
MODELLING A MULTICHANNEL SECURITY

PROTOCOL TO ADDRESS MAN IN THE MIDDLE

ATTACKS

by

Aliaa Mahfooz Ali Alabdali - 091594509

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

Department of Computer Science

School of Mathematical and Computer Sciences

November 2017

The copyright in this thesis is owned by the author. Any quotation from the

thesis or use of any of the information contained in it must acknowledge this thesis

as the source of the quotation or information.

Abstract

Unlike wired networks, wireless networks cannot be physically protected, mak-

ing them greatly at risk. This study looks into advanced ways of implementing

security techniques in wireless networks. It proposes using model checking and the-

orem proving to prove and validate a security protocol of data transmission over

multi-channel in Wireless Local Area Networks (WLANs) between two sources.

This can help to reduce the risk of wireless networks being vulnerable to Man

in the Middle (MitM) attacks. We model secure transmission over a two-host

two-channel wireless network and consider the transmission in the presence of a

MitM attack. The main goal of adding an extra channel to the main channel is

to provide security by stopping MitM from getting any readable data once one of

these channels has been attacked.

We analyse the model for vulnerabilities and specify assertions for secure data

transmission over a multi-channel WLAN. Our approach uses the model analyser

Alloy which uses a Satisfiability (SAT) solver to find a model of a Boolean formula.

Alloy characterizations of security models are written to analyse and verify that the

implementation of a system is correct and achieves security relative to assertions

about the model of our security protocol. Further, we use the Z3 theorem prover

to check satisfiability using the Satisfiability Modulo Theories (SMT) solver to

generate results. Using Z3 does not involve high costs and can help with providing

reliable results that are accurate and practical for complex designs.

We conclude that, based on the results we achieved from analysing our pro-

tocol using Alloy and Z3 SMT solver, the solvers complement each other in their

strengths and weaknesses. The common weakness is that neither can tell us why

the model is inconsistent, if it is inconsistent. We suggest that an approach of be-

ginning with modelling a problem using Alloy and then turning to prove it using

Z3, increases overall confidence in a model.

Acknowledgements

First of all, praise and thanks be to Allah, the Almighty, for helping me to

complete my PhD studies.

I want to show my appreciation and gratitude to my supervisors, Dr Lilia

Georgieva and Prof. Greg Michaelson, for their encouragement and patience while

helping me throughout the creation of this thesis. I am grateful for their helpful

advice and guidance.

I would also like to thank my husband Adel Almutairi who has held my hand

throughout my entire studies.

Last but not least, I would like to thank my family: my parents, my sisters and

my brothers for supporting me throughout my life and during the years that led

to this achievement.

Big and special thank to my all lovely children. I want to dedicate this work to

them and tell them how great they are and how grateful I am for their sacrifice

and patience during the years I have been away from them. Your impact on me

has been greater than words can express. I love you all xxx.

I am truly grateful..

Please note this form should be bound into the submitted thesis.
Academic Registry/Version (1) August 2016

ACADEMIC REGISTRY
Research Thesis Submission

Name: Aliaa Mahfooz Ali Alabdali

School: Mathematical and Computer Sciences

Version: (i.e. First,

Resubmission, Final)
Final Degree Sought: PhD

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried

out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions

submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian
may require

5) I understand that as a student of the University I am required to abide by the Regulations of the University and to
conform to its discipline.

6) I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g.
Turnitin.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of
Candidate:

Date: 11/07/2017

Submission

Submitted By (name in capitals): ALIAA MAHFOOZ ALI ALABDALI

Signature of Individual Submitting:

Date Submitted: 11/07/2017

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in

capitals):

Method of Submission

(Handed in to SSC; posted through
internal/external mail):

E-thesis Submitted (mandatory for

final theses)

Signature:

 Date:

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Aims And Objectives . 3

1.3 Thesis Structure . 4

1.4 Contributions . 7

2 General Background and Related Work for Security Protocol in

Multichannel Wireless and Formal Methods 8

2.1 Context . 8

2.1.1 Wireless Protocol . 9

2.1.2 Security Protocols . 11

2.1.3 Multichannel Protocols . 11

2.2 Background in Security Protocols to Transmit Data Securely Over

Multichannel Wireless Networks . 12

2.2.1 Introduction . 12

2.2.2 Security Protocols for Data Transmission Over Multichannel

Wireless Networks . 13

2.3 Specification and Verification . 18

2.3.1 Formal Methods . 18

2.3.1.1 Formal Specification 19

2.3.1.2 Formal Verification 20

i

2.3.1.3 Distinction Between Formal Specification and For-

mal Verification . 20

2.4 Formal Verifications Techniques . 21

2.5 Motivation for Using Formal Verification Techniques 21

2.6 Model Checking of Protocols . 23

2.6.1 Model Checking Using Spin 25

2.6.2 Model Checking Using Linear Temporal Logic (LTL) 25

2.6.3 Model Checking Using Alloy 26

2.6.4 Alloy and Security . 27

2.6.5 Alloy and Security Definitions 27

2.6.6 The Importance of Alloy for Detecting Flaws Using Small

Scope . 30

2.6.7 Further Alloy Applications 30

2.7 Theorem Proving for Proving System Satisfiability 31

2.7.1 Introduction . 31

2.7.2 Difficulties and Advantages of Using Theorem Proving . . . 33

2.7.3 Theorem Proving and Security 34

2.7.4 Theorem Proving Using Isabelle and Coq 34

2.7.5 Theorem Proving using Z3 35

2.7.6 Security Protocols using Z3 36

2.8 Existing Approaches Combining Model Checking and Theorem Prov-

ing . 36

2.9 Discussion . 39

3 Foundations: Alloy 43

3.1 Alloy Definition and Process . 43

3.2 Alloy Analyser . 44

3.3 Motivation of Using Alloy . 46

3.4 Alloy Problem . 47

3.4.1 Type Declarations and Relation Declarations 48

ii

3.4.2 Signature Extension, Inclusion, and Abstraction 50

3.4.3 Multiplicity . 51

3.4.4 General Example to Apply Type Declarations, Relation Dec-

larations, Signature Extension, Inclusion, Abstraction, and

Multiplicity . 52

3.4.5 Fact, Predicate, and Assertion 53

3.4.6 Expressions . 54

3.4.7 Formulas . 55

3.5 Counterexample, Scopes and Inconsistency 56

3.6 Instances . 57

3.7 An Automated Teller Machine (ATM) Example 57

3.7.1 ATM System Description . 57

3.7.2 ATM System Analysis . 59

3.7.3 ATM Model Properties and Requirements 60

3.7.4 An Alloy Specification of An ATM System 60

3.8 Results . 74

4 Foundations: Z3 SMT Solver 84

4.1 SMT Solver . 85

4.1.1 Z3 . 85

4.1.2 The SMT Language . 87

4.1.2.1 Declarations . 87

4.1.2.2 Assertions and Quantifiers 88

4.2 An Automated Teller Machine (ATM) Example in Z3 88

4.2.1 Type and Subtype Declarations 89

4.2.2 Properties Of The Sub-signatures 89

4.2.3 Abstraction . 91

4.2.4 Extension . 93

4.2.5 Facts . 94

4.2.6 Relations Declaration . 95

iii

4.2.7 Predicates . 100

4.2.8 Assertion . 111

4.3 Results . 112

4.4 Comparison Between SAT and SMT results, and SAT and SMT Tools113

5 Problem Specification and Case Study, and Multichannel Security

Protocol Modelling and Analysis 119

5.1 Proposed Solution for The Case Study 119

5.2 Example in Both Single Channel and Multichannel 123

5.2.1 Single Channel . 123

5.2.2 Multichannel . 124

5.3 Conclusion . 127

6 Multichannel Security Protocol Modelling Using Alloy 128

6.1 Overall Framework . 128

6.2 Approach . 129

6.3 Motivation . 129

6.4 Protocol of Transmitting Data Over Single Channel Case Study . . 129

6.4.1 First Protocol: Describing Data Transmitting Over Single

Channel WLANs in Secure / Insecure Scope Model 130

6.4.1.1 Protocol Model Properties and Requirements . . . 130

6.4.1.2 An Alloy Specification of the First Protocol 131

6.5 Results . 147

6.6 Protocol of Transmitting Data Over Multichannel Case Study . . . 158

6.6.1 Second Protocol: Describing Data Transmitting Securely

Over Multichannel WLANs in The presence of MitM 158

6.6.1.1 Protocol Model Properties and Requirements . . . 159

6.6.1.2 Model Structure Description 159

6.6.1.3 Modelling and Checking The Protocol Using Alloy 160

6.7 Results . 171

iv

7 Multichannel Security Protocol Proving Using Z3 182

7.1 Introduction . 182

7.1.1 First Protocol: Transmitting Data Over Single Channel . . . 182

7.1.1.1 Type and Subtype Declarations 182

7.1.1.2 Properties Of The Sub-signatures 183

7.1.1.3 Abstraction and Extension 184

7.1.1.4 Facts . 184

7.1.1.5 Relation Declarations 188

7.1.1.6 Predicates . 194

7.1.1.7 Assertion . 205

7.1.2 Second Protocol: Transmitting Data Over Multichannel . . . 205

7.1.2.1 Type and Subtype Declarations 205

7.1.2.2 Properties Of The Sub-signatures 206

7.1.2.3 Abstraction . 207

7.1.2.4 Extension . 208

7.1.2.5 Facts . 208

7.1.2.6 Relation Declarations 216

7.1.2.7 Predicates . 221

7.1.2.8 Assertion . 247

7.2 Results . 248

7.3 Discussion . 249

8 Systematic Translation Rules: A First Step Towards An Auto-

mated Translator 256

8.1 Introduction . 256

8.2 The Alloy Syntax . 257

8.3 Z3 SMT solver . 260

8.4 Tool Integration and Methodology 261

8.4.1 Constructing Alloy Models 262

8.4.2 Constructing Z3 Models . 263

v

8.5 Systematic Translation Rules . 263

8.5.1 Type Declarations . 263

8.5.1.1 Signature Identifier 263

8.5.1.2 Abstraction . 264

8.5.1.3 Subtype/Extension 265

8.5.2 Relation Declarations . 267

8.5.2.1 Relation . 267

8.5.2.2 Multiplicity . 269

8.5.3 Facts and Assertions . 272

8.5.4 Expression: . 272

8.5.4.1 Cartesian Product 272

8.5.4.2 Relational Join . 273

8.5.5 Formulas . 273

8.5.5.1 Subset . 273

8.5.5.2 Negation . 273

8.5.5.3 Conjunction . 274

8.5.5.4 Disjunction . 274

8.5.5.5 All . 274

8.5.6 The general form for translation 275

9 Conclusion and Future Work 276

9.1 Conclusion . 276

9.2 Future Work . 279

Appendix A ATM Model Using Alloy 282

Appendix B ATM Proving Using Z3 Theorem Prover 284

Appendix C Transmitting Data Over Single Channel Model Using

Alloy (Second Protocol) in Secure/ Insecure Scope 291

Appendix D Single Channel Proving Using Z3 Theorem Prover 293

vi

Appendix E Transmitting Data Over Multichannel Model Using Al-

loy 297

Appendix F Multichannel Proving Using Z3 SMT Solver 300

Appendix Bibliography 309

vii

List of Tables

3.1 Relations And Their Types . 50

3.2 Multiplicity Constrains Meaning . 52

6.1 Relations And Their Types . 134

viii

List of Figures

3.1 An Abstract View Of The Alloy Analysis Process of Checking An

Assertion [62] . 46

3.2 Abstract Syntax For The Core Alloy Logic [62] 47

3.3 Structure Class Diagram of The Alloy ATM System Specification . 70

3.4 Two Instances of The Generating Two Counterexamples: (1) Shows

ATM Provides The Amount of Money When The Amount of Money

Is Greater Than The Balance, and (2) Shows The ATM Does Not

Provide The Amount of Money When The Amount of Money Is

Less Than The Balance. 76

3.5 An Instance of The The ATM Model (Amount = Balance) 79

3.6 An Instance of The ATM Model (Amount <Balance) 80

3.7 An Instance of The ATM Model (Amount >Balance) 81

5.1 MitM Intercepts Data Transmission Between Two Parties Over Sin-

gle Channel . 123

5.2 MitM Intercepts Data Transmission Between Two Parties Over

Multichannel . 124

5.3 Application Form For Sending A Message 126

6.1 An Instance of The First Aspect (Secure Protocol) 150

6.2 Generating A Counterexample for The Second Aspect (Insecure

Protocol) Dynamic MitM . 152

6.3 Generating A Counterexample for The Second Aspect (Insecure

Protocol) Static MitM . 155

ix

6.4 AA, No Counterexample, A valid Instance 157

6.5 An Instance of Generated A Counterexample 173

6.6 An Instance of Meta Model First Hypothesis: There is A MitM

Intercepts the First Channel, While The Second Channel Has Not

Been Intercepted in The Second Status 177

6.7 An Instance of Meta Model Second Hypothesis: There is A MitM

Intercepts the Second Channel, While The First Channel Has Not

Been Intercepted in The First Status 179

6.8 An Instance of Meta Model Third Hypothesis: Neither the First

Channel nor The Second Channel Have Been Intercepted in Both

Statuses . 181

7.1 Size and Time of Specifications . 249

7.2 Comparison . 255

8.1 Abstract Syntax For The Core Alloy Logic [62] 257

8.2 Translation Rules for Alloy Type Declarations 264

8.3 Translation Rules for Alloy Relation Declarations 268

8.4 Translation Rules for Fact and Assertion Formulas 272

8.5 Formulas Constraints . 274

x

Chapter 1

Introduction

1.1 Motivation

Software systems have become increasingly important in our daily lives, which

increases the demand for ensuring correctness of their behaviour. This applies

not just to safety critical domains such as medical and traffic systems; software

failures also have a detrimental effect on the economy as a whole.

The size and the complexity of software systems have grown in recent years [105].

Recently, developers have become able to achieve the goal of building systems that

implement reliably in spite of their complexity, by using methods that are required

to provide an accurate specification of the system and its validity properties. To

achieve this goal, formal methods, which are mathematically based languages,

techniques, and tools for specifying and verifying a system are utilized [89]. Formal

methods, when utilized in the design stages of a system’s development, provide

more accurate results at a lower cost [97] than traditional techniques.

The formal method approach has gained more and more acceptance in industry

over the last few years and this is shown clearly, for instance, by the last standard

of the European Committee Standardization for railway control and protection

systems, where formal methods are "highly recommended" for the safety integra-

1

Chapter 1: Introduction

tion [3].

Moreover, a formal approach is strongly affected as well by the nature and

expressive power of the specification language. Its underlying logic is that the

more the required behaviour, which is naturally on a higher abstraction level,

can be expressed directly, the more specification errors can be avoided, and the

properties can be captured and verified.

Formal methods are required to check the behaviour of software. Formal se-

mantics is used for the formulation of the expected behaviour as well as for the

description of the software system itself; a framework and a methodology are used

for gaining confidence about software correctness, which can range from random

checks to a complete proof of correctness.

This thesis uses formal methods to transform software system together with the

required behaviour into a logical formula proof in a formal language, such that

the formula is valid if the software properties satisfy the required behaviour. The

approach in which the software system is checked against a finite number of tests

has an ability to give (mathematical) proofs of correctness and is thus the method

of choice for safety critical systems.

In this thesis, we explore the use of typed first-order logic (FOL) to model and

analyse a multichannel wireless protocol using the model analyser Alloy. Further

we use the Z3 SMT solve to prove satisfiability of the properties of the multi-

channel wireless protocol. We provide two complementary approaches in our case

study which uses Alloy and Z3 and validate the proposed methodology of our

multichannel security protocol.

2

Chapter 1: Introduction

Alloy provides a suitable set of methods to easily and directly describe software

systems together with their desired behaviours. Alloy descriptions of software

systems are called models, while Alloy descriptions of required behaviours are

called assertions. In the verification context, we refer to an Alloy model together

with an Alloy assertion as an Alloy specification.

The main significant reason for the success and popularity of Alloy is the fully

automatic Alloy Analyser. It checks Alloy specifications by looking for a coun-

terexample. The models analysed by Alloy are small. Their default scope is three

[83]. This gives the user the ability to check the specification of a model in small

scope to detect any errors simply before developing the model to be complex with

increasing the number of scopes gradually. However, checking is implemented with

respect to a bounded scope in which only a small number of values is considered

for each type. Thus, despite the Alloy Analyser’s ability to find counterexamples

effectively, it has no ability to establish the validity of the proof. Thus we need a

complementary formal method such, as an SMT solver, choosing Z3.

According to [22] Z3 is a state-of-the art theorem prover from Microsoft Re-

search. It can be used to verify the satisfiability is logical formulas automatically

over more than one theory. Z3 provides a good match for verification components

and software analysis since many similar constructs of software map directly into

its supported theories. Z3 is used efficiently for logical solving and modelling.

1.2 Aims And Objectives

The principal goal is to compare the techniques of Alloy and Z3 for specifying

properties of wireless network protocols through the analysis of Man in the Mid-

dle Attacks over a single channel and then an alternative multichannel protocol.

Considering this main aim of the study, the objectives are as follows:

3

Chapter 1: Introduction

• Propose and build a modelling and verification approach using typed first-

order logic as a specification language for data transmission over a WLAN.

• Find a model for a given principal goal using the Alloy Analyser [92]. Alloy

allows us to specify the flow of communication, characterise the participants

in the communication, formulate assertions which would guarantee security,

and check the validity and security of the protocol.

• Prove the modelling and verification properties utilising a theorem prover.

For the purpose of this study, Z3 will be used to find a proof for a given

principal goal using SMT to generate its results.

• Explore out how model analysis compares with theorem proving.

• Make a detailed comparison of both Alloy and Z3 including this relative

strength and limitations.

1.3 Thesis Structure

• Chapter 1: The Introduction

This chapter provides the context for our case study. It also describes the main

objectives that led to this work being conducted in the Wireless Networks field,

using the Alloy and Z3.

• Chapter 2: General Background and Related Work in Multichannel Wireless

Security Protocol and Formal Methods

In this chapter, we discuss studies of using multichannel wireless networks for

transmitting data securely, the strength, issues and applicability of Alloy for im-

proving models, and the accurate use of Z3 to prove the satisfiabilities of theories.

In addition, the chapter gives research results on the strength, efficiency, and the

accuracy of results when using formal methods.

4

Chapter 1: Introduction

• Chapter 3: Foundations: Alloy

This first foundation chapter provides a general introduction to the Alloy spec-

ification language and its analysis using the Alloy Analyser to model an ATM

system as an example.

• Chapter 4: Foundations: Z3 SMT Solver

This second foundation chapter provides a general introduction to the Z3 SMT

solver using the same ATM system as an example. At the end of chapter 4, a

comparison between SAT and SMT results, and SAT and SMT tools is provided.

These comparisons include decidability, time, limitations, accuracy, counterexam-

ple, capabilities, and quantifiers.

• Chapter 5: Problem Specification and Case Study, and Multichannel Secu-

rity Protocol Modelling and Analysis

This chapter considers work related to the case study in the area of securing data

transmission over a multichannel. It also looks into the details of the particular

issues that have been chosen for this study. Further, this chapter discusses the

reason behind presenting the model for our case and how it can help with achieving

secure communication over wireless networks. This chapter also discusses how

data being transmitted over wireless networks can be secured and safeguarded

from MitM attacks by making use of a multichannel instead of a single channel for

data transfer. The security of a multichannel protocol depends on analysing the

transmitted message into two parts, random letters and the indices for each letter,

and then transmitting each part over different wireless networks, and changing

the MAC address for each channel. This chapter finally gives a description of the

proposed model that has been developed.

5

Chapter 1: Introduction

• Chapter 6: Multichannel Security Protocol Modelling Using Alloy

This chapter presents the Alloy framework for modelling and checking the va-

lidity of properties of the provided protocols using: (i) predicate-running which

is applied to Alloy problems with a predicate and results in a visualization if

the model is consistence, and (ii) assertion-checking, which is applied to Alloy

specifications in which properties have been constrained as facts.

• Chapter 7: Multichannel Security Protocol Proving Using Z3

In this chapter, we present the results that we found after proving the satisfia-

bility of the properties of the protocols using Z3. Then we compare and discuss

the results, and how Alloy and Z3 complement each other in terms of strengths

and weaknesses and whether working together strengthens the capacity of them in

terms of automation and scalability. We also explore whether both model check-

ing and theorem proving could provide the validity and the satisfiability of the

security of our protocol for the same property. In chapter 7, we noticed that,

after making the corresponding transformation of model from Alloy into Z3, when

checking the assertion results a counterexample in Alloy, it also results in a coun-

terexample in Z3 under the same properties. Also, when checking the assertion

results in no counterexample in Alloy, it also results in the same in Z3 under the

same constraints on properties .

• Chapter 8: Systematic Translation Rules A First Step Towards An Auto-

mated Translator

In chapter 8 we show how small and simple model in Alloy maybe translated

manually into a large and complex (less readable) formulas in Z3 including declar-

ing types, subtypes, abstraction, extension, multiplicity constraints, relations,

6

Chapter 1: Introduction

facts, assertions, formulas, and analysis. This chapter presents and discusses ab-

stract syntax for the core Alloy logic and SMT2 language; the tool integration

and methodology that we have worked on with the Alloy Z3 hybrid for verifica-

tion; and systematic translation rules to describe how each piece of Alloy syntax

is translated into Z3.

In this chapter we show how to translate a specification that is written in the

Alloy specification language into a satisfiability-equivalent SMT problem using Z3

SMT logic (FOL) and solved by an SMT solver such that if there is a counterex-

ample in Alloy in finite scopes, it maybe supposed to be a counterexample in Z3

in infinite scopes and vice versa.

• Chapter 9: Conclusion and Future Work

In this final chapter we present conclusions of our approach and future work.

1.4 Contributions

Our contributions in this thesis include:

• A model of a multichannel protocol built using Alloy.

• A model of the protocol using Z3 including all of the aspects that were

included in Alloy.

• A comparative analysis of the the results found through Alloy and Z3.

• Identifying and comparing the strengths, limitations, and advantages of us-

ing theorem proving and model analysis.

7

Chapter 2

General Background and Related

Work for Security Protocol in

Multichannel Wireless and

Formal Methods

2.1 Context

Within the last ten years, the software engineering industry has seen globally

a growing amount of susceptible information being produced, used, and accessed

by web-based applications using wide area networks and wireless technology from

financial institutions, healthcare organizations, online payment agencies among

other transactions conducted online [16]. Transactions conducted online and per-

sonal security now depend on the safety and protection that are incorporated into

web-based software programs. It is important to note that even one design flaw

or execution error in a program can be used by malicious criminals to embezzle,

change, or falsify the confidential information of guiltless system end-users. Such

network and web application attacks are now a common problem and are having

a negative impact on a number of organizations and system users [16].

8

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

The dangers of installing software with security issues are too big to accept

with no assurance, but programs are getting extremely big for security engineers

and professional experts to scrutinize manually, and computerized verification and

validation programs are not able to scale. At the moment, we don’t have any

single extensively used online program or network that can be certified as safe

and with a high level of security, even alongside a small group of hacks. In fact,

development and execution faults are still established in commonly disseminated

and comprehensively examined protection systems and network operating systems

developed by excellent professionals and executed by specialists [13].

2.1.1 Wireless Protocol

Wireless is a technology that facilitates networking by linking many computer

users to share resources in a home or business environment simultaneously over

a single channel with no need for any additional wiring or cabling. Wireless net-

works have become pervasive. They allow millions of users across the globe to

exchange information, conveniently and flexibly, among a variety of devices in-

cluding notebook computers, PDAs, tablet PCs, mobile phones, digital cameras,

and hand-held games. The intensive use of wireless networks over single-channel

wireless networks reveal various vulnerabilities: the wireless channel can be eaves-

dropped; the data transmitted over the network can be altered; the identities of

the communicated parties can be impersonated; and the communication channel

can be overused or jammed [27, 70, 136, 68].

The rapid commercialisation of new products and services that use wireless net-

works does not allow enough time for the design of robust security architectures

[132]. Consequently, the risk of losing and misusing data transmitted over a wire-

less network is high [2, 31]. As a result, an investigation to ensure information

security on a wireless network by using a strong key or transmitting data over

pairs of nodes and encryption has been identified as a critical need. [124].

9

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

In the context of wireless networks, preserving information security has three

main goals [132]:

• Confidentiality : ensuring that nobody but the receiver can see the informa-

tion.

• Integrity : ensuring that the information has not been modified.

• Availability : ensuring that the information is available whenever it is needed.

One type of threat to a single channel wireless networks is known as Man in

the Middle (MitM). In MitM over a single channel, the attacker takes advantage

of weak network communication protocols in order to convince a host to route

the information through the attacker instead of through the normal router. The

attacker intercepts messages in a public key exchange and then resends messages

after substituting their own public key for the requested public key [133]. Hence,

the attacker makes two hosts believe that they are communicating with one an-

other, while the attacker controls and modifies the communicated messages.

The attacker attacks in real time by splitting the original Transmission Control

Protocol (TCP) connection into two new connections and acting as a proxy where

they can read, insert, and modify the data in the intercepted communication [120].

Our work focuses on modelling a multichannel wireless network communication

protocol using two formal methods Alloy and Z3. Our challenge is to compare the

technique of Alloy and Z3 for specifying properties of wireless network protocols

through the analysis of Man in the Middle Attacks over a single channel and then

a multichannel alternative protocol.

10

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

2.1.2 Security Protocols

Today, active information and communicating like e-commerce, mobile tech-

nologies, and the Internet, have made the use of security protocols an absolute

necessity. It is therefore essential for systems designers to have confidence in the

security protocols they use [97].

The main purpose of security protocols is securing communications on insecure

networks, such as the Internet. Security protocols are required to be used ev-

erywhere, such as in electronic commerce (e.g., the protocol TLS [46], used for

https:// URLs), bank transactions, mobile phone, and wireless networks. How-

ever, the design of security protocols is error-prone; this was clearly demonstrated

by the famous Needham-Schroeder public-key protocol [118], when the design flaw

of its security protocol was detected 17 years after its publication [103]. Thus,

security flaws cannot necessarily be discovered using functional software testing

because they appear just in the presence of a malicious attack. For this reason

automatic tools such as formal methods are required for ensuring that security

protocols are correct during the earlier stages of development. Research in the

verification of security protocols has been very active since the 1990s, and is still

very active [109].

2.1.3 Multichannel Protocols

The concept of using multichannel protocols is not new. In cryptography, the

initial idea of using multichannel protocols was to use two channels: one providing

more security during sending and receiving the symmetric key, and the other

sending the ciphertext. Transmitting data over multichannel has been used to

transmit Pretty Good Privacy (PGP) fingerprints, which are attested through

authentic channels with another channel that is used to send and receive a PGP

public key [156].

11

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

Today there are many viewpoints about research directed towards multichannel

because it helps with avoiding protocol design defects and it is the main approach

to resolving security requirements, channel properties, and the attacker model

[156]. Keeping a multichannel communication secure is essential and is of particu-

lar interest for pervasive computing [156]. The multichannel data communication

concept aims to make multiple-paths appear as a strong single path, secure and

authoritative communication link between at least two parties.

A multichannel protocol facilitates data transmission securely and effectively

in WLANs, especially in the presence of a Man in the Middle [156]. However,

using software to build such a security protocol increases the need to combine

verification techniques such as model checking and theorem proving.

2.2 Background in Security Protocols to Trans-

mit Data Securely Over Multichannel Wire-

less Networks

2.2.1 Introduction

Data confidentiality over mobile devices is not easy to secure due to a lack of

strong encryption components. However, new devices have multi wireless inter-

faces with a variety of channel capacities and security components [158]. Data

confidentiality is the main priority of security solutions for mobile environments

and wireless networks are in particular amenable to threats such as eavesdropping

[158].

As it is known [158], the traditional solution for protection is through data

encryption. However, many link layer encryption schemes are weak, such as WEP

[45] in WiFi home or small business networks. Even strong end-to-end encryption

12

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

techniques such as TLS [47] are not considered an adequate protection solution

because many web sites do not support them, and they might be too difficult for

deployment and too expensive for maintenance [158].

The research below in wireless security addressed the vulnerabilities in WLANs

as follow.

2.2.2 Security Protocols for Data Transmission Over Mul-

tichannel Wireless Networks

Interest in multichannel security protocols is growing [156, 73]. For example,

the multichannel MAC Protocol has been studied by [159]. This protocol uses a

technique called Cognitive Radio (CR) to prevent Denial-of-Service (DoS) attacks

by radio jamming in a wireless network. This kind of attack takes place if the

device uses single channel communication, making it easy for eavesdroppers to

send and receive radio signals or packets to confuse the original client transmission,

which leads to DoS. The multichannel MAC protocol is one of the suggested

solutions for that problem. It utilises CR which has two technologies that are

responsible for obstructing the jamming attack. The first is real time spectrum

sensing and the second is fast channels switching. The disadvantage is that using

many channels in this protocol can cause a higher channel sensing time [159].

Multi-hop communication with access to the multichannel MAC (medium access

control) protocol was used by [157] to reduce the problems in a Wireless Mobile

Ad hoc Network (MANET), such as conflict and collision caused by increasing the

number of mobile hosts quickly and decreasing the performance of the network.

This protocol was designed for wireless networks, which assume a joint channel

exchanged by mobile hosts. The protocol works by utilising static channel activity

and applying IEEE 802.11 in the sending and receiving operations on every chan-

nel. This protocol faced problems with hidden terminals and exposed terminals

13

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

[157].

A hidden terminal, as defined in [157] is when there are two hosts X and Y, and

host X is sending to host Y. Y’s receiving activity could be destroyed when another

host Z cannot sense the signals from host X which leads to Z’s transmission activity

being mathematically overheard by host Y. An exposed terminal, as defined in

[157] is, host X is sending to Y. Later, host Z plans to send to host D, but because Z

can sense X’s signals, Z will wait until X’s transmission activity terminates. In fact,

the communications from X to Y and from Z to D can happen simultaneously.

To eliminate these problems, in the multichannel MAC protocol called dynamic

channel assignment (DCA) [157], bandwidth is separated into two types of channel.

A single control channel (control transceiver) is used to solve connection prob-

lems and to allocate data channels to mobile hosts. Then a number of data

channels (data transceivers) are used to submit data packets and acknowledge-

ment through switching between data channels. This protocol has the ability to

support mobile communication between two hosts and has comparable simplicity

to our approach which is transmitting data over two different channels with the

message separated into two parts and each part transmitted over a channel.

A multichannel technique is also used to prevent Wireless Mobile Ad hoc Net-

works from jamming attacks using a protocol called Multi-path Multi-Channel

Protocol. The goal behind using multichannel in this protocol is to prevent jam-

ming attacks [153], especially jamming attacks focusing on the transmitted chan-

nel itself. This protocol depends on designing the transmitted channels to start

as a single channel, with the ability to add more channels if a jamming detection

system detects a jamming attack.

14

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

The technique of Multi-path Multi-Channel Protocol starts in the MAC layer

with 802.11 control traffic sent to each node: each node at each configurable W

second calculates the average control traffic (CT) sent of neighbour nodes. If CT

is greater than T, which is the total average of submitted control traffic from

adjoining nodes, then an alarm packet will be generated and broadcast to warn

other nodes to change their common control channel and increase the number of

transmitted channels [153].

Relay attacks are studied by [149, 44, 23]. A relay attack is a kind of MitM

attack. The attacker captures some of the data packets on their way to the in-

tended destination and then attempts to re-use this information to attack the

victim’s network without modifying data. MitM has ability to observe, modify,

and/or block data after intercepting the data, making the parties think they are

connecting to each other.

According to [149], encryption alone may not protect all communication be-

tween two parties from MitM attacks. They propose multichannel protocols. One

solution for preventing relay attacks is to add another channel so two endpoints

can establish if they are connecting to each other securely or if there is a MitM

intercepting them. The main characteristic of this extra channel is that it is diffi-

cult for it to be relayed. The technique is based on a distance bounding protocol

to provide connection approval with a low force security guarantee, provided there

are no other principals within a specified distance of the verifier. The main goal

of the distance bounding protocol is to give only the genuine provider the ability

to respond to the challenge, whereas the MitM never responds to the challenge

because MitM does not have any idea about the shared secret.

Our approach is similar; also we model secure message exchange over a mul-

tichannel network that makes similar assumptions to [5]. These assumptions are

that we should not depend entirely on encryption to guarantee the security, and

15

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

that adding another channel to transmit a message may increase the security of

the transmitted message, which in turn prevents MitM.

An analysis of a relay attack [44] based on speed, and calculating how much time

sending and receiving data takes, depends on the theory of the speed of light. This

defensive technique is limited and works by establishing whether the provider is

further away than predicted. An analysis of a relay attack is reported by [23] but

with a high security low level protocol with a pre-calculation of a one bit challenge

and a response which transmits as fast as the channel allows. In contrast, we are

not concerned with the speed of the message exchange. Instead we only capture

the intended sender and receiver and the relevant properties of description for a

secure exchange to take place.

In a multichannel key agreement, using an encrypted public key exchange, se-

cure communication is achieved by sending and receiving messages that are easy

to eavesdrop or change through public channels. To make a fresh strong cryp-

tographic key agreement between two PDAs, Diffie-Hellman (DH) key exchange

may be used to guarantee security, confidentiality, integrity, and authenticity in

data transition [100, 48].

The DH key exchange [58] is a method that provides security when symmetric

cryptography cannot eliminate eavesdropping. The protocol provides robust se-

curity for data transmission over two channels. Its technique works by merging

long values submitted via radio channel with short values submitted via the data

origin authentication channel.

The DH key agreement protocol accomplishes similar goals to those achieved by

[58], but there are further goals that this protocol has achieved, such as neglecting

for how long the hacker tries to hack the second channel. This protocol could

16

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

decrease the ability to hack the second channel data transition to less than 1 in

1,000,000 by taking into account the use of the bandwidth of the second channel.

Another goal is that the protocol requires the data transferred over the second

channel to be utilized in calculating subsequent protocol values, instead of merely

to be checked for equality [30]. This is another difference to [58].

A new security protocol called Multichannel Encryption Overlay (MEO) using

multiple channels to transmit data securely has been introduced by [158]. This

protocol is similar to ours in terms of increasing the number of options for wireless

broadband. However, in this protocol the options for wireless broadband can

be used simultaneously with no need to disconnect from one and reconnect to

the other. Our protocol requires this disconnection and reconnection to change

the MAC addresses using "Technitium MAC Address Changer" software, which

strengthens the security.

The goal of the MEO protocol is to increase data confidentiality by splitting

data transmission over multiple channels. This protocol is based on two ideas:

first, removing any information to frustrate decryption; and second, to reduce the

rate of the information, helping to increase the time available to stop those attacks

which rely on sniffing encrypted text. These goals are achieved by, splitting the

source into two or more channels. The majority of the data is carried by the first

channel, and the rest, after some additional encryption, on the second channel.

The first channel essentially carries the first part of data, and data on the second

channel is low rate, and encrypted. Before reaching the final destination, the split

data can be reassembled at a network proxy location [158].

The MEO protocol is similar to our protocol in terms of its technique of splitting

data into two parts and transmitting each part over different channel; however, we

think our protocol is stronger because it uses different channels at different times,

changing the MAC address for each channel using "Technitium MAC Address

17

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

Changer" software. It also does not depend on submitting the data itself but just

random letters and indices.

2.3 Specification and Verification

Verification is the process of identifying whether a system meets its specifica-

tions. In the past, the goal of this process has been to verify after a development

project’s completion whether the implementation of a program (what we got) is

equal to the specifications (what we wanted). Now, however, verification occurs in

the early stages of the software development cycle, with the goal of verifying the

validity of the theoretical model. Verification here has the advantage of evaluating

early on whether the product will satisfy system requirements and whether the

system will implement as required. It also allows for the detection of errors before

they’ve spread and become more complex [89].

Specifications frequently rely on semantics to understand the system to be de-

veloped. Because of the ambiguity of the natural language that is used to specify

the software development, it is hard to verify the validity of the system and the

verification process becomes less efficient when the software development becomes

bigger and more complex. The automation of the procedure is difficult as well

because of the informal specifications [89].

2.3.1 Formal Methods

Formal methods are a particular kind of mathematically based technique for

the specification, development, and verification of software and hardware systems.

They enable accurate verification of specifications and their realization. Moreover,

they facilitate the automation of verification and refine its efficiency. Therefore,

the utilization of formal methods is expected to raise the quality, reliability, and

accuracy of software.

18

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

Formal methods are introduced as a method to convert a problem from the

informal space into the formal space, where it is easier for computational methods

and technologies to be applied. Formal methods are used to represent methods

that are used in process or system engineering, and allow for the description of a

problem using a method that assists in discovering the solution. Formal methods

were utilized on a large scale with software engineering to first determine the goal

of the system, and then to design, develop, and to validate the fundamental system

[141].

Until formal methods were included in the development process, security solu-

tions were verified via human analysts. On several occasions, some traces were

not conducted in the analysis. Thus, relevant errors were not discovered. Formal

methods for security protocol analysis as illustrated by [109] represent a mathe-

matical or logical modelling of a system and properties to be proven, together with

an efficient procedure for determining whether a model satisfies these properties.

There are two kinds of formal methods: formal specification and formal verifi-

cation [89].

2.3.1.1 Formal Specification

Formal specifications are utilized to describe a system, to analyse its behaviour,

and to help its design by verifying system properties such as functional behaviour,

timing behaviour, performance characteristics, or internal structure through strict

and efficient reasoning tools [72]. Most analysts and programmers have not been

trained in formal specification techniques because formal specifications can take a

very long time and it may be impossible to make changes to the specifications once

design and implementation has begun. Also, formal specifications describe what

a system should do, not how the system should do it, and maybe used to detect

errors but do not help solve those errors. Moreover, they are complex because they

require a high level of mathematical expertise and analytical skills to understand

19

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

and apply them efficiently [72]. Even in a relatively simple system, they might

include formulas ranging over 100 pages [139].

2.3.1.2 Formal Verification

Detecting errors manually is very difficult, and the software engineering pro-

cess is very complex. For those reasons, the trend is moving toward verification

techniques to discover design errors.

Since the 1990s, formal verifications are increasingly helpful in proving the cor-

rectness of systems such as security and cryptographic protocols, combinational

circuits, and digital circuits with internal memory [141, 51, 19].

The goal of much of the research in formal verification is designing decidable

formalisms in which targeted properties of computing systems can be formulated,

so that the truth and falsity of such formulas can be checked through decision

procedures [89, 141].

2.3.1.3 Distinction Between Formal Specification and Formal Verifica-

tion

In computer science, both formal specification and verification are examples

of formal methods which use mathematical techniques to help document, specify,

design, analyze, or certify software and hardware. Formal verification is concerned

with mathematical models of both: a system and its requirements [143].

For a complex system both formal specification and verification can be utilized to

manage its complexity. At the beginning, the system is modelled utilizing formal

techniques to get a specification. And then, for this specification, verification

techniques are applied to verify the correctness of the system [102].

20

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

For example the Transmission Control Protocol (TCP) is a complex system and

its specification is complex. For the verification of ‘the TCP protocol, [102] first

developed a formal specification of TCP protocol and its extension. After that,

he applied verification techniques to prove the correctness of the protocol.

Formal specification and verification techniques may be required together for

different reasons: under all circumstances a formal specification serves as an un-

ambiguous reference for the system’s behaviour because of its formal nature. The

reliability of a system can be improved when using verification to detect its er-

rors; a process that requires detailed knowledge of both the proof system that is

utilized and the axioms that are applied may be helpful through the development

of a system [102].

2.4 Formal Verifications Techniques

The requirement of formal verification has become prevalent [160], especially in

hardware verification [26], network protocol analysis [93, 96], and critical security

system validation [160].

Formal verification has the advantage of providing a systematic method to ex-

plore protocol flaws [139]. It can be applied to designs described at many different

levels of abstraction from the first level through implementation [97].

2.5 Motivation for Using Formal Verification Tech-

niques

The formal verification of hardware and software systems has increased in pop-

ularity [35] using both model checkers and theorem provers [91, 24]. Model check-

21

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

ers generally are used on systems of manageable size, whilst theorem provers may

eventually be used on huge systems [74].

Formal verification works by proving characteristics of the mathematical models

of given systems. Interactive systems consist of a general model and an environ-

ment that interact with each other to give the result. Some systems do not need

to terminate and in this case modelling their calculations as infinite sequences of

states and determining their characteristics utilising temporal logic is necessary

[130].

For interactive systems there are two main approaches to formal verification:

model checking (algorithmic verification) and theorem proving (deductive veri-

fication). Model checking and theorem proving complement each other in their

strengths and weaknesses. At this point, we could say that Alloy and Z3 have a rel-

ative strengths in complementing each other as Alloy may show a counterexample

and Z3 may prove it.

However, model checking is automatic; theorem proving is not. Theorem prov-

ing can handle complex formalisms; model checking cannot. Due to propositional

logic being decidable, model checking is fully automated. Any formula of a logic

with only limited types can be translated into propositional logic b cut this causes

an explosion in the size of the translated formula. Often this makes the proposi-

tional decision procedures take an unacceptable amount of time or space and as

a result expressive system logic in propositional logic will not work. So, model

checkers are not used as decision procedures. Instead, researchers have utilized

theorem provers by dividing a problem into model checkable parts whose correct-

ness results are then reconstituted in the prover. Or, researchers have utilized the

decision procedures in theorem provers to support abstract models of a checkable

size [7].

22

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

Alloy gives us the option to visualize the model and related counterexamples

(if any) using either the standard visualization form or the tree structure of the

model which would include counterexamples if they exist [12]. In our models, we

have chosen to display the counterexamples that were found by Alloy using the

standard visualization as it is easy for us to understand and trace the problem [7].

2.6 Model Checking of Protocols

Models of security are used to provide a formal statement of a system’s integrity,

availability, and confidentiality needs. Models of security offer a precise and brief

means of formally explaining security policies and assuring their validity. Since a

system must not only be protective, formal models of security offer system design-

ers assurance that they are building a consistent system, and with a foundation for

future explanations that the system as established attains its specifications [108].

For example, in [106] the wireless authentication protocol is validated and in

[107] the security protocol is modelled and validated.

An enormous collection of model-checking approaches has been developed for

analysing security protocols, such as [6, 20, 53, 110, 112, 148, 144]. The general

security problem is undecidable and, even under the assumption of perfect cryp-

tography, verification of such properties is undecidable if the size (scope) of the

problem of a model unbounded [111].

The biggest concerns for security is attacks such as: man-in-the-middle attacks

where an attacker is involved in two parallel executing sessions and passes messages

between them; replay attacks, where messages recorded from previous sessions are

played in subsequent ones; reflection attacks where transmitted information is

sent back to the originator; and type flaw (confusion) attacks, where messages of

23

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

different types are substituted into a protocol (e.g., replacing a name with a key)

[37]. The attacks problem is undecidable if the number of scopes of modelling the

specification of an attack is unbounded since undecidability results show that a

modelled case is too complex to detect the flaws of a protocol against an attack

[111].

Model checking has been utilized in hardware, communication, and protocol

verification [88]; recently, the trend is to apply model checking to analyse specifi-

cations of software systems.

Model checking has the advantage that the counterexamples find visualizations

of actual attacks on the protocol. This gives insight into protocol vulnerabilities,

and how they can be fixed. When the system has a defect and its required prop-

erties are not theorems, a decision procedure (model checking) can introduce a

counterexample which can be invaluable in following the source of such errors in

the system execution.

Under a model checking approach, a system implementing a security protocol

is represented as a transition system with limited but numerous states. After

that, the model checker utilizes many effective state detection techniques to detect

whether the system can be in a state concerning a security infringement.

A model checker has been used to check the ABP (Alternating Bit Protocol)

which is used to transfer messages in one direction between a pair of protocol

entities [160]. Pagination messages that the client sends to the receiver and the

acknowledgement pages that the receiver sends to the client using either zero or

one are very simple to describe in the model checker [160]. As [160] reported, when

the pagination is not limited to zero or one, i.e. in the sliding window protocol,

the page number, acknowledgement number, and size of the sliding window may

24

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

be any number, and that make it difficult for it to be modelled by model checking.

Thus it is necessary to use an abstract model to solve this problem. Model checking

has been applied widely and successfully in the analysis of security protocols [104].

There are many model checkers that have been used to verify security protocols

as seen below.

2.6.1 Model Checking Using Spin

Simple Promela Interpreter (SPIN) [75] is an open-source model checking tool

and is especially appropriate for synchronous systems. The models in SPIN are

specified utilizing the Promela language and are also executable. The model

checker allows both the simulation and exhaustive analysis of the behaviours spec-

ified.

The SPIN model checker is used in [129] to check the security protocols for sensor

networks by building an authenticated routing application, and using a two-party

key agreement protocol. As a result, SPIN has the ability to achieve data integrity

during data authentication, which is a stronger property in the protocol.

2.6.2 Model Checking Using Linear Temporal Logic (LTL)

The model checking LTL is a modal temporal logic with modalities pointing to

time. In LTL, the user encodes formula according to the future of path formula.

For instance, the correctness of a condition at the end depends on the correctness

of the initial fact. It enables both branching time and quantifiers [59].

LTL requires a reduction in the number of states and transitions and number

of the accepting states to detect counterexamples efficiently. Its connected com-

ponents are weak and costly, the automaton is commonly small, and the saving

over verification can be very high [99]. However, our models such as transmitting

25

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

data over single and multichannel in WLANs requires the number of states to be

increased for detecting a counterexample, and connecting between signatures to

be strong, to achieve the strong relation which lead to effective instances.

The security protocol that has been established by [29] depends on an insecure

channel. For example, getting a confidential security protocol begins from mod-

elling the properties of that protocol to detect its security flaws. Writing formula

that utilize LTL, enables for the specification of assumptions on basis and com-

munication channels beside to complex security properties. That are commonly

not handled via state-of-the-art protocol analysers to discover of a critical security

flaw in Google’s SAML-based SSO for Google Apps. Also to discover a new attack

on a patched version of the Asokan, Shoup, and Waidner (ASW) contract signing

protocol.

2.6.3 Model Checking Using Alloy

Alloy is a tool for modelling and analysing systems. Modelling in Alloy is

structural, logical, and intuitive. The specification language is based on typed

first-order logic and as such, expressive enough to enable us to capture complex

behaviour and specify and analyse interesting security properties such as confi-

dentiality, integrity, authenticity, and non-repudiation. If a system can perform

these four interesting properties at all times, then we can ensure that the system

is secure.

Alloy is a lightweight language. Its specification language is based on first order

related logics. It is designed for software design. When using Alloy to support

program construction, developers may begin from simple and small models of the

systems and expand slowly. At every stage, the Alloy Analyser will routinely offer

the developer an instant response. Alloy is very helpful in sensing errors and de-

fective parts of a system, reporting them to the developers and thus accomplishing

26

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

an improved understanding of end user needs [80].

The Alloy tool provides a software design framework for modelling of critical

design properties just like checking them [131].

2.6.4 Alloy and Security

Alloy is used in network systems and web based applications to check for security

holes [83]. In the context of security, Alloy and the Alloy Analyser can be used

to model network protocols and identify security loopholes that will make the

application vulnerable to attacks. Some trials [145, 42, 76] have been made in the

past to automate reasoning about web applications and network systems focusing

mainly on security issues such as the correctness of access control that affected

the users. Alloy and the Alloy Analyser tool are now the language that can be

used by application and web application software engineers to identify and report

security problems [134, 54].

2.6.5 Alloy and Security Definitions

In network communication and web-based applications, security is the most

important aspect. In this project, analysing the security of network systems and

web applications using Alloy is framed by the following benefits and features that

the user will receive.

• Confidentiality

Confidentiality is the perception that communication made in network systems

and through web application can only be received by the intended person. There

should be no other reader or listener when this information is passed through

networks and other application networks. For cryptography oriented applications,

this signifies that those not intended to read or listen to this communication that

27

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

is, anybody who does not have the decryption key, cannot access the plain text

communication message in the encrypted text [125].

The Alloy language has been used to model security requirements for secure

communications [125], where predicates were specified for secure message confi-

dentiality, integrity, authenticity and non-repudiation. The work was successful

in designing a general, reusable model for communication security properties.

• Integrity

Once a message is protected, it cannot be modified by a process. Changing a

message requires accessing the protected contents of a secured message to read

it, modify the contents while they are unprotected, and then re-securing them

using the same policy. Thus, it cannot be differentiated between the original and

the modified messages. We require that attempts to change the original message

without write permission destroy the integrity of the protected message, so that

after reading the contents of the message, it is easy to determine the modification

[125].

• Authenticity

Authentication is an approach which identifies what was done from where, what

was said, and particularly, which processes produced a certain communication. To

do this, we use several built-in practical methods to identify the areas that may

leak communications in network systems and web-based applications, and report

them.

The first is an idea like a personal identification number for an automated

banking system. The ATM system will do a checking of the customer entered PIN

code with what the system stores to determine whether the PIN is the same as

28

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

what the system stores, and then the client is logged in to transact. Alloy can

model that by connecting two possible states (pin, pin for before and after states

respectively) of an ATM system. In our ATM model we define the relationship

between two states: before, when then ATM is waiting for PIN, and after when the

PIN is typed. In our model we suppose the PIN always valid in any ATM. In open

or confidential key encoding system, the personal key is an undisclosed code known

by the sender, and every open key owner that read a legitimate communication

message may understand who sent it.

In this research, we make use of a method related to the open confidential key

encoding technique, although it does not use encoding as a protection strategy,

but rather uses the idea of authenticity to recognize who sent the communication.

In Alloy and the Alloy Analyser, a collection of practices can have write authenti-

cation, so the definitions simply narrow the recognition of the communication to

an entity within the group. In circumstances providing only a single procedure,

an Alloy description offers precise authentication [125].

• Non Repudiation

Non repudiation means the incapability of a process to deny passing commu-

nication it receives or to refuse to receive a communication. Non repudiation is

tricky to use in network systems and web-based applications because information

about communication must be passed and received at the local sender and the

receiver correspondingly. To articulate non repudiation in network systems and

web-based applications we need to check the security status of the systems. In

this context the systems will be checked to make sure that they are secure and

safe to receive and send information across the networks.

For Alloy to be efficient and effective here it must know the sending and the

receiving system internet protocol, file transfer protocol, and hypertext transfer

protocol so that it may analyse the validity of data packets that are received and

29

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

sent. In [125], the system does not permit any instance to be sent or received

unless it is valid, secure, and authenticated [125].

2.6.6 The Importance of Alloy for Detecting Flaws Using

Small Scope

The general problem of determining whether a model meets its specification is

undecidable, so automation can only be obtained in return for some compromise.

In our case, we want to detect as many errors as possible before developing and ex-

ecuting our protocol, so we have compromised completeness. The problem of state

explosion with model checking [33] is one that [81] suggests requires a pragmatic

approach to solve [28], by using the Alloy language in a small scope hypothesis,

which conjectures that many flaws in models can be detected in small instances.

Our work assumes the small scope hypothesis for detecting security flow tracing,

making examples of instances easy to be examined and Alloy problems easy to be

checked, as a limited small scope can be easy to compute [113]. With our current

work, a limited scope was sufficient. The impact of limiting scopes to be small

in our work to accelerate detecting flaws and generating a counterexample if one

exists.

2.6.7 Further Alloy Applications

Alloy has recently been utilised in the context of security assessment, for exam-

ple to model the Java Virtual Machine (JVM) security constraints [140], access

control policies [152], or attacks in cryptographic protocols [101].

Alloy is characterized as easily defining the meta-model, as [25] found when

analysing avionic architectures characterised as models in first-order logic to facil-

itate specification of the relational properties expression to be checked. Both [25]

and [101] expressed the specific architecture of a case study in Alloy.

30

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

Moreover, [101] has chosen the Alloy modelling language and its related au-

tomated reasoning tool because their powerful support for sets proved worthy

when they tried to model and simulate the PIN decimalisation attack on IBM’s

architecture.

Alloy has proved its success in checking designs of diverse applications, such as

the Intentional Naming System for resource discovery in mobile networks [4], and

avionics systems [43], as well as designs of cancer therapy machines [85].

The Alloy Analyser has become increasingly popular and is applicable in a

variety of different applications. For example, in [119] a design visualising the

possibilities of detecting a MitM attack while using a credit card online is in-

vestigated. Alloy has been used to model the efficient and Secure Card-based

Payment System (ESCPS) with no counterexample found. In [116] Alloy is used

to automate the specification and verification of an Aspect UML model used in

Aspect oriented (A-O) programming. In [8] the Alloy analyser is used to explore

design weaknesses in the early stages of software development in an e-commerce

application that is vulnerable to MitM.

Alloy has also been used for the modelling and analysis of protocols in networks

[61] and distributed systems [150], and to model and emulate partial and complete

attacks [101].

2.7 Theorem Proving for Proving System Satis-

fiability

2.7.1 Introduction

Theorem proving is a technique that is used to support software development

31

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

and can help with automating the process of validating large sized codes with

optimal cost [154, 71]. To achieve verification of secure systems in security appli-

cations, proving whether a specification satisfies security models may be achieved

by using a theorem prover for automated support [14, 154].

Theorem proving is a tool composed of strong combinations of inference steps.

It is one of many methods which are used for verification of specifications of

system models and to produce new properties of concerns [38]. Theorem proving is

undecidable and one of the key approaches to formal verification. It is a technique

wherein the system and its required properties are expressed as formulas using

mathematical logic which is provided via formal system, which defines a set of

both axioms and inference rules [141].

Under a theorem proving approach, the system and its properties are discussed

via logical formula and the formal proof is found via proving theorems that state

that the provided properties hold in the system.

A theorem prover has the advantage of checking a proof mechanically, or ver-

ifying that a series of formulas does not comply with a legal derivation in the

proof system. To do this, it needs to check that every derivation in the series is

either an axiom or follows from the prior ones via a legal application of the rules

of inference. Moreover, it can help the user in the building a proof by performing

many heuristics. In addition, it is able to remember the decision steps for the

part to determine if the part is a theorem or not [139]. Also, if a goal needs to be

verified, the theorem prover divides it into sub-goals, and each step of the prover

proves each sub goal automatically [38].

There are many theorem provers in active use today. The popular ones include

ACL2 [90], Coq [57], HOL [66], Isabelle [127], NuPrl [36], and PVS [121].

32

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

In our work, theorem proving has been chosen for analysing, checking, and

proving properties of our system.

2.7.2 Difficulties and Advantages of Using Theorem Prov-

ing

Theorem proving is a very general approach and one of its advantages is that

it is easily applied to a wide variety of systems, especially infinite-state and

parametrised systems. However, one of its disadvantages is that a high degree of

highly skilled work is required, even when proof tools are utilized. The difficulty

with a theorem prover is that the user needs to be very familiar with technology

and have good knowledge of the specification.

However,program verification techniques such as the B-method and theorem

provers such as HOL have become widely accepted [142]. Recently, new versions

of HOL theorem provers such as HOL-light and Isabelle HOL have been introduced

[142]. These provers need numerous human interventions and wide, manual guid-

ance while the proof is running. Faster provers are required, especially for massive

programs with thousands of invariants with minimum human intervention within

a minimum period of time [11].

Theorem proving has an advantage in giving the user control of the proofs and

it is flexible in dealing with proofs. Another advantage is that if there is a model

that the model checker cannot verify because of the size of the state space is

too large, a theorem prover may be able to prove it without have to take into

account the size. Regardless of the size of the state space, it is not a problem for a

theorem prover because it does not need to use abstraction techniques which make

verification easy to be implemented on the whole ready model. This makes using

a theorem prover required for verifying any size of code with law cost [154, 71].

33

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

Another advantage of using the theorem prover besides reducing the cost of

verifying codes, as [154] mentioned, is that it helps to develop numerous prob-

lem theories, by being used either in subsequent analysis or as guidelines, which

appears in its ability to detect an ambiguous problem. [128] confirmed this prop-

erty when he used Isabelle to prove and discover a problem with the security of

cryptographic protocols in the massive theory that was built up.

Also, [128] added another benefit which is that using a theorem prover can save

time and reduce the analysing and verification protocol procedure from weeks to

minutes.

2.7.3 Theorem Proving and Security

There are many theorem provers that have been used to prove security protocols

as seen below. Theorem provers are increasingly being used today in the mechani-

cal verification of safety-critical properties of hardware and software designs [141].

To achieve verification of secure systems in security applications, proving whether

a specification satisfies security models or not is required by using a theorem prover

for automated support and evaluation of any system [14, 154].

2.7.4 Theorem Proving Using Isabelle and Coq

Isabelle and Coq are generic theorem provers. Isabelle is equipped with com-

paratively robust automation, while Coq depends on a theory called Calculus of

Inductive Construction and enables one to extract certified programs from proofs.

[126] utilized Isabelle with higher order logic (HOL) to prove three basic security

properties of a Transport Layer Security (TLS). This is a protocol that guarantees

a secure connection over transport protocols such as TCP and under application

protocols like HTTP and SMTP with HTTPS which support them by the secure

connection version. The three basic properties are: (1) every client, after sending

34

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

its completed message, and receiving a matching completed message from its peer,

records the session parameters to enable sending and receiving again. The peer’s

identity can be authenticated utilizing public key cryptography, (2) neither the

eavesdroppers nor any authenticated connection can get a negotiated secret, and

(3) any message communication modification that can be made by the attacker

can be discovered by the connected parties.

In proving these three basic security properties of a Transport Layer Security

(TLS) above, the use of Isabelle failed to detect whether the connection between

parties is secure, especially in the prescience of passive eavesdroppers because the

model does not support unauthenticated connections. After that [151] has trans-

lated the formal model of Isabelle into the Coq syntax and built the proof in the

Coq system. Despite Isabelle and Coq theorem provers sharing many common

principles, their utilization and their techniques differ dramatically, and conse-

quently, the resulting proofs using Coq are more clearly built than those done in

Isabelle.

2.7.5 Theorem Proving using Z3

Our approach uses the Z3 SMT solver, which is a high performance theorem

prover developed at Microsoft Research and an automated satisfiability checker

[22]. Z3 checks whether the set of formulas are satisfiable in the built-in theories

of Satisfiability Modulo Theory (SMT) [147].

Z3 has several facilities of application programming interface to make it straight

forward for components to map into Z3, but there are no user centric facilities or

stand-alone editors for interacting with Z3 [16]. Here, we used Z3 directly online

using the URL ”http://rise4fun.com/z3”

35

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

2.7.6 Security Protocols using Z3

According to [15], web application and networks are experiencing calamities. A

carefully considered attempt is required if safety, and secure development, coding,

and scrutiny methods are to be merged with the swift design and installation of

significant safety and security disseminated web-based programs and networks.

Z3 has been used to protect users, companies, and their information by proving

safety and security. For instance, consider an online banking system installed in

the server at the bank head office from which users access all the services they

need. However, before the bank web application is installed, Z3 must be used to

prove satisfiability and to verify security and safety before implementation.

[17] says studies on safe and protected web-based applications and secure net-

works systems and protocols are making good progress now when Z3 is being used

to check any bugs or security pitfalls, and to make sure that no application will

allow unauthorized persons to access confidential information. Studies on applica-

tion authentication are also progressing quickly, and the outcome is a set of tools

that can now locate errors in complex programs.

2.8 Existing Approaches Combining Model Check-

ing and Theorem Proving

Using formal techniques raising two main questions about the connection be-

tween a system and its formal description: [98]

• Does the model description visualise the specific behaviour of the system? To

answer this question, the model needs to be checked using a model checker

methodology.

• How can we get an implementation that satisfies its specification? To answer

this question, the implementation needs to be proved using theorem prover

methodology.

36

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

We have described the two main approaches to formal verification, model check-

ing, and theorem proving. Both of these approaches have different strengths and

weaknesses, and there has been much work in trying to combine them to be able

to verify larger and more complex examples faster, more conveniently, and with

less user time required. Below we discuss briefly a few of the most well-known

techniques that combine model checking and theorem proving.

There are several examples of combinations of theorem provers and model check-

ers [49, 95]. Usually, the theorem prover is utilized to divide the proof into different

sub-goals to be small enough to be verified by a separate model checker. There

is no actual combination so the translation between the languages of the theorem

prover and the model checker is done manually. In our work we translate from

model checking into theorem prover manually.

Usually, integrations of theorem provers with model checkers make the theo-

rem prover able to call upon the model checker as a black-box decision procedure

provided as an atomic proof rule [122, 137]. The prover converts expressions be-

longing to values over finite domains into propositional expressions. This enables

utilisation of the result as a theorem (as in our framework with the reverse direc-

tion) but this does not extend easily to a fully expansive approach. It achieves

better efficiency at the cost of complex integration and lower assurance of safety.

Theorem provers have been utilized to help with abstraction (used to reduce the

size of the model) [34, 67, 146] for model checking. Model checking in the theorem

prover is utilised to provide assumptions to refine an abstraction that appeared to

be too complex and which adds too much non-determinism to the system which

led to the prevention of pseudo counterexamples.

Traditional formal approaches like model checking and theorem proving have

37

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

been used widely in the field of security protocols. Here the data communication is

trusted and requires the user to decide on authentication aims in advance. Model

checking and theorem proving are used to model the behaviour of a protocol and

mathematically verify that the design and implementation satisfy requirements of

the protocol successfully [52].

Model checking discovers a path that leads to a state where the properties are

not hold and focuses on searching incorrect traces, while theorem proving uses

theorems in order to prove the satisfiability of the protocol properties and focuses

on proving the correctness of the protocol according to the properties.

In order to utilise theorem proving, we need to convert our model verification

into a theorem prover which requires encoding both the design and the specifica-

tion into the logic of a theorem prover.

In the Nimbus Toolset [38, 87], there is a translator to enable verification as well

as a translator to the NuSMV model checker. In the Prototype Verification System

(PVS) theorem prover, this translator is responsible for interpreting requirements

specifications from the Requirements State Machine Language (RSML) specifica-

tion language into the input language. This enables the user to verify interpreted

requirements specifications easily via theorem proving and model checking tech-

niques. Verifying the safety properties of systems using models specified in RSML

using theorem proving has been done by [87] with both the PVS theorem prover

and the NuSMV model checker to analyse the Flight Guidance System (FGS)

model for Mode confusion [87].

[56] describe a case study in which the Alloy address book problem is analysed

using the Yices SMT solver. In this case study the Alloy language is translated

to Yices and analysed utilizing the bounded Yices SMT solver rather than the

38

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

bounded SAT solver. They concluded that whenever the Alloy Analyser returns

a counterexample, Yices returns a valid counterexample as well, and when Alloy

cannot find a counterexample in a finite scope, Yices does not find any in that

scope either. Also, analysing problems using the SMT solver is faster than using

the SAT solver. Our case studies have been translated from Alloy to the Z3 and

analysed using the unbounded Z3 SMT solver rather than the bounded SAT solver

and we conclude the same as[56]. However, the difference between our results and

theirs is that we use the unbounded SMT solver while [56] used the bounded SMT

solver.

In our case study, we try to create a balance between the expressiveness of

theorem proving and performance as well as the efficiency and automation of model

checking. Representing the requirements of a case study is the main problem in

theorem proving formulation and is one of the main contributors towards success

or failure in model checking.

2.9 Discussion

According to our study of the literature above, it is not clear whether model

checking or theorem proving is better for establishing properties of communica-

tions protocols. We cannot determine which formal method is better unless we

determine the goal of using them. If the the goal is finding mistakes and just

checking not proofing, and the domains are restricted to be finite (using scope),

then we need to use a decidable model checker because the first period for realising

a scenario is modelling and seeing the result, and in this period lots of mistakes

may occur.

In contrast, an SMT solver like Z3 is undecidable. Decidable means that a

model checker like Alloy should provides the result even it takes very long time

with finite states, while undecidable means that a theorem prover like Z3 may

run forever and not provide the result or even time is out, and just provides

"unknown". However, if we need to prove the correctness of the result that has

39

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

been got from model checking for more confidence, we need a theorem prover.

