5.21. Strain rate results in compression 

Max displacement = 1.2e-3mm 
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It was further observed that the specimen’s behaviour differed under different loading rates. 

At the lowest loading rates of 10,000 MPa/sec and 100,000 MPa/sec the compressive stress 

increased gradually until the peak stress was observed and then unloading occurred and the 

stress reduced. In the mid rates of 200,000 MPa/sec and 400,000 MPa/sec the compressive 

stress increased gradually until reaching similar values to the static compressive stress, then 

some unloading occurred and the stress wave proceeded to the next row of elements after 

which additional loading was observed bringing the peak stress significantly higher than the 

static stress. In the highest load cases of 2,000,000 MPa/sec and 4,000,000 MPa/sec the load 

occurred at such a high speed that the material reaction was delayed - the stresses increased 

with no unloading, even when the elements were fully distorted. 

The strain rate results were then plotted on a graph with all the known strain rate 

experimental data, as compiled by  Cotsovos and Pavlović [8] and presented in Figure 5.22. 

The abscissa the diagram in the figure is in a logarithmic scale, and the ordinate is the 

maximum dynamic pressure, Pd, normalised by the maximum static pressure, Ps. It is evident 

that the growing strain rate leads to the increase of the Pd / Ps ratio and this increase becomes 

more rapid for the strain rates larger than 0.3 sec-1. In addition, the numerical results fall 

within the wide experimental scatter.  

 

Figure 5.22. Strain rate results for compression compared to experimental results [8] 
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Figure 5.23 to Figure 5.28 show the development of displacements in compression until the 

time when maximum stress is observed. It is shown that in the lower load rates that the load 

progresses down the specimen. However in the two highest loading rates only the top layer of 

the specimen is affected – the rate of loading is so high that the reaction does not have time to 

propagate down the specimen and the majority of the specimen remains untouched by the 

load.  

    

Figure 5.23. Displacement in compression for loading rate of 10,000 MPa/sec at t= 0, 50%, 

75% and 100% of time to maximum observed stress 

    

Figure 5.24. Displacement in compression for loading rate of 100,000 MPa/sec at t= 0, 50%, 

75% and 100% of time to maximum observed stress 

    

Figure 5.25. Displacement in compression for loading rate of 200,000 MPa/sec at t= 0, 50%, 

75% and 100% of time to maximum observed stress 

Max displacement = 4e0mm 

Max displacement = 2e0mm 

Max displacement = 1.4e0mm 
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Figure 5.26. Displacement in compression for loading rate of 400,000 MPa/sec at t= 0, 50%, 

75% and 100% of time to maximum observed stress 

    

Figure 5.27. Displacement in compression for loading rate of 2,000,000 MPa/sec at t= 0, 

50%, 75% and 100% of time to maximum observed stress 

    

Figure 5.28. Displacement in compression for loading rate of 4,000,000 MPa/sec at t= 0 

50%, 75% and 100% of time to maximum observed stress 

The results show that although the subroutine written for compression has no explicit rate 

enhancement, the concrete stress is higher at high loading rates. This behaviour can only be 

attributed to inertia effects, which occur at the structural level. 

 

5.2.4. Conclusions 

In this section three different concrete models were theoretically examined and then analysed 

using a single element cube test. The analyses confirm that the models all behave similarly in 

tension. In compression, however, the results diverge and the suitability of the different 

models can be assessed. The brittle crack model is deemed unsuitable for cases where there is 

Max displacement = 6.6e-1mm 

Max displacement = 5e-1mm 

Max displacement = 5e-1mm 



161 

 

a need to consider compressive behaviour. The damaged plasticity model works well in 

compression until the deformations become too large and then the results are very unstable. 

The extended brittle crack model seems to overcome these two problems. By adding on a 

user subroutine written to extend the brittle crack models’ capabilities in compression the 

behaviour in compression is as required. Additionally, adding the possibility of defining 

damage based on maximum strain and deleting damaged elements the material model 

overcomes the problems associated with the damaged plasticity model. Another advantage is 

that the material properties used in the extended brittle crack model are easier to obtain (using 

model codes, for example) than the input required for the damaged plasticity model. Overall, 

the extended brittle crack model offers a robust reliable concrete model. 

Strain rate effects were also examined. As no material level definition was given for stress 

enhancement under growing strain rate any effects observed would be due to inertia effects. 

In both tension and compression stress enhancement under high strain rates were observed 

and the results favourably compared with those observed in experiments. 
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5.3.  Modelling RC structural response 

5.3.1. Modelling of reinforcement 

The steel reinforcement was modelled in Abaqus using 3D Timoshenko beam elements.  The 

material used was a plastic, rate dependant material with a specified strain failure. 

The bond between concrete and steel was modelled by embedding the steel reinforcement 

into the concrete elements. This technique can be readily implemented in Abaqus [6] by 

specifying a group of elements that lie embedded in a group of host elements whose response 

will be used to constrain the translational degrees of freedom in the embedded nodes. The 

embedded technique in Abaqus perfectly ties the embedded elements into the host elements. 

This is done through geometric relationships- if the node of an embedded element lies within 

the host element the translational degrees of freedom of the node are eliminated. In this case 

the relationship between concrete and steel is modelled as a perfect bond with no slip. 

 

5.3.2. Modelling Blast Loads 

A number of different techniques are available in Abaqus to simulate blast loads, namely a 

built in CONWEP suite, incident wave formulation and the direct specification of pressure. 

The CONWEP ability did not prove useful in this case, as there is no way to directly control 

the peak pressure and impulse of the blast load. Similarly the incident wave method did not 

allow for direct user control on the peak pressure and impulse. The most applicable method 

for the analyses carried out in this research was by applying pressure directly to the column 

face with duration to match the impulse. As there was need to re-simulate the example many 

times it was deemed easiest to use and control. 

5.3.3.  Nonlinear solution strategy  

The dynamic equilibrium equation in its most general form can be written as: 

M�̈� = P − I   (5.7) 

where 𝑀 is the mass matrix, �̈� is the acceleration vector, 𝑃 is the external load vector and 𝐼 is 

the internal vector. When the inertial force is small enough the equation reduces to the static 

form of equilibrium. 

Both the explicit and implicit methods are mathematical approaches used in numerical 

analysis for obtaining solutions of time dependant equations. The implicit solution calculates 



163 

 

the current unknown quantities from the current information. The solution using this 

technique is stable, even if large time steps are taken. However, iteration and conversion 

checking are required and the out of balance force is used time and time again to check 

equilibrium which is computationally expensive. Using the explicit approach, also known as 

the forward Euler or central difference algorithm, the unknown quantities are obtained from 

information already known. Iteration and convergence checking are not required. However 

the time increment has to be small enough to lie on the curve. 

Abaqus/Explicit has been designed to solve highly discontinuous, high-speed dynamic 

problems efficiently [18]. Using the explicit central difference integration rule the equations 

of motion are integrated for each degree of freedom (displacement or rotation) [6]. 
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  (5.8) 

where 𝑖 is the increment number. The approach is explicit as the kinematic state is advanced 

by using the values �̇�
(𝑖−

1

2
)
 and �̈�(𝑖) from the previous increment. 

Combining the explicit integration rule with elements that use a lumped mass matrix allows 

Abaqus to calculate the nodal accelerations easily at any given time, 𝑡, using the following 

expression: 

�̈�|(𝑡) = M−1 ∙ (P − I)|(𝑡)   (5.9) 

A lumped matrix is used due to the ease of calculating its inverse and also because the vector 

multiplication of M−1 by the inertial force requires only 𝑛 operations, where 𝑛 is the number 

of degrees of freedom in the model [6]. There is no need to create a global stiffness matrix as 

the internal force vector is formed from the individual element contributions. 

In summary, the Abaqus/ Explicit suite is computationally efficient for the analysis of large 

models with relatively short dynamic response times and for the analysis of extremely 

discontinuous events or processes and therefore has been used in is work. 
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5.3.4. Mesh Size and Time Increment 

Mesh size and stable time increment are closely linked. The stable time increment is the 

minimum time that a dilatational, or pressure wave, takes to move across any element in the 

model [18]. The stress wave speed, which consists of both volume expansion and contraction, 

for linear elastic material can be expressed as; 

𝐶𝑑 = √
𝐸

𝜌
 

   

(5.10) 

where 𝐸 is the elastic modulus and 𝜌 is the material density. For simplification Poisson’s 

ratio is assumed to be equal to zero. 

In the model the mesh modelling provides each element with a characteristic length, 𝐿𝑒. This 

allows the stable time increment to be expressed as [18]; 

∆t =
𝐿𝑒

𝐶𝑑
 

   

(5.11) 

This shows that there is a direct interaction between the element length and the speed of the 

stress wave. Therefore reduction in element size, 𝐿𝑒, will reduce the stable time increment. 

This is of obvious importance when discussing high speed loads such as blast or impact. 

In explicitly modelled blast simulations the mesh needs to be refined enough to capture the 

structural behaviour, but not so refined as to lead to increased time increments that will be too 

computationally expensive and time consuming. 

Mesh convergence was studied for a column under a blast load. The column is a fixed-fixed 

reinforced concrete column modelled using the extended brittle crack model. It is based on 

the column used in this chapter (subsection 5.4.4.2) for blast verification and further used for 

parametric studies in Chapter 6. Full modelling details can be found in those sections. For the 

purpose of mesh convergence studies the mesh of the 3277mm high column was analysed 

using mesh sizes varying from 25mm to 100mm.  

The analysis using the smallest mesh size of 25mm didn’t converge due to excessive 

distortion elements in the model the ratio of deformation speed to wave speed was too high. 

This can be solved by reducing the maximum allowed time increment; however this comes at 

a huge computational expense. A reduction of the required time increment by one order of 

magnitude was not small enough to overcome the deformations developing. 
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The results of mid column displacement for meshes of 40, 50 and 100mm are presented in 

Figure 5.29. The damage pattern at the end of the analyses is shown in Figure 5.30. It can be 

seen that the 100mm mesh is too coarse to fully capture the structural response, whereas the 

40mm and 50mm meshes are very similar in mid column displacement and residual damage.  

 

Figure 5.29. Mid column displacement for the meshes examined 

   

 

 

 

 

(a) (b) (c)  

Figure 5.30. Damage patterns for the (a) 40mm (b) 50mm and (c) 100mm meshes 
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In order to verify that the right time increment was chosen the 50mm mesh was reanalysed 

with a maximum allowed time increment by one order of magnitude. In both cases the results 

were identical, as shown in Figure 5.31. The computational time, on the other hand grew 

from 1 hour of CPU time to 94. 

 

Figure 5.31. Mid column displacement for the 50mm mesh with varying time increment 

 

5.4.   Verification studies 

5.4.1. Three-point bending static test  

The case study of an unreinforced notched beam under 3 point bending, shown in Figure 

5.32, was chosen to test the validity of the extended brittle crack model under static loading. 

This specific setup can be found in the literature both in terms of experimental studies [9] and 

analytical ones ([19]–[21], for example). The problem has already been studied in Abaqus [6] 

using the damaged plasticity model which gives the distinct advantage of being able to 

compare the two material models. 
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Figure 5.32. Notched beam[6] 

The main behavioural response of the beam is Mode I cracking, so the main objective is to 

make sure that the tensile behaviour of the model is as expected and that the added extension 

does not limit it in any way. 

The simply supported beam had a span equal to 2 m, a depth of 0.2 m and width of 0.05 m. 

The midspan notch had a depth of 0.1 m and width of 0.04 m. The beam was loaded by a 

knife (line) load at midspan. Taking advantage of symmetry, only half of the notched beam 

was modelled (Figure 5.33). The mesh consisted of 1120 three-dimensional elements of the 

type C3D8R [6]. The mesh around and above the notch was refined to overcome mesh 

sensitivity due to the possibility of cracking in the out of plane direction. The velocity load 

was applied to the beam very slowly to keep the inertia effects, inevitably developing when 

the explicit time integration was used, at a minimum and the beam in the static loading 

regime.  

 

Figure 5.33. Notched beam- finite element model 
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The material properties are summarised in the following table: 

Concrete 

Young's modulus (GPa) Poisson's ratio Density (kg/m3) 

30 0.2 2400 

Table 5.4. Notched beam- concrete properties 

Additionally from the wealth of experimental and numerical data the cracking failure stress 

was known to be 3.33 MPa and the Mode I fracture energy 𝐺𝑓
𝐼 = 124 𝑁/𝑚. 

As the analysis is conducted in the Abaqus Explicit suite, which is a dynamic analysis 

program, it is important to ensure that the loading is done slowly to eliminate any inertia 

effects and to ensure a static solution. This is very important when dealing with brittle 

material models as the characteristic sudden drop in load carrying capacity leads to an 

increased response in kinetic energy [6]. In order to ensure a quasi-static solution the beam 

was loaded by applying a velocity that increases linearly from 0 to 0.06 m/s, the validity of 

which is the subject of another study [6]. 

The results of the FE simulations together with a comparison to the experimental data are 

shown in Figure 5.34. As can be seen, the use of the extended brittle crack model and the 

damaged plasticity model leads to similar behaviour of the notched beam which is 

comparable with the behaviour observed in the experiment. Small oscillations of the reaction-

displacement curves still develop due to the inertial effect before cracking of concrete occurs. 

The amplitude of the oscillations becomes larger during the failure phase due to amplification 

of the inertia effect by cracking. The assumption the oscillations are due to inertia was 

verified by rerunning the simulation with a smaller material density. 
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Figure 5.34. Notched beam- analysis results 

 

5.4.2. Predicting Brittle RC Failure 

In order to study the response of reinforced concrete under impact, an experiment by Bresler 

and Scordelis [10] was modelled in Abaqus using the proposed extended brittle crack model. 

The beam considered was beam C-2 from the experimental series. The beam geometry is 

presented in Table 5.5, and cross section presented in Figure 5.35. 

Concrete Steel Reinforcement 

Beam 

length 

(mm) 

Beam 

width 

(mm) 

Beam 

height 

(mm) 

Longitudinal 

Bottom 

reinforcement 

Longitudinal 

Top 

reinforcement 

Stirrups Cover 

depth 

(mm) 

4572 155 560 4D28.65 (#9) 2D12.7 (#4) D6.35 (#2) 

@208 

41.275 

 Table 5.5.  Bresler and Scordelis beam components’ geometry 
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Figure 5.35. Beam cross section 

The material properties for concrete were as follows 

Concrete 

Young's modulus (GPa) Nominal Strength (MPa) Density (kg/m3) 

22.924 24.13 2400 

Table 5.6. Bresler and Scordelis beam- concrete properties 

The steel properties are presented in Table 5.7. 

Steel Type Elastic Modulus 

(GPa) 

Yield stress of 

longitudinal steel 

(MPa) 

Ultimate stress of 

longitudinal steel 

(MPa) 

#9 205.46 551.58 932.8 

#4 201.33 345.42 603.98 

#2 189.6 325.43 429.54 

Table 5.7. Bresler and Scordelis beam- steel material properties 
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The loading arrangement and instrumentation is shown in Figure 5.36. 

 

Figure 5.36. Loading arrangement and instrumentation [10] 

The centre point load was applied using a 17.8 MN universal testing machine. A 200 mm 

spherical loading block was used at the load point. On one end the beam was supported on a 

spherical bearing block, whilst on the other end it was supported on a roller. 