Z3 supports unbounded verification and the SMT solver tries to find the coun-

terexample (CE) for unlimited scope. When it gives the result as "there is no CE",

it guarantees that the assertion is 100% valid because it covers all possible scopes,

even if it may take a longer time to prove the validity of the assertion. However,

Z3 does not guarantee a complete analysis: it may find a counterexample preceded

by the keyword unknown, implying that the property may or may not be valid,

or time out.

On the other hand, Alloy supports bounded verification and when it says there

is no CE, then the assertion may be valid, i.e, the Alloy Analyser checks the

existence of the CE based on a finite scope. In this case the assertion is valid and

there is no CE within a finite scope which means the number of atoms for each

type do not exceed the number of scopes and the maximum that the assertion

can take is the number of scopes we specified. However, it may be invalid (not

guaranteed) in the larger scope when we increase the number of scopes.

Also, Z3 proves the assertion, while Alloy just checks a model and does not prove

analysing, and proof is stronger than modelling. However, Alloy could be stronger

than Z3 in controlling the number of scopes to find the problem for the model if the

goal is just finding a counterexample to limit the problem. For example, limiting

the length of the key for encryption to guarantee it is not able to be broken.

Consequently, our work focuses on proposing a substantial experiment to evalu-

ate both model checking and theorem proving in understanding and characterising

MitM, and exploring solutions to MitM.

40

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

So, for developing a solution we need both model checking and theorem prover.

In the case when a theorem prover fails to prove a theorem, it can be difficult

to tell what’s gone wrong: whether the theorem is invalid, or whether the proof

strategy failed. On the other hand, if the model checker finds no counterexample,

the assertion may still be invalid unless we increase to a large enough scope. In

our case study, increasing scopes are required by extending the complexity of the

proposed solution such as the communicated parties, number of MitMs, and the

procedure of the solution.

We use Alloy to generate counterexamples which help in detecting flaws in the

proposed solution (transmit data securely over multichannel) compared to the

existed solution (transmit data securely over single channel).

We use Alloy to explore axioms which help in reducing the appearance of coun-

terexamples. Moreover, we develop the properties to be applied in the predicates

of the model based on the explored axioms.

The Alloy analyser is a refuter rather than a prover [79]. It can falsify a model

but not verify it. It can prove that an assertion does not hold for all instances of a

model by finding a counterexample, but it cannot prove that an assertion holds in

all instances of a model. It can only prove that an assertion holds for all instances

up to a bounded size. Consequently, we need to the Z3 SMT unbounded verifica-

tion to prove that an assertion holds in all instances of a model with confidence

in the correctness of the property.

It is difficult to compare the techniques of Alloy and Z3 because both of them

work with different mechanisms. Alloy transfers the model into first order logic

and then the Alloy Analyser translates the model with its constraints to proposi-

tional logic, while Z3 transfers the model into first order predicate logic. The main

41

Chapter 2: General Background and Related Work for Security Protocol in
Multichannel Wireless and Formal Methods

feature of the Alloy to Z3 SMT translation is that it guarantees equisatisfiability

of the produced FOL proof obligation with respect to its Alloy counterpart. Con-

sequently, the result of analysing the FOL proof obligation of an Alloy problem

with an SMT solver, whether showing validity or providing a counterexample, is

faithful. However, as we will show in the evaluation section, this is done at the

expense of efficiency.

The next two chapters provide detailed information of the frameworks and tools

used in this dissertation. We begin with Alloy followed by Z3, using an ATM

system as an example in both frameworks.

42

Chapter 3

Foundations: Alloy

This chapter provides detailed information about the framework of Alloy, the

Alloy modelling language and its supporter verification tool the Alloy Analyser.

This can be used to automatically analyse properties of Alloy models. The chapter

provides a foundation in using Alloy to model a system and the Alloy Analyser to

check the validity of the properties up to the limited scope using an Automated

Teller Machine (ATM) as an example.

3.1 Alloy Definition and Process

Alloy is a tool for modelling and analysing systems. It consists of two parts, the

Alloy language and the Alloy Analyser. The Alloy language is a tiny modelling

language used for the expression of the fundamental structure of a system, as well

as restrictions and operations to determine how the system may change. The

Alloy language consists of Boolean algebra, set theory, quantifiers, and first-order

relational logic. In general, Alloy is a combination of logic, language, and analysis:

logic because it depends on both first order logic and relational calculus, language

because it has syntax for structuring specifications in the logic, and analysis be-

cause it uses bounded exhaustive search for counterexample to a required property

utilising a SAT solver to analyse Boolean expression automatically [81].

43

Chapter 3: Foundations: Alloy

We have chosen to use Alloy because it has the ability to make a fully automatic

semantic analysis, which can provide checking of consequences and consistency,

and simulated execution [86]. It also has the ability to generate sample transitions

of an operation described implicitly, utilising negation and conjunction without

sacrificing abstraction to achieve executability [84]. Moreover, it tries to find

counterexamples, within a bounded scope, which violate the restrictions of the

system [78]. Also, Alloy has an advantage for exploring design ideas gradually

from a small model which is then developed to a larger scale; Alloy can analyse

the model at any level.

The Alloy process passes through three steps. First one specifies the logic of

theory which is a meta-model and constraints. Second one bounds the number of

instances of each object in the meta-model to search and model (build). Third,

the Alloy Analyser (AA) is used analyse the specifications to generate instances of

the meta-model that satisfy the constraints based on the second step. AA provides

a model for a given logic of theory after doing inclusive verification for all models

that have up to a bounded number of instances [50].

3.2 Alloy Analyser

The Alloy Analyser (AA) is the original analysis tool for Alloy. It can be used

to edit, build, and test specifications written in the Alloy language. The goal of

the analysis is to check if the property holds in the system, within a given scope.

It provides two main forms of analysis: [81]

The first analysis, called predicate-running provides a simulation of the specifi-

cation. It checks the consistency of a model, by finding an instance that satisfies

the model. It is applied to Alloy problems with a predicate providing results as

a visualization which shows satisfying structures called instances that satisfy the

predicate and the Alloy model if the model is consistent. No instances will be

44

Chapter 3: Foundations: Alloy

visualized if the model is inconsistent.

The second analysis, called assertion-checking refutes the specification’s correct-

ness. It checks the properties of the model. It is applied to Alloy problems with

an assertion providing results as a visualization which shows a structure (called a

counterexample (CE)) that falsifies the implication of the assertion from the Alloy

model. Otherwise, there is no counterexample found.

The Alloy Analyser is a GUI application that includes three main parts: for

editing and adjusting specifications, for displaying information about solutions

that the analyser generated, and for providing information about the internal

data structures used by the tool during analysis. It is able to represent solutions

in a graphical format.

Bounding a small number of instances of each object in the meta-model is better

than bounding a large number because it makes it easier, faster, and accurate for

AA to detect a problem in the theory if there is any. Moreover, if the model is

getting huge and the bounded instances is getting large, then a number of instances

may be lost and not investigated [50].

The Alloy Analyser works as a compiler and starts its process by implementing

its analysis. Its analysis lies in using a translator called "KodKod" as a model

finder to translate the Alloy problem (verification queries) expressed in relational

logic formula from FOL into a corresponding propositional logic formula (Boolean

logic formula). It is then delivered with the scopes (that a user provided to bound

the size of Alloy problem types) to the SAT solver to check its satisfiability by

checking the negation of the checked property and find a solution by answering

verification queries. After that, if a solution to the Boolean formula is found, it

is translated back into an instance of the corresponding relational formula. This

45

Chapter 3: Foundations: Alloy

involves binding the formula’s relational variables to constants. The problems that

are solved do not exceed the scope that the user specified to bound the size of the

domains, which has the advantage of making the problem finite [83]. Consequently,

the Alloy Analyser has no ability to prove the correctness of an Alloy assertion.

Figure 3.1 shows the internal Alloy analysis process of checking an assertion.

Figure 3.1: An Abstract View Of The Alloy Analysis Process of Checking An
Assertion [62]

3.3 Motivation of Using Alloy

One of the motivations for the development of the Alloy language, according

to [81], was the lack of tools with automated analysis capabilities. In Alloy, the

proposed approach can be modelled in the early phases of the software development

life cycle.

Another motivation for using Alloy is the use of fact to analyse and restrict Alloy

models automatically, and also generate a counterexample which is considered as

a solution [82].

While there are many model checker tools available at present, the Alloy spec-

ification language has been chosen for use primarily because of its simplicity to

represent program language abstractions and its ability to explore their semantics

with a well-integrated analysis tool. As [81] points out, according to his approach

46

Chapter 3: Foundations: Alloy

as "lightweight" formal methods, Alloy models can be created simply and tested

early during the development process, and then extended gradually. In addition,

[81] illustrates that the aim of Alloy was to get the benefits of traditional formal

methods in a short time with less effort.

3.4 Alloy Problem

As seen in Figure 3.2, an Alloy problem is composed of a combination of type

declarations, relation declarations, relational first order formulas marked as fact,

and another formula (if required) marked as assertion to check or as predicate to

run [81]. Each component will be explained later.

Figure 3.2: Abstract Syntax For The Core Alloy Logic [62]

47

Chapter 3: Foundations: Alloy

3.4.1 Type Declarations and Relation Declarations

The type declarations introduce the global types (called signatures) which are

a central part of Alloy’s modelling specification. Signatures are the entities of

systems which represent sets of atoms. Each atom (or scalar) is a unity and

includes three main properties: it is indivisible (are not able to be split into smaller

parts), immutable (their properties do not change), and uninterpreted (there are

no inherent properties) [9].

Signatures are utilised to define the existence of a unary, binary, or ternary

relation while fields are utilised to define other relations of those signatures.

Each signature declaration, such as signatures A and B below:

sig A{}
sig B{}
sig C{r:B m -> n A}

declares a top-level type, here named A and B. The identifier A and B always

refers to the set and does not include number of relation declarations (called fields

of signatures).

The identifier C refers to a set including the number of relation declarations

(called fields of signatures) which represent sets of n-arity tuples depending of the

relation arity, for example r: C->B ->A declares a ternary relation named r ⊆ C

× B × A.

These may also be constraints on field values such as n and m. n and m restrict

that for each c ∈ C the binary relation c.r maps each tuple in B to n tuples of A,

and each tuple in A to m tuples of B.

48

Chapter 3: Foundations: Alloy

Signatures such as A and B, called top-level signatures, are not a subset of

another signature and they will be implicitly disjoint unless they show the relation

(field) between them such as relation r between A, and B below.

Each top-level signature limits a maximum set of three atoms by default.

sig A{}
sig B{r:A}

A signature can contain at least zero relation declarations, separated by commas.

Each declaration indicates a (unary, binary [relates two atoms], or ternary [relates

three atoms]) relation or maybe more than 3 relations between the set defined by

the signature as seen in Table 3.1 below.

A relation is a set of ordered tuples (vectors of atoms); every tuple is an or-

dered sequence of atoms, and each tuple lists atoms (entities) that are related to

each other. Each pair represent a tuple. For example: in Table 3.1 below, the

binary relation represents 2 tuples (a0,b0),(a1,b1), the ternary relation represents

3 tuples (a0,b0,c0),(a0,b1,c1),(a1,b1,c2), while the 4-relation represents 4 tuples

(a0,b0,c0,d0),(a0,b1,c1,d2),(a1,b2,c0,d3),(a2,b1,c1,d3). Moreover, each element in

each tuple is called an atom.

Each relation has a size equal to the number of tuples per pair in this relation.

The arity of a relation is the number of atoms in each tuple of the relation and it

is greater than zero. Some signatures may extend or include other signatures and

constraints using multiplicities as seen in the next section.

49

Chapter 3: Foundations: Alloy

Signature and Relations Related atoms (Type/size) of relation

sig A none Unary (set of a’s), f={(a0),(a1),(a2)}
sig A f: B (a, b) Binary (from A to B),

f={(a0,b0),(a1,b1)}
f ⊆ A×B

sig A f: B ->C (a, b, c) Ternary (from A to B to C),
f={(a0,b0,c0),(a0,b1,c1),(a1,b1,c2)}

f ⊆ A×B × C
sig A f: B ->C ->D (a, b, c, d) 4-relation (from A to B to C to D),

f= {(a0,b0,c0,d0),(a0,b1,c1,d2),
(a1,b2,c0,d3),(a2,b1,c1,d3)}

f ⊆ A×B × C ×D

Table 3.1: Relations And Their Types

3.4.2 Signature Extension, Inclusion, and Abstraction

The signature declaration

sig B (in | extends) A{...}

declares a subtype of A named B. Signature extension and signature inclusion

define new signatures B as subsets of a main signature (its parent) called sub

signatures. This serves as sub-typing and is utilised to support pyramidal specifi-

cation. The key word extends indicates disjoint subsets if more than one signature

extends a top level signature, while the key word in indicates not disjoint subsets

if there are more than one signature in a top level signature

The type signatures therefore form a type hierarchy whose structure is a forest: a

collection of trees rooted in the top-level types, while signatures that do not extend

another signature are said to be a type signature that is a top-level signature, and

their type is a top-level type. Top-level signatures represent mutually disjoint

sets, while sub-signatures of a signature are mutually disjoint. A subtype (subset)

signature inherits the fields of the signature it extends, along with any fields that

signature inherits.

50

Chapter 3: Foundations: Alloy

Using the extension mechanism makes the model clearer and more modular by

separating the main signature aspect of the model into separate paragraphs. The

extended signature must be a top-level signature. A signature may not extend

itself, directly or indirectly.

An abstract signature, marked abstract, is restricted to hold only those elements

that belong to the signatures that extend it. If there are no extensions, then the

marking abstract has no effect. An abstract signature represents a classification of

elements that is refined further by more concrete signatures. If it has no extensions,

the abstract keyword is likely an indication that the model is incomplete.

3.4.3 Multiplicity

Multiplicity constrains the sizes of sets. In a relation, multiplicity is how many

atoms on one side are related with an atom on the other side. Multiplicities

can be applied to the domain, range or both of a relation. Depending on where

multiplicity keywords are placed they induce different constraints as seen in Table

3.2. Relation may be restricted by multiplicity key words lone which means only

one or zero, set, which means any number, one, which means exactly one, and

some, which means at least one. The default multiplicity keyword for unary

relations is one and for multiple-arity relations is set.

51

Chapter 3: Foundations: Alloy

Multiplicity Constrains Meaning

r: A ->B some ->one C, It constrains for each a: A the
expression a.r to associate each tuple
in B with exactly one tuple in C and
each tuple in C with at least one tuple
in B.

r: A ->B lone ->some C, It constrains for each a: A the
expression a.r to associate each tuple
in B with at least one tuple in C and
each tuple in C with at most one tuple
in B.

r: X ->A lone ->B some ->set C, It constrains for each x: X the expression
x.r to associate each tuple in A with at
least one tuple in B and each tuple in
B with at most one tuple in A, and each
tuple in B with any number of tuples in C
and each tuple in C with at least one
tuple in B.

Table 3.2: Multiplicity Constrains Meaning

3.4.4 General Example to Apply Type Declarations, Re-

lation Declarations, Signature Extension, Inclusion,

Abstraction, and Multiplicity

The example bellow models the relations between men and women as persons

showing the difference between in and extends :

abstract sig Person
{
father: lone Man,
mother: lone Woman
}
sig Man extends Person
{
wife: lone Woman
}
sig Woman extends Person
{
husband: lone Man
}
sig Married in Person { }
sig Divorced in Person { }

In the example above, Person is a top-level signature that includes two fields,

father and mother, to relate signatures Man and Woman with signature Person.

52

Chapter 3: Foundations: Alloy

Each Man in Person could or could not be a father, and each Woman in Person

could or could not be a mother, thus, the relation is restricted by multiplicity lone

which means only one or zero.

Extends indicates that Man and Woman are subset of Person i.e, every Man is

Person and every Woman is Person but Man cannot be Woman and vice versa.

Therefore, Man and Woman are disjoint.

In the example above as seen in structure (1), in indicates that Married and

Divorced are subset of Person, i,e: every Married is Person and every Divorced is

Person, however Married can be Divorced and Divorced can be Married. There-

fore, Married and Divorced are not disjoint

Divorced Married

Person

Man Woman

in
in

extends
extends

Flowchart (1): General Example for Type Declarations, Relation Declarations,

Signature Extension, Inclusion, Abstraction, and Multiplicity

3.4.5 Fact, Predicate, and Assertion

Facts describe invariants and are always true.

Predicates in Alloy are declared utilizing the keyword pred. Predicates define

and control operations as formulas and describe state changes. Predicates make

53

Chapter 3: Foundations: Alloy

Alloy produce instances that satisfy with its restriction on each state. Predicates

are composed of at least one constraint and are used to represent operations.

The command run is used to ask Alloy to search for instances that satisfy a

predicate. It is applied to the signatures and relations and always gives a result of

"consistent" or "may be inconsistent" depending on whether a model was found.

The difference between a fact and a predicate is that a fact always holds whereas

a predicate only holds when called an appropriate arguments.

Assertions in Alloy are declared utilising the keyword assert. Assertions are

statements that must be true about the system. Assertions serve as checks to

guarantee that the system is behaving correctly. Assertions are utilized to check

specifications. An assertions is a formula whose validity is checked, taking into

account the facts in the model. From assertion, the Alloy Analyser is asked to

search for possible (finite) counterexamples based on the constraints assumed in

the specification. The check command is given to the Alloy Analyser to search for

counterexamples of an assertion. It enables the expression of properties that are

anticipated to hold as the result of determined facts [62].

3.4.6 Expressions

Alloy expressions represent the fundamental buildings blocks of Alloy formula;

they always evaluate to relations. There are two kinds of relational expressions,

basic and complex. Basic Alloy expressions are constant relations; this includes

all declared signatures and relations as well as the built-in constants: none for the

unary empty set. Complex Alloy expressions are generated from basic expressions

using Alloy’s relational operators such as r + s (union), r++s (override), r & s

(intersection), and r - s (difference) for same arity relations r and s. Also, r ->s is

used for Cartesian product and r.s for relational join of arbitrary relations r and

s as seen in Table 3.2.

54

Chapter 3: Foundations: Alloy

Alloy provides integer expressions. An integer expression is different from a

relational expression. An integer value is not considered as an atom; however, uti-

lizing an integer in a relational expression, Alloy provides for every integer value x,

Int contains exactly one atom that identifies that value [60]. It indicates rudimen-

tary integers. The type Int represents the set of all atoms carrying rudimentary

integers. The expression Int x denotes the atom carrying the integer denoted

by the integer expression x, whereas int y denotes the integer value of the atom

represented by the variable y. Integer expressions are obtained from an infinite set

Z of numbers (. . . , -1, 0, 1, . . .), and are combined using standard arithmetic

operators (+ , -).

3.4.7 Formulas

Fundamental Alloy formulas are formed from Alloy expressions utilizing the

subset operator in, the equality operator =, the integer comparison operators

less than < and greater than >, and integer equality =. Fundamental formulas

can be merged using logical connectivities including conjunction (and or &&),

disjunction (or or |), implication (implies or =>), and negation (not or ¬).

Complex Alloy formulas are created utilizing quantifiers. Quantified Alloy for-

mulas take the form Q x: exp ‖ F where Q is one of the Alloy quantifier: all,

some, no, one, lone , x is a variable (usually) occurring in F and bounded by the

Alloy expression exp.

However the expression b may not begin with a multiplicity keyword. This

called a first order quantification, so x points to a single element of b. However,

every Alloy expressions is considered relational, meaning that x is a singleton

subset of b. The meanings of quantifiers are as follow: [60]

all a : A | of holds when Formula holds for every a in A, some a : A | of holds

55

Chapter 3: Foundations: Alloy

when Formula holds for at least one a in A, no a : A | of holds when there is no a

in A such that Formula holds, lone a : A | of holds when Formula holds at most

one a in A, one a : A | of holds when Formula holds for exactly one a in A.

However, if there is a formula of the form r in e, this says r is a subset of e. So, e

can be prefixed with multiplicity keyword to restrict the value of r. The meaning

of restrictions are as follow: [60]

r in (set e) does not induce any restriction and holds when r is a subset of e, r

in (one e) holds when r is a singleton subset of e, r in (lone e) holds when r is a

subset of e that contains at most one element, r in (some e) holds when r is none

empty subset of e.

3.5 Counterexample, Scopes and Inconsistency

The counterexample explains (using visualization) why a model has not satisfied

a specification. By following the counterexample we can determine the source of

the error in the model and then correct it and repeat the process again as shown

in [32, 123].

A scope is specified as a positive integer number to bound the domain (the

number of atoms in each instance of each model element) in an instance of the

system that the SAT solver analyses [78].

Checking Properties for the Alloy Analyzer are expressed as either predicates

or assertions. For properties that are required should be expressed as predicates,

Alloy tries to find an instance that satisfies the property. For properties that

are required to be expressed as assertions, the Alloy Analyzer tries to find a

56

Chapter 3: Foundations: Alloy

counterexample that violates the property. The Alloy Analyzer finds the example

or counterexample within a scope that is limited by the number of instances of

each entity in the system [78].

A model checker either asserts that the properties holds or otherwise reports

that they are violated, providing a counterexample which is a run that violate the

property. Such a run can give valuable feedback and points to design errors.

3.6 Instances

Any instance of an Alloy model is regarded as an assignment of sets and relations

to the signatures and fields [60]. The instance can be acceptable if its assignment

corresponds with the declarations of the fields and signatures. Instances that

satisfy the predicate and the model will be visualized if the model is consistent.

No instances will be visualized if the model is inconsistent [81].

3.7 An Automated Teller Machine (ATM) Ex-

ample

The motivation for choosing the ATM system and specifically the withdrawal

transaction is that it is an example of privacy, integrity, and security in a system,

and any mistake in its functioning may cause a disruption of economic balance

[94].

3.7.1 ATM System Description

An ATM system [10] is an electronic machine which allows customers to access

their bank accounts in order to perform certain transactions, such as withdrawing

57

Chapter 3: Foundations: Alloy

money, making a balance enquiry, and transferring money securely. These ser-

vices depend on the accuracy of the ATM process. Thus, visualization of these

transactions is necessary.

In this section, we will describe, analyse, determine the properties and require-

ments of ATM system, and model ATM using Alloy. Consider the interaction

between a bank customer and an ATM cash machine. The ATM main function

is providing limited amounts of money through withdrawal transactions to cor-

rectly authenticated users. Users use a card and PIN as authenticated tools [21].

However, the ATM may provide extra functionality such as balance enquiry and

money transfer that are not included in our model. We only focus on withdrawal

transactions.

An ATM system has modelled, analysed and visualized both balance enquiry

and withdrawal transactions by [21]. The difference between our model and the

system modelled by [21] is that their model depends on examining the behavioural

properties of the ATM, to visualize the interaction between a customer and an

ATM user interface. This is to solve a common user error with an interactive

system, when users forgot their cash card after withdrawing cash.

Our model examines the behavioural properties of an ATM to visualize the

interaction between a customer and the ATM processes during two sequential

operations:

• The first operation is similar to [21]; the user inserts a card and types a PIN,

and then the ATM reads the card to continue with the withdrawal.

• The second operation, occurs when the user requests an amount of money to

withdraw. The ATM checks whether the requested amount is available, and

if so, reduces the account balance and dispenses the money. If the amount

58

Chapter 3: Foundations: Alloy

requested is not available, the card is returned and the balance remains the

same.

3.7.2 ATM System Analysis

The withdrawal transaction requires a sequence of six statuses and operations.

Its process passes through five procedures. The ATM status begins with, Wait-

ingCard for a (bank card) to be inserted, followed by the required operation which

is EnterCard.

The second status is WaitingPin, followed by the required operation for this

status, TypePin. During these statuses the balance remains the same.

The third status is WaitingMoney which requires the desired amount of money

to be typed, followed by the required operation for this status, RequestCash.

The next status is either the fourth or the fifth status. The fourth, WaitingRe-

ceiveCashAndCard, is achieved if the result of the previous operation, RequestCash,

is less than or equal to the balance of the account. The equivalent operation for

this status, ReceiveCashAndCard, follows, reducing the balance by the requested

amount.

If the main property of RequestCash is not achieved, meaning the RequestCash

operation is greater than the balance, the fifth status, WaitingReceiveCard, is

activated and followed by its equivalent operation, ReceivedCard. The balance of

the account remains the same.

The final status is Update, which returns the system to its first status, Waiting-

Card. ATM model has system properties and system requirements which will be

59

Chapter 3: Foundations: Alloy

detailed next.

3.7.3 ATM Model Properties and Requirements

In the ATM system above there are system requirements and system properties.

The ATM system achieves its function correctly when the system properties satisfy

the system requirements.

The model of the ATM system can be enhanced by adding properties (axioms),

which are written as logical formulas. In Alloy, properties or constraints are de-

fined as facts and assertion. The first property is that all ATM cards with

corresponding PINs should be identified in any ATM machine; the second prop-

erty is that the balance and PIN of cards that interact with the ATM should not

be less than zero (positive); and the third property is that the required amount

of money should be less than or equal to the available balance and greater than

zero for the used card.

The system requirements are inserting the card, typing the corresponding PIN,

and finally requesting the available amount of money.

3.7.4 An Alloy Specification of An ATM System

In Appendices (A.1, A.2, A.3, A.4) and Line (2) in Appendix (A.6), we give a

sample model in Alloy of an ATM system.

• Signatures, Abstract, and Extension

In our model as seen in Appendix (A.1), the type hierarchy consists of the

four top-level types Operations for customer operations (Line 2); ATM Status for

statues changes in ATM system (Line 4); Card for identifier in ATM system (Line

60

Chapter 3: Foundations: Alloy

6); and ATM for ATM system itself contains some fields for showing relations

with other signatures (Line 7). All top-level signatures are mutually disjoint. For

example: disj(Card, ATM).

Types (signatures) are declared using the sig keyword and represent sets of ele-

ments. The top-level types Operations (Line 2) and ATM Status (Line 4) are the

basic types and labelled with the keyword abstract. For top-level type Operations,

the keyword abstract constrains that every element in the Operations type is an

element in (belongs to) one of its extensions EnterCard, TypePin, RequistCash,

ReceiveCashAndCard, and ReceiveCard (Line 3) for five customer operations: in-

serting card, typing PIN, requesting the amount of money to withdraw, receiving

the requested cash and the inserted card if the ATM system property is achieved,

or receiving the card if it is not. Thus, the abstract may be expressed equivalently

as formula below:

∀ o : Atom | (o ∈ Operations) = > (o ∈ EnterCard) ∨ (o ∈ TypeP in) ∨

(o ∈ RequistCash) ∨ (o ∈ ReceiveCashAndCard) ∨ (o ∈ ReceiveCard)

.

For top-level type ATM Status, the keyword abstract constrains that every ele-

ment in the ATM Status type is an element in one of its extensions WaitingCard,

WaitingPin, WaitingMoney, WaitingReceiveCashAndCard, WaitingReceiveCard,

and Update (Line 5) for six ATM statuses: waiting for entering card, waiting for

typing PIN, waiting for selecting the amount of money, waiting for receiving card

and money, waiting for just receiving card, and update if the ATM system prop-

erty is achieved, then the balance will be updated. Thus, the abstract may be

expressed equivalently as formula below:

61

Chapter 3: Foundations: Alloy

∀ o : Atom | (o ∈ ATM Status) = > (o ∈ WaitingCard) ∨ (o ∈ WaitingP in) ∨

in(o,WaitingMoney) (o ∈ WaitingReceiveCashAndCard)

∨ (o ∈ WaitingReceiveCard) ∨ (o ∈ Update)

Extension types EnterCard, TypePin, RequistCash, ReceiveCashAndCard, Re-

ceiveCard, WaitingCard, WaitingPin, WaitingMoney, WaitingReceiveCashAnd-

Card, WaitingReceiveCard, and Update are represented as singletons using the key-

word one which means there are no more than two Operations or two ATM Status

occur together, otherwise the model will be inconsistent. Singleton sets can be

and are often used in Alloy specifications as aliases of their unique element. The

extensions may be expressed equivalently as seen below:

(EnterCard ⊆ Operations), (TypeP in ⊆ Operations),

(RequistCash ⊆ Operations), (ReceiveCashAndCard ⊆ Operations),

(ReceiveCard ⊆ Operations), (WaitingCard ⊆ ATM Status),

(WaitingP in ⊆ ATM Status), (WaitingMoney ⊆ ATM Status),

(WaitingReceiveCashAndCard ⊆ ATM Status),

(WaitingReceiveCard ⊆ ATM Status), (Update ⊆ ATM Status)

The top-level type ATM shows the relation declarations between all defined

types and subtypes (Lines from 1 to 7). These relations will be described in detail

in the next section.

62

Chapter 3: Foundations: Alloy

• Relation Declarations, and Multiplicities

In our model as seen in Appendix (A.2), relations are declared as the

following signature fields.

– The field cards represents all the Cards associated with the ATM, and

declares a binary relation of type ATM ->Card which maps each ele-

ment of ATM to a set of elements of Card.

The binary relation cards ⊆ ATM × Card. Lines (7 in Appendix A.1,

and 1 in Appendix A.2) declare a relation cards with domain ATM

and range Card. The declaration of cards contains the multiplicity

annotation set which makes cards a function: a binary relation that

associates every ATM with a set of Card. For every element atm in

ATM, the keyword set before Card constrains the term atm.cards to

be a set. The declaration of

cards in ATM −>set Cards

can thus be expressed as:

∀ atm : ATM | atm.cards ⊆ (Cards)

We can express the multiplicity constraints using formula as:

all atm : ATM | set atm.cards

63

Chapter 3: Foundations: Alloy

The multiplicity keyword set makes the declaration hold when the re-

lation cards is a function from ATM to Card.

– The field inCard represents the inserted cards in the ATM, and declares

a binary relation of type ATM ->Card which maps each element of

ATM to lone element of ATM.cards.

The binary relation inCard ⊆ ATM× Cards. Lines (7 in Appendix A.1,

and 2 in Appendix A.2) declare a relation inCard with domain ATM

and range Card. The declaration of inCard contains the multiplicity

annotation lone which makes inCard a partial function: a binary rela-

tion that associates every ATM with at most one ATM.cards. For every

element atm in ATM, the keyword lone before atm.cards constrains the

term atm.inCard to be lone. The declaration

inCard in ATM −>lone cards

can thus be expressed by:

∀ atm : ATM | atm.inCard ⊆ (atm.cards)

We can express the multiplicity constraints using formula:

all atm : ATM | lone atm.inCard

The multiplicity keyword lone makes the declaration hold when the

relation inCard is a partial function from ATM to atm.cards. When a

field of the same signature appears in another field’s declaration, it is

interpreted in the context of that signature. Field cards of the same

signature ATM appears in another field’s declaration inCard. Field

inCard is added to capture that lone atm.cards might be inCard. This

declaration makes every element atm in ATM, atm.inCard subset of at

most one atm.cards.

– The field pin represents the pin numbers for the cards, and declares

64

Chapter 3: Foundations: Alloy

a ternary relation of type ATM ->Card ->Int which maps each ele-

ment of ATM to an element in atm.cards ; each element in atm.cards

to one integer Int ; each Int to an element in atm.cards ; each element

in atm.cards to an element in ATM.

The ternary relation pin ⊆ ATM × Cards × Int. Lines (7 in Ap-

pendix A.1, and 3 in Appendix A.2) declare a relation pin with domain

atm.cards.(atm.pin) and range Int. The declaration of pin contains the

multiplicity annotation one which makes pin a total function: a ternary

relation that associates every every atm : ATM, and every c : Card in-

cluded in atm.cards, the pair (atm, c) must be mapped to one integer.

For every element atm in ATM and for every element c in Card, the

keyword one before Int constrains the term atm.cards.(atm.pin) to be

one. The declaration of

pin in ATM −> cards−> int

can thus be expressed by:

∀ atm : ATM | atm.pin ⊆ atm.cards &&

∀ atm : ATM, atm2 : atm.cards, pn : int|atm2.(atm.pin) ⊆ (one atm.pn)

We can express the multiplicity constraints using formula:

all atm : ATM | atm.pin && all atm : ATM, atm2 : atm.cards|one atm2.(atm.pin)

The multiplicity keyword one makes the declaration hold when the

relation pin is a total function from atm.cards.(atm.pin) to Int. Field

pin is added to capture that one atm cards has one pin which is exactly

one Int. This declaration makes every element atm in ATM, atm.pin

a subset of atm.cards because field cards of the same signature ATM

appears in another field’s declaration pin.

– The field balance represents the balance value for the cards, and de-

65

Chapter 3: Foundations: Alloy

clares a ternary relation of type ATM ->Card ->Int which maps each

element of ATM to an element in atm.cards ; each element in atm.cards

to one integer Int ; each Int to an element in atm.cards ; each element

in atm.cards to an element in ATM.

The ternary relation balance ⊆ ATM × Cards × Int. Lines (7 in Ap-

pendix A.1, and 4 in Appendix A.2) declare a relation balance with

domain atm.cards.(atm.balance) and range Int. The declaration of bal-

ance contains the multiplicity annotation one which makes balance a

total function: a ternary relation that associates every every atm :

ATM, and every c : Card included in atm.cards, the pair (atm, c) must

be mapped to one integer. For every element atm in ATM and for ev-

ery element c in Card, the keyword one before Int constrains the term

atm.cards.(atm.balance) to be one. The declaration of

balance in ATM −> cards−> int

can thus be expressed by:

∀ atm : ATM | atm.balance ⊆ atm.cards &&

∀ atm : ATM, atm2 : atm.cards, m : int|atm2.(atm.balance) ⊆ (one atm.m)

We can express the multiplicity constraints using formula:

all atm : ATM | atm.balance && all atm : ATM, atm2 : atm.cards|

one atm2.(atm.balance)

The multiplicity keyword one makes the declaration hold when the

relation balance is a total function from atm.cards.(atm.balance) to Int.

Field balance is added to capture that one atm cards has one balance

which is exactly one Int. This declaration makes every element atm

in ATM, atm.balance a subset of atm.cards because field cards of the

same signature ATM appears in another field’s declaration balance.

66

Chapter 3: Foundations: Alloy

– The field money represents the money value that is required to be

withdrawn, and declares a ternary relation of type ATM ->Card ->Int

which maps each element of ATM to an element in atm.cards ; each

element in atm.cards to lone integer Int ; each Int to an element in

atm.cards ; each element in atm.cards to an element in ATM.

The ternary relation money ⊆ ATM × Cards × Int. Lines (7 in Ap-

pendix A.1, and 5 in Appendix A.2) declare a relation money with

domain atm.cards.(atm.money) and range Int. The declaration of bal-

ance contains the multiplicity annotation lone which makes balance a

partial function: a ternary relation that associates every every atm :

ATM, and every c : Card included in atm.cards, the pair (atm, c) must

be mapped to lone (at most one) integer. For every element atm in

ATM and for every element c in Card, the keyword lone before Int

constraints the term atm.cards.(atm.money) to be lone. The declara-

tion of

money in ATM −> cards−> int

can thus be expressed by:

∀ atm : ATM | atm.money ⊆ atm.cards &&

∀ atm : ATM, atm2 : atm.cards, m : int|atm2.(atm.money) ⊆ (lone atm.m)

We can express the multiplicity constrains using formula:

all atm : ATM | atm.money && all atm : ATM, atm2 : atm.cards|

lone atm2.(atm.money)

The multiplicity keyword lone makes the declaration hold when the

relation money is a partial function from atm.cards.(atm.money) to Int.

Field money is added to capture that lone atm cards has lone balance

which is at most one Int. This declaration makes every element atm in

ATM, atm.money a subset of atm.cards because field cards of the same

67

Chapter 3: Foundations: Alloy

signature ATM appears in another field’s declaration money.

– The field atmStatuse represents all the statuses in the ATM, and de-

clares a binary relation of type ATM ->ATM Status which maps each

element of ATM to one element of ATM Status.

The binary relation atmStatuse ⊆ ATM × ATM Status. Lines (7 in

Appendix A.1, and 6 in Appendix A.2) declare a relation atmStatuse

with domain ATM and range ATM Status. The declaration of atmSta-

tuse contains the multiplicity annotation one which makes atmStatuse

a total function: a binary relation that associates every ATM with ex-

actly one of ATM Status. For every element atm in ATM, the keyword

one before ATM Status constrains the term atm.atmStatuse to be one.

The declaration of

atmStatuse in ATM −> ATM Status

can thus be expressed by:

∀ atm : ATM | atm.atmStatuse ⊆ (one ATM Status)

We can express the multiplicity constrains using formula:

all atm : ATM | one atm.atmStatuse

The multiplicity keyword one makes the declaration hold when the

relation atmStatuse a total function from ATM to ATM Status.

– The field op represents all the operations that take place in the ATM by

the customer, and declares a binary relation of type ATM ->Operations

which maps each element of ATM to lone element of ATM Status.

The binary relation op ⊆ ATM × Operations. Lines (7 in Appendix

A.1, and 7 in Appendix A.2) declare a relation op with domain ATM

and range Operations. The declaration of op contains the multiplicity

annotation lone which makes op a partial function: a binary relation

68

Chapter 3: Foundations: Alloy

that associates every ATM with at most one of ATM Status. For every

element atm in ATM, the keyword lone before Operations constrains

the term atm.op to be lone. The declaration of

op in ATM −> Operations

can thus be expressed by:

∀ atm : ATM | atm.op ⊆ (lone Operations)

We can express the multiplicity constraints using formula:

all atm : ATM | lone atm.op

The multiplicity keyword lone makes the declaration hold when the

relation op is a partial function from ATM to Operations.

Figure 3.3 shows the corresponding structure of the Alloy ATM system specifi-

cation. It shows that all ATM statuses extends ATM Status, and all operations

extends Operations. Also, it illustrates the relations between entities and the

multiplicities that restrict each relation. As seen, the relation between ATM and

Operations is zero to one. The relation between Cards and ATM is zero to many.

The relation between cards in ATM and pin, balance is one to one. The relation

between cards in ATM and money is zero to one. The relation between cards in

ATM and atm status is one to one. The relation between inserted Card and cards

in ATM is zero to one.

In addition to the above implicit constraints, the specification introduces two

explicit general constraints (properties) as facts written as logical formulas.

69

Chapter 3: Foundations: Alloy

Figure 3.3: Structure Class Diagram of The Alloy ATM System Specification

• Fact

As seen in Appendix (A.3), the facts (Lines 1 and 2) represent constraints that

are written as logical formulas and are assumed to hold. The first fact constrains

that all ATM cards with its corresponding PIN should be identified in any ATM

machine (atm1 and atm2) (Line 1). The second fact constrains that the balance

and PIN of cards that interact with the ATM should not be less than zero (positive)

(Line 2). Thus, the first and the second facts should hold, i.e always true.

• Predicates

In Alloy, operations are specified using predicates. A predicate is a logical

formula with declaration parameters. A predicate describes a set of statuses and

70

Chapter 3: Foundations: Alloy

transitions, by using constraints among signatures and their fields. Behavioural

properties of the protocol can be expressed in terms of logical predicates which

can be checked by the Alloy Analyser. In this formal specification, consistency of

different statuses of protocol can be checked and generate instances for a given

specification that satisfy this predicate with its restrictions on each status.

In our model as seen in Appendix (A.4), predicate ATMTransaction controls six

statuses atm1, atm2, atm3, atm4, atm5, and atm6, crd for Card, pn,mon for Int

(Line 1). First of all, we need to illustrate the main point which is, each atmStatuse

expresses the previous status that takes place before the next operation takes

place. Every atmStatus is constrained to be one. Furthermore, Every Operations

constrained to be lone.

The first status (atm1), represents the status to be WaitingCard for the first

operation (Line 2). This status also defines a Card element (crd) to be subset of

the set of cards that belonged to ATM (Line 3). Moreover, in the first status,

there is no card in use (entered), no operation, and no withdrawing money take

place yet (Line 4).

The second status (atm2), is responsible for inserting a card. The first operation

that takes place is EnterCard (Line 5). In this status the inserted card is equal to

the already defined Card element (crd) which is a subset of the set of cards that

71

Chapter 3: Foundations: Alloy

belonged to ATM (Line 6). The ATM is now in the WaitingPin status for the

next operation and no withdrawing money takes place yet (Line 8). The balance

has not been changed yet (Line 7).

The third status (atm3), is responsible for typing the pin for the inserted card

inCard. The operation that takes place is TypePin (Line 9). In this status the

inserted card in the current status should be equal to the inserted card in the

previous status (Line 10) and typing the PIN for the inserted card is integer

(pn)(Line 11). The ATM is now in the WaitingMoney status for the next operation

and no withdrawing money takes place yet (Line 13). The balance has not been

changed yet (Line 12).

The fourth status (atm4), is responsible for requiring money for the inserted

card. The operation that takes place is RequistCash (Line 14). In this status the

inserted card in the current status should be equal to the inserted card in the

previous status and there is withdrawing money (mon) as integer takes place in

this status (Line 16). The balance has not been changed yet (Line 15). However,

this status shows the procedure of requesting money, which passes to one of two

processes.

In the first process, if the money is greater than the balance of the inserted card

inCard or the money is less than zero (Line 18), then the balance has not been

72

Chapter 3: Foundations: Alloy

changed and remains the same (Line 19), allowing progression to the operation

ReceiveCard in the next status (atm5), and the ATM is now in the WaitingRe-

ceiveCard status (Line 20).

However, in the second process, if the money is less than or equal to the balance

of the inserted card inCard and the money is greater than zero (Line 22), then the

balance has been changed and decreased by the requested amount of money (mon)

to withdraw (Line 23), allowing to the operation ReceiveCashAndCard in the next

status (atm5) (Line 24) and the ATM is now in the WaitingReceiveCashAndCard

status (Line 25).

The fifth status (atm5), is responsible for updating for the new ATM procedure.

The operation that takes place is either ReceiveCard (Line 20) if the first process

occurred, or ReceiveCashAndCard (Line 24) if the other (second) process occurred.

It took place after the fourth status, with either WaitingReceiveCashAndCard or

WaitingReceiveCard. The ATM is now in the Update status applied the current

operation (Line 26).

The sixth (last) status (atm6), is responsible for waiting for the new ATM

procedure. There is no card in use (entered) and no operation takes place. The

status returns to the first status, WaitingCard preparing for the first operation

(Line 27). The last status is same as the first one.

73

Chapter 3: Foundations: Alloy

• Assertion

In our model as seen in Appendix (A.5), assertions are the intended properties

and are used to check specifications. As seen in the assertion , if ATMTransaction

holds for ATM atm1,atm2,atm3,atm4,atm5,atm6, Card crd, Int pn,mon (Line 1),

and the required amount of money is less than or equal to the main balance in

the first status (atm1) for the inserted card (crd) and the money is greater than

zero (Line 2), that implies that the main balance in the first status is updated and

changed in the fifth status and decreased by the required money (Line 3).

3.8 Results

In this section, we present the results we achieved from modelling, analysing,

and checking the three properties of the ATM system using Alloy Analyser, and

bounded SAT solver. The first property is all ATM cards with corresponding

PINs should be identified in any ATM machine. The second property is the

balance and PIN of cards that interact with the ATM should not be less than zero

(positive). The third property is the required amount of money should be less

than or equal to the available balance, and greater than zero for the used card.

In Appendix (A), part (A.6), we used two commands: check (Line 1) and

run (Line 2). check checks the satisfiability of the model, while run checks the

74

Chapter 3: Foundations: Alloy

consistency of the model.

Before checking the satisfiability of the model, we need first to check its con-

sistency. If the model is inconsistent, the analyser cannot work efficiently for

detecting a counterexample.

The version of Alloy Analyser (4.1.10) that we have used works with many state-

of-the-art solvers such as BirkMin [65], MiniSat [55], ZChaff [115], and SAT4J

which is the only SAT solver we tried. The run command runs the SAT4J solver.

The command asks the analyser to search for instances to visualize them. These

instances assign sets and relations with their sizes is limited to be 1 atom for each

signature except ATM 6 atoms. The visualised instances for the ATM model are

acceptable. They correspond to the declarations of the fields and signatures and

satisfies the predicate and the Alloy model together which means the model is

consistent.

The check command searches for a counterexample showing an execution path

that caused an error if one exists. The command looks for an instance that violates

the assertion. This analysis is implemented with respect to the bounded scope of

1 atom for each signature except ATM 6 atoms. Only a finite number of elements

for each type is taken into account. Therefore, the absence of an instance does

not include checking satisfiability.

The Alloy Analyser spent 0.233s to find a counterexample in the limited scope.

That means the assertion prop1 in ATM model does not hold because the third

property (the required amount of money should be less than or equal to the avail-

able balance, and greater than zero for the used card) has not been restricted. The

detected counterexample is provided to the user by interpreting the SAT valuation

as a solution to the original problem, as seen in Figure 3.4.

75

Chapter 3: Foundations: Alloy

F
ig

u
re

3.
4:

T
w

o
In

st
an

ce
s

of
T

h
e

G
en

er
at

in
g

T
w

o
C

ou
n
te

re
x
am

p
le

s:
(1

)
S
h
ow

s
A

T
M

P
ro

v
id

es
T

h
e

A
m

ou
n
t

of
M

on
ey

W
h
en

T
h
e

A
m

ou
n
t

of
M

on
ey

Is
G

re
at

er
T

h
an

T
h
e

B
al

an
ce

,
an

d
(2

)
S
h
ow

s
T

h
e

A
T

M
D

o
es

N
ot

P
ro

v
id

e
T

h
e

A
m

ou
n
t

of
M

on
ey

W
h
en

T
h
e

A
m

ou
n
t

of
M

on
ey

Is
L

es
s

T
h
an

T
h
e

B
al

an
ce

.

76

Chapter 3: Foundations: Alloy

In Figure 3.4, (1) and (2), the fourth status show two counterexamples explained

as a visualization. They conflict with the assumption of the third property (the

required amount of money should be less than or equal to the available balance,

and greater than zero for the used card).

The first counterexample in (1) shows that: in the fourth status when the card

is in the ATM machine and the ATM operation is RequestCash, we see that the

requested amount of money is "6" while the available balance is "4". We noticed

that the requested amount of money is greater than the available balance. So,

we assumed that the ATM status is WaitingReceiveCard. However, we did not

see what we assumed. We saw that an error took place and the ATM status is

WaitingReceiveCashAndCard which means the ATM provides the required amount

of money even it is greater than the available balance. Consequently, the visualised

instance reflects the assumption and as a result the security is broken.

The second counterexample (2) shows that: in the fourth status when the card

is in the ATM machine and the ATM operation is RequistCash, we see that the

requested amount of money is "1" while the available balance is "2". We noticed

that the requested amount of money is less than the available balance. So, we

assumed that the ATM status is WaitingReceiveCashAndCard. However, we did

not see what we assumed. We saw that an error took place and the ATM status

is WaitingReceiveCard which means ATM does not provide the required amount

of money even it is less than the available balance. Consequently, the visualised

instance reflects the assumption and as a result the availability is broken.

So, based on Figure 3.4 the counterexamples mean the third property did not

hold. Therefore, we need to restrict the assertion to achieve the third property.

The restriction allows the ATM to provide the amount of money if the amount of

money is less than or equal to the balance and the amount of money is greater

than "0" as seen in Appendix (A) part (A.5) line (2). Otherwise, no amount of

77

Chapter 3: Foundations: Alloy

money is provided and the card is rejected.

After adding the third property this analysis is implemented with respect to a

bounded scope of 1 atom for each signature except ATM 6 atoms. Alloy Anal-

yser spent 0.187s checking the three properties to generate counterexamples with

respect the finite scope.

The results is that no counterexample is found and it is acceptable. That means,

the model has satisfied the assertion. The model allows us to visualise the model

states with the status changes as seen in Figures 3.5, 3.6, 3.7 indicated by $ before

the variables name in the predicate. The figures conclude that the properties that

have been analysed hold in the model within the provided scopes and also when

the scope is increased.

78

Chapter 3: Foundations: Alloy

F
ig

u
re

3.
5:

A
n

In
st

an
ce

of
T

h
e

T
h
e

A
T

M
M

o
d
el

(A
m

ou
n
t

=
B

al
an

ce
)

79

Chapter 3: Foundations: Alloy

F
ig

u
re

3.
6:

A
n

In
st

an
ce

of
T

h
e

A
T

M
M

o
d
el

(A
m

ou
n
t
<

B
al

an
ce

)

80

Chapter 3: Foundations: Alloy

F
ig

u
re

3.
7:

A
n

In
st

an
ce

of
T

h
e

A
T

M
M

o
d
el

(A
m

ou
n
t
>

B
al

an
ce

)

81

Chapter 3: Foundations: Alloy

Figures 3.5, 3.6, 3.7 achieved and illustrate the ATM properties. They show

numbers (1 ,2, 3, 4, 5, 6) which mean sequential statuses. Each number indicates

the ATM status which includes its status and operation. The status number is

shown to the right of each diagram. Figures 3.5, 3.6, 3.7 show the ATM properties

when the required amount of money is equal to balance, less than the balance,

and greater than the balance respectively. They share the first status (1), second

status (2), third status (3), and sixth status (6). However they differ in the fourth

status (4), and fifth status (5).

In the first status (1) the ATM status is WaitingCard and there is no operation

yet. We see that there is no card in ATM yet, the balance is "2" in Figure 3.5 but

"4" in Figures 3.6, 3.7. We restrict the PIN number to be always true to hold the

second property.

The next status is (2). In this status we see that the operation is EnterCard

and the card is in the ATM (means the transaction is going on). The ATM status

is WaitingPin. The balance and PIN number remain the same.

The next status is (3). In this status we see that the operation is TypePin and

the card is in the ATM. The ATM status is WaitingMoney. The balance and PIN

number remain the same.

The next status is (4). In this status we see that the operation is RequestCash

and the card is in the ATM. In Figure 3.5, the ATM status is WaitingReceive-

CashAndCard. We see the required amount of money equals the balance "2"2. In

Figure 3.6, the ATM status is WaitingReceiveCashAndCard. We see the required

amount of money "3" is less than the balance "4". In Figure 3.7, the ATM status

is WaitingReceiveCard. We see the required amount of money "7" is greater than

the balance 4. The balance and PIN number remain the same.

82

Chapter 3: Foundations: Alloy

The next status is (5). In this status we see that the operation is Receive-

CashAndCard in Figures 3.5, 3.6, while the operation is ReceiveCard in Figure 3.7

and the card is in the ATM. The ATM status is Update. We see the balance is

updated, changed and decreased by the required amount of money to become "0"

in Figure 3.5 and "1" in Figure 3.6, but it remains the same in Figure 3.7. The

PIN number remains the same.

The last status is (6). In this status we see that there is no operation and the

card is out the ATM. The ATM status is WaitingCard : back to first status waiting

for a new customer.

We will discuss these results at the end of the next chapter, after looking at the

foundation of Z3.

83

Chapter 4

Foundations: Z3 SMT Solver

This chapter provides detailed information and the foundation of the framework

of the Z3 SMT solver, again using an ATM system as an example. Because the

Alloy Analyser cannot prove the validity of an assertion [64], we need to use

the Z3 SMT solver’s unbounded verification to prove the properties correct with

confidence.

Prove the properties correct using Z3 required following as same stages that

have been used in Alloy, except for using scopes as Z3 is unbounded. These stages

are: determining the properties to be achieved in the system; determining the

main entities that interact in the system; determining and constraining how the

entities are related to each other; predicate how a system will behave and describe

how the state changes; restrict facts that hold for the properties of the system;

and build a formula as an assertion to check the specification of the model.

Z3 has no syntax for defining signatures, build relations, or multiplicity keywords

the same as Alloy. Z3 uses the SMT2 language which is a standard constraints

language.

84

Chapter 4: Foundations: Z3 SMT Solver

4.1 SMT Solver

SMT stands for "SAT Modulo Theories". SAT is "Boolean satisfiability". SAT

is based on Boolean formulas: Boolean variables combined with AND (∧), OR

(∨) and NOT (¬). SMT is a popular extension to SAT. With the extension,

the SMT solver adds theories to the basic logic SAT. This makes encoding many

problems much easier with SMT than with just SAT, and it can use high-level

knowledge about the constraints to implement particular theories more efficiently.

The language of SMT solvers is first-order which is undecidable and implies that

the unbounded Z3 SMT solver is undecidable [1].

4.1.1 Z3

Z3 is a novel and efficient SMT Solver available free from Microsoft Research.

Z3 is a low level tool. It can be utilized for verifying logical formulas’ satisfiability

with quantifiers. The main goal for Z3 is to check the satisfiability of a provided

formula i.e, is there a model for the negation of the provided formula or not. It

proves the correctness of the negation of the formula of the property [40].

SMT benchmark consists of sorts and functions declarations, and a set of SMT

formulas which are the assertions given by the user [63]. The commands that are

used in Z3 are declare-const which declares a constant of a given types; declare-

fun which declares a function; assert which adds a formula into the Z3 internal

stack; and check-sat which asks the Z3 SMT solver to check if the negation of the

conjunction of the provided assertions is satisfiable or not.

The Z3 SMT solver returns one of three types of results: UNSAT, SAT, and

UNKNOWN [63]. If the command outputs UNSAT, the negation of the property

has been proven correct and the set of formulas in the Z3 stack is satisfiable which

means there is an interpretation (for the user declared constants and functions)

85

Chapter 4: Foundations: Z3 SMT Solver

that makes all asserted formulas true [63]. If the command outputs SAT, a valid

counterexample has been found and get-model can be used to retrieve an inter-

pretation that makes all formulas on the Z3 internal stack true. If the command

outputs unknown, the property may or may not be valid so here Z3 does not

guarantee a complete analysis [63].

The formulas in the Z3 SMT solver are formulated in typed first-order logic with

equality and type system the same as in Alloy. It has no explicit sub-typing like

Alloy. The satisfiability of the formulas in the Z3 SMT solver is considered with

respect to a set of logical background theories, which commonly constrain the in-

terpretation of symbols utilized in the formula [114]. Moreover, to create sorts like

Bool, Int, and Real, the language enables the declaration of novel uninterpreted

sorts and functions [138].

The Alloy language is undecidable because it uses first-order logic and first-

order logic is undecidable. Thus it is necessary to do some adaptations. In order

to make it decidable, Alloy utilizes the first-order logic with a finite scope n. This

finite scope allows a satisfying instance in limited scope with no more than n

atoms of each type. Limiting scope size when creating a model is essential to

avoid exponential explosion. However, because the analysis is restricted in scope,

there is no guarantee that a counterexample would not be found with a larger

scope. While the decidability for a finite scope is achieved, the complete analysis

is lost [135]. In this case, using Z3 SMT allows quantifiers over free sorts, and

thus is undecidable. However, Z3 does not guarantee a complete analysis: it may

output a counterexample preceded by the keyword unknown, which implies the

property may or may not be valid, or time out.

86

Chapter 4: Foundations: Z3 SMT Solver

4.1.2 The SMT Language

We translate the specification of the ATM from Alloy into Z3 FOL such that

if there is a counterexample in Alloy in finite scope, there is supposed to be a

counterexample in Z3 in infinite scopes and vice versa. The formulas that we

are going to generate utilize the quantified theories of free sorts, linear integer

arithmetic, and uninterpreted functions and constant.

4.1.2.1 Declarations

The logic implicit in SMT enables two kinds of declaration: to declare new sorts

(types) utilizing the declare-sort command, and to declare functions using declare-

fun. Functions are considered as the basic building blocks of SMT formulas.

The expression (declare-sort X 0) declares a novel simple uninterpreted top-level

sort named X. The expression

(declare− fun f (X1 X2) X3)

declares the novel uninterpreted total function

F : X1 × X2 −> X3

The command

(declare− fun f (X1,, Xn−1) Xn)

declares

f : X1 × . . . ×Xn−1 −> Xn

All functions are total and so they are defined for all elements of their domain.

Constants are functions but without arguments, i.e. a constant v of type X is

87

Chapter 4: Foundations: Z3 SMT Solver

declared as

(declare− fun v () X)

4.1.2.2 Assertions and Quantifiers

The command (assert f) is used to assert a formula f in the logical context.

Basic formulas are function applications and easy to be combined utilizing the

boolean operators such as and, or, not, and =>(implies).

Universal quantifiers are indicated by

(forall (a1 A1) . . . (an An) f)

while existential quantifiers are indicated by

(exists (a1 A1) . . . (an An) f)

4.2 An Automated Teller Machine (ATM) Ex-

ample in Z3

In this section, we translate the specification of the ATM from Alloy into a

satisfiability-equivalent SMT problem using Z3 SMT logic (FOL). This would be

solved by an SMT solver such that if there is a counterexample in Alloy in finite

scopes, it supposed to be a counterexample in Z3 in infinite scopes and vice versa.

Our translation is manual. We choose this method as it is easy and we can trust

it as correct [63, 62] proved this methodology in general and we simplified it to be

easier to learn and use.

88

Chapter 4: Foundations: Z3 SMT Solver

4.2.1 Type and Subtype Declarations

In Appendix (B) we give full details of the Z3 models with annotations to show

the equivalent Alloy.

As seen in Appendix (B), the hierarchical type system is translated implic-

itly. However, because the SMT language does not support subtypes, we use

uninterpreted membership functions to enforce type hierarchy declarations. Con-

sequently, top-level types are translated to the uninterpreted sorts, while the top-

level (super-type) of a type is translated to uninterpreted membership function

isType to indicate which elements of the super-type belongs to the type. It is not

necessarily to declare the membership functions of top-level types, but we declared

them to determine the semantic of the subtype.

As seen in Appendix (B.1), top-level types: Operations ; ATM Status ; Card ; and

ATM are declared as uninterpreted sorts (Lines from 1 to 4). The membership

functions in Appendix (B.2): isEnterCard ; isTypePin; isRequistCash; isReceive-

CashAndCard ; isReceiveCard ; isWaitingCard ; isWaitingPin; isWaitingMoney ;

isWaitingReceiveCashAndCard ; isWaitingReceiveCard ; and isUpdate (Lines from

8 to 18) are declared to specify the semantics of subtypes: EnterCard ; Type-

Pin; RequistCash; ReceiveCashAndCard ; ReceiveCard ; WaitingCard ; WaitingPin;

WaitingMoney ; WaitingReceiveCashAndCard ; WaitingReceiveCard ; and Update.

i.e all membership functions are disjoint subsets of the declared sort Operations

(Lines from 8 to 12), and all membership functions are disjoint subsets of the

declared sort ATM Status (Lines from 13 to 18).

4.2.2 Properties Of The Sub-signatures

As seen in Appendix (B.5), we adjust the return types of the “oneOf ” function-

s/constants by specifying each return value to be of type Operation (Lines 1-5) and

ATM Status (Lines 6-11). For example: Line (1) calls function oneOf EnterCard

89

Chapter 4: Foundations: Z3 SMT Solver

in Line (2) in Appendix (B.3) to return one Operation type isEnterCard in Line

(8) Appendix (B.2) which already specified as a return type in Line (1) Appendix

(B.5).

Sub-signatures (Lines from 2 to 6) Appendix (B.3) declare functions of the

property some for each sub signatures EnterCard, TypePin, RequistCash, Receive-

CashAndCard, and ReceiveCard of the super signature Operations because Oper-

ations has at least one element of the sub signatures. The functions restrict the

super signature to have at least one element in each operation. Sub-signatures

(Lines 8-13) Appendix (B.3) declare functions of the property some for each sub

signatures WaitingCard, WaitingPin, WaitingMoney, WaitingReceiveCashAnd-

Card, WaitingReceiveCard, and Update of the super signature ATM Status be-

cause ATM Status has exactly one element of the sub signatures. The functions

restrict that the super signature ATM Status and Operations have at least one

element in each ATM Status. In (Lines from 2 to 6) and (Lines from 9 to 14)

Appendix (B.6) we need to assert the lone property of the previous sub signatures

because Operations and ATM Status have at most one element of the sub signa-

tures. The assertion (Lines from 2 to 6) and (Lines from 9 to 14) Appendix (B.6)

is expressed in the formulas AA and BB below respectively :

Formula AA:

∀ o1, o2: operation.(o1 ∈ isEnterCard ∧ o2 ∈ isEnterCard) =>o1 = o2
∀ o1, o2: operation.(o1 ∈ isTypePin ∧ o2 ∈ isTypePin) =>o1 = o2
∀ o1, o2: operation.(o1 ∈ isRequistCash ∧ o2 ∈ isRequistCash) =>o1 = o2
∀ o1, o2: operation.(o1 ∈ isReceiveCashAndCard ∧ o2 ∈ isReceiveCashAndCard)
=>o1 = o2
∀ o1, o2: operation.(o1 ∈ isReceiveCard ∧ o2 ∈ isReceiveCard) =>o1 = o2

90

Chapter 4: Foundations: Z3 SMT Solver

The formula AA specifies constraints that for each operation, there is at most

only one corresponding operation: if there exist two operations belonging to isEn-

terCard for example, then these two operations should be equal. i.e we restrict

the characteristics of the multiplicity lone operation of type isEnterCard for each

status to avoid the inconsistency.

Formula BB:
∀ a1, a2: ATM Status.(a1 ∈ isWaitingCard ∧ a2 ∈ isWaitingCard) =>a1 = a2
∀ a1, a2: ATM Status.(a1 ∈ isWaitingPin ∧ a2 ∈ isWaitingPin) =>a1 = a2
∀ a1, a2: ATM Status.(a1 ∈ isWaitingMoney ∧ a2 ∈ isWaitingMoney) =>a1 = a2
∀ a1, a2: ATM Status.(a1 ∈ isWaitingReceiveCashAndCard ∧ a2 ∈)
isWaitingReceiveCashAndCard =>a1 = a2
∀ a1, a2: ATM Status.(a1 ∈ isWaitingReceiveCard ∧ a2 ∈ isWaitingReceiveCard)
=>a1 = a2
∀ a1, a2: ATM Status.(a1 ∈ isUpdate ∧ a2 ∈ isUpdate) =>a1 = a2

The formula BB specifies constraints that for each ATM Status, there is at

most only one corresponding ATM Status : if there exist two ATM Statuses be-

longing to isWaitingCard for example, then these two ATM Status should be

equal. i.e we restrict the characteristics of the multiplicity lone ATM Status of

type isWaitingCard for each status to avoid the inconsistency.

4.2.3 Abstraction

As seen in Appendix (B.7), abstract types are the union of their subtypes. Thus

abstract types constrain every element of type to belong to one of its extending

subtypes. Lines (1 and 15) are expressed in the formulas CC and DD below

respectively:

91

Chapter 4: Foundations: Z3 SMT Solver

Formula CC:

∀ o:operation.¬(o ∈ isEnterCard ∧ o ∈ isTypePin ∧
o ∈ isRequistCash ∧ o ∈ isReceiveCashAndCard ∧
o ∈ isReceiveCard) ∧
¬(o ∈ isTypePin ∧ o ∈ isRequistCash ∧
o ∈ isReceiveCashAndCard ∧ o ∈ isReceiveCard ∧
o ∈ isReceiveCard) ∧
¬(o ∈ isRequistCash ∧ o ∈ isReceiveCashAndCard ∧
o ∈ isReceiveCard ∧ o ∈ isReceiveCashAndCard)

The formula CC specifies constraints that for each operation there is only

one corresponding operation, and this operation is either isEnterCard ; isTypePin;

isRequistCash; isReceiveCashAndCard ; or isReceiveCard to avoid inconsistency.

No two operations occur at any one time.

Formula DD:
∀ a:ATM Status.¬(a ∈ isWaitingCard ∧ a ∈ isWaitingPin ∧
a ∈ isWaitingMoney ∧ a ∈ isWaitingReceiveCashAndCard ∧
a ∈ isWaitingReceiveCard ∧ a ∈ isWaitingCard ∧ a ∈ isUpdate) ∧
¬(a ∈ isWaitingPin ∧ a ∈ isWaitingMone ∧
a ∈ isWaitingReceiveCashAndCard ∧ a ∈ isWaitingReceiveCard ∧
a ∈ isUpdate) ∧
¬(a ∈ isWaitingMoney ∧ a ∈ isWaitingReceiveCard ∧
a ∈ isWaitingReceiveCashAndCard ∧ a ∈ isUpdate) ∧
¬(a ∈ isWaitingReceiveCard ∧ a ∈ isWaitingReceiveCashAndCard) ∧
¬(a ∈ isWaitingReceiveCashAndCard ∧ a ∈ isUpdate)

The formula DD specifies constraints that for each ATM Status there is only

one corresponding ATM Status, and this is either isWaitingCard ; isWaitingPin;

isWaitingMoney ; isWaitingReceiveCard ; isWaitingReceiveCashAndCard ; or isUp-

date to avoid inconsistency. No two ATM Statuses occur at any one time.