A finite element model using the extended brittle crack model was used to simulate the 

experiment in Abaqus. The FE model of the whole C-2 beam included 4510 three-

dimensional elements of the type C3D8R. All reinforcing bars were modelled using 

Timoshenko beam elements (B31) and classic metal plasticity [6]. The reinforcing bar 

elements were embedded in the concrete elements. This formulation does not allow for 

failure of bond between steel bars and concrete. The finite element model with some of the 

concrete visually removed to allow a view of the embedded reinforcement is presented in 

Figure 5.37. Beam C3 was modelled although it included stirrups and therefore perhaps less 

of a prediction as to the behaviour of concrete as this work is aimed at looking at global 

structural performance. 

 

Figure 5.37. View of the finite element model of the Bresler and Scordelis beam 
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The concrete material in tension was modelled using the extended brittle crack model and 

referring to the base properties as given in the experimental data and the FIB Model Code 

[17], as described in Section 5.2.1.2. In compression the concrete stress-strain curve was 

calculated using the unconfined concrete strength in accordance with the model code. The 

secant Modulus of Elasticity as then calculated and used in the user subroutine, previously 

described, in order to capture concrete behaviour in compression. The resulting input curves 

are presented in Figure 5.38 for tension and Figure 5.39 for compression. 

 

Figure 5.38. Concrete material properties in tension 

 

  

Figure 5.39. Concrete material properties in compression 
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The load was implemented using displacement control at the beam centre. 

According to Bresler and Scordelis beam C-2 failed in shear-compression [10]. The failure 

took place at loads substantially higher that the load which initiated the first diagonal tension 

crack. The diagonal tension cracks formed at approximately 60% of the ultimate load. 

Additional load resulted in further diagonal cracks, but no sign of distress. As no extensive 

propagation of the flexural cracks at centre span occurred before failure, it was concluded 

that failure mechanism was that of shear-compression. The observed experimental cracks are 

presented in Figure 5.40. 

 

Figure 5.40. Typical crack pattern for shear-compression failure [10] 

In the numerical simulation a similar crack pattern was observed, see Figure 5.41. The FE 

results show the strain distribution in the concrete. As can be seen, the test beam and the FE 

model underwent excessive cracking in the same zones. The midspan deflection of the test 

beam and the FE model are shown in Figure 5.42. The curves in the figure follow very 

similar paths till the FE model fails due to numerical instabilities introduced by excessive 

cracking of the concrete. 
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Figure 5.41. Observed crack patterns in numerical model 

 

Figure 5.42. Load- Deflection curves for Bresler and Scordelis beam- experimental and 

numerical results 

It can be seen, however, that the extended brittle crack model fails before failure is observed 

in the experiment (Figure 5.42). In the case of brittle failure this structural behaviour is 

preferable to over estimating the structural capacity. As presented in this section, the 

numerical model was able to capture the failure pattern and behaviour observed in the Bresler 

and Scordelis beam experiment. 

 

 



175 

 

5.4.3. Predicting Ductile RC Failure 

Hughes and Speirs conducted numerous impact experiments on reinforced concrete beams 

[22]. In their experiments the beams remained elastic during the first impact and in most 

cases yielded subsequently at mid-span. One of the experiments was modelled in Abaqus 

using the proposed extended brittle crack model. The beam geometry is presented in Figure 

5.43. 

 

Figure 5.43. Details of test beams 

The beam modelled was beam C-2 from the experimental series. The specific beam geometry 

is presented in Table 5.8. 

Concrete Steel Reinforcement 

Beam 

length 

(mm) 

Column 

width 

(mm) 

Column 

height 

(mm) 

Longitudinal 

Bottom 

reinforcement 

Longitudinal 

Top 

reinforcement 

Stirrups Cover 

depth 

(mm) 

3000 100 200 2D12 2D6 D6@85 25 

 Table 5.8.  Hughes and Speirs beam components’ geometry 

The material properties for concrete were tested and found to be in the following ranges, as 

presented in Table 5.9. 

Concrete 

Young's modulus (GPa) Nominal Strength (MPa) Density (kg/m3) 

28-36 30-60 2400 

Table 5.9. Hughes and Speirs beam- concrete properties 
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The steel properties are presented in Table 5.10 

Elastic Modulus 

(GPa) 

Yield stress of steel 

(MPa) 

Ultimate stress of 

steel (MPa) 

206 460 560 

Table 5.10. Hughes and Speirs beam- steel material properties 

The loading arrangement and instrumentation is shown in Figure 5.44. 

 

Figure 5.44. Loading arrangement and instrumentation [22] 

A finite element model using the extended brittle crack model was used to simulate the 

experiment in Abaqus. As the beam, supports and loading was symmetric only quarter of the 

beam was modelled. The finite element model is presented in Figure 5.45 with some concrete 

elements visually removed to allow a view of the embedded reinforcement. 

 

Figure 5.45. View of the finite element model of the Hughes and Speirs beam 
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The concrete material was modelled as before and the resulting curves presented in Figure 

5.46 and Figure 5.47. 

 

Figure 5.46. Concrete material properties in tension  

  

Figure 5.47. Concrete material properties in compression 

The load was implemented using displacement control at the beam centre. The time-

displacement curve used corresponds to the impact experiment on beam C-2 [22] and is 

presented in Figure 5.48. 
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Figure 5.48. Amplitude used to simulate the impact case in experiment C-2 

The maximum mid beam displacement is shown in Table 5.11. It is shown that the 

displacements in the numerical simulation closely follow those observed in the experiment. 

The crack development pattern is presented in Figure 5.49. When comparing to the observed 

cracks in the experiment, see Figure 5.50, the experimental pattern observed is similar to the 

numerical one. 

C-2 Experimental Data Numerical Simulation Results 

Mid Column 

Displacement 

(mm) 

Time of max 

displacement 

(msec) 

Mid Column 

Displacement 

(mm) 

Time of max 

displacement 

(msec) 

63 2.4 65 2.54 

Table 5.11. Mid beam displacement for experiment and simulation 
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Figure 5.49. Crack development for numerical simulation of Hughes and Speirs C-2 

experiment 

 

Figure 5.50. Final observed crack pattern in Hughes and Speirs C-2 experiment 
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Additionally, different rates of displacement loading corresponding to different loading rates 

were analysed. The results are presented alongside the results from Hughes and Speirs 

experimental results [22] and numerical results derived by Cotsovos [7] in Figure 5.51. It is 

clearly shown that the numerical results using the brittle crack model are well within the 

scatter. 

 

Figure 5.51. Hughes and Speirs experimental results alongside numerical results 

 

5.4.4. RC column under blast 

5.4.4.1. Quarter Scale Woodson and Baylot Column 

In order to correctly capture the reinforced concrete behaviour under blast loads a series of 

simulations were carried out using Abaqus. The simulations were modelled after a blast 

experiment [11] and the results compared to those observed in situ. 

The experiments were conducted to develop models to represent the exterior column region 

of a multi bay, multi-story reinforced concrete structure. 
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Figure 5.52: Reinforced Concrete Column Model [23] 

The finite element model consisted of a concrete column, embedded steel reinforcement and 

both a column heading and footing to correctly simulate the boundary conditions of the 

column within the frame structure [23], as presented in Figure 5.53 and described further in 

this section. 

 

Figure 5.53. Reinforced Concrete Column Model 

 

 

 

             Heading 

             Exposed Reinforcement 

             Reinforced Concrete 

             Footing 
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The geometry of the structural components is presented in Table 5.12. 

Concrete Steel 

Column 

width 

(mm) 

Column 

depth 

(mm) 

Column 

height 

(mm) 

Heading/ 

Footing height 

(mm) 

Longitudinal 

reinforcement 

Cross 

tie/hoop 

Cover 

depth 

(mm) 

85 85 900 50 8D3.2 D1.6 @100 8.5 

Table 5.12. Column components’ geometry 

The boundary conditions used simulate behaviour representative of a column within a frame 

structure and provided restraints between fixed and pinned. A footing and a head were 

included in the numerical model. The outer vertical face of the footing and head were 

constrained against horizontal motions and the bottom face of the footing was constrained 

against vertical motion. 

The basic premise for the load was taken directly from the experiments. The following Figs 

demonstrate the reading placements on the column and the peak pressure and impulse 

readings. 

 

Figure 5.54. Column experiment reading placements 

The blast load peak pressure and duration were 6.1 MPa and 0.000331 seconds respectively. 

This corresponds with the results [23] obtained for the blast loads acting on the column’s 

front face. The load was simulated by means of a pressure load. The pressure was applied 

uniformly along the length of the column. In reality the spatial pressure profile decreases as 

distance from the blast charge point grows, however in this research as we are only 

discussing the length of the element the pressure was assumed to be uniform along the length. 
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The elements used were taken from the Abaqus explicit element library. They were of type 

C3D8R- 8 node linear bricks including reduced integration and hourglass control. Mesh 

convergence was tested and a mesh size of 1mm deemed satisfactory. 

The steel material behaviour was modelled as elastic perfectly plastic with the following 

values: 

Elastic 

Modulus 

(GPa) 

Yield stress of 

longitudinal 

steel (MPa) 

Ultimate stress 

of longitudinal 

steel (MPa) 

Yield stress 

of cross 

tie/hoop 

(MPa) 

Ultimate 

stress of 

cross tie/hoop 

(MPa) 

Fracture 

strain of  

steel (%) 

210 450 510 400 610 18 

Table 5.13. Steel Material Properties 

Concrete material modelling proved to be a more complex issue and the different modelling 

options were analysed. The basic concrete material properties, as per the experiment are 

presented in below. 

Elastic 

Modulus 

(GPa) 

Unconfined 

concrete 

strength (MPa) 

24 42 

Table 5.14. Concrete Material Properties 

Initially the concrete was modelled using the damaged plasticity model from the Abaqus 

library. The results achieved using this material model were very close in the initial response 

to the blast load however the post blast response was not comparable to the experimental 

results. When used the reinforced concrete column reaches maximum displacement and then 

retains very large residual displacements. These seem to occur due to the columns behaviour 

in tension; the concrete material cracks, and the steel area is not sufficient to enable the 

column additional return. 
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(a) (b) 

Figure 5.55. Damaged Plasticity Results (a) Maximum residual strains (b) Results for mid 

column displacement 

The Extended Brittle Crack model was then used. The concrete material was defined using 

the base properties, as given in the experiment report and FIB Model Code [17] as in 

previous simulations. 

 

 

 

 

 

 

 

 

Observed experimental residual displacement 
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The resulting material parameters are presented in Figure 5.56 and Figure 5.57. 

 

Figure 5.56. Concrete material properties in tension 

  

Figure 5.57. Concrete material properties in compression 

Using this approach, the results from the numerical simulation are satisfactorily close to the 

experiment results. The maximum mid column displacement is underestimated by 1mm. 

Additionally the residual displacement is very close to the 6.5mm measured after the 

experiment as shown in Figure 5.58. 
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(a) (b) 

Figure 5.58. Extended Brittle Crack Results (a) Maximum residual strains (b) Results for mid 

column displacement 

 

5.4.4.2. Full Scale Column – Explosive Loading Laboratory 

The Explosive Loading Laboratory is a simulated blast testing centre at the University of 

California San Diego. The laboratory was designed to simulate the impulse delivered by an 

actual blast to a structure and to be able to measure the structural response in a controlled 

environment [12]. The simulated blast loads are produced by an array of blast generators 

which are made up of an impacting module and a hydraulic actuator. When these blast 

generators impact the structure they impart a controlled blast like impact to the structure. The 

setup of the facility is presented in Figure 5.59. 
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Figure 5.59. Overview of Explosive Loading Laboratory Facility with Test Setup [12] 

The tested column is loaded by three or four blast generators over the column height. The 

connection at the base of the column is restrained in all degrees of freedom, whereas at the 

top a link system restrains lateral and moment directions whilst allowing vertical movement. 

There is a possibility of also applying axial load to the top of the column by means of three 

hydraulic jacks. This setup is able to simulate initial gravity loading on the column and also 

allows the increase of axial load when the end moves upwards due to arching action in 

compression. 

Two of the eight test conducted on site were considered for this work; Test 7 and Test 8. Both 

tests utilised the same column. Although both tests aimed to subject the column to similar 

impact loads in practice the loads simulating the blasts differed slightly (see Figure 5.65. and 

Figure 5.70). The main difference between the tests, and the reason for choosing them both, 

was that whereas test 7 had no axial force test 8 did. This choice, therefore, allows for the 

validation of the concrete model and for the examination of the structural behaviour both with 

and without the influence of axial force. 
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The geometry for both tests is presented in Table 5.15 

Concrete Steel 

Column 

width 

(mm) 

Column 

depth 

(mm) 

Column 

height 

(mm) 

Longitudinal 

reinforcement 

Cross 

tie/hoop 

Cover 

depth 

(mm) 

356 356 3277 8#8 #3 @324 38 

Table 5.15. Column components’ geometry 

The steel material behaviour was modelled as elastic perfectly plastic with the following 

values: 

Elastic Modulus 

(GPa) 

Yield stress of longitudinal 

steel (MPa) 

Yield stress of cross 

tie/hoop (MPa) 

210 335 235 

Table 5.16. Steel Material Properties 

Concrete was modelled using the extended brittle crack model with the following base 

parameters;  

Elastic 

Modulus 

(GPa) 

Unconfined 

concrete strength 

(MPa) 

24 40 

Table 5.17. Concrete Material Properties 

As before, the concrete material was defined using the base properties, as given in the 

experiment report and International Federation for Structural Concrete Model Code The 

resulting material parameters are presented in Figure 5.60. 
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(a) (b) 

Figure 5.60. Concrete material properties in (a) compression and (b) tension 

As the footing and heading were constrained and heavily reinforced they were assumed to be 

elastic for the conducted analyses. As per the experimental setup the footing was restrained in 

all degrees of freedom by restraining each of the faces in the perpendicular direction and the 

bottom in the vertical direction. At the top of the column a more sophisticated system was 

used in the experiments in the form of a link system which provided lateral and moment 

restraint while allowing vertical movement, see Figure 5.61. 

 

Figure 5.61. Link system [12] 
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In the numerical model this system was modelled by means of a link system, as presented in 

Figure 5.62. 

 

Figure 5.62. Numerical heading constraints 

When applied, axial force was applied at the top of the heading by three hydraulic jacks, see 

Figure 5.63, which lock off once the target load is reached. In the numerical model axial 

loads were applied by means of pressure on a surface similar to the surface directly utilised 

by the jacks. 

 

Figure 5.63. Hydraulic jacks for vertical load [12] 
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The resulting FE model with some of the concrete visually removed to allow a view of the 

embedded reinforcement is presented in Figure 5.64. 

 

Figure 5.64. Finite element model of full scale column 

The elements used were taken from the Abaqus explicit element library. They were of type 

C3D8R- 8 node linear bricks including reduced integration and hourglass control. 
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Test 7 

The blast load was simulated using the equivalent pressure measured in the experiment and 

presented in Figure 5.65. 