92

Chapter 4: Foundations: Z3 SMT Solver

4.2.4 Extension

As seen in Appendix (B.7), the extends types are mutually disjoint. Lines

(4 to 13) and Lines (18 to 32) are expressed in the formulas EE and FF below

respectively :

Formula EE:

∀ o:operation.(o ∈ isEnterCard ∨ o ∈ isTypePin ∨
o ∈ isRequistCash ∨ o ∈ isReceiveCashAndCard ∨
o ∈ isReceiveCard)
∀ o:operation.(o ∈ isTypePin ∨ o ∈ isRequistCash ∨
o ∈ isReceiveCashAndCard ∨ o ∈ isReceiveCard)
∀ o:operation.(o ∈ isRequistCash ∨ o ∈ isReceiveCashAndCard ∨
o ∈ isReceiveCard)
∀ o:operation.(o ∈ isReceiveCashAndCard ∨ o ∈ isReceiveCard)

The formula EE specifies constraints that for all operation , the operation

(o) does not belong to more than one of isEnterCard ; isTypePin; isRequistCash;

isReceiveCashAndCard ; and isReceiveCard.

Formula FF:
∀ a:ATM Status.(a ∈ isWaitingCard ∨ a ∈ isWaitingPin ∨
a ∈ isWaitingMoney ∨ a ∈ isWaitingReceiveCashAndCard ∨
a ∈ isWaitingReceiveCard ∨ a ∈ isUpdate)
∀ a:ATM Status.(a ∈ isWaitingPin ∨ a ∈ isWaitingMoney ∨
a ∈ isWaitingReceiveCashAndCard ∨ a ∈ isWaitingReceiveCard ∨
a ∈ isUpdate)
∀ a:ATM Status.(a ∈ isWaitingMoney ∨ a ∈ isWaitingReceiveCard ∨
a ∈ isWaitingReceiveCashAndCard ∨ a ∈ isUpdate)
∀ a:ATM Status.(a ∈ isWaitingReceiveCard ∨ a ∈ isWaitingReceiveCashAndCard ∨
a ∈ isUpdate)

The formula FF specifies constraints that for all ATM Status, the ATM Status

(a) does not belong to more than one of isWaitingCard ; isWaitingPin; isWaiting-

Money ; isWaitingReceiveCard ; isWaitingReceiveCashAndCard ; and isUpdate.

93

Chapter 4: Foundations: Z3 SMT Solver

4.2.5 Facts

Alloy facts are assumed to be true. They represents the first and the second

ATM system property. As seen in Appendix (B.9), Line (1) declares quantifiers

to restrict the first fact. Line (2) declares quantifiers to restrict the second fact.

The first fact in (Line 1) as seen below is expressed in formula GG below:

First fact:

(forall ((atm1 ATM)(atm2 ATM))(and(forall ((c1 Card))(=>
(cards atm2 c1)(cards atm1 c1)))
(forall ((c2 Card))(=>(cards atm1 c2)(cards atm2 c2)))
(forall ((c3 Card)(i Int))(=>(pin atm2 c3 i)(pin atm1 c3 i)))
(forall ((c4 Card)(i1 Int))(=>(pin atm1 c4 i1)(pin atm2 c4 i1)))))

Formula GG:

∀ atm1,atm2:ATM,c1:Card.(atm2,c1) ∈ cards =>(atm1,c1) ∈ cards ∧
∀ c2:Card.(atm1,c2) ∈ cards =>(atm2,c2) ∈ cards ∧
∀ c3:Card, i:Int.(atm2,c3,i) ∈ pin =>(atm1,c3,i) ∈ pin ∧
∀ c4:Card, i1:Int.(atm1,c4,i1) ∈ pin =>(atm2,c4,i1) ∈ pin

The formula GG specifies constraints that: if different atoms of ATM belong

to the same Card, then they have the same pin

The second fact in (Line 2) as seen below is expressed in formula HH below:

The formula HH specifies constraints that: in all atoms in ATM belong to a

card have a balance greater than or equal to 0 and a positive pin number.

94

Chapter 4: Foundations: Z3 SMT Solver

Second fact:

(forall ((atm1 ATM)(card Card))(=>(cards atm1 card)(and
(forall ((i Int))(=>(balance atm1 card i)(>= i 0)))
(forall ((i1 Int))(=>(pin atm1 card i1)(>i1 0)))))))

Formula HH:

∀ atm1:ATM,card:Card.(atm1,card) ∈ cards =>
∀ i:Int.(atm1,card,i) ∈ balance =>(i >= 0) ∧
∀ i1:Int.(atm1,card,i1) ∈ pin =>(i1 >0)

4.2.6 Relations Declaration

Relations are translated to Boolean-valued SMT2 functions, uninterpreted, mem-

bership functions. As seen in Appendix (B.2) these functions are declared over

top-level types because only top-level types are declared as sorts. Because all SMT

functions are total function, relations are specified utilizing three parts: function

name, received sorts, and returned value of Boolean type. The Boolean type in-

cludes two kinds of value, true for the tuples that are involved in the declared

relation, or false for all others that are not involved.

Lines (1-7) Appendix (B.2) declare Boolean-valued SMT2 functions of relations.

These relations are: cards and inCard which are declared as a Boolean-valued func-

tion over top-level types ATM and Card (Lines 1, and 2); pin, balance, and money

which are declared as a Boolean-valued function over top-level types ATM, Card,

and Int (Lines 3,4,and 5); atmStatuse and op which are declared as a Boolean-

valued function over top-level types ATM, ATM Status, and ATM, Operations

respectively (Lines 6, and 7).

Lines (1-6) Appendix (B.8) declare constraint guarantee that each relation is

defined for its specific types considering the multiplicity keywords constraints.

95

Chapter 4: Foundations: Z3 SMT Solver

The first relation cards: set Card is not required to be translated to a formula

to show its constraints as the set keyword constrains and allows any number of

elements. Thus, its defined Boolean-valued function (Line 1) Appendix (B.2) is

equivalent to its meaning.

Line (1) shows the second relation below and as seen in Appendix (B.8) is

expressed in formula II below:

inCard : lone cards

(forall ((this ATM))(and (forall ((c1 Card))(=>(inCard this c1)
(cards this c1)))
(forall ((c3 Card)(c2 Card))(=>(and(inCard this c2)(inCard this c3))
(= c2 c3)))))

Formula II:

∀ atm:ATM,c1:Card.(atm,c1) ∈ inCard =>(atm,c1) ∈ cards ∧
∀ c2,c3:Card.(atm,c2) ∈ inCard ∧ (atm,c3) ∈ inCard =>(c2 = c3)

The formula II specifies constrains that: for all set of atoms atm in ATM and

c1 in Card if the atoms belong to inCard then they also belong to cards as well,

and for all c2 and c3 in Card such that atm and c2 belong to inCard and atm and

c3 belong to inCard then c2 equals c3 because the maximum number of (inCard)

in used is one.

Line (2) shows the third relation below and as seen in Appendix (B.8) is ex-

pressed in formula JJ below:

96

Chapter 4: Foundations: Z3 SMT Solver

pin : cards ->one Int

(forall ((this ATM))(and(forall ((c1 Card)(i Int))(=>(pin this c1 i)(cards this c1)))
(forall ((a1 Card))(=>(cards this a1)(and(exists ((i1 Int))(pin this a1 i1))
(forall ((i3 Int)(i2 Int))(=>(and(pin this a1 i2)(pin this a1 i3))(= i2 i3))))))))

Formula JJ:

∀ atm:ATM, c1:Card,i:Int.(atm,c1,i) ∈ pin =>(atm,c1)∈ cards ∧
∀ a1:Card.(atm, a1) ∈ cards =>∃ i1:Int.(atm,a1,i1) ∈ pin ∧
∀ i2, i3:Int.(atm, a1, i2) ∈ pin ∧ (atm, a1, i3) ∈ pin =>(i2=i3)

The formula JJ specifies constrains that: for all set of atoms atm in ATM, c1

in Card and i in Int such that the atoms belong to the pin then they belong to

cards as well, and for all set of atoms a1 in Card such that the atoms atm and a1

belong to cards then if there exist integer (i1) such that atm, a1, and i1 belong to

pin, and for all i2 and i3 in integer such that atm, a1, and i2 belong to pin and

atm, a1, and i3 belong to pin then i2 equals i3 because the the number of (pin

is exactly one.

Line (3) shows the fourth relation below and as seen in Appendix (B.8) is

expressed in formula KK below:

balance : cards ->one Int

(forall ((this ATM))(and(forall ((c1 Card)(i Int))(=>(balance this c1 i)(cards this c1)))
(forall ((a1 Card))(=>(cards this a1)(and(exists ((i1 Int))(balance this a1 i1))
(forall ((i3 Int)(i2 Int))(=>(and(balance this a1 i2)(pin this a1 i3))
(= i2 i3))))))))

Formula KK:

∀ atm:ATM,c1:Card,i:Int.(atm,c1,i) ∈ balance =>(atm,c1) ∈ cards ∧
∀ a1:Card.(atm, a1) ∈ cards =>∃ i1:Int.(atm,a1,i1) ∈ balance ∧
∀ i2, i3:Int.(atm, a1, i2) ∈ balance ∧ (atm, a1, i3) ∈ balance =>(i2=i3)

97

Chapter 4: Foundations: Z3 SMT Solver

The formula KK specifies constrains that: for all set of atoms atm in ATM, c1

in Card and i in Int such that the atoms belong to the balance then they belong

to cards as well, and for all set of atoms a1 in Card such that the atoms atm and

a1 belong to cards then if there exist integer (i1) such that atm, a1, and i1 belong

to balance, and for all i2 and i3 in integer such that atm, a1, and i2 belong to

balance and atm, a1, and i3 belong to balance then i2 equals i3 because the the

number of balance is exactly one.

Line (4) shows the fifth relation below and as seen in Appendix (B.8) is expressed

in formula LL below:

money : cards ->lone Int

(forall ((atm ATM))(and(forall ((c1 Card)(i Int))(=>(money atm c1 i)(cards atm c1)))
(forall ((a1 Card)(i3 Int)(i2 Int))(=>(and(money atm a1 i2)(money atm a1 i3))
(= i2 i3)))))

Formula LL:

∀ atm:ATM,c1:Card,i:Int.(atm,c1,i) ∈ money =>(atm,c1) ∈ cards ∧
∀ a1:Card, i2, i3:Int.(atm, a1, i2) ∈ money ∧ (atm, a1, i3) ∈ money =>(i2=i3)

The formula LL specifies constrains that: for all set of atoms atm in ATM, c1

in Card and i in Int such that the atoms belong to the money then they belong

to cards as well, and for all set of atoms a1 in Card, i2 and i3 in integer such

that atm, a1, and i2 belong to money and atm, a1, and i3 belong to money then

i2 equals i3 because the the number of money is at most one.

Line (5) shows the sixth relation below and as seen in Appendix (B.8) is ex-

pressed in formula MM below:

98

Chapter 4: Foundations: Z3 SMT Solver

atmStatuse: one ATM Status

(forall ((this ATM))(and(exists ((a1 ATM Status))(atmStatuse this a1))
(forall ((a3 ATM Status)(a2 ATM Status))(=>(and
(atmStatuse this a2)(atmStatuse this a3))(= a2 a3)))))

Formula MM:

∀ atm:ATM ∃ a1:ATM Status.(atm,a1) ∈ atmStatus ∧
∀ a2,a3:ATM Status.(atm, a2) ∈ atmStatus ∧ (atm, a3) ∈ atmStatus
=>(a2=a3)

The formula MM specifies constrains that: for all set of atoms atm in ATM,

if there exists one atom a1 in ATM Status such that, the atoms atm and a1

belong to the atmStatus, and for all a2 and a3 in ATM Status such that atm and

a2 belong to atmStatus and atm and a3 belong to atmStatus then a2 equals a3

because the the number of ATM Status is exactly one.

Line (6) shows the seventh relation below and as seen in Appendix (B.8) is

expressed in formula NN below:

op: lone Operations

(forall ((this ATM)(o2 Operations)(o1 Operations)
(=>(and(op this o1)(op this o2))(= o1 o2)))

Formula NN:

∀ atm:ATM, o1,o2:Operations.(atm,o1)∈ op ∧ (atm,o2)∈ op
=>(o1=o2)

99

Chapter 4: Foundations: Z3 SMT Solver

The formula NN specifies constrains that: for all set of atoms atm in ATM

and o1 and o2 in Operations such that the atoms atm and o1 belong to the op

and atm and o2 belong to op as well then o1 equals o2, because the the maximum

number of Operations used is one.

4.2.7 Predicates

As seen in Appendix (B.10), the translation focuses on “inlining ” of the pred-

icate ATMTransaction. Inlining means without explicit declaration the ATM

passes through 6 statuses. We illustrates each status individually.

Lines (5-8) show the predicate below and in Appendix (B.10) for the first status

is expressed in formula OO below:

(atm1.atmStatuse)= WaitingCard and
crd in atm1.cards and no atm1.inCard and
no atm1.op and no atm1.money and

(forall ((a1 ATM Status))(=>(atmStatuse atm1 a1)(isWaitingCard a1)))
(forall ((w ATM Status))(=>(isWaitingCard w)(atmStatuse atm1 w)))
(cards atm1 crd)
(forall ((c2 Card))(not(inCard atm1 c2)))
(forall ((o Operations))(not (op atm1 o)))
(forall ((m Int)(c9 Card))(not(money atm1 c9 m)))

Formula OO:

∀ atm1:ATM,a1:ATM Status.(atm1,a1) ∈ atmStatus =>(a1) ∈ isWaitinCard
∀ atm1:ATM,w:ATM Status.(w) ∈ isWaitinCard =>(atm1,w) ∈ atmStatus ∧
∀ atm1:ATM,crd:Card.(atm1, crd) ∈ cards ∧
∀ atm1:ATM,c2:Card.(atm1,c2) /∈ inCard ∧
∀ atm1:ATM,o:Operations.(atm1,o) /∈ op ∧
∀ atm1:ATM,m:Int,C9:Card.(atm1,C9,m) /∈ money

The formula OO specifies constrains that: for all atoms atm1 in ATM and

a1 in ATM Status such that the atoms atm1 and a1 belong to atmStatus then

100

Chapter 4: Foundations: Z3 SMT Solver

the atom a1 belongs to isWaitinCard. For all atoms atm1 in ATM and w in

ATM Status such that the atom w belongs to isWaitinCard then the atoms atm1

and w belong to atmStatus. For all atoms atm1 in ATM and crd in Card such

that the atoms atm1 and crd belong to cards. For all atoms atm1 in ATM and

c2 in Card such that the atoms atm1 and c2 do not belong to inCard. For all

atoms atm1 in ATM and o in Operations such that the atoms atm1 and o do not

belong to op. For all atoms (atm1) in ATM, m in Int, and C9 in Card such that

the atoms atm1, C9, and m do not belong to money.

Lines (9-13) show the predicate below and in Appendix (B.10) for the second

status is expressed in formula PP below:

atm2.op= EnterCard and atm2.inCard = crd and
atm2.balance = atm1.balance and
(atm2.atmStatuse) = WaitingPin and
no atm2.money and

(forall ((o1 Operations))(=>(op atm2 o1)(isEnterCard o1)))
(forall ((e Operations))(=>(isEnterCard e)(op atm2 e)))
(forall ((c3 Card))(=>(inCard atm2 c3)(= crd c3)))
(inCard atm2 crd)
(forall ((c5 Card)(i1 Int))(=>(balance atm2 c5 i1)(balance atm1 c5 i1)))
(forall ((c6 Card)(i2 Int))(=>(balance atm1 c6 i2)(balance atm2 c6 i2)))
(forall ((a15 ATM Status))(=>(atmStatuse atm2 a15)(isWaitingPin a15)))
(forall ((w1 ATM Status))(=>(isWaitingPin w1)(atmStatuse atm2 w1)))
(forall ((m Int)(c9 Card))(not(money atm2 c9 m))))))

Formula PP:

∀ atm2:ATM,o1:Operations.(atm2,o1) ∈ op =>(o1) ∈ isEnterCard ∧
∀ atm2:ATM,e:Operations.(e) ∈ isEnterCard =>(atm2,e) ∈ op ∧
∀ atm2:ATM,c3:Card.(atm2,c3) ∈ inCard =>(crd=c3) ∧
∀ atm2:ATM,crd:Card.(atm2, crd) ∈ inCard ∧
∀ atm1,atm2:ATM,c5:Card,i1:Int.(atm2,c5,i1) ∈ balance =>(atm1,c5,i1) ∈ balance ∧
∀ atm1,atm2:ATM,c6:Card,i2:Int.(atm1,c6,i2) ∈ balance =>(atm2,c6,i2) ∈ balance ∧
∀ atm2:ATM,a15:ATM Status.(atm2,a15) ∈ atmStatus =>(a15) ∈ isWaitinPin ∧
∀ atm2:ATM,w1:ATM Status.(w1) ∈ isWaitinPin =>(atm2,w1) ∈ atmStatus ∧
∀ atm2:ATM,m:Int,C9:Card.(atm2,C9,m) /∈ money

101

Chapter 4: Foundations: Z3 SMT Solver

The formula PP specifies constraints that: for all atoms atm2 in ATM and o1

in Operations such that the atoms atm2 and o1 belong to op then the atom o1

belongs to isEnterCard. For all atoms atm2 in ATM and e in Operations such

that the atom e belongs to isEnterCard then the atoms atm2 and e belong to op.

For all atoms atm2 in ATM and c3 in Cards such that the atoms atm2 and c3

belong to inCard then crd is in used: crd equals c3. For all atoms atm2 in ATM

and crd in Card such that the atoms atm2 and crd belong to inCard.

For all atoms atm1 and atm2 in ATM, c5 in Card, and i1 in Int such that

the atoms atm2, c5, and i1 belong to balance then the atoms atm1, c5, and i1 in

the first status belong to balance as well. For all atoms atm1 and atm2 in ATM,

c6 in Card, and i2 in Int such that the atoms atm1, c6, and i2 belong to balance

then the atoms atm2, c6, and i2 in the second status belong to balance as well.

For all atoms atm2 in ATM and a15 in ATM Status such that the atoms atm2

and a15 belong to atmStatus then the atoms a15 belongs to isWaitinPin. For all

atoms atm2 in ATM and w in ATM Status such that the atom w1 belongs to

isWaitinPin then the atoms atm2 and w1 belongs to atmStatus.

For all atoms atm2 in ATM, m in Int, C9 in Card such that, the atoms atm2,

C9, and m do not belong to money.

Lines (14-19) show the predicate below and in Appendix (B.10) for the third

status is expressed in formula QQ below:

102

Chapter 4: Foundations: Z3 SMT Solver

atm3.op= TypePin and
atm3.inCard = atm2.inCard and
atm3.inCard.(atm3.pin)=pn and
atm3.balance = atm2.balance and
(atm3.atmStatuse) = WaitingMoney and
no atm3.money and

(forall ((o2 Operations))(=>(op atm3 o2)(isTypePin o2)))
(forall ((t Operations))(=>(isTypePin t)(op atm3 t)))
(forall ((c7 Card))(=>(inCard atm3 c7)(inCard atm2 c7)))
(forall ((c8 Card))(=>(inCard atm2 c8)(inCard atm3 c8)))
(forall ((i3 Int))(=>(exists ((c9 Card))(and(inCard atm3 c9)(pin atm3 c9 i3)))
(= pn i3)))
(exists ((c10 Card))(and (inCard atm3 c10)(pin atm3 c10 pn)))
(forall ((c11 Card)(i5 Int))(=>(balance atm3 c11 i5)(balance atm2 c11 i5)))
(forall ((c12 Card)(i6 Int))(=>(balance atm2 c12 i6)(balance atm3 c12 i6)))
(forall ((a32 ATM Status))(=>(atmStatuse atm3 a32)(isWaitingMoney a32)))
(forall ((w2 ATM Status))(=>(isWaitingMoney w2)(atmStatuse atm3 w2)))
(forall ((m Int)(c9 Card))(not(money atm3 c9 m)))

Formula QQ:

∀ atm3:ATM,o2:Operations.(atm3,o2) ∈ op =>(o2) ∈ isTypingPin ∧
∀ atm3:ATM,t:Operations.(t) ∈ isTypingPin =>(atm3,t) ∈ op ∧
∀ atm2,atm3:ATM,c7:Card.(atm3,c7) ∈ inCard =>(atm2, c7) ∈ inCard ∧
∀ atm2,atm3:ATM,c8:Card.(atm2,c8) ∈ inCard =>(atm3, c8) ∈ inCard ∧
∀ atm3:ATM,pn,i3:Int ∃c9 : Card.(atm3, c9)∈ inCard ∧
(atm3,c9,i3) ∈ pin =>(pn = i3)
∃ atm3:ATM,c10:Card,pn:Int.(atm3,c10) ∈ inCard ∧ (atm3, c10, pn) ∈ pin ∧
∀ atm2,atm3:ATM,c11:Card,i5:Int.(atm3,c11,i5) ∈ balance =>(atm2,c11,i5) ∈ balance ∧
∀ atm2,atm3:ATM,c12:Card,i6:Int.(atm2,c12,i6) ∈ balance =>(atm3,c12,i6) ∈ balance∧
∀ atm3:ATM,a32:ATM Status.(atm3,a32) ∈ atmStatus =>(a32) ∈ isWaitinMoney ∧
∀ atm3:ATM,w2:ATM Status.(w2) ∈ isWaitinMoney =>(atm3,w2) ∈ atmStatus ∧
∀ atm3:ATM,m:Int,C9:Card.(atm3,C9,m) /∈ money

103

Chapter 4: Foundations: Z3 SMT Solver

The formula QQ specifies constraints that: for all atoms atm3 in ATM and

o2 in Operations such that the atoms o2 and atm3 belong to op then the only

o2 atom belongs to isTypingPin in the third status atm3. For all atoms atm3 in

ATM and t in Operations such that the atom t belongs to isTypingPin then the

atoms atm3 and t belong to op. For all atoms atm2 and atm3 in ATM and c7 in

Card such that, the atoms atm3 and c7 belong to inCard then the atoms atm2

and c7 belong to inCard ; For all atoms atm2 and atm3 in ATM and c8 in Card

such that, the atoms atm2 and c8 belong to inCard then the atoms atm3 and

c8 belong to inCard which means, the used card in the second status is the same

card in third status. For all atoms atm3 in ATM and pn; i1 in Int if there exists

atom c9 in Card such that the existed Card c9 in the third status atm3 belong

to inCard and the atoms atm3, c9, and i3 belong to pin then pn equals i3. So, if

there exists a card c10 in Card, atm3 in ATM, and pn in Int such that atm3 and

c10 belong to inCard and atm3, c10, and pn belong to pin. For all atoms atm2

and atm3 in ATM, c11 in Card, and i5 in Int such that the atoms atm3, c11, and

i5 belong to balance then the atoms atm2, c11, and i5 with same card and same

amount belong to balance as well (the balance still remains the same in the third

status). For all atoms atm2 and atm3 in ATM, c12 in Card, and i6 in Int such

that the atoms atm2, c12, and i6 belong to balance then the atoms atm3, c12,

and i6 belong to balance. For all atoms atm3 in ATM and a32 in ATM Status

such that the atoms atm3 and a32 belong to atmStatus then the only a32 atom

belongs to isWaitinMoney. For all atoms atm3 in ATM and w2 in ATM Status

such that the atom w2 belongs to isWaitinMoney then the atoms atm3 and w2

belong to atmStatus. For all atoms atm3 in ATM, m in Int, and C9 in Card such

that the atoms atm3, C9, and m do not belong to money.

Lines (20-23) show the predicate below and in Appendix (B.10) for the fourth

status is expressed in formula RR below:

104

Chapter 4: Foundations: Z3 SMT Solver

atm4.op = RequistCash and
atm4.balance = atm3.balance and
atm4.inCard = atm3.inCard and
atm4.inCard.(atm4.money)= mon and

(forall ((o3 Operations))(=>(op atm4 o3)(isRequistCash o3)))
(forall ((r Operations))(=>(isRequistCash r)(op atm4 r)))
(forall ((c13 Card)(i7 Int))(=>(balance atm4 c13 i7)(balance atm3 c13 i7)))
(forall ((c14 Card)(i8 Int))(=>(balance atm3 c14 i8)(balance atm4 c14 i8)))
(forall ((c15 Card))(=>(inCard atm4 c15)(inCard atm3 c15)))
(forall ((c16 Card))(=>(inCard atm3 c16)(inCard atm4 c16)))
(forall ((i3 Int))(=>(forall ((c9 Card))(and(inCard atm4 c9)(money atm4 c9 i3)))
(= mon i3)))
(forall ((c10 Card))(and(inCard atm4 c10)(money atm4 c10 mon)))

Formula RR:

∀ atm4:ATM,o3:Operations.(atm4,o3) ∈ op =>(o3) ∈ isRequestCash ∧
∀ atm4:ATM,r:Operations.(r) ∈ isRequestCash =>(atm4,r) ∈ op ∧
∀ atm3,atm4:ATM,c13:Card,i7:Int.(atm4,c13,i7) ∈ balance => ∧
(atm3,c13,i7) ∈ balance ∧
∀ atm3,atm4:ATM,c14:Card,i8:Int.(atm3,c14,i8) ∈ balance => ∧
(atm4,c14,i8) ∈ balance ∧
∀ atm3,atm4:ATM,c15:Card.(atm4,c15) ∈ inCard =>(atm3, c15) ∈ inCard ∧
∀ atm3,atm4:ATM,c16:Card.(atm3,c16) ∈ inCard =>(atm4, c16) ∈ inCard ∧
∀ atm4:ATM,mon,i3:Int,c9:Card.(atm4,c9) ∈ inCard ∧ ∧
(atm4,c9,i3) ∈ money =>(mon = i3) ∧
∀ c10:Card.(atm4,c10) ∈ inCard ∧ (atm4,c10,mon) ∈ money

105

Chapter 4: Foundations: Z3 SMT Solver

The formula RR specifics constraints that: for all atoms atm4 in ATM and

o3 in Operations such that the atoms atm4 and o3 belong to op then the only o3

atom belongs to isRequestCash in the fourth status atm4. For all atoms atm4 in

ATM and r in Operations such that the atom r belongs to isRequestCash then

the atoms atm4 and r belong to op. For all atoms atm3 and atm4 in ATM, c13 in

Card, and i7 in Int such that the atoms atm4, c13,and i7 belong to balance then

the atoms atm3, c13, and i7 belong to balance (the balance still remains the same

in the fourth status). For all atoms atm3 and atm4 in ATM, c14 in Card, and

i8 in Int such that the atoms atm3, c14,and i8 belong to balance then the atoms

atm4, c14, and i8 belong to balance. For all atoms atm3 and atm4 in ATM and

c15 in Card such that the atoms atm4 and c15 belong to inCard then the atoms

atm3 and c15 belong to inCard as well which means, the used card in the fourth

status is the same card in third status. For all atoms atm3 and atm4 in ATM

and c16 in Card such that the atoms atm3 and c16 belong to inCard then the

atoms atm4 and c16 belong to inCard as well. For all atoms atm4 in ATM, mon;

i1 in Int, and c9 in Card such that the Card c9 in the fourth status atm4 belong

to inCard and the atoms atm4, c9, and i3 belong to money then mon equals i3.

For all c10:Card, then atm4, and c10 belong to inCard ; and atm4, c10,and mon

belong to money.

Lines (24-27) show the predicate below and in Appendix (B.10) for the fifth

status is expressed in formula SS below:

106

Chapter 4: Foundations: Z3 SMT Solver

atm5.inCard = atm4.inCard and
((mon <= atm4.inCard.(atm4.balance) and mon >0) and
(atm5.inCard.(atm5.balance) = atm4.inCard.(atm4.balance).minus[mon]
and atm5.op= ReceiveCashAndCard and
(atm4.atmStatuse) = WaitingReceiveCashAndCard)))and
or(((mon >atm4.inCard.(atm4.balance) or mon <0) and
(atm5.inCard.(atm5.balance) = atm4.inCard.(atm4.balance) and
atm5.op= ReceiveCard and (atm4.atmStatuse) = WaitingReceiveCard))
(atm5.atmStatuse) = Update and

(forall ((c17 Card))(=>(inCard atm5 c17)(inCard atm4 c17)))
(forall ((c18 Card))(=>(inCard atm4 c18)(inCard atm5 c18)))
(or (and(forall ((i9 Int))(=>(exists ((c19 Card))(and
(inCard atm4 c19)(balance atm4 c19 i9)))(<= mon i9)))(<0 mon)

(forall ((i10 Int)(i11 Int))(=(and(exists ((c20 Card))
(and(inCard atm5 c20)(balance atm5 c20 i10)))
(exists ((c21 Card))(and(inCard atm4 c21)(balance atm4 c21 i11))))
(= i10 (- i11 mon))))

(forall ((o4 Operations))(=>(op atm5 o4)(isReceiveCashAndCard o4)))
(forall ((r1 Operations))(=>(isReceiveCashAndCard r1) (op atm5 r1)))
(forall ((a57 ATM Status))(=>(atmStatuse atm4 a57)(isWaitingReceiveCashAndCard a57)))
(forall ((w3 ATM Status))(=>(isWaitingReceiveCashAndCard w3)(atmStatuse atm4 w3)))))
(and(or(forall ((i12 Int))(=>(exists ((c22 Card))(and(inCard atm4 c22)
(balance atm4 c22 i12)))(<i12 mon)))(<mon 0))
(forall ((i13 Int))(=>(exists ((c23 Card))(and(inCard atm5 c23)(balance atm5 c23 i13)))
(exists ((c24 Card))(and(inCard atm4 c24)(balance atm4 c24 i13)))))
(forall ((i14 Int))(=>(exists ((c25 Card))(and(inCard atm4 c25)(balance atm4 c25 i14)))
(exists ((c26 Card))(and(inCard atm5 c26)(balance atm5 c26 i14)))))
(forall ((o5 Operations))(=>(op atm5 o5)(isReceiveCard o5)))
(forall ((r2 Operations))(=>(isReceiveCard r2)(op atm5 r2)))
(forall ((a72 ATM Status))(=>(atmStatuse atm4 a72)(isWaitingReceiveCard a72)))
(forall ((w4 ATM Status>isWaitingReceiveCard w4)(atmStatuse atm4 w4)))))
(forall ((a75 ATM Status))(=>(atmStatuse atm5 a75)(isUpdate a75)))
(forall ((u ATM Status))(=>(isUpdate u)(atmStatuse atm5 u)))

107

Chapter 4: Foundations: Z3 SMT Solver

Formula SS:

∀ atm5,atm4:ATM,c17:Card.(atm5,c17) ∈ inCard =>(atm4,c17) ∈ inCard ∧
∀ atm5,atm4:ATM,c18:Card.(atm4,c18) ∈ inCard =>(atm5,c18) ∈ inCard ∧
∀ atm5,atm4:ATM,i9,mon:Int ∃ c19:Card.(atm4,c19) ∈ inCard ∧
(atm4,c19,i9) ∈ balance =>mon <= i9 ∧ mon >0 =>
∀ atm5,atm4:ATM,i10,i11,mon:Int (∃ c20:Card.(atm5,c20) ∈ inCard ∧
(atm5,c20,i10) ∈ balance ∧ ∃ c21:Card.(atm4,c21) ∈ inCard ∧
(atm4,c21,i11) ∈ balance) = ((i10 = i11 - mon))
∀ atm5:ATM,o4:Operations.(atm5,o4) ∈ op =>(o4) ∈ isReceiveCashAndCard ∧
∀ atm5:ATM,r1:Operations.(r1) ∈ isReceiveCashAndCard =>(atm5,r1) ∈ op ∧
∀ atm4:ATM,a57:ATM Status.(atm4,a57) ∈ atmStatuse =>
(a57) ∈ isWaitingReceiveCashAndCard
∀ atm4:ATM,w3:ATM Status.(w3) ∈ isWaitingReceiveCashAndCard =>
(atm4,w3) ∈ atmStatuse ∨))
∀ atm4:ATM,i12,mon:Int ∃ c22:Card.(atm4,c22) ∈ inCard ∧
(atm4,c22,i12) ∈ balance =>mon >= i12 ∨ mon <0 ∧ (
∀ atm4,atm5:ATM,i13:Int (∃ c23:Card.(atm5,c23) ∈ inCard ∧
(atm5,c23,i13) ∈ balance =>∃ c24:Card.(atm4,c24) ∈ inCard ∧
(atm4,c24,i13) ∈ balance) ∧
∀ atm4,atm5:ATM,i14:Int (∃ c25:Card.(atm4,c25) ∈ inCard ∧
(atm4,c25,i14) ∈ balance =>∃ c26:Card.(atm5,c26) ∈ inCard ∧
(atm5,c26,i14) ∈ balance) ∧
∀ atm5:ATM,o5:Operations.(atm5,o5) ∈ op =>(o5) ∈ isReceiveCard ∧
∀ atm5:ATM,r2:Operations.(r2) ∈ isReceiveCard =>(atm5,r3) ∈ op ∧
∀ atm4:ATM,a72:ATM Status.(atm4,a72) ∈ atmStatuse =>
(a72) ∈ isWaitingReceiveCard ∧
∀ atm4:ATM,w4:ATM Status.(w4) ∈ isWaitingReceiveCard =>
(atm4,w4) ∈ atmStatuse))))
∀ atm5:ATM,a75:ATM Status.(atm5,a75) ∈ atmStatuse =>
(a75) ∈ isUpdate ∧
∀ a54:ATM,u:ATM Status.(u) ∈ isUpdate =>
(atm5,u) ∈ atmStatuse

108

Chapter 4: Foundations: Z3 SMT Solver

The formula SS specifics constraints that: for all atoms atm5 and atm4 in

ATM and c17 in Card such that the atom atm5 and c17 belong to (inCard)

then atoms atm4 and c17 belong to inCard. For all atoms atm5 and atm4 in

ATM and c18 in Card such that the atom atm5 and c18 belong to (inCard) then

atoms atm5 and c18 belong to inCard. For all atoms atm5 and atm4 in ATM,

i9 ; mon in Int if there exists an atom c19 in Card such that the atoms atm5 and

c19 belong to inCard and the atoms atm5, c19, and i9 belong to balance then

mon should be less than or equals to the balance i9 and greater than zero, if this

formula true, then for all atoms atm5 and atm4 in ATM and i10 ; i1 ; mon in Int

if there exists an atom c20 in Card such that the atoms atm5 and c20 belong to

inCard and the atoms atm5, c20, and i10 belong to balance and if there exists

an atom c21 in Card such that the atoms atm4 and c21 belong to inCard and

the atoms atm4, c21, and i11 belong to balance equals to the balance after sub-

tracted by the required amount of mon; and in this case: for all atoms atm5 in

ATM and o4 in Operations such that the atoms atm5 and o4 belong to (op) then

atom o4 belong to isReceiveCashAndCard. For all atoms atm5 in ATM and r in

Operations such that the atom r belongs to (isReceiveCashAndCard) then atoms

atm5 and r1 belong to op. For all atoms atm4 in ATM and a57 in ATM Status

such that the atoms atm4 and a57 belong to (atmStatuse) then atom a57 be-

long to isWaitingReceiveCashAndCard. For all atoms atm4 in ATM and w3 in

ATM Status such that the atoms w3 belongs to (isWaitingReceiveCashAndCard)

then atom atm4 and w3 belong to atmStatuse.

For all atoms atm4 in ATM, i12 ; mon in Int if there exists an atom c22 in

Card such that the atoms atm4 and c22 belong to inCard and the atoms atm4,

c22, and i12 belong to balance then mon should be greater than the balance i12 or

less than zero, if this formula true, then for all atoms atm5 and atm4 in ATM and

i13 in Int if there exists an atom c23 in Card such that the atoms atm5 and c23

belong to inCard and the atoms atm5, c23, and i13 belong to balance then if there

exists an atom c24 in Card such that the atoms atm4 and c24 belong to inCard

and the atoms atm4, c24, and i13 belong to balance and; for all atoms atm4

and atm5 in ATM, i14 in Int if there exists an atom c25 in Card such that the

atoms atm4 and c25 belong to inCard and the atoms atm4, c25, and i14 belong

109

Chapter 4: Foundations: Z3 SMT Solver

to balance then if there exists an atom c26 in Card such that the atoms atm5

and c26 belong to inCard and the atoms atm5, c26, and i14 belong to balance.

For all atoms atm5 in ATM and o in Operations such that the atoms atm5 and

o5 belong to op then the atom o5 belongs to isReceiveCard. For all atoms atm5

in ATM and r2 in Operations such that the atom r2 belongs to isReceiveCard

then the atoms atm5 and r2 belong to op. For all atoms atm4 in ATM, a72 in

ATM Status such that the atoms atm4 and a72 belong to atmStatuse then the

atom a72 belongs to isWaitingReceiveCard. For all atoms atm4 in ATM and w4

in ATM Status such that the atom w4 belongs to isWaitingReceiveCard then the

atoms atm4 and w4 belong to atmStatuse. For all atoms atm5 in ATM and a72

in ATM Status such that the atoms atm5 and a72 belong to atmStatuse then the

atom a75 belongs to isUpdate. For all atoms atm5 in ATM and u in ATM Status

such that the atom u belongs to isUpdate then the atoms atm5 and u belong to

atmStatuse.

Lines (28) for the predicate below and in Appendix (B.10) for the sixth status

is expressed in formula TT below:

no atm6.inCard and (atm6.atmStatuse) = WaitingCard and
no atm6.op no atm6.money

(forall ((c27 Card))(not(inCard atm6 c27)))
(forall ((a79 ATM Status))(=>(atmStatuse atm6 a79)(isWaitingCard a79)))
(forall ((w5 ATM Status))(=>(isWaitingCard w5)(atmStatuse atm6 w5)))
(forall ((o6 Operations))(not(op atm6 o6))))

Formula TT:

∀ atm6:ATM, c27:Card. (atm6,c27) /∈ inCard
∀ atm6:ATM, a79 ATM Status.(atm6,a79) ∈ atmStatuse =>(a79) ∈ isWaitingCard
∀ atm6:ATM, w5 ATM Status.(w5) ∈ isWaitingCard =>(atm6,w5) ∈ atmStatuse
∀ atm6:ATM, o6:Operations.(atm6,o6) /∈ op)

The formula TT specifics constraints that: for all atoms atm6 in ATM and

c27 in Card such that the atoms atm6 and c27 do not belong to inCard. For

110

Chapter 4: Foundations: Z3 SMT Solver

all atoms atm6 in ATM and a79 in ATM Status such that, the atoms atm6 and

a79 belong to atmStatuse then the atom a79 belongs to isWaitingCard. For all

atoms atm6 in ATM and w5 in ATM Status such that, the atom w5 belongs to

isWaitingCard then the atoms atm6 and w5 belong to atmStatuse. For all atoms

atm6 in ATM and o6 in Operations such that, the atoms atm6 and o6 do not

belong to op.

4.2.8 Assertion

Assertions are intended to be checked. As seen in Appendix (B.10), we negate an

assertion so that any instance found by the SMT solver will be a counterexample

to the assertion. If the SMT solver does not find an instances, the assertion is

proven correct.

Line (29) for the ATM system requirement and Lines (4) in Appendix (B.10)

are expressed in formula UU below:

mon <= crd.(atm1.balance) and mon >0 and
ATMTransaction implies
crd.(atm5.balance) = crd.(atm1.balance).minus[mon]

(forall ((i Int))(=>(balance atm1 crd i)(<= mon i)))(<0 mon)
and ATMTransaction =>

(forall ((i15 Int)(i16 Int))(=>(and(balance atm5 crd i15)
(balance atm1 crd i16))
(= i15 (- i16 mon))))

Formula UU:

∀ atm1,atm2,atm3,atm4,atm5,atm6:ATM,pn,mon:Int,crd:Card
∀ i:Int.(atm1,crd,i) ∈ balance =>(mon <=i) ∧
(mon >0) ∧ (ATMTransaction =>
∀ atm1,atm5:ATM,crd:Card, i15,i16,mon:Int.(atm5,crd,i15) ∈ balance
∧ (atm1,crd,i16) ∈ balance =>i15= (i16 - mon))

111

Chapter 4: Foundations: Z3 SMT Solver

The formula UU specifies constraints that: for all atoms atm1, atm2, atm3,

atm4, atm5, and atm6 in ATM, crd in Card, and atoms pn; mon in Int such

that, the atoms atm1, crd, and i belong to balance then the required mon should

be less than or equal to the balance i and greater than zero to achieve the third

ATM property. Otherwise, SMT solver finds an instance as a counterexample; and

the predicate ATMTransaction then for all atoms (atm1,atm5) in ATM, crd in

Card, and i15 ; i16 ; mon in Int such that the atoms atm5, crd, and i15 belong to

balance and the atoms atm1, crd, i16 belong to balance then the updated balance

i15 equals (the exists balance i16 - required money mon).

4.3 Results

We used the check-sat command as seen in Appendix (C), part (C.11) (Line 1)

to ask the SMT solver to check whether the negation of the conjunction of the

provided assertions is unsatisfiable or not.

In this section, we present the results we achieved from modelling, analysing,

and checking the three properties of ATM system, using the Alloy Analyser, and

bounded SAT solver. The first property is that all ATM cards with correspond-

ing PINs should be identified in any ATM machine. The second property is

that the balance and PIN of cards that interact with the ATM should not be less

than zero (positive). The third property is that the required amount of money

should be less than or equal to the available balance, and greater than zero for

the used card.

The SMT solver spent 0.022s to try to find a model that satisfied the negation

of the set of formula, but it did not find one.

However, omitting the logical formulas as seen in Line (4) Appendix (C.10)

112

Chapter 4: Foundations: Z3 SMT Solver

which represented the third property of the ATM model, the SMT solver provided

the SAT result in 0.039s. By using the get-model command as seen in Appendix

(C.11) (Line 2), the SMT solver could find a model. So that the instance (model)

found by the SMT solver is a counterexample to the assertion.

4.4 Comparison Between SAT and SMT results,

and SAT and SMT Tools

In this section we compare the results we achieved in modelling the ATM system

and checking the satisfiability of their properties using the SAT and SMT solvers.

Also, we compare the SAT and SMT solvers as tools. The goal of Alloy which is

analysing and checking a model is different from the goal of Z3 which is proving the

satisfiability of the model. We compare the following criteria: decidability, time

spent to generate a counterexample, limitation and the accuracy in generating a

counterexample, how is the counterexample look like, the abilities for Alloy and

Z3, and the techniques for both solvers.

• Decidability

To compare the decidability, the Alloy Analyser restricts both operations sim-

ulation (for checking consistency of the model) and checking (for generating a

counterexample) to a finite scope. A scope gives a finite bound on the sizes of

the domains in the specification. Alloy translates its problem into a bounded SAT

problem. A bounded SAT problem is passed to the SAT solver to solve the sat-

isfiability problem. Thus, the SAT solver is decidable. On the other hand, Z3

translates its problem into unbounded SMT problem. Unbounded SMT problem

is passed to the SMT solver. Thus, the SMT solver is undecidable in general.

In addition, Alloy uses an engine as a SAT solver and a SAT solver does not

identify an unbounded problem. Consequently, the Alloy Analyser must translates

113

Chapter 4: Foundations: Z3 SMT Solver

its problem to a propositional logic. It needs therefore scopes to do this translation

as propositional logic is decidable. On the other hand, the Z3 SMT solver takes

input formula as first-order predicate logic and FOL is undecidable. Verification

within a finite scope is decidable, thus we used Alloy for limiting our analysis to

a finite scope in the specification that bounds the sizes of the types as the Alloy

Analyser is decidable. In our ATM example, we could bound the problem to be

small by restricting the scope of search to be 1 atom for all entities except the

ATM to be 6 atoms according to the number of statuses. However, in Z3 we could

not limit the sorts and the search for the counterexamples was infinite.

• Time

The Alloy analysis time is the summation of the time spent on generating CNF,

and in the SAT solver as reported by the Alloy Analyzer 4.1.10 running the SAT4J

solver. In Z3 time is what the SMT solver reports in proving the satisfiability of the

formula. In comparison the time (in second) is measured on an Intel Core2Quad,

2.7GHz, 4GB memory. The SAT solver in the Alloy Analyser spent 0.233s to check

the satisfiability for the properties of ATM system. On the other hand, the Z3

SMT solver spent 0.039s to generate the counterexample to check the satisfiability

for the same properties.

• Limitation and Confidence

In finite scopes, the Alloy analysis is noticeably faster and reduces the size of

the model to accelerate and making more confident finding a counterexample.

For example, in analysing the ATM system, the Alloy Analyser does not find a

counterexample in the first and second property when the scope was 1,2,3, or 4.

However, when we increased the scope we could see a counterexample. In this

case we know that there is a problem as seen in Figure 3.6. However, when the

Alloy Analyser does not find a counterexample in the third property when the

scope was increased and limited to be 1 atom for each signature but 6 atoms for

ATM, we feel more confident about the specification in this limitation.

114

Chapter 4: Foundations: Z3 SMT Solver

To increase our confidence, we increased the number of scopes with the same

result. However, if there is a counterexample in the larger scope, we do not know

what is the maximum number of scopes we need to try. In fact, the Analyser has

been developed especially to do the process quickly in a small scope analysis. In

the study done by [77] the experimental results demonstrates that specification

with a default scope of three can be analysed well in a minute.

In contrast, Z3 SMT is an unbounded solver. When Alloy gives a counterex-

ample within finite scope and Z3 gives a counterexample in infinite scope, there

is no problem in this case and the comparison is equivalent. However, in contrast

when Alloy says there is no counterexample within a finite scope and Z3 says there

is no counterexample in an infinite scope, Alloy may find a counterexample in a

larger scope. That happened when analysing the first and second property when

the scope was from 1 to 4, and the SAT solver says there is no counterexample.

However, the Z3 SMT solver guarantees that there is a counterexample and says

the result is SAT. Consequently, the comparison is not equivalent in this case be-

cause if we did not increase the number of scopes, we may think that the property

is correct. As a result, a mistake will take place. Therefore, the Z3 SMT solver

is stronger in guaranteeing generating counterexample than the the SAT solver

because the Z3 SMT solver proves that the formula is valid in general, while Alloy

does not show that the formula is valid in general.

So, the use of a finite scope makes the analysis decidable but also incomplete.

If an instance satisfying the formula cannot be found within a finite scope, that

does not imply that the model is unsatisfiable. An instance may be found if the

scope is increased. Also, the lack of a counterexample for an assertion does not

imply that the asserted property holds in a larger scope.

Although a SAT solver has an advantage in minimizing the problem by bounding

the number of scopes, we see that the number of variables and the verification time

115

Chapter 4: Foundations: Z3 SMT Solver

in SAT solver have increased with respect to increasing the number of scopes. That

may lead to making the SMT solver faster and detect counterexample earlier.

• Counterexample

To compare the counterexamples, when Alloy Analyser generates a counterex-

ample in analysing the ATM system, it was based on a finite number of domains,

while in Z3 was based on infinite scope. Both Alloy and Z3 provided us with the

result as a model. However, Alloy has an internal representation of a model which

is logical as a mapping between values and variables. Because of the difficulty of

reading the logical internal representation, Alloy gave us the ability to visualize

the mappings between variables and values. As a result it helps us looking at coun-

terexample. On the othe hand, Z3 presents the counterexample as a formula. It

was difficult for us to detect the flows in the Z3 counterexample compared to Alloy

because Alloy presents the detected counterexample using graphic capabilities.

• Abilities

To compare the abilities of Alloy and Z3, Alloy is a model finder and not a

prover. It shows why there is a counterexample. Thus it cannot prove theorems

without additional help such as the Z3 theorem prover. On the other hand, Z3

can prove why there is a counterexample. However, the Alloy model finder is still

useful if the goal does not need to waste time trying to prove a theorem as a model

finder can generate a counterexample for us automatically.

• Quantifiers

In our model both the Alloy Analyser and the SMT solver use quantifiers.

However, the difference between them lies in the analysis not in the language

itself.

116

Chapter 4: Foundations: Z3 SMT Solver

All in Alloy means binding free variables for a specific domain. The specific

domain of bounded scope just in the Analysis not in the language because All is

for all variables in a type and type is bounded. On the other hand, ∀ in Z3 means

the specific domain is not bounded in either the Analysis nor in the language.

Thus, ∀ in Alloy has limited power in analysis and Z3 has absolute power in

analysis. Some in Alloy and ∃ in Z3 are the same in the language and in the

analysis.

So, we conclude that Alloy is better than Z3 in providing the counterexample

in visualization saving time and effort for non experts to understand the problem.

Z3 cannot do that. Z3 is better than Alloy in searching for the counterexample in

general and proving why it is exists, while Alloy searches for the counterexample

in a limited scope and just models the counterexample with no proof as why it is

exist. Searching for a counterexample in a limited scope may lead to missing an

instance that may cause a counterexample in the lager scope.

Z3 is faster than Alloy in providing the results even though it is unbounded

and that may be due to the technique of Alloy which takes a longer process

when the Alloy Analyser is using SAT4J solver. It provides a model after doing

inclusive verification for all models until a bounded number of instances for a

prop1 assertion.

If the SAT4J solver found a model which means verification fails, Alloy adds

the resulting counterexample as a constraint to guide the search for the next

solution, and starts again. When verification succeeds, the solution is represented

as a higher-order quantification, and can be returned to the user. As the scope

increase, more time spent to analyse the model.

In addition, the technique of the SAT solver in Alloy and the Z3 SMT solver

117

Chapter 4: Foundations: Z3 SMT Solver

is to negate the assertion, and look for a model if there exist a counterexample.

The Alloy Analyser uses the negation of the assertion automatically, while in Z3

we had to write that explicitly as seen in Appendix (C.4) line (2). If we forgot to

write the negation, there will be a mistake in the result and thus there is a defect

in the comparison.

Alloy uses relations, while Z3 uses functions. Relations are constrained by

multiplicities and any mistakes in determining the multiplicity key word may lead

to an inconsistent model which leads to making Alloy a sensitive language.

118

Chapter 5

Problem Specification and Case

Study, and Multichannel Security

Protocol Modelling and Analysis

In this chapter we model and analyse our solution protocol for transmitting data

securely in WLANs using multichannel protocol. Our protocol is separated into

two levels, the first for sending a mix of letters over a channel, and the second for

sending indices over a different channel.

This chapter presents how the protocol works to detect security flaws for data

transmission over a multichannel in a wireless network, depending on analysing

the message into two unreadable messages (letters and indices) and sending each

message over a separate channel, taking into account the changing MAC address

for each channel.

5.1 Proposed Solution for The Case Study

The model depends on an analysis and combination technique for data trans-

mission between the two hosts over a multichannel. Testing the model includes

checking the security of the data transmission over a multichannel in a secure and

119

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

in an insecure scope, which is in the presence of a MitM. It then provides a report

with the results of whether the protocol achieved security for data transmission

(unreadable).

We assume that there is just one MitM between two hosts that are transmitting

an email message over two wireless channels taking into account changing MAC

address for each channel using software like "Technitium MAC Address Changer".

When the MitM needs to intercept a communication between two parties, the

MAC address is the key to accessing the data inside the packets transferred be-

tween them. So, when the MAC address is already known the MitM can hack the

packets that are sent to or received from the specific host directly, or the MitM

runs his tools to list all of the hosts’ MAC addresses around the area that are

sending and receiving data wirelessly [69].

The reason for analysing the message in two parts and submitting each part

over a channel is to mislead the MitM. Once one channel has been intercepted

the MitM will not get the message because the intercepted packet either includes

indices or letters and getting a readable message requires both parts, as seen in

Figure 5.2.

Changing the MAC address is part of our security strategy that intends to

mislead MitM because each sender’s wireless card (Network Interface Card (NIC))

has a unique MAC address provided with every packet to denote the sender’s

source even with a different wireless connection. NIC is used to connect a computer

to an Ethernet network [117].

A MAC address is represented by six groups of two hexadecimal digits (0-9,

120

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

A-F). Each group of two hexadecimal numbers is separated by the hyphen (-) or

by the colon (:). For example: 02-43-40-99-79-Az, or 02:43:40:99:79:Az.

When the MitM attempts to hack a connection and intercept its packets, he is

focused on displaying all the MAC addresses. Once he finds two MAC addresses

that have the same hexadecimal values, he will recognise that these two packets

have been sent from one sender. Matching the two packets will then provide

readable data. So, changing the MAC address is essential in our case study.

The message that needs to be sent is analysed at the client side into a changeable

array of letters and is submitted over one channel with indices submitted over

another channel. This takes into account the changing MAC addresses to make it

appear that this data was issued from different clients.

A changeable array of letters means that, the array contains 26 unordered alpha-

betical letters. The order of these letters is changeable randomly in each sending

message.

Each index points to the location of the correct letter of the message, and by

combining and matching each index with its index on the server side the receiver

will get the message. The changeable array of letters means that each time the

sender sends an email the arrangement of letters will be different, as they are

chosen randomly.

The model consists of two systems:

• For the sender to analyse (decompose) the message into an array of letters

and indices.

121

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

• For the receiver to receive the letters and indices and match the letters with

the indices to get the original message.

The first channel contains the original MAC addresses. The second channel

will contain the fake MAC addresses. Because the original MAC address will

be used in the first connection to submit indices and the fake MAC address will

be generated and used in the second connection to submit letters, the server’s

system recognizes which channel contains the original MAC addresses because the

reply message should be sent to the correct sender known using the original MAC

address.

In more detail regarding changing the MAC addresses, the system passes through

two levels of connections while sending data using the following steps:

• Level 1: Sending indices

– Connecting to the Internet via wireless A using MAC1 address.

– Sending indices.

– Disconnecting from the Internet.

• Level 2: Sending letters

– Changing MAC1 address.

– Generating new address, MAC2 address.

– Connecting to the Internet via wireless B using MAC2 address.

– Sending an array of mix of letters.

– Disconnecting from the Internet.

– Retrieving old MAC1 address.

122

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

5.2 Example in Both Single Channel and Multi-

channel

This section, shows a worked example for different protocols in transmitting

data over single channel followed by multichannel, and the success in achieving

security.

5.2.1 Single Channel

Transmitting data over a single channel means that there are two hosts - a

client and a server who would like to transmit a message over a channel using

their computers. Each host has a unique MAC address. A client connects to an

ISP. When a message is transmitted from the client’s computer, the MAC address

of the client’s computer is identified as the source. Suppose a sender needs to

submit message "computer" to the server. In the existence of a MitM, due to

transmitting the message over a single channel, and by finding out the MAC

address of the sender, it is easy for the MitM to intercept the channel that has

already been opened for the known MAC address. As a result, the message that

was transmitted is vulnerable to eavesdropping as seen in Figure 5.1.

Figure 5.1: MitM Intercepts Data Transmission Between Two Parties Over Single
Channel

123

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

5.2.2 Multichannel

For transmitting data over a multichannel each host has two different MAC

addresses: one is original and the other is fake. The original MAC address will be

used in the first connection to submit indices, while the fake MAC address will be

generated and used in the second connection to submit letters. The client connects

to two different ISPs. Suppose a sender needs to submit message "computer" to

the server. In the existence of one MitM, due to transmitting the message over

multichannel, it is not easy for the MitM to intercept both channels simultaneously

because when one channel is connected, the other is not connected. Also it is not

easy for the MitM to recognize that both channels belong to the same source as

both of them identified by different MAC address. However, by finding out a MAC

address of the sender and intercepting a channel that has already been opened for

the known MAC address meaning that the message that was transmitted is now

invulnerable to be eavesdropped as seen in Figure 5.2. The reason for that is, the

intercepted channel either contains a message of 26 random letters or message of

numbers which means the attackers got an unreadable message.

Figure 5.2: MitM Intercepts Data Transmission Between Two Parties Over Mul-
tichannel

• Example for send a message over multichannel

Each sender and receiver has a system. The sender’s system works on sending

124

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

a message following its steps below, while receiver’s system works on receiving the

message following its steps below. When a sender needs to submit the message

"computer", their system does that in four steps. The first step is when a sender

connects to a wireles network choosing an Internet Service Provider (ISP A) using

the original MAC address, the sender then opens the system dialogue (application

form) as seen in Figure 5.3 to start sending their message to the receiver. The ap-

plication form includes approved accounts (from email address /to email address);

the email’s password; the subject of the message; a MAC address box to type the

generated fake MAC address; an adaptor to select an ISP; the body of the mes-

sage to type a message; a sendIndexs icon which is responsible for submitting the

indices file; a ReConnect icon which is responsible to re-connect to the second ISP

as the system will disconnect from the first ISP directly after pressing sendIndexs

icon; a sendLetters icon which is responsible for submitting the letters file; and

Exit icon which is responsible to exit from the system.

In the second step, after the client’s account is approved (client’s email and pass-

word are authenticated). The sender’s system will work in three parts. The first

part is generating an array containing 26 unordered alphabetical letters such as

wxikrlpheaqybfjuzngmvdocst. Then it opens an external file for example letters.txt

to write each letter in the array in a line in the file.

The second part is finding the index of each letter of the message "computer"

that has been written in the body of the message. Finding the index of each letter

according to the array of letters to get an array of numbers containing the indices

such as 2322190615250804. After that the sender’s system opens an external file

for example indices.txt to write each number in the array in a line in the file. Here

the index ’23’ points to letter ’c’, the index ’22’ points to letter ’o’, the index ’19’

points to letter ’m’, the index ’06’ points to letter ’p’, the index ’15’ points to

letter ’u’, the index ’25’ points to letter ’t’, the index ’08’ points to letter ’e’, and

the index ’04’ points to letter ’r’. Then decomposing the list into pairs gives:

23 ->c; 22 ->o; 19 ->m; 06 ->p; 15 ->u; 25 ->t; 08 ->e; 04 ->r

125

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

Figure 5.3: Application Form For Sending A Message

The third part is when sender’s and receiver’s account details and client email’s

password are stored in a different external file to be used in the second connection.

The external file is account.txt file. These three files are automatically generated

in the same directory of the protocol system.

After that, the sender’s system directly opens the file that stores indices, reads

the file, and replaces the body of the message with the content of the file in the

same format as lines. After that the message of indices is transmitted over the

first channel which is addressed by the original MAC address such as (00-17-4F-

126

Chapter 5: Problem Specification and Case Study, and Multichannel Security
Protocol Modelling and Analysis

08-5D-69) and connected to the first ISP such as ISP A. After that the system will

disconnect from the ISP A, changing the original MAC address to a fake one such

as (00-01-34-AD-45-F6), and reconnect to a different Internet Service Provider

(ISP B) from the adapter.

In the third step, when the client clicks on sendLetters icon the sender’s system

directly opens the file that stores letters, reads the file, and replaces the body of

the message with the content of the file in the same format as lines. Moreover,

the sender’s system extracts the approved accounts (from email address /to email

address); and client email’s password from the account.txt file. After that the

message of letters is transmitted over the second channel which is addressed by

the fake MAC address such as (00-01-34-AD-45-F6) and connected to the second

ISP such as ISP B. At the end, the MAC address will be changed back to the

original MAC address.

Finally, when the receiver’s system receives these two channels which include

letters and indices, in the first step the system writes two messages line by line in

different external files. In the second step it matches each index with its location

in the array of letter to get the message "computer". In the last step presents the

readable message in their mailbox to be read at the other end.

5.3 Conclusion

In summary, we will investigate whether our multichannel protocol may provide

more security compared with a single channel because it depends on dividing the

message into two unreadable messages where each message is submitted over a

different channel. We change the MAC address in the second submission and if

one of the channels is intercepted, the MitM may not read the message.

127

Chapter 6

Multichannel Security Protocol

Modelling Using Alloy

6.1 Overall Framework

This chapter presents the Alloy framework for modelling and checking the va-

lidity of properties of the provided protocols in two major analyses. The first

major analysis is called predicate-running. It is applied to Alloy problems with a

predicate and results in a visualization. If satisfying structures (called instances)

exist, then the model is consistent; otherwise the model is inconsistent. This is

required before checking the assertion.

The second major analysis form is called assertion-checking. It is applied to

Alloy problems with an Alloy specification taking into account the properties that

have been constrained as facts. It results in either generating a counterexample

if the properties do not satisfy the requirements, or otherwise no counterexample

has been generated in a limited scope.

To model properties of our protocols in these two major analyses using Alloy,

we follow the same methodology of making the ATM model in chapter 3.

128

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

6.2 Approach

Our framework provides two kinds of protocols in different aspects. The first

protocol is for data transmission over a single channel. The second protocol is for

data transmission over a multichannel. Both protocols will be modelled in secure

and in insecure scopes with the presence of MitM.

6.3 Motivation

The goal of building a model for such protocols as a case study is to describe

the properties of the aspects of security protocols (but not the entire system),

constrain the properties to exclude holes which lead to malfunction, and check if

the properties satisfy the system requirement or not. We describe the procedure

of a protocol that has been used to transmit data securely, add some constraints

about how data transmitted securely should behave, and then check to see if any

status of each aspect gets to its destination securely or, has been intercepted by a

MitM to get a readable message. The modelling tool of Alloy in this case would

then either say “this property always holds for the scope of X” or “this property

does not always hold in the scope of Y, and here is a counterexample”.

6.4 Protocol of Transmitting Data Over Single

Channel Case Study

In this section we represent the first case study protocol in data transmission

over a single-channel without the presence of MitM, followed by data transmission

over a single-channel in the presence of MitM. This enables us to study how Alloy

can be aligned with the model as it begins with a simple model and gradually

introduce complexities. In addition, we also study how Alloy could model a secure

and insecure protocol providing instances that satisfies the constraints if the model

is consistent and then providing a counterexample if one exists. Consequently, in

129

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

the case of providing a counterexample, we can understand the holes in the security

of the protocol once system properties do not satisfy the system requirements in

limited scope, and fix these holes before implementing our decided protocol.

6.4.1 First Protocol: Describing Data Transmitting Over

Single Channel WLANs in Secure / Insecure Scope

Model

The first protocol is modelled in aspects of secure and insecure scope. The first

aspect is very simple and requires two hosts to be communicating regularly using

one ISP and identified using their unique MAC address. Also there is no MitM

be intercept data transmitting over a single channel between the two parties. As

a result, time is not delayed which leads to data that has been received having

not been read or modified. Thus, data that has received by the server equals data

that has sent by the client.

The second aspect is developed from the first aspect by inserting a MitM be-

tween the two parties. As a result, time is delayed which leads to data that has

been received possibly having being read or modified. Thus, data that has been

received by a server may not equals to data that has sent by client.

6.4.1.1 Protocol Model Properties and Requirements

For the first aspect: the first property is that there is no MitM; the second

property is opening one channel to exchange data between two hosts (client,

server); the third property is the time for sending and receiving data over the

opened channel has not been delayed which implies that received data by the server

equals sent data by the client; the fourth property is that MAC addresses have

to be unique. The second aspect has the same properties as first aspect except

the first property which requires that there is a MitM,

130

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The protocol requirements for both aspects are that equalities of sending and

receiving time implies that the data that has been received equals the data that

has been sent. Thus, the submitted message has neither been modified nor eaves-

dropped.

Modelling this protocol passes through one status when two parties are connect-

ing to their selected ISP. Thus opening a single channel between them to exchange

data between them illustrates that sending data takes place at the sending time,

while receiving data takes place over the same channel at the receiving time.