 

Figure 5.65. Equivalent Pressure - Test 7[12] 

The structural response observed in the experiment consisted of shear cracks at the top and 

bottom of the column. As the concrete degraded secondary cracks started to appear. The 

spalled concrete cover then began to fall away from the column. The column descended 

axially and three small flexural cracks appeared mid column. The columns’ response is 

presented in Figure 5.66, Figure 5.67 and summarised in Table 5.18. 
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(a) (b) (c) (d) 

Figure 5.66. Test 7 experimental responses at (a) 6.7 (b) 41.7 (c) 84.3 and (d) 558 msecs[12] 

  

(a) (b) 

Figure 5.67. Test 7 post-test damage at (a) top and (b) bottom of the column [12] 
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Peak deflection 

(mm) 

Residual deflection 

(mm) 

Damage 

122 at 41.7 msec 85 Shear damage at top and bottom 

Table 5.18. Test 7 – column response 

The numerical analysis produced similar results. Shear cracks developed at both top and 

bottom of the column which developed until the concrete completely deteriorated. The 

progress of the shear failure is presented in Figure 5.68. The development of the crack 

pattern, shown in Figure 5.69, clearly demonstrates the shear failure at both top and bottom of 

the column. 

   

Figure 5.68. Test 7 - numerical response at 4, 10, and 150 msec 
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Figure 5.69. Test 7 - crack pattern at 10 msec 

The numerical response is summarised in Table 5.19. 

Peak deflection 

(mm) 

Residual deflection 

(mm) 

Damage 

116.3 at 43.2 msec 92 Shear damage at top and bottom 

Table 5.19: Test 7 – numerical analysis response 

In this case the numerical analysis clearly follows the experimental data and provides an 

accurate modelling solution. 
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Test 8 

The blast load was simulated using the equivalent pressure measured in the experiment and 

presented in Figure 5.70. 

 

Figure 5.70. Equivalent Pressure - Test 8[17] 

Additionally an axial force of 445 kN was applied to the column, see Figure 5.71. 

 

Figure 5.71. Axial load simulation - Test 8 



197 

 

In this case, due to the presence of the axial load frame, the column behaviour was not 

completely visible during the test. Upon inspection, after the test, the column was found to 

have two regions of shear failure – at the top and bottom of the column [12]. The damaged 

column is presented in Figure 5.72. 

 

Figure 5.72. Test 8- post-test, removed from fixture [17] 

The columns’ response is summarised in Table 5.20. 

Peak deflection 

(mm) 

Residual deflection 

(mm) 

Damage 

157 at 47.6 msec 82 Shear damage at top and bottom 

Table 5.20. Test 8 – column response 
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In this case, as previously, a similar response was observed in the numerical analysis. The 

blast response initiated with shear failure at the top and bottom of the column. Small flexural 

cracks also developed mid column. The shear cracks at top and bottom progressed until 

complete failure of the concrete. The response is presented in Figure 5.73. 

   

Figure 5.73. Test 8 - numerical response at 4, 10, and 150 msec 

The crack development pattern is presented in Figure 5.74. The slightly longer shear cracking 

pattern at the bottom of the column as compared to the top is observed. 

 

Figure 5.74. Test 8 - crack pattern 
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In the numerical analysis there was no frame providing support to the column. This led to the 

lateral displacement to keep on developing as the concrete at the bottom and top of the 

column had fully disintegrated. Therefore, it was not possible to measure any peak or residual 

displacements. In order to ensure that the numerical response was reasonable with regards to 

time the deflection was measured and compared to the peak displacement measured in the 

experiment. The results are presented in Table 5.21. 

Deflection at experimental peak 

(mm) 

Damage 

138 at 44.7 msec Shear damage at top and bottom 

Table 5.21. Test 8 – numerical analysis response 

In this case the modelled behaviour closely resembles the observed experimental results. 

However, there is one main difference – in the experimental set up the frames holding the 

specimen somewhat restrain deflections. As no such restraining mechanisms were used in the 

numerical model the post failure deflections differ. This does not deter from the comparable 

structural behaviour observed in the experimental and numerical models. 

  



200 

 

5.5.  Discussion and conclusions 

In this chapter the three existing material models for concrete in the Abaqus material library 

were investigated and their characteristics discussed. Out of the two material models suitable 

for dynamic analysis the damaged plasticity was the most comprehensive, however its main 

disadvantages were the difficulties associated with generating the required input parameters 

and model instability post failure. Input for the brittle crack model is much easier to calibrate, 

however its main disadvantage is that only elastic behaviour can be defined in compression. 

An extension of the brittle crack model was suggested. This extension, achieved by means of 

a user subroutine, allows for plastic behaviour in compression overcoming the major 

drawback of the brittle crack model. Additionally, damage and erosion were both defined in 

the user subroutine thus eliminating failed elements and avoiding numerical difficulties. 

The proposed material model was then extensively verified and validated and a number of 

different loading scenarios including strain rate investigation, static bending test, brittle 

damage benchmark and different blast load experimental set ups. In all cases the extended 

brittle crack model provided satisfactory results. The extended brittle crack model is robust 

material model suitable for successfully modelling concrete in a wide range of applications. 
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Chapter 6:  Assessing Reinforced Concrete Structural  

  Response under Blast Loads and Pressure-Impulse 

Diagram Investigation 

 

6.1.  Introduction 

In this chapter the effects of various parameters on the structural response of a reinforced 

concrete column under blast are investigated. Different scenarios are considered, the 

numerical analyses presented and the results for each case are discussed. 

Furthermore, this chapter presents an investigation into the derivation of Pressure-Impulse (P-

I) diagrams using the finite element (FE) method and the material model previously discussed 

and validated in Chapter 5. The graphical method, introduced in Chapter 4, is implemented 

here for derivation of new P-I curves for a typical reinforced concrete column, while the 

complementary diagrams are built with axial force being the additional parameter. The 

advantages of the graphical method are further demonstrated and discussed. 

6.2.  Parametric investigation 

In this section a number of different scenarios were analysed in order to establish the effects 

of different factors on the structural response of a reinforced concrete column subjected to 

blast loads. The cases considered were blast intensity, initial axial force, longitudinal and 

transverse reinforcement and boundary conditions. The numerical models, analyses setup, 

results and discussion for each case are presented in the following subsections. 

6.2.1. Blast intensity 

The effect of blast intensity on the columns’ structural response was studied using the FE 

model of test column 7 from the Explosive Loading Laboratory report [1] (see Chapter 5 

Section 5.3.4.3.2). The blast load was modelled using a triangular time history, as shown in 

Figure 6.1. The intensity of the blast was gradually increased by increasing the peak pressure, 

while keeping the impulse constant. This formulation, therefore, led to a gradual decrease of 

the blast duration. The variations on blast pressure, duration and impulse are presented in 

Figure 6.1 and given in Table 6.1. 
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Figure 6.1. Blast loads investigated 

Case Pressure 

(MPa) 

Duration of 

Blast (msec) 

Impulse 

(MPamsec) 

I1 0.5 40 10 

I2 1 20 10 

I3 2 10 10 

I4 5 4 10 

I5 10 2 10 

I6 20 1 10 

Table 6.1. Levels of blast intensity investigated 

The results of the numerical investigation show that under low levels of pressure the damage 

pattern is mainly flexural. As the pressure increases, the damaged zones concentrate near the 

supports effectively leading to ‘shear-off’ of the column at the supports. With further increase 

in pressure, the shear-induced damage becomes more pronouncedly diagonal with increasing 

amounts of concrete material deteriorating in the areas where shear damage occurs. The 

damage patterns for the column at 5 msec and at 150 msec are presented in Figure 6.2 and 

Figure 6.3. 
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I1 I2 I3 I4 I5 I6  

Figure 6.2. Comparison of damage patterns at 5 msec function of the user-defined variable 

      

 

 

 

 

I1 I2 I3 I4 I5 I6  

Figure 6.3. Comparison of damage patterns at 150 msec function of the user-defined variable  

Figure 6.4 depicts variations of mid-height column displacement caused by blast loads with 

different intensities given in Table 6.1. As can be seen, the higher the blast pressure the 

higher the mid-column deflection and residual displacement. 
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Figure 6.4. Mid column displacements for varying ratios of blast intensity 

 

6.2.2. Axial Force 

The influence of axial force on the structural response of a reinforced concrete column under 

the blast load was studied using the full scale test column 8 from the report from the 

Explosive Loading Laboratory [1] (see Chapter 5 Section 5.3.4.3.2).  

First, the ultimate axial load for the column was found using static analysis with gradually 

increasing axial load. The resulting ultimate axial force was 𝑁𝑢𝑙𝑡 = 3264 𝑘𝑁. This value was 

further used in the analyses of the column under the blast load to find the relative level of 

axial loading. The levels of axial force used are presented in Table 6.2, where case A3 

corresponds to the original axial force applied in the experimental setup of test column 8 (see 

Chapter 5).  
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The blast load used in all the computational simulations is given in Table 6.2. 

Case Axial Force 

(kN) 

% of Ultimate  

Axial Force 

A1 0 0 

A2 220 7 

A3 445 14 

A4 880 27 

A5 1760 54 

Table 6.2. Levels of axial force investigated 

The results of the analysis presented in Figure 6.5 to Figure 6.9 indicate that the larger the 

initial axial force, the higher the level of damage caused by the same blast load. This can be 

seen both by the mid-column displacement (see Table 6.3) and the level of concrete 

deterioration (see the right columns in Figures Figure 6.5Figure 6.9, corresponding to the 

structural state of each column at 100 msec after the blast load was applied). It was also 

observed that the damage mechanism changes with the change in the axial loading. Figure 6.5 

to Figure 6.9 show the progression of damage with time. In cases of lower axial force shear 

failure occurs both at the bottom and top of the column, with the most shear damage 

accumulating at the bottom of the column. As the axial load increases, flexural damage also 

develops at the middle of the column. With further increase, the top and bottom of the 

column shear off together with flexural damage appearing in the middle region. 
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Figure 6.5. Progression of damage in case A1 (at 0, 5, 10, 15, 30 and 100 msec) 

      

Figure 6.6. Progression of damage in case A2 (at 0, 5, 10, 15, 30 and 100 msec) 
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Figure 6.7. Progression of damage in case A3 (at 0, 5, 10, 15, 30 and 100 msec) 

     

 

Figure 6.8. Progression of damage in case A4 (at 0, 5, 10, 15 and 30 msec) 
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Figure 6.9. Progression of damage in case A5 (at 0, 5, 10, 15 and 30  msec) 

Figure 6.10 shows a comparison between the damage development pattern in the cases of low 

and high axial force (case 2 and case 5). It can be seen that in the case of lower axial force, 

the shear-induced damage develops diagonally at the top and bottom of the column, with a 

larger portion occurring at the bottom of the column (see the left column in the figure). In the 

case of the larger axial force, the shear-induced damage at the top and bottom of the column 

develops along the supports, leading to the shear-off of the column (see the right column in 

the figure). Additionally, the flexural damage takes place in the middle region of the column. 
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(a) (b)  

Figure 6.10. Comparison of crack pattern between cases (a) A2 and (b) A5 at 5 msec, 

function of the user-defined variable 

The application of relatively large axial force (cases A4 and A5) led to the collapse of the 

column rendering the final maximum mid-column deflection meaningless. Therefore, the 

mid-height lateral deflections of A1-A5 columns developing at 40 msec were compared to 

establish the differences in displacements. The results of the comparison and the summary of 

mode of damage are presented in Table 6.3. It can be seen that the mid-column deflection 

increases with the increase in axial force and the mode of damage changes from ‘diagonal 

shear’ to a combination of shear-off and flexural failure. 

Case Deflection 

at 40 msec 

(mm) 

Damage type 

A1 106.4 Diagonal shear 

A2 116.9 Diagonal shear 

A3 120.5 Diagonal shear 

A4 138.8 Diagonal shear and flexural 

A5 172.3 Shear-off and flexural 

Table 6.3. Column response under varying axial load 
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6.2.3. Longitudinal reinforcement 

The effect of longitudinal reinforcement on the response of the column under blast load was 

investigated using a FE model of test column 7 from the Explosive Loading Laboratory 

report [1] (see Chapter 5 Section 5.3.4.3.2). In the experimental setup the column had 8 

longitudinal reinforcing bars of #8 (25.4 mm diameter) which equate to 3% reinforcement. 

Four analysed columns with different reinforcement ratios are presented in Table 6.4, where 

the case L3 represents the reinforcement examined in the laboratory. 

Case Reinforcement scheme % of  

Reinforcement 

L1 8D14 1 

L2 8D20 2 

L3 8D25.4 3 

L4 8D28.4 4 

Table 6.4. Levels of longitudinal reinforcement areas investigated 

From the numerical results, shown in Figure 6.11 to Figure 6.14, it is evident that the ratio of 

longitudinal reinforcement significantly influences structural response of the column under 

blast loads. At a lower ratio of reinforcement (Figure 6.11), the column suffers from both 

flexural and diagonal shear damage and undergoes substantial lateral mid-height 

displacement due to the lower stiffness. However, the more flexible behaviour of the column 

leads to crushing of relatively smaller zones of concrete. With an increase in reinforcement 

ratio, the column stiffness increases leading to smaller displacement but higher level of 

damage in terms of material deterioration. The damage mechanism becomes diagonal shear 

based, although as the reinforcement increases this effect becomes more localised and similar 

in behaviour to the shear-off effect. The differences in the damage mechanism can be 

observed in Figure 6.15. 
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Figure 6.11. Progression of damage in case L1 (at 0, 5, 10, 15. 30 and 100 msec) 

 

      

Figure 6.12. Progression of damage in case L2 (at 0, 5, 10, 15. 30 and 100 msec) 
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Figure 6.13. Progression of damage in case L3 (at 0, 5, 10, 15. 30 and 100 msec) 

 

      

Figure 6.14. Progression of damage in case L4 (at 0, 5, 10, 15. 30 and 100 msec) 
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(a) (b) (c) (d)  

Figure 6.15. Damage pattern in cases (a) L1, (b) L2, (c) L3 and (d) L4 at 3 msec, function of 

the user-defined variable 

As discussed above, with increase in longitudinal reinforcement ratio and therefore column 

stiffness the peak and residual mid column displacements reduce, as shown in Figure 6.16. 

The displacements and damage is further summarised in Table 6.5. 

 

Figure 6.16. Mid-column displacements for varying ratios of longitudinal reinforcement 
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Case Peak Deflection 

 (mm) 

Residual Deflection 

(mm) 

Damage type 

L1 163 150.2 Diagonal shear and flexural 

L2 138.2 109.2 Diagonal shear 

L3 116.3 92 Diagonal shear 

L4 103.8 84.3 Diagonal shear 

Table 6.5. Column response under varying longitudinal reinforcement 

 

6.2.4. Transverse reinforcement 

The influence of the transverse reinforcement on the structural response was investigated 

using the FE model of test column 7 taken from the report from the Explosive Loading 

Laboratory [1]. In this study, the diameter of stirrups was varied, while their spacing was kept 

constant. Four different diameters of stirrups used in the FE model of the column are 

presented in Table 6.6, where T1 represents a case of the column without transverse 

reinforcement and the case T3 being the original experimental setup. 

Case Stirrup Diameter 

(mm) 

T1 0 

T2 2.4 

T3 4.76 

T4 9.5 

Table 6.6. Diameter of transverse reinforcement investigated 

The results of the FE analysis showing the progress of damage in the columns with varying 

transverse reinforcement are presented in Figure 6.17 to Figure 6.20. The numerical analysis 

in case T2 failed at 25 msec after the blast load application due to excessive rotation in the 

stirrups, therefore, the fifth reading in Figure 6.18 is made at 25 msec and the 100 msec 

reading is missing. The damage developed in the investigated columns at 3 msec and 150 

msec after application of the blast load is summarised in Figure 6.21 and Figure 6.22. As can 

be seen, the character of the damage is similar in all columns and the diagonal shear is the 

main failure mechanism. Stirrups with larger diameters can reduce the extent of material 

damage accumulated and influence the failure mechanism (see Figure 6.22). The comparison 
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of the damage patterns in the cases T1 and T4 at 150 msec clearly shows the development of 

a combined diagonal shear and flexural damage in the column with large transvers 

reinforcement. 

      

Figure 6.17. Progression of damage in case T1 (at 0, 5, 10, 15, 30 and 100 msec after the 

application of the blast load) 

     

Figure 6.18. Progression of damage in case T2 (at 0, 5, 10, 15 and 25 msec after the 

application of the blast load) 
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Figure 6.19. Progression of damage in case T3 (at 0, 5, 10, 15, 30 and 100 msec after the 

application of the blast load) 

      

Figure 6.20. Progression of damage in case T4 (at 0, 5, 10, 15, 30 and 100 msec after the 

application of the blast load) 
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(a) (b) (c) (d)  

Figure 6.21. Damage pattern in cases (a) T1, (b) T2, (c) T3 and (d) T4 at 3 msec after the 

application of the blast load, function of the user-defined variable 

  

 

 

 

 

(a) (b)  

Figure 6.22. Damage pattern in cases (a) T1and (b) T4 at 150 msec after the application of 

the blast load, function of the user-defined variable 
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The readings of the mid-height displacement of the analysed columns are shown in Figure 

6.23 and summarised in Table 6.7. As can be seen, the increase in transvers reinforcement 

leads to an increase in column stiffness which accounts for lower lateral displacements. 

 

Figure 6.23. Mid column displacements for varying ratios of transverse reinforcement 

Case Peak Deflection 

 (mm) 

Residual Deflection 

(mm) 

Damage type 

T1 129.5 106 Diagonal shear 

T2 - - Diagonal shear 

T3 116.3 92 Diagonal shear 

T4 97.9 83.4 Diagonal shear 

Table 6.7. Column response under varying transverse reinforcement 

 

6.2.5. Boundary conditions 

The influence of boundary conditions on the structural response of the column was studied 

using three simplified cases. In all cases, the heading and footing of the column were not 

included in the finite element model. The three cases were fixed-fixed, pinned-pinned and 
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pinned-sliding simple support. The boundary conditions at each end are presented in Table 

6.8. 

Case Description Bottom Boundary Top Boundary 

BC1 fixed-fixed 

  

BC2 
pinned-

pinned 

 
 

BC3 

pinned-

sliding 

simple 

support 
 

 

Table 6.8. Boundary conditions examined 

Apart from the lack of heading and footing and the boundary conditions, the columns 

examined in this section were similar to the column from the experimental setup for test 7 

reported by the Explosive Loading Laboratory [1]. The columns were subjected to the blast 

load used in test 7. The influence of boundary conditions was studied on the post-blast 

structural state of the columns.  

The numerical results for the studied cases (see Table 6.8) are presented in Figure 6.24 to 

Figure 6.26. As can be seen, initial damage occurred sooner in the column with the fixed-

fixed (BC1) supports than in the other two columns. Diagonal shear damage developed in all 

three cases, with the most severe visible deterioration in the column with the fixed-fixed 

supports. The nature of the pinned-pinned (BC2) and pinned-sliding (BC3) simple supports 

applied in this study resulted in the localisation of damage in support vicinity at early stages 

of column response (5-15 msec after the application of the blast load). The columns with the 

pinned-pinned and pinned-sliding simple supports also exhibited flexural damage, with mild 
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damage visible at mid-column in the first case and severer damage closer to the top support in 

the latter case. In the column with the pinned-sliding simple support, this also led to a large 

amount of material deterioration, as shown in the Figures below. 

      

Figure 6.24. Progression of damage in case BC1 (at 0, 5, 10, 15, 30 and 100 msec after the 

application of the blast load) 

      

Figure 6.25. Progression of damage in case BC2 (at 0, 5, 10, 15, 30 and 100 msec after the 

application of the blast load) 
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Figure 6.26. Progression of damage in case BC3 (at 0, 5, 10, 15, 30 and 100 msec after the 

application of the blast load) 

The damage patterns developed in the columns with BC1-3 supports 5 msec and 15 msec 

after the application of the blast load are compared in Figure 6.27 and Figure 6.28, 

respectively. It can be concluded that the supporting conditions have a profound effect on the 

failure mechanism, i.e., changing it from diagonal shear damage in the BC1-2 cases to the 

combined diagonal shear and flexural damage in the BC3 case. The stiffer fixed-fixed 

supporting conditions (BC1) lead to higher initial damage, but this damage is restrained from 

further developing. There is also a considerably smaller mid-column displacement and a 

substantial re-centring of the column, as shown in Figure 6.29 and Table 6.9 by the residual 

displacement sustained. The pinned-sliding simple support (BC3) showed the least initial 

damage. However, both diagonal shear and flexural damage developed rapidly due to the 

large rotations at the supports, leading to substantial material deterioration and a large mid-

column displacement without re-centring. Although the column with the pinned-pinned 

support (BC2) exhibits the lowest level of material deterioration, such supporting conditions 

lead to the largest mid-column displacement. 
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(a) (b) (c)  

Figure 6.27. Damage pattern in cases (a) BC1, (b) BC2, (c) BC3 at 5 msec after the 

application of the blast load, function of the user-defined variable 

   

 

 

 

 

(a) (b) (c)  

Figure 6.28. Damage pattern in cases (a) BC1, (b) BC2, (c) BC3 at 15 msec after the 

application of the blast load, function of the user-defined variable 
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Figure 6.29. Mid-column displacements under the different boundary conditions 

Case Peak Deflection 

 (mm) 

Residual Deflection 

(mm) 

Damage type 

BC1 91.1 77 Diagonal shear 

BC2 166 166 Diagonal shear 

BC3 151 150 Diagonal shear and flexural damage 

Table 6.9. Column response under the different boundary conditions 

6.2.6. Static, Dynamic and Impulsive Reactions 

The influence of different loading regimes on the structural response of the column was 

studied using the fixed-fixed column presented in Subsection 6.2.5. The cases analysed were 

the static, dynamic and impulsive cases. The blast loads used and their duration are presented 

in Table 6.10 and in Figure 6.30. 

Case Pressure 

(MPa) 

Duration of 

Load (msec) 

Impulse 

(MPamsec) 

Equivalent Load 

(N) 

Static 0.5 200 50 583306 

Dynamic 0.5 40 10 583306 

Impulsive 0.5 2 0.5 583306 

Table 6.10. Levels of blast pressures, durations and equivalent force investigated 
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Figure 6.30. Load profiles used for static, dynamic and impulsive cases 

Figure 6.31 presents the applied static force as compared to the reaction force. It is shown 

that when the force is applied statically the structural response follows the applied load. The 

damage pattern at peak load is also presented in the Figure. It can be observed that the 

damage at the end of the loading period, as presented in Figure 6.36 is practically identical to 

that observed at peak load. 

  

(a) (b) 

Figure 6.31. (a)Applied load vs. reaction force and (b) damage pattern at time of max 

reaction for static case 
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Figure 6.32 presents the applied force compared to the reaction force and the structural 

reaction at peak applied force for the dynamic case. It is shown that when the force is applied 

dynamically there is an increase in the structural response. This increase constitutes the 

dynamic amplification factor and is caused by due to the structure's inability to respond 

quickly to the loading [2]. It is shown that at peak load the structure has not had sufficient 

time to respond and no notable damage is observed. 

 

 

(a) (b) 

Figure 6.32. (a)Applied load vs. reaction force and (b) damage pattern at time peak load for 

dynamic case 

The applied force, reaction force and the structural reaction at peak applied force for the 

impulsive case is presented in Figure 6.33. In the impulsive case with relatively low applied 

pressure the structure behaves as a very stiff member. 
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(a) (b) 

Figure 6.33. (a)Applied load vs. reaction force and (b) damage pattern at time of peak load 

for impulsive case 

Although from the above figure the reactions for the column are very low this is due to the 

fact that, as in the case of strain rate, the column does not have sufficient time to react. In this 

case, the comparison between the total internal energy of the structure in the static and 

impulsive regimes, as shown in Figure 6.34, reveals that the energy in the impulsive case is 

significantly higher. 

 

Figure 6.34. Total internal energy in the static and impulsive cases 
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At 5 msec damage is observed in the dynamic case. The static case has not had sufficient load 

at this time and the impulsive case has only reacted mildly to the applied load, see Figure 

6.35. By the time the load has passed, see Figure 6.36, both the static and dynamic cases 

exhibit damage. The pattern is similar, however as the dynamic case is amplified the damage 

is more severe in that case.  

   
(a) (b) (c) 

Figure 6.35. Damage pattern in (a) Static, (b) Dynamic and (c) Impulsive cases at 5 msec, 

function of the user-defined variable 

   

(a) (b) (c) 

Figure 6.36. Damage pattern in (a) Static, (b) Dynamic and (c) Impulsive cases at 250 msec, 

function of the user-defined variable 
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6.2.7. Reaction Time 

In order to investigate the reaction time under varying blast pressures and durations a number 

of analyses were carried out. The structural model used was the fixed-fixed column as 

described in Subsection 6.2.5. The blast pressures and blast durations investigated, as well as 

the equivalent applied forces are presented in Table 6.11. 

Case Pressure 

(MPa) 

Duration of 

Blast (msec) 

Equivalent Force 

(N) 

RT1 0.5 40 583306 

RT2 1 20 1166612 

RT3 5 4 5833060 

RT4 20 1 23332240 

Table 6.11. Levels of blast pressures, durations and equivalent force investigated 

The results of the column behaviour at 5 msec and at 150 msec are presented in Figure 6.37 

and Figure 6.38. These results are consistent with those previously observed when examined 

the effects of varying blast intensities (Subsection 6.2.1), namely that as the pressure 

increases, the damaged zones concentrate near the supports effectively leading to ‘shear-off’ 

of the column at the supports. With further increase in pressure, the shear-induced damage 

becomes more pronouncedly diagonal with increasing amounts of concrete material 

deteriorating in the areas where shear damage occurs.  

    

RF1 RF2 RF3 RF4 

Figure 6.37. Comparison of damage patterns at 5 msec, function of the user-defined variable 
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RF1 RF2 RF3 RF4 

Figure 6.38. Comparison of damage patterns at 150 msec, function of the user-defined 

variable 

The comparison of the applied load as compared to the damage dissipation energy for each 

case is presented in Figure 6.39 to Figure 6.42. The reason for using energy, as opposed to 

reaction forces, to measure how it takes to realise structural reaction to the applied force 

stems from the inaccuracies when using reaction forces. As discussed in the section referring 

to strain rate, the higher the loading speed the less accurate measuring the reaction via the 

reaction forces becomes. It is shown the when the speed of the applied force is slower the 

reaction occurs at roughly the same time, see Figure 6.39. As the speed of the applied force 

grows, the maximum reaction occurs at the unloading stage and at even higher speeds even 

after the load has occurred, see Figure 6.40, Figure 6.41 and Figure 6.42. 



232 
 

  

(a) (b) 

Figure 6.39. (a) Applied load vs. damage dissipation energy and (b) damage pattern at time 

of max reaction for case RT1 

  

(a) (b) 

Figure 6.40. (a) Applied load vs. damage dissipation energy and (b) damage pattern at time 

of max reaction for case RT2 
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(a) (b) 

Figure 6.41. (a) Applied load vs. damage dissipation energy and (b) damage pattern at time 

of max reaction for case RT3 

  

(a) (b) 

Figure 6.42. (a) Applied load vs. damage dissipation energy and (b) damage pattern at time 

of max reaction for case RT4 
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A comparison between the damage dissipation energies for the four cases shows an increase 

in the energy as the applied load grows, as presented in Figure 6.43. 

 

Figure 6.43. comparison of the damage dissipation energy in all four cases 

 

6.2.8. Reinforcement Element Definition 

The effect of the assumption of reinforcement behaviour on the columns’ structural response 

was studied using the load assumptions made in subsection 6.2.1. The reinforcement was 

modelled using truss elements and compared to the assumption of beam elements, as used in 

all analyses carried out in this work. The assumption of beam behaviour takes into account 

post failure mechanisms, such as dowel and catenary behaviour.  Both the beam and truss 

reinforcement schemes were carried out on blast intensity load model I4. 

The damage patterns for the column at 5 msec and at 150 msec are presented in Figure 6.44 

and Figure 6.45. At 5 msec the behaviour of the structure with reinforcement modelled as 

truss elements is very similar to the structure with beam modelled reinforcement. However, at 

150 msec the behaviour of the two structures differs. The beam reinforced structure suffers 

from shear and material erosion close to the base, whereas the column with reinforcement 

modelled as truss elements also develops flexural damage. 
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(a) (b) 

Figure 6.44. Comparison of damage patterns at 5 msec for column with (a) beam element 

reinforcement and (b) truss element reinforcement, function of the user-defined variable 

 
 

(a) (b) 

Figure 6.45. Comparison of damage patterns at 150 msec for column with (a) beam element 

reinforcement and (b) truss element reinforcement, function of the user-defined variable 
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Figure 6.46 depicts variations of mid-height column displacement caused by the different 

element modelling assumptions. As can be seen, the initial displacements for both the truss 

and beam element types are similar with the truss elements adding to the whole structural 

stiffness. However, when damage does occur, as seen in Figure 6.45, additional flexural 

damage is evident leading to overall higher mid column displacements. 

 

Figure 6.46. Mid column displacements for different reinforcement element definitions 

This study into the type of element used for reinforcement shows that a structure using truss 

element reinforcement does not allow for the full benefit of the reinforcing steel. When the 

steel is modelled as beams it contributes to the post failure mechanisms and dissipates energy 

by means of catenary action and dowel effects. The modelling of reinforcement as beam 

elements, therefore, leads to a better overall structural representation. 
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6.2.9. Conclusions 

In this chapter, the influence of various parameters on the structural response of a reinforced 

concrete column under a blast load was studied using FE simulations. The parameters 

included different blast intensities, levels of axial force, ratios of longitudinal and transverse 

reinforcement and boundary conditions. 

The levels of blast intensity were studied using a triangular time history which differed in 

pressure and blast duration whilst maintaining constant impulse. The FE results demonstrated 

changes in the column response mechanism from flexural damage occurring under low 

pressures to shear damage occurring under high pressures. 

The numerical study into the influence of axial force showed that the mode of failure changes 

from ‘diagonal shear’ to a combination of shear-off and flexural failure with an increase in 

axial load, and that the mid-column deflection increases. 

The ratio of longitudinal reinforcement had a pronounced impact on the structural response of 

the column under blast loads. At a lower ratio of reinforcement, the column suffered from 

both flexural and diagonal shear damage and underwent substantial lateral mid-height 

displacement due to the lower stiffness. With an increase in reinforcement ratio, the column 

stiffness increased leading to smaller displacement but higher material deterioration. The 

damage mechanism was still shear damage; however it became more similar to the shear-off 

effect. 

The results of the analysis with varying transverse reinforcement showed that diagonal shear 

was the main failure mechanism in all cases. Stirrups with larger diameters, however, can 

reduce the extent of material damage and influence the damage mechanism leading to the 

development of combined diagonal shear and flexural damage. 