6.4.1.2 An Alloy Specification of the First Protocol

Abstractly seen in Appendix (C), an Alloy model M describes the structures of

the problem i.e., signatures, Appendix (C.1), and fields declarations which shows

the relation of the signatures including their implicit constraints, Appendix (C.2)

, a set F of facts which restrict the properties of the model, Appendix (C.3), a

predicate which shows how the model behaves, Appendix (C.4), and an assertion A

describing some properties about the problem, Appendix (C.5). An Alloy problem

is correct if any Alloy instance that conforms with the model M and satisfies the

facts in F, satisfies the assertion A as well.

Modelling the protocol begins by determining and identifying the Alloy specifi-

cation: the main objects (signatures), relations, and predicates for the interaction

protocol as seen in Appendices (C.1, C.2, C.4).

• Signatures

In our model in Appendix (C.1), signatures in Alloy represent a sets of atoms,

each signature represents a set of atoms with a maximum number of three and

has no relation signs as (->). For example, object Time represents a set of atoms

which are {time0,time1,time2} by default (Line 1).

131

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The signatures in (Lines 1,2,3,4,5,7,8) are called top-level signatures because

they do not extend other signatures and they will be implicitly disjoint until they

show the relation (field) between them. Each top-level signature has a maximum

set of three atoms by default with no relation between them.

The type hierarchy of our Alloy specification consists of seven top-level types:

Time which is used as a timer which calculates when data has been sent and

when data has been received (Line 1). In this protocol, Time is a parameter. We

supposed that sending and receiving a message takes place at the same time in the

secure communication. There are two cases. In the first, we assume that there has

been no interception and no delay in the time (sending and receiving a message

takes place at the same time). As a result data has been received equals to data

has been sent.

In the second case, if we assume that, if there is an interception, we supposed

that sending and receiving a message takes place at different times in insecure

communication. This denotes that there is an interception and a delay in time

happened (sending and receiving a message takes place at the different time). As

a result, data has been received is not equal to the data that has been sent.

For example, if sending a message took place at time "0", receiving a message

we supposed to be at time "0" in secure communication. So, we see here the

time was not delayed. However, if sending a message took place at time "0", but

receiving a message was at time "1" in insecure communication. So, we see here

a time delayed.

ISP and Channel are required to show how two parties exchange data over a

single channel which is opened after two parties are connected to the selected ISP

in the first status (Lines 2,3); Data is used as a measure of whether a modification

132

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

has been done or not. This is the main object the protocol uses to be modelled

as an exchanging tool between parties (Lines 4); ConnectionStatus is required to

express each status individually (Lines 5); MAC address is used to express each

visitor to the connection (Line 7); Communication Status is the main part in

the model which shows how signatures are related to each other to visualize each

status under the restrictions applied in the predicates and facts and checked in

the assertion (Line 8).

• Abstraction

The top-level type ConnectionStatus in (Line 5) is the basic type. It is labelled

with the keyword abstract and has no elements except those which are extended

which constrains each element to belong to one of its extending subtypes. However,

we have just one subtype Connection And Exchanging Data (Lines 6), and the

idea of the abstract and the extension will be clear when the protocol will be

developed to increase the status information. This subtype is for representing the

status of the connection and exchanged data between two parties.

• Extension

Type ConnectionStatus in (Line 5) is extended in Alloy using the keyword ex-

tends. The rest of the top-level types are neither abstract nor extended.

Extending subtype Connection And Exchanging Data (Line 6) is restricted to

be a singleton using the keyword one.

133

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

• Relation Declarations, and Multiplicities

Table 6.1 shows the relations and their types.

Relations
fields name Related atoms (Type/size) of

relation No. of
atom per tuple

serviceProvider (CommunicationStatus, ISP) Binary 2 atoms
visitors (CommunicationStatus,MAC) Binary 2 atoms
client (CommunicationStatus,MAC) Binary 2 atoms
server (CommunicationStatus,MAC) Binary 2 atoms
mitm (CommunicationStatus,MAC) Binary 2 atoms
connection (CommunicationStatus,MAC,

serviceProvider) Ternary 3 atoms
opens (CommunicationStatus,MAC,

serviceProvider, Channel) >Ternary 4 atoms
status (CommunicationStatus,MAC

, ConnectionStatus) Ternary 3 atoms
sends (CommunicationStatus,MAC,

Data, Time, Channel) >Ternary 5 atoms
receives (CommunicationStatus,MAC,

Data, Time, Channel) >Ternary 5 atoms

Table 6.1: Relations And Their Types

The fields are represented in Apppendix (D.2).

134

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

• The field serviceProvider represents all the ISPs that exist in the Communi-

cation Status and declares a binary relation of type Communication Status

->ISP which maps each element of Communication Status to set (arbitrary

number/any number) of elements of ISP.

The binary relation serviceProvider ⊆ Communication Status × ISP. (Lines

8 Appendix C.1, Line 1 Appendix C.2) declares a relation serviceProvider

with domain Communication Status and range ISP. The declaration of ser-

viceProvider contains the multiplicity annotation set which makes servi-

ceProvider a function: a binary relation that associates every Communica-

tion Status with a set of ISP. For every element cs in Communication Status,

the keyword set before ISP constraints the term cs.serviceProvider to be set.

The declaration of

serviceProvider in Communication Status−> ISP

can thus be expressed as:

∀ cs : Communication Status| cs.serviceProvider ⊆ (set ISP)

We can express the multiplicity constraints using formula as:

all cs : Communication Status| set cs.serviceProvider

The multiplicity keyword set makes the declaration hold when the relation

serviceProvider is a function from Communication Status to ISP.

• The field visitors represents all the MACs that exist in the Communica-

tion Status and declares a binary relation of type Communication Status

->MAC which maps each element of Communication Status to set of ele-

ments of MAC.

The binary relation visitors ⊆ Communication Status × MAC. (Lines 8

Appendix C.1, Line 2 Appendix C.2) declares a relation visitors with domain

Communication Status and range MAC. The declaration of visitors contains

the multiplicity annotation set which makes visitors a function: a binary

135

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

relation that associates every Communication Status with a set of MAC.

For every element cs in Communication Status, the keyword set before MAC

constraints the term cs.visitors to be set. The declaration of

visitors in Communication Status−> MAC

can be expressed as:

∀ cs : Communication Status| cs.visitors ⊆ (set MAC)

We can express the multiplicity constraints as:

all cs : Communication Status| set cs.visitors

The multiplicity keyword set makes the declaration hold when the relation

visitors is a function from Communication Status to MAC.

• The field client represents the MAC that exists as a client in the Communi-

cation Status, and declares a binary relation of type Communication Status

->MAC which maps each element of Communication Status to one element

of MAC.

The binary relation client ⊆ Communication Status × MAC. (Lines 8 Ap-

pendix C.1, Line 3 Appendix C.2) declares a relation client with domain

Communication Status and range MAC. The declaration of client contains

the multiplicity annotation one which makes client a total function: a bi-

nary relation that associates every Communication Status with one MAC.

For every element cs in Communication Status, the keyword one before MAC

constraints the term cs.client to be one. The declaration of

client in Communication Status−> MAC

can be expressed as:

∀ cs : Communication Status| cs.client ⊆ (one MAC)

136

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.client

The multiplicity keyword one makes the declaration hold when the relation

client is a total function from Communication Status to MAC.

• The field server represents the MAC that exists as a server in the Communi-

cation Status, and declares a binary relation of type Communication Status

->MAC which maps each element of Communication Status to one element

of MAC.

The binary relation server ⊆ Communication Status × MAC. (Lines 8 Ap-

pendix C.1, Line 4 Appendix C.2) declares a relation server with domain

Communication Status and range MAC. The declaration of server contains

the multiplicity annotation one which makes server a total function: a bi-

nary relation that associates every Communication Status with one MAC.

For every element cs in Communication Status, the keyword one before MAC

constraints the term cs.server to be one. The declaration of

server in Communication Status−> MAC

can be expressed as:

∀ cs : Communication Status| cs.server ⊆ (one MAC)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.server

The multiplicity keyword one makes the declaration hold when the relation

server is a total function from Communication Status to MAC.

• The field mitmIntercepts represents the MAC that exists as a MitM in the

Communication Status, and declares a binary relation of type Communica-

tion Status ->MAC which maps each element of Communication Status to

137

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

lone element of MAC, except server.

The binary relation mitmIntercepts ⊆ Communication Status ×MAC. (Lines

8 Appendix C.1, Line 5 Appendix C.2) declares a relation mitmIntercepts

with domain Communication Status and range MAC. The declaration of

mitmIntercepts contains the multiplicity annotation lone which makes mit-

mIntercepts a partial function: a binary relation that associates every Com-

munication Status with (lone) at most one of MAC. For every element cs in

Communication Status, the keyword lone before MAC constraints the term

cs.mitmIntercepts to be lone. The declaration of

mitmIntercepts in Communication Status−> MAC

can be expressed as:

∀ cs : Communication Status| cs.mitmIntercepts ⊆ (lone MAC)

We can express the multiplicity constraints as:

all cs : Communication Status| lone cs.mitmIntercepts

The multiplicity keyword lone makes the declaration hold when the relation

mitmIntercepts is a partial function from Communication Status to MAC.

• The field connection represents the MAC that connects to the ISP, and

declares a ternary relation of type Communication Status ->MAC ->ISP

which maps each element of Communication Status to an element of MAC ;

and each element of MAC to lone element of cs.serviceProvider ; each ele-

ment of cs.serviceProvider to an element of MAC ; each element of MAC to

an element of Communication Status.

The ternary relation connection ⊆ Communication Status × MAC × ISP.

(Line 8 Appendix C.1, Line 6 Appendix C.2) declares a relation connection

with domain Communication Status and range ISP. The declaration of con-

nection contains the multiplicity annotation lone which makes connection

a partial function: a ternary relation that associates every Communica-

138

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

tion Status with lone MAC.connection. For every element cs in Communi-

cation Status and for every element mac in MAC, the keyword lone before

cs.serviceProvider constraints the term mac.(cs.connection) to be lone. The

declaration of

connection in Communication Status−>MAC −> serviceProvider

can be expressed as:

∀ cs : Communication Status, mac : Mac| mac.(cs.connection) ⊆

(lone cs.serviceProvider)

We can express the multiplicity constraints as:

all cs : Communication Status|cs.connection &&

all cs : Communication Status, mac : Mac|lone mac.(cs.connection)

The multiplicity keyword lone makes the declaration hold when the relation

connection is a partial function from mac.(cs.connection) to cs.serviceProvider.

When a field of the same signature appears in another field’s declaration,

it is interpreted in the context of that signature. Field serviceProvider of

the same signature Communication Status appears in another field’s dec-

laration connection. Field connection is added to capture that the lone

mac.(cs.connection) might be connection. This declaration says that for ev-

ery element cs in Communication Status, and mac in MAC, mac.(cs.connection)

is a subset of cs.serviceProvider because field serviceProvider of the same

signature Communication Status appears in another field’s declaration con-

nection.

• The field opens represents the Channel that has been opened between a MAC

and an ISP, and declares a more than ternary relation (four) of type Com-

munication Status ->MAC ->ISP ->Channel which maps each element of

Communication Status to an element of MAC ; each element of MAC to an

139

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

element of cs.serviceProvider ; each element of cs.serviceProvider to an ele-

ment of Channel ; each element of Channel to an element of cs.serviceProvider ;

each element of cs.serviceProvider to an element of MAC ; each element of

MAC to an element of Communication Status.

The (four) relation opens ⊆ Communication Status ×MAC × ISP × Chan-

nel. (Line 8 Appendix C.1, Line 7 Appendix C.2) declares a relation opens

with domain Communication Status and range Channel. The declaration of

opens is not prefixed with a multiplicity keyword. The declaration of

opens in Communication Status−>MAC−> serviceProvider −>Channel

can be expressed as:

∀ cs : Communication Status, mac : Mac| mac.(cs.opens)

⊆ cs.serviceProvider)

We can express the multiplicity constraints as:

all cs : Communication Status| cs.opens &&

all cs : Communication Status, mac : Mac|mac.(cs.opens) &&

all cs : Communication Status, mac : Mac, isp : cs.serviceProvider|

(isp).mac.(cs.opens)

This declaration states that every element cs in Communication Status, and

mac in MAC, mac.(cs.opens) is a subset of cs.serviceProvider because field

serviceProvider of the same signature Communication Status appears in an-

other field’s declaration opens.

• The field status represents the MAC statuses, and declares a ternary re-

lation of type Communication Status ->MAC ->ConnectionStatus which

140

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

maps each element of Communication Status to one element of Connection-

Status.

The binary relation status ⊆ Communication Status × ConnectionStatus.

(Lines 8 Appendix C.1, Line 8 Appendix C.2) declares a relation status with

domain Communication Status and range ConnectionStatus. The declara-

tion of status contains the multiplicity annotation one which makes sta-

tus a total function: a ternary relation that associates every Communi-

cation Status with exactly one of ConnectionStatus. For every element cs

in Communication Status, the keyword one before ConnectionStatus con-

straints the term cs.status to be one. The declaration of

status in Communication Status−> ConnectionStatus

can be expressed as:

∀ cs : Communication Status| cs.status ⊆ (one ConnectionStatus)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.status

The multiplicity keyword one makes the declaration hold when the relation

status is a total function from Communication Status to ConnectionStatus.

• The field sends represents the Data that has been sent each Time from

a MAC over a Channel. It declares a more than ternary relation (five)

of type Communication Status ->MAC ->Data ->Time ->Channel which

maps each element of Communication Status to an element of MAC ; each

element of MAC to lone element of Data that is mapped to an element of

Time; each element of Data that is mapped to an element of Time to an

element of Channel ; each element of Channel to an element of Data that is

mapped to an element of Time; each element of Data that is mapped to an

element of Time to an element of MAC ; each element of MAC to an element

of Communication Status.

141

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The (five) relation sends ⊆ Communication Status × MAC × Data × Time

× Channel. (Line 9 Appendix C.1, Line 9 Appendix C.2) declares a relation

sends with domain Communication Status and range Channel. The declara-

tion of sends contains the multiplicity annotation lone which makes sends a

partial function: a five relation that associates every Communication Status

and every MAC with lone associated data with time. For every element cs

in Communication Status, and for every element mac in MAC, the keyword

lone before Data with Time constraints the term mac.(cs.sends) to be lone.

The declaration of

sends in Communication Status−> MAC −>

(Data −> Time) −> Channel

can be expressed as:

∀ cs : Communication Status, mac : MAC, d : Data, t : Time|

(t.d).mac.(cs.sends) ⊆ (lone Channel)

We can express the multiplicity constraints as:

all cs : Communication Status| cs.sends &&

all cs : Communication Status, mac : Mac| mac.(cs.sends) &&

all cs : Communication Status, mac : Mac, d : Data, t : Time|

lone (t.d).mac.(cs.sends)

The multiplicity keyword lone makes the declaration hold when the relation

sends is a partial function from Communication Status to Cahnnel.

142

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

• The field receives represents the Data that has been received from a MAC

each Time over a Channel. It declares a more than ternary relation (five)

of type Communication Status ->MAC ->Data ->Time ->Channel which

maps each element of Communication Status to an element of MAC ; each

element of MAC to lone element of Data that is mapped to an element of

Time; each element of Data that is mapped to an element of Time to an

element of Channel ; each element of Channel to an element of Data that is

mapped to an element of Time; each element of Data that is mapped to an

element of Time to an element of MAC ; each element of MAC to an element

of Communication Status.

The (five) relation receives ⊆ Communication Status × MAC × Data ×

Time × Channel. (Line 9 Appendix C.1, Line 9 Appendix C.2) declares

a relation receives with domain Communication Status and range Chan-

nel. The declaration of receives contains the multiplicity annotation lone

which makes receives a partial function: a five relation that associates ev-

ery Communication Status and every MAC with lone associated data with

time. For every element cs in Communication Status, and for every element

mac in MAC, the keyword lone before Data with Time constraints the term

mac.(cs.receives) to be lone. The declaration of

receives in Communication Status−> MAC −>

(Data −> Time) −> Channel

can be expressed as:

∀ cs : Communication Status, mac : MAC, d : Data, t : Time|

(t.d).mac.(cs.receives) ⊆ (lone Channel)

We can express the multiplicity constraints as:

all cs : Communication Status| cs.receives &&

143

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

all cs : Communication Status, mac : Mac| mac.(cs.receives) &&

all cs : Communication Status, mac : Mac, d : Data, t : Time|

lone (t.d).mac.(cs.receives)

The multiplicity keyword lone makes the declaration hold when the relation

receives is a partial function from Communication Status to Cahnnel.

• Fact

The three facts in our model Appendix (C.3) representing a constraint on for-

mulas. The first fact (Line 1) states that for all Communication Status, such that

a MitM does not exist in the set of visitors for the first aspect, or for the second

aspect, a MitM exists as a visitor (belongs to the visitors), but he does not in-

tercept the client because the client does not belong to the MitM. This implies

for all time t,t’ which represents sending and receiving time respectively, and for

all data d,d’ which represent sending and receiving data respectively, and for all

channels ch1 which represents that there is a channel to exchange data over, such

that what the client sent during Communication Status is data d in time t over

a channel ch1 and what the server receives during Communication Status is data

d’ in time t’ over the same channel ch1 implies that sending and receiving time

are equals which means there is no time delay occurred.

The second fact states the truth of the first fact to imply that data that has

been sent d equals data that has been received d’ and because the MitM does not

exist, he has no ability to send or receive as a client (Line 2).

144

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The third fact states that, for all s of Communication Status, the client, and the

server are not equal as they have different unique MAC address (Line 3). However,

the mitm has not been constrained to not be equal to the client, because in case of

an interception (second aspect), he may pretend to be a client to the server using

the client’s MAC address.

• Predicate

Our protocol model as seen in Appendix (C.4) has one predicate SingleChannel

below which controls Time t,t’, Data, t,t’, Internet server provider, isp, isp’,

Communication Status status1, and channel ch1 (Line 1). The statuses are linked

using “and ”. The predicate also visualizes the operation of the protocol and is

specified using status1 of Communication Status.

145

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The SingleChannel predicate in (Lines 1-19) illustrates that it passes through

one status. The status (status1) begins by determining the current status for the

two hosts as they are both in the status of connecting and exchanging data (Lines

2,3) and these two hosts exists as visitors (Lines 4,5). In this status, the two

parties are connecting to their selected ISP (isp,isp’) (Lines 6,7), thus opening a

single channel using their ISP to exchange data between them (Lines 8,9).

After that, the two hosts are now exchanging data at a time over the channel

(Lines 10,11). The client never has the function of receiving (Line 12), while the

server never has the function of sending (Line 13). For the first aspect, (Line 14)

illustrate that there is no MitM as a visitor, while for the second aspect, (Line 15)

illustrate that there is a MitM as a visitor but it has not intercepted the client as

the client does not belong to the MitM.

When two parties are exchanging their data over the opened single channel,

sending data over a channel takes place at sending time, and receiving data takes

place over the same channel at receiving time. The assumption of this status is

that, the data that has been received equals the data that has been sent if the

sending time equals the receiving time and no MitM exist, so it is a secure scope

and no MitM intercepts data that has been exchanged and data has neither been

eavesdropped nor modified.

• Assertion

The assertion in Appendix (C.5), states that, if SingleChannel holds in times

t,t’, Data d,d’,ISP isp,isp’, and Communication Status status1,status2, then the

equalities of sending and receiving data hold as well.

146

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The user limits the scope of analysis to 3 atoms of MAC, 2 atoms of Time, 2

atoms of ISP, 2 atoms of Data, 1 atom of ConnectionStatus, 1 atom of Channel,

and 1 atom of Communication Status.

6.5 Results

In this section, we present the results we achieved from modelling, analysing,

and checking the four properties of the first protocol for two aspects using the

Alloy Analyser and bounded SAT solver. These two aspects are transmitting data

securely, and transmitting data insecurely with the presence of a MitM.

For the first aspect: the first property is there is no MitM; the second

property is opening one channel to exchange data between two hosts (client,

server); the third property is the time for sending and receiving data over the

opened channel has not been delayed which implies that the data received by the

server equals the data sent by the client; the fourth property is MAC addresses

is one and has to be unique. The second aspect has the same properties as the

first aspect except the first property which requires that there is a MitM,

Before checking the satisfiability of the model, we need first to check its con-

sistency. If the model is inconsistent, the analyser cannot work efficiently for

detecting a counterexample.

The run command runs the SAT4J solver. The command asks the analyser to

search for instances to visualize them. These instances assign sets and relations

147

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

that their size is limited to be 3 atoms for MAC, 2 atoms for Time, 2 atoms for

ISP, 2 atoms for Data, 1 atom for ConnectionStatus, 1 atom for Channel, 1 atom

for Communication Status. The visualised instances for the first protocol model

are acceptable. They correspond to the declarations of the fields and signatures,

and satisfy the predicate and the Alloy model together which means the model is

consistent.

The check command searches for a counterexample showing an execution path

that caused an error if one exist. The command looks for an instance that violates

the assertion. This analysis is implemented with respect to the bounded scope of

3 atoms for MAC, 2 atoms for Time, 2 atoms for ISP, 2 atoms for Data, 1 atom for

ConnectionStatus, 1 atom for Channel, 1 atom for Communication Statu. Only

a finite number of elements for each type is taken into account. Therefore, the

absence of an instance does not include checking satisfiability.

The analyser spent 0.119s checking the four properties of the first protocol for

the first aspect to generate counterexamples with respect to the finite scope.

The automatic check detects that, for the first aspect, when the predicate shows

that there is no MitM as a visitor there is no counterexample to the assertion

within the limited scope. The results is acceptable because the analyser found an

instance as seen in Figures D.1 that satisfied the specification but did not violate

the DataSecure assertion. The model allows us to visualise the model states where

the status is shown in Figure 6.1 indicated by $. We conclude that the property

that has been analysed holds in the model within the provided scopes.

Figure 6.1, visualises the first aspect of transmitting data securely over a single

channel. As we see, transmitting data over a single channel requires one status.

Both the client mac1 and the server mac0 have the same status which is Connec-

148

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

tion And Exchanging Data. Both the client and the server appeared as visitors

and there is no MitM to intercept the client. Each connects to its Internet Service

Provider as the client connects to isp1, while the server connects to isp0. In this

connection status we notice that a channel ch is opened between two hosts to

exchange data between them. As we see, the client sends data1 at time1, and

the sever receives the same data data1 at the same sending time time1. The non

existence of the interception of the MitM led to the receiving data being equal

to the sending data with the assumption that the time for sending and receiving

data are equal. So, we notice that sending and receiving time still remained the

same which corresponds with our assumption that they should be equals.

So, from the figure, we achieved all the properties that we wanted to assert for

the first aspect. The result we achieved made the system properties satisfy the

system requirements. Thus, the submitted message has not been modified or read.

For the second aspect (insecure protocol) this analysis is implemented with

respect to a bounded scope of 3 atoms for MAC, 2 atoms for Time, 2 atoms for

ISP, 2 atoms for Data, 1 atom for ConnectionStatus, 1 atom for Channel, 1 atom

for Communication Statu in which only a finite number of elements for each type is

taken into account; and therefore absence of an instance does not include checking

satisfiability.

The Alloy Analyser spent 0.211s checking the four properties of the first protocol

for the second aspect. The first property is that there is a MitM; the second

property is opening one channel to exchange data between two hosts (client,

server); the third property is the time for sending and receiving data over the

opened channel has not been delayed which implies to received data by the server

equals to sent data by the client; the fourth property is MAC addresses are one

and unique.

149

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
1:

A
n

In
st

an
ce

of
T

h
e

F
ir

st
A

sp
ec

t
(S

ec
u
re

P
ro

to
co

l)

150

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The automatic check detects that there is a MitM as visitor which intercepts

the client’s MAC. There are two kinds of counterexample to the assertion within

the limited scope checked. The results is acceptable because the analyser found an

instance as seen in Figures 6.2 for dynamic MitM, and (6.3) for static MitM that

violated the DataSecure assertion. The model allows us to visualise the model

states where the status is shown in Figures 6.2, 6.3 indicated by $. It concludes

that the property that has been analysed does not hold in the model within the

provided scopes.

151

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
2:

G
en

er
at

in
g

A
C

ou
n
te

re
x
am

p
le

fo
r

T
h
e

S
ec

on
d

A
sp

ec
t

(I
n
se

cu
re

P
ro

to
co

l)
D

y
n
am

ic
M

it
M

152

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

Figure 6.2 visualises the second aspect of transmitting data over a single channel

which requires one status. Both the client mac1 and the server mac0 have the

same status which is Connection And Exchanging Data. Both the client and the

server appeared as visitors and there is a dynamic MitM which intercepts the

client. The client and MitM connect to isp1, while the server connects to isp0. In

this connection status we notice that a channel ch is opened between two hosts to

exchange data between them. As we see, the client sends data1 at time1, and the

server receives different data data0 that has been sent at the same sending time

time1. The interception of the MitM led to receiving data that is not equal to the

sending data assuming that the time for sending and receiving data is not equal

because of the interception and modifying data. However, we notice that sending

and receiving time still remained the same which conflicts with our assumption

that they should be different, and here is the counterexample.

So, from the figure we achieved all the properties that we wanted to assert for

the second aspect except the third property which is that the time for sending

and receiving data over the opened channel has not been delayed. The result we

achieved shows that system properties do not satisfy system requirements. Thus,

the submitted message has been modified.

Figure 6.3, visualises the second aspect of transmitting data over a single channel

which requires one status. Both the client mac1 and the server mac0 have the

same status which is Connection And Exchanging Data. Both the client and the

server appeared as visitors and there is a static MitM which intercepts the client.

The client and MitM connect to isp1, while the server connects to isp0. In this

connection status we notice that a channel ch is opened between two hosts to

exchange data between them. As we see, the client sends data1 at time1, and

the sever receives the same data data1 at the same sending time time1. The

interception of the MitM led to receiving data that is equal to the sending data,

assuming that the time for sending and receiving data is not equal because of the

interception and reading data. However, we notice that time still remained the

153

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

same which conflicts with our assumption that they should be different, and here

is the counterexample.

So, from the figure we achieved all the properties that we wanted to assert for

the second aspect except the third property which is that the time for sending and

receiving data over the opened channel has not been delayed. These requirements

are that the equality of sending and receiving time leads to the data that has been

received being equal to the data that has been sent. Thus, the submitted message

has been eavesdropped.

By examining the trace of the instance that the SAT solver found with coun-

terexamples as shown in Figures 6.2, 6.3, we can see that, even with the assumption

that there is a MitM as a visitor and he intercepts the client, data has not been

exchanged securely, as data that has been received does or does not equal data

that has been sent. Also there is no time delay in the two counterexamples which

conflicts with our assumption that when exchanged data is insecure then time

should not be equal which shows that interception happened.

To achieve the the third property, we needed to add constraints as facts. After

adding the three facts as seen in Appendix (C.3), the Alloy Analyser checking

found that there is no counterexample in 0.409s even with the large scope in

checking the DataSecure assertion.

154

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
3:

G
en

er
at

in
g

A
C

ou
n
te

re
x
am

p
le

fo
r

T
h
e

S
ec

on
d

A
sp

ec
t

(I
n
se

cu
re

P
ro

to
co

l)
S
ta

ti
c

M
it

M

155

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

We now explore the model further to identify the problem that data that has

been received is equal to data that has been sent because of the receiving time

being equal to the sending time; MitM did not intercept any MAC address because

we restricted that he is not in the visitors. Thus there is no counterexample as

seen in Figure 6.4 because the analyser did not find an instance that satisfied the

specification, with each constraint formula in facts but violating the DataSecure

assertion. We conclude that the property that has been analysed holds in the

model only within the provided scopes and a MitM in a single channel may cause

readable or modified data without showing any delay time unless the MitM exists

as a visitor without interception as seen in Figure 6.4.

Figure 6.4, visualises the second aspect of transmitting data over a single channel

with no MitM interception. As we see, transmitting data over a single channel

requires one status. Both the client mac2 and the server mac0 have the same

status which is Connection And Exchanging Data. The client, the server, and a

MitM mac1 appeared as visitors and the MitM did not intercept the client. The

client connect to isp1, while the server connects to isp0. In this status we notice

that a channel ch is opened between the two hosts to exchange data. As we see,

the client sends data1 at time1, and the sever receives the same data data1 at

the same sending time time1. The existence of the MitM as a visitor with no

interception led to received data being equal to the sent data assuming that the

time for sending and receiving data is equal. So, we notice that time still remained

the same which corresponds with our assumption that they should be equal.

156

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
4:

A
A

,
N

o
C

ou
n
te

re
x
am

p
le

,
A

va
li
d

In
st

an
ce

157

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

So, from the figure we achieved all the properties that we wanted to assert for the

second aspect. These properties are the first property is that there is no MitM,

the second property is opening one channel to exchange data between two hosts

(client, server), the third property is the time for sending and receiving data

over the opened channel has not been delayed which implies that the received data

equals the sent data, the fourth property is MAC addresses is one and unique.

Thus, the submitted message has not been modified or read.

Next, we will see how the first protocol is developed when the scopes of Com-

munication Status, channels, ISP, MACs, data, and time are increased.

6.6 Protocol of Transmitting Data Over Multi-

channel Case Study

6.6.1 Second Protocol: Describing Data Transmitting Se-

curely Over Multichannel WLANs in The presence

of MitM

Our second protocol cares about protecting data to make it unreadable based on

submitting it over a multichannel instead of one channel. The protocol is developed

from the first protocol by separating transmitted data into letters and its matching

indices, and transmitting each over different channel connected with different MAC

addresses with different ISPs. Therefore, the properties and requirements are

also developed. The protocol considers there being a MitM to intercept data

transmitting over multichannel between the two parties communication. As a

result, data that has been received may have not been read when data over a

channel is intercepted because it includes either letters or indices, the consideration

of the different MAC addresses, and connecting to different ISPs. Intercepting

one of two channels may cause a delay time for the intercepted one. Thus, if no

modification occurs for the data that is transmitted over an intercepted channel,

158

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

data that has been received equals the data that has been sent which leads to data

not being read.

6.6.1.1 Protocol Model Properties and Requirements

The model of the protocol can be enhanced by adding six properties. The first

property is that data (indices) and (letters) are transmitted over two different

channels. The second property is that only one channel is able to be intercepted

during the two communication statuses, i.e no two channels have been intercepted.

The third property is that the MAC address is changeable and no MAC ad-

dresses are equal. The fourth property is that there is one MitM. The fifth

property is that two channels are opened to exchange data between two hosts

(client, server), one channel for exchanging letters and the other for exchanging

indices. The sixth property is that the time for sending and receiving data over

the opened channel has not been delayed which implies that data received by the

server equals to data sent by the client.

The protocol requirements are that if one of two channels has been intercepted,

data that has been received equals data that has been sent over this intercepted

channel although the time for sending and receiving data should not be equal

which refers to time delays which are caused by the interception.

6.6.1.2 Model Structure Description

As seen in Appendix (E), modelling this protocol passes through two statuses.

The first status is when two parties connect to their first ISP using the original

MAC address, thus opening a single channel between them to exchange indices of

data. The second status is when two parties connect to their different second ISP,

thus opening a different single channel between them to exchange letters with the

original MAC address changing to the fake one.

159

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The assumption of these statuses is that data that has been received equals data

that has been sent if the sending time equals the receiving time. Furthermore no

MitM exists to act as a client or a server using their MAC addresses to pretend

to be a client to the server and a server to the client. So this is a secure scope,

no MitM intercepts data that has been exchanged and data has neither been

eavesdropped nor modified.

Another assumption is that data that has been received equals data that has

been sent if one sending time equals to one of receiving time and there is a MitM.

This shows that this is still a secure scope even if the MitM intercepts one of the

data (indices or letters) over one of the multichannels because the whole data is

kept unreadable.

6.6.1.3 Modelling and Checking The Protocol Using Alloy

Modelling the protocol is similar to the previous protocol in terms of the inter-

acting signatures. However we add some relations and facts to correspond with

the new properties. We also add new predicates and the assertion that we want to

check. The predicate is developed to include the behaviour of two statuses. The

assertion is developed to check that sending and receiving data are equal.

• Relation Declarations, and Multiplicities

The protocol as seen in Appendix (E.1) has some relations that are com-

mon with the first protocol. Here, we are going to express the developed

relations in the second protocol.

– The field client1 represents the first (the original) MAC that exists

as client in the Communication Status, and declares a binary relation

of type Communication Status ->MAC which maps each element of

Communication Status to one element of MAC.

160

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The binary relation client1 ⊆ Communication Status × MAC. (Lines

9 Appendix E.1, Line 2 Appendix E.2) declares a relation client1 with

domain Communication Status and range MAC. The declaration of

client1 contains the multiplicity annotation one which makes client1

a total function: a binary relation that associates every Communi-

cation Status with one of MAC. For every element cs in Communica-

tion Status, the keyword one before MAC constrains the term cs.client1

to be one. The declaration of

client1 in Communication Status−> MAC

can be expressed as:

∀ cs : Communication Status| cs.client1 ⊆ (one MAC)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.client1

The multiplicity keyword one makes the declaration hold when the

161

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

relation client1 is a total function from Communication Status to MAC.

– The field client2 represents the second (the fake) MAC that exists as

a client in the Communication Status, and declares a binary relation

of type Communication Status ->MAC which maps each element of

Communication Status to one element of MAC.

The binary relation client2 ⊆ Communication Status × MAC. (Lines

9 Appendix E.1, Line 3 Appendix E.2) declares a relation client2 with

domain Communication Status and range MAC. The declaration of

client2 contains the multiplicity annotation one which makes client2

a total function: a binary relation that associates every Communica-

tion Status with (one) exactly one of MAC. For every element cs in

Communication Status, the keyword one before MAC constraint]s the

term cs.client2 to be one. The declaration of

client2 in Communication Status−> MAC

can be expressed as:

∀ cs : Communication Status| cs.client2 ⊆ (one MAC)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.client2

The multiplicity keyword one makes the declaration hold when the

relation client2 is a total function from Communication Status to MAC.

– The field ispA represents the first ISP that has been connected to, and

declares a binary relation of type Communication Status ->ISP which

maps each element of Communication Status to one element of ISP.

The binary relation ispA ⊆ Communication Status × ISP. (Lines 9 Ap-

pendix E.1, Line 7 Appendix E.2) declares a relation ispA with domain

Communication Status and range ISP. The declaration of ispA contains

162

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

the multiplicity annotation one which makes ispA a total function: a

binary relation that associates every Communication Status with one

of ISP. For every element cs in Communication Status, the keyword

one before ISP constrains the term cs.ispA to be one. The declaration

of

ispA in Communication Status−> ISP

can be expressed as:

∀ cs : Communication Status| cs.ispA ⊆ (one ISP)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.ispA

The multiplicity keyword one makes the declaration hold when the

relation ispA is a total function from Communication Status to ISP.

– The field ispB represents the second ISP that has been connected to,

and declares a binary relation of type Communication Status ->ISP

which maps each element of Communication Status to one element of

ISP.

The binary relation ispB ⊆ Communication Status × ISP. (Lines 9 Ap-

pendix E.1, Line 8 Appendix E.2) declares a relation ispB with domain

Communication Status and range ISP. The declaration of ispB contains

the multiplicity annotation one which makes ispB a total function: a

binary relation that associates every Communication Status with one

of ISP. For every element cs in Communication Status, the keyword

one before ISP constrains the term cs.ispB to be one. The declaration

of

ispB in Communication Status−> ISP

can be expressed as:

∀ cs : Communication Status| cs.ispB ⊆ (one ISP)

163

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.ispB

The multiplicity keyword one makes the declaration hold when the

relation ispB is a total function from Communication Status to ISP.

– The field channel represents the available Channel in the Commu-

nication Status, and declares a binary relation of type Communica-

tion Status ->Channel which maps each element of Communication Status

to set of elements of Channel.

The binary relation channel ⊆ Communication Status × Channel. (Lines

9 Appendix E.1, Line 11 Appendix E.2) declares a relation channel with

domain Communication Status and range Channel. The declaration of

channel contains the multiplicity annotation set which makes channel a

function: a binary relation that associates every Communication Status

with set of Channel. For every element cs in Communication Status,

the keyword set before Channel constrains the term cs.channel to be

set. The declaration of

channel in Communication Status−> Channel

can be expressed as:

∀ cs : Communication Status| cs.channel ⊆ (set Channel)

We can express the multiplicity constraints as:

all cs : Communication Status| set cs.channel

The multiplicity keyword set makes the declaration hold when the re-

lation channel is a function from Communication Status to Channel.

– The field ch1 represents the first Channel that transmits the first

data (indices) over, and declares a binary relation of type Commu-

164

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

nication Status ->Channel which maps each element of Communica-

tion Status to one element of Channel.

The binary relation ch1 ⊆ Communication Status × Channel. (Lines

9 Appendix E.1, Line 12 Appendix E.2) declares a relation ch1 with

domain Communication Status and range Channel. The declaration of

ch1 contains the multiplicity annotation one which makes ch1 a total

function: a binary relation that associates every Communication Status

with one of Channel. For every element cs in Communication Status,

the keyword one before Channel constrains the term cs.ch1 to be one.

The declaration of

ch1 in Communication Status−> Channel

can be expressed as:

∀ cs : Communication Status| cs.ch1 ⊆ (one Channel)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.ch1

The multiplicity keyword one makes the declaration hold when the

relation ch1 is a total function from Communication Status to Channel.

– The field ch2 represents the first Channel that transmits the second

data (letters) over, and declares a binary relation of type Commu-

nication Status ->Channel which maps each element of Communica-

tion Status to one element of Channel.

The binary relation ch2 ⊆ Communication Status × Channel. (Lines

9 Appendix E.1, Line 13 Appendix E.2) declares a relation ch2 with

domain Communication Status and range Channel. The declaration of

ch2 contains the multiplicity annotation one which makes ch2 a total

function: a binary relation that associates every Communication Status

with one of Channel. For every element cs in Communication Status,

165

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

the keyword one before Channel constrains the term cs.ch2 to be one.

The declaration of

ch2 in Communication Status−> Channel

can be expressed as:

∀ cs : Communication Status| cs.ch2 ⊆ (one Channel)

We can express the multiplicity constraints as:

all cs : Communication Status| one cs.ch2

The multiplicity keyword one makes the declaration hold when the

relation ch2 is a total function from Communication Status to Channel.

• Predicate

Our protocol as seen in Appendix (E.4) has one predicate MultiChannel which

controls Time t,t’,t”,t”’, Data, indices,indices’, letters,letters’, Internet server

provider, isp, Communication Status status1, status2 (Line 1). The MultiChan-

nel predicate is the operation of the protocol and is specified using status1, and

status2 of Communication Status. status1, and status2 are instances of Commu-

nication Status showing the statuses of Communication Status, first and second

operations respectively.

The MultiChannel predicate illustrates that it passes through two statuses. The

first status occurs from (Line 2-19). The status begins by showing that two parties

client1 and server are starting the communication in terms of communication and

exchanging indices (Line 2,3). The server belongs to the visitors (Line 4). The

first ISPA belongs to the service provider making client1 connects to (Lines 5,8)

while the second ISPB does not belong to service provider (Line 6). The second

Client Client2 is not connected (Line 7). The first channel belongs to the channels

166

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

to exchange indices between client1 and the server over this first channel at a time

(Lines 10,12, and 14), while the second channel does not belong to the channels

(Line 11). Also, in this status no exchange of letters (sending or receiving) has

occurred (Line 13,15). Moreover, neither client1 has a receiving function nor

server has a sending function (Line 16,17). Also, client2 has no ability to send or

receive (Line 18,19). In status1, client1 belongs to the visitors (Lines 38) while

client2 does not belong to the visitors (Lines 39).

The second status occurs from (Line 20-45). The status begins by showing

that two parties client2 and server are starting the communication in terms of

communication and exchanging letters (Line 20,21). The server belongs to the

visitors (Line 221). The second ISPB belongs to the service provider making

client2 connect to (Line 24,26) while the first ISPA does not belong to the service

provider (Line 23). The server still connects to its (isp) that it is already connected

to in the first status (Line 27). The second channel belongs to the channels making

client2 and the server exchange letters over this second channel at the time (Line

29,30, and 32), while the first channel does not belong to the channels (Line 28).

Also, in this status no exchange of indices (sending or receiving) has occurred

167

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

(Line 31,33). Moreover, neither client2 has a receiving function nor server has a

sending function (Line 34,35). Also, client1 has no ability to send or receive in

the second status (Line 36,37). In status2, client2 belongs to the visitors (Lines

41) while client1 does not belong to the the visitors (Lines 40).

In this protocol, transmitting data may continue through one of three opera-

tions. Either there is a MitM and client1 in status1 belongs to the intercepts

and client2 in status2 does not belong to the intercepts (Line 43) which means

the interception takes place in the first status for the first client. Or,there is a

MitM and client1 in status1 which does not belong to the intercepts and client2

in status2 belongs to the intercepts (Line 44) which means the interception takes

place in the second status for the second client. Or there is a MitM and client1

in status1 which does not belong to the intercepts and client2 in status2 does not

belong to the intercepts (Line 45) which means that both channels have not been

intercepted.

168

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

• Assertion

The protocol as seen in Appendix (E.5) has one assertion DataSecure. As

seen in the assertion (Line 1), it states that, if MultiChannel meets the facts

at times t,t’,t”,t”’, Data indices,indices’, letters,letters’,ISP isp, and Communi-

cation Status (status1), (status2). This implies that the equalities of sending and

receiving indices and letters hold as well.

• Fact

The protocol as seen in Appendix (F.2) has three facts (Line 1-10). In the first

fact (Lines 1-5) we need to constrain that, for all s,s’, which represent the first

and the second communication in Communication Status respectively, as follows.

The first status s the first client client1 belongs to the visitors, while the second

client client2 does not belong to the visitors, and in the second status s’ the first

client (client1) does not belong to the visitors, while the second client (client2)

belongs to the visitors.

We have three cases, either: 1) the first channel has been intercepted and the sec-

ond channel has not been intercepted when client1 in status1 has been intercepted,

i.e it belongs to the MitM, while client2 in status2 has not been intercepted, i.e

it does not belong to the MitM ; or 2) the first channel has not been intercepted

and the second channel has been intercepted when client1 in status1 has not been

intercepted, i.e it does not belong to the MitM, while client2 in status2 has been

intercepted, i.e it belongs to the MitM ; or 3) the first and the second channel have

169

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

not been intercepted when client1 in status1 and client2 in status2 have not been

intercepted, i.e both of them do not belong to the MitM.

These three cases above imply that, for all s,s’ which represent the first and

the second communication in Communication Status respectively, and all time

t,t’,t”,t”’ which represent sending and receiving indices,letters time respectively,

and for all data indices, indices’,letters,letters’ which represent sending and receiv-

ing data indices and letters respectively as follows. The data indices’ the server

receives at time t’ over the first channel ch1 equals the data indices the client1

sends at time t over the first channel ch1 and the data letters’ the server receives

at time t”’ over the second channel ch2 equals the data letters the client2 sends

at time t” over the second channel ch2 implies that the receiving time t’ is not

equal to the sending time t and the receiving time t”’ is equal to the sending time

t” when there is an interception in the first channel, or the receiving time t’ is

equal to the sending time t and the receiving time t”’ is not equal to the sending

time t” when there is an interception in the second channel, or the receiving time

t’ is equal to the sending time t and the receiving time t”’ is equal to the sending

time t” when there is no interception in both channels.

170

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

In the second fact (Lines 6-8) we need to constrain that, the truth of the first

fact implies that the data (indices’/ letters’) the server receives equals the data

(indices/letters) the client sends, i.e achieving the assertion if one of the channels

has been intercepted causing a delay time in one channel and as a result data is

unreadable.

In the third fact (Lines 9,10) we need to constrain that, for all Communi-

cation Status, no two MACs (client1’s mac, client2’s mac, or server’s mac) are

equals. Macs should be unique.

6.7 Results

In this section, we present the results we achieved from modelling, analysing,

and checking the properties of the second protocol using the Alloy Analyser, and

bounded SAT solver.

171

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

After running the model, we got that the predicate MultiChannel is consistent

and there are instances that are available according to the finite scopes. This

analysis is implemented with respect to a bounded scope of 3 atoms of MAC, 4

atoms of Time, 2 atoms of ISP, 2 atoms of Channel, 4 atoms of Data, 1 atom

of ConnectionStatus, 2 atoms of Communication Status in which only a finite

number of elements for each type is taken into account; and therefore absence of

an instance does not include checking satisfiability.

The Alloy Analyser spent 1.703s checking the properties of the third protocol.

These properties are data (indices) and (letters) transmit over two different chan-

nels, only one channel is able to be intercepted during the two communication

statuses, i.e no two channels have been intercepted, the MAC address is change-

able and there are no MAC addresses that are equal, there is one MitM, opening

two channels to exchange data between two hosts, one channel for exchanging let-

ters and the other for exchanging indices, and the time for sending and receiving

data over the opened channel has not been delayed which implies that received

data by the server equals sent data from the client.

The automatic check detects that there is a counterexample to the assertion

as shown in Figure 6.5. The result is acceptable because the analyser found an

instance that satisfied the specification but violated the DataSecure assertion. We

conclude that the properties that have been analysed do not hold in the model

within the provided scopes.

Figure 6.5, shows two statuses, status1 and status2. The first status shows that

status2 mac1 and server have the same status First Communication And Exchanging Indices.

Client1 and server belong to the visitors, while client2 does not. Client1 connects

to the first ispA. The server connects to an isp. The first channel ch1 is opened

between two hosts to exchange indices. A MitM intercepts client1.

172

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
5:

A
n

In
st

an
ce

of
G

en
er

at
ed

A
C

ou
n
te

re
x
am

p
le

173

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

We notice that, the client1 sends data1 at time1, and the server receives different

data data0 that has been sent at same time time1. The interception of the MitM

led to receiving data not being equal to the sending data. However, we notice

that sending and receiving time still remained the same which conflicts with our

assumption that they should be different, and here is the counterexample.

The second status shows that client2 mac1 and server have the same status

Second Communication And Exchanging Letters. Client2 and server belong to

the visitors, while client1 does not. Client2 connects to the second ispB. The

server connects to an isp. The second channel ch2 is opened between two hosts

to exchange letters. A MitM intercepts client2.

We notice that, the client2 sends data2 at time1, and the server receives different

data data1 that has been sent at a different sending time time2. The interception of

the MitM led to receiving data not being equal to the sending data and the time for

sending and receiving data are not equal as well. However, we notice that because

the client did not change the MAC address when moving from status1 to status2

it may be noticeable by the MitM, the MitM could intercept it again and get the

data and match between letters and indices, and here is the counterexample.

So, from the figure, we did not achieved the sixth property in the first status

which is that the time for sending and receiving data over the opened channel has

not been delayed which implies that received data by the server equals sent data

from the client. Also, we did not achieve the second property in the second status

which is that only one channel is able to be intercepted during the two commu-

nication statuses, and the third property in the second status which is that the

MAC address is changeable and there is no MAC addresses are equals. The result

we achieved showed that system properties do not satisfy system requirements.

174

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

By examining the trace of the instance that SAT solver found, the counterexam-

ple is as shown in Figure 6.5. We can see that, the sixth property does not hold:

time for exchanging data (indices) still remains the same despite the presence of

a MitM which intercepted the channel that exchanged data in the first status,

and exchanging data (indices) are not equal as well. Thus, an interception took

place but there is no delay so the data that has been received does not equal the

data that has been sent. Also, the MAC addresses in two channels did not change

which conflict with the third property.

To achieve the model goal in the assertion, we need to add constraints or prop-

erties as facts as seen in Appendix (E.3). After adding the three facts, if no such

counterexample has been found it is still possible that one could exist in a larger

scope. However the Alloy Analyser spent 1.594s to gain the result that there is

no counterexample even with the large scope in checking this assertion.

After correcting the counterexample, we now explore the model further to iden-

tify the problem in three hypotheses. The first hypotheses is that when a MitM

intercept the first channel but not the second channel: as seen in Figure 6.6, the

first status shows that client1 mac2 and server mac0 are in the same status

First Communication And Exchanging Indices. Client1 and server belong to the

visitors, while client2 does not. Client1 connects to the first ispA. The server con-

nects to an isp. The first channel ch1 is opened between two hosts to exchange

indices. A MitM intercepts client1. We notice that, as we see, the client1 sends

data2 at time3, and the sever receives the same data data2 that has been sent at

a different sending time time2. The interception of the MitM led to receiving data

being equal to the sending data assuming that the time for sending and receiving

data are not equal as well because of the interception and eavesdrop data. We

notice that our assumption is achieved and the time is different because of the

interception of a MitM, and there is no counterexample.

175

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The second status shows that client2 mac1 and server mac0 have the same

status Second Communication And Exchanging Letters. Client2 and server be-

longs to the visitors, while client1 does not. Client2 connects to the second ispB.

The server connects to an isp. The second channel ch2 is opened between two

hosts to exchange letters. There is no MitM which intercepts client2. We notice

that the client2 sends data1 at time3, and the server receives the same data data1

at the same sending time time3. The non existence of the interception of the

MitM led to the receiving data being equal to the sending data, and the time for

sending and receiving data are equal. We notice that because the client changed

the MAC address when moving from status1 to status2 this lead to it not being

noticeable by the MitM, MitM could not intercept it again and get the data and

match between letters and indices, and there is no counterexample.

The second hypotheses is that when a MitM intercept the second channel but

not the first channel : as seen in Figure 6.7, the first status shows that client1 mac2

and server mac0 are in the same status First Communication And Exchanging Indices.

Client1 and server belong to the visitors, while client2 does not. Client1 connects

to the first ispA. The server connects to an isp. The first channel ch1 is opened

between two hosts to exchange indices. No MitM intercepts client1. We notice

that, as we see, the client1 sends data3 at time3, and the sever receives the same

data data3 at the same sending time (time3). The non existence of the intercep-

tion of the MitM led to receiving data being equal to the sending data assuming

that the time for sending and receiving data are equal as well. We notice that our

assumption is achieved and the time is equal because there is no interception by

a MitM, and there is no counterexample.

The second status shows that client2 mac1 and server mac0 are in the same

status Second Communication And Exchanging Letters. Client2 and server be-

long to the visitors, while client1 does not. Client2 connects to the second ispB.

The server connects to an isp. The second channel ch2 is opened between two

hosts to exchange letters. A MitM intercepts client2. We notice that the client2

sends data2 at time2, and the server receives the same data data2 at a different

176

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
6:

A
n

In
st

an
ce

of
M

et
a

M
o
d
el

F
ir

st
H

y
p

ot
h
es

is
:

T
h
er

e
is

A
M

it
M

In
te

rc
ep

ts
th

e
F

ir
st

C
h
an

n
el

,
W

h
il
e

T
h
e

S
ec

on
d

C
h
an

n
el

H
as

N
ot

B
ee

n
In

te
rc

ep
te

d
in

T
h
e

S
ec

on
d

S
ta

tu
s

177

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

sending time time1. The existence of the interception of the MitM led to receiving

data being equal to the sending data and the time for sending and receiving data

are different. We notice that our assumption is achieved and the time is different

because there is an interception by MitM, and there is no counterexample.

178

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
7:

A
n

In
st

an
ce

of
M

et
a

M
o
d
el

S
ec

on
d

H
y
p

ot
h
es

is
:

T
h
er

e
is

A
M

it
M

In
te

rc
ep

ts
th

e
S
ec

on
d

C
h
an

n
el

,
W

h
il
e

T
h
e

F
ir

st
C

h
an

n
el

H
as

N
ot

B
ee

n
In

te
rc

ep
te

d
in

T
h
e

F
ir

st
S
ta

tu
s

179

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

The third hypotheses is that when a MitM neither intercepts the first channel

nor the second channel: as seen in Figure 6.8, the first status shows that client1

mac2 and server mac0 are in the same status First Communication And Exchanging Indices.

Client1 and server belong to the visitors, while client2 does not. Client1 connects

to the first ispA. The server connects to an isp. The first channel ch1 is opened

between two hosts to exchange indices. No MitM intercepts client1. We notice

that the client1 sends data1 at time1, and the server receives the same data data1

at the same sending time time2. The non existence of the interception of the MitM

led to receiving data being equal to the sending data assuming that the time for

sending and receiving data are equal as well. We notice that our assumption is

achieved and the time is equal because there is no interception by a MitM, and

there is no counterexample.

The second status shows that client2 mac1 and server mac0 are in the same

status Second Communication And Exchanging Letters. Client2 and server be-

long to the visitors, while client1 does not. Client2 connects to the second ispB.

The server connects to an isp. The second channel ch2 is opened between two

hosts to exchange letters. There is no MitM which intercepts client2. We notice

that the client2 sends data0 at time0, and the sever receives the same data data0

at the same sending time time0. The no existence of the interception of the MitM

led to receiving data being equal to the sending data and the time for sending

and receiving data are equal as well. We notice that our assumption is achieved

and the time is equal because there is no interception by a MitM, and there is no

counterexample.

180

Chapter 6: Multichannel Security Protocol Modelling Using Alloy

F
ig

u
re

6.
8:

A
n

In
st

an
ce

of
M

et
a

M
o
d
el

T
h
ir

d
H

y
p

ot
h
es

is
:

N
ei

th
er

th
e

F
ir

st
C

h
an

n
el

n
or

T
h
e

S
ec

on
d

C
h
an

n
el

H
av

e
B

ee
n

In
te

rc
ep

te
d

in
B

ot
h

S
ta

tu
se

s

181

Chapter 7

Multichannel Security Protocol

Proving Using Z3

7.1 Introduction

In this chapter, we translate the specification of the protocols from Alloy into Z3

FOL such that if there is a counterexample in Alloy in finite scopes, this is supposed

to be a counterexample in Z3 in infinite scopes and vice versa. We must ensure

that our formulation of the two specifications in Z3 are satisfiability equivalent to

Alloy which means if a formula in Alloy is satisfiable, then the formula in Z3 is

satisfiable and vice versa. We choose this methods as it is easy and we can trust

it to provide good results [63]. It should be noted that the translation presented

within this thesis is has not been formally verified.

7.1.1 First Protocol: Transmitting Data Over Single Chan-

nel

7.1.1.1 Type and Subtype Declarations

In Appendix (D) we give full details of the Z3 models with annotations to show

the equivalent Alloy.

182

Chapter 7: Multichannel Security Protocol Proving Using Z3

The hierarchical type system is translated implicitly. However, because the

SMT language does not support subtypes, we use membership functions to en-

force type hierarchy declarations. Consequently, top-level types are translated

to uninterpreted sorts, while the top-level (super-type) of a type is translated to

an uninterpreted membership function isType to indicate which elements of the

super-type belongs to the type. It is not necessarily to declare the membership

functions of top-level types, but we declared them to determine the semantics of

the subtype.

As seen in Appendix (D.1), top-level types Time, Channel, Card, ISP, Data,

ConnectionStatus, MAC, and CommunicationStatus are declared as uninterpreted

sorts Lines (1-7). The membership function in Appendix (D.2) Line (11) isCon-

nection And Exchanging Data is declared to specify the semantics of subtypes

Connection And Exchanging Data.

7.1.1.2 Properties Of The Sub-signatures

As seen in Appendix (D.5), (Line 1) we adjust the returns types of the “oneOf ”

functions/constants by specifying that each return a value of type ConnectionSta-

tus. For example: line (1) calls function oneOf Connection And Exchanging Data

in Line (1) in Appendix (D.3) which calls function isConnection And Exchanging Data

in Line (11) in Appendix (D.2) which returns one Operation type isConnec-

tion And Exchanging Data in Line (11) Appendix (D.2) which is already specified

as a return type in Line (1) Appendix (D.5).

Sub-signatures (Lines 1) Appendix (D.3) declare functions of the property some

for the sub signature Connection And Exchanging Data of the super signature

ConnectionStatus because ConnectionStatus has at least one element of the sub

signatures. In (Line 1) Appendix (D.6) we need to assert the lone property of the

previous sub signature because ConnectionStatus has at most one element of the

183

Chapter 7: Multichannel Security Protocol Proving Using Z3

sub signature. The assertion (Line 1) Appendix (D.6) is expressed to the formula

A below:

Formula A:

∀ o1, o2: ConnectionStatus.(o1 ∈ isConnection And Exchanging Data ∧
o2 ∈ isConnection And Exchanging Data) =>o1 = o2

The formula A specifies constrains that for each ConnectionStatus, there is

at most only one corresponding ConnectionStatus : if there exist two Connection-

Status belonging to isConnection And Exchanging Data for example, then these

two ConnectionStatus should be equal. i.e we restrict the characteristics of lone

ConnectionStatus of type isConnection And Exchanging Data for each status to

avoid the inconsistency.

7.1.1.3 Abstraction and Extension

In the first protocol, we do not need to prove the abstract and extension formulas

as we have only one status. The expression and the prove of the abstract and

extension will be developed in the protocol which contains two statuses.

7.1.1.4 Facts

Facts are assumed to be true. They represents the protocol properties. As seen

in Appendix (D.8), Line (1) declares quantifiers to restrict the first fact. Line (2)

declares quantifiers to restrict the second fact. Line (3) declares quantifiers to

restrict the third fact.

The first fact as seen below is expressed in formula B below:

184

Chapter 7: Multichannel Security Protocol Proving Using Z3

First fact:

(forall ((status1 CommunicationStatus))(implies(forall ((cmac MAC)(mmac MAC))
(or(=>(mitmIntercepts status1 mmac)(not(visitors status1 mmac)))
(and(=>(mitmIntercepts status1 mmac)(visitors status1 mmac))
(=>(client1 status1 cmac)(not(mitmIntercepts status1 cmac))))))
(forall ((t Time)(t1 Time)(d Data)(d1 Data)(ch1 Channel))
(implies (and (forall ((d11 Data)(t11 Time)(ch11 Channel))
(=>(exists ((cmac MAC))(and (client1 status1 cmac)
(sends status1 cmac d11 t11 ch11)))
(and(= d d11)(= t t11)(= ch1 ch11))))
(exists ((cmac1 MAC))(and (client1 status1 cmac1)
(sends status1 cmac1 d t ch1)))
(forall ((d11 Data)(t11 Time)(ch11 Channel))
(=>(exists ((smac MAC))(and (server status1 smac)
(receives status1 smac d11 t11 ch11)))
(and(= d1 d11)(= t1 t11) (= ch1 ch11))))
(exists ((smac1 MAC))(and (server status1 smac1)
(receives status1 smac1 d1 t1 ch1))))(= t t1)))))

Formula B:

(∀ status1:Communication Status, cmac,mmac:MAC.((status1,mmac) ∈
(mitmIntercepts =>(status1,mmac) /∈ visitors ∨
((status1,mmac) ∈ mitmIntercepts =>(status1,mmac) ∈ visitors
∧ (status1,cmac) ∈ client1 =>(status1,cmac) /∈ mitmIntercepts) =>
∀ t,t1:Time, d,d1:Data, ch1:Channel
(∀ t11:Time, d11:Data, ch11:Channel
∃ cmac:MAC.(status1,cmac) ∈ client1
∧ (status1,cmac,d11,t11,ch11) ∈ sends =>
(d = d11) ∧ (t = t11) ∧ (ch1 = ch11))) ∧
∃ cmac1:MAC.(status1,cmac1) ∈ client1
∧ (status1,cmac1,d,t,ch1) ∈ sends ∧
∀ t11:Time, d11:Data, ch11:Channel
∃ smac:MAC.(status1,smac) ∈ server
∧ (status1,smac,d11,t11,ch11) ∈ receives =>
(d1 = d11) ∧ (t1 = t11) ∧ (ch1 = ch11))) ∧
∃ smac1:MAC.(status1,smac1) ∈ server
∧ (status1,smac1,d1,t1,ch1) ∈ receives) =>t = t1)

185

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula B specifies constraints that: for all atoms status1 in Communica-

tion Status, cmac (client’s mac) in MAC, and mmac (MitM’s mac) in MAC such

that if a MitM mmac belongs to mitmIntercepts in the status, then the MitM

mmac does not belong to the visitors in the status (secure scope), or if the MitM

mmac belongs to mitmIntercepts in the status, then the MitM mmac belongs to

the visitors in the status, and if a client cmac belongs to client1 in the status,

then the client cmac does not belong to mitmIntercepts in the status.

It follows that for all atoms t and t1 in Time; d and d1 in Data; and ch1 in

Channel, for all atoms t11 in Time; d11 in Data; and ch11 in Channel, if there

exists cmac in MAC such that, status1 and cmac belong to client1 ; and status1,

cmac, d11, t11, and ch11 belong to sends, then d equals d11, t equals t11, and ch1

equals ch11. So, if there exists cmac1 in MAC, then status1 and cmac1 belong

to client1 ; and status1, cmac1, d, t, and ch1 belong to sends.

And for all atoms t11 in Time; d11 in Data; and ch11 in Channel, if there

exists smac in MAC such that, status1 and smac belong to server ; and status1,

smac, d11, t11, and ch11 belong to receives, then d1 equals d11, t1 equals t11,

and ch1 equals ch11. So, if there exists smac1 in MAC, then status1 and smac1

belong to server ; and status1, smac1, d1, t1, and ch1 belong to receives ; then t

equals t1.

The second fact as seen below is expressed to formula C below:

Second fact:

(forall ((t Time)(t1 Time)(d Data)(d1 Data)(ch1 Channel))
(implies (and (forall ((d11 Data)(t11 Time)(ch11 Channel))
(=>(exists ((cmac MAC))(and (client1 status1 cmac)
(sends status1 cmac d11 t11 ch11)))
(and(= d d11)(= t t11)(= ch1 ch11))))
(exists ((cmac1 MAC))(and (client1 status1 cmac1)
(sends status1 cmac1 d t ch1)))
(forall ((d11 Data)(t11 Time)(ch11 Channel))
(=>(exists ((smac MAC))(and (server status1 smac)
(receives status1 smac d11 t11 ch11)))
(and(= d1 d11)(= t1 t11) (= ch1 ch11))))

186

Chapter 7: Multichannel Security Protocol Proving Using Z3

(exists ((smac1 MAC))(and (server status1 smac1)
(receives status1 smac1 d1 t1 ch1))))(= t t1))(= d d1)))

Formula C:

∀ t,t1:Time, d,d1:Data, ch1:Channel
(∀ t11:Time, d11:Data, ch11:Channel
∃ cmac:MAC.(status1,cmac) ∈ client1
∧ (status1,cmac,d11,t11,ch11) ∈ sends =>
(d = d11) ∧ (t = t11) ∧ (ch1 = ch11))) ∧
∃ cmac1:MAC.(status1,cmac1) ∈ client1
∧ (status1,cmac1,d,t,ch1) ∈ sends ∧
∀ t11:Time, d11:Data, ch11:Channel
∃ smac:MAC.(status1,smac) ∈ server
∧ (status1,smac,d11,t11,ch11) ∈ receives =>
(d1 = d11) ∧ (t1 = t11) ∧ (ch1 = ch11))) ∧
∃ smac1:MAC.(status1,smac1) ∈ server
∧ (status1,smac1,d1,t1,ch1) ∈ receives ∧
t = t1) =>d = d1

The formula C specifies constraints that: for all atoms t and t1 in Time; d

and d1 in Data; and ch1 in Channel, for all atoms t11 in Time; d11 in Data; and

ch11 in Channel, if there exists cmac in MAC such that, status1 and cmac belong

to client1 ; and status1, cmac, d11, t11, and ch11 belong to sends, then d equals

d11, t equals t11, and ch1 equals ch11. So, if there exists cmac1 in MAC, then

status1 and cmac1 belong to client1 ; and status1, cmac1, d, t, and ch1 belong to

sends.

And for all atoms t11 in Time; d11 in Data; and ch11 in Channel, if there

exists smac in MAC such that, status1 and smac belong to server ; and status1,

smac, d11, t11, and ch11 belong to receives, then d1 equals d11, t1 equals t11,

and ch1 equals ch11. So, if there exists smac1 in MAC, then status1 and smac1

belong to server ; and status1, smac1, d1, t1, and ch1 belong to receives ; and t

equals t1, then d equals d1

The third fact as seen below is expressed to formula D below:

187

Chapter 7: Multichannel Security Protocol Proving Using Z3

Third fact:

(forall ((s CommunicationStatus))(forall ((mac1 MAC) (mac2 MAC))
(=>(and(client1 s mac1) (server s mac2))(not(= mac1 mac2)))))

Formula D:

∀ s:Communication Status, cmac1,cmac2:MAC.(s,cmac1) ∈ client1
∧ (s,cmac2) ∈ server =>cmac1 6= cmac2

The formula D specifies constraints that: all atoms s in Communication Status,

cmac1 (client1’s mac) in MAC and cmac2 (server’s mac) in MAC such that

client1’s mac in status1 is not equal to server’s mac in status1.