Three simplified boundary condition variations were also examined. They included fixed-

fixed, pinned-pinned and pinned-sliding simple supports. Diagonal shear damage developed 

in all three cases, with the most severe visible deterioration in the column with the fixed-fixed 

supports. The columns with the pinned-pinned and pinned-sliding simple supports also 

exhibited flexural damage due to increased flexural stiffness. 

Static, dynamic and impulsive loading regimes for low pressure were also analysed. It was 

observed that the static structural response mirrored the applied load, the dynamic case lead 

to an amplification of the response and the impulsive case responded stiffly leading to less 
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damage. This trend was observed again in the study of reaction times. In the dynamic region 

the response was amplified, however in this study the pressures were increased and durations 

reduced leading to pronounced damage which in turn allowed for energy dissipation leading 

to reduced structural reaction forces. 

The numerical study into the influence of reinforcement modelling showed that the beam 

elements contribute to energy dissipation via structural mechanisms such as catenary action. 

The structure with truss element reinforcement was stiffer, suffered much larger mid column 

displacements and had additional flexural damage. 
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6.3.  Pressure-Impulse Diagram Investigation 

6.3.1. Description of column used in investigation 

As previously in validation analyses carried out in Chapter 5, the FE model consists of a 

concrete column with embedded steel reinforcement. The column has both a heading and 

footing to approximately simulate its boundary conditions within a frame structure. The finite 

element model with some of the concrete visually removed to allow a view of the embedded 

reinforcement is shown in Figure 6.47. 

 

 

(a) (b) 

Figure 6.47. Reinforced concrete column (a) Finite element view and (b) cross section 

The geometry of the structural components is presented in Table 6.12. 

Concrete Steel 

Column 

width 

(mm) 

Column 

depth 

(mm) 

Column 

height 

(mm) 

Heading/ 

Footing height 

(mm) 

Longitudinal 

reinforcement 

Cross 

tie/hoop 

Cover 

depth 

(mm) 

300 300 3000 200 8D18 D10 @200 30 

Table 6.12. Column components’ geometry 

As previously described in Chapter 5, the bond between concrete and steel reinforcement was 

modelled by embedding beam elements representing the reinforcing bars into the concrete 

elements (see Figure 6.47). This procedure created a perfect bond between the materials. 

3
0

0

300

D10@200

8D18
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The footing and heading were added to the column model of the shown in Figure 6.47  to 

simulate behaviour representative of a column within a frame structure. The arrangement of 

boundary conditions allowed for small amount of rotation though footing and head 

deformations creating restraints that acted somewhere in between the fixed and pinned 

supports. The outer vertical face of the footing and head were constrained against horizontal 

motions and the bottom face of the footing was constrained against vertical motion. 

The elements used in the model of the column were taken from the Abaqus explicit element 

library. The concrete modelled using type C3D8R – 8 node linear bricks including reduced 

integration and hourglass control. The steel reinforcement was modelled in Abaqus using 3D 

Timoshenko beam elements.  The material used for the steel beams was a plastic, rate 

dependant material with a specified strain failure. A refined mesh of 50 mm was used in all 

FE simulations in accordance with previous element sensitivity analysis. 

The steel material behaviour was modelled as elastic perfectly plastic with a failure strain of 

𝜀 = 0.18 and the material properties given in Table 6.13. 

Elastic 

Modulus 

(GPa) 

Yield stress of 

longitudinal steel 

(MPa) 

Yield stress of cross 

tie/hoop (MPa) 

210 335 235 

Table 6.13. Steel Material Properties 

Concrete was modelled using the extended brittle crack model, described in detail in Chapter 

5, with the material parameters given in Table 6.14. 

Elastic 

Modulus 

(GPa) 

Unconfined 

concrete 

strength 

(MPa) 

24 40 

Table 6.14. Concrete Material Properties 

The stress-strain curve describing the behaviour of concrete in compression and the stress-

displacement curve describing the behaviour of concrete in tension were calculated using in 
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accordance with the FIB Model Code [3]. The resulting diagrams are presented in Figure 

6.48. 

 

(a) 

 

(b) 

Figure 6.48. Concrete material properties in (a) compression and (b) tension 
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The blast load was simulated through application of uniform pressure on one face of the 

column. The pressure load had a triangular shaped time history with zero rise time, as 

presented in Figure 6.49. 

 

Figure 6.49. Blast load time history 

 

6.3.2. Building of P-I and complementary diagrams for different 

structural/loading parameters 

In this section, the P-I and complementary diagrams are derived using Abaqus [4]. To enable 

further understanding of damage levels of reinforced concrete columns under blast loads with 

reference to the columns axial load, the latter is considered as the parameter influencing the 

position of P-I curves and, thus, used in the complementary diagrams. The remaining 

carrying capacity is considered as the failure criterion, since it represents the most vital 

characteristic of the column. 

In derivations of each point on the diagrams, three main loading steps were undertaken: Step 

1 – the column was loaded by the axial force, Step 2 – the blast load was then deployed and, 

finally, Step 3 – additional axial force was introduced until the column collapsed. The time 

history of the loading steps and the flowchart describing main steps undertaken in each FE 

simulation are depicted in Figure 6.50. 

P0

Pressure

t0 Time

P0

Pressure

t0 TimetP0

P0

Pressure

t0 Time
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(a) 

 

(b) 

Figure 6.50. (a) Loading steps and (b) flowchart describing derivation  

Load

P0

t0 Time

P(x,t)

0

F(t)

Step 1 Step 2 Step 3

Ncap
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In order to ensure quasi-static behaviour in Steps 1 and 3 the axial force was loaded in a 

gradual manner to avoid the development of inertia effects. In Step 2, a sufficient amount of 

time was given after the application of the blast load to allow the blast-induced energy to 

sufficiently dissipate. After the completion of Step 3 (see Figure 6.50b), the structural 

damage, 𝑑, was found according to the following formula: 

𝑑 = 1 −
𝑅𝐹𝑣,3

𝑁𝑐𝑎𝑝
 

 (6.1) 

where 𝑁𝑐𝑎𝑝 is the ultimate axial capacity obtained in a separate analysis under static loading 

conditions prior to the curve analyses and 𝑅𝐹𝑣,3 is the maximum axial reaction force from 

Step 3. The P-I curves were derived for 20%, 50% and 80% damage that represented the 

borderlines between low (𝑑 < 20%), medium (20% < 𝑑 < 50%) and high (50% < 𝑑 <

80%) damage levels, e.g., see [5]. 

Due to the high volumes of simulations needed to generate enough points to reliably 

represent damage curves (see Chapter 3, Section 3.3.2 for detailed discussion), the whole 

method was semi-automated. This was achieved by creating a master program in Matlab [6]. 

The master program manipulated the Abaqus input files in order to change displacements, 

loads and duration as required. The program then called the Abaqus simulation and utilised 

Python scripts for result processing. 

6.3.2.1. Pressure-Impulse (P-I) Diagrams 

Initially, the P-I diagrams are derived using the axially unloaded column for the 20%, 50% 

and 80% damage levels. In order to find points on the graph, a mixture of search algorithms 

were used: the pressure-controlled search, the impulse-controlled search and the combined 

search (see detailed discussion in Chapter 3, Section 3.2.2). 

In order to minimise the amount of FE runs, the dynamic region of the P-I curve was initially 

investigated using the combined search method (see Figure 6.51). The first set of FE analyses 

(Set PI1 in Figure 6.51) allowed to estimate the pressure and impulse ranges for the impulsive 

and quasi-static regimes, respectively. Further, two sets of FE runs utilising the impulse-

controlled (Set PI2a-b in Figure 6.51) and the pressure-controlled (Set PI3a-b in Figure 6.51) 

search algorithms were conducted. Additional calculations of Set PI2b and Set PI3b were 

carried out to validate the eventual positions of the asymptotes. The results of FE simulations 

of the axially unloaded column carried out during the derivation of the complementary 
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diagrams (see Sections 6.3.2.2 and 6.3.2.3) were also added to Figure 6.51, where Set PI4 

represents the points laying on the Impulse axis of Figure 6.53 (i.e., Set NI1), whereas Set PI5 

the points on the Pressure axis of Figure 6.55 (i.e., Set NP1). The inclined nature of Set PI1 

is the result of the liner relationship between the peak pressure and impulse embedded in the 

combined search algorithm. The points of Sets PI4 and PI5 follow inclined lines because in 

their derivation the duration of the blast load was kept constant in order to maintain the 

impulsive or quasi-static regime, while the peak pressure was gradually increased, leading to 

the increase in the impulse. 

 

Figure 6.51. Points derived for the P-I diagram 

The results of the FE analyses shown in Figure 6.51 were further used for generation of three 

P-I curves representing 20%, 50% and 80% damage levels. It was found that a very accurate 

description of the P-I curves can be given by the following equation 

(𝑃0 − 𝐴𝑃)(𝐼 − 𝐴𝐼)

= (𝐶𝑃 ∙ 𝐴𝑃 + 𝐶𝐼 ∙ 𝐴𝐼)𝐷 

 (6.2) 

where 𝑃0 and 𝐼 are the pressure and impulse variables, respectively; 𝐴𝑃 and 𝐴𝐼 represent the 

pressure and impulse asymptotes; 𝐶𝑃, 𝐶𝐼 and 𝐷 are the fitting constants. It is necessary to 

point out that the shape of Eq. (6.2) is similar to Eqs. (3.28), (3.58) and (3.59) described in 

Set PI3a 

Set PI2a 

Set PI2b 

PI2b 

Set PI3b 

PPPooooo

oooooooo

oooPkkkk

PI3bPI3b 

Set PI1 
Set PI4 

Set PI5 
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Chapter 3, Section 3.4. The resulting P-I curves are obtained for 𝐶𝑃 = 1, 𝐶𝐼 = 1 and 𝐷 = 0.5 

are presented in Figure 6.52. 

 

Figure 6.52. P-I Diagram fitted curves 

The impulsive and quasi-static asymptotes at different damage levels are respectively 

described by the values of 𝐴𝑃 and 𝐴𝐼 given in Table 6.15. 

Asymptotes Damage 

𝑨𝑰 𝑨𝑷 

2 0.4 20% 

3 0.6 50% 

4.8 0.8 80% 

Table 6.15. Parameters for P-I equations 

6.3.2.2. Axial Force-Impulse (N-I) Diagrams 

The derivation of the Axial Force-Impulse (N-I) diagram started with a FE simulation of the 

column solely loaded by the axial force to determine its load carrying capacity. The obtained 

value Ncap = 2570 kN (the point on the Axial Force axis in Figure 6.53) is then used to 

determine the increments in the axial force between four sets of FE runs. The first set of runs 

was carried out without axial loading (Set NI1 in Figure 6.53). The axial force was 

20% 

50% 

80% 
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subsequently increased by N = 625 kN between each following set of runs (i.e., Sets SN2-

4). In all runs, the duration of the blast load was kept constant t0 = 1 msec to generate the 

impulsive loading regime. This value of t0 was selected based on the analysis of the impulsive 

asymptotes of the P-I curves in Figure 6.52. The increase in the impulse by I = 1 MPa·msec 

was achieved by increasing the peak pressure by P = 2 MPa. The amount of damage 

accumulated in the column at each simulation was evaluated using the failure criterion given 

in Equation (6.1). 

 

Figure 6.53. Points derived for the N-I diagram 

Three N-I curves representing 20%, 50% and 80% damage levels were generated using the 

data points in Figure 6.53. The following equation provided the best fit for the curves: 

𝑁

𝑁𝑐𝑎𝑝
+ (

𝐼

𝐴𝐼
)

𝑏

= 1 
 (6.3) 

where the exponent b equals 1.5, 1.6 and 1.8 for the cases of 20% damage, 50% damage and 

80% damage, respectively. The generated N-I curves are presented in Figure 6.54. 

Set NI1 

Set NI2 

Set NI3 

Set NI4 
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Figure 6.54. N-I Diagram fitted curves 

It is necessary to note that the parabolic form of the N-I curve corresponds to the specific 

structural system analysed here. The shape of the curve may depend on numerous loading 

and structural parameters such as the structural geometry, the complexity of the resistance-

displacement relationship, the supporting and loading conditions, etc. 

6.3.2.3. Axial Force-Pressure (N-P) Diagrams 

The four sets of data points (Sets NP1-4) on the Axial Force-Pressure (N-P) diagram were 

obtained using the increments in the axial force equal to N = 625 kN and in the peak 

pressure to P = 0.1 MPa (see Figure 6.55). The value of N similar to the one used in the 

derivation of the N-I diagrams was chosen for the sake of convenience. The axial load 

carrying capacity of the column is represented in Figure 6.55 by the point on the Axial Force 

axis. The duration of the blast load was kept constant t0 = 100 msec. This value was deemed 

sufficient, based on the analysis of the quasi-static asymptotes of the P-I curves in Figure 

6.52, to generate the quasi-static loading conditions. The four sets of points derived in the FE 

analyses are presented in Figure 6.55. 

20% 50% 80% 
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Figure 6.55. Points derived for the N-P diagram 

Three N-P curves generated for 20%, 50% and 80% damage levels can be accurately 

described by the following expression: 

𝑁

𝑁𝑐𝑎𝑝
+ (

𝑃

𝐴𝑃
)

𝑐

= 1 
 (6.4) 

where the exponent c equals 1.2, 1.8 and 2.2 for the cases of 20% damage, 50% damage and 

80% damage, respectively. The fitted curves are presented in Figure 6.56. 

Set NP1 

Set NP2 

Set NP3 

Set NP4 
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Figure 6.56. N-P Diagram fitted curves 

The shape of the N-P diagram entirely depends on the degree of nonlinearity of the 

considered structural system. The N-P curves can be nonlinear when the analysed structure 

has complex geometry, supporting and loading conditions and/or a complex nonlinear 

response-displacement relationship, such as in our case. 

6.3.3. Response mechanisms in different loading regimes 

The response of the column to the blast load that induces three different loading regimes is 

investigated using the peak pressure and impulse given in Table 6.16. 

Loading Regime Pressure 

(MPa) 

Impulse 

(MPa*msec) 

Impulsive 15 0.3 

Dynamic 3 3.6 

Quasi-static 0.4 1000 

Table 6.16. Pressure and impulse values used for different loading regimes 

The appropriate values of the peak pressure and impulse were chosen based on the P-I 

diagrams generated in Section 6.3.2.1, see Figure 6.57. 

20% 50% 80% 
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Figure 6.57. Analysis points in each regime 

The reaction of the column, in terms of minimum principal stress, at 3 msec after application 

of the blast load is presented in Figure 6.58 for the three loading regimes. 

   

(a) (b) (c) 

Figure 6.58. Structural response in (a) impulsive (b) dynamic and (c) quasi-static loading 

regimes 
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It can be observed in Figure 6.58 there are stress concentrations at the column mid-height and 

at the supports in all three loading regimes. The impulsive loading regime is characterised by 

the development of a clear compression arch with the span much shorter than the column 

length, combined with high stress concentrations at the supports (see Figure 6.58a). This 

eventually results in the shearing of the column off the supports, while the flexural damage 

does not have sufficient time to develop due to the very short duration of the blast load. 