7.1.1.5 Relation Declarations

Relations are translated to Boolean-valued, uninterpreted, membership func-

tions. As seen in Appendix (D.2) these functions are declared over top-level types

because only top-level types are declared as sorts. Because all SMT functions are

total function, relations are specified utilizing three parts: function name, received

sorts, and returned value of Boolean type. The Boolean type includes two kinds

of value, true for the tuples that are involved in the declared relation, or false for

all others that are not involved.

Lines (1-10) Appendix (D.2) declare functions of relations. These relations are:

serviceProvider, which is declared as Boolean-valued function over Communica-

tion Status ; ISP (Line 1), visitors, client,server, and mitmIntercepts which are

declared as Boolean-valued function over Communication Status and MAC (Lines

2-5); connection which is declared as Boolean-valued functions over Communica-

tion Status, MAC, and ISP (Line 6); opens which is declared as Boolean-valued

functions over Communication Status, MAC, ISP, and Channel (Line 7); status

which is declared as Boolean-valued functions over Communication Status, MAC,

188

Chapter 7: Multichannel Security Protocol Proving Using Z3

and ConnectionStatus (Line 8); sends, receives which are declared as Boolean-

valued functions over Communication Status, MAC,Data,Time, and Channel (Lines

9,10).

Lines (1-8) Appendix (D.7) declare more constraints that guarantee that each

relation is defined for its specific types considering the multiplicity keywords con-

straints.

The relations serviceProvider: set ISP and visitors:set MAC are not required

to be translated to formula as the set keyword constrains and allows any number

of elements. Thus, its defined Boolean-valued function (Lines 1, and 2) Appendix

(D.2) is equivalent to their meaning.

Line (1) for the relation below and as seen in Appendix (D.2) is expressed in

formula E below:

client: one MAC

(forall ((cs CommunicationStatus))(and (exists ((mac1 MAC))(client1 cs mac1))
(forall ((mac3 MAC)(mac2 MAC))(=>(and(client1 cs mac2)(client1 cs mac3))
(= mac2 mac3)))))

Formula E:

∀ cs:CommunicationStatus ∃ mac1:MAC.(cs,mac1) ∈
client1 ∧ ∀ mac3,mac2:MAC.(cs,mac2) ∈ client1
∧ (cs,mac3) ∈ client1 =>mac2 = mac3

The formula E specifies constraints that: for all atoms cs in Communication-

Status, if there exists mac1 in MAC, such that, the cs and mac1 belong to the

first client client1, and for all mac3 and mac2 :MAC, such that cs and mac2 be-

long to the client (client1); and cs and mac3 belong to the client (client1) then

189

Chapter 7: Multichannel Security Protocol Proving Using Z3

mac2 equals mac3. To restrict the multiplicity to one, we suppose that if two

macs belong to the client client1, thus these two macs are equal.

Line (2) for the relation below and as seen in Appendix (D.2) is expressed in

formula F below:

server: one MAC

(forall ((cs CommunicationStatus))(and(exists ((mac1 MAC))(server cs mac1))
(forall ((mac3 MAC)(mac2 MAC))(=>(and (server cs mac2)(server cs mac3))
(= mac2 mac3)))))

Formula F:

∀ cs:CommunicationStatus ∃ mac1:MAC.(cs,mac1) ∈ server ∧
∀ mac3,mac2:MAC.(cs,mac2) ∈ server ∧
(cs,mac3) ∈ server =>mac2 = mac3

The formula F constrains that: for all atoms cs in CommunicationStatus, if

there exists mac1 in MAC, such that the cs and mac1 belong to the server, and for

all mac3 and mac2 :MAC, such that cs and mac2 belong to the server ; and cs and

mac3 belong to the server then mac2 equals mac3. To restrict the multiplicity

to one, we suppose that if there are two macs belonging to the server, these two

macs are equal.

Line (3) for the relation below and as seen in Appendix (D.2) is expressed in

formula G below:

190

Chapter 7: Multichannel Security Protocol Proving Using Z3

mitmIntercepts: lone MAC-server

(forall ((cs CommunicationStatus)(mac3 MAC)(mac2 MAC))(=>(and
(mitmIntercepts cs mac2)(mitmIntercepts cs mac3))(= mac2 mac3)))
(forall ((cs CommunicationStatus))(exists ((mac1 MAC))
(not(mitmIntercepts cs mac1))))

Formula G:

∀ cs:CommunicationStatus, mac3,mac2:MAC.(cs,mac2) ∈
mitmIntercepts ∧ (cs,mac3) ∈ mitmIntercepts =>mac2 = mac3
∀ cs:CommunicationStatus ∃mac1 : MAC.(cs,mac1)/∈ mitmIntercepts

The formula G specifies constraints that: for all atoms cs in Communica-

tionStatus, mac2 and mac3 in MAC, such that the cs and mac2 belong to the

mitmIntercepts ; and cs and mac3 belong to the mitmIntercepts, then mac2 equals

mac3. For all cs in CommunicationStatus, there exists mac1 in MAC, such that

cs and mac1 do not belong to the mitmIntercepts. To restrict the multiplicity to

one, we supposed that if there are two macs belong to the mitmIntercepts, these

two macs are equal.

Line (4) for the relation below and as seen in Appendix (D.2) is expressed in

formula H below:

connection: MAC ->lone serviceProvider

(forall ((cs CommunicationStatus)(mac MAC))(and(forall ((isp11 ISP))
(=>(connection cs mac isp11)(serviceProvider cs isp11)))
(forall ((isp12 ISP)(isp13 ISP))(=>(and(connection cs mac isp12)
(connection cs mac isp13))(= isp12 isp13)))))

Formula H:

∀ cs:CommunicationStatus,mac:MAC
(∀ isp11:ISP.(cs,mac,isp11) ∈ connection =>
(cs,isp11) ∈ serviceProvider ∧

191

Chapter 7: Multichannel Security Protocol Proving Using Z3

∀ isp12,isp13:ISP.(cs,mac,isp12) ∈ connection ∧
(cs,mac,isp13) ∈ connection =>isp12 = isp13)

The formula H specifies constraints that: for all atoms cs in Communication-

Status, mac in MAC ; for all isp11 :ISP, such that the cs, mac, and isp11 belong

to connection, then cs and isp11 belong to serviceProvider, and for all isp12 and

isp13 in ISP, such that the cs, mac, and isp12 belong to connection, and cs, mac,

and isp13 belong to connection, then that isp12 equals isp13. To restrict the

multiplicity to lone we supposed that if there are two isp in the connection, they

are equal.

Line (5) for the relation below and as seen in Appendix (D.2) is expressed in

formula I below:

status:MAC ->one ConnectionStatus

(forall ((cs CommunicationStatus)(mac MAC))(and(exists ((co ConnectionStatus))
(status cs mac co))
(forall ((a3 ConnectionStatus)(a2 ConnectionStatus))
(=>(and(status cs mac a2)(status cs mac a3))(= a2 a3)))))

Formula I:

∀ cs:CommunicationStatus,mac:MAC ∃ o:ConnectionStatus.(cs,mac,co) ∈ status ∧
∀ a2,a3:ConnectionStatus.(cs,mac,a2) ∈ status ∧ (cs,mac,a3) ∈ status =>(a2 = a3)

The formula I specifics constraints that: for all atoms cs in Communication-

Status and mac in MAC, if there exists an atom o in ConnectionStatus such that

cs, mac, and co belong to status, and for all atoms a2 and a3 in Communication-

Status such that cs, mac, and a2 belong to status and cs, mac, and a3 belong to

status then a1 equals a2. To restrict the multiplicity to one we supposed that if

there are two ConnectionStatus, thus they are equal.

192

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (6) for the relation below and as seen in Appendix (D.2) is expressed in

formula J below:

opens :MAC ->serviceProvider ->Channel

(forall ((cs CommunicationStatus) (mac MAC)(isp ISP)(ch Channel))
(=>(opens cs mac isp ch)(serviceProvider cs isp)))

Formula J:

∀ cs:CommunicationStatus,mac:MAC, isp:ISP,
ch:Channel.(cs,mac,isp,ch) ∈ opens =>(cs,isp) ∈ serviceProvider

The formula J specifies constraints that: for all atoms cs in Communication-

Status, mac in MAC, isp in ISP, and ch in Channel such that cs, mac, isp,and ch

belong to open then cs and isp belong to serviceProvider .

Line (7) for the relation below and as seen in Appendix (D.2) is expressed in

formula K below:

sends: MAC ->lone (Data ->Time)->Channel

(forall ((cs CommunicationStatus)(mac MAC)(ch Channel)
(d1 Data)(d2 Data)(t Time)(t1 Time))(=>
(and(sends cs mac d1 t ch)(sends cs mac d2 t1 ch)) (and(= d1 d2)(= t t1))))

Formula K:

∀ cs:CommunicationStatus, mac:MAC,ch:Channel, t,t1:Time,
d1,d2:Data.(cs mac d1 t ch) ∈ sends ∧

(cs mac d2 t1 ch) ∈ sends =>(d1 = d2) ∧ (t = t1)

The formula K specifies constraints that: for all atoms cs in Communication-

Status, mac in MAC, ch in Channel, t and t1 in Time and d1 and d2 in Data such

that cs, mac, d1, t, and ch belong to sends ; and cs, mac, d2, t1, and ch belong to

sends then d2 equals d1 and t equals t1. To restrict the multiplicity to lone, we

193

Chapter 7: Multichannel Security Protocol Proving Using Z3

suppose that if there are two times and data belonging to the sends, thus these

two times and datum are equal.

Line (8) for the relation below and as seen in Appendix (D.2) is expressed to

formula L below:

receives: MAC ->lone (Data ->Time)->Channel

(forall ((cs CommunicationStatus)(mac MAC)(ch Channel),
(d1 Data)(d2 Data)(t Time)(t1 Time))(=>
(and(receives cs mac d1 t ch)(receives cs mac d2 t1 ch))
(and(= d1 d2)(= t t1))))

Formula L:

∀ cs:CommunicationStatus, mac:MAC,ch:Channel ∃ t,t1:Time,
d1,d2:Data.(cs mac d1 t ch) ∈ receives ∧

(cs mac d2 t1 ch) ∈ receives =>(d1 = d2) ∧ (t = t1)

The formula L specifies constraints that: for all atoms cs in Communication-

Status, mac in MAC, ch in Channel, t and t1 in Time; d1 and d2 in Data such

that cs, mac, d1, t, and ch belong to receives ; and cs, mac, d2, t1, and ch belong

to receives then d2 equals d1 and t equals t1. To restrict the multiplicity to lone,

we suppose that if there are two times and data belonging to the receives, thus

these two times and datum are equal.

7.1.1.6 Predicates

As seen in Appendix (D.9), the translation focuses on “in-lining ” of the pred-

icate SingleChannel. In-lining means without explicit declaration. The Sin-

gleChannel protocol passes through one status.

194

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (1) for the predicate below and in Appendix (D.9) is expressed in formula

M below:

[t,t’:Time, d,d’:Data,isp,isp1:ISP, status1:Communication Status ,ch:Channel]

(forall ((isp ISP)(isp1 ISP)(d Data)(d1 Data)(t Time)(t1 Time)
(ch1 Channel)(status1 CommunicationStatus))

Formula M:

∀ status1:CommunicationStatus, isp,isp1:ISP, d,d1:Data, t,t1:Time, ch1:Channel

The formula M declares all variables to be used in the predicate and assertion:

status1 for the status; d and d1 for data that has been sent and received in the

status; t and t1 for times for sending and receiving data; isp for the internet service

provider that the client connects with; isp1 for the internet service provider that

the server connects with; the channel ch1 for exchange data.

These variables will be used directly in the predicates and assertion below with-

out the need for redeclaration.

Line (2) for the predicate below and in Appendix (D.9) is expressed in formula

N below:

status1.client1.(status1.status)=isConnection And Exchanging Data

(=>(forall ((cs1 ConnectionStatus)(cmac MAC))
(=>(and (client1 status1 cmac)(status status1 cmac cs1))
(isConnection And Exchanging Data cs1)))
(forall ((cs2 ConnectionStatus))(cmac MAC))
(=>(isConnection And Exchanging Data cs2)
(and (client1 status1 cmac)(status status1 cmac cs2)))))

195

Chapter 7: Multichannel Security Protocol Proving Using Z3

Formula N:

(∀ cs1:ConnectionStatus,cmac:MAC.(status1,cmac) ∈ client1
∧ (status1,cmac,cs1)∈ status =>(cs1) ∈
isConnectionAndExchangingData) =>
(∀ cs2:ConnectionStatus,cmac:MAC.(cs2) ∈
isConnectionAndExchangingData =>(status1,cmac) ∈ client1
∧ (status1,cmac,cs2)∈ status)

The formula N specifics constraints that: for all atoms cs1 in ConnectionSta-

tus, and cmac in MAC, such that status1 and cmac belong to client1, and status1,

cmac, and cs1 belong to status then cs1 belongs to isConnectionAndExchanging-

Data. It follows that for all atoms cs2 in ConnectionStatus, and cmac in MAC,

such that cs2 belongs to isConnectionAndExchangingData then status1 and cmac

belong to client1, and status1, cmac, and cs2 belong to status.

Line (3) for the predicate below and in Appendix (D.9) is expressed in formula

O below:

status1.server.(status1.status)=isConnection And Exchanging Data

(=>(forall ((cs1 ConnectionStatus),(smac MAC))
(=>(and (server status1 smac)(status status1 smac cs1))
(isConnection And Exchanging Data cs1)))
(forall ((cs2 ConnectionStatus),(smac MAC))
(=>(isConnection And Exchanging Data cs2)
(and (server status1 smac)(status status1 smac cs2)))))

Formula O:

(∀ cs1:ConnectionStatus,smac:MAC.(status1,smac) ∈ server
∧ (status1,smac,cs1)∈ status =>(cs1) ∈
isConnectionAndExchangingData) =>
(∀ cs2:ConnectionStatus,smac:MAC.(cs2) ∈
isConnectionAndExchangingData =>(status1,smac) ∈ server
∧ (status1,smac,cs2)∈ status)

196

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula O specifics constraints that: for all atoms cs1 in ConnectionStatus,

an smac in MAC, such that status1 and smac belong to server, and status1, smac,

and cs1 belong to status then cs1 belongs to isConnectionAndExchangingData. It

follows that for all atoms cs2 in ConnectionStatus, and smac in MAC, such that

cs2 belongs to isConnectionAndExchangingData then status1 and smac belong to

server, and status1, smac, and cs2 belong to status.

Line (4) for the predicate below and in Appendix (D.9) is expressed in formula

P below:

status1.client1 in status1.visitors

(forall ((cmac MAC))(=>(client1 status1 cmac)(visitors status1 cmac)))

Formula P:

(∀ cmac:MAC.(status1,cmac) ∈ client1 =>(status1,cmac) ∈ visitors

The formula P specifies constraints that: for all cmac in MAC, such that

status1 and cmac belong to client1 then status1 and cmac belong to visitors.

Line (5) for the predicate below and in Appendix (D.9) is expressed in formula

Q below:

status1.server in status1.visitors

(forall ((smac MAC))(=>(client1 status1 smac)(visitors status1 smac)))

Formula Q:

(forall smac:MAC.(status1,smac) ∈ server =>
(status1,smac) ∈ visitors

197

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula Q specifies constraints that: for all smac in MAC, such that

status1 and smac belong to server then status1 and smac belong to visitors.

Line (6) for the predicate below and in Appendix (D.9) is expressed in formula

R below:

no status1.client1.(status1.receives)

(forall ((cmac MAC))
(and(not(and(client1 status1 cmac)(receives status1 cmac d1 t1 ch1)))
(not(and(client1 status1 cmac)(receives status1 cmac d t ch1)))))

Formula R:

(∀ cmac:MAC.(not(status1,cmac) ∈ client1 ∧
((status1,cmac,d1,t1,ch1) ∈ receives) ∧
(not(status1,cmac) ∈ client1 ∧
((status1,cmac,d,t,ch1) ∈ receives)

The formula R specifies constraints that: for all cmac in MAC, such that

status1 and cmac do not belong to client1 and status1, cmac, d1, t1, and ch1

belong to receives ; and status1 and cmac do not belong to client1 and status1,

cmac, d, t, and ch1 belong to receives.

Line (7) for the predicate below and in Appendix (D.9) is expressed in formula

S below:

no status1.server.(status1.sends)

(forall ((smac MAC))
(and(not(and(server status1 smac)(sends status1 smac d1 t1 ch1)))
(not(and(server status1 smac)(sends status1 smac d t ch1)))))

198

Chapter 7: Multichannel Security Protocol Proving Using Z3

Formula S:

(∀ smac:MAC.(not(status1,smac) ∈ server ∧
((status1,smac,d1,t1,ch1) ∈ sends) ∧
(not(status1,smac) ∈ server ∧
((status1,smac,d,t,ch1) ∈ sends)

The formula S specifies constraints that: for all smac in MAC, such that status1

and smac do not belong to server and status1, smac, d1, t1, and ch1 belong to

sends); and status1 and smac do not belong to server and status1, smac, d, t, and

ch1 belong to sends.

Line (8) for the predicate below and in Appendix (D.9) is expressed in formula

T below:

status1.client1.(status1.connection)= isp

(forall ((isp11 ISP))(=>(=>(exists ((cmac MAC))(and (client1 status1 cmac)
(connection status1 cmac isp11)))(= isp isp11))
(exists ((cmac1 MAC))(and (client1 status1 cmac1)
(connection status1 cmac1 isp)))))

Formula T:

(∀ isp11:ISP ∃ cmac:MAC.(status1,cmac) ∈ client1 ∧
(status1,cmac,isp11) ∈ connection =>(= isp isp11))
=>(∃ cmac1:MAC.(status1,cmac1) ∈ client1 ∧
(status1,cmac1,isp) ∈ connection

The formula T specifies constraints that:for all isp11 in ISP, if there exist cmac

in MAC such that the status1 and cmac belong to client1 ; and status1, cmac,

and isp11 belong to connection then isp equals isp11. It follows that there exists

cmac1 in MAC such that the status1 and cmac1 belong to client1 ; and status1,

cmac1, and isp belong to connection.

199

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (9) for the predicate below and in Appendix (D.9) is expressed in formula

U below:

status1.server.(status1.connection)= isp’

(forall ((isp11 ISP))(=>(=>(exists ((smac MAC))(and (server status1 smac)
(connection status1 smac isp11)))(= isp1 isp11))
(exists ((smac MAC))(and (server status1 smac)
(connection status1 smac isp1)))))

Formula U:

(∀ isp11:ISP ∃ smac:MAC.(status1,smac) ∈ server ∧
(status1,smac,isp11) ∈ connection =>(= isp1 isp11))
=>(∃ smac1:MAC.(status1,smac1) ∈ server ∧
(status1,smac1,isp1) ∈ connection

The formula U specifies constraints that:for all isp11 in ISP, if there exist smac

in MAC such that the status1 and smac belong to server ; and status1, smac, and

isp11 belong to connection then isp1 equals isp11. It follows that there exists

smac1 in MAC such that the status1 and smac1 belong to server ; and status1,

smac1, and isp1 belong to connection.

Line (10) for the predicate below and in Appendix (D.9) is expressed in formula

V below:

200

Chapter 7: Multichannel Security Protocol Proving Using Z3

status1.client1.(status1.opens)= status1.client.(status1.connection)->ch1

(forall ((isp11 ISP)(ch Channel))(=>(forall ((cmac MAC))(=>
(and (client1 status1 cmac)(connection status1 cmac isp11))
(and (client1 status1 cmac)(opens status1 cmac isp11 ch))))
(and(= isp isp11)(= ch1 ch))))(forall ((cmac1 MAC))(=>
(and (client1 status1 cmac1)(connection status1 cmac1 isp))
(and (client1 status1 cmac1)(opens status1 cmac1 isp ch1))))

Formula V:

(exists ((mac25 MAC)) (∀ isp11:ISP, ch:Channel ∀ cmac:MAC.(status1,cmac) ∈ client1 ∧
(status1,cmac,isp11) ∈ connection =>
(status1,cmac) ∈ client1 ∧ (status1,cmac,isp11,ch) ∈ opens
=> (isp = isp11) ∧ (ch1 = ch) ∧
(∀ cmac1:MAC.(status1,cmac1) ∈ client1 ∧
(status1,cmac1,isp) ∈ connection =>
(status1,cmac1) ∈ client1 ∧ (status1,cmac1,isp,ch1) ∈ opens)

The formula V specifies constraints that: for all isp11 in ISP, ch in Channel,

and cmac in MAC such that, status1 and cmac belong to client1 and status1,

cmac, and isp11 belong to connection. It follows that, status1 and cmac belong

to client1 and status1, cmac, isp11, and ch belong to opens, then isp equals isp11

and ch1 equals ch. For all cmac1 in MAC such that, status1 and cmac1 belong to

client1 and status1, cmac1, and isp belong to connection. It follows that, status1

and cmac1 belong to client1 and status1, cmac1, isp, and ch1 belong to opens.

Line (11) for the predicate below and in Appendix (D.9) is expressed in formula

W below:

status1.server.(status1.opens)= status1.server.(status1.connection)->ch1

(forall ((isp11 ISP)(ch Channel))(=>(forall ((smac MAC))(=>
(and (server status1 smac)(connection status1 smac isp11))
(and (server status1 smac)(opens status1 smac isp11 ch))))

201

Chapter 7: Multichannel Security Protocol Proving Using Z3

(and(= isp1 isp11)(= ch1 ch))))(forall ((smac1 MAC))(=>
(and (server status1 smac1)(connection status1 smac1 isp))
(and (server status1 smac1)(opens status1 smac1 isp1 ch1))))

Formula W:

(exists ((mac25 MAC)) (∀ isp11:ISP, ch:Channel ∀ smac:MAC.(status1,smac)
∈ server ∧(status1,smac,isp11) ∈ connection =>
(status1,smac) ∈ server ∧ (status1,smac,isp11,ch) ∈ opens
=> (isp1 = isp11) ∧ (ch1 = ch) ∧
(∀ smac1:MAC.(status1,smac1) ∈ server ∧
(status1,smac1,isp) ∈ connection =>
(status1,smac1) ∈ server ∧ (status1,smac1,isp1,ch1) ∈ opens)

The formula W specifies constraints that: for all isp11 in ISP, ch in Chan-

nel,and smac in MAC such that, status1 and smac belong to server and status1,

smac, and isp11 belong to connection. It follows that, status1 and smac belong

to server and status1, smac, isp11, and ch belong to opens, then isp1 equals isp11

and ch1 equals ch. For all smac1 in MAC such that, status1 and smac1 belong to

server and status1, smac1, and isp belong to connection. It follows that, status1

and smac1 belong to server and status1, smac1, isp1, and ch1 belong to opens.

Line (12) for the predicate below and in Appendix (D.9) is expressed in formula

x below:

status1.client1.(status1.sends)=d->t->ch1

(forall ((d11 Data)(t11 Time)(ch11 Channel))
(=>(exists ((cmac MAC))(and (client1 status1 cmac)
(sends status1 cmac d11 t11 ch11)))
(and(= d d11)(= t t11)(= ch1 ch11))))
(exists ((cmac1 MAC))(and (client1 status1 cmac1)
(sends status1 cmac1 d t ch1)))

202

Chapter 7: Multichannel Security Protocol Proving Using Z3

Formula x:

(∀ t,t1:Time, d,d1:Data, ch1:Channel
(∀ t11:Time, d11:Data, ch11:Channel
∃ cmac:MAC.(status1,cmac) ∈ client1
∧ (status1,cmac,d11,t11,ch11) ∈ sends =>
(d = d11) ∧ (t = t11) ∧ (ch1 = ch11)))) ∧
∃ cmac1:MAC.(status1,cmac1) ∈ client1
∧ (status1,cmac1,d,t,ch1) ∈ sends)))

The formula x specifies constraints that: for all atoms t and t1 in Time; d and

d1 in Data; and ch1 in Channel, for all atoms t11 in Time; d11 in Data; and ch11

in Channel, if there exists cmac in MAC such that, status1 and cmac belong to

client1 ; and status1, cmac, d11, t11, and ch11 belong to sends, then d equals d11,

t equals t11, and ch1 equals ch11. So, if there exists cmac1 in MAC, then status1

and cmac1 belong to client1 ; and status1, cmac1, d, t, and ch1 belong to sends.

Line (13) for the predicate below and in Appendix (D.9) expressed to formula

Y below:

status1.server.(status1.receives)=d1 ->t1 ->ch1

(forall ((d11 Data)(t11 Time)(ch11 Channel))
(=>(exists ((smac MAC))(and (server status1 smac)
(receives status1 smac d11 t11 ch11)))
(and(= d1 d11)(= t1 t11) (= ch1 ch11))))
(exists ((smac1 MAC))(and (server status1 smac1)
(receives status1 smac1 d1 t1 ch1)))

Formula Y:

(∀ t11:Time, d11:Data, ch11:Channel
∃ smac:MAC.(status1,smac) ∈ server
∧ (status1,smac,d11,t11,ch11) ∈ receives =>
(d1 = d11) ∧ (t1 = t11) ∧ (ch1 = ch11))) ∧
∃ smac1:MAC.(status1,smac1) ∈ server
∧ (status1,smac1,d1,t1,ch1) ∈ receives)))

203

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula Y specifies constraints that: for all atoms t11 in Time; d11 in

Data; and ch11 in Channel, if there exists smac in MAC such that, status1 and

smac belong to server ; and status1, smac, d11, t11, and ch11 belong to receives,

then d1 equals d11, t1 equals t11, and ch1 equals ch11. So, if there exists smac1

in MAC, then status1 and smac1 belong to server ; and status1, smac1, d1, t1,

and ch1 belong to receives.

Lines (14, 15) for the predicate below and in Appendix (E.9) is expressed in

formula Z below:

status1.mitmIntercepts !in status1.visitors or
(((status1.mitmIntercepts in status1.visitors) and
(status1.client) !in status1.mitmIntercepts))

(or(=>(mitmIntercepts status1 mmac)(not(visitors status1 mmac)))
(and(=>(mitmIntercepts status1 mmac)(visitors status1 mmac))
(=>(client1 status1 cmac)(not(mitmIntercepts status1 cmac))))))

Formula Z:

(status1,mmac) ∈ mitmIntercepts =>(status1,mmac) /∈ visitors ∨
((status1,mmac) ∈ mitmIntercepts =>(status1,mmac) ∈ visitors
∧ (status1,cmac) ∈ client1 =>(status1,cmac) /∈ mitmIntercepts)
=>

The formula Z specifies constraints that: if a MitM mmac belongs to mit-

mIntercepts in the status, then the MitM mmac does not belong to the visitors in

the status (secure scope), or if the MitM mmac belongs to mitmIntercepts in the

status, then the MitM mmac belongs to the visitors in the status, and if a client

cmac belongs to client1 in the status, then the client cmac does not belong to

mitmIntercepts in the status.

204

Chapter 7: Multichannel Security Protocol Proving Using Z3

7.1.1.7 Assertion

Lines (24) in Appendix (D.9) is expressed in formula A1 below:

d = d1

= d d1

Formula A1:

d = d1

The formula A1 specifies constraints that: sending and receiving data should

be equal.

7.1.2 Second Protocol: Transmitting Data Over Multi-

channel

7.1.2.1 Type and Subtype Declarations

In Appendix (F) we give full details of the Z3 models with annotations to show

the equivalent Alloy.

As seen in Appendix F, the hierarchical type system is translated implicitly.

However, because the SMT language does not support subtypes, we use mem-

bership functions to enforce type hierarchy declarations. Consequently, top-level

types are translated to the uninterpreted sorts, while the top-level (super-type)

of a type is translated to uninterpreted membership function isType to indicate

which elements of the super-type belongs to the type. It is not necessary to declare

the membership functions of top-level types, but we declared them to determine

the semantics of the subtype.

205

Chapter 7: Multichannel Security Protocol Proving Using Z3

As seen in Appendix (F.1), top-level types are the same as the top-level type in

the first protocol. Membership functions in Appendix (F.2) Lines (16, 17) isFirst-

CommunicationAndExchangingIndices, and isSecondCommunicationAndExchang-

ingLetters are declared to specify the semantics of subtypes FirstCommunicatio-

nAndExchangingIndices, and SecondCommunicationAndExchangingLetters. I.e all

membership functions in Lines (16, 17) are disjoint subsets of the declared type

ConnectionStatus.

7.1.2.2 Properties Of The Sub-signatures

As seen in Appendix (F.5), in (Lines 1, 2) we adjust the return types of the

“oneOf ” functions/constants by specifying that each returns a value of type Con-

nectionStatus. For example: Line (1) calls function oneOfFirstCommunicatio-

nAndExchangingIndices in Line (1) in Appendix (F.3) which calls function is-

FirstCommunicationAndExchangingIndices in Line (16) in Appendix (F.2) which

returns one ConnectionStatus type isFirstCommunicationAndExchangingIndices

in Line (16) Appendix (F.2) which is already specified as return type in Line (1)

Appendix (F.5).

Sub-signatures (Lines 1, 2) Appendix (F.5) declare functions of the property

some for each of the sub signatures FirstCommunicationAndExchangingIndices,

and SecondCommunicationAndExchangingLetters of the super signature Connec-

tionStatus because ConnectionStatus has at least one element of the sub signa-

tures. The functions restrict the super signature to have at least one element in

each ConnectionStatus. In (Lines 1, 2) Appendix (F.6) we need to assert the lone

property of the previous sub signatures because ConnectionStatus has at most

one element of the sub signatures. The assertion (Lines 1, 2) Appendix (F.6) are

expressed in the formula B1 below:

206

Chapter 7: Multichannel Security Protocol Proving Using Z3

Formula B1:

∀ f1, f2: ConnectionStatus.(f1 ∈ isFirstCommunicationAndExchangingIndices ∧
f2 ∈ isFirstCommunicationAndExchangingIndices) =>f1 = f2 ∧
∀ s1, s2: ConnectionStatus.(s1 ∈ isSecondCommunicationAndExchangingLetters ∧
s2 ∈ isSecondCommunicationAndExchangingLetters) =>s1 = s2

The formula B1 specifies constraints that for each ConnectionStatus, there is

at most only one corresponding ConnectionStatus : if there exist two Connection-

Status belongs to isFirstCommunicationAndExchangingIndices for example, then

these two ConnectionStatus should be equals. i.e we restrict the characteristics of

multiplicity lone which is (at most one) ConnectionStatus of type isFirstCommu-

nicationAndExchangingIndices for each statues to avoid the inconsistency.

7.1.2.3 Abstraction

As seen in Appendix (F.7), an abstract type is the union of its subtypes. Thus

it constrains every element of a type to belong to one of its extending subtypes.

Line (1) is expressed in the formula C1 below:

Formula C1:

∀ co:ConnectionStatus.¬(co ∈ isFirstCommunicationAndExchangingIndices ∧
co ∈ isSecondCommunicationAndExchangingLetters)

The formula C1 specifies constraints that for each ConnectionStatus, there

is only one corresponding ConnectionStatus, and this ConnectionStatus is ei-

ther isFirstCommunicationAndExchangingIndices or isSecondCommunicationAn-

dExchangingLetters to avoid inconsistency. No two ConnectionStatus occur at one

time.

207

Chapter 7: Multichannel Security Protocol Proving Using Z3

7.1.2.4 Extension

As seen in Appendix (F.8), the extends types are mutually disjoint. Line (1) is

expressed in the formula D1 below:

Formula D1:

∀ co:ConnectionStatus.(co ∈ isFirstCommunicationAndExchangingIndices ∨
co ∈ isSecondCommunicationAndExchangingLetters)

The formula D1 specifies constraints that for all ConnectionStatus , Connec-

tionStatus co does not belong to isFirstCommunicationAndExchangingIndices and

isSecondCommunicationAndExchangingLetters ; it only belongs to one Connec-

tionStatus.

7.1.2.5 Facts

Alloy facts are assumed to be true. They represent the multichannel protocol

properties. As seen in Appendix (F.10), Line (1) declares quantifiers that restrict

the first fact, line (2) declares quantifiers that restrict the second fact, and line

(3) declares quantifiers that restrict the third fact.

The first fact as seen below is expressed in formula E1 below:

First fact:

(forall ((status1 CommunicationStatus)(status2 CommunicationStatus)
(implies(forall ((cmac1 MAC)(cmac2 MAC))(and(and (=>
(client1 status1 cmac1)(visitors status1 cmac1))(=>(client2 status1 cmac2)
(not(visitors status1 cmac2)))(=>(client1 status2 cmac1)(not(visitors status2 cmac1)))
(=>(client2 status2 cmac2)(visitors status2 cmac2)))
(or (and (=>(client1 status1 cmac1)(interseptMacs status1 cmac1))
(=>(client2 status2 cmac2)(not(interseptMacs status2 cmac2))))
(and (=>(client1 status1 cmac1)(not(interseptMacs status1 cmac1)))

208

Chapter 7: Multichannel Security Protocol Proving Using Z3

(=>(client2 status2 cmac2)(interseptMacs status2 cmac2)))
(and(=>(client1 status1 cmac1)(not(interseptMacs status1 cmac1)))
(=>(client2 status2 cmac2)(not(interseptMacs status2 cmac2)))))))
(forall ((status1 CommunicationStatus)(status2 CommunicationStatus)(t Time)(t1 Time)
(t2 Time)(t3 Time)(indices Data)(indices1 Data)(letters Data)(letters1 Data))
(implies (and
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((cmac MAC))
(and (client1 status1 cmac)(sends status1 cmac d11 t11 ch11)))
(and(= indices d11)(= t t11)(ch1 status1 ch11)))(exists ((cmac1 MAC))
(and (client1 status1 cmac1)(sends status1 cmac1 indices t ch11)))))
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((smac MAC))
(and (server status1 smac)(receives status1 smac d11 t11 ch11)))
(and(= indices1 d11)(= t1 t11)(ch1 status1 ch11)))(exists ((smac1 MAC))
(and (server status1 smac1)(receives status1 smac1 indices1 t1 ch11)))))
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((cmac MAC))
(and (client2 status2 cmac)(sends status2 cmac d11 t11 ch11)))
(and(= letters d11)(= t2 t11)(ch2 status2 ch11)))(exists ((cmac2 MAC))
(and (client2 status2 cmac2)(sends status2 cmac2 letters t2 ch11)))))
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((smac MAC))
(and (server status2 smac)(receives status2 smac d11 t11 ch11)))
(and(= letters1 d11)(= t3 t11)(ch2 status2 ch11)))(exists ((smac2 MAC))
(and (server status2 smac2)(receives status2 smac2 letters1 t3 ch11))))))
(forall ((cmac1 MAC)(cmac2 MAC))
(or (and(and(= t2 t3)(not(= t t1)))(and (=>(client1 status1 cmac1)
(interseptMacs status1 cmac1))(=>(client2 status2 cmac2)
(not(interseptMacs status2 cmac2)))))(and(and(not(= t2 t3))(= t t1))
(and (=>(client1 status1 cmac1)(not(interseptMacs status1 cmac1)))
(=>(client2 status2 cmac2)(interseptMacs status2 cmac2))))
(and(and(= t t1)(= t2 t3))(and(=>(client1 status1 cmac1)
(not(interseptMacs status1 cmac1)))(=>(client2 status2 cmac2))))
(not(interseptMacs status2 cmac2)))))))))))

Formula E1:

∀ status1,status2:CommunicationStatus, cmac1, cmac2:MAC.((status1,cmac1)
∈ client1 =>(status1,cmac1) ∈ visitors ∧ (status1,cmac2) /∈ client2
=>(status1,cmac2) /∈ visitors ∧ (status2,cmac1) /∈ client1

=>(status2,cmac1) /∈ visitors ∧ (status2,cmac2) ∈ client2
=>(status2,cmac2) ∈ visitors ∧
((status1,cmac1) ∈ client1 =>(status1,cmac1) ∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) /∈ interseptMacs ∨
(status1,cmac1) ∈ client1 =>(status1,cmac1) /∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) ∈ interseptMacs ∨
(status1,cmac1) ∈ client1 =>(status1,cmac1) /∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) /∈ interseptMacs) =>
∀status1,status2:CommunicationStatus, t,t1,t2,t3:Time,indices,
indices1,letters,letters1:Data

209

Chapter 7: Multichannel Security Protocol Proving Using Z3

(∀ d11:Data, t11:Time,ch11:Channel (∃ cmac:MCAC.(ststus1, cmac) ∈ client1 ∧
(ststus1,cmac,d11,t11,ch11) ∈ sends =>(indices = d11) ∧ (t = t11) ∧
(ststus1,ch11) ∈ ch1) =>∃ cmac1:MCAC.(ststus1, cmac1) ∈ client1 ∧
(ststus1,cmac1,indices,t,ch11) ∈ sends ∧
∀ d11:Data, t11:Time,ch11:Channel (∃ smac:MCAC.(ststus1, smac) ∈ server ∧
(ststus1,smac,d11,t11,ch11) ∈ receives =>(indices1 = d11) ∧ (t1 = t11) ∧
(ststus1,ch11) ∈ ch1) =>∃ smac1:MCAC.(ststus1, smac1) ∈ server ∧
(ststus1,smac1,indices1,t1,ch11) ∈ receives ∧
(∀ d11:Data, t11:Time,ch11:Channel (∃ cmac:MCAC.(ststus2, cmac) ∈ client2 ∧
(ststus2,cmac,d11,t11,ch11) ∈ sends =>(letters = d11) ∧ (t2 = t11) ∧
(ststus2,ch11) ∈ ch2) =>∃ cmac2:MCAC.(ststus2, cmac2) ∈ client2 ∧
(ststus2,cmac2,letters,t2,ch11) ∈ sends ∧
∀ d11:Data, t11:Time,ch11:Channel (∃ smac:MCAC.(ststus2, smac) ∈ server ∧
(ststus2,smac,d11,t11,ch11) ∈ receives =>(letters1 = d11) ∧ (t3 = t11) ∧
(ststus2,ch11) ∈ ch2) =>∃ smac2:MCAC.(ststus2, smac2) ∈ server ∧
(ststus2,smac2,letters1,t2,ch11) ∈ receives) =>
(∀ cmac1:MCAC,cmac2:MCAC.(t2 = t3) ∧ (t 6= t1) ∧
((status1,cmac1) ∈ client1 =>(status1,cmac1) ∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) /∈ interseptMacs ∧
(t2 6= t3) ∧ (t = t1) ∧
(status1,cmac1) ∈ client1 =>(status1,cmac1) /∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) ∈ interseptMacs ∧
(t2 = t3) ∧ (t = t1) ∧
(status1,cmac1) ∈ client1 =>(status1,cmac1) /∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) /∈ interseptMacs)))))))))))

210

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula E1 specifies constraints that: for all atoms status1 and status2 in

CommunicationStatus, cmac1, cmac2 in MAC, such that if the first client belongs

to client1 in status1, the first client belongs to visitors in status1, and if the second

client does not belong to client2 in status1, the second client does not belong to

visitors in status1, and if the first client does not belong to client1 in status2, the

first client does not belong to visitors in status2, and if the second client belongs

to client2 in status2, the second client belongs to visitors in status2.

And, if the first client belongs to client1 in status1, the first client belongs to

interseptMacs in status1, and if the second client belongs to client2 in status2, the

second client does not belong to interseptMacs in status2. Or, if the first client

belongs to client1 in status1, the first client does not belong to interseptMacs in

status1, and if the second client belongs to client2 in status2, the second client

belongs to interseptMacs in status2. Or, if the first client belongs to client1 in

status1, the first client does not belong to interseptMacs in status1, and if the

second client belongs to client2 in status2, the second client does not belong to

interseptMacs in status2.

It follows that for all status1 and CommunicationStatus in status1 ; t, t1, t2, and

t3 in Time; indices, indices1, letters, and letters1 in Data, for all d11 in Data, t11

in Time, and ch11 in Channel, if there exists a cmac in MAC, such that status1

and cmac belong to client1 and status1, cmac, d11, t11, and ch11 belong to sends

then indices equals d11, t equals t11, and ststus1, ch11 belong to ch1, then if

there exists a cmac1 in MAC, such that status1 and cmac1 belong to client1 and

status1, cmac1, indices, t, and ch11 belong to sends.

Then for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a

smac in MAC, such that status1 and smac belong to server and status1, smac,

d11, t11, and ch11 belong to receives then indices1 equals d11, t1 equals t11 ,and

ststus1, ch11 belong to ch1, then if there exists a smac1 in MAC, such that status1

211

Chapter 7: Multichannel Security Protocol Proving Using Z3

and smac1 belong to server and status1, smac1, indices1, t1, and ch11 belong to

receives.

Then for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a

cmac in MAC, such that status2 and cmac belong to client2 and status2, cmac,

d11, t11, and ch11 belong to sends then letters equals d11, t2 equals t11, and

ststus2, ch11 belong to ch2, then if there exists a cmac2 in MAC, such that

status2 and cmac2 belong to client2 and status2, cmac2, letters, t2, and ch11

belong to sends.

Then for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a

smac in MAC, such that status2 and smac belong to server and status2, smac,

d11, t11, and ch11 belong to receives then letters1 equals d11, t3 equals t11 ,and

ststus2, ch11 belong to ch2, then if there exists a smac2 in MAC, such that status2

and smac2 belong to server and status2, smac2, letters1, t3, and ch11 belong to

receives.

Then for all cmac1, and cmac2 in MAC, such that if times for sending and

receiving indices are not equal and times for sending and receiving letters are

equal and if the first client belongs to client1 in status1, then the first client

belongs to interseptMacs in status1, and if the second client belongs to client2

in status2, then the second client does not belong to interseptMacs in status2.

And, times for sending and receiving indices are equal and times for sending and

receiving letters are not equal and if the first client belongs to client1 in status1,

then the first client does not belong to interseptMacs in status1, and if the second

client belongs to client2 in status2, then the second client belongs to interseptMacs

in status2. And, times for sending and receiving indices are equal and times for

sending and receiving letters are equal and if the first client belongs to client1 in

stastus1, then the first client does not belong to interseptMacs in status1, and if

the second client belongs to client2 in status2, then the second client does not

212

Chapter 7: Multichannel Security Protocol Proving Using Z3

belong to interseptMacs in status2.

The second fact as seen below is expressed in formula F1 below:

Second fact:

(forall ((status1 CommunicationStatus)(status2 CommunicationStatus)(t Time)(t1 Time)
(t2 Time)(t3 Time)(indices Data)(indices1 Data)(letters Data)(letters1 Data))
(implies (and
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((cmac MAC))
(and (client1 status1 cmac)(sends status1 cmac d11 t11 ch11)))
(and(= indices d11)(= t t11)(ch1 status1 ch11)))(exists ((cmac1 MAC))
(and (client1 status1 cmac1)(sends status1 cmac1 indices t ch11)))))
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((smac MAC))
(and (server status1 smac)(receives status1 smac d11 t11 ch11)))
(and(= indices1 d11)(= t1 t11)(ch1 status1 ch11)))(exists ((smac1 MAC))
(and (server status1 smac1)(receives status1 smac1 indices1 t1 ch11)))))
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((cmac MAC))
(and (client2 status2 cmac)(sends status2 cmac d11 t11 ch11)))
(and(= letters d11)(= t2 t11)(ch2 status2 ch11)))(exists ((cmac2 MAC))
(and (client2 status2 cmac2)(sends status2 cmac2 letters t2 ch11)))))
(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>(exists ((smac MAC))
(and (server status2 smac)(receives status2 smac d11 t11 ch11)))
(and(= letters1 d11)(= t3 t11)(ch2 status2 ch11)))(exists ((smac2 MAC))
(and (server status2 smac2)(receives status2 smac2 letters1 t3 ch11)))))
(or(and(= t t1)(not(= t2 t3)))(and(= t2 t3)(not(= t t1)))(and(= t2 t3)(= t t1))))
(and(= indices indices1)(= letters letters1))))

Formula F1:

∀status1,status2:CommunicationStatus, t,t1,t2,t3:Time,indices,
indices1,letters,letters1:Data
(∀ d11:Data, t11:Time,ch11:Channel (∃ cmac:MCAC.(ststus1, cmac) ∈ client1
∧ (ststus1,cmac,d11,t11,ch11) ∈ sends =>(indices = d11) ∧ (t = t11)
∧ (ststus1,ch11) ∈ ch1) =>∃ cmac1:MCAC.(ststus1, cmac1) ∈ client1
∧ (ststus1,cmac1,indices,t,ch11) ∈ sends ∧
∀ d11:Data, t11:Time,ch11:Channel (∃ smac:MCAC.(ststus1, smac) ∈ server
∧ (ststus1,smac,d11,t11,ch11) ∈ receives =>(indices1 = d11) ∧ (t1 = t11)
∧ (ststus1,ch11) ∈ ch1) =>∃ smac1:MCAC.(ststus1, smac1) ∈ server

213

Chapter 7: Multichannel Security Protocol Proving Using Z3

∧ (ststus1,smac1,indices1,t1,ch11) ∈ receives ∧
(∀ d11:Data, t11:Time,ch11:Channel (∃ cmac:MCAC.(ststus2, cmac) ∈ client2
∧ (ststus2,cmac,d11,t11,ch11) ∈ sends =>(letters = d11) ∧ (t2 = t11)
∧ (ststus2,ch11) ∈ ch2) =>∃ cmac2:MCAC.(ststus2, cmac2) ∈ client2
∧ (ststus2,cmac2,letters,t2,ch11) ∈ sends ∧
∀ d11:Data, t11:Time,ch11:Channel (∃ smac:MCAC.(ststus2, smac) ∈ server
∧ (ststus2,smac,d11,t11,ch11) ∈ receives =>(letters1 = d11) ∧ (t3 = t11)
∧ (ststus2,ch11) ∈ ch2) =>∃ smac2:MCAC.(ststus2, smac2) ∈ server
∧ (ststus2,smac2,letters1,t2,ch11) ∈ receives) ∧
(t 6= t1) ∨ (t2 6= t3) ∧ (t = t1) ∨ (t2 = t3) ∧ (t = t1) =>
(indices = indices1) ∧ (letters = letters1))))

The formula F1 specifies constraints that: for all status1 and Communication-

Status in status1 ; t, t1, t2, and t3 in Time; indices, indices1, letters, an letters1 in

Data, for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a cmac

in MAC, such that status1 and cmac belong to client1 and status1, cmac, d11,

t11, and ch11 belong to sends then indices equals d11, t equals t11 ,and ststus1,

ch11 belong to ch1, then if there exists a cmac1 in MAC, such that status1 and

cmac1 belong to client1 and status1, cmac1, indices, t, and ch11 belong to sends.

Then for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a

smac in MAC, such that status1 and smac belong to server and status1, smac,

d11, t11, and ch11 belong to receives then indices1 equals d11, t1 equals t11 ,and

ststus1, ch11 belong to ch1, then if there exists a smac1 in MAC, such that status1

and smac1 belong to server and status1, smac1, indices1, t1, and ch11 belong to

receives.

Then for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a

cmac in MAC, such that status2 and cmac belong to client2 and status2, cmac,

d11, t11, and ch11 belong to sends then letters equals d11, t2 equals t11 ,and

ststus2, ch11 belong to ch2, then if there exists a cmac2 in MAC, such that status2

and cmac2 belong to client2 and status2, cmac2, letters, t2, and ch11 belong to

sends.

214

Chapter 7: Multichannel Security Protocol Proving Using Z3

Then for all d11 in Data, t11 in Time, and ch11 in Channel, if there exists a

smac in MAC, such that status2 and smac belong to server and status2, smac,

d11, t11, and ch11 belong to receives then letters1 equal d11, t3 equal t11 ,and

ststus2, ch11 belong to ch2, then if there exists a smac2 in MAC, such that status2

and smac2 belong to server and status2, smac2, letters1, t3, and ch11 belong to

receives, and if times for sending and receiving indices are not equal, and times for

sending and receiving letters are equal, or times for sending and receiving indices

are equal, and times for sending and receiving letters are not equal, or times for

sending and receiving indices are equal, and times for sending and receiving letters

are equal, then sent and received indices are equal, and sent and received letters

are equal.

The third fact as seen below are expressed in formula G1 below:

Third fact:

(forall ((s CommunicationStatus)(s1 CommunicationStatus)(mac1 MAC)
(mac2 MAC)(mac3 MAC)(mac4 MAC))
(and (=>(and(client1 s mac1)(server s mac2))(not(= mac1 mac2)))
(=>(and(client2 s mac1)(server s mac2))(not(= mac1 mac2)))
(=>(and(client1 s mac1)(client2 s1 mac2))(not(= mac1 mac2)))
(=>(and(client1 s mac1)(client1 s1 mac2))(= mac1 mac2))
(=>(and(server s mac3)(server s1 mac4))(= mac3 mac4))))

Formula G1:

∀ s,s1:CommunicationStatus,mac1, mac2, mac3, mac4.((s,mac1)
∈ client1 ∧ (s,mac2) ∈ server =>mac1 6= mac2 ∧

((s,mac1) ∈ client2 ∧ (s,mac2) ∈ server =>mac1 6= mac2 ∧
((s,mac1) ∈ client1 ∧ (s1,mac2) ∈ client2 =>mac1 6= mac2 ∧
((s,mac1) ∈ client1 ∧ (s1,mac2) ∈ client1 =>mac1 = mac2 ∧
((s,mac3) ∈ server ∧ (s1,mac4) ∈ server =>mac3 = mac4

215

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula G1 specifies constraints that: for all atoms s and s1 in Commu-

nicationStatus, and mac1 ; mac2 ; mac3 ; and mac4 in MAC such that mac1 and s

belong to client1 and s, mac2 belong to server then, mac1 does not equal mac2 ;

and s, mac1 belong to client2, and s, mac2 belong to the server then, mac1 does

not equal mac2 ; and s, mac1 belong to client1, and s1, mac2 belong to the client2

then, mac1 does not equal mac2 ; and s, mac1 belong to client1, and s1, mac2

belong to the client1 then, mac1 equals mac2 ; and s, mac3 belong to server, and

s1, mac4 belong to the server then, mac3 equals mac4.

7.1.2.6 Relation Declarations

Relations are translated to Boolean-valued, uninterpreted, membership func-

tions. As seen in Appendix (F.2), these functions are declared over top-level types

because only top-level types are declared as sorts.

Lines (1-15) Appendix (F.2) declare functions of relations. These relations are

the same as the relations in the first protocol. However, more relations are re-

quired for developing from the first protocol to the second protocol. These rela-

tions are: client1 and client2, which are declared as Boolean-valued function over

CommunicationStatus and MAC (Lines 3,4); ispA andispB, which are declared as

Boolean-valued function over CommunicationStatus and ISP (Lines 6-8); channel,

ch1, and ch2 which are declared as boolean-valued functions over ConnectionSta-

tus and Channel (Lines 11-13).

Lines (1-12) Appendix (F.9) declare constraints guaranteeing that each relation

is defined for its specific types considering the multiplicity keywords constraints.

The relations visitors:set MAC, serviceProvider: set ISP, and channel: set

Channel are not required to be translated to formulas to show constraints as

the set keyword constrains and allows any number of elements. Thus, its defined

216

Chapter 7: Multichannel Security Protocol Proving Using Z3

Boolean-valued function (Lines 1, 2, and 11) Appendix (F.2) are equivalent to

their meanings.

Line (1) for the relation below and as seen in Appendix (F.9) is expressed in

formula H1 below:

client1: one MAC

(forall ((cs CommunicationStatus))(and(exists ((mac1 MAC))(client1 cs mac1))
(forall ((mac3 MAC)(mac2 MAC))(=>(and(client1 cs mac2)(client1 cs mac3))
(= mac2 mac3)))))

Formula H1:

∀ status:CommunicationStatus ∃ mac1:MAC.(status,mac1) ∈
client1 ∧ ∀ mac3,mac2:MAC.(status,mac3) ∈ client1
∧ (status,mac2) ∈ client1 =>mac2 = mac3

The formula H1 specifies constraints that: for all atoms status in Communi-

cationStatus, if there exists mac1 in MAC, such that the status and mac1 belong

to the first client client1, and for all mac3 and mac2 :MAC such that mac3 and

status belong to the first client (client1) and status and mac2 belong to the first

client (client1) then mac2 equals mac3. To restrict the multiplicity to be one, we

suppose that if there are two macs belonging to the first client client1, these two

macs are equal.

Line (2) for the relation below and as seen in Appendix (F.9) is expressed in

formula I1 below:

217

Chapter 7: Multichannel Security Protocol Proving Using Z3

client2: one MAC

(forall ((cs CommunicationStatus))(and(exists ((mac1 MAC))(client2 cs mac1))
(forall ((mac3 MAC)(mac2 MAC))(=>(and(client2 cs mac2)(client2 cs mac3))
(= mac2 mac3)))))

Formula I1:

∀ status:CommunicationStatus ∃ mac1:MAC.(status,mac1) ∈
client2 ∧ ∀ mac3,mac2:MAC.(status,mac3) ∈ client2
∧ (status,mac2) ∈ client2 =>mac2 = mac3

The formula I1 specifies constraints that: for all atoms status in Communica-

tionStatus, if there exists mac1 in MAC, such that the status and mac1 belong to

the second client client2, and for all mac3 and mac2 :MAC such that mac3 and

status belong to the second client (client2) and status and mac2 belong to the

second client (client2) then mac2 equals mac3. To restrict the multiplicity to be

one, we suppose that if there are two macs belonging to the second client client1,

these two macs are equal.

Line (5) for the relation below and as seen in Appendix (F.9) is expressed in

formula J1 below:

ispA:one ISP

(forall ((cs CommunicationStatus))(and (exists ((isp1 ISP))(ispA cs isp1))
(forall ((isp2 ISP)(isp3 ISP))(=>(and (ispA cs isp2)(ispA cs isp3))
(= isp2 isp3)))))

Formula J1:

∀ status:CommunicationStatus ∃ isp1:ISP.(status,isp1) ∈ ispA ∧
∀ isp3,isp2:ISP.(status,isp3) ∈ isbA ∧ (status,isb2) ∈ isbA =>isp2 = isp3

218

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula J1 specifics constraints that: for all atoms status in Communi-

cationStatus, if there exists isp1 in ISP, such that the status and isp1 belong to

isbA and for all isp3 and isp2 in ISP, such that the status and isp3 belong to

ispA and status and isb2 belong to ispA then isp2 equals isp3. To restrict the

multiplicity to be one, we suppose that if there are two isps belonging to the ISP,

these two isps are equal.

Line (6) for the relation below and as seen in Appendix (F.9) is expressed in

formula K1 below:

ispB:one ISP

(forall ((cs CommunicationStatus))(and (exists ((isp1 ISP))(ispB cs isp1))
(forall ((isp2 ISP)(isp3 ISP))(=>(and (ispB cs isp2)(ispB cs isp3))
(= isp2 isp3)))))

Formula K1:

∀ status:CommunicationStatus ∃ isp1:ISP.(status,isp1) ∈
isbB ∧ ∀ isp3,isp2:ISP.(status,isp3) ∈ isbB
∧ (status,isb2) ∈ isbB =>isp2 = isp3

The formula K1 specifies constraints that: for all atoms status in Communi-

cationStatus, if there exists isp1 in ISP, such that the status and isp1 belong to

ispB and for all isp3 and isp2 in ISP, such that the status and isp3 belong to

ispB and status and isb2 belong to ispB then isp2 equals isp3. To restrict the

multiplicity to be one, we suppose that if there are two isps belonging to the ISP,

these two isps are equal.

Line (9) for the relation below and as seen in Appendix (F.9) is expressed in

formula L1 below:

219

Chapter 7: Multichannel Security Protocol Proving Using Z3

ch1: one Channel

(forall ((cs CommunicationStatus))(and(exists ((ch11 Channel))(ch1 cs ch11))
(forall ((ch22 Channel)(ch33 Channel))(=>(and (ch1 cs ch22)(ch1 cs ch33))
(= ch22 ch33)))))

Formula L1:

∀ status:CommunicationStatus ∃ ch11:Channel.(status,ch11) ∈ ch1
∧ ∀ ch22,ch33:Channel.(status,ch22) ∈ ch1 ∧
(status,ch33) ∈ ch1 =>(ch33 = ch22)

The formula L1 specifies constraints that: for all atoms status in Communica-

tionStatus, if there exists ch11 in Channel, such that the status and ch11 belongs

to ch1 ; and for all ch22 and ch33 in Channel, such that, the status and ch22 be-

long to ch1 and ch33 and status belong to ch1 then ch33 equals ch22. To restrict

the multiplicity to be one, we suppose that if there are two channels belonging to

the ch1, two channels are equal.

Line (10) for the relation below and as seen in Appendix (F.9) is expressed in

formula M1 below:

ch2: one Channel

(forall ((cs CommunicationStatus))(and(exists ((ch11 Channel))(ch2 cs ch11))
(forall ((ch22 Channel)(ch33 Channel))(=>(and (ch2 cs ch22)(ch2 cs ch33))
(= ch22 ch33)))))

Formula M1:

∀ status:CommunicationStatus ∃ ch11:Channel.(status,ch11) ∈ ch2
∧ ∀ ch22,ch33:Channel.(status,ch22) ∈ ch2 ∧
(status,ch33) ∈ ch2 =>(ch33 = ch22)

The formula M1 specifies constraints that: for all atoms status in Communica-

tionStatus, if there exists ch11 in Channel, such that the status and ch11 belongs

220

Chapter 7: Multichannel Security Protocol Proving Using Z3

to ch2 ; and for all ch22 and ch33 in Channel, such that, the status and ch22 be-

long to ch2 and ch33 and status belong to ch2 then ch33 equals ch22. To restrict

the multiplicity to be one, we suppose that if there are two channels belonging to

the ch2, two channels are equal.

7.1.2.7 Predicates

A predicate is a logical formula with declaring parameters used to specified

operations. As seen in Appendix (F.11), the translation focuses on “inlining ”

of the predicate MultiChannel. As the multichannel protocol passes through two

statuses, we illustrate each status individually:

Line (1) for the predicate below in Appendix (F.11) is expressed in formula N1

below:

pred MultiChannel [t,t’,t”,t”’:Time,indices,indices’,
letters,letters’:Data,isp:ISP,status1,status2:Communication Status]

(forall ((status1 CommunicationStatus)(isp ISP)(status2 CommunicationStatus)
(mac MAC) (t Time)(t1 Time)(t2 Time)(t3 Time)(indices Data)(indices1 Data)
(letters Data)(letters1 Data))

Formula N1:

∀ status1,status2:CommunicationStatus , indices,indices1,letters,letters1:Data,
t,t1,t2,t3:Time, isp:ISP, mac:MAC

The formula N1 declared all variables to be used in the predicate and assertion:

status1 and status2 for the first and second status; indices and indices1 for data

have been sent and received in the first status; letters and letters1 for data have

been sent and received in the second status; t and t1 times are for sending and

receiving indices in the first status; t2 and t3 times are for sending and receiving

letters in the second status; isp for the internet server provider that the server

connects with; and mac for the set of macs that belong to the visitors.

221

Chapter 7: Multichannel Security Protocol Proving Using Z3

These variables will be used directly in the predicates and assertion below with-

out the need for redeclaration.

Line (2) for the predicate below in Appendix (F.11) is expressed in formula O1

below:

status1.client1.(status1.status) =
First Communication And Exchanging Indices and

(=>(forall ((cs1 ConnectionStatus)(cmac MAC))
(=>(and (client1 status1 cmac)(status status1 cmac cs1))
(isFirst Communication And Exchanging Indices cs1))
(forall ((cs2 ConnectionStatus))(cmac MAC))
(=>(isFirst Communication And Exchanging Indices cs2)
(and (client1 status1 cmac)(status status1 cmac cs2)))

Formula O1:

(∀ cs1:ConnectionStatus,cmac:MAC.(status1,cmac) ∈ client1
∧ (status1,cmac,cs1)∈ status =>(cs1) ∈
isFirstCommunicationAndExchangingIndices) =>
(∀ cs2:ConnectionStatus,cmac:MAC.(cs2) ∈
isFirstCommunicationAndExchangingIndices =>(status1,cmac) ∈ client1
∧ (status1,cmac,cs2)∈ status)

The formula O1 specifies constraints that: for all atoms cs1 in ConnectionSta-

tus, and cmac in MAC, such that status1 and cmac belong to client1 ; and status1,

cmac, and cs1 belong to status then cs1 belongs to isFirstCommunicationAndEx-

changingIndices. It follows that for all atoms cs2 in ConnectionStatus, and cmac

in MAC, such that cs1 belongs to isFirstCommunicationAndExchangingIndices

then status1 and cmac belong to client1 ; and status1, cmac, and cs1 belong to

status.

Line (3) for the predicate below in Appendix (F.11) is expressed in formula P1

below:

222

Chapter 7: Multichannel Security Protocol Proving Using Z3

status1.server.(status1.status) =
First Communication And Exchanging Indices and

(=>(forall ((cs1 ConnectionStatus)(smac MAC))
(=>(and (server status1 smac)(status status1 smac cs1))
(isFirst Communication And Exchanging Indices cs1))
(forall ((cs2 ConnectionStatus))(exists ((smac MAC))
(=>(isFirst Communication And Exchanging Indices cs2)
(and (server status1 smac)(status status1 smac cs2)))

Formula P1:

(∀ cs1:ConnectionStatus,smac:MAC.(status1,smac) ∈ server
∧ (status1,smac,cs1)∈ status =>(cs1) ∈
isFirstCommunicationAndExchangingIndices) =>
(∀ cs2:ConnectionStatus,smac:MAC.(cs2) ∈
isFirstCommunicationAndExchangingIndices =>(status1,smac) ∈ server
∧ (status1,smac,cs2)∈ status)

The formula P1 specifies constraints that: for all atoms cs1 in ConnectionSta-

tus, and smac in MAC, such that status1 and smac belong to server ; and status1,

smac, and cs1 belong to status then cs1 belongs to isFirstCommunicationAndEx-

changingIndices. It follows that for all atoms cs2 in ConnectionStatus, and smac

in MAC, such that cs1 belongs to isFirstCommunicationAndExchangingIndices

then status1 and smac belong to server ; and status1, smac, and cs1 belong to

status.

Line (4) for the predicate below in Appendix (F.11) is expressed in formula Q1

below:

223

Chapter 7: Multichannel Security Protocol Proving Using Z3

status1.server in status1.visitors

(forall ((smac MAC))(=>(server status1 smac)(visitors status1 smac)))

Formula Q1:

(∀ smac:MAC.(status1,smac) ∈ server =>(status1,smac) ∈ visitors

The formula Q1 specifies constraints that: for all smac in MAC, such that the

status1 and smac belong to server then status1 and smac belong to visitors.

Line (5) for the predicate below in Appendix (F.11) is expressed in formula R1

below:

status1.client1.(status1.connection) =status1.ispA and

(forall ((isp11 ISP))(=>(=>(exists ((cmac MAC))(and (client1 status1 cmac)
(connection status1 cmac isp11)))(ispA status1 isp11))(exists ((cmac1 MAC))(and
(client1 status1 cmac1)(connection status1 cmac1 isp11)))))

Formula R1:

(∀ isp11:ISP (∃ cmac:MAC.(status1,cmac) ∈ client1 ∧
(status1,cmac,isp11) ∈ connection =>(status1,isp11) ∈ ispA)) =>
(∃ cmac1:MAC.(status1,cmac1) ∈ client1 ∧ (status1,cmac1,isp11) ∈ connection

The formula R1 specifies constraints that: for all isp11 in ISP such that the

status1 and cmac belong to client1 ; and status1, cmac, and isp11 belong to

connection then status1 and isp11 belong to ispA. It follows that there exists

cmac1 in MAC such that the status1 and cmac1 belong to client1 ; and status1,

cmac1, and isp11 belong to connection.