Therefore, the column effectively behaves as a rigid structural element. In the dynamic 

loading regime, the compression arch extends through the entire length of the column (see 

Figure 6.58b) leading to the increase of the flexural stresses sufficient to eventually cause 

damage. As shown in the results, the response mechanism is dominated by both bending and 

shear, with the shear having a more diagonal pattern. In the quasi-static loading conditions 

(see Figure 6.58c), the arch is less pronounced and the concentrations of the flexural stress at 

the column mid-height are connected to the concentrations of the shear stresses at the 

supports by compression struts. In these conditions, the flexural response mechanism 

gradually becomes more dominant with increasing duration of the blast load. It is important 

to note that the presented observations correspond with the conclusions made by Shi et al. 

[5]. 

6.3.4. Implementation of the graphical method 

As discussed in Chapter 3, one of the major drawbacks of the P-I diagram method is that each 

P-I curve is built for a specific structure and any slight change to that structure immediately 

invalidates it. The use of the complementary diagrams presented in Sections 6.3.2.2 and 

6.3.2.3 gives the user the ability to create new P-I curves for the column with the 

simultaneous effect of two loading/structural parameters on the P-I diagram (e.g., 

reinforcement ratio and damage, axial preload and cross section area, etc.). In this section, the 

combined influence of structural damage and axial force on the P-I diagrams was 

investigated. The use of complementary diagrams allows drawing P-I curves for different 

levels of damage developing in the column under different levels of axial force. This can be 

achieved through derivation of additional complementary curves describing different levels 

of structural damage shown in Figure 6.54 and Figure 6.56. The graphical method is 

discussed at length in Chapter 4 (see Section 4.3). 

The effectiveness of the graphical method is demonstrated by the derivation of new P-I 

curves describing the column loaded by an axial force of 1229.1 kN, which is approximately 
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50% of the ultimate axial capacity of the column, and developing 20%, 50% and 80% 

damage. The position of each P-I curve is defined by the asymptotes, while the asymptotes 

are controlled by the complementary diagrams. For the column considered herein, the N-I 

diagram defines the position of the impulsive asymptote (i.e., the value of 𝐴𝐼), while the N-P 

diagram the position of the quasi-static asymptote (i.e., the value of 𝐴𝑃). The first step, 

therefore, is to obtain 𝐴𝐼 and 𝐴𝑃 directly from the complementary curves or by using the 

corresponding formulas presented in Eqs. (6.3) and (6.4). The new values of 𝐴𝐼 and 𝐴𝑃 

obtained for the 20%, 50% and 80% damage levels using the analytic expressions (6.3) and 

(6.4) are presented in Table 6.17. In the table, the previous values of 𝐴𝐼 and 𝐴𝑃 are also 

presented for comparison. 

New Parameters Previous Parameters Damage 

𝑨𝑰 𝑨𝑷 𝑨𝑰 𝑨𝑷 

1.296 0.233 2 0.4 20% 

1.997 0.418 3 0.6 50% 

3.344 0.595 4.8 0.8 80% 

Table 6.17. New Parameters for P-I equations 

The new 𝐴𝐼 and 𝐴𝑃 values are then used in conjunction with Eq. (6.2) to define the 

expressions for the new P-I curves. It is necessary to note that the values of 𝐶𝑃, 𝐶𝐼 and 𝐷 in 

Eq. (6.2) stay the same (see Section 6.3.2.1). The resulting diagram is presented in Figure 

6.59. 
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Figure 6.59. New P-I diagram derived for the axial force of 1229.1 kN 

In order to verify the obtained P-I curves, three additional sets of data points were generated 

using FE analyses and the combined (Sets PI1n), pressure-controlled (Sets PI2n) and 

impulse-controlled (Sets PI3n) search algorithms. The results of the FE analyses are plotted 

alongside the new P-I curves in Figure 6.60. As can be seen, the three data sets fall, with 

some small divergence, into the boundaries defined by the P-I curves. 

20% 

50% 
80% 
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Figure 6.60. New PI curves and FE analyses results 

The old and new P-I curves derived for the 80% damage level are overlaid in the diagram in 

Figure 6.61. It can be observed that the curve representing the axially unloaded column is the 

most remote from the coordinate axes. The application of the axial force shifts the curve 

towards the axes due to the additional damage induced by the present of the force. This 

observation matches the parametric investigation discussed in Chapter 6, Section 6.2.2 which 

showed an increase in damage levels in the column with the increase in the axial force. 

Set PI1n 

Set PI2n 

Set PI3n 

20% 
 

80% 
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Figure 6.61. Comparison of P-I curves derived with and without axial force 

6.3.5. Conclusions 

This chapter focuses on derivation of P-I diagrams describing the response of a typical 

reinforced concrete column subjected to the blast load. Initially, the procedure for derivation 

of P-I curves in outlined. Next, the P-I diagrams are derived for an axially unloaded column 

developing 20%, 50% and 80% damage levels based on data sets generated by FE 

simulations. The analytical expression accurately describing the P-I curves is obtained by 

fitting the data sets. Special attention is then given to the influence of axial force that 

represents the sum of the ‘dead’ and ‘live’ loads carried by the column prior to blast 

application. To simplify the derivation of new P-I curves describing the post-blast state of the 

column subjected to different levels of axial force and developing different levels of damage, 

the graphical method, introduced in Chapter 4, is implemented. For this purpose, the 

complementary axial force-impulse (N-I) and axial force-pressure (N-P) diagrams, each 

including three curves for 20%, 50% and 80% damage levels, are built based on sets of data 

points obtained using FE simulations. Analytical expressions describing the N-I and N-P 

diagrams are derived based on fitting the data. A column subject to an axial force equal to 

50% of its carrying capacity is then studied. The new P-I curves are then drawn for the 

column based on the complementary diagrams and validated using new sets of FE-generated 

data. The response mechanism of the column in different blast-induced loading regimes is 
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also studied and compared. It is shown that shearing off the columns supports is the dominant 

response mechanism in the impulsive loading regime; the flexural damage becomes more 

important in the quasi-static loading regime, while the dynamic loading regime is dominated 

by a combination of shear and bending. 

  



258 
 

References 

[1] T. Rodríguez-Nikl, Experimental simulations of explosive loading on structural 

components reinforced concrete columns with advanced composite jackets. 2006. 

[2] A. K. Chopra, Dynamics of structures: theory and applications to earthquake 

engineering. Upper Saddle River, NJ: Prentice Hall, 2015. 

[3] fib, fib Model Code for Concrete Structures 2010: FIB MODEL CODE 2010 O-BK. 

Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 

[4] ABAQUS (2014) ‘ABAQUS Documentation’, Dassault Systèmes, Providence, RI, 

USA.  

[5] Y. Shi, H. Hao, and Z.-X. Li, ‘Numerical derivation of pressure-impulse diagrams for 

prediction of RC column damage to blast loads’, Int. J. Impact Eng., vol. 35, no. 11, pp. 

1213–1227, 2008. 

[6] MATLAB (2010) R2010.a, The MathWorks Inc., Natick, MA, 2000.  

 



259 
 

Chapter 7:  Summary, Conclusions and Future Work 

 

7.1 Summary and Conclusions 

The research described in this Thesis is concerned with the numerical investigation of the 

structural response of reinforced concrete (RC) columns under blast loads, by means of 

dynamic nonlinear finite element (NLFE) analysis. This study aims at (i) providing an in 

depth understanding of the mechanics underlying RC structural response under blast loading 

and (ii) identifying (qualitatively and quantitatively) the effect of certain important design 

parameters (e.g. the amount and arrangement of the reinforcement, the geometry of the 

specimen, the boundary conditions imposed, the level of axial loading applied) on the 

exhibited behaviour. The numerical investigation was carried out through the use of a well-

established commercial finite element package (Abaqus) and employed a numerical model 

capable of accounting for the brittle nature of concrete. The latter model forms an extension 

to the ‘brittle crack’ model in Abaqus and was developed in order to overcome the 

shortcomings of the existing concrete model which assumes that material behaviour in 

compression is essentially linear elastic. The verification of the validity of the numerical 

predictions is based on a comparative study with relevant experimental data. The validated 

models are then employed to investigate the effect of various parameters associated on the 

exhibited response. 

On the basis of the predictions obtained from the FE analysis a new graphical method is 

developed, based on building complementary diagrams, for the effective derivation of 

Pressure-Impulse (P-I) diagrams. This method aims to overcome the problems associated 

with their inherent sensitivity to any change in the state of the analysed structural system. 

Through the combined use of the validated FE model and the proposed graphical method, P-I 

diagrams and the associated complementary diagrams are presented and the efficiency and 

applicability of the methodology is demonstrated. 

The main conclusions that can be drawn from each of the chapters are outlined below; 

Chapter 2 provides an overview of blast loads and their effect on RC structural response. 

Typical engineering assumptions for the modelling of blast loads are presented. A detailed 

discussion on the effect of loading rate on the material behaviour of concrete is presented 

followed by an overview of the methods employed in research and practice for assessing RC 
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structural response under high loading rates and blast loads in particular. The main 

conclusions drawn from this part of the work are associated with the limitations of the 

different assessment methods used for studying RC structural response under blast loads. 

More specifically;  

 Experimental data is limited due to military classification. Furthermore experimental 

studies are characterised by complexity of setup, high cost and safety related issues. 

 Material failure is often hard to capture reliably in an experimental setup due to the 

extreme speed and intensity of the imposed load and the resulting disintegration of 

components. As a result, there is difficulty correlating the measured response to the actual 

physical state of the specimens as data obtained from experimental tests is usually 

characterised by considerable scatter which differs from test to test. In the case of blast 

loads post failure behaviour is important.  

 Available experimental data show that steel reinforcement is crucial for the energy 

absorbing capacity of the structural concrete elements, and thereby the capacity to 

withstand blast and fragment loading and avoid structural collapse. 

 Simple specialised design code procedures (as used in military codes), such as SDOF, 

rely on a number of simplifications/assumptions concerning both material behaviour and 

structural response which do not account for the brittle nature of concrete and its 

sensitivity to triaxial stress conditions or the localised response often exhibited.  

 Detailed NLFE is a widely used efficient method for investigating RC structures under 

blast loads and is capable of providing more detailed insight on the mechanisms 

underlying RC structural response under blast loads. 

 NLFE predictions are dependent on certain assumptions adopted by the FE package and 

on the assumptions it employs. NLFE analyses can be very complex and require an 

experienced analyst and high computational resources.  

Chapter 3 presents the P-I diagram as an efficient tool widely used for preliminary 

assessment and prediction of damage (or survivability) of structures subjected to extreme 

load conditions, such as those exhibited by blast loads. A full and detailed analytical solution 

of an elastic beam based on the Euler-Bernoulli beam theory and subjected to a transverse 

load was presented. The beam was used to derive P-I diagrams under various pressure time 

histories. On the basis of this discussion it was shown that; 
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 P-I diagrams are sensitive to the form of the load time history and highly sensitive to the 

level of the axial force.  

In Chapter 4 a new graphical method for the efficient derivation of P-I diagrams is developed. 

This method is based on building complementary loading/structural parameter vs. impulse 

and loading/structural parameter vs. pressure graphs. These complementary diagrams 

describe, respectively, the structural response in the impulsive and (quasi-)static regimes and 

define the position of each P-I diagram. The advantages and efficiency of the graphical 

method proposed in this chapter is demonstrated using an elastic beam-column subjected to 

an axial force and a transverse blast load.  

 The effectiveness of the graphical method for the derivation of new P-I diagrams from an 

existing one is demonstrated. 

 The proposed method forms a powerful tool for preliminary design as well as quick 

assessment of typical structural elements or structural elements exposed to extreme loads 

generated by explosions. 

Chapter 5 presents the development of finite element RC models capable of providing 

accurate predictions concerning the structural response of beams and columns under blast and 

impact loads. An extension of the existing ‘brittle crack’ material model already available in 

Abaqus was developed by incorporating a user defined subroutine procedure. The predictions 

of the proposed material model were validated against experimental data describing high 

loading rates. The numerical predictions obtained reveal that;  

 The extended brittle crack model overcomes the limitations of the existing model 

concerning the behaviour of concrete in compression.   

 The ability to incorporate damage definition for the concrete elements and the possibility 

of removing damaged elements leads to a more stable solution procedure.  

 Only a small number of material properties, which are simple to obtain, are required in 

the extended brittle crack model. Overall, the extended brittle crack model offers a robust 

reliable concrete model. 

 The subject model revealed that for plain concrete specimens under high rate loading that 

the observed effects, both experimentally and numerically, are largely associated with 

structural effects such as cracking, wave propagation in nonlinear medium and inertia.  
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 The resulting FE model proved capable of providing valid predictions concerning the 

response of beam and column specimens under different loading regimes.  The models 

were validated by comparing to experimental data. In all cases the extended brittle crack 

model provided satisfactory results.  

Based on the work conducted in Chapter 5, Chapter 6 uses one of the validated models to 

investigate RC structural response of columns under blast loads.  

The numerical investigation revealed changes to the structural response mechanism for 

different levels intensity of the imposed of blast and axial loads.  

 Under increasing high intensity loads the mode of failure exhibited shifted from flexural 

to brittle cracking and from global behaviour localised failure close to supports.  

Modelling strategy concerning the reinforcement, i.e. beam or truss elements, also had an 

effect on structural response mechanisms, largely on post failure behaviour.  

 Prior to peak loading the type of elements used to model reinforcement doesn’t contribute 

to any change in the structural reaction, however the effect of the reinforcement 

modelling is significant on the post failure behaviour. When modelled as beam elements 

the reinforcement contributed to energy dissipation via structural mechanisms such as 

catenary action which transfer loads to the supports after the specimen failed.  

In the examination of different loading regimes with low pressure it was observed that the 

static structural response mirrored the applied load in the static case, the dynamic case lead to 

an amplification of the response and the impulsive case responded stiffly leading to less 

damage. This trend was observed again in the study of reaction times.  

 In the dynamic region the response was amplified, however in this study the pressures 

were increased and durations reduced leading to pronounced damage which in turn 

allowed for energy dissipation leading to reduced structural reaction forces. 

Chapter 6 also presents the derivation of P-I diagrams for a RC column using the finite 

element method with the extended brittle crack material model for concrete. Complementary 

diagrams were built for axial force and used to demonstrate the new graphical method. For 

the case study the axial force on the column is changed and new P-I curves drawn based on 

the complementary diagrams. The study was validated using new sets of FE-generated data. 
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The response mechanism of the column in different blast-induced loading regimes was also 

studied and compared. 

 The shearing off of columns supports is the dominant response mechanism in the 

impulsive loading regime; the flexural damage becomes more important in the quasi-

static loading regime, while the dynamic loading regime is dominated by a combination 

of shear and bending. 

 

7.2 Future Work 

Suggestions for future work include; 

 On the basis of the validated models developed in the subject thesis for predicting the 

behaviour of individual RC beam and column specimens it is possible to develop more 

intricate models representing more complex structural forms (e.g. RC frames) which 

consist of more than one component. This will provide insight on the influence of local 

damage sustained due to loads such as blast on the global behaviour of structures.  

 The extent of detailed modelling of 3D structures under blasts will be investigated. The 

study will use simplified methods, such as P-I diagrams, to locate the onerous locations 

for the RC structural members. The frame will be modelled using the detailed 3D 

modelling previously studied for the members likely to be subjected to extensive damage 

moving into beam element representation further away from the blast zone. This study 

will attempt to quantify the safe distance for reverting into simplified structural models, 

therefore reducing computational costs. 