Line (6) for the predicate below in Appendix (F.11) is expressed in formula S1

below:

224

Chapter 7: Multichannel Security Protocol Proving Using Z3

status1.ispA in status1.serviceProvider and

(forall ((ispa ISP))(=>(ispA status1 ispa)(serviceProvider status1 ispa)))

Formula S1:

(∀ ispa:ISP.(status1,ispa) ∈ ispA =>
(status1,ispa) ∈ serviceProvider

The formula S1 specifies constraints that: for all ispa in ISP, such that the

status1 and ispa belong to ispA then status1 and ispa belong to serviceProvider.

Line (7) for the predicate below in Appendix (F.11) is expressed in formula T1

below:

status1.ispB 6in status1.serviceProvider and

(forall ((ispb ISP))(=>(not(ispB status1 ispb))(serviceProvider status1 ispb)))

Formula T1:

(∀ ispb:ISP.(status1,ispb) /∈ ispB =>(status1,ispb) ∈ serviceProvider

The formula T1 specifies constraints that: for all ispb in ISP, such that the

status1 and ispb do not belong to ispB then status1 and ispb belong to service-

Provider.

Line (8) for the predicate below in Appendix (F.11) is expressed in formula U1

below:

225

Chapter 7: Multichannel Security Protocol Proving Using Z3

status1.server.(status1.connection)= isp and

(forall ((isp11 ISP))(=>(=>(exists ((smac MAC))(and (server status1 smac)
(connection status1 smac isp11)))(= isp isp11))
(exists ((smac1 MAC))(and (server status1 smac1)
(connection status1 smac1 isp)))))

Formula U1:

(∀ isp11:ISP ∃ smac:MAC.(status1,smac) ∈ server ∧
(status1,smac,isp11) ∈ connection =>(= isp isp11))
=>(∃ smac1:MAC.(status1,smac1) ∈ server ∧
(status1,smac1,isp) ∈ connection

The formula U1 specifies constraints that:for all isp11 in ISP, if there exist

smac in MAC such that the status1 and smac belong to server ; and status1,

smac, and isp11 belong to connection then isp equals isp11. It follows that there

exists smac1 in MAC such that the status1 and smac1 belong to server ; and

status1, smac1, and isp belong to connection

Line (9) for the predicate below in Appendix (F.11) is expressed in formula V1

below:

status1.ch1 in status1.channel and

(forall ((ch Channel))(=>(ch1 status1 ch)(channel status1 ch)))

Formula V1:

(∀ ch:Channel.(status1,ch) ∈ ch1 =>(status1,ch) ∈ channel

226

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula V1 specifies constraints that: for all ch in Channel, such that the

status1 and ch belong to ch1 then status1 and ch belong to Channel.

Line (10) for the predicate below in Appendix (F.11) is expressed in formula

W1 below:

status1.ch2 6in status1.channel and

(forall ((ch Channel))(=>(not (ch2 status1 ch))(channel status1 ch)))

Formula W1:

(∀ ch:Channel.(status1,ch) /∈ ch2 =>(status1,ch) ∈ channel)

The formula W1 specifies constraints that: for all ch in Channel, such that the

status1 and ch do not belong to ch2 then status1 and ch belong to Channel.

Line (11) for the predicate below in Appendix (F.11) is expressed in formula X1

below:

no status1.client2.(status1.connection) and

(forall ((cmac MAC))(not(and(client2 status1 cmac)(connection status1 cmac isp))))

Formula X1:

(∀ cmac:MAC. ¬ ((status1,cmac) ∈ client2 ∧ (status1,cmac,isp) ∈ connection))

The formula X1 specifies constraints that: for all cmac in MAC, such that

there is not status1 and cmac belong to client2 and; status1,cmac, and isp belong

to connection.

227

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (12) for the predicate below in Appendix (F.11) is expressed in formula Y1

below:

status1.client1.(status1.sends)= indices ->t ->status1.ch1 and

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((cmac MAC))(and (client1 status1 cmac)
(sends status1 cmac d11 t11 ch11)))
(and(= indices d11)(= t t11)(ch1 status1 ch11)))
(exists ((cmac1 MAC))(and (client1 status1 cmac1)
(sends status1 cmac1 indices t ch11)))))

Formula Y1:

(∀ d11:Data,t11:Time,ch11:Channel (∃ cmac:MAC.(status1,cmac)
∈ client1 ∧ (status1,cmac,d11,t11,ch11) ∈ sends =>
(indices = d11) ∧ (t = t11) ∧ (status1,ch11) ∈ ch1)
(∃ cmac1:MAC.(status1,cmac1) ∈ client1 ∧
(status1,cmac1,indices,t,ch11) ∈ sends

The formula Y1 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists cmac in MAC such that the status1 and

cmac belong to client1 ; and status1, cmac, d11, t11, and ch11 belong to sends

then indices equals d11, t equals t11, and status1, ch11 belong to ch1. It follows

that if there exists cmac1 in MAC such that the status1 and cmac1 belong to

client1 ; and status1, cmac1, indices, t, and ch11 belong to sends.

Line (13) for the predicate below in Appendix (F.11) is expressed in formula Z1

below:

status1.client1.(status1.sends) 6= letters ->t ->status1.ch1 and

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((cmac MAC))(and (client1 status1 cmac)
(sends status1 cmac d11 t11 ch11)))
(and(= letters d11)(= t t11)(ch1 status1 ch11)))

228

Chapter 7: Multichannel Security Protocol Proving Using Z3

(exists ((cmac1 MAC))(and (client1 status1 cmac1)
(not(sends status1 cmac1 letters t ch11))))))

Formula Z1:

(∀ d11:Data,t11:Time,ch11:Channel (∃ cmac:MAC.(status1,cmac)
∈ client1 ∧ (status1,cmac,d11,t11,ch11) ∈ sends =>
(letters = d11) ∧ (t = t11) ∧ (status1,ch11) ∈ ch1)
(∃ cmac1:MAC.(status1,cmac1) ∈ client1 ∧
(status1,cmac1,letters,t,ch11) /∈ sends

The formula Z1 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists cmac in MAC such that the status1 and

cmac belong to client1 ; and status1, cmac, d11, t11, and ch11 belong to sends

then letters equals d11, t equals t11, and status1, ch11 belong to ch1. It follows

that if there exists cmac1 in MAC such that the status1 and cmac1 belong to

client1 ; and status1, cmac1, letters, t, and ch11 do not belong to sends.

Line (14) for the predicate below in Appendix (F.11) is expressed in formula A2

below:

status1.server.(status1.receives) 6= letters’ ->t’ ->status1.ch1 and

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((smac MAC))(and (server status1 smac)
(receives status1 smac d11 t11 ch11)))
(and(= letters1 d11)(= t1 t11)(ch1 status1 ch11)))
(exists ((smac1 MAC))(and (server status1 smac1)
(not(receives status1 smac1 letters1 t1 ch11))))))

Formula A2:

(∀ d11:Data,t11:Time,ch11:Channel (∃ smac:MAC.(status1,smac)
∈ server ∧ (status1,smac,d11,t11,ch11) ∈ receives =>
(letters1 = d11) ∧ (t1 = t11) ∧ (status1,ch11) ∈ ch1) ∧
(∃ smac1:MAC.(status1,smac1) ∈ server ∧
(status1,smac1,letters1,t1,ch11) /∈ receives)

229

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula A2 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists smac in MAC such that the status1 and smac

belong to server ; and status1, smac, d11, t11, and ch11 belong to receives then

letters1 equals d11, t1 equals t11, and status1, ch11 belong to ch1. It follows that

if there exists smac1 in MAC such that the status1 and smac1 belong to server ;

and status1, smac1, letters1, t1, and ch11 do not belong to receives.

Line (15) for the predicate below in Appendix (F.11) is expressed in formula B2

below:

status1.server.(status1.receives)= indices’ ->t’ ->status1.ch1 and

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((smac MAC))(and (server status1 smac)
(receives status1 smac d11 t11 ch11)))
(and(= indices1 d11)(= t1 t11)(ch1 status1 ch11)))
(exists ((smac1 MAC))(and (server status1 smac1)
(receives status1 smac1 indices1 t1 ch11)))))

Formula B2:

(∀ d11:Data,t11:Time,ch11:Channel (∃ smac:MAC.(status1,smac)
∈ server ∧ (status1,smac,d11,t11,ch11) ∈ receives =>
(indices1 = d11) ∧ (t1 = t11) ∧ (status1,ch11) ∈ ch1) t11
(∃ smac1:MAC.(status1,smac1) ∈ server ∧
(status1,smac1,indices1,t1,ch11) ∈ receives)

The formula B2 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists smac in MAC such that the status1 and smac

belong to server ; and status1, smac, d11, t11, and ch11 belong to receives then

indices1 equals d11, t1 equals t11, and status1, ch11 belong to ch1. It follows

that if there exists smac1 in MAC such that the status1 and smac1 belong to

server ; and status1, smac1, indices1, t1, and ch11 belong to receives.

230

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (16) for the predicate below in Appendix (F.11) is expressed in formula C2

below:

no status1.server.(status1.sends) and

(forall ((ch Channel)(smac MAC))
(and(not(and(server status1 smac)(sends status1 smac indices t ch)))
(not(and(server status1 smac)(sends status1 smac indices1 t ch)))
(not(and(server status1 smac)(sends status1 smac letters t ch)))
(not(and(server status1 smac)(sends status1 smac letters1 t ch)))))

Formula C2:

(∀ ch:Channel ,smac:MAC. ¬ ((status1,smac) ∈ server ∧
(status1,smac,indices,t,ch) in sends) ∧
¬ ((status1,smac) ∈ server ∧ (status1,smac,indices1,t,ch) in sends) ∧
¬ ((status1,smac) ∈ server ∧ (status1,smac,letters,t,ch) in sends) ∧
¬ ((status1,smac) ∈ server ∧ (status1,smac,letters1,t,ch) in sends) ∧

The formula C2 specifies constraints that: for all ch in Channel, and smac

in MAC, such that not status1 and smac belong to server ; and status1, smac,

indices, t, and ch belong to sends ; and not status1 and smac belong to server ;

and status1, smac, indices1, t, and ch belong to sends ; and not status1 and smac

belong to server ; and status1, smac, letters, t, and ch belong to sends ; and not

status1 and smac belong to server ; and status1, smac, letters1, t, and ch belong

to sends.

Line (17) for the predicate below in Appendix (F.11) is expressed in formula D2

below:

no status1.client1.(status1.receives) and

(forall ((ch Channel)(smac MAC))
(and(not(and(client1 status1 smac)(receives status1 smac indices t1 ch)))
(not(and(client1 status1 smac)(receives status1 smac indices1 t1 ch)))

231

Chapter 7: Multichannel Security Protocol Proving Using Z3

(not(and(client1 status1 smac)(receives status1 smac letters t1 ch)))
(not(and(client1 status1 smac)(receives status1 smac letters1 t1 ch)))))

Formula D2:

(∀ ch:Channel ,smac:MAC. ¬ ((status1,smac) ∈ client1 ∧
(status1,smac,indices,t1,ch) in receives) ∧
¬ ((status1,smac) ∈ client1 ∧ (status1,smac,indices1,t1,ch) in receives) ∧
¬ ((status1,smac) ∈ client1 ∧ (status1,smac,letters,t1,ch) in receives) ∧
¬ ((status1,smac) ∈ client1 ∧ (status1,smac,letters1,t1,ch) in receives) ∧

The formula D2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status1 and smac do not belong to client1 ; and status1, smac,

indices, t1, and ch belong to receives ; and status1 and smac do not belong to

client1 ; and status1, smac, indices1, t1, and ch belong to receives ; and status1

and smac do not belong to client1 ; and status1, smac, letters, t1, and ch belong

to receives ; and status1 and smac do not belong to client1 ; and status1, smac,

letters1, t1, and ch belong to receives.

Line (18) for the predicate below in Appendix (F.11) is expressed in formula E2

below:

no status1.client2.(status1.receives) and

(forall ((ch Channel)(smac MAC))
(and(not(and(client2 status1 smac)(receives status1 smac indices t1 ch)))
(not(and(client2 status1 smac)(receives status1 smac indices1 t1 ch)))
(not(and(client2 status1 smac)(receives status1 smac letters t1 ch)))
(not(and(client2 status1 smac)(receives status1 smac letters1 t1 ch)))))

Formula E2:

(∀ ch:Channel ,smac:MAC. ¬ ((status1,smac) ∈ client2 ∧
(status1,smac,indices,t1,ch) in receives) ∧
¬ ((status1,smac) ∈ client2 ∧ (status1,smac,indices1,t1,ch) in receives) ∧
¬ ((status1,smac) ∈ client2 ∧ (status1,smac,letters,t1,ch) in receives) ∧
¬ ((status1,smac) ∈ client2 ∧ (status1,smac,letters1,t1,ch) in receives) ∧

232

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula E2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status1 and smac do not belong to client2 ; and status1, smac,

indices, t1, and ch belong to receives ; and status1 and smac do not belong to

client2 ; and status1, smac, indices1, t1, and ch belong to receives ; and status1

and smac do not belong to client2 ; and status1, smac, letters, t1, and ch belong

to receives ; and status1 and smac do not belong to client2 ; and status1, smac,

letters1, t1, and ch belong to receives.

Line (19) for the predicate below in Appendix (F.11) is expressed in formula F2

below:

no status1.client2.(status1.sends) and

(forall ((ch Channel)(smac MAC))
(and(not(and(client2 status1 smac)(sends status1 smac indices t ch)))
(not(and(client2 status1 smac)(sends status1 smac indices1 t ch)))
(not(and(client2 status1 smac)(sends status1 smac letters t ch)))
(not(and(client2 status1 smac)(sends status1 smac letters1 t ch)))))

Formula F2:

(∀ ch:Channel ,smac:MAC. ¬ ((status1,smac) ∈ client2 ∧
(status1,smac,indices,t,ch) in sends) ∧
¬ ((status1,smac) ∈ client2 ∧ (status1,smac,indices1,t,ch) in sends) ∧
¬ ((status1,smac) ∈ client2 ∧ (status1,smac,letters,t,ch) in sends) ∧
¬ ((status1,smac) ∈ client2 ∧ (status1,smac,letters1,t,ch) in sends) ∧

The formula F2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status1 and smac do not belong to client2 ; and status1, smac,

indices, t, and ch belong to sends ; and status1 and smac do not belong to client2 ;

and status1, smac, indices1, t, and ch belong to sends ; and status1 and smac do

not belong to client2 ; and status1, smac, letters, t, and ch belong to sends ; and

status1 and smac do not belong to client2 ; and status1, smac, letters1, t, and ch

belong to sends.

233

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (20) for the predicate below in Appendix (F.11) is expressed in formula

G2 below:

status2.client2.(status2.status) =
Second Communication And Exchanging Letters and

(=>(forall ((cs1 ConnectionStatus)(cmac MAC))
(=>(and (client2 status2 cmac)(status status2 cmac cs1))
(isSecond Communication And Exchanging Letters cs1))
(forall ((cs2 ConnectionStatus))(cmac MAC))
(=>(isSecond Communication And Exchanging Letters cs2)
(and (client2 status2 cmac)(status status2 cmac cs2)))

Formula G2:

(∀ cs1:ConnectionStatus,cmac:MAC.(status2,cmac) ∈ client2
∧ (status2,cmac,cs1)∈ status =>(cs1) ∈
isSecondCommunicationAndExchangingLetters) =>
(∀ cs2:ConnectionStatus,cmac:MAC.(cs2) ∈
isSecondCommunicationAndExchangingLetters =>(status2,cmac) ∈ client2
∧ (status2,cmac,cs2)∈ status)

The formula G2 specifies constraints that: for all atoms cs1 in Connection-

Status, and cmac in MAC, such that status2 and cmac belong to client2 ; and

status2, cmac, and cs1 belong to status then cs1 belongs to isSecondCommunica-

tionAndExchangingLetters. It follows that for all atoms cs2 in ConnectionStatus,

and cmac in MAC, such that cs1 belongs to isSecondCommunicationAndExchang-

ingLetters then status2 and cmac belong to client2 ; and status2, cmac, and cs1

belong to status.

Line (21) for the predicate below in Appendix (F.11) is expressed in formula H2

below:

234

Chapter 7: Multichannel Security Protocol Proving Using Z3

status2.server.(status2.status) =
Second Communication And Exchanging Letters and

(=>(forall ((cs1 ConnectionStatus)(smac MAC))
(=>(and (server status2 smac)(status status2 smac cs1))
(isSecond Communication And Exchanging Letters cs1))
(forall ((cs2 ConnectionStatus))(smac MAC))
(=>(isSecond Communication And Exchanging Letters cs2)
(and (server status2 cmac)(status status2 smac cs2)))

Formula H2:

(∀ cs1:ConnectionStatus,smac:MAC.(status2,smac) ∈ server
∧ (status2,smac,cs1)∈ status =>(cs1) ∈
isSecondCommunicationAndExchangingLetters) =>
(∀ cs2:ConnectionStatus,smac:MAC.(cs2) ∈
isSecondCommunicationAndExchangingLetters =>(status2,smac) ∈ server
∧ (status2,smac,cs2)∈ status)

The formula H2 specifies constraints that: for all atoms cs1 in Connection-

Status, and smac in MAC, such that status2 and smac belong to server ; and

status2, smac, and cs1 belong to status then cs1 belongs to isSecondCommunica-

tionAndExchangingLetters. It follows that for all atoms cs2 in ConnectionStatus,

and smac in MAC, such that cs1 belongs to isSecondCommunicationAndExchang-

ingLetters then status2 and smac belong to server ; and status2, smac, and cs1

belong to status.

Line (22) for the predicate below in Appendix (F.11) is expressed in formula I2

below:

status2.server in status2.visitors

(forall ((smac MAC))(=>(server status2 smac)(visitors status2 smac)))

Formula I2:

(∀ smac:MAC.(status2,smac) ∈ server =>(status2,smac) ∈ visitors

235

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula I2 specifies constraints that: for all smac in MAC, such that the

status2 and smac belong to server then status2 and smac belong to visitors.

Line (23) for the predicate below in Appendix (F.11) is expressed in formula J2

below:

status2.ispA 6in status2.serviceProvider and

(forall ((ispa ISP))(=>(not(ispA status2 ispa))(serviceProvider status2 ispa)))

Formula J2:

(∀ ispa:ISP.(status2,ispa) /∈ ispA =>(status2,ispa) ∈ serviceProvider

The formula J2 specifies constraints that: for all ispa in ISP, such that status2

and ispa do not belong to ispA then status2 and ispa belong to serviceProvider.

Line (24) for the predicate below in Appendix (F.11) is expressed in formula K2

below:

status2.ispB in status2.serviceProvider and

(forall ((ispb ISP))(=>((ispB status2 ispb)(serviceProvider status2 ispb)))

Formula K2:

(∀ ispb:ISP.(status2,ispb) ∈ ispB =>(status2,ispb) ∈ serviceProvider

The formula K2 specifies constraints that: for all ispb in ISP, such that status2

and ispb belong to ispB then status2 and ispb belong to serviceProvider.

236

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (25) for the predicate below in Appendix (F.11) is expressed in formula L2

below:

status2.ch1 6in status2.channel and

(forall ((ch Channel))(=>(not(ch1 status2 ch))(channel status2 ch)))

Formula L2:

(∀ ch:Channel.(status2,ch) /∈ ch1 =>
(status2,ch) ∈ channel

The formula L2 specifies constraints that: for all ch in Channel, such that

status2 and ch do not belong to ch1 then status2 and ch belong to Channel.

Line (26) for the predicate below in Appendix (F.11) is expressed in formula

M2 below:

status2.ch2 in status2.channel and

(forall ((ch Channel))(=>(ch2 status2 ch)(channel status2 ch)))

Formula M2:

(∀ ch:Channel.(status2,ch) ∈ ch2 =>(status2,ch) ∈ channel)

The formula M2 specifies constraints that: for all ch in Channel, such that

status2 and ch belong to ch2 then status2 and ch belong to Channel.

Line (27) for the predicate below in Appendix (F.11) is expressed in formula N2

below:

237

Chapter 7: Multichannel Security Protocol Proving Using Z3

no status2.client1.(status2.connection) and

(forall ((cmac MAC))(not(and(client1 status2 cmac)(connection status2 cmac isp))))

Formula N2:

(∀ cmac:MAC. ¬ ((status2,cmac) ∈ client1 ∧ (status2,cmac,isp) ∈ connection))

The formula N2 specifies constraints that: for all cmac in MAC, status2 and

cmac do not belong to client1 and status2,cmac, and isp belong to connection.

Line (28) shows the predicate below in Appendix (F.11) is expressed in formula

O2 below:

status2.client2.(status2.connection) =status2.ispB and

(forall ((isp11 ISP))(=>(=>(exists ((cmac MAC))
(and (client2 status2 cmac)(connection status2 cmac isp11)))(ispB status2 isp11))
(exists ((cmac2 MAC))(and(client2 status2 cmac2)(connection status2 cmac2 isp11)))))

Formula O2:

(∀ isp11:ISP (∃ cmac:MAC.(status2,cmac) ∈ client2 ∧
(status2,cmac,isp11) ∈ connection =>(status2,isp11) ∈ ispB)) =>
(∃ cmac2:MAC.(status2,cmac2) ∈ client2 ∧ (status2,cmac2,isp11) ∈ connection

The formula O2 specifies constraints that: for all isp11 in ISP such that status2

and cmac belong to client2 ; and status2, cmac, and isp11 belong to connection

then status2 and isp11 belong to ispB, follows that if there exist cmac2 in MAC

such that status2 and cmac2 belong to client2 ; and status2, cmac2, and isp11

belong to connection.

238

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (29) shows the predicate below in Appendix (F.11) is expressed in formula

P2 below:

status2.server.(status2.connection)= status1.server.(status1.connection) and

(forall ((smac MAC)(isp11 ISP))(=>
(and (server status2 smac)(connection status2 smac isp11))
(and (server status1 smac)(connection status1 smac isp11))))
(forall ((smac1 MAC)(isp12 ISP))(=>
(and (server status1 smac1)(connection status1 smac1 isp12))
(and (server status2 smac1)(connection status2 smac1 isp12))))

Formula P2:

(∀ smac:MAC, isp11:ISP.(status2,smac) ∈ server ∧
(status2,smac,isp11) ∈ connection =>
(status1,smac) ∈ server ∧
(status1,smac,isp11) ∈ connection
(∀ smac1:MAC, isp12:ISP.(status1,smac1) ∈ server ∧
(status1,smac1,isp12) ∈ connection =>
(status2,smac1) ∈ server ∧
(status2,smac1,isp12) ∈ connection

The formula P2 specifies constraints that: for all smac in MAC, and isp11 in

ISP such that status2 and smac belong to server ; and status2, smac, and isp11

belong to connection then status1 and smac belong to server ; and status1, smac,

and isp11 belong to connection. For all smac1 in MAC, and isp12 in ISP such

that status1 and smac1 belong to server ; and status1, smac1, and isp12 belong

to connection then status2 and smac1 belong to server ; and status2, smac1, and

isp12 belong to connection.

Line (30) for the predicate below in Appendix (F.11) is expressed in formula Q2

below:

239

Chapter 7: Multichannel Security Protocol Proving Using Z3

status2.client2.(status2.sends)=letters->t”->status2.ch2 and

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((cmac MAC))(and (client2 status2 cmac)
(sends status2 cmac d11 t11 ch11)))
(and(= letters d11)(= t2 t11)(ch2 status2 ch11)))
(exists ((cmac2 MAC))(and (client2 status2 cmac2)
(sends status2 cmac2 letters t2 ch11)))))

Formula Q2:

(∀ d11:Data,t11:Time,ch11:Channel (∃ cmac:MAC.(status2,cmac)
∈ client2 ∧ (status2,cmac,d11,t11,ch11) ∈ sends =>
(letters = d11) ∧ (t = t11) ∧ (status2,ch11) ∈ ch2) ∧
(∃ cmac1:MAC.(status2,cmac1) ∈ client2 ∧
(status2,cmac1,letters,t,ch11) ∈ sends)

The formula Q2 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists cmac in MAC such that the status2 and

cmac belong to client2 ; and status2, cmac, d11, t11, and ch11 belong to sends

then letters equals d11, t2 equals t11, and status2, ch11 belong to ch2, follows that

there exists cmac2 in MAC such that the status2 and cmac2 belong to client2 ;

and status2, cmac2, letters, t2, and ch11 belong to sends.

Line (31) for the predicate below in Appendix (F.11) is expressed in formula R2

below:

status2.client2.(status2.sends) 6= indices->t”->status2.ch2

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((cmac MAC))(and (client2 status2 cmac)
(sends status2 cmac d11 t11 ch11)))
(and(= indices d11)(= t2 t11)(ch2 status2 ch11)))
(exists ((cmac2 MAC))(and (client2 status2 cmac2)
(not(sends status2 cmac2 indices t2 ch11))))))

240

Chapter 7: Multichannel Security Protocol Proving Using Z3

Formula R2:

(∀ d11:Data,t11:Time,ch11:Channel (∃ cmac:MAC.(status2,cmac)
∈ client2 ∧ (status2,cmac,d11,t11,ch11) ∈ sends =>
(indices = d11) ∧ (t2 = t11) ∧ (status2,ch11) ∈ ch2) =>
(∃ cmac2:MAC.(status2,cmac2) ∈ client2 ∧
(status2,cmac2,indices,t2,ch11) /∈ sends)

The formula R2 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists cmac in MAC such that status2 and cmac

belong to client1 ; and status2, cmac, d11, t11, and ch11 belong to sends then

indices equals d11, t2 equals t11, and status2, ch11 belong to ch2, follows that

there exists cmac2 in MAC such that status2 and cmac2 belong to client1 ; and

status2, cmac2, indices, t2, and ch11 do not belong to sends.

Line (32) for the predicate below in Appendix (F.11) is expressed in formula S2

below:

status2.server.(status2.receives)=letters’->t”’->status2.ch2

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((smac MAC))(and (server status2 smac)
(receives status2 smac d11 t11 ch11)))
(and(= letters1 d11)(= t3 t11)(ch2 status2 ch11)))
(exists ((smac2 MAC))(and (server status2 smac2)
(receives status2 smac2 letters1 t3 ch11)))))

Formula S2:

(∀ d11:Data,t11:Time,ch11:Channel (∃ smac:MAC.(status2,smac)
∈ server ∧ (status2,smac,d11,t11,ch11) ∈ receives =>
(letters1 = d11) ∧ (t3 = t11) ∧ (status1,ch11) ∈ ch2) =>
(∃ smac2:MAC.(status2,smac2) ∈ server ∧
(status2,smac2,letters1,t3,ch11) ∈ receives)

The formula S2 specifies constraints that: for all d11 in Data, t11 in Time,

241

Chapter 7: Multichannel Security Protocol Proving Using Z3

and ch11 in Channel, if there exists smac in MAC such that status2 and smac

belong to server ; and status2, smac, d11, t11, and ch11 belong to receives then

letters1 equals d11, t3 equals t11, and status2, ch11 belong to ch2, follows that if

there exists smac2 in MAC such that status2 and smac2 belong to server ; and

status2, smac2, letters1, t3, and ch11 belong to receives.

Line (33) for the predicate below in Appendix (F.11) is expressed in formula T2

below:

status2.server.(status2.receives) 6= indices’->t”’->status2.ch2

(forall ((d11 Data)(t11 Time)(ch11 Channel))(=>(=>
(exists ((smac MAC))(and (server status2 smac)
(receives status2 smac d11 t11 ch11)))
(and(= indices1 d11)(= t3 t11)(ch2 status2 ch11)))
(exists ((smac2 MAC))(and (server status2 smac2)
(not(receives status2 smac2 indices1 t3 ch11))))))

Formula T2:

(∀ d11:Data,t11:Time,ch11:Channel (∃ smac:MAC.(status2,smac)
∈ server ∧ (status2,smac,d11,t11,ch11) ∈ receives =>
(indices1 = d11) ∧ (t3 = t11) ∧ (status2,ch11) ∈ ch1) =>
(∃ smac2:MAC.(status2,smac2) ∈ server ∧
(status2,smac2,indices1,t3,ch11) /∈ receives)

The formula T2 specifies constraints that: for all d11 in Data, t11 in Time,

and ch11 in Channel, if there exists smac in MAC such that status2 and smac

belong to server ; and status2, smac, d11, t11, and ch11 belong to receives then

indices1 equals d11, t3 equals t11, and status2, ch11 belong to ch1, follows that

if there exists smac2 in MAC such that status2 and smac2 belong to server ; and

status2, smac2, indices1, t3, and ch11 do not belong to receives.

242

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (34) for the predicate below in Appendix (F.11) is expressed in formula U2

below:

no status2.server.(status2.sends) and

(forall ((ch Channel)(smac MAC))
(and(not(and(server status2 smac)(sends status2 smac indices t2 ch)))
(not(and(server status2 smac)(sends status2 smac indices1 t2 ch)))
(not(and(server status2 smac)(sends status2 smac letters t2 ch)))
(not(and(server status2 smac)(sends status2 smac letters1 t2 ch)))))

Formula U2:

(∀ ch:Channel ,smac:MAC. ¬ ((status2,smac) ∈ server ∧
(status2,smac,indices,t2,ch) in sends) ∧
¬ ((status2,smac) ∈ server ∧ (status2,smac,indices1,t2,ch) in sends) ∧
¬ ((status2,smac) ∈ server ∧ (status2,smac,letters,t2,ch) in sends) ∧
¬ ((status2,smac) ∈ server ∧ (status2,smac,letters1,t2,ch) in sends) ∧

The formula U2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status2 and smac do not belong to server ; and status2, smac,

indices, t2, and ch belong to sends ; and status2 and smac do not belong to server ;

and status2, smac, indices1, t2, and ch belong to sends ; and status2 and smac do

not belong to server ; and status2, smac, letters, t2, and ch belong to sends ; and

status2 and smac do not belong to server ; and status2, smac, letters1, t2, and ch

belong to sends.

Line (35) for the predicate below in Appendix (F.11) is expressed in formula V2

below:

no status2.client1.(status2.receives) and

(forall ((ch Channel)(smac MAC))
(and(not(and(client1 status2 smac)(receives status2 smac indices t3 ch)))
(not(and(client1 status2 smac)(receives status2 smac indices1 t3 ch)))

243

Chapter 7: Multichannel Security Protocol Proving Using Z3

(not(and(client1 status2 smac)(receives status2 smac letters t3 ch)))
(not(and(client1 status2 smac)(receives status2 smac letters1 t3 ch)))))

Formula V2:

(∀ ch:Channel ,smac:MAC. ¬ ((status2,smac) ∈ client1 ∧
(status2,smac,indices,t3,ch) in receives) ∧
¬ ((status2,smac) ∈ client1 ∧ (status2,smac,indices1,t3,ch) in receives) ∧
¬ ((status2,smac) ∈ client1 ∧ (status2,smac,letters,t3,ch) in receives) ∧
¬ ((status2,smac) ∈ client1 ∧ (status2,smac,letters1,t3,ch) in receives) ∧

The formula V2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status2 and smac do not belong to client1 ; and status2, smac,

indices, t3, and ch belong to receives ; and status2 and smac do not belong to

client1 ; and status2, smac, indices1, t3, and ch belong to receives ; and status2

and smac do not belong to client1 ; and status2, smac, letters, t3, and ch belong

to receives ; and status2 and smac do not belong to client1 ; and status2, smac,

letters1, t3, and ch belong to receives.

Line (36) for the predicate below in Appendix (F.11) is expressed in formula

W2 below:

no status2.client2.(status2.receives)

(forall ((ch Channel)(smac MAC))
(and(not(and(client2 status2 smac)(receives status2 smac indices t3 ch)))
(not(and(client2 status2 smac)(receives status2 smac indices1 t3 ch)))
(not(and(client2 status2 smac)(receives status2 smac letters t3 ch)))
(not(and(client2 status2 smac)(receives status2 smac letters1 t3 ch)))))

Formula W2:

(∀ ch:Channel ,smac:MAC. ¬ ((status2,smac) ∈ client2 ∧
(status2,smac,indices,t3,ch) in receives) ∧
¬ ((status2,smac) ∈ client2 ∧ (status2,smac,indices1,t3,ch) in receives) ∧
¬ ((status2,smac) ∈ client2 ∧ (status2,smac,letters,t3,ch) in receives) ∧
¬ ((status2,smac) ∈ client2 ∧ (status2,smac,letters1,t3,ch) in receives) ∧

244

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula W2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status2 and smac do not belong to client2 ; and status2, smac,

indices, t3, and ch belong to receives ; and status2 and smac do not belong to

client2 ; and status2, smac, indices1, t3, and ch belong to receives ; and status2

and smac do not belong to client2 ; and status2, smac, letters, t3, and ch belong

to receives ; and status2 and smac do not belong to client2 ; and status2, smac,

letters1, t3, and ch belong to receives.

Line (37) for the predicate below in Appendix (F.11) is expressed in formula X2

below:

no status2.client1.(status2.sends)

(forall ((ch Channel)(smac MAC))
(and(not(and(client1 status2 smac)(sends status2 smac indices t2 ch)))
(not(and(client1 status2 smac)(sends status2 smac indices1 t2 ch)))
(not(and(client1 status2 smac)(sends status2 smac letters t2 ch)))
(not(and(client1 status2 smac)(sends status2 smac letters1 t2 ch)))))

Formula X2:

(∀ ch:Channel ,smac:MAC. ¬ ((status2,smac) ∈ client1 ∧
(status2,smac,indices,t2,ch) in sends) ∧
¬ ((status2,smac) ∈ client1 ∧ (status2,smac,indices1,t2,ch) in sends) ∧
¬ ((status2,smac) ∈ client1 ∧ (status2,smac,letters,t2,ch) in sends) ∧
¬ ((status2,smac) ∈ client1 ∧ (status2,smac,letters1,t2,ch) in sends) ∧

The formula X2 specifies constraints that: for all ch in Channel, and smac in

MAC, such that status2 and smac do not belong to client1 ; and status2, smac,

indices, t2, and ch belong to sends ; and status2 and smac do not belong to client1 ;

and status2, smac, indices1, t2, and ch belong to sends ; and status2 and smac do

not belong to client1 ; and status2, smac, letters, t2, and ch belong to sends ; and

status2 and smac do not belong to client1 ; and status2, smac, letters1, t2, and ch

belong to sends.

245

Chapter 7: Multichannel Security Protocol Proving Using Z3

Line (38) for the predicate below in Appendix (F.11) is expressed in formula Y2

below:

status1.client1 in status1.visitors and status1.client2
6in status1.visitors and
status2.client1 6in status2.visitors and status2.client2
in status2.visitors and
((status1.client1) in status1.interseptMacs and (status2.client2)
6in status2.interseptMacs

or (status1.client1) 6in status1.interseptMacs and (status2.client2)
in status2.interseptMacs

or (status1.client1) 6in status1.interseptMacs and (status2.client2)
6in status2.interseptMacs)

(forall ((cmac1 MAC)(cmac2 MAC))(and(and (=>
(client1 status1 cmac1)(visitors status1 cmac1))(=>(client2 status1 cmac2)
(not(visitors status1 cmac2)))(=>(client1 status2 cmac1)(not(visitors status2 cmac1)))
(=>(client2 status2 cmac2)(visitors status2 cmac2)))
(or (and (=>(client1 status1 cmac1)(interseptMacs status1 cmac1))
(=>(client2 status2 cmac2)(not(interseptMacs status2 cmac2))))
(and (=>(client1 status1 cmac1)(not(interseptMacs status1 cmac1)))
(=>(client2 status2 cmac2)(interseptMacs status2 cmac2)))
(and(=>(client1 status1 cmac1)(not(interseptMacs status1 cmac1)))
(=>(client2 status2 cmac2)(not(interseptMacs status2 cmac2)))))))

Formula Y1:

∀ cmac1, cmac2:MAC.((status1,cmac1) ∈ client1
=>(status1,cmac1) ∈ visitors ∧ (status1,cmac2) /∈ client2
=>(status1,cmac2) /∈ visitors ∧ (status2,cmac1) /∈ client1

=>(status2,cmac1) /∈ visitors ∧ (status2,cmac2) ∈ client2 =>(status2,cmac2)
∈ visitors ∧((status1,cmac1) ∈ client1 =>(status1,cmac1) ∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) /∈ interseptMacs ∨
(status1,cmac1) ∈ client1 =>(status1,cmac1) /∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) ∈ interseptMacs ∨
(status1,cmac1) ∈ client1 =>(status1,cmac1) /∈ interseptMacs ∧
(status2,cmac2) ∈ client2 =>(status2,cmac2) /∈ interseptMacs)

246

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula Y1 specifies constraints that: for all atoms cmac1, cmac2 in MAC,

such that if the first client belongs to the client1 in status1, the first client belongs

to visitors in status1, and if the second client does not belong to client2 in status1,

the second client does not belong to visitors in status1, and if the first client does

not belong to client1 in status2, the first client does not belong to visitors in

status2, and if the second client belongs to client2 in status2, the second client

belongs to visitors in status2.

And, if the first client belongs to client1 in status1, the first client belongs to

interseptMacs in status1, and if the second client belongs to client2 in status2, the

second client does not belong to interseptMacs in status2. Or, if the first client

belongs to client1 in status1, the first client does not belong to interseptMacs in

status1, and if the second client belongs to client2 in status2, the second client

belongs to the interseptMacs in status2. Or, if the first client belongs to client1

in status1, the first client does not belong to interseptMacs in status1, and if the

second client belongs to client2 in status2, the second client does not belong to

interseptMacs in status2.

7.1.2.8 Assertion

Lines (39) in Appendix (F.11) is expressed to formula Z2 below:

MultiChannel implies indices = indices1 and letters = letters1

(and(= indices indices1)(= letters letters1))

Formula Z2:

indices = indices1 ∧ letters = letters1

247

Chapter 7: Multichannel Security Protocol Proving Using Z3

The formula Z2 specifies constraints that: sending and receiving indices should

be equal and sending and receiving letters should be equal.

7.2 Results

The negation of the assertion introduces that: the truth of the predicate and

the achieved properties do not imply that data received equals data sent under all

provided axioms, which conflicts our hypothesis.

We used check-sat as seen in Appendices (D.10,F.12) (Line 1) to ask the SMT

solver to check whether the negation of the implication of the provided assertions

is unsatisfiable or not. The SMT solver spent 0.09s and 0.039s to try to find a

model that satisfied the negation of the set of formula but it did not find any.

However, without writing logical formulas as in Appendices (D.8, F.10) which

restricted the properties of the first and the second protocol, the SMT solver

provides SAT result in 0.015s for the first protocol and 0.65s for the second pro-

tocol. So that the instance found by the SMT solver is a counterexample to the

assertion.

248

Chapter 7: Multichannel Security Protocol Proving Using Z3

7.3 Discussion

Our goal from using Z3 SMT solver is to be more confident by proving the

correctness of the results that we have achieved from the Alloy SAT solver. We

will now compare the two approaches. First of all we compare the static size of

specifications in Figure 7.1 in terms of the number of lines, the number of words,

the number of characters for each component of our case studies in using both

Alloy and Z3,and the time that SAT4J and SMT solvers spent to either generate

a counterexample (CE), or no counterexample (no-CE).

Figure 7.1: Size and Time of Specifications

In general the number of lines, the number of words, and the number of char-

acters for proving using Z3 is larger than using Alloy for all case studies whether

there is a counterexample or not. The main reason for that is Alloy uses declara-

tions to show the relations between entities and uses the multiplicity keywords to

restrict the type of the relation, while Z3 uses functions and formulas to build the

relations and specify them as functions.

249

Chapter 7: Multichannel Security Protocol Proving Using Z3

In Alloy we see that the number of lines, the number of words, the number of

characters, and and the time spent to generate a counterexample increase based on

increasing the number of entities, the number of relations, the number of facts, the

number of statuses in a predicate, and the number of properties in an assertion.

In Z3 we see that the number of lines, the number of words, and the number of

characters increases based on increasing the number of: (1) extensions required to

formulate how they are disjoint and to adjust return types (oneOf) as constants;

(2) entities required to formulate how the abstract holds an extended entity. (3)

multiplicity keywords. (4) relations, the number of facts, the number of statuses

in a predicate, and the number of properties in an assertion.

Proving the ATM case study requires two abstracts and each abstract has at

most six extensions. Also proving the multichannel protocol, requires one abstract

and each abstract has at most two extensions increasing the number of lines, the

number of words, and the number of characters.

As seen in Figure 6.2 Alloy and Z3 complement each other for several reasons:

• 1- Time for generating or solving a counterexample

Z3 is faster in searching for a counterexample as it spent 0.022s for proving the

properties of the ATM model, while the SAT solver spent 0.187s for translation

and checking the properties of the ATM model. Z3 spent 0.09s for solving the

first protocol model and 0.139s for solving the second protocol model, while the

SAT solver spent 0.211s for translation and checking the first protocol model and

1.594s for translation and solving the second protocol model.

In contrast, increasing the analysis scope to include more than one card, slows

down the analysis in the Alloy Analyser. We find the same argument in [18] as

250

Chapter 7: Multichannel Security Protocol Proving Using Z3

when we model single channel and multichannel protocols which duplicates the

scopes.

Moreover, when we increased the number of scopes from one channel to two

channels, one ISP to two ISP, two datum to 4 datum, two times to four times, and

one status to two statuses, the Alloy Analyser became slower and took longer in

analysing the multichannel taking 1.703s compared to 0.409s for the single channel.

To solve this disadvantage, [39] supposed that reducing the number of variables

and increasing the number of constraints tends to reduce the solving time because

it reduces the search space that the SAT solver must explore.

However, the Z3 SMT solver spent 0.015s for the first protocol and 0.65s for the

second protocol. As seen in Figure 6.1, increasing the number of variables, the

number of scopes, the number of properties, and the complexity lead to increasing

the time that both the Alloy Analyser and Z3 spend to generate a counterexample.

• 2- Detecting, visualizing and understanding a counterexample

The common strength between Alloy and Z3 is providing a counterexample. How-

ever, in Alloy we could visualize the counterexample very easily. For example, in

Figures 3.4, 6.2, 6.3, 6.5 when the SAT solver generated counterexamples which

are instances that satisfy all the constraints, but violate the assertion. From this

visualization we got the benefit to follow the flaws in the model and put more con-

strains until all instances satisfy the constraints, and do not violate the assertion

as seen in Figures 3.5, 3.6, 3.7, 6.6, 6.7, 6.8. Visualising the model using Alloy may

help us to find more constraints corresponding with the behaviour of the model

that may not be taken in our account. For example, in the protocols model, we

noticed that the model visualized that the client has an ability to receive and the

server has an ability to send. However, in our model this is not allowed to be

visualized. On the other hand, Z3 provides the counterexample as a formula and

that requires expert understanding to extract and understand.

251

Chapter 7: Multichannel Security Protocol Proving Using Z3

• 3- Limiting scopes of each type for checking the model

Alloy has the capability of limiting the state space that we need to look for a

counterexample. For example, in the ATM system we needed to check the size of

1 atom for each signature except ATM 6 atoms. In the single channel protocol,

we needed to check the size of 3 atoms for MAC, 2 atoms for Time, 2 atoms for

ISP, 2 atoms for Data, 1 atom for ConnectionStatus, 1 atom for Channel, 1 atom

for Communication Statu. In the multichannel protocol, we needed to check the

size of 3 atoms of MAC, 4 atoms of Time, 2 atoms of ISP, 2 atoms of Channel,

4 atoms of Data, 1 atom of ConnectionStatus, 2 atoms of Communication Status.

So, limiting scopes helps to detect any errors simply before developing the model

to be complex with increasing the number of scopes gradually. Also it makes the

Alloy analysis is noticeably faster. Moreover reducing the size of the model helps

to accelerate and make more confident finding a counterexample.

• 4- Scanning all instances to get a counterexample

In Alloy we don’t know where to stop increasing the scope to get a counterexam-

ple. So, we need to increase the size of scope and check each time. Consequently,

we turned to Z3 as it checks the satisfiability for unbounded scope. For example,

before restricting the properties of the ATM system, we checked the scopes from

1 to 4 and the analyser always said there was not a counterexample. When we

turned to Z3, the counterexample appeared in one check. This advantage for Z3

also suggest to us that there is a counterexample in Alloy.

• 5- Confidence to begin with

Modelling a problem and then turning to prove it is useful because if the ease

of using modelling with visualizing then turning to prove the result makes us feel

more confident, especially when we got the same result in both formal methods.

252

Chapter 7: Multichannel Security Protocol Proving Using Z3

• 6- Possibility of checking arbitrary relations

Z3 has an advantage in checking arbitrary sizes of relations. In Alloy when the

universe contains more than 19 atoms as limited scope, the relations of arity 8

cannot be represented and the translation capacity will be exceeded.

• 7- Mistake percentage

In Alloy, the percentage of mistakes is higher because with limiting scope there

may be an instance that causes a counterexample in a large scope. Also, with

increasing the size of scope, there is an instance may be lost if the restriction in

the relation between entities using the multiplicity keyword was not accurate.

• 8- An unrecognisable result

When running to check the satisfiability of a property, Z3 may return as a result

the keyword "unknown". So the property may or may not be valid so Z3 does not

guarantee a complete analysis [63].

• 9- Syntax

Alloy provides a syntax which is easy to use directly without requiring one to

write formulas to specify relations, extensions, abstracts, and multiplicity key-

words.

• 10- Reason of model consistency

The common weakness, between Alloy and Z3 is that both do not tell why the

model is inconsistent if it is inconsistent.

253

Chapter 7: Multichannel Security Protocol Proving Using Z3

We conclude that, based on the results we achieved from analysing our protocol

we cannot say that Alloy is the best choice for analysing a complex protocol

compared to Z3 or vice versa. We noticed that both solvers complement each

other.

When AA took a long time to generate a counterexample in limited scope,

we found that Z3 is 11 times faster than AA. However, manually translating

Alloy into a Z3 satisfiability-equivalent formulation took much more lines, words,

and characters as seen in Figure 6.1. We tried to translate each line in Alloy

into Z3 manually following the rules that will be provided that in next chapter

covering Alloy syntax as seen in Figure 3.2 which Z3 does not have. We noticed

that, after making the corresponding transformation, each part which causes a

counterexample in Alloy also causes it in Z3 and if each restriction put in Alloy to

solve the counterexample, is asserted in Z3 we got the same result. However, the

manually translation takes long time and requires the user to be expert in relational

logic to write accurate formulas corresponding Alloy formula to Z3 formulas.

Moreover, AA has a strength in visualizing the instances of the model and fol-

lowing the flows if there is a counterexample. This was a big advantage for Alloy as

it gave us the ability to visualize mappings between variables and values to looking

at counterexamples. In contrast, Z3 lacks that and presents the counterexample

as a formula. Providing the syntax in Alloy and the advantage of visualizing the

counterexample made us confident to begin with Alloy although the percentage of

mistakes is higher.

In chapter 8 we show how a small portion of Alloy may be translated manually

into a large amount of less readable Z3 including declaring types, subtypes, ab-

straction, extension, multiplicity constraints, relations, facts, assertions, formulas,

and analysis.

254

Chapter 7: Multichannel Security Protocol Proving Using Z3

Figure 7.2: Comparison

255

Chapter 8

Systematic Translation Rules: A

First Step Towards An

Automated Translator

8.1 Introduction

In this chapter we show how to translate a specification performed with Alloy

into a satisfiability-equivalent SMT problem using Z3 SMT logic and solved by

an SMT solver such that if there is a counterexample in Alloy in finite scopes, it

supposed to be a counterexample in Z3 in infinite scopes and vice versa.

We clarify the translation from Alloy into Z3 including type declaration, rela-

tion declaration, multiplicity keywords, fact, assertion, predicate, expressions, and

Formula.

This chapter has significance in:

• Helping researchers to understand how to express the same property in both

Alloy and Z3.

256

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

• Guiding researchers to study the translation rules for each portion of the

syntax of Alloy as seen in Figure 8.1 into Z3.

• Motivating researchers to build an automated tool to facilitate the transla-

tion operation from Alloy into Z3, saving time, effort and expert.

• Helping the interested researchers to combine model checkers and theorem

provers and to harness their complementary strengths.

Figure 8.1: Abstract Syntax For The Core Alloy Logic [62]

8.2 The Alloy Syntax

A seen in Figure 8.1, the abstract syntax for the core Alloy logic contains three

main parts: problem, expression, and formula.

257

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

• Problem is a collection of type declaration, relation declaration, fact, as-

sertion, and predicate.

• Type declaration: declares all signatures of systems which represent sets

of atoms. These signatures are for a top-level type and, a type subset of a

type. For example, the signature declaration sig X declares a top-level type

named X whereas the signature declaration

sig Y extends X{...}

sig Y in X{...}

declares a type Y as a subtype (subset) of the type X.

• Relation declaration and multiplicity keywords: a relation is declared

as a field of signatures. For example,

sig A{}, sig B{}, sig C r : B m −> n A}

which declares a ternary relation named

• Fact, assertion, and predicate: have been discussed in chapter 3 section

3.4.5.

• Expressions: Alloy expressions represent the fundamental buildings blocks

of Alloy formula; they always evaluate to relations. There are two kinds

of relational expressions, basic and complex. Basic Alloy expressions are

constant relations; this includes all declared signatures and relations as well

as the built-in constants: sets are unary relations, scalars are singleton

unary relations, the built-in relation none denotes the empty set, and none

for the unary empty set. Complex Alloy expressions are generated from

basic expressions using Alloy’s relational operators such as r + s (union),

r++s (override), r & s (intersection), and r - s (difference) of same arity

258

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

relations r and s. Also, r ->s for Cartesian product and r.s for relational

join of arbitrary relations r and s.

Another expression provided in Alloy is integer expressions. An integer expres-

sion is different from relational expression. Integer value is not considered as in

atom; however, utilizing an integer in relational expression, Alloy provides for ev-

ery integer x value, Int contains exactly one atom that identifies that value [60].

They indicate rudimentary integers. The type Int represents the set of all atoms

carrying rudimentary integers. The expression Int x denotes the atom carrying

the integer denoted by the integer expression x, whereas int y denotes the integer

value of the atom represented by the variable y. Integer expressions are obtained

from an infinite set of Z numbers (. . . , -1, 0, 1, . . .), and combined using

arithmetic operators (+ , -).

• Formula: fundamental Alloy formulas are formed from Alloy expressions

utilizing the subset operator in, the equality operator =, the integer com-

parison operators less than < and greater than >, and the integer equality

=. Fundamental formulas can be merged using logical connectivities includ-

ing conjunction (and or &&), disjunction (or or |), implication (implies

or =>), and negation (not or ¬).

The quantified formula’s form is Q A:b | Formula. Q denotes one of

the all, some, no, lone, and one. The unary expression b bounds the quan-

tification variable A, and Formula considered to be formula depends on A.

However the expression b may not be begins with a multiplicity keyword.

This is called a first order quantification, so A points to a single element of

b. However, every Alloy expressions is considered relational, meaning that

A is a singleton subset of b.

259

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

8.3 Z3 SMT solver

The Z3 SMT solver supports the SMT2 language which is the SMT-LIB stan-

dard version 2.0 [138]. Our formulas utilize the quantified theories of sorts, and

uninterpreted functions with equality [138].

• Declarations: the logic of SMT2 language depends on a numerous sorted

FOL with equality. It supports Integer, Real, and Boolean types, and enables

users to declare new sorts (types) utilizing the command

declare-sort

Functions are the main structures of SMT formulas. SMT2 enables users to

declare function utilizing the command

(declare-fun f (arguments) Type)

This command declares a function with a name f, that receives arguments

(A1, , An−1) , and returns type (An).

I.e,

(declare− fun f (A1,, An−1)An) declares f : A1 ×× An−1 −>An

All functions are considered as total which means they are defined for every

element of their domain.

Constants are also considered as functions that do not take arguments.

SMT2 enables users to declare function utilizing the command

(declare-fun f () Type)

260

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

to declare a constant, where f is the name of the constant, and Type is the

constant type.

• Assertions: the command (assert f) asserts a formula f in the present

logical context. The main formulas are functions and can be connected

utilizing the boolean operators and (conjunction), or (disjunction), not

(negation), and = > (implies).

The universal quantifier is indicated by

(forall (a1 A1)...(an An)f)

whereas the existential quantifier is indicated by

(exists (a1 A1)...(an An)f)

as where a1 is a variable and A1 is the type of this variable.

• Analysis: we utilize the check-sat command to ask the SMT solver to check

if the conjunction of the provided assertions is satisfiable or unsatisfiable.

8.4 Tool Integration and Methodology

Our framework provides seven stages for checking a property of an Alloy specifi-

cation as seen in the section below. Checking Alloy specification within a bounded

scope means finding counterexamples for the model in this bounded scope. How-

ever, no existence of a counterexample does not mean proof; it only means that

non counterexample exists within the bounded scope.

Our framework also provides an SMT solver. If Z3 outputs unsat, the prop-

erty has been proven correct, and if it outputs sat, a valid counterexample has

261

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

been found. However, Z3 does not guarantee a complete analysis: it may output

unknown, implying that the property may or may not be valid, or time out.

Section 8.5, describes the translation rules using a running example. It focuses

on the main ideas in the translation involved in each stage to clarify their differ-

ences.

Our translation includes Alloy type declaration, relation declaration, fact, asser-

tion, multiplicity keywords (one, lone, set), extension, abstract, and expressions

such as conjunction, Cartesian product and relational join, and formulas.

8.4.1 Constructing Alloy Models

The Alloy modelling stages are:

• The first stage is determining the properties to be achieved in the system.

second stage is to identify the main entities that interact in the system as

signatures.

• The third stage is determining and constraining how the entities are related

to each other. i.e, how many atoms on one side are related with an atom on

the other side by constraining the sizes of the sets.

• The fourth stage involves constructing a predicate that describes the dy-

namic behaviour of the system.

• The fifth stage is to restrict the specification using facts. Facts are assumed

to be true.

• The sixth stage is to build a formula as an assertion to check the validity of

the model.

262

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

• The seventh stage is limiting the scope to gain more confidence about the

correctness of a property.

8.4.2 Constructing Z3 Models

We have build our Z3 model by closely following the same stages as for Alloy

except the seventh stage as Z3 is unbounded. Each stage in Alloy has been trans-

lated into its equivalent in Z3 to achieve the scale of the model as seen below. As

the Z3 tool set has no editor, we begin by writing logical formulas representing the

three properties of an Alloy model in the set of FOL formulas and declarations,

and a sequence of commands in the Z3 stack.

8.5 Systematic Translation Rules

8.5.1 Type Declarations

This section gives the translation rules for Alloy type, subtype/extension, and

abstraction which are represented in Figure 8.2. D in the figure defines Alloy type

declarations, AT Alloy type, and SV SMT variables.

8.5.1.1 Signature Identifier

SMT2 enables users to declare a type declaration utilizing the command

declare-sort type

Each Top-level types in Alloy is translated to uninterpreted SMT2 sorts to identify

atomic entities with no parameters as seen in Figure 8.2, line number 1.1. For

example: the top-level type (Card):

sig Card{}

263

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

Figure 8.2: Translation Rules for Alloy Type Declarations

in Alloy is translated into Z3 to be declared as an uninterpreted sort:

(declare− sortCard)

8.5.1.2 Abstraction

Abstraction is not supported by SMT2. Thus, abstract signatures are required

to be translated into SMT2 only through axioms as seen in Figure 8.2, line number

2.1, formulating that the abstract type has no elements except those which are

extended AT1 which constraints each element SV of this type to belong to one of

264

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

its extending subtypes AT2, AT3,, AT n using the general form

(forall((this SuperType))(or(isSubtype1 SV)(isSubtype2 SV)...(isSubtypen SV)))

For example the abstract signature:

abstract sig Operations{}

one sig EnterCard, TypeP in,RequistCash,

ReceiveCashAndCard,ReceiveCard extends Operations{}

in Alloy is translated into Z3 using an assertion that all sub sorts in the sort

Operation should be one of them.

(forall((o Operations))(or(isEnterCard o)(isTypeP in o)

(isRequistCash o)(isReceiveCashAndCard o)(isReceiveCard o)))

8.5.1.3 Subtype/Extension

Subtype declarations are not supported by SMT2. Thus, we translate Alloys

hierarchical type system implicitly through axioms. To do that we need to use a

Boolean valued function to declare an uninterpreted membership function called

is to identify all sub sorts as seen in Figure 8.2, line number 3.1. An uninterpreted

membership function is important to determine the semantics of subtypes for each

Alloy type to represent the subtypes making all elements of the subtype belong

to their supertype. A membership function takes the form of a command:

(declare-fun isSub-type (supertype) Bool)

The membership function takes only one parameter which is the extended sort AT1

(superType) and returns the result as a Boolean to expresses a subset between

two sorts AT2, AT3,...., ATn (subTypes) and AT1 (superType).

265

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

For example: the subtype EnterCard ⊆ its supertype (Operations):

sig Operations{}

sig EnterCard extends Operations{}

in Alloy is translated into Z3 as a membership function using the command:

(declare-fun isEnterCard (Operations) Bool)

Extension between two types to make them disjoint is not supported by SMT2.

Thus, extension signatures are required to be translated into SMT2 through ax-

ioms formulating that the extending subtypes AT2, AT3,...., ATn are disjoint as

seen in Figure 8.2, line number 3.1 by using not and and, using the general form:

(forall((SV superType))(not(and(subType1 SV)(subType2 SV)...(subTypen SV)))

For example the extension signatures:

abstract sig Operations{}

one sig EnterCard, TypeP in,RequistCash,

ReceiveCashAndCard,ReceiveCard extends Operations{}

in Alloy is translated into Z3 using an assertion that all sub sorts in the sort

Operation are disjoint:

(forall((o Operations))(not(and(isEnterCard o)(isTypeP in o))))

and that means all element o belongs to the super type Operations, o either

266

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

belongs to subtype isEnterCard or subtype isTypePin.

8.5.2 Relation Declarations

8.5.2.1 Relation

An Alloy relation is translated to a Boolean-valued SMT2 function. This func-

tion is declared over top-level types because only top-level types are declared as

sorts. As seen in Figure 8.3, a relation can be constraint in different domain.

267

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

Figure 8.3: Translation Rules for Alloy Relation Declarations

268

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

In the first relation (1) in Figure 8.3, a relation has no multiplicity constraint

and in this case the constraints by default is set. In this relation, we need to assert

that all variables belong to the top-levels, every tuple of a top-level is mapped to

set of tuples of the related top-level.

8.5.2.2 Multiplicity

The general form of the function for multiplicities is

(declare− fun|oneOfsubType|() supertype)

For example the multiplicity keyword one before the sub signature EnterCard :

one sig EnterCard extends Operations{}

is translated into Z3 as:

(declare− fun|oneOfEnterCard|() Operations)

After declaring the function we need to adjust return types of the "oneOf"

functions to match each element is declared in function oneOf with its corre-

sponding Operation and to avoid making Z3 returns incorrect operation when it

is called. So the adjustment return types of the "oneOf" functions are declared

as:

(isSubType|oneOfsubType|)

meaning that any element returned by oneOf is always one, and its type is sub-

Type.

Multiplicity keyword lone forces the existence of two elements of a supertype to

be equal. The general form of the function is

(forall ((this1 supertype)(this2 supertype))

269

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

(= >(and(issubType this1)(issubType this2))(= this1 this2)))

For example:

(forall ((o1 Operations)(o2 Operations))

(= >(and(isEnterCard o1)(isEnterCard o2))(= o1 o2)))

In the second relation (2) in Figure 8.3, has a relation has one multiplicity

constraint. In this relation, we need to assert that for all variables belonging to

the top-level.

Every tuple is mapped to exactly one tuple of the related top-level using the

there exists quantifier.

In the third relation (3) in Figure 8.3, a relation has a lone multiplicity con-

straint. In this relation, we need to assert that for all variables belonging to

the top-level, every tuple is mapped to at most one tuple of the related top-level

restricting that if two different variables belong to the relation, they should be

equal.

In the fourth relation (4) in Figure 8.3, a relation has set multiplicity constraint.

In this relation, we only need to declare a relation with no need to write axioms

as set may be empty.

In the fifth and sixth relations (5,6) in Figure 8.3, a relation has multiple re-

lations. In this relation, we need to assert that the existence relation maps to

an already existing relation first and then applying the constraints (set, one, and

lone) as mentioned above.

270

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

For example in modelling the ATM system the relation money in Alloy:

sig ATM{money : cards −> lone Int}

is translated into Z3 as:

(declare− fun money(ATM Card Int)Bool)

In Alloy we placed the restriction that requiring the money for a card does not

take place in the second status but in the fourth status as seen in the predicate

below:

atm4.inCard.(atm4.money) = mon

This is translated into Z3 to be asserted as:

(and(inCard atm4 c9)(money atm4 c9 i3)) (1)

and:

no atm2.money

is translated into Z3 as:

(not(money atm2 c9 m)) (2)

Then, to get the expressive power of the relation, the function returning Boolean

controls the existence or non existence of a tuple in a relation money, by returning

true making the tuple (atm4, c9, i3) exist in the relation money as seen in (1)

above, and false making the tuple (atm2, c9, m) not exist in the relation money as

seen in (2) above. The Boolean valued function method is applied to all relations.

271

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

8.5.3 Facts and Assertions

Figure 8.4 gives the translation rules for Alloy facts that are assumed to be true,

and assertions that are intended to be checked. As seen in Figure 8.4, line 2.1, the

assertion is negated, so when the SMT solver found any instance, this instance

will be a counterexample to the assertion. Thus, if the solver does not find any

instances, the assertion is correctly proven.

Figure 8.4: Translation Rules for Fact and Assertion Formulas

8.5.4 Expression:

8.5.4.1 Cartesian Product

An expression expression1 ->expression2 contains a tuple

(t1, .., tn, .., tn+m)

iff expression1 contains

(t1, .., tn)

and expression2 contains (tn+1, .., tn+m) where n is the arity of expression1 and

m is the arity of expression2 as seen in line 5 Figure 8.5.

272

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

8.5.4.2 Relational Join

An expression expression1 expression2 contains a tuple

{(expression1, .., expression1m−1, expression2, .., expression2n)

|(expression1, .., expressionm) ∈ expression1 ∧

(expression21, .., expression2n) ∈ expression2 ∧ expression1m = expression21}

Relational join needs a quantified variable for the combined column of the two

relations as seen in line 4 Figure 8.5.

8.5.5 Formulas

In Alloy formulas are formed using the subset operator in and the integer com-

parison operators such as greater than >, less than <, and equalities =, and

combined using logical operators such as negation not, conjunction and, and dis-

junction or, relational join, and Cartesian product which are mapped to those in

SMT2. As seen in Figure 8.5, an Alloy formula operates is for translated relational

logic to correspond with Z3.

8.5.5.1 Subset

The Alloy formula (expression1 in expression2) is well-formed only when the

arity of expression1 equals the arity of expression2 and is translated by specifying

that each element of expression1 is included in expression2 as seen in line 3 Figure

8.5.

8.5.5.2 Negation

The Alloy formula (not expression1) is translated into Z3 by negating expres-

sions making the new formula empty as seen in line 6 Figure 8.5.

273

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

8.5.5.3 Conjunction

The Alloy formula (expression1 and expression2) is translated into Z3 by joining

expression1 and expression2 making the new formula includes all variables of the

two expressions together as seen in line 1 Figure 8.5.

8.5.5.4 Disjunction

The Alloy formula (expression1 or expression2) is translated into Z3 by joining

expression1 or expression2 making the new formula includes the variables of one

of the two expressions which one achieved the condition as seen in line 2 Figure

8.5.

8.5.5.5 All

As seen in line 7 Figure 8.5, for all x e, if the expression for e achieved for all

x, then the function f is true.

Figure 8.5: Formulas Constraints

274

Chapter 8: Systematic Translation Rules: A First Step Towards An Automated
Translator

8.5.6 The general form for translation

The general form for translating Alloy problem into Z3 is expressed as:

(not (= > (A B)))

A includes all declared sorts; sub sorts; constraints; facts; and relations, and

predicates, while B includes the assertions. So, if the SMT solver found any

instance that achieved the validity of the general form that we used, it will be

a counterexample to the assertion. However, if the SMT solver did not find any

instance, the negation of the assertion is proven correct.

275

Chapter 9

Conclusion and Future Work

9.1 Conclusion

We have presented an approach for analysing single and multichannel protocols

expressed in Alloy and Z3. We presented an approach to translate specifications of

the protocols that were performed with Alloy into a satisfiability-equivalent SMT

problem using Z3. We presented seven stages that we have used to model the

protocols using Alloy. We showed how these seven stages have been translated

into Z3.

The contributions of this thesis have been as follows:

• Modelling three case studies using Alloy.

• Checking the validity of their properties to see if they satisfy their require-

ments using the SAT solver.

• Gaining confidence in the correctness of the properties by modelling the case

studies using Z3.

• Proving the correctness of the properties of the case studies using the SMT

solver.

• Comparing the results that were achieved through Alloy and Z.

276

Chapter 9: Conclusion and Future Work

• Determining and comparing the strengths, limitations, and advantages of

using these formal methods.

These case studies are an ATM system, which uses as an example to introduce

Alloy and Z3, followed by two security protocols of transmitting data over a single

channel and multichannel.

The thesis also offers an approach to manually building satisfiability-equivalent

SMT problem of the specification of the case studies that were performed first

with Alloy by proving the same model properties as in Alloy and searching for a

counterexample using Z3 in infinite scopes which is supposed to be equivalent to

Alloy in finite scopes and vice versa.

Throughout this thesis we have tried to identify the strengths, weaknesses and

the limitations of Alloy and Z3 to decide which method is strong enough to depend

on to achieve confidence in results. However, during the work we noticed that the

formal methods complemented each other: Alloy for modelling properties and Z3

for proving the properties and we turned from one to another to get the benefit

from one we did not find it in the other.

Since AA could find small a counterexamples well, we suggest that the user

begins by using Alloy to check the validity of the assertion and then turns to Z3

to prove the validity of the assertion.

We found that Alloy facilitated building the restricted relations between inter-

acting entities using constraints already provided such as multiplicities keyword,

abstract, and extends. Also, after building the models, the Alloy Analyser has an

277

Chapter 9: Conclusion and Future Work

advantage in determining if the model is consistent or not if it finds instances of

a model automatically by search within scope.

However, this advantage turned into a disadvantage if the Alloy Analyser returns

that the model is inconstant because it did not show or say why. When we turn

to Z3, it has no advantage in saying why the model is inconsistent as well. The

consistency of a model is very important before checking the assertions because if

a model is inconsistent, the Alloy Analyser could not find instances to visualize.

As a result, the SAT solver could not generate a counterexample.

The SAT solver in Alloy also has an advantage in requiring a limited scope

for each type of search for a counterexample to accelerate detecting flaws and

generating a counterexample if one exists. However, this advantage in Alloy turned

into a disadvantage as we could not recognize how many scopes we had to inspect

to see if there is a counterexample. It may be found in a larger scopes, and the

absence of an instance does not include checking of satisfiability. In addition, the

more the number of scopes is increased, the slower becomes detecting flaws and

generating a counterexample. So, we needed to turn to the unbounded SMT solver

to be more confident in covering all instances and providing a counterexample more

quickly than with the SAT solver.

Alloy also has an advantage in visualized a counterexample to detect and follow

the flaws easily and thus, add more restrictions, and properties. However, the

SAT solver could not prove why the counterexample existed. So, we needed to

turn to the unbounded SMT solver to prove that. As a result we conclude that

both Alloy and Z3 are required to model and prove the properties of a problem

as we noticed that any counterexample provided in Alloy, is provided in Z3 under

the same restrictions.

278

Chapter 9: Conclusion and Future Work

When we used Alloy and Z3 to model an ATM system we have noticed that

Alloy has advantage in helping non experts understand the problem well through

visualizing a counterexample, saving time and effort. Moreover, Alloy visualizes

why the system is incorrect and from that the user can learn what caused the

problem in the specification and how to fix the problem.

Also we noticed that Z3 increased our confidence about getting results from

Alloy when it gave the same results. Furthermore, it could provide the results

faster than Alloy regardless of the number of scopes or if the model is becoming

more complicated.

The results we achieved from modelling the ATM system using Alloy and Z3,

encouraged us to use them to model our protocols. As a result we did not see

any difference in the protocol results compared to the ATM system results. Alloy

helped in understanding the flaws in the protocols and expressed why the first

protocol was insecure using a single channel and how to develop it; from that the

user can learn what caused an insecurity in the specification and how to fix it.

9.2 Future Work

In the future work we planned to:

• Translate Alloy specifications into satisfiability-equivalent SMT problems

using SMT-based Bounded Verification.

We found that the bounded SAT solver which is decidable and the SMT solver

which is undecidable complemented each other as the first is for modelling the

satisfiability problem for bounded scope and the other is for proving the satisfia-

bility problem for unbounded scopes. However, we wish to study whether using

a bounded SAT solver which is decidable and a bounded SMT solver which lies

279

Chapter 9: Conclusion and Future Work

within QBVF (quantified bit-vector formula), and thus is decidable [155] comple-

ment each other as well as an unbounded SMT solver. Do the the top-level types

of an Alloy problems that are translated into SMT bitvectors, according to the

scope information, provide the same results as the bounded SAT solver does?. Or

do we really need an unbounded SMT solver to get the confidence?.

• Add more properties to the protocol and study if Alloy and Z3 still have the

same power and still complement each other. Such properties might include:

– Developing the multichannel protocol to be more complicated by en-

crypting data.

– Increasing the number of MitM and their abilities to intercept both

channels.

We showed that for Alloy, as the number of scopes increased more as increasing ,

the more time as is needed to get the results. Also, as the complexity of the model

increased, the relations become more complicated. Therefore with complicated

relations and increasing the number of scopes the translation capacity may be

exceeded because the universe contains excessive atoms, and relations of a huge

arity cannot be represented. So, could Z3 solve the state space explosion problem

that is caused by Alloy when a model becomes bigger?

• Developing a new application using the same method

In future, if we develop a new security protocol we will follow as same method-

ology, using same the formal methods we have used in our studied protocol to see

if they still keep their power in working together.

280

Chapter 9: Conclusion and Future Work

• Tool support for working between Alloy and Z3

Alloy and Z3 have their own advantages. So, designing an automated transla-

tor tool to translate the relational logic from Alloy into Z3 using our systematic

translation rules may combine their advantages. The translator works as bridge

which converts a problem from Alloy into Z3 easily.

The tool would save time, effort and expertise of the user.

As Z3 SMT provides the counterexample as formulas and AA provides it as

visualization, we suggest that the tool will be more valuable if it could convert the

counterexample from formula into visualization the same as AA does. We did not

offer a methodology for this suggestion in our thesis.

As a result, we will have a tool that includes all the advantages of Alloy and Z3

which may help in achieving stronger results combining between modelling and

proving.

281

Appendix A

ATM Model Using Alloy

Listing A.1: Signatures

1 module examples / systems /ATM System
2 abs t r a c t s i g Operat ions {}
3 one s i g EnterCard , TypePin , RequistCash , ReceiveCashAndCard ,

ReceiveCard extends Operat ions {}
4 abs t r a c t s i g ATM Status {}
5 one s i g WaitingCard , WaitingPin , WaitingMoney ,

WaitingReceiveCashAndCard , WaitingReceiveCard , Update
extends ATM Status{}

6 s i g Card{}
7 s i g ATM {

Listing A.2: Relations Declaration

1 cards : s e t Card ,
2 inCard : lone cards ,
3 pin : cards −> one Int ,
4 balance : cards −> one Int ,
5 money : cards −> l one Int ,
6 atmStatuse : one ATM Status ,
7 op : lone Operat ions }

Listing A.3: Facts

1 f a c t { a l l atm1 , atm2 : ATM| atm2 . cards=atm1 . cards and atm2 . pin =
atm1 . pin}

2 f a c t { a l l atm1 :ATM, card : atm1 . cards | card . (atm1 . balance)>=0 and
card . (atm1 . pin)>0}

Listing A.4: Predicates

1 pred ATMTransaction [atm1 , atm2 , atm3 , atm4 , atm5 , atm6 :ATM,
crd : Card , pn , mon : Int]{

2 (atm1 . atmStatuse)= WaitingCard and
3 crd in atm1 . cards and
4 no atm1 . inCard and no atm1 . op and no atm1 . money
5 and atm2 . op= EnterCard and
6 atm2 . inCard = crd and
7 atm2 . balance = atm1 . balance and
8 (atm2 . atmStatuse) = WaitingPin and no atm2 . money
9 and atm3 . op= TypePin and

282

Appendix A. ATM Model Using Alloy

10 atm3 . inCard = atm2 . inCard and
11 atm3 . inCard . (atm3 . pin)=pn and
12 atm3 . balance = atm2 . balance and
13 (atm3 . atmStatuse) = WaitingMoney and no atm3 . money
14 and atm4 . op= RequistCash and
15 atm4 . balance = atm3 . balance and
16 atm4 . inCard = atm3 . inCard and atm4 . inCard . (atm4 . money)=mon
17 and atm5 . inCard = atm4 . inCard and
18 (((mon > atm4 . inCard . (atm4 . balance) or mon <0) and
19 (atm5 . inCard . (atm5 . balance) = atm4 . inCard . (atm4 . balance) and
20 atm5 . op= ReceiveCard and (atm4 . atmStatuse)= WaitingReceiveCard))
21 or
22 ((mon <= atm4 . inCard . (atm4 . balance) and mon >0) and
23 (atm5 . inCard . (atm5 . balance)=atm4 . inCard . (atm4 . balance) . minus [mon]
24 and atm5 . op= ReceiveCashAndCard and
25 (atm4 . atmStatuse)=WaitingReceiveCashAndCard))) and
26 (atm5 . atmStatuse) = Update and
27 no atm6 . inCard and (atm6 . atmStatuse)=WaitingCard and no atm6 . op}

Listing A.5: Assertion

1 a s s e r t prop1 {
a l l atm1 , atm2 , atm3 , atm4 , atm5 , atm6 : ATM, pn ,mon : Int , crd : Card |

2 mon <= crd . (atm1 . balance) and mon >0 and
ATMTransaction [atm1 , atm2 , atm3 , atm4 , atm5 , atm6 , crd , pn ,mon]

3 i m p l i e s crd . (atm5 . balance) = crd . (atm1 . balance) . minus [mon] }

Listing A.6: Commands

1 check prop1 f o r 1 but 6 ATM
2 run ATMTransaction f o r 1 but 6 ATM

283

Appendix B

ATM Proving Using Z3 Theorem
Prover

Listing B.1: Sorts

1 (dec la re−s o r t Operat ions)
2 (dec la re−s o r t ATM Status)
3 (dec la re−s o r t Card)
4 (dec la re−s o r t ATM)

Listing B.2: Functions

1 (dec la re−fun cards (ATM Card) Bool)
2 (dec la re−fun inCard (ATM Card) Bool)
3 (dec la re−fun pin (ATM Card Int) Bool)
4 (dec la re−fun balance (ATM Card Int) Bool)
5 (dec la re−fun money (ATM Card Int) Bool)
6 (dec la re−fun atmStatuse (ATM ATM Status) Bool)
7 (dec la re−fun op (ATM Operat ions) Bool)
8 (dec la re−fun isEnterCard (Operat ions) Bool)
9 (dec la re−fun isTypePin (Operat ions) Bool)

10 (dec la re−fun isRequistCash (Operat ions) Bool)
11 (dec la re−fun isReceiveCashAndCard (Operat ions) Bool)
12 (dec la re−fun i sRece iveCard (Operat ions) Bool)
13 (dec la re−fun isWaitingCard (ATM Status) Bool)
14 (dec la re−fun isWait ingPin (ATM Status) Bool)
15 (dec la re−fun isWaitingMoney (ATM Status) Bool)
16 (dec la re−fun isWaitingReceiveCashAndCard (ATM Status) Bool)
17 (dec la re−fun isWait ingReceiveCard (ATM Status) Bool)
18 (dec la re−fun isUpdate (ATM Status) Bool)

Listing B.3: Some Property

1 ; ; the some property o f the s i g n a t u r e s <EnterCard>, <TypePin>,
;<RequistCash >, <ReceiveCashAndCard>, <ReceiveCard>

2 (dec la re−fun oneOf EnterCard () Operat ions)
3 (dec la re−fun oneOf TypePin () Operat ions)
4 (dec la re−fun oneOf RequistCash () Operat ions)
5 (dec la re−fun oneOf ReceiveCashAndCard () Operat ions)
6 (dec la re−fun oneOf ReceiveCard () Operat ions)
7 ; ; the some property o f the s i g n a t u r e s <WaitingCard>, <WaitingPin>,

;<WaitingMoney>, <WaitingReceiveCashAndCard>,<WaitingReceiveCard >,
;<Update>

8 (dec la re−fun oneOf WaitingCard () ATM Status)
9 (dec la re−fun oneOf WaitingPin () ATM Status)

10 (dec la re−fun oneOf WaitingMoney () ATM Status)
11 (dec la re−fun oneOf WaitingReceiveCashAndCard () ATM Status)

284

Appendix B. ATM Proving Using Z3 Theorem Prover

12 (dec la re−fun oneOf WaitingReceiveCard () ATM Status)
13 (dec la re−fun oneOf Update () ATM Status)

Listing B.4: Negation Of The Implication Of The Assertion

1 (a s s e r t
2 (not
3 (=>
4 (and

Listing B.5: Return Types Of The ”oneOf” Functions/Constants

1 (isEnterCard | oneOf EnterCard |)
2 (isTypePin | oneOf TypePin |)
3 (i sRequistCash | oneOf RequistCash |)
4 (isReceiveCashAndCard | oneOf ReceiveCashAndCard |)
5 (i sRece iveCard | oneOf ReceiveCard |)
6 (isWaitingCard | oneOf WaitingCard |)
7 (i sWait ingPin | oneOf WaitingPin |)
8 (isWaitingMoney | oneOf WaitingMoney |)
9 (isWaitingReceiveCashAndCard | oneOf WaitingReceiveCashAndCard |)

10 (isWait ingReceiveCard | oneOf WaitingReceiveCard |)
11 (isUpdate | oneOf Update |)

Listing B.6: The Lone Property Of The Signatures

1 ; ; the lone property o f the s i g n a t u r e s : <EnterCard>, <TypePin>,
;<RequistCash >, <ReceiveCashAndCard>, <ReceiveCard>

2 (f o r a l l ((o1 Operat ions) (o2 Operat ions))(=>
(and (isEnterCard o1) (isEnterCard o2))(= o1 o2)))

3 (f o r a l l ((o1 Operat ions) (o2 Operat ions))(=>
(and (isTypePin o1) (isTypePin o2))(= o1 o2)))

4 (f o r a l l ((o1 Operat ions) (o2 Operat ions))(=>
(and (i sRequistCash o1) (i sRequistCash o2)) (= o1 o2)))

5 (f o r a l l ((o1 Operat ions) (o2 Operat ions))(=>
(and (isReceiveCashAndCard o1) (isReceiveCashAndCard o2))
(= o1 o2)))

6 (f o r a l l ((o1 Operat ions) (o2 Operat ions))(=>
(and (i sRece iveCard o1) (i sRece iveCard o2))(= o1 o2)))

7
8 ; ; The lone property o f the s i g n a t u r e s : <WaitingCard>,

<WaitingPin>,<WaitingMoney>,<WaitingReceiveCashAndCard>,
;<WaitingReceiveCard>,<Update>

9 (f o r a l l ((a1 ATM Status) (a2 ATM Status))(=>
(and (isWaitingCard a1) (isWaitingCard a2)) (= a1 a2)))

10 (f o r a l l ((a1 ATM Status) (a2 ATM Status))(=>
(and (i sWait ingPin a1) (i sWait ingPin a2)) (= a1 a2)))

11 (f o r a l l ((a1 ATM Status) (a2 ATM Status))(=>
(and (isWaitingMoney a1) (isWaitingMoney a2))(= a1 a2)))

12 (f o r a l l ((a1 ATM Status) (a2 ATM Status))(=>
(and (isWaitingReceiveCashAndCard a1)
(isWaitingReceiveCashAndCard a2))(= a1 a2)))

13 (f o r a l l ((a1 ATM Status) (a2 ATM Status))(=>
(and (isWait ingReceiveCard a1)
(isWait ingReceiveCard a2)) (= a1 a2)))

14 (f o r a l l ((a1 ATM Status) (a2 ATM Status))(=>
(and (isUpdate a1) (isUpdate a2))(= a1 a2)))

285

Appendix B. ATM Proving Using Z3 Theorem Prover

Listing B.7: Abstract and Extension property

1 ; ; ab s t r a c t property o f s i g na tu r e <Operations>
(f o r a l l ((o Operat ions)) (or (isEnterCard o) (isTypePin o)
(i sRequistCash o) (isReceiveCashAndCard o)
(i sRece iveCard o)))

2
3 ; ; the extends property o f the s i g n a t u r e s <EnterCard>,

;<TypePin>, <RequistCash >, <ReceiveCashAndCard>,
;<ReceiveCard> to the s i g na tu r e <Operations>

4 (f o r a l l ((o Operat ions)) (not (and
(isEnterCard o) (isTypePin o))))

5 (f o r a l l ((o Operat ions)) (not (and
(isEnterCard o) (i sRequistCash o))))

6 (f o r a l l ((o Operat ions)) (not (and
(isEnterCard o) (isReceiveCashAndCard o))))

7 (f o r a l l ((o Operat ions)) (not (and
(isEnterCard o) (i sRece iveCard o))))

8 (f o r a l l ((o Operat ions)) (not (and
(isTypePin o) (i sRequistCash o))))

9 (f o r a l l ((o Operat ions)) (not (and
(isTypePin o) (isReceiveCashAndCard o))))

10 (f o r a l l ((o Operat ions)) (not (and
(isTypePin o) (i sRece iveCard o))))

11 (f o r a l l ((o Operat ions)) (not (and
(i sRequistCash o) (isReceiveCashAndCard o))))

12 (f o r a l l ((o Operat ions)) (not (and
(i sRequistCash o) (i sRece iveCard o))))

13 (f o r a l l ((o Operat ions)) (not (and
(isReceiveCashAndCard o) (i sRece iveCard o))))

14
15 ; ; the ab s t r a c t property o f s i g na tu r e <ATM Status>

(f o r a l l ((a ATM Status)) (or (isWaitingCard a)
(i sWait ingPin a) (isWaitingMoney a)
(isWaitingReceiveCashAndCard a)
(isWait ingReceiveCard a) (isUpdate a)))

16
17 ; ; the extends property o f the s i g n a t u r e s <WaitingCard>,

;<WaitingPin>, <WaitingMoney>,<WaitingReceiveCashAndCard>,
;<WaitingReceiveCard>,<Update> to the s ignature<ATM Status>

18 (f o r a l l ((a ATM Status)) (not (and
(isWaitingCard a) (i sWait ingPin a))))

19 (f o r a l l ((a ATM Status)) (not (and
(isWaitingCard a) (isWaitingMoney a))))

20 (f o r a l l ((a ATM Status)) (not (and
(isWaitingCard a) (isWaitingReceiveCashAndCard a))))

21 (f o r a l l ((a ATM Status)) (not (and
(isWaitingCard a) (isWait ingReceiveCard a))))

22 (f o r a l l ((a ATM Status)) (not (and
(isWaitingCard a) (isUpdate a))))

23 (f o r a l l ((a ATM Status)) (not (and
(isWait ingPin a) (isWaitingMoney a))))

24 (f o r a l l ((a ATM Status)) (not (and
(isWait ingPin a) (isWaitingReceiveCashAndCard a))))

25 (f o r a l l ((a ATM Status)) (not (and
(isWait ingPin a) (isWait ingReceiveCard a))))

26 (f o r a l l ((a ATM Status)) (not (and
(isWait ingPin a) (isUpdate a))))

27 (f o r a l l ((a ATM Status)) (not (and
(isWaitingMoney a) (isWaitingReceiveCashAndCard a))))

286

Appendix B. ATM Proving Using Z3 Theorem Prover

28 (f o r a l l ((a ATM Status)) (not (and
(isWaitingMoney a) (isWait ingReceiveCard a))))

29 (f o r a l l ((a ATM Status)) (not (and
(isWaitingMoney a) (isUpdate a))))

30 (f o r a l l ((a ATM Status)) (not (and
(isWaitingReceiveCashAndCard a) (isWait ingReceiveCard a))))

31 (f o r a l l ((a ATM Status)) (not (and
(isWaitingReceiveCashAndCard a) (isUpdate a))))

32 (f o r a l l ((a ATM Status)) (not (and
(isWait ingReceiveCard a) (isUpdate a))))

Listing B.8: Relations

1 ; ; r e l a t i o n s o f the s i gn a t u r e <ATM>
; ; inCard : lone cards ,
(f o r a l l ((t h i s ATM)) (and (f o r a l l ((c1 Card))(=>
(inCard t h i s c1) (cards t h i s c1)))
(f o r a l l ((c3 Card) (c2 Card)(=>(and (inCard t h i s c2)
(inCard t h i s c3)) (= c2 c3)))))

2 ; ; pin : cards −> one Int ,
(f o r a l l ((t h i s ATM)) (and (f o r a l l ((c1 Card) (i Int))
(=> (pin t h i s c1 i) (cards t h i s c1)))
(f o r a l l ((a1 Card))(=> (cards t h i s a1) (and
(e x i s t s ((i 1 Int)) (pin t h i s a1 i 1))
(f o r a l l ((i 3 Int) (i 2 Int))(=>(and (pin t h i s a1 i 2)
(pin t h i s a1 i 3))(= i 2 i 3))))))))

3 ; ; ba lance : cards −> one Int ,
(f o r a l l ((t h i s ATM)) (and (f o r a l l ((c1 Card) (i Int))(=>
(ba lance t h i s c1 i) (cards t h i s c1)))
(f o r a l l ((a1 Card)) (=>(cards t h i s a1) (and
(e x i s t s ((i 1 Int)) (ba lance t h i s a1 i 1))
(f o r a l l ((i 3 Int) (i 2 Int)) (=> (and (balance t h i s a1 i 2)
(ba lance t h i s a1 i 3))(= i 2 i 3))))))))

4 ; ; money : cards −> l one Int ,
(f o r a l l ((t h i s ATM)) (and (f o r a l l ((c1 Card) (i Int))(=>
(money t h i s c1 i) (cards t h i s c1))) (f o r a l l ((a1 Card)
(i 3 Int) (i 2 Int))(=>(and (money t h i s a1 i 2) (money t h i s a1 i 3))
(= i 2 i 3))))))))

5 ; ; atmStatuse : one ATM Status ,
(f o r a l l ((t h i s ATM)) (and (e x i s t s ((a1 ATM Status))
(atmStatuse t h i s a1))
(f o r a l l ((a3 ATM Status) (a2 ATM Status)) (=> (and
(atmStatuse t h i s a2) (atmStatuse t h i s a3))(= a2 a3)))))

6 ; ; op : l one Operat ions
(f o r a l l ((t h i s ATM) (o2 Operat ions) (o1 Operat ions))(=>
(and (op t h i s o1) (op t h i s o2))(= o1 o2)))

Listing B.9: Facts

1 ; ; t r a n s l a t i o n o f the f i r s t f a c t
(f o r a l l ((atm1 ATM) (atm2 ATM)) (and (f o r a l l ((c1 Card))
(=> (cards atm2 c1) (cards atm1 c1)))
(f o r a l l ((c2 Card))(=> (cards atm1 c2) (cards atm2 c2)))
(f o r a l l ((c3 Card) (i Int))(=>
(pin atm2 c3 i) (pin atm1 c3 i)))
(f o r a l l ((c4 Card) (i 1 Int))(=>
(pin atm1 c4 i 1) (pin atm2 c4 i 1)))))

2 ; ; t r a n s l a t i o n o f the second f a c t
(f o r a l l ((atm1 ATM) (card Card)) (=> (cards atm1 card)
(and

287

Appendix B. ATM Proving Using Z3 Theorem Prover

; ; card . (atm1 . balance)>=0
(f o r a l l ((i Int))(=>(balance atm1 card i)(>= i 0)))
; ; card . (atm1 . pin)> 0
(f o r a l l ((i 1 Int))(=>(pin atm1 card i 1)(> i 1 0)))))))

Listing B.10: Predicate and Assertion

1 ; ; ” i n l i n e d ” t r a n s l a t i o n o f the p r e d i c a t e <ATMTransaction>.
; I n l i n e d means : without e x p l i c i t d e c l a r t i o n

2
3 ; ; t r a n s l a t i o n o f the a s s e r t i o n <prop1>

(f o r a l l ((atm1 ATM) (atm2 ATM) (atm3 ATM) (atm4 ATM)
(atm5 ATM) (atm6 ATM) (pn Int) (mon Int) (crd Card))
(=> (and
; ; t r a n s l a t i o n o f : mon <= crd . (atm1 . balance) and 0 < mon
; ; This assumption i s mandatory o f the c o r r e c t i o n o f the a s s e r t i o n
<prop1>
; ; I f i t i s out−commented the SMT s o l v e r should re turn
; ; a counterexample (i . e . , s a t) ,
; ; o the rw i s e i t should prove the a s s e r t i o n c o r r e c t (i . e . , unsat)

4 (f o r a l l ((i Int))(=>(balance atm1 crd i)
(<= mon i)))(< 0 mon)

5 ; ; t r a n s l a t i o n o f : (atm1 . atmStatuse)= WaitingCard
(f o r a l l ((a1 ATM Status))(=>
(atmStatuse atm1 a1) (isWaitingCard a1)))
(f o r a l l ((w ATM Status))(=>
(isWaitingCard w) (atmStatuse atm1 w)))

6 ; ; t r a n s l a t i o n o f : crd in atm1 . cards
(cards atm1 crd)

7 ; ; t r a n s l a t i o n o f : no atm1 . inCard and no atm1 . op
(f o r a l l ((c2 Card)) (not (inCard atm1 c2)))
(f o r a l l ((o Operat ions)) (not (op atm1 o)))

8 ; ; t r a n s l a t i o n o f : no atm1 . money
(f o r a l l ((m Int) (c9 Card)) (not (money atm1 c9 m)))

9 ; ; t r a n s l a t i o n o f : no atm2 . money
(f o r a l l ((m Int (c9 Card))) (not (money atm2 c9 m)))

10 ; ; t r a n s l a t i o n o f : atm2 . op= EnterCard
(f o r a l l ((o1 Operat ions))(=>
(op atm2 o1) (isEnterCard o1)))
(f o r a l l ((e Operat ions))(=>
(isEnterCard e) (op atm2 e)))

11 ; ; t r a n s l a t i o n o f : atm2 . inCard = crd
(f o r a l l ((c3 Card)) (=> (inCard atm2 c3)
(= crd c3))) (inCard atm2 crd)

12 ; ; t r a n s l a t i o n o f : atm2 . balance = atm1 . balance
(f o r a l l ((c5 Card) (i 1 Int))(=>
(ba lance atm2 c5 i 1) (ba lance atm1 c5 i 1)))
(f o r a l l ((c6 Card) (i 2 Int))(=>
(ba lance atm1 c6 i 2) (ba lance atm2 c6 i 2)))

13 ; ; t r a n s l a t i o n o f : (atm2 . atmStatuse) = WaitingPin
(f o r a l l ((a15 ATM Status))(=>
(atmStatuse atm2 a15) (i sWait ingPin a15)))
(f o r a l l ((w1 ATM Status))(=>
(i sWait ingPin w1) (atmStatuse atm2 w1)))

14 ; ; t r a n s l a t i o n o f : atm3 . op = TypePin
(f o r a l l ((o2 Operat ions))(=>(op atm3 o2) (isTypePin o2)))
(f o r a l l ((t Operat ions))(=>(isTypePin t) (op atm3 t)))

15 ; ; t r a n s l a t i o n o f : atm3 . inCard = atm2 . inCard
(f o r a l l ((c7 Card))(=>(inCard atm3 c7) (inCard atm2 c7)))
(f o r a l l ((c8 Card))(=>(inCard atm2 c8) (inCard atm3 c8)))

288

Appendix B. ATM Proving Using Z3 Theorem Prover

16 ; ; t r a n s l a t i o n o f : atm3 . inCard . (atm3 . pin) = pn
(f o r a l l ((i 3 Int))(=>(e x i s t s ((c9 Card))
(and (inCard atm3 c9) (pin atm3 c9 i 3)))(= pn i 3)))
(e x i s t s ((c10 Card)) (and (inCard atm3 c10) (pin atm3 c10 pn)))

17 ; ; t r a n s l a t i o n o f : atm3 . balance = atm2 . balance
(f o r a l l ((c11 Card) (i 5 Int))(=>
(ba lance atm3 c11 i 5) (ba lance atm2 c11 i 5)))
(f o r a l l ((c12 Card) (i 6 Int))(=>
(ba lance atm2 c12 i 6) (ba lance atm3 c12 i 6)))

18 ; ; t r a n s l a t i o n o f : (atm3 . atmStatuse) = WaitingMoney
(f o r a l l ((a32 ATM Status))(=>
(atmStatuse atm3 a32) (isWaitingMoney a32)))
(f o r a l l ((w2 ATM Status))(=>
(isWaitingMoney w2) (atmStatuse atm3 w2)))

19 ; ; t r a n s l a t i o n o f : no atm3 . money
(f o r a l l ((m Int) (c9 Card)) (not (money atm3 c9 m)))

20 ; ; t r a n s l a t i o n o f : atm4 . op= RequistCash
(f o r a l l ((o3 Operat ions))(=>(op atm4 o3) (i sRequistCash o3)))
(f o r a l l ((r Operat ions))(=>(i sRequistCash r) (op atm4 r)))

21 ; ; t r a n s l a t i o n o f : atm4 . balance = atm3 . balance
(f o r a l l ((c13 Card) (i 7 Int))(=>(balance atm4 c13 i 7)
(ba lance atm3 c13 i 7))) (f o r a l l ((c14 Card) (i 8 Int))(=>
(ba lance atm3 c14 i 8) (ba lance atm4 c14 i 8)))

22 ; ; t r a n s l a t i o n o f : atm4 . inCard = atm3 . inCard
(f o r a l l ((c15 Card))(=>(inCard atm4 c15) (inCard atm3 c15)))
(f o r a l l ((c16 Card))(=>(inCard atm3 c16) (inCard atm4 c16)))

23 ; ; t r a n s l a t i o n o f : atm4 . inCard . (atm4 . money) = mon
(f o r a l l ((i 3 Int))(=>(f o r a l l ((c9 Card))
(and (inCard atm4 c9) (money atm4 c9 i 3)))(= mon i 3)))
(f o r a l l ((c10 Card)) (and (inCard atm4 c10) (money atm4 c10 mon)))

24 ; ; t r a n s l a t i o n o f : atm5 . inCard = atm4 . inCard
(f o r a l l ((c17 Card))(=> (inCard atm5 c17) (inCard atm4 c17)))
(f o r a l l ((c18 Card))(=>(inCard atm4 c18) (inCard atm5 c18)))

25 ; ; t r a n s l a t i o n o f : (mon<=atm4 . inCard . (atm4 . balance) and 0<mon)
; and
; (atm5 . inCard . (atm5 . balance)=atm4 . inCard . (atm4 . balance)− mon
; and atm5 . op= ReceiveCashAndCard and (atm4 . atmStatuse) =
; WaitingReceiveCashAndCard)
(or (and (f o r a l l ((i 9 Int))(=>
(e x i s t s ((c19 Card)) (and (inCard atm4 c19)
(balance atm4 c19 i 9)))(<= mon i 9)))
(< 0 mon) (f o r a l l ((i 10 Int) (i 11 Int))
(=(and (e x i s t s ((c20 Card)) (and (inCard atm5 c20)
(balance atm5 c20 i10))) (e x i s t s ((c21 Card))
(and (inCard atm4 c21) (balance atm4 c21 i11))))
(= i10 (− i 11 mon))))
(f o r a l l ((o4 Operat ions))(=>
(op atm5 o4) (isReceiveCashAndCard o4)))
(f o r a l l ((r1 Operat ions)) (=>
(isReceiveCashAndCard r1) (op atm5 r1)))
(f o r a l l ((a57 ATM Status))
(=> (atmStatuse atm4 a57) (isWaitingReceiveCashAndCard a57)))
(f o r a l l ((w3 ATM Status))(=>
(isWaitingReceiveCashAndCard w3) (atmStatuse atm4 w3))))

26 ; ; t r a n s l a t i o n o f : (mon>atm4 . inCard . (atm4 . balance) or mon<0)
; and
; ; ; (atm5 . inCard . (atm5 . balance) = atm4 . inCard . (atm4 . balance) and
; atm5 . op= ReceiveCard and (atm4 . atmStatuse)=WaitingReceiveCard)
(and (or (f o r a l l ((i 12 Int))(=> (e x i s t s ((c22 Card)) (and

289

Appendix B. ATM Proving Using Z3 Theorem Prover

(inCard atm4 c22) (balance atm4 c22 i12)))
(< i 12 mon)))(< mon 0))
(f o r a l l ((i 13 Int))(=> (e x i s t s ((c23 Card))
(and (inCard atm5 c23) (balance atm5 c23 i13)))
(e x i s t s ((c24 Card)) (and (inCard atm4 c24)
(balance atm4 c24 i13)))))
(f o r a l l ((i 14 Int)) (=> (e x i s t s ((c25 Card)) (and
(inCard atm4 c25) (balance atm4 c25 i14)))
(e x i s t s ((c26 Card)) (and (inCard atm5 c26)
(balance atm5 c26 i14)))))
(f o r a l l ((o5 Operat ions))(=>
(op atm5 o5) (i sRece iveCard o5)))
(f o r a l l ((r2 Operat ions))(=>
(i sRece iveCard r2) (op atm5 r2)))
(f o r a l l ((a72 ATM Status))(=>
(atmStatuse atm4 a72) (isWait ingReceiveCard a72)))
(f o r a l l ((w4 ATM Status)) (=>
(i sWait ingReceiveCard w4) (atmStatuse atm4 w4)))))

27 ; ; t r a n s l a t i o n o f : (atm5 . atmStatuse) = Update
(f o r a l l ((a75 ATM Status)) (=>
(atmStatuse atm5 a75) (isUpdate a75)))
(f o r a l l ((u ATM Status))(=>
(isUpdate u) (atmStatuse atm5 u)))

28 ; ; t r a n s l a t i o n o f : no atm6 . inCard and (atm6 . atmStatuse) =
; ; WaitingCard and no atm6 . op
(f o r a l l ((c27 Card)) (not (inCard atm6 c27)))
(f o r a l l ((a79 ATM Status))(=>
(atmStatuse atm6 a79) (isWaitingCard a79)))
(f o r a l l ((w5 ATM Status)) (=>
(isWaitingCard w5) (atmStatuse atm6 w5)))
(f o r a l l ((o6 Operat ions)) (not (op atm6 o6))))

29 ; ; t r a n s l a t i o n o f : crd . (atm5 . balance)=crd . (atm1 . balance)− mon
(f o r a l l ((i 15 Int) (i 16 Int))
(=> (and (balance atm5 crd i15) (ba lance atm1 crd i16))
(= i15 (− i 16 mon)))

30))))))
31 (= d d1))))))

Listing B.11: Commands

1 (check−sa t)
2 ; (get−model)
3 (e x i t)

290

Appendix C

Transmitting Data Over Single
Channel Model Using Alloy
(Second Protocol) in Secure/
Insecure Scope

Listing C.1: Signatures

1 s i g Time{}
2 s i g Channel{}
3 s i g ISP{}
4 s i g Data {}
5 abs t r a c t s i g Connect ionStatus {}
6 one s i g Connection And Exchanging Data extends Connect ionStatus {}
7 s i g MAC{}
8 s i g Communication Status {

Listing C.2: Relations Declaration

1 s e r v i c e P r o v i d e r : s e t ISP ,
2 v i s i t o r s : s e t MAC,
3 c l i e n t : one MAC,
4 s e r v e r : one MAC,
5 mitmIntercepts : l one MAC − s e rve r ,
6 connect ion : MAC −> l one s e r v i c e P r o v i d e r ,
7 opens :MAC−> s e r v i c e P r o v i d e r −> Channel ,
8 s t a t u s :MAC −> one ConnectionStatus ,
9 sends : MAC −>l one (Data −> Time)−> Channel ,

10 r e c e i v e s : MAC −>l one (Data −> Time)−> Channel}

Listing C.3: Facts

1 : FIRST FACT
2 f a c t {

a l l s : Communication Status |
(s . mitmIntercepts ! in s . v i s i t o r s or
(s . mitmIntercepts in s . v i s i t o r s and s . c l i e n t ! in s . mitmIntercepts))
i m p l i e s (a l l t , t ’ : Time , d , d ’ : Data , ch : Channel |
s . c l i e n t . (s . sends) =d −>t−>ch and
s . s e r v e r . (s . r e c e i v e s) =d ’ −>t ’−>ch
i m p l i e s t= t ’)}

3 SECOND FACT
4 f a c t {

a l l t , t ’ : Time , d , d ’ : Data , s : Communication Status , ch : Channel |
(s . c l i e n t . (s . sends) =d −>t−>ch and
s . s e r v e r . (s . r e c e i v e s) =d ’ −>t ’−>ch and t =t ’)

291

Appendix C. Transmitting Data Over Single Channel Model Using Alloy
(Second Protocol) in Secure/ Insecure Scope

5 i m p l i e s ((d = d ’) and no s . mitmIntercepts . (s . sends) and
no s . mitmIntercepts . (s . r e c e i v e s))}

6 ;THIRD FACT
7 f a c t {

a l l s : Communication Status | s . c l i e n t != s . s e r v e r }

Listing C.4: Predecates

1 pred SingleChannel [t , t ’ : Time , d , d ’ : Data , i sp , i s p ’ : ISP ,
s t a tu s1 : Communication Status , ch : Channel]{

2 s ta tu s1 . c l i e n t . (s t a tu s1 . s t a t u s) =Connection And Exchanging Data and
3 s ta tu s1 . s e r v e r . (s t a tu s1 . s t a t u s) =Connection And Exchanging Data and
4 s ta tu s1 . c l i e n t in s ta tu s1 . v i s i t o r s and
5 s ta tu s1 . s e r v e r in s ta tu s1 . v i s i t o r s and
6 s ta tu s1 . c l i e n t . (s t a tu s1 . connect ion)= i s p and
7 s ta tu s1 . s e r v e r . (s t a tu s1 . connect ion)= i s p ’ and
8 s ta tu s1 . c l i e n t . (s t a tu s1 . opens)=

s ta tu s1 . c l i e n t . (s t a tu s1 . connect ion)−>ch and
9 s ta tu s1 . s e r v e r . (s t a tu s1 . opens)=

s ta tu s1 . s e r v e r . (s t a tu s1 . connect ion)−>ch and
10 s ta tu s1 . c l i e n t . (s t a tu s1 . sends)=d−>t−>ch and
11 s ta tu s1 . s e r v e r . (s t a tu s1 . r e c e i v e s)=d ’−>t ’−>ch and
12 no s ta tu s1 . c l i e n t . (s t a tu s1 . r e c e i v e s) and
13 no s ta tu s1 . s e r v e r . (s t a tu s1 . sends) and
14 // No CE secure scope (no Mitm at a l l)
15 // s ta tu s1 . mitmIntercepts ! in s ta tu s1 . v i s i t o r s
16 // or
17 //MITM INTERCEPTION (NO CE) S t s t i c and dynamic mitm
18 (((s t a tu s1 . mitmIntercepts in s ta tu s1 . v i s i t o r s) and

(s ta tu s1 . c l i e n t) ! in s ta tu s1 . mitmIntercepts))}

Listing C.5: Assertion

1 a s s e r t DataSecure {
2 a l l i sp , i s p ’ : ISP , d , d ’ : Data , t , t ’ : Time , ch : Channel ,

s t a tu s1 : Communication Status |
3 (SingleChannel [t , t ’ ,d , d ’ , i sp , i s p ’ , s tatus1 , ch])
4 i m p l i e s (d=d ’)}

Listing C.6: Commands

1 check DataSecure f o r 3 MAC, 2 Time , 1 ISP , 2 Data ,
1 ConnectionStatus , 1 Channel , 1 Communication Status

2 run SingleChannel f o r 3 MAC, 2 Time , 1 ISP , 2 Data ,
1 ConnectionStatus , 1 Channel , 1 Communication Status

292

Appendix D

Single Channel Proving Using Z3
Theorem Prover

Listing D.1: Sorts

1 (dec la re−s o r t Time)
2 (dec la re−s o r t Channel)
3 (dec la re−s o r t ISP)
4 (dec la re−s o r t Data)
5 (dec la re−s o r t Connect ionStatus)
6 (dec la re−s o r t MAC)
7 (dec la re−s o r t CommunicationStatus)

Listing D.2: Functions

1 (dec la re−fun s e r v i c e P r o v i d e r (CommunicationStatus ISP) Bool)
2 (dec la re−fun v i s i t o r s (CommunicationStatus MAC) Bool)
3 (dec la re−fun c l i e n t 1 (CommunicationStatus MAC) Bool)
4 (dec la re−fun s e r v e r (CommunicationStatus MAC) Bool)
5 (dec la re−fun mitmIntercepts (CommunicationStatus MAC) Bool)
6 (dec la re−fun connect ion (CommunicationStatus MAC ISP) Bool)
7 (dec la re−fun opens (CommunicationStatus MAC ISP Channel) Bool)
8 (dec la re−fun s t a t u s (CommunicationStatus MAC Connect ionStatus) Bool)
9 (dec la re−fun sends (CommunicationStatus MAC Data Time Channel) Bool)

10 (dec la re−fun r e c e i v e s (CommunicationStatus MAC Data Time Channel)
Bool)

11 (dec la re−fun isConnection And Exchanging Data (Connect ionStatus)
Bool)

Listing D.3: Some Property

1 ; ; the some property o f the s i g n a t u r e s
; Connection And Exchanging Data
(dec la re−fun | oneOf Connection And Exchanging Data | ()
Connect ionStatus)

Listing D.4: Negation Of The Implication Of The Assertion

1 (a s s e r t
2 (not
3 (=>
4 (and

Listing D.5: Return Types Of The ”oneOf” Functions/Constants

1 (isConnection And Exchanging Data |
oneOf Connection And Exchanging Data |)

293

Appendix D. Single Channel Proving Using Z3 Theorem Prover

Listing D.6: The Lone Property Of The Signatures

1 ; ; the lone property o f the s i g n a t u r e s :
; Connection And Exchanging Data
(f o r a l l ((o1 Connect ionStatus) (o2 Connect ionStatus))(=>
(and (isConnection And Exchanging Data o1)
(isConnection And Exchanging Data o2))(= o1 o2)))

Listing D.7: Relations

1 ; c l i e n t 1 : one MAC,
(f o r a l l ((c s CommunicationStatus))
(and (e x i s t s ((mac1 MAC)) (c l i e n t 1 cs mac1))
(f o r a l l ((mac3 MAC) (mac2 MAC))
(=> (and (c l i e n t 1 cs mac2) (c l i e n t 1 cs mac3))
(= mac2 mac3)))))

2 ; s e r v e r : one MAC,
(f o r a l l ((c s CommunicationStatus))
(and (e x i s t s ((mac1 MAC)) (s e r v e r cs mac1))
(f o r a l l ((mac3 MAC) (mac2 MAC))
(=>(and (s e r v e r cs mac2) (s e r v e r cs mac3))(= mac2 mac3)))))

3 ; mitmIntercepts : l one MAC − s e rve r ,
(f o r a l l ((c s CommunicationStatus) (mac3 MAC) (mac2 MAC))(=>
(and (mitmIntercepts cs mac3) (mitmIntercepts cs mac2))(= mac2 mac3)))
(f o r a l l ((c s CommunicationStatus)) (e x i s t s ((mac1 MAC))
(not (mitmIntercepts cs mac1))))

4 ; connect ion : MAC −> l one s e r v i c e P r o v i d e r ,
(f o r a l l ((c s CommunicationStatus) (mac MAC)) (and
(f o r a l l ((i sp11 ISP))(=>(connect ion cs mac i sp11)
(s e r v i c e P r o v i d e r cs i sp11)))
(f o r a l l ((i sp12 ISP) (i sp13 ISP))(=> (and (connect ion cs mac i sp12)
(connect ion cs mac i sp13))(= i sp12 i sp13)))))

5 ; s t a t u s :MAC −> one ConnectionStatus ,
(f o r a l l ((c s CommunicationStatus) (mac MAC))
(and (e x i s t s ((co Connect ionStatus)) (s t a t u s cs mac co))
(f o r a l l ((a3 Connect ionStatus) (a2 Connect ionStatus))
(=> (and (s t a tu s cs mac a2) (s t a t u s cs mac a3))(= a2 a3)))))

6 ; opens :MAC−> s e r v i c e P r o v i d e r −> Channel ,
(f o r a l l ((c s CommunicationStatus) (mac MAC) (i s p ISP)
(ch Channel))(=>(opens cs mac i s p ch) (s e r v i c e P r o v i d e r cs i s p)))

7 ; sends : MAC −>l one (Data −> Time)−> Channel ,
(f o r a l l ((c s CommunicationStatus) (mac MAC) (ch Channel)
(d1 Data) (d2 Data) (t Time) (t1 Time))
(=>(and (sends cs mac d1 t ch) (sends cs mac d2 t1 ch))
(and(= d1 d2)(= t t1))))

8 ; r e c e i v e s : MAC −>l one (Data −> Time)−> Channel ,
(f o r a l l ((c s CommunicationStatus) (mac MAC) (ch Channel)
(d1 Data) (d2 Data) (t Time) (t1 Time))
(=>(and (r e c e i v e s cs mac d1 t ch)
(r e c e i v e s cs mac d2 t1 ch)) (and(= d1 d2)(= t t1))))

Listing D.8: Facts

1 ; FIRST FACT
(f o r a l l ((s t a tu s1 CommunicationStatus)) (i m p l i e s
(f o r a l l ((cmac MAC) (mmac MAC)) (or(=>(mitmIntercepts s t a tu s1 mmac)
(not (v i s i t o r s s t a tu s1 mmac)))
(and(=>(mitmIntercepts s t a tu s1 mmac) (v i s i t o r s s t a tu s1 mmac))
(=>(c l i e n t 1 s ta tu s1 cmac)
(not (mitmIntercepts s t a tu s1 cmac))))))

294

Appendix D. Single Channel Proving Using Z3 Theorem Prover

(f o r a l l ((t Time) (t1 Time) (d Data) (d1 Data) (ch1 Channel))
(i m p l i e s (and (f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=> (e x i s t s ((cmac MAC)) (and (c l i e n t 1 s ta tu s1 cmac)
(sends s ta tu s1 cmac d11 t11 ch11)))
(and(= d d11)(= t t11)(= ch1 ch11))))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(sends s ta tu s1 cmac1 d t ch1)))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=>(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)
(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= d1 d11)(= t1 t11) (= ch1 ch11))))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(r e c e i v e s s t a tu s1 smac1 d1 t1 ch1)))) (= t t1)))))

2 ;SECOND FACT
(f o r a l l ((s t a tu s1 CommunicationStatus) (t Time) (t1 Time)
(d Data) (d1 Data) (ch1 Channel)) (i m p l i e s (and
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=>(e x i s t s ((cmac MAC)) (and (c l i e n t 1 s ta tu s1 cmac)
(sends s ta tu s1 cmac d11 t11 ch11)))
(and(= d d11)(= t t11)(= ch1 ch11))))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(sends s ta tu s1 cmac1 d t ch1)))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=>(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)
(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= d1 d11)(= t1 t11)(= ch1 ch11))))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(r e c e i v e s s t a tu s1 smac1 d1 t1 ch1)))(= t t1))(= d d1)))

3 ;THIRD FACT
(f o r a l l ((s CommunicationStatus))
(f o r a l l ((mac1 MAC) (mac2 MAC))(=> (and (c l i e n t 1 s mac1)
(s e r v e r s mac2)) not(= mac1 mac2)))))

Listing D.9: Predicate and Assertion

1 (f o r a l l ((i s p ISP) (i sp1 ISP) (d Data) (d1 Data) (t Time) (t1 Time)
(ch1 Channel) (s t a tu s1 CommunicationStatus))(=>(and

2 ; s t a tu s1 . c l i e n t . (s t a tu s1 . s t a t u s)=isConnection And Exchanging Data
(=>(f o r a l l ((cs1 Connect ionStatus) (cmac MAC))
(=> (and (c l i e n t 1 s ta tu s1 cmac) (s t a t u s s ta tu s1 cmac cs1))
(isConnection And Exchanging Data cs1)))
(f o r a l l ((cs2 Connect ionStatus) (cmac MAC))
(=> (isConnection And Exchanging Data cs2)
(and (c l i e n t 1 s ta tu s1 cmac) (s t a t u s s ta tu s1 cmac cs2)))))

3 ; s t a tu s1 . s e r v e r . (s t a tu s1 . s t a tu s)=isConnection And Exchanging Data
(=>(f o r a l l ((cs1 Connect ionStatus) (smac MAC))
(=> (and (s e r v e r s ta tu s1 smac) (s t a t u s s ta tu s1 smac cs1))
(isConnection And Exchanging Data cs1)))
(f o r a l l ((cs2 Connect ionStatus) (smac MAC))
(=> (isConnection And Exchanging Data cs2)
(and (s e r v e r s ta tu s1 smac) (s t a t u s s ta tu s1 smac cs2)))))

4 ; s t a tu s1 . c l i e n t 1 in s ta tu s1 . v i s i t o r s
(f o r a l l ((cmac MAC))(=> (c l i e n t 1 s ta tu s1 cmac)
(v i s i t o r s s t a tu s1 cmac)))

5 ; s t a tu s1 . s e r v e r in s ta tu s1 . v i s i t o r s
(f o r a l l ((smac MAC))(=> (s e r v e r s t a tu s1 smac)
(v i s i t o r s s t a tu s1 smac)))

6 ; no s ta tu s1 . c l i e n t 1 . (s t a tu s1 . r e c e i v e s)
(f o r a l l ((cmac MAC)) (and (not (and (c l i e n t 1 s ta tu s1 cmac)

295

Appendix D. Single Channel Proving Using Z3 Theorem Prover

(r e c e i v e s s t a tu s1 cmac d1 t1 ch1))) (not (and (c l i e n t 1 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac d t1 ch1)))))

7 ; no s ta tu s1 . s e r v e r . (s t a tu s1 . sends)
(f o r a l l ((smac MAC)) (and (not (and (s e r v e r s ta tu s1 smac)
(sends s ta tu s1 smac d t ch1))) (not (and (s e r v e r s ta tu s1 smac)
(sends s ta tu s1 smac d1 t ch1)))))

8 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . connect ion)= i s p
(f o r a l l ((i sp11 ISP))(=>(=> (e x i s t s ((cmac MAC))
(and (c l i e n t 1 s ta tu s1 cmac) (connect ion s ta tu s1 cmac i sp11)))
(= i s p i sp11)) (e x i s t s ((cmac1 MAC))
(and (c l i e n t 1 s ta tu s1 cmac1) (connect ion s ta tu s1 cmac1 i s p)))))

9 ; s t a tu s1 . s e r v e r . (s t a tu s1 . connect ion)= isp ‘
(f o r a l l ((i sp11 ISP))(=>(=> (e x i s t s ((smac MAC))
(and (s e r v e r s ta tu s1 smac) (connect ion s ta tu s1 smac i sp11)))
(= i sp1 i sp11)) (e x i s t s ((smac1 MAC))
(and (s e r v e r s ta tu s1 smac1) (connect ion s ta tu s1 smac1 i sp1)))))

10 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . opens)=
; s ta tu s1 . c l i e n t 1 . (s t a tu s1 . connect ion)−>ch1
(f o r a l l ((i sp11 ISP) (ch Channel))(=>(f o r a l l ((cmac MAC))(=>
(and (c l i e n t 1 s ta tu s1 cmac) (connect ion s ta tu s1 cmac i sp11))
(and (c l i e n t 1 s ta tu s1 cmac) (opens s ta tu s1 cmac i sp11 ch))))
(and(= i s p i sp11)(= ch1 ch)))) (f o r a l l ((cmac1 MAC))(=>
(and (c l i e n t 1 s ta tu s1 cmac1) (connect ion s ta tu s1 cmac1 i s p))
(and (c l i e n t 1 s ta tu s1 cmac1) (opens s ta tu s1 cmac1 i s p ch1))))

11 ; s t a tu s1 . s e r v e r . (s t a tu s1 . opens)=
; s ta tu s1 . s e r v e r . (s t a tu s1 . connect ion)−>ch1
(f o r a l l ((i sp11 ISP) (ch Channel))(=>(f o r a l l ((smac MAC))(=>
(and (s e r v e r s ta tu s1 smac) (connect ion s ta tu s1 smac i sp11))
(and (s e r v e r s ta tu s1 smac) (opens s ta tu s1 smac i sp11 ch))))
(and(= i sp1 i sp11)(= ch1 ch)))) (f o r a l l ((smac1 MAC))(=>
(and (s e r v e r s ta tu s1 smac1) (connect ion s ta tu s1 smac1 i sp1))
(and (s e r v e r s ta tu s1 smac1) (opens s ta tu s1 smac1 i sp1 ch1))))

12 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . sends)=d−>t−>ch1
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 1 s ta tu s1 cmac)
(sends s ta tu s1 cmac d11 t11 ch11)))
(and(= d d11)(= t t11)(= ch1 ch11))))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(sends s ta tu s1 cmac1 d t ch1)))

13 ; s t a tu s1 . s e r v e r . (s t a tu s1 . r e c e i v e s)=d ’−>t ’−>ch1
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)
(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= d1 d11)(= t1 t11)(= ch1 ch11))))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(r e c e i v e s s t a tu s1 smac1 d1 t1 ch1)))

14 ; s t a tu s1 . mitmIntercepts ! in s ta tu s1 . v i s i t o r s or
15 ; (((s t a tu s1 . mitmIntercepts in s ta tu s1 . v i s i t o r s) and

; (s t a tu s1 . c l i e n t) ! in s ta tu s1 . mitmIntercepts))
(f o r a l l ((cmac MAC) (mmac MAC)) (or(=>(mitmIntercepts s t a tu s1 mmac)
(not (v i s i t o r s s t a tu s1 mmac)))
(and(=>(mitmIntercepts s t a tu s1 mmac) (v i s i t o r s s t a tu s1 mmac))
(=>(c l i e n t 1 s ta tu s1 cmac) (not (mitmIntercepts s t a tu s1 cmac))))))

16 ;ASSERTION (= d d1))))))

Listing D.10: Commands

1 (check−sa t) ; (get−model) (e x i t)

296

Appendix E

Transmitting Data Over
Multichannel Model Using Alloy

Listing E.1: Signatures

1 s i g Time{}
2 s i g Channel{}
3 s i g ISP{}
4 s i g Data{}
5 abs t r a c t s i g Connect ionStatus {}
6 one s i g First Communicat ion And Exchanging Indices ,
7 Second Communication And Exchanging Letters extends Connect ionStatus
{}

8 s i g MAC{}
9 s i g Communication Status {

Listing E.2: Relation Declaration

1 v i s i t o r s : s e t MAC,
2 c l i e n t 1 : one MAC, // each v i s i t o r (c l i e n t) has one MAC
3 c l i e n t 2 : one MAC ,
4 s e r v e r : one MAC,
5 inter septMacs : l one MAC − s e rve r , // no need to i n t e r c e p t s e r v e r
6 s e r v i c e P r o v i d e r : s e t ISP ,
7 ispA : one ISP ,
8 ispB : one ISP ,
9 connect ion : MAC −> l one s e r v i c e P r o v i d e r ,

10 s t a t u s :MAC −> one ConnectionStatus ,
11 channel : s e t Channel ,
12 ch1 : one Channel ,
13 ch2 : one Channel ,
14 sends :MAC −>l one (Data −> Time)−> Channel ,
15 r e c e i v e s :MAC −>l one (Data −> Time)−> Channel}

Listing E.3: Facts

1 ; FIRST FACT
f a c t { a l l s , s ’ : Communication Status |
/∗∗ In case the f i r s t channel has been i n t e r c e p t e d ∗/
((s . c l i e n t 1 in s . v i s i t o r s and s . c l i e n t 2 ! in s . v i s i t o r s) and
(s ’ . c l i e n t 1 ! in s ’ . v i s i t o r s and s ’ . c l i e n t 2 in s ’ . v i s i t o r s)

2 and ((s . c l i e n t 1) in s . inter septMacs and (s ’ . c l i e n t 2) ! in
s ’ . in ter septMacs or (s . c l i e n t 1) ! in s . inter septMacs and
(s ’ . c l i e n t 2) in s ’ . inte r septMacs or (s . c l i e n t 1) ! in
s . inte r septMacs and (s ’ . c l i e n t 2) ! in s ’ . inter septMacs) i m p l i e s

3 (a l l s , s ’ : Communication Status , t , t ’ , t ’ ’ , t ’ ’ ’ : Time ,
i nd i c e s , i n d i c e s ’ , l e t t e r s , l e t t e r s ’ : Data |

297

Appendix E. Transmitting Data Over Multichannel Model Using Alloy

(s . c l i e n t 1 . (s . sends) = ind i c e s−>t−>s . ch1 and
s . s e r v e r . (s . r e c e i v e s) = i n d i c e s ’−>t ’−>s . ch1 and
s ’ . c l i e n t 2 . (s ’ . sends)= l e t t e r s−>t ’ ’−>s ’ . ch2 and
s ’ . s e r v e r . (s ’ . r e c e i v e s)= l e t t e r s ’−>t ’ ’ ’−>s ’ . ch2)

4 i m p l i e s ((t ’ ’ != t ’ ’ ’ and t=t ’) and (s ’ . c l i e n t 2) in
s ’ . in ter septMacs and (s . c l i e n t 1) ! in s . inter septMacs or
(t ’ ’= t ’ ’ ’ and t != t ’) and (s . c l i e n t 1) in s . inter septMacs and
(s ’ . c l i e n t 2) ! in s ’ . in ter septMacs or (t ’ ’= t ’ ’ ’ and t=t ’)

5 and (s . c l i e n t 1) ! in s . inter septMacs and (s ’ . c l i e n t 2) ! in
s ’ . in ter septMacs)) }

6 ;SECOND FACT
f a c t { a l l s , s ’ : Communication Status , t , t ’ , t ’ ’ , t ’ ’ ’ : Time , i nd i c e s ,
i n d i c e s ’ , l e t t e r s , l e t t e r s ’ : Data | ((s . c l i e n t 1 . (s . sends) =
ind i c e s−>t−>s . ch1

7 and s . s e r v e r . (s . r e c e i v e s) = i n d i c e s ’−>t ’−>s . ch1) and
(s ’ . c l i e n t 2 . (s ’ . sends)= l e t t e r s−>t ’ ’−>s ’ . ch2

8 and s ’ . s e r v e r . (s ’ . r e c e i v e s)= l e t t e r s ’−>t ’ ’ ’−>s ’ . ch2) and
((t ’ ’ != t ’ ’ ’ and t=t ’) or (t ’ ’= t ’ ’ ’ and t=t ’) or
(t ’ ’= t ’ ’ ’ and t != t ’)))
i m p l i e s (l e t t e r s=l e t t e r s ’ and i n d i c e s=i n d i c e s ’)}

9 ;THIRD FACT
f a c t { a l l s ’ , s : Communication Status | s . c l i e n t 1 != s . s e r v e r

10 and s ’ . c l i e n t 2 != s . s e r v e r and s . c l i e n t 1 != s ’ . c l i e n t 2
and s . c l i e n t 1=s ’ . c l i e n t 1 and s . s e r v e r = s ’ . s e r v e r }

Listing E.4: Predicates

1 pred MultiChannel [t , t ’ , t ’ ’ , t ’ ’ ’ : Time , i nd i c e s , i n d i c e s ’ ,
l e t t e r s , l e t t e r s ’ : Data , i s p : ISP , status1 , s t a tu s2 : Communication Status]

2 { s t a tu s1 . c l i e n t 1 . (s t a tu s1 . s t a tu s) =
First Communicat ion And Exchanging Indices and

3 s ta tu s1 . s e r v e r . (s t a tu s1 . s t a t u s) =
First Communicat ion And Exchanging Indices and

4 s ta tu s1 . s e r v e r in s ta tu s1 . v i s i t o r s and
5 s ta tu s1 . ispA in s ta tu s1 . s e r v i c e P r o v i d e r and
6 s ta tu s1 . ispB ! in s ta tu s1 . s e r v i c e P r o v i d e r and
7 no s ta tu s1 . c l i e n t 2 . (s t a tu s1 . connect ion)
8 s ta tu s1 . c l i e n t 1 . (s t a tu s1 . connect ion) =s ta tu s1 . ispA and
9 s ta tu s1 . s e r v e r . (s t a tu s1 . connect ion)= i s p and

10 s ta tu s1 . ch1 in s ta tu s1 . channel and
11 s ta tu s1 . ch2 ! in s ta tu s1 . channel and
12 s ta tu s1 . c l i e n t 1 . (s t a tu s1 . sends)= ind i c e s−>t−>s t a tu s1 . ch1 and
13 s ta tu s1 . c l i e n t 1 . (s t a tu s1 . sends)!= l e t t e r s−>t−>s t a tu s1 . ch1 and
14 s ta tu s1 . s e r v e r . (s t a tu s1 . r e c e i v e s)= i n d i c e s ’−>t ’−>s t a tu s1 . ch1 and
15 s ta tu s1 . s e r v e r . (s t a tu s1 . r e c e i v e s)!= l e t t e r s ’−>t ’−>s t a tu s1 . ch1 and
16 no s ta tu s1 . s e r v e r . (s t a tu s1 . sends) and
17 no s ta tu s1 . c l i e n t 1 . (s t a tu s1 . r e c e i v e s) and
18 no s ta tu s1 . c l i e n t 2 . (s t a tu s1 . r e c e i v e s) and
19 no s ta tu s1 . c l i e n t 2 . (s t a tu s1 . sends)
20 s ta tu s2 . c l i e n t 2 . (s t a tu s2 . s t a t u s) =

Second Communication And Exchanging Letters and
21 s ta tu s2 . s e r v e r . (s t a tu s2 . s t a t u s) =

Second Communication And Exchanging Letters and
22 s ta tu s2 . s e r v e r in s ta tu s2 . v i s i t o r s and
23 s ta tu s2 . ispA ! in s ta tu s2 . s e r v i c e P r o v i d e r and
24 s ta tu s2 . ispB in s ta tu s2 . s e r v i c e P r o v i d e r and
25 no s ta tu s2 . c l i e n t 1 . (s t a tu s2 . connect ion) and
26 s ta tu s2 . c l i e n t 2 . (s t a tu s2 . connect ion)= s ta tu s2 . ispB and
27 s ta tu s2 . s e r v e r . (s t a tu s2 . connect ion)=

s ta tu s1 . s e r v e r . (s t a tu s1 . connect ion) and

298

Appendix E. Transmitting Data Over Multichannel Model Using Alloy

28 s ta tu s2 . ch1 ! in s ta tu s2 . channel and
29 s ta tu s2 . ch2 in s ta tu s2 . channel and
30 s ta tu s2 . c l i e n t 2 . (s t a tu s2 . sends)= l e t t e r s−>t ’ ’−>s t a tu s2 . ch2 and
31 s ta tu s2 . c l i e n t 2 . (s t a tu s2 . sends)!= ind i c e s−>t ’ ’−>s t a tu s2 . ch2 and
32 s ta tu s2 . s e r v e r . (s t a tu s2 . r e c e i v e s)= l e t t e r s ’−>t ’ ’ ’−>s t a tu s2 . ch2 and
33 s ta tu s2 . s e r v e r . (s t a tu s2 . r e c e i v e s)!= i n d i c e s ’−>t ’ ’ ’−>s t a tu s2 . ch2 and
34 no s ta tu s2 . s e r v e r . (s t a tu s2 . sends) and
35 no s ta tu s2 . c l i e n t 2 . (s t a tu s2 . r e c e i v e s) and
36 no s ta tu s2 . c l i e n t 1 . (s t a tu s2 . sends) and
37 no s ta tu s2 . c l i e n t 1 . (s t a tu s2 . r e c e i v e s) and
38 s ta tu s1 . c l i e n t 1 in s ta tu s1 . v i s i t o r s and
39 s ta tu s1 . c l i e n t 2 ! in s ta tu s1 . v i s i t o r s and
40 s ta tu s2 . c l i e n t 1 ! in s ta tu s2 . v i s i t o r s and
41 s ta tu s2 . c l i e n t 2 in s ta tu s2 . v i s i t o r s and (
42 ;NO CE in case the f i r s t channel i s i n t e r c e p t e d OR