 Both the latter models (simplified and advanced) can be employed to investigate the 

progressive collapse mechanisms exhibited by RC structures. This will combine the 

detailed modelling of RC structures with simplifications to allow for reduced calculation 

time to further examine mechanisms involved and predictions involved in 

disproportionate collapse.  

 On the basis of the findings of the subject thesis advanced SDOF models can be 

developed. The proposed SDOF models will take into account the dependency of 

deformation shape on the loading rate. This will provide a practice tool, easy to employ  

that will account for the influence of local effects and therefore provide an accurate 

estimation of the behaviour of high rate loading on RC components. 
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 Extension of the P-I graphical method to include additional parameters. This will allow 

the change of various parameters simultaneously and give more design freedom and 

quicker damage estimation for users.  
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Appendix A 

A.1.  Introduction 

Limited analytical work on the blast dynamics of axially preloaded beams can be found in the 

scientific literature. Although the numerical models, in particular the finite element analysis, 

are the main tool used for assessment of structures subjected to explosive loads (e.g. [1]–[6]), 

the analytical methods remain an essential tool that provides a comprehensive insight into the 

physical behaviour of a structural element. These methods offer fast and reliable solutions 

especially suitable for the preliminary design and post-blast loading assessment. In addition, 

they are often utilised as a sound benchmark for the verification of the numerical methods 

and for the development of new computational models. 

Detailed analytical solutions for free lateral vibrations of elastic beams with axial preload and 

for forced lateral vibrations of elastic beams without axial loads are covered in multiple 

research papers [7]–[12] and textbooks [13]–[25]. At the same time, the solution for the 

combination of these two problems has attracted only limited attention. A notable analytical 

work on this topic was published by Virgin and Plaut [26], where the authors investigated the 

steady state linear response of elastic beams subjected to a quasi-static axial force and a 

distributed harmonically varying transverse load. 

A.2.  Axially preloaded elastic beam subjected to blast loads 

It is assumed that the axial force is quasi-static, while the transverse load could be either a 

distributed pressure load or a point force with a non-harmonic time history. The elastic beam-

column of the length 𝑙 is described using the Euler-Bernoulli (or classical) beam theory [13]–

[25]. This theory assumes that the beam deflections are solely influenced by the bending 

moment, ignoring the effects of the rotation of the cross-section and shear deformation. As a 

result, it is more suitable for slender beams and tends to overestimate the natural frequencies 

[12] in the beams with higher thickness to span ratios. Notwithstanding, this theory provides 

a reasonable approximation for many engineering problems and is most commonly used. In 

many engineering applications it is important to be able to calculate the maximum response 

of a system, e.g., the maximum beam deflection. If light structural damping is assumed, the 

amount of energy it can dissipate in the short duration of motion is quite small. Thus, its 

effect on the maximum response of the beam to a single pulse excitation can be neglected 

[27]. 
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The Euler-Bernoulli beam motion is governed by a partial differential equation of motion, an 

external forcing function, and boundary and initial conditions. In this research the obtained 

non-homogeneous initial and boundary value problem is solved using the method of 

decomposition into the modes of vibration (i.e., eigenfunction expansion). It is noted that the 

problems that can be solved with separation of variables are relatively limited; the equation 

must be linear as the solution is found as a sum of simple solutions. 

The governing equation of motion reads (e.g., [16], [22], [23], [25]) 

𝐸𝐼𝑢′′′′ + 𝐹𝑢′′ + 𝑚�̈� = 𝑃(𝑥, 𝑡) (A1) 

where 𝑢(𝑥, 𝑡) is the beam deflection, 𝑢′ represents a partial derivative with respect to the 

space variable 𝑥 and  �̇� with respect to time t, 𝐸𝐼 is the flexural stiffness of the beam, 𝐹 the 

axial force, 𝑚 the mass per unit length of the beam and 𝑃(𝑥, 𝑡) the transverse excitation 

force. Assume henceforth that 𝐸𝐼 and 𝑚 are constant along the beam. 

Eq. (A1) can be generalised using linear differential operators as  

𝑀(�̈�) + 𝐿(𝑢) = 𝑃(𝑥, 𝑡) (A2) 

where 𝑀 and 𝐿 have the form 

ℒ(𝜉) = 𝑎0𝜉 + 𝑎1
𝜕𝜉

𝜕𝑥
+ 𝑎2

𝜕2𝜉

𝜕𝑥2 + ⋯  

Using the method of separation of variables and the decomposition into the contributions of 

individual modes 𝑢(𝑥, 𝑡) can be expressed as 

𝑢(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝑡)∞
𝑖=1  (A3) 

where 𝜙𝑖(𝑥) is the ith free vibration mode of the beam and 𝑞𝑖(𝑡) is the function of time. 𝑞𝑖 is 

decomposed into the particular and homogenous parts representing the solutions of Eq. (A1) 

in its particular and homogenous forms. 

𝑞𝑖 = 𝑞𝑖
𝑝 + 𝑞𝑖

ℎ (A4) 

This formulation leads to the following decomposition of the beam deflection 

𝑢 = ∑ 𝜙𝑖(𝑞𝑖
𝑝 + 𝑞𝑖

ℎ) = ∑ 𝜙𝑖𝑞𝑖
𝑝∞

𝑖=1 + ∑ 𝜙𝑖𝑞𝑖
ℎ∞

𝑖=1 =∞
𝑖=1 𝑢𝑝 + 𝑢ℎ  

Note that both 𝑢𝑝 and 𝑢ℎ need to satisfy Eq. (A1) 
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We begin the solution of the present problem with formulating the expression for 𝑞𝑖
𝑝
. 

Premultiplying Eq. (A2) by 𝜙𝑗 and integrating it along the column length yields 

∑ �̈�𝑖
𝑝

∫ 𝜙𝑗𝑀(𝜙𝑖)𝑑𝑥
𝑙

0
∞
𝑖=1 + ∑ 𝑞𝑖

𝑝
∫ 𝜙𝑗𝐿(𝜙𝑖)𝑑𝑥

𝑙

0
∞
𝑖=1 = ∫ 𝜙𝑗𝑃(𝑥, 𝑡)𝑑𝑥

𝑙

0
 (A5) 

Applying the orthogonality properties of the free vibration modes (e.g. [14], [16], [22], [27]) 

Eq. (A5) becomes 

𝑚𝑖𝑖�̈�𝑖
𝑝 + 𝑘𝑖𝑖𝑞𝑖

𝑝 = 𝑄𝑖 (A6) 

where 𝑚𝑖𝑖 and 𝑘𝑖𝑖 are the generalized mass and stiffness of the beam 

𝑚𝑖𝑖 = ∫ 𝜙𝑖𝑀(𝜙𝑖)𝑑𝑥
𝑙

0
= 𝑚 ∫ 𝜙𝑖𝜙𝑖𝑑𝑥

𝑙

0
 (A7) 

𝑘𝑖𝑖 = ∫ 𝜙𝑖𝐿(𝜙𝑖)𝑑𝑥
𝑙

0
= 𝐸𝐼 ∫ 𝜙𝑖′′𝜙𝑖′′𝑑𝑥

𝑙

0
− 𝐹 ∫ 𝜙𝑖′𝜙𝑖′𝑑𝑥

𝑙

0
 (A8) 

and 𝑄𝑖 is the generalised force 

𝑄𝑖 = ∫ 𝜙𝑖𝑃(𝑥, 𝑡)𝑑𝑥
𝑙

0
 (A9) 

Eq. (A8) is obtained using the integration by parts leading to two sets of additional terms that 

represent the boundary conditions 

[𝜙𝑖(𝐸𝐼𝜙𝑖
′′′ + 𝐹𝜙𝑖

′)]0
𝑙 = 0     and     [𝜙𝑖′(𝐸𝐼𝜙𝑖

′′)]0
𝑙 = 0 (A10) 

The first set represents the conditions that either the deflection or the shear force at the ends 

of the beam is zero, while the second set represents the condition that either the rotation or 

the moment at the ends of the beam is zero. 

It is convenient to separate the excitation in the form 

𝑃(𝑥, 𝑡) = 𝑃0𝑝(𝑥)𝑓(𝑡) (A11) 

where 𝑃0 is the maximum value and 𝑝(𝑥) the spatial distribution of the load and 𝑓(𝑡) the 

time history of the excitation. Eq. (A6) can then be rearranged into 

�̈�𝑖
𝑝 + 𝜔𝑖

2𝑞𝑖
𝑝 = 𝑃0Γ𝑖𝑓(𝑡) (A12) 

where i is the natural frequency of the beam and 

Γ𝑖 = 𝑚𝑖𝑖
−1 ∫ 𝜙𝑖(𝑥)𝑝(𝑥)𝑑𝑥

𝑙

0
 (A13) 

the modal participation factor [27]. Finally, the contribution of the ith mode to 𝑝(𝑥) is 
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𝑝𝑖(𝑥) = Γ𝑖𝑝(𝑥)𝜙𝑖(𝑥)  

The solution of Eq. (A10) is [27] 

𝑞𝑖
𝑝(𝑡) = 𝑃0Γ𝑖𝐷𝑖(𝑡) (A14) 

where 𝐷𝑖(𝑡) is the deformation response of the ith mode SDOF system. Consequently, Eq. 

(A3) becomes 

𝑢𝑝(𝑥, 𝑡) = ∑ 𝑃0Γ𝑖𝜙𝑖(𝑥)𝐷𝑖(𝑡)∞
𝑖=1  (A15) 

To find 𝜙𝑖(𝑥) and 𝑞𝑖
ℎ(𝑡) the differential equation (A1) is rearranged in the homogeneous 

form as 

𝐸𝐼𝑢′′′′ + 𝐹𝑢′′ + 𝑚�̈� = 0 (A16) 

Using 𝑢ℎ(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖
ℎ(𝑡)∞

𝑖=1  and thus 𝑢𝑖
ℎ = 𝜙𝑖𝑞𝑖

ℎ the homogeneous partial differential 

equation (A16) can be divided into two linear differential equations corresponding to the ith 

mode of vibration 

𝐸𝐼𝜙𝑖
′′′′ + 𝐹𝜙𝑖′′ + 𝑚𝜔𝑖

2𝜙𝑖 = 0 (A17) 

�̈�𝑖
ℎ − 𝜔𝑖

2�̈�𝑖
ℎ = 0 (A18) 

Assuming that 

𝜙(𝑥) = 𝐶 𝑒𝑥𝑝(𝑠𝑖𝑥)  

Eq. (A17) can be reduced to the following characteristic equation 

𝐸𝐼𝑠𝑖
4 + 𝐹𝑠𝑖

2 − 𝑚𝜔𝑖
2 = 0 (A19) 

with the quadratic roots 

𝑠𝑖,1(2)
2 =

𝐹

2𝐸𝐼
[−1 ± √1 + 4𝑚𝜔𝑖

2𝐸𝐼/𝐹2] (A20) 

As a result, 𝜙𝑖(𝑥) can be expressed as [16] 

𝜙𝑖(𝑥) = 𝐶1 sinh 𝑎𝑖𝑥 + 𝐶2 cosh 𝑎𝑖𝑥 + 𝐶3 cos 𝑏𝑖𝑥 + 𝐶4 sin 𝑏𝑖𝑥 (A21) 

where 𝑎𝑖
2 = 𝑠𝑖,1

2 ,  𝑏𝑖
2 = −𝑠𝑖,2

2  and 𝐶1-𝐶4 are the arbitrary constants found from the application 

of the boundary conditions (A10). Therefore, the final form of 𝜙𝑖(𝑥) strongly depends on the 

beam boundary conditions. 
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The solution of the equation (A18) is 

𝑞𝑖
ℎ(𝑡) = 𝐶5 sin 𝜔𝑖𝑡 + 𝐶6 cos 𝜔𝑖𝑡 (A22) 

where 𝐶5 and 𝐶6 are the arbitrary constants found from initial conditions (i.e., initial 

deflections and velocities). Assuming zero initial conditions (i.e., 𝑞𝑖
ℎ(0) = �̇�𝑖

ℎ(0) = 0) results 

in 𝐶5 = 𝐶6 = 0. Therefore, 𝑞𝑖
ℎ = 0 so 𝑞𝑖 ≡ 𝑞𝑖

𝑝
 which leads to 𝑢ℎ = 0 and 𝑢 ≡ 𝑢𝑝. 

A.2.1.  Pinned-pinned supports 

To study the typical behaviour of axially preloaded beams subjected to the blast loads, 

pinned-pinned supports are considered resulting in the following set of four boundary 

conditions 

𝑢(0, 𝑡) = 𝑢′′(0, 𝑡) = 𝑢(𝑙, 𝑡) = 𝑢′′(𝑙, 𝑡) = 0 (A23) 

or equivalently 

𝜙𝑖(0) = 𝜙𝑖
′′(0) = 𝜙𝑖(𝑙) = 𝜙𝑖

′′(𝑙) = 0 (A24) 

Application the boundary conditions yields the mode shapes, 𝜙𝑖 

𝜙𝑖(𝑥) = 𝐶4 sin 𝑏𝑖𝑥 (A25) 

and the frequency equation as 

sin 𝑏𝑖𝑙 = 0 (A26) 

with the solution 𝑏𝑖𝑙 = 𝑖𝜋 (where 𝑖 = 1,2,3…). Finally, 𝜙𝑖(𝑥) and 𝜔𝑖 equal [16] 

𝜙𝑖(𝑥) = 𝐴𝑖 sin
𝑖𝜋𝑥

𝑙
     and     𝜔𝑖

2 = (
𝑖𝜋

𝑙
)

4 𝐸𝐼

𝑚
− (

𝑖𝜋

𝑙
)

2 𝐹

𝑚
 (A27) 

Substituting the expression for 𝜙𝑖(𝑥) from Eq. (A27) into Eq. (A7) and taking into account 

that 𝑚𝑖𝑖 = 𝑚𝑙 results in 𝐴𝑖 = √2. 

A.2.2.  Forced vibration phase: t ≤ t0 

Taking into account Eqs. (A27) and carrying out some algebraic manipulations on Eq. (A8) 

leads to 

𝑘𝑖𝑖 = 𝑚𝑙𝜔𝑖
2 = (

𝑖𝜋

𝑙
)

4

𝐸𝐼𝑙 − (
𝑖𝜋

𝑙
)

2

𝐹𝑙 (A28) 

The solution of Eq. (A12) can be obtained for the ith mode of vibration using convolution 

integral as 
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𝑞𝑖(𝑡) = 𝑞𝑖
𝑝(𝑡) = 𝑃0Γ𝑖

1

𝜔𝑖
∫ 𝑓(𝜏) sin[𝜔𝑖(𝑡 − 𝜏)] 𝑑𝜏

𝑡

0
 (A29) 

Comparing Eqs. (A14) and (A29) and taking into account the expression for Γ𝑖 in Eq. (A13) 

the ith mode deformation response 𝐷𝑖(𝑡) cab be expressed as 

𝐷𝑖(𝑡) =
1

𝜔𝑖
∫ 𝑓(𝜏) sin[𝜔𝑖(𝑡 − 𝜏)] 𝑑𝜏

𝑡

0
=

1

𝜔𝑖
𝐼𝑖(𝑡) (A30) 

Substituting 𝜙𝑖(𝑥) from Eqs. (A27) into Eq. (A29) finally yields the displacements of the 

axially preloaded beam in the forced vibration phase 

𝑢1(𝑥, 𝑡) = ∑ √2𝑃0Γ𝑖
1

𝜔𝑖
sin

𝑖𝜋𝑥

𝑙
∫ 𝑓(𝜏) sin[𝜔𝑖(𝑡 − 𝜏)] 𝑑𝜏

𝑡

0
∞
𝑖=1  (A31) 

In engineering practice, the spatial and temporal distributions of different extreme loads are 

usually modelled using various simplifying assumptions. The shape of the spatial distribution 

of the transverse excitation load 𝑝(𝑥) is represented in Eq. (A31) by Γ𝑖. Table A1 presents a 

number of typical 𝑝(𝑥) and corresponding expressions for Γ𝑖. 

Spatial distribution 𝒑(𝒙) 𝚪𝒊 

Concentrated load located at 𝜉 𝛿(𝑥
− 𝜉) 

√2
sin(𝑖𝜋𝜉/𝑙)

𝑚𝑙
 

Uniformly distributed load 1 
√2

1 − cos 𝑖𝜋

𝑖𝜋𝑚
 

Triangularly distributed load 𝑥

𝑙
 (−1)𝑖+1 √2

𝑖𝜋𝑚
 

1 −
𝑥

𝑙
 √2

𝑖𝜋𝑚
 

Sine-shaped distributed load sin
𝑛𝜋𝑥

𝑙
 

{(√2𝜋𝑚)
−1

𝑖 = 𝑛

0 𝑖 ≠ 𝑛
 

Exponentially shaped distributed 

load 
exp

𝑛𝜋𝑥

𝑙
 √2𝑖

𝜋𝑚(𝑖2 + 𝑛2)
(1

− 𝑒𝑛𝜋 cos 𝑖𝜋) 

Table A.1: Modal participation factors Γi for different spatial load distributions for pinned-

pinned beams 
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A.2.3.  Free vibration phase: t > t0 

After the transverse blast load ends the system starts vibrating freely. Therefore, Eq. (A12) is 

reduced to a homogeneous form 

�̈�𝑖 + 𝜔𝑖
2𝑞𝑖 = 0 (A32) 

The solution of this homogeneous equation (A32) is [16], [27] 

𝑢2(𝑥, 𝑡) = ∑ (𝐴𝑖 cos 𝜔𝑖𝑡 + 𝐵𝑖 sin 𝜔𝑖𝑡) sin
𝑖𝜋𝑥

𝑙

∞
𝑖=1   (A33) 

where 𝐴𝑖 and 𝐵𝑖 are arbitrary constants. In order to assure the continuity in the motion of the 

beam at t = t0 the following conditions should be satisfied 

𝑢1(𝑥, 𝑡0) = 𝑢2(𝑥, 𝑡0)     and     �̇�1(𝑥, 𝑡0) = �̇�2(𝑥, 𝑡0) (A34) 

These continuity conditions (A34) are used to determine the coefficients 𝐵𝑖 and 𝐶𝑖. Then the 

motion of the axially preloaded beam in the free vibration phase is obtained as 

𝑢2(𝑥, 𝑡) = ∑ √2𝑃0Γ𝑖
1

𝜔𝑖
sin

𝑖𝜋𝑥

𝑙
[𝐼𝑖 ∙ cos[𝜔𝑖(𝑡 − 𝑡0)] +

𝐼�̇�

𝜔𝑖
∙ sin[𝜔𝑖(𝑡 − 𝑡0)]]∞

𝑖=1  (A35) 

where 𝐼𝑖 is the part of the normalised impulse applied to the ith mode of vibration and 𝐼�̇� its 

time derivative defined as 

𝐼𝑖 = ∫ 𝑓(𝜏) sin[𝜔𝑖(𝑡0 − 𝜏)] 𝑑𝜏
𝑡0

0
     and     𝐼�̇� = 𝜔𝑖 ∫ 𝑓(𝜏) cos[𝜔𝑖(𝑡0 − 𝜏)] 𝑑𝜏

𝑡0

0
  (A36) 

Comparing Eqs. (A15) and (A35) leads to the SDOF response 𝐷𝑖(𝑡) in the form 

𝐷𝑖(𝑡) =
1

𝜔𝑖
[𝐼𝑖 ∙ cos[𝜔𝑖(𝑡 − 𝑡0)] +

𝐼�̇�

𝜔𝑖
∙ sin[𝜔𝑖(𝑡 − 𝑡0)]] (A37) 

A.2.4.  Time of maximum deflection 

The maximum response of the beam to the blast and impact loads is commonly characterised 

by the peak deflections and the time 𝑡𝑚 when it takes place. However, in the present 

formulation, the time of total maximum deflection cannot be found directly and it has to be 

estimated from the maximum deflections (amplitudes) of the modal responses. The peak 

deflection of the free vibration phase 𝑡𝑚,𝑖 can be found as 

𝑡𝑚,𝑖 = 𝑡0 +
1

𝜔𝑖
tan−1[𝐼�̇�/(𝜔𝑖𝐼𝑖)]  (A38) 

where 𝐼𝑖  and 𝐼�̇� are given by Eqs. (A36). The analytical solution for 𝑡𝑚,𝑖 in the force vibration 

phase can only be obtained for a limited number of load time histories: 
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𝑡𝑚,𝑖 =
𝜋

𝜔𝑖
 for the rectangular shape (A39) 

𝑡𝑚,𝑖 =
1

𝜔𝑖
Arg 𝑍𝑖  for the triangular shape (A40) 

where Arg 𝑍𝑖 is the principal value of the argument of the complex number 

𝑍𝑖 =
2𝜔𝑖𝑡0

1+(𝜔𝑖𝑡0)2
+ 𝑗

1−(𝜔𝑖𝑡0)2

1+(𝜔𝑖𝑡0)2
 (41) 

and 𝑗 = √−1. Eqs. (A38, A39 and A40) can be used for the calculation of the upper limit of 

the beam deflection as the sum of the mode amplitudes. Assuming that the maximum 

deflection appears at the mid-span of the beam, 𝑥 = 𝑙/2, the possible maximum deflection 

𝑢𝑚 becomes 

𝑢𝑚 = 𝐸𝐼𝑃0 ∑ Γ𝑖𝜙𝑖,𝑚(𝑙/2)𝐷𝑖,𝑚
∞
𝑖=1  (A42) 

where 𝐷𝑖,𝑚 is the maximum value of 𝐷𝑖. The upper limits for 𝐷𝑖,𝑚 can be found as 

𝐷𝑖,𝑚 =
1

𝜔𝑖
𝐼𝑖(𝑡𝑚,𝑖) for the forced vibration phase  (A43) 

𝐷𝑖,𝑚 =
1

𝜔𝑖

√𝐼𝑖
2 + (𝐼�̇�/𝜔𝑖)

2
 for the free vibration phase  (A44) 

where 𝐼𝑖(𝑡𝑚,𝑖) = ∫ 𝑓(𝜏) sin[𝜔𝑖(𝑡𝑚,𝑖 − 𝜏)] 𝑑𝜏
𝑡𝑚,𝑖

0
. 

When transverse pressure loads with more complicated time histories (e.g., concave, 

exponential, sinusoidal, etc.) are acting on the beam-column, the time of the maximum 

deflection in the forced vibration phase can only be found using numerical analysis. 

A.2.5.  Mode contribution 

The maximum deflection of Eq. (A42) is given by an infinite series, which in practice needs 

to be truncated to obtain a numerical solution. The number of terms to be taken into account 

generally depends on a type of the applied load and the desired accuracy of the solution. The 

discussion on the effect of higher modes and its contribution to the dynamic response of 

beams can be found in [27], [28]. To assess the influence of each term in the solution (A42), 

the contribution of the ith mode to the peak deflection 𝑢𝑚 is expressed relatively to the 

contribution of the first mode 𝑢1,𝑚 as 

𝑢𝑚 = 𝑢1,𝑚(1 + ∑ 𝜇𝑖
∞
𝑖=2 ) (A45) 

where 𝜇𝑖 is the relative modal contribution factor defined as 
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𝜇𝑖 =
𝑢𝑖,𝑚

𝑢1,𝑚
= ∑

Γ𝑗

Γ1
∙

𝜙𝑗,𝑚

𝜙1,𝑚
∙

𝐷𝑗,𝑚

𝐷1,𝑚

∞
𝑖=1  (A46) 

The first ratio in Eq. (A46) depends on 𝑝(𝑥). The second ratio in Eq. (A46) can be readily 

found using Eqs. (A27) as 

𝜙𝑖,𝑚

𝜙1,𝑚
=

𝜙𝑖(𝑙/2)

𝜙1(𝑙/2)
= sin

𝑖𝜋

2
 (A47) 

To find the ratio 𝐷𝑖,𝑚/𝐷1,𝑚, i in the second Eq. (A27) is rearranged into 

𝜔𝑖 = (
𝑖𝜋

𝑙
)

2
√

𝐸𝐼

𝑚
√1 −

𝐹

𝐹𝑏𝑖
= �̅�𝑖√1 −

𝐹

𝐹𝑏𝑖
 (A48) 

where �̅�𝑖 = (𝑖𝜋/𝑙)2√𝐸𝐼/𝑚 is the natural frequency of the pinned-pinned beam without the 

axial force (i.e., F = 0) and 𝐹𝑏𝑖 = (𝑖𝜋/𝑙)2𝐸𝐼 the ith Euler buckling load of the beam. Taking 

into account Eqs. (A43) and (A44) the ratio 𝐷𝑖,𝑚/𝐷1,𝑚 becomes 

𝐷𝑖,𝑚

𝐷1,𝑚
= 𝑖−2 √1−𝐹/𝐹𝑏1

√1−𝐹/𝐹𝑏𝑖

𝐼𝑖(𝑡𝑚)

𝐼1(𝑡𝑚)
 for the forced vibration phase (A49) 

𝐷𝑖,𝑚

𝐷1,𝑚
= 𝑖−2 √1−𝐹/𝐹𝑏1

√1−𝐹/𝐹𝑏𝑖

√𝐼𝑖
2+(𝐼�̇�/𝜔𝑖)2

√𝐼1
2+(𝐼1̇/𝜔1)2

 for the free vibration phase (A50) 

Finally, 𝜇𝑖 is obtained as  

𝜇𝑖 = ∑ 𝑖−2 Г𝑖

Г1
sin

𝑖𝜋

2
√

1−𝐹/𝐹𝑏1

1−𝐹/𝐹𝑏𝑖

𝐼𝑖(𝑡𝑚)

𝐼1(𝑡𝑚)

∞
𝑖=3,5,7  for the forced vibration phase (A51) 

𝜇𝑖 = ∑ 𝑖−3 Γ𝑖

Γ1
sin

𝑖𝜋

2
√

1−𝐹/𝐹𝑏1

1−𝐹/𝐹𝑏𝑖
√

𝐼𝑖
2+(𝐼�̇�/𝜔𝑖)2

𝐼1
2+(𝐼1̇/𝜔1)2

∞
𝑖=3,5,7  for the free vibration phase (A52) 

It is necessary to point out that in real structures 𝐹 is limited to the first Euler buckling force 

𝐹𝑏1. Therefore, the ratio 𝐹/𝐹𝑏𝑖 becomes negligible for 𝑖 ≥ 3 and Eqs. (A51) and (A52) can 

be further simplified to 

𝜇𝑖 ≅ ∑ 𝑖−2 Γ𝑖

Γ1
sin

𝑖𝜋

2
√1 −

𝐹

𝐹𝑏1

𝐼𝑖(𝑡𝑚)

𝐼1(𝑡𝑚)

∞
𝑖=3,5,7  for the forced vibration phase (A53) 

𝜇𝑖 ≅ ∑ 𝑖−2 Γ𝑖

Γ1
sin

𝑖𝜋

2
√1 −

𝐹

𝐹𝑏1
√

𝐼𝑖
2+(𝐼�̇�/𝜔𝑖)2

𝐼1
2+(𝐼1̇/𝜔1)2

∞
𝑖=3,5,7  for the free vibration phase (A54) 

Both 𝐼𝑖 and 𝐼�̇�/𝜔𝑖 (see Eq. (A36)) and so 𝜇𝑖 decrease with increasing 𝑖. 
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Appendix B 

Brittle Crack Compression Subroutine 

      subroutine vusdfld( 

c Read only - 

     *   nblock, nstatev, nfieldv, nprops, ndir, nshr,  

     *   jElem, kIntPt, kLayer, kSecPt,  

     *   stepTime, totalTime, dt, cmname,  

     *   coordMp, direct, T, charLength, props,  

     *   stateOld,  

c Write only - 

     *   stateNew, field ) 

c 

      include 'vaba_param.inc' 

c 

      dimension jElem(nblock), coordMp(nblock,*),  

     *          direct(nblock,3,3), T(nblock,3,3),  

     *          charLength(nblock), props(nprops),  

     *          stateOld(nblock,nstatev),  

     *          stateNew(nblock,nstatev), 

     *          field(nblock,nfieldv) 

      character*80 cmname 

c 

c     Local arrays from vgetvrm are dimensioned to  

c     maximum block size (maxblk) 

c 

      parameter( nrData=6 ) 

      character*3 cData(maxblk*nrData) 

      dimension rData(maxblk*nrData), jData(maxblk*nrData) 

c 

      jStatus = 1 

      call vgetvrm( 'LE', rData, jData, cData, jStatus ) 
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c 

      if( jStatus .ne. 0 ) then 

         call xplb_abqerr(-2,'Utility routine VGETVRM '// 

     *      'failed to get variable.',0,zero,' ') 

         call xplb_exit 

      end if 

c 

      call setField( nblock, nstatev, nfieldv, nrData,  

     *   rData, stateOld, stateNew, field) 

c 

      return 

      end 

      subroutine setField( nblock, nstatev, nfieldv, nrData,  

     *   strain, stateOld, stateNew, field ) 

c 

      include 'vaba_param.inc' 

c 

      dimension stateOld(nblock,nstatev),  

     *   stateNew(nblock,nstatev), 

     *   field(nblock,nfieldv), strain(nblock,nrData) 

c 

      do k = 1, nblock 

c 

         field(k,2) = 1  

c     Values of current strain: 

         eps1 = strain(k,1)  

         eps2 = strain(k,2)  

         eps3 = strain(k,3)  

c 

c     Chose the minimum strain of the 3 directions 

         eps = min(eps1, eps2, eps3) 

c 
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c     Chose the maximum strain of the 3 directions 

         eps_max = max(eps1, eps2, eps3) 

c 

c     Check if minimum is in compression 

         if (eps < 0.d0) then 

           epsab = abs(eps) 

c            Minimum value of strain up to this point in time: 

           epsmax = stateOld(k,1) 

c            Use the minimum strain as a field variable 

           field(k,1) = max( epsab, epsmax ) 

c            Store the minimum strain as a solution dependent state  

           stateNew(k,1) = field(k,1) 

c            Failure criterion 

c           FailureStrain = -0.0035 

           FailureStrain = -0.003 

               if( eps < FailureStrain ) then 

                 field(k,2) = 0.0         

               end if 

          else  

           stateNew(k,1) = stateOld(k,1) 

         end if 

c 

c     Check erosion in tension 

         if (eps_max > 0.d0) then 

            FailureStrain_max = 0.1 

               if (eps_max > FailureStrain_max) then 

                 field(k,2) = 0.0         

               end if 

         end if 

c 

        stateNew(k,2) = field(k,2) 

c 
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      end do 

c 

      return 

      end 