; in case the second channel i s i n t e r c e p t e d
;OR n e i t h e r

43 // (s ta tu s1 . c l i e n t 1) in s ta tu s1 . inter septMacs and
(s ta tu s2 . c l i e n t 2) ! in s ta tu s2 . inter septMacs

44 // or (s t a tu s1 . c l i e n t 1) ! in s ta tu s1 . inter septMacs and
(s ta tu s2 . c l i e n t 2) in s ta tu s2 . inter septMacs

45 // or (s t a tu s1 . c l i e n t 1) ! in s ta tu s1 . inter septMacs and
(s ta tu s2 . c l i e n t 2) ! in s ta tu s2 . inter septMacs)}

Listing E.5: Assertion

1 a s s e r t DataSecure {
a l l i s p : ISP , status1 , s t a tu s2 : Communication Status ,
i nd i c e s , i n d i c e s ’ , l e t t e r s , l e t t e r s ’ : Data , t , t ’ , t ’ ’ , t ’ ’ ’ : Time |
MultiChannel [t , t ’ , t ’ ’ , t ’ ’ ’ , i nd i c e s , i n d i c e s ’ ,
l e t t e r s , l e t t e r s ’ , i s p , s tatus1 , s t a tu s2]
i m p l i e s i n d i c e s = i n d i c e s ’ and l e t t e r s = l e t t e r s ’}

Listing E.6: Commands

1 check DataSecure f o r 3 MAC, 4 Time , 2 ISP , 2 Channel ,
4 Data , 1 ConnectionStatus , 2 Communication Status

2 run MultiChannel f o r 3 MAC, 4 Time , 2 ISP , 2 Channel ,
4 Data , 1 ConnectionStatus , 2 Communication Status

299

Appendix F

Multichannel Proving Using Z3
SMT Solver

Listing F.1: Sorts

1 (dec la re−s o r t Time)
2 (dec la re−s o r t Channel)
3 (dec la re−s o r t ISP)
4 (dec la re−s o r t Data)
5 (dec la re−s o r t Connect ionStatus)
6 (dec la re−s o r t MAC)
7 (dec la re−s o r t CommunicationStatus)

Listing F.2: Functions

1 (dec la re−fun s e r v i c e P r o v i d e r (CommunicationStatus ISP) Bool)
2 (dec la re−fun v i s i t o r s (CommunicationStatus MAC) Bool)
3 (dec la re−fun c l i e n t 1 (CommunicationStatus MAC) Bool)
4 (dec la re−fun c l i e n t 2 (CommunicationStatus MAC) Bool)
5 (dec la re−fun s e r v e r (CommunicationStatus MAC) Bool)
6 (dec la re−fun inter septMacs (CommunicationStatus MAC) Bool)
7 (dec la re−fun ispA (CommunicationStatus ISP) Bool)
8 (dec la re−fun ispB (CommunicationStatus ISP) Bool)
9 (dec la re−fun connect ion (CommunicationStatus MAC ISP) Bool)

10 (dec la re−fun s t a t u s (CommunicationStatus MAC Connect ionStatus) Bool)
11 (dec la re−fun channel (CommunicationStatus Channel) Bool)
12 (dec la re−fun ch1 (CommunicationStatus Channel) Bool)
13 (dec la re−fun ch2 (CommunicationStatus Channel) Bool)
14 (dec la re−fun sends (CommunicationStatus MAC Data Time Channel) Bool)
15 (dec la re−fun r e c e i v e s (CommunicationStatus MAC Data Time Channel)

Bool)
16 (dec la re−fun isFirst Communicat ion And Exchanging Indices

(Connect ionStatus) Bool)
17 (dec la re−fun isSecond Communication And Exchanging Letters

(Connect ionStatus) Bool)

Listing F.3: Some Property

1 ; ; the some property o f the s i g na tu r e
;<First Communicat ion And Exchanging Indices>
(dec la re−fun | oneOf First Communicat ion And Exchanging Indices | ()
Connect ionStatus)

2 ; ; the some property o f the s i g na tu r e
;<Second Communication And Exchanging Letters>
(dec la re−fun | oneOf Second Communication And Exchanging Letters | ()
Connect ionStatus)

300

Appendix F. Multichannel Proving Using Z3 SMT Solver

Listing F.4: Negation Of The Implication Of The Assertion

1 (a s s e r t
2 (not
3 (=>
4 (and

Listing F.5: Return Types Of The ”oneOf” Functions/Constants

1 (i sFirs t Communicat ion And Exchanging Indices |
oneOf First Communicat ion And Exchanging Indices |)

2 (isSecond Communication And Exchanging Letters |
oneOf Second Communication And Exchanging Letters |)

Listing F.6: The Lone Property Of The Signatures

1 ; the lone property o f the s i g na tu r e :
;<First Communicat ion And Exchanging Indices>
(f o r a l l ((f 1 Connect ionStatus) (f 2 Connect ionStatus))(=>(and
(i sFirst Communicat ion And Exchanging Indices f 1)
(i sFirst Communicat ion And Exchanging Indices f 2))(= f1 f2)))

2 ; the lone property o f the s i g na tu r e :
;<Second Communication And Exchanging Letters>
(f o r a l l ((s1 Connect ionStatus) (s2 Connect ionStatus))(=>(and
(isSecond Communication And Exchanging Letters s1)
(isSecond Communication And Exchanging Letters s2))(= s1 s2)))

Listing F.7: Abstract Property Of Signature ConnectionStatus

1 (f o r a l l ((co Connect ionStatus)) (or
(i sFirst Communicat ion And Exchanging Indices co)
(Second Communication And Exchanging Letters co)))

Listing F.8: The Extends Property Of The Signatures

1 ; s i g n a t u r e s <First Communicat ion And Exchanging Indices >,
;<Second Communication And Exchanging Letters>
(f o r a l l ((co Connect ionStatus)) (not (and
(i sFirst Communicat ion And Exchanging Indices co)
(isSecond Communication And Exchanging Letters co))))

Listing F.9: Relations

1 ; c l i e n t 1 : one MAC,
(f o r a l l ((c s CommunicationStatus)) (and
(e x i s t s ((mac1 MAC)) (c l i e n t 1 cs mac1))
(f o r a l l ((mac3 MAC) (mac2 MAC))(=>(and
(c l i e n t 1 cs mac2) (c l i e n t 1 cs mac3))(= mac2 mac3)))))

2 ; c l i e n t 2 : one MAC,
(f o r a l l ((c s CommunicationStatus)) (and
(e x i s t s ((mac1 MAC)) (c l i e n t 2 cs mac1))
(f o r a l l ((mac3 MAC) (mac2 MAC))(=>(and
(c l i e n t 2 cs mac2) (c l i e n t 2 cs mac3))(= mac2 mac3)))))

3 ; s e r v e r : one MAC,
(f o r a l l ((c s CommunicationStatus)) (and
(e x i s t s ((mac1 MAC)) (s e r v e r cs mac1))
(f o r a l l ((mac3 MAC) (mac2 MAC))(=>(and
(s e r v e r cs mac2) (s e r v e r cs mac3))(= mac2 mac3)))))

301

Appendix F. Multichannel Proving Using Z3 SMT Solver

4 ; mitmIntercepts : l one MAC − s e rve r ,
(f o r a l l ((c s CommunicationStatus) (mac3 MAC) (mac2 MAC))
(=>(and (mitmIntercepts cs mac3) (mitmIntercepts cs mac2))
(= mac2 mac3)))
(f o r a l l ((c s CommunicationStatus)) (e x i s t s ((mac1 MAC))
(not (mitmIntercepts cs mac1))))

5 ; ispA : one ISP ,
(f o r a l l ((c s CommunicationStatus)) (and
(e x i s t s ((i sp1 ISP)) (ispA cs i sp1))
(f o r a l l ((i sp2 ISP) (i sp3 ISP))(=>(and
(ispA cs i sp2) (ispA cs i sp3))(= i sp2 i sp3)))))

6 ; ispB : one ISP ,
(f o r a l l ((c s CommunicationStatus)) (and
(e x i s t s ((i sp1 ISP)) (ispB cs i sp1))
(f o r a l l ((i sp2 ISP) (i sp3 ISP))(=>(and
(ispB cs i sp2) (ispB cs i sp3))(= i sp2 i sp3)))))

7 ; connect ion : MAC −> l one s e r v i c e P r o v i d e r ,
(f o r a l l ((c s CommunicationStatus) (mac MAC)) (and
(f o r a l l ((i sp11 ISP))(=>(connect ion cs mac i sp11)
(s e r v i c e P r o v i d e r cs i sp11)))
(f o r a l l ((i sp12 ISP) (i sp13 ISP))(=> (and (connect ion cs mac i sp12)
(connect ion cs mac i sp13))(= i sp12 i sp13)))))

8 ; s t a t u s :MAC −> one ConnectionStatus ,
(f o r a l l ((c s CommunicationStatus) (mac MAC))
(and (e x i s t s ((co Connect ionStatus)) (s t a t u s cs mac co))
(f o r a l l ((a3 Connect ionStatus) (a2 Connect ionStatus))
(=> (and (s t a tu s cs mac a2) (s t a t u s cs mac a3))
(= a2 a3)))))

9 ; ch1 : one Channel ,
(f o r a l l ((c s CommunicationStatus)) (and (e x i s t s
((ch11 Channel)) (ch1 cs ch11))
(f o r a l l ((ch22 Channel) (ch33 Channel))(=>
(and (ch1 cs ch22) (ch1 cs ch33))(= ch22 ch33)))))

10 ; ch2 : one Channel ,
(f o r a l l ((c s CommunicationStatus)) (and (e x i s t s
((ch11 Channel)) (ch2 cs ch11))
(f o r a l l ((ch22 Channel) (ch33 Channel))(=>(and
(ch2 cs ch22) (ch2 cs ch33))(= ch22 ch33)))))

11 ; sends : MAC −>l one (Data −> Time)−> Channel ,
(f o r a l l ((c s CommunicationStatus) (mac MAC) (ch Channel)
(d1 Data) (d2 Data) (t Time) (t1 Time))
(=>(and (sends cs mac d1 t ch) (sends cs mac d2 t1 ch))
(and(= d1 d2)(= t t1))))

12 ; r e c e i v e s : MAC −>l one (Data −> Time)−> Channel ,
(f o r a l l ((c s CommunicationStatus) (mac MAC) (ch Channel)
(d1 Data) (d2 Data) (t Time) (t1 Time))
(=>(and (r e c e i v e s cs mac d1 t ch)
(r e c e i v e s cs mac d2 t1 ch)) (and(= d1 d2)(= t t1))))

Listing F.10: Facts

1 ; FIRST FACT
(f o r a l l ((s t a tu s1 CommunicationStatus)
(s t a tu s2 CommunicationStatus)) (i m p l i e s
(f o r a l l ((cmac1 MAC) (cmac2 MAC)) (and
(and (=>(c l i e n t 1 s ta tu s1 cmac1) (v i s i t o r s s t a tu s1 cmac1))
(=> (c l i e n t 2 s ta tu s1 cmac2) (not (v i s i t o r s s t a tu s1 cmac2)))
(=> (c l i e n t 1 s ta tu s2 cmac1) (not (v i s i t o r s s t a tu s2 cmac1)))
(=>(c l i e n t 2 s ta tu s2 cmac2) (v i s i t o r s s t a tu s2 cmac2)))

302

Appendix F. Multichannel Proving Using Z3 SMT Solver

(or (and (=>(c l i e n t 1 s ta tu s1 cmac1) (inter septMacs s ta tu s1 cmac1))
(=> (c l i e n t 2 s ta tu s2 cmac2)
(not (inter septMacs s ta tu s2 cmac2)))) (and (=>(c l i e n t 1 s ta tu s1 cmac1)
(not (inter septMacs s ta tu s1 cmac1)))(=>
(c l i e n t 2 s ta tu s2 cmac2) (inter septMacs s ta tu s2 cmac2))
(and(=>(c l i e n t 1 s ta tu s1 cmac1)
(not (inter septMacs s ta tu s1 cmac1)))(=> (c l i e n t 2 s ta tu s2 cmac2)
(not (inter septMacs s ta tu s2 cmac2)))))))
(f o r a l l ((s t a tu s1 CommunicationStatus) (s t a tu s2 CommunicationStatus)
(t Time) (t1 Time) (t2 Time) (t3 Time) (i n d i c e s Data)
(i n d i c e s 1 Data) (l e t t e r s Data) (l e t t e r s 1 Data))
(i m p l i e s (and (f o r a l l ((d11 Data) (t11 Time)
(ch11 Channel))(=>(=> (e x i s t s ((cmac MAC)) (and
(c l i e n t 1 s ta tu s1 cmac) (sends s ta tu s1 cmac d11 t11 ch11)))
(and(= i n d i c e s d11)(= t t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(sends s ta tu s1 cmac1 i n d i c e s t ch11)))))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)
(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= i n d i c e s 1 d11)(= t1 t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(r e c e i v e s s t a tu s1 smac1 i n d i c e s 1 t1 ch11)))))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 2 s ta tu s2 cmac)
(sends s ta tu s2 cmac d11 t11 ch11)))
(and(= l e t t e r s d11)(= t2 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((cmac2 MAC)) (and (c l i e n t 2 s ta tu s2 cmac2)
(sends s ta tu s2 cmac2 l e t t e r s t2 ch11)))))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s2 smac)
(r e c e i v e s s t a tu s2 smac d11 t11 ch11)))
(and(= l e t t e r s 1 d11)(= t3 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((smac2 MAC)) (and (s e r v e r s ta tu s2 smac2)
(r e c e i v e s s t a tu s2 smac2 l e t t e r s 1 t3 ch11))))))
(f o r a l l ((cmac1 MAC) (cmac2 MAC))
(or (and (and(= t2 t3) (not(= t t1))) (and (=>(c l i e n t 1 s ta tu s1 cmac1)
(inter septMacs s ta tu s1 cmac1))
(=> (c l i e n t 2 s ta tu s2 cmac2) (not (inter septMacs s ta tu s2 cmac2)))))
(and (and (not(= t2 t3))(= t t1))
(and (=>(c l i e n t 1 s ta tu s1 cmac1) (not (inter septMacs s ta tu s1 cmac1)))
(=>(c l i e n t 2 s ta tu s2 cmac2)
(inter septMacs s ta tu s2 cmac2)))) (and (and(= t t1)(= t2 t3))
(and(=>(c l i e n t 1 s ta tu s1 cmac1)
(not (inter septMacs s ta tu s1 cmac1))) (=>(c l i e n t 2 s ta tu s2 cmac2)
(not (inter septMacs s ta tu s2 cmac2)))))))))))

2 ;SECOND FACT
(f o r a l l ((s t a tu s1 CommunicationStatus)
(s t a tu s2 CommunicationStatus) (t Time) (t1 Time) (t2 Time) (t3 Time)
(i n d i c e s Data) (i n d i c e s 1 Data) (l e t t e r s Data) (l e t t e r s 1 Data))
(i m p l i e s (and (f o r a l l ((d11 Data) (t11 Time)
(ch11 Channel))(=>(=> (e x i s t s ((cmac MAC)) (and
(c l i e n t 1 s ta tu s1 cmac) (sends s ta tu s1 cmac d11 t11 ch11)))
(and(= i n d i c e s d11)(= t t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(sends s ta tu s1 cmac1 i n d i c e s t ch11)))))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)

303

Appendix F. Multichannel Proving Using Z3 SMT Solver

(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= i n d i c e s 1 d11)(= t1 t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(r e c e i v e s s t a tu s1 smac1 i n d i c e s 1 t1 ch11)))))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 2 s ta tu s2 cmac)
(sends s ta tu s2 cmac d11 t11 ch11)))
(and(= l e t t e r s d11)(= t2 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((cmac2 MAC)) (and (c l i e n t 2 s ta tu s2 cmac2)
(sends s ta tu s2 cmac2 l e t t e r s t2 ch11)))))
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s2 smac)
(r e c e i v e s s t a tu s2 smac d11 t11 ch11)))
(and(= l e t t e r s 1 d11)(= t3 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((smac2 MAC)) (and (s e r v e r s ta tu s2 smac2)
(r e c e i v e s s t a tu s2 smac2 l e t t e r s 1 t3 ch11)))))
(or (and(= t t1) (not(= t2 t3)))
(and(= t2 t3) (not(= t t1))) (and(= t2 t3)(= t t1))))
(and(= i n d i c e s i n d i c e s 1)(= l e t t e r s l e t t e r s 1))))

3 ;THIRD FACT
(f o r a l l ((s CommunicationStatus) (s1 CommunicationStatus)
(mac1 MAC) (mac2 MAC) (mac3 MAC) (mac4 MAC)) (and(=>
(and (c l i e n t 1 s mac1) (s e r v e r s mac2)) (not(= mac1 mac2)))
(=>(and (c l i e n t 2 s mac1) (s e r v e r s mac2)) (not(= mac1 mac2)))(=>
(and (c l i e n t 1 s mac1) (c l i e n t 2 s1 mac2)) (not(= mac1 mac2)))
(=> (and (c l i e n t 1 s mac1) (c l i e n t 1 s1 mac2))(= mac1 mac2
(=> (and (s e r v e r s mac3) (s e r v e r s1 mac4))(= mac3 mac4))
) ; ends o f and)

Listing F.11: Predicate and Assertion

1 (f o r a l l ((s t a tu s1 CommunicationStatus) (i s p ISP)
(s ta tu s2 CommunicationStatus) (t Time) (t1 Time)
(t2 Time) (t3 Time) (i n d i c e s Data) (i n d i c e s 1 Data)
(l e t t e r s Data) (l e t t e r s 1 Data))(=>(and

2 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . s t a t u s) =
; i sFirst Communicat ion And Exchanging Indices
(=>(f o r a l l ((cs1 Connect ionStatus) (cmac MAC))(=>
(and (c l i e n t 1 s ta tu s1 cmac) (s t a t u s s ta tu s1 cmac cs1))
(i sFirst Communicat ion And Exchanging Indices cs1))))
(f o r a l l ((cs2 Connect ionStatus) (cmac MAC))
(=>(i sFirs t Communicat ion And Exchanging Indices cs2) (and
(c l i e n t 1 s ta tu s1 cmac) (s t a tu s s ta tu s1 cmac cs2)))))

3 ; s t a tu s1 . s e r v e r . (s t a tu s1 . s t a tu s) =
; First Communicat ion And Exchanging Indices
(=> (f o r a l l ((cs1 Connect ionStatus) (smac MAC))(=>
(and (s e r v e r s ta tu s1 smac) (s t a t u s s ta tu s1 smac cs1))
(i sFirst Communicat ion And Exchanging Indices cs1))))
(f o r a l l ((cs2 Connect ionStatus) (smac MAC))
(=> (i sFi rst Communicat ion And Exchanging Indices cs2) (and
(s e r v e r s ta tu s1 smac) (s t a t u s s ta tu s1 smac cs2)))))

4 ; s t a tu s1 . s e r v e r in s ta tu s1 . v i s i t o r s
(f o r a l l ((smac MAC))(=> (s e r v e r s t a tu s1 smac)
(v i s i t o r s s t a tu s1 smac)))

5 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . connect ion) =s ta tu s1 . ispA
(f o r a l l ((i sp11 ISP))(=> (=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 1 s ta tu s1 cmac)
(connect ion s ta tu s1 cmac i sp11)))
(ispA s ta tu s1 i sp11)) (e x i s t s ((cmac1 MAC)) (and

304

Appendix F. Multichannel Proving Using Z3 SMT Solver

(c l i e n t 1 s ta tu s1 cmac1) (connect ion s ta tu s1 cmac1 i sp11)))))
6 ; s t a tu s1 . ispA in s ta tu s1 . s e r v i c e P r o v i d e r

(f o r a l l ((i spa ISP))(=> (ispA s ta tu s1 i spa)
(s e r v i c e P r o v i d e r s ta tu s1 i spa)))

7 ; s t a tu s1 . ispB ! in s ta tu s1 . s e r v i c e P r o v i d e r
(f o r a l l ((i spb ISP))(=>(not (ispB s ta tu s1 i spb))
(s e r v i c e P r o v i d e r s ta tu s1 i spb)))

8 ; s t a tu s1 . s e r v e r . (s t a tu s1 . connect ion)= i s p
(f o r a l l ((i sp11 ISP))(=>(=> (e x i s t s ((smac MAC))
(and (s e r v e r s ta tu s1 smac) (connect ion s ta tu s1 smac i sp11)))
(= i s p i sp11)) (e x i s t s ((smac1 MAC))
(and (s e r v e r s ta tu s1 smac1) (connect ion s ta tu s1 smac1 i s p)))))

9 ; s t a tu s1 . ch1 in s ta tu s1 . channel
(f o r a l l ((ch Channel))(=> (ch1 s ta tu s1 ch)
(channel s t a tu s1 ch)))

10 ; s t a tu s1 . ch2 ! in s ta tu s1 . channel
(f o r a l l ((ch Channel))(=>(not (ch2 s ta tu s1 ch))
(channel s t a tu s1 ch)))

11 ; no s ta tu s1 . c l i e n t 2 . (s t a tu s1 . connect ion)
(f o r a l l ((cmac MAC)) (not (and (c l i e n t 2 s ta tu s1 cmac)
(connect ion s ta tu s1 cmac i s p))))

12 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . sends)= ind i c e s−>t−>s t a tu s1 . ch1
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 1 s ta tu s1 cmac)
(sends s ta tu s1 cmac d11 t11 ch11)))
(and(= i n d i c e s d11)(= t t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(sends s ta tu s1 cmac1 i n d i c e s t ch11)))))

13 ; s t a tu s1 . c l i e n t 1 . (s t a tu s1 . sends)!= l e t t e r s−>t−>s t a tu s1 . ch1
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=> (=>(e x i s t s ((cmac MAC)) (and (c l i e n t 1 s ta tu s1 cmac)
(sends s ta tu s1 cmac d11 t11 ch11)))
(and(= l e t t e r s d11) (= t t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((cmac1 MAC)) (and (c l i e n t 1 s ta tu s1 cmac1)
(not (sends s ta tu s1 cmac1 l e t t e r s t ch11))))))

14 ; s t a tu s1 . s e r v e r . (s t a tu s1 . r e c e i v e s)!= l e t t e r s ’−>t ’−>s t a tu s1 . ch1
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=> (=>(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)
(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= l e t t e r s 1 d11)(= t1 t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(not (r e c e i v e s s t a tu s1 smac1 l e t t e r s 1 t1 ch11))))))

15 ; s t a tu s1 . s e r v e r . (s t a tu s1 . r e c e i v e s)= i n d i c e s ’−>t ’−>s t a tu s1 . ch1
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s1 smac)
(r e c e i v e s s t a tu s1 smac d11 t11 ch11)))
(and(= i n d i c e s 1 d11)(= t1 t11) (ch1 s ta tu s1 ch11)))
(e x i s t s ((smac1 MAC)) (and (s e r v e r s ta tu s1 smac1)
(r e c e i v e s s t a tu s1 smac1 i n d i c e s 1 t1 ch11)))))

16 ; no s ta tu s1 . s e r v e r . (s t a tu s1 . sends)
(f o r a l l ((ch Channel) (smac MAC))
(and (not (and (s e r v e r s ta tu s1 smac)
(sends s ta tu s1 smac i n d i c e s t ch)))
(not (and (s e r v e r s ta tu s1 smac)
(sends s ta tu s1 smac i n d i c e s 1 t ch)))
(not (and (s e r v e r s ta tu s1 smac)
(sends s ta tu s1 smac l e t t e r s t ch)))
(not (and (s e r v e r s ta tu s1 smac)

305

Appendix F. Multichannel Proving Using Z3 SMT Solver

(sends s ta tu s1 smac l e t t e r s 1 t ch)))))
17 ; no s ta tu s1 . c l i e n t 1 . (s t a tu s1 . r e c e i v e s)

(f o r a l l ((ch Channel) (cmac MAC))
(and (not (and (c l i e n t 1 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac i n d i c e s t1 ch)))
(not (and (c l i e n t 1 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac i n d i c e s 1 t1 ch)))
(not (and (c l i e n t 1 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac l e t t e r s t1 ch)))
(not (and (c l i e n t 1 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac l e t t e r s 1 t1 ch)))))

18 ; no s ta tu s1 . c l i e n t 2 . (s t a tu s1 . r e c e i v e s)
(f o r a l l ((ch Channel) (cmac MAC))
(and (not (and (c l i e n t 2 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac i n d i c e s t1 ch)))
(not (and (c l i e n t 2 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac i n d i c e s 1 t1 ch)))
(not (and (c l i e n t 2 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac l e t t e r s t1 ch)))
(not (and (c l i e n t 2 s ta tu s1 cmac)
(r e c e i v e s s t a tu s1 cmac l e t t e r s 1 t1 ch)))))

19 ; no s ta tu s1 . c l i e n t 2 . (s t a tu s1 . sends)
(f o r a l l ((ch Channel) (cmac MAC))
(and (not (and (c l i e n t 2 s ta tu s1 cmac)
(sends s ta tu s1 cmac i n d i c e s t ch)))
(not (and (c l i e n t 2 s ta tu s1 cmac)
(sends s ta tu s1 cmac i n d i c e s 1 t ch)))
(not (and (c l i e n t 2 s ta tu s1 cmac)
(sends s ta tu s1 cmac l e t t e r s t ch)))
(not (and (c l i e n t 2 s ta tu s1 cmac)
(sends s ta tu s1 cmac l e t t e r s 1 t ch)))))

20 ; s t a tu s2 . c l i e n t 2 . (s t a tu s2 . s t a t u s) =
; Second Communication And Exchanging Letters
(=>(f o r a l l ((cs1 Connect ionStatus) (cmac MAC))(=>
(and (c l i e n t 2 s ta tu s2 cmac) (s t a t u s s ta tu s2 cmac cs1))
(isSecond Communication And Exchanging Letters cs1))))
(f o r a l l ((cs2 Connect ionStatus) (cmac MAC))
(=> (isSecond Communication And Exchanging Letters cs2) (and
(c l i e n t 2 s ta tu s2 cmac) (s t a tu s s ta tu s2 cmac cs2))))))

21 ; s t a tu s2 . s e r v e r . (s t a tu s2 . s t a tu s) =
; Second Communication And Exchanging Letters
(=> (f o r a l l ((cs1 Connect ionStatus) (smac MAC))
(=> (and (s e r v e r s ta tu s2 smac) (s t a t u s s ta tu s2 smac cs1))
(isSecond Communication And Exchanging Letters cs1))))
(f o r a l l ((cs2 Connect ionStatus) (smac MAC))
(=> (isSecond Communication And Exchanging Letters cs2)
(and (s e r v e r s ta tu s2 smac) (s t a t u s s ta tu s2 smac cs2))))))

22 ; s t a tu s2 . s e r v e r in s ta tu s2 . v i s i t o r s
(f o r a l l ((smac MAC))(=> (s e r v e r s t a tu s2 smac)
(v i s i t o r s s t a tu s2 smac)))

23 ; s t a tu s2 . ispA ! in s ta tu s2 . s e r v i c e P r o v i d e r
(f o r a l l ((i spa ISP))(=>(not (ispA s ta tu s2 i spa))
(s e r v i c e P r o v i d e r s ta tu s2 i spa)))

24 ; s t a tu s2 . ispB in s ta tu s2 . s e r v i c e P r o v i d e r
(f o r a l l ((i spb ISP))(=>(ispB s ta tu s2 i spb)
(s e r v i c e P r o v i d e r s ta tu s2 i spb)))

25 ; s t a tu s2 . ch1 ! in s ta tu s2 . channel
(f o r a l l ((ch22 Channel))(=>(not (ch1 s ta tu s2 ch22))
(channel s t a tu s2 ch22)))

306

Appendix F. Multichannel Proving Using Z3 SMT Solver

26 ; s t a tu s2 . ch2 in s ta tu s2 . channel
(f o r a l l ((ch22 Channel)) (=>(ch2 s ta tu s2 ch22)
(channel s t a tu s2 ch22)))

27 ; no s ta tu s2 . c l i e n t 1 . (s t a tu s2 . connect ion)
(f o r a l l ((cmac MAC)) (not (and (c l i e n t 1 s ta tu s2 cmac)
(connect ion s ta tu s2 cmac i s p))))

28 ; s t a tu s2 . c l i e n t 2 . (s t a tu s2 . connect ion)= s ta tu s2 . ispB
(f o r a l l ((i sp11 ISP))(=>(=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 2 s ta tu s2 cmac)
(connect ion s ta tu s2 cmac i sp11))) (ispB s ta tu s2 i sp11))
(e x i s t s ((cmac2 MAC)) (and (c l i e n t 2 s ta tu s2 cmac2)
(connect ion s ta tu s2 cmac2 i sp11)))))

29 ; s t a tu s2 . s e r v e r . (s t a tu s2 . connect ion)=
; s ta tu s1 . s e r v e r . (s t a tu s1 . connect ion)
(f o r a l l ((smac MAC) (i sp11 ISP))(=> (and (s e r v e r s ta tu s2 smac)
(connect ion s ta tu s2 smac i sp11)) (and (s e r v e r s ta tu s1 smac)
(connect ion s ta tu s1 smac i sp11))))
(f o r a l l ((smac1 MAC) (i sp12 ISP))(=> (and
(s e r v e r s ta tu s1 smac1) (connect ion s ta tu s1 smac1 i sp12)) (and
(s e r v e r s ta tu s2 smac1) (connect ion s ta tu s2 smac1 i sp12))))

30 ; s t a tu s2 . c l i e n t 2 . (s t a tu s2 . sends)= l e t t e r s−>t ’ ’−>s t a tu s2 . ch2
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((cmac MAC)) (and (c l i e n t 2 s ta tu s2 cmac)
(sends s ta tu s2 cmac d11 t11 ch11)))
(and(= l e t t e r s d11)(= t2 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((cmac2 MAC)) (and (c l i e n t 2 s ta tu s2 cmac2)
(sends s ta tu s2 cmac2 l e t t e r s t2 ch11)))))

31 ; s t a tu s2 . c l i e n t 2 . (s t a tu s2 . sends)!= ind i c e s−>t ’ ’−>s t a tu s2 . ch2
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))
(=> (=>(e x i s t s ((cmac MAC)) (and (c l i e n t 2 s ta tu s2 cmac)
(sends s ta tu s2 cmac d11 t11 ch11)))
(and(= i n d i c e s d11)(= t2 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((cmac2 MAC)) (and (c l i e n t 2 s ta tu s2 cmac2)
(not (sends s ta tu s2 cmac2 i n d i c e s t2 ch11))))))

32 ; s t a tu s2 . s e r v e r . (s t a tu s2 . r e c e i v e s)= l e t t e r s ’−>t ’ ’ ’−>s t a tu s2 . ch2
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=>(=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s2 smac)
(r e c e i v e s s t a tu s2 smac d11 t11 ch11)))
(and(= l e t t e r s 1 d11)(= t3 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((smac2 MAC)) (and (s e r v e r s ta tu s2 smac2)
(r e c e i v e s s t a tu s2 smac2 l e t t e r s 1 t3 ch11))))))

33 ; s t a tu s2 . s e r v e r . (s t a tu s2 . r e c e i v e s)!= i n d i c e s ’−>t ’ ’ ’−>s t a tu s2 . ch2
(f o r a l l ((d11 Data) (t11 Time) (ch11 Channel))(=> (=>
(e x i s t s ((smac MAC)) (and (s e r v e r s ta tu s2 smac)
(r e c e i v e s s t a tu s2 smac d11 t11 ch11)))
(and(= i n d i c e s 1 d11)(= t3 t11) (ch2 s ta tu s2 ch11)))
(e x i s t s ((smac2 MAC)) (and (s e r v e r s ta tu s2 smac2)
(not (r e c e i v e s s t a tu s2 smac2 i n d i c e s 1 t3 ch11))))))

34 ; no s ta tu s2 . s e r v e r . (s t a tu s2 . sends)
(f o r a l l ((ch Channel) (smac MAC)) (and (not (and
(s e r v e r s ta tu s2 smac) (sends s ta tu s2 smac i n d i c e s t2 ch)))
(not (and (s e r v e r s ta tu s2 smac)
(sends s ta tu s2 smac i n d i c e s 1 t2 ch)))
(not (and (s e r v e r s ta tu s2 smac)
(sends s ta tu s2 smac l e t t e r s t2 ch))) (not (and
(s e r v e r s ta tu s2 smac) (sends s ta tu s2 smac l e t t e r s 1 t2 ch)))))

35 ; no s ta tu s2 . c l i e n t 1 . (s t a tu s2 . r e c e i v e s)
(f o r a l l ((ch Channel) (cmac MAC)) (and (not (and

307

Appendix F. Multichannel Proving Using Z3 SMT Solver

(c l i e n t 1 s ta tu s2 cmac) (r e c e i v e s s t a tu s2 cmac i n d i c e s t3 ch)))
(not (and (c l i e n t 1 s ta tu s2 cmac)
(r e c e i v e s s t a tu s2 cmac i n d i c e s 1 t3 ch)))
(not (and (c l i e n t 1 s ta tu s2 cmac)
(r e c e i v e s s t a tu s2 cmac l e t t e r s t3 ch))) (not (and
(c l i e n t 1 s ta tu s2 cmac) (r e c e i v e s s t a tu s2 cmac l e t t e r s 1 t3 ch)))))

36 ; no s ta tu s2 . c l i e n t 2 . (s t a tu s2 . r e c e i v e s)
(f o r a l l ((ch Channel) (cmac MAC)) (and (not (and
(c l i e n t 2 s ta tu s2 cmac) (r e c e i v e s s t a tu s2 cmac i n d i c e s t3 ch)))
(not (and (c l i e n t 2 s ta tu s2 cmac)
(r e c e i v e s s t a tu s2 cmac i n d i c e s 1 t3 ch))) (not (and
(c l i e n t 2 s ta tu s2 cmac) (r e c e i v e s s t a tu s2 cmac l e t t e r s t3 ch)))
(not (and (c l i e n t 2 s ta tu s2 cmac)
(r e c e i v e s s t a tu s2 cmac l e t t e r s 1 t3 ch)))))

37 ; no s ta tu s2 . c l i e n t 1 . (s t a tu s2 . sends)
(f o r a l l ((ch Channel) (cmac MAC)) (and (not (and
(c l i e n t 1 s ta tu s2 cmac) (sends s ta tu s2 cmac i n d i c e s t2 ch)))
(not (and (c l i e n t 1 s ta tu s2 cmac)
(sends s ta tu s2 cmac i n d i c e s 1 t2 ch))) (not (and
(c l i e n t 1 s ta tu s2 cmac) (sends s ta tu s2 cmac l e t t e r s t2 ch)))
(not (and (c l i e n t 1 s ta tu s2 cmac)
(sends s ta tu s2 cmac l e t t e r s 1 t2 ch)))))

38 ; s t a tu s1 . c l i e n t 1 in s ta tu s1 . v i s i t o r s and s ta tu s1 . c l i e n t 2 ! in
; s t a tu s1 . v i s i t o r s and
; s t a tu s2 . c l i e n t 1 ! in s ta tu s2 . v i s i t o r s and s ta tu s2 . c l i e n t 2 in
; s t a tu s2 . v i s i t o r s and (
; (s t a tu s1 . c l i e n t 1) in s ta tu s1 . inter septMacs and (s ta tu s2 . c l i e n t 2)
; ! in s ta tu s2 . inter septMacs
; or (s t a tu s1 . c l i e n t 1) ! in s ta tu s1 . inter septMacs and
; (s t a tu s2 . c l i e n t 2) in s ta tu s2 . inter septMacs
; or (s t a tu s1 . c l i e n t 1) ! in s ta tu s1 . inter septMacs and
; (s t a tu s2 . c l i e n t 2) ! in s ta tu s2 . inter septMacs)
(f o r a l l ((cmac1 MAC) (cmac2 MAC)) (and (and (=>
(c l i e n t 1 s ta tu s1 cmac1) (v i s i t o r s s t a tu s1 cmac1))
(=> (c l i e n t 2 s ta tu s1 cmac2) (not (v i s i t o r s s t a tu s1 cmac2)))
(=> (c l i e n t 1 s ta tu s2 cmac1) (not (v i s i t o r s s t a tu s2 cmac1)))
(=>(c l i e n t 2 s ta tu s2 cmac2) (v i s i t o r s s t a tu s2 cmac2)))
(or (and (=>(c l i e n t 1 s ta tu s1 cmac1) (inter septMacs s ta tu s1 cmac1))
(=> (c l i e n t 2 s ta tu s2 cmac2)
(not (inter septMacs s ta tu s2 cmac2)))) (and (=>
(c l i e n t 1 s ta tu s1 cmac1) (not (inter septMacs s ta tu s1 cmac1)))
(=>(c l i e n t 2 s ta tu s2 cmac2) (inter septMacs s ta tu s2 cmac2)))
(and(=>(c l i e n t 1 s ta tu s1 cmac1)
(not (inter septMacs s ta tu s1 cmac1)))(=> (c l i e n t 2 s ta tu s2 cmac2)
(not (inter septMacs s ta tu s2 cmac2)))))))

39 ; Asse r t i on
(and(= i n d i c e s i n d i c e s 1)(= l e t t e r s l e t t e r s 1))
) ; ends o f =>) ; ends o f f o r a l l)))

Listing F.12: Commands

1 (check−sa t)
2 ; (get−model)
3 (e x i t)

Listing F.13: Commands

1 (check−sa t) ; (get−model) (e x i t)

308

Bibliography

[1] 24 Days of Hackage: sbv. https://ocharles.org.uk/blog/guest-posts/2013-

12-09-24-days-of-hackage-sbv.html. Accessed December 1, 2015.

[2] Emerging Challenges For Security, Privacy And Trust. In D. Gritzalis and

J. Lopez, editors, 24th IFIP TC 11 International Information Security Con-

ference, SEC 2009, Pafos, Cyprus, May 18-20, 2009. Proceedings, volume

297 of IFIP Advances in Information and Communication Technology, pages

76–86. Springer, 2009.

[3] Railway applications - communication, signalling and processing systems -

software for railway control and protection systems. Brussels, Belgium, 2011.

Standard EN 50128:2011, European Committee for Standardization.

[4] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design

and implementation of an intentional naming system. In 17th ACM Sympo-

sium on Operating Systems Principles, Charleston, SC, December 1999.

[5] A. M. Alabdali, L. Georgieva, and G. Michaelson. Modelling of Secure Data

Transmission over a Multichannel Wireless Network in Alloy. In 11th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications, TrustCom 2012, Liverpool, United Kingdom, June 25-27,

2012, pages 785–792, 2012.

[6] R. M. Amadio and D. Lugiez. On the Reachability Problem in Cryptographic

Protocols. In CONCUR 2000 - Concurrency Theory, 11th International

Conference, University Park, PA, USA, August 22-25, 2000, Proceedings,

pages 380–394, 2000.

309

BIBLIOGRAPHY

[7] H. Amjad. Combining model checking and theorem proving. Technical

report, Univercity of Cambridge, London, 2004.

[8] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A Challeng-

ing Model Transformation. In In: ACM/IEEE 10th International Confer-

ence on Model Driven Engineering Languages and Systems (MoDELS, pages

436–450. Springer, 2007.

[9] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On Challenges Of

Model Transformation From UML To Alloy. Software and Systems Mod-

eling, 9(1):69–86, Dec. 2009.

[10] F. Barbier, B. Henderson-Sellers, A. Le Parc-Lacayrelle, and J. Bruel. For-

malization of the Whole-Part relationship in the Unified Modeling Language.

Software Engineering, IEEE Transactions on, 29(5):459–470, May 2003.

[11] A. Bauer, M. Pister, and M. Tautschnig. Tool-Support For The Analysis

Of Hybrid Systems And Mmodels. In In Design, Automation and Test in

Europe (DATE, pages 924–929, 2007.

[12] P. Bendersky, J. P. Galeotti, and D. Garbervetsky. The dynalloy visualizer.

volume 139 of Electronic Proceedings in Theoretical Computer Science, pages

59–64. Open Publishing Association, Jan. 2014.

[13] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.

Refinement Types for Secure Implementations. In 21st IEEE Computer

Security Foundations Symposium (CSF-21), pages 17–32, 2008.

[14] T. Benzel. Analysis Of A Kernel Verification. In IEEE Symposium on

Security and Privacy’84, pages 125–133, 1984.

[15] J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: Memory Safety for Systems-

level Code. In CAV, 2011.

[16] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant

Synthesis for Combined Theories. In B. Cook and A. Podelski, editors, Pro-

ceedings of 8th Verification, Model Checking, and Abstract Interpretation In-

310

BIBLIOGRAPHY

ternational Conference (VMCAI 2007), volume 4349/2007 of Lecture Notes

in Computer Science, pages 78–394, Nice, France, January 2007. Springer.

[17] N. Bjørner and L. M. de Moura. Tapas: Theory Combinations and Practical

Applications. In FORMATS, pages 1–6, 2009.

[18] K. Bk. Optimized Translation of Clafer Models to Alloy. Technical report,

university of waterloo, July 2011.

[19] B. Blanchet. Security Protocol Verification: Symbolic and Computational

Models. In Principles of Security and Trust - First International Conference,

POST 2012, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,

2012, Proceedings, pages 3–29, 2012.

[20] B. M. Boreale M, editor. A framework for the analysis of security protocols.

Proceedings, volume 2421 of Lecture Notes in Computer Science. Springer,

Berlin Heidelberg New York, (2002).

[21] R. Boyatt and J. Sinclair. Investigating post-completion errors with the Al-

loy Analyzer. Technical Report CS-RR-433, University of Warwick, Coven-

try, UK, July 2007.

[22] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schulz,

and R. Sebastiani. Mathsat: Tight integration of sat and mathematical

decision procedures. J. Autom. Reason., 35(1-3):265–293, Oct. 2005.

[23] S. Brands and D. Chaum. Distance-Bounding Protocols. In EURO-

CRYPT93, Lecture Notes in Computer Science, volume 765, pages 344–359.

Springer-Verlag, 1993.

[24] C. Brock and J. W.A. Hunt. Formally Specifying And Mechanically Verifying

Programs For The Motorola Complex Arithmetic Processor DSP. In Pro-

ceedings of the 1997 International Conference on Computer Design (ICCD

’97), ICCD ’97, pages 31–36, Washington, DC, USA, 1997. IEEE Computer

Society.

311

BIBLIOGRAPHY

[25] J. Brunel, L. Rioux, S. Paul, A. Faucogney, and F. Vallée. Formal Safety and

Security Assessment of an Avionic Architecture with Alloy. In Proceedings

Third International Workshop on Engineering Safety and Security Systems,

ESSS 2014, Singapore, Singapore, 13 May 2014., pages 8–19, 2014.

[26] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill.

Symbolic Model Checking For Sequential Circuit Verification. IEEE Trans.

on CAD of Integrated Circuits and Systems, 13(4):401–424, 1994.

[27] L. Buttyn and J.-P. Hubaux. Security And Cooperation In Wireless Net-

works : Thwarting Malicious And Selfish Behavior In The Age Of Ubiqui-

tous Computing. Cambridge University Press, Cambridge, UK, New York,

2008.

[28] D. Calegari, C. Luna, N. Szasz, and A. Tasistro. A Type-Theoretic Frame-

work for Certified Model Transformations. In Formal Methods: Foundations

and Applications - 13th Brazilian Symposium on Formal Methods, SBMF

2010, Natal, Brazil, November 8-11, 2010, Revised Selected Papers, pages

112–127, 2010.

[29] R. Carbone. LTL Model-Checking for Security Protocols. PhD thesis, UNI-

VERSITY OF GENOVA, 2009.

[30] B. Christianson and J. Li. Multi-channel key Agreement Using Encrypted

Public Key Exchange. In Proceedings of the 15th international conference on

Security protocols, pages 133–138, Berlin, Heidelberg, 2007. Springer-Verlag.

[31] A. Clark and R. Poovendran. A metric for quantifying key exposure vulner-

ability in wireless sensor networks. In WCNC, pages 1–6. IEEE, 2010.

[32] E. M. Clarke. 25 Years Of Model Checking. chapter The Birth of Model

Checking, pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2008.

[33] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the

State Explosion Problem in Model Checking. In Informatics - 10 Years Back.

10 Years Ahead., pages 176–194, London, UK, UK, 2001. Springer-Verlag.

312

BIBLIOGRAPHY

[34] E. M. Clarke, A. Gupta, J. H. Kukula, and O. Strichman. SAT Based

Abstraction-Refinement Using ILP and Machine Learning Techniques. In

E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of Lecture Notes

in Computer Science, pages 265–279. Springer, 2002.

[35] T. Coe, T. Mathisen, C. Moler, and V. Pratt. Computational Aspects Of

The Pentium Affair. IEEE Comput. Sci. Eng., 2(1):18–31, Mar. 1995.

[36] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,

R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,

J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl

Proof Development System. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1986.

[37] M. Conti, N. Dragoni, and V. Lesyk. A Survey of Man In The Mid-

dle Attacks. IEEE Communications Surveys Tutorials, 18(3):2027–2051,

thirdquarter 2016.

[38] Crisys. Formal Verification - Theorem Proving.

http://crisys.cs.umn.edu/theorem-proving.html. Accessed Aug 7, 2012.

[39] S. B. L. Z. D. Marinov, S. Khurshid and M. Rinard. Optimizations for

Compiling Declarative Models into Boolean Formulas. In 8th International

Conference on Theory and Applications of Satisfiability Testing (SAT 2005),

Jun 2005.

[40] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceed-

ings of the Theory and Practice of Software, 14th International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-

Verlag.

[41] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings of

the Theory and practice of software, 14th international conference on Tools

and algorithms for the construction and analysis of systems, volume 4963 of

TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-

Verlag.

313

BIBLIOGRAPHY

[42] R. Demolombe, L. Fariñas Del Cerro, and N. Obeid. Automated Reasoning

in Metabolic Networks with Inhibition. In Proceeding of the XIIIth Inter-

national Conference on AI*IA 2013: Advances in Artificial Intelligence -

Volume 8249, pages 37–47, New York, NY, USA, 2013. Springer-Verlag New

York, Inc.

[43] G. Dennis. TSAFE: Building a trusted computing base for air traffic control

software. Masters thesis. 2003.

[44] Y. Desmedt, C. Goutier, and S. Bengio. Special Uses And Abuses Of The

Fiat-Shamir Passport Protocol. In C. Pomerance, editor, CRYPTO, volume

293 of Lecture Notes in Computer Science, pages 21–39. Springer, 1987.

[45] C. Devine. Aircrack-2.41. http://aircrack-ng.org/. Accessed June 17, 2014.

[46] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.1. RFC 4346, Internet Engineering Task Force, April 2006.

[47] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.1. RFC 4346, April 2006.

[48] W. Diffie and M. E. Hellman. New Directions In Cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[49] J. Dingel and T. Filkorn. Model Checking for Infinite State Systems Using

Data Abstraction, Assumption-Commitment Style reasoning and Theorem

Proving. In P. Wolper, editor, CAV, volume 939 of Lecture Notes in Com-

puter Science, pages 54–69. Springer, 1995.

[50] D. O. DISTRIBUTED, D. S. F. O. MATHEMATICS, and P. C. U. I.

PRAGUE. Alloy. http://d3s.mff.cuni.cz/research/seminar/download/2010-

11-10-Bures-Alloy.pdf. Accessed Apr 3, 2014.

[51] J. W. D.Kindred. Theory Generation for Security Protocols. ACM TOPLAS,

1999.

[52] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. pages

198–208, Washington, DC, USA, 1983. IEEE Computer Society.

314

BIBLIOGRAPHY

[53] B. Donovan, P. Norris, and G. Lowe. Analyzing a Library of Security Pro-

tocols using Casper and FDR. In In Workshop on Formal Methods and

Security Protocols, 1999.

[54] A. Dwivedi and S. Rath. Formalization of Web Security Patterns. INFO-

COMP Journal of Computer Science, 14(1):14–25, 2015.

[55] N. Eén and N. Sörensson. An Extensible SAT-solver. In Theory and Appli-

cations of Satisfiability Testing, 6th International Conference, SAT 2003.

Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers,

pages 502–518, 2003.

[56] A. A. El Ghazi and M. Taghdiri. Analyzing Alloy Constraints using an SMT

Solver: A Case Study. In 5th International Workshop on Automated Formal

Methods (AFM), Edinburgh, United Kingdom, 2010.

[57] J.-C. Fillitre, H. Herbelin, B. Barras, B. Barras, S. Boutin, E. Gimnez,

S. Boutin, G. Huet, C. Muoz, C. Cornes, C. Cornes, J. Courant, J. Courant,

C. Murthy, C. Murthy, C. Parent, C. Parent, C. Paulin-mohring, C. Paulin-

mohring, A. Saibi, A. Saibi, B. Werner, and B. Werner. The Coq Proof

Assistant - Reference Manual Version 6.1. Technical report, 1997.

[58] F.Wong and F.Stajano. Multi-Channel Protocols: Strong Authentication

Using Camera-Equipped Wireless Devices. Security Protocols 13, LNCS,

4631:112–132, 2007.

[59] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. MANY-

DIMENSIONAL MODAL LOGICS: THEORY AND APPLICATIONS. Un-

published book January 2003, Department of Computer Science, King’s Col-

lege, 2003.

[60] U. Geilman. Verifying Alloy Models Using Key. PhD thesis, Institute of

Informatics, Instatute for Theoretical Computer Science, 2011.

[61] G. Georg, J. Bieman, and R. B. France. Using Alloy And UML/OCL to

Specify Run-Time Configuration Management: A Case Study. In A. Evans,

315

BIBLIOGRAPHY

R. B. France, A. M. D. Moreira, and B. Rumpe, editors, pUML, volume 7

of LNI, pages 128–141. GI, 2001.

[62] A. A. E. Ghazi. Relational Reasoning Constraint Solving, Deduction, and

Program Verification. PhD thesis, von der Fakultat fur Informatik des Karl-

sruher Instituts fur Technologie (KIT), 2015.

[63] A. A. E. Ghazi, U. Geilmann, M. Ulbrich, and M. Taghdiri. A Dual-Engine

for Early Analysis of Critical Systems. CoRR, abs/1408.0707, 2014.

[64] A. A. E. Ghazi and M. Taghdiri. Relational reasoning via smt solving. In

M. Butler and W. Schulte, editors, FM, volume 6664 of Lecture Notes in

Computer Science, pages 133–148. Springer, 2011.

[65] E. Goldberg and Y. Novikov. BerkMin: A fast and robust Sat-solver. Dis-

crete Applied Mathematics, 155(12):1549–1561, 2007.

[66] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A The-

orem proving Environment for Higher Order Logic. Cambridge University

Press, 1993.

[67] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In

CAV’97, volume 1254 of LNCS, pages 72–83, 1997.

[68] K. Grover, A. Lim, and Q. Yang. Jamming and Anti-jamming Techniques

in Wireless Networks: A Survey. Int. J. Ad Hoc Ubiquitous Comput.,

17(4):197–215, Dec. 2014.

[69] O. Hak5Darren. Hacking Wireless Networks With Man In The Middle At-

tacks . http://www.youtube.com/watch?v=N86xJpna9Js, 2008. Accessed

Jul 19, 2011.

[70] C. He. Analysis Of Security Protocols For Wireless Networks. PhD the-

sis, Electrical Engineering And The Committee On Graduate Studies Of

Stanford University, 2005.

316

BIBLIOGRAPHY

[71] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying Formal

Methods To A Certifiably Secure Software System. IEEE Transactions on

Software Engineering, 34:82–98, 2008.

[72] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick,

M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen, A. J. H. Si-

mons, S. Vilkomir, M. R. Woodward, and H. Zedan. ”Using Formal Spec-

ifications to Support Testing”. ACM Computing Surveys, 41(2):1–76, Feb.

2009.

[73] J. Holmström, J. Rajamäki, and T. Hult. DSiP Distributed Systems Inter-

communication Protocol: A Traffic Engineering Solution For Secure Multi-

channel Communication. In Proceedings of the 10th WSEAS international

conference on communications, electrical & computer engineering, and

9th WSEAS international conference on Applied electromagnetics, wireless

and optical communications, ACELAE’11, pages 57–60, Stevens Point, Wis-

consin, USA, 2011. World Scientific and Engineering Academy and Society

(WSEAS).

[74] G. J. Holzmann. Trends In Software Verification. In In: Proceedings of the

Formal Methods Europe Conference, 2003.

[75] G. J. Holzmann. The SPIN Model Checker - Primer and Reference Manual.

Addison-Wesley, 2004.

[76] H. Hu. Assurance Management Framework for Access Control Systems. PhD

thesis, ARIZONA STATE UNIVERSITY, 2012.

[77] D. Jackson. Automating First-order Relational Logic. In Proceedings of

the 8th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering: Twenty-first Century Applications, SIGSOFT ’00/FSE-8,

pages 130–139, New York, NY, USA, 2000. ACM.

[78] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Trans.

Softw. Eng. Methodol., 11(2):256–290, Apr. 2002.

317

BIBLIOGRAPHY

[79] D. Jackson. Micromodels Of Software: Lightweight Modelling And Anal-

ysis With Alloy. Technical report, Software Design Group. MIT Lab for

Computer Science, 2002.

[80] D. Jackson. Alloy 3.0 Reference Manual. Technical report, 2004. Available

at http://homepage.divms.uiowa.edu/~pgaroche/181/Papers/Jack04.

pdf.

[81] D. Jackson. Software Abstractions: Logic, Language, And Analysis. The

MIT Press, 2006.

[82] D. Jackson. The Alloy Analyzer Layout .

http://alloy.mit.edu/alloy/documentation/quickguide/gui.html, 2012.

Accessed Apr 17, 2015.

[83] D. Jackson. Alloy: Language and Tool for Relational Models.

http://alloy.mit.edu/alloy/faq.html, 2012. Accessed January 17, 2014.

[84] D. Jackson and C. Damon. Semi-executable Specifications. Technical re-

port cmucs-95-216, school of computer science, carnegie mellon university,

pittsburgh, pa,, November 1995.

[85] D. Jackson and M. Jackson. Separating Concerns in Requirements Analy-

sis: An Example, chapter Rigorous development of complex fault tolerant

systems. In RODIN Book, pages 210–225. Springer, 2006.

[86] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy constraint an-

alyzer. In Software Engineering, 2000. Proceedings of the 2000 International

Conference on, pages 730–733, 2000.

[87] A. Joshi, S. P. Miller, and M. P. E. Heimdahl. Mode Confusion Analysis

Of A Flight Guidance System Using Formal Methods. In Proceedings of

the 22nd Digital Avionics Systems Conference, volume 1, page 2D.12112,

Piscataway, Oct. 2003. IEEE.

[88] E. M. C. Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT

Press, 1999.

318

http://homepage.divms.uiowa.edu/~pgaroche/181/Papers/Jack04.pdf
http://homepage.divms.uiowa.edu/~pgaroche/181/Papers/Jack04.pdf

BIBLIOGRAPHY

[89] V. L. Juncheng Wu, Gang Liu. Formal Verification.

http://people.cis.ksu.edu/h̃ankley/d841/Fa99/chap4.html. Accessed

Nov 15, 2015.

[90] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-aided reasoning :

an approach. Advances in formal methods. Kluwer Academic Publishers,

Boston, 2000.

[91] M. J. Kaufmann, M. Some Key Research Problems In Automated Theo-

rem Proving For Hardware And Software Verification. In: Spanish Royal

Academy of Science (RAMSAC), 98:181–196, 2004.

[92] S. A. Khalek and S. Khurshid. Systematic Testing Of Database Engines

Using A Relational Constraint Solver. In ICST, pages 50–59, 2011.

[93] I.-G. Kim and J.-Y. Choi. Formal Verification Of PAP And EAP-MD5

Protocols In Wireless Networks: FDR Model Checking. In 18th International

Conference on Advanced Information Networking and Applications (AINA

2004), 29-31 March 2004, Fukuoka, Japan, pages 264–269. IEEE Computer

Society, 2004.

[94] M. Kumar and S. Goel. Specifying safety and critical real-time systems in z.

In Computer and Communication Technology (ICCCT), 2010 International

Conference on, pages 596–602, Sept 2010.

[95] R. P. Kurshan and L. Lamport. Verification of a Multiplier: 64 Bits and

Beyond. In C. Courcoubetis, editor, Computer Aided Verification: Proc. of

the 5th International Conference CAV’93, pages 166–179. Springer, Berlin,

Heidelberg, 1993.

[96] S. Kyungah. Cryptanalysis Of Mutual Authentication And Key Exchange

For Low Power Wireless Communications[J]. IEEE Communications Letters,

7(5):248–250, 2003.

[97] S. Lal, M. Jain, and V. Chaplot. Approaches to Formal Verification of

Security Protocols. CoRR, abs/1101.1815, 2011.

319

BIBLIOGRAPHY

[98] L. Lensink. Applying Formal Methods in Software Development. PhD thesis,

radboud university nijmegen, 2013.

[99] F. Lerda. LTL Model Checking [PowerPoint slides].

https://www.cs.cmu.edu/ẽmc/15817-s05/ltlmc.ppt. Accessed May 17,

2015.

[100] J. Li, B. Christianson, and M. Loomes. Fair Authentication In Pervasive

Computing. In M. Burmester and A. Yasinsac, editors, Secure Mobile Ad-

hoc Networks and Sensors, First International Workshop, MADNES 2005,

Singapore, September 20-22, 2005, Revised Selected Papers, volume 4074 of

Lecture Notes in Computer Science, pages 132–143. Springer, 2005.

[101] A. Lin, M. Bond, and J. Clulow. Modeling Partial Attacks with ALLOY. In

Proceedings of the 15th international conference on Security protocols, pages

20–33, Berlin, Heidelberg, 2010. Springer-Verlag.

[102] L. Lockefeer. Formal specification and verification of TCP extended with the

Window Scale Option. PhD thesis, Vrije Universiteit Amsterdam, 2013.

[103] G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key Protocol

using FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithms

for the Construction and Analysis of Systems, volume 1055 of Lecture Notes

in Computer Science, pages 147–166. Springer Berlin / Heidelberg, 1996.

10.1007/3-540-61042-143.

[104] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using

FDR. Proc. 2nd Int’l Workshop on Tools and Algorithms for Construction and

Analysis of Systems (TACA 96), page 147166., 1996.

[105] A. D. Lucia, F. Ferrucci, G. Tortora, and M. Tucci. Emerging Methods, Technolo-

gies and Process Management in Software Engineering. Wiley-IEEE Computer

Society Pr, 2008.

[106] W. Marrero, E. Clarke, and S. Jha. A Model Checker For Authentication Proto-

cols. In Rutgers University, pages 134–141, 1997.

320

BIBLIOGRAPHY

[107] W. Marrero, E. Clarke, and S. Jha. Model Checking For Security Protocols.

Technical report, CARNEGIE MELLON UNIVERSITY, 1997.

[108] J. Mclean. Security Models. In Encyclopedia of Software Engineering, pages 1136–

1145. Wiley Sons, 1994.

[109] C. Meadows. Formal methods for cryptographic protocol analysis: emerging issues

and trends. IEEE Journal on Selected Areas in Communications, 21(1):44–54,

2003.

[110] S. V. Millen JK. Constraint solving for bounded-process cryptographic protocol

analysis. In In: Proceedings of CCS01, page 166175. ACM Press, 2001.

[111] D. L. Mitchell, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov.

Undecidability of Bounded Security Protocols. 1999.

[112] S. U. Mitchell JC, Mitchell M. Symbolic protocol analysis with products and

Diffie-Hellman exponentiation. In In: Proceedings of CSFW03, page 4761. IEEE

Press, 2003.

[113] L. Momtahan. Towards a small model theorem for data independent systems in

alloy. Electronic Notes in Theoretical Computer Science, 128(6):37 – 52, 2005.

Proceedings of the Fouth International Workshop on Automated Verification of

Critical Systems (AVoCS 2004)Automated Verification of Critical Systems 2004.

[114] MontyNewborn. Automated Theorem Proving: Theory and Practice. Springer-

Verlag, 2000.

[115] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an Efficient SAT Solver. In Proceedings of the 38th Annual Design

Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001.

ACM.

[116] F. Mostefaoui and J. Vachon. Verification Of Aspect-UML Models Using Alloy.

In Proceedings of the 10th international workshop on Aspect-oriented modeling,

AOM ’07, pages 41–48, New York, NY, USA, 2007. ACM.

321

BIBLIOGRAPHY

[117] C. Nachreiner. Foundations: What Are NIC, MAC and ARP? .

http://www.watchguard.com/infocenter/editorial/135250.asp. Accessed Aug 5,

2012.

[118] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in

Large Networks of Computers. Commun. ACM, 21(12):993–999, Dec. 1978.

[119] D. P. Nigam and A. Ojha. An Aspect Oriented Model Mf Efficient And Secure

Card-Based Payment System. In S. K. Jena, R. Kumar, A. K. Turuk, and M. Dash,

editors, ICCCS, pages 559–564. ACM, 2011.

[120] Owasp. Man-In-The-Middle Attack . http://www.owasp.org/index.php/Man-in-

the-middle attack, 2009. Accessed Mar 23, 2011.

[121] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS: Combining

Specification, Proof Checking, and Model Checking. pages 411–414. Springer-

Verlag, 1996.

[122] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS: Combining

Specification, Proof Checking, and Model Checking. pages 411–414. Springer-

Verlag, 1996.

[123] G. K. Palshikar. An Introduction To model Checking, 2004.

http://webdocs.cs.ualberta.ca/p̃aullu/C605/EMS-2004-02-12.pdf.

[124] A.-S. K. Pathan, T. T. Dai, and C. S. Hong. An Efficient LU Decomposition-

Based Key Pre-Distribution Scheme For Ensuring Security In Wireless Sensor

Networks. In Proceedings of the Sixth IEEE International Conference on Computer

and Information Technology, CIT ’06, page 227, Washington, DC, USA, 2006.

IEEE Computer Society.

[125] S. K. Paul S Grisham, Charles L. Chen and D. E. Perry. Validation of a Security

Model with the Alloy Analyzer. 2007.

[126] L. C. Paulson. Inductive analysis of the internet protocol tls.

[127] L. C. Paulson. The Foundation of a Generic Theorem Prover. J. Autom. Reason-

ing, 5(3):363–397, 1989.

322

BIBLIOGRAPHY

[128] L. C. Paulson. The Inductive Approach To Verifying Cryptographic Protocols.

Journal of Computer Security, 6:85–128, 1998.

[129] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: Security

Protocols for Sensor Networks. Wirel. Netw., 8(5):521–534, Sept. 2002.

[130] A. Pnueli. The Temporal Logic Of Programs. In Proceedings of the 18th An-

nual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57,

Washington, DC, USA, 1977. IEEE Computer Society.

[131] R. Podorozhny, S. Khurshid, D. Perry, and X. Zhang. Verification of Multi-agent

Negotiations Using the Alloy Analyzer. In Proceedings of the 6th International

Conference on Integrated Formal Methods, IFM’07, pages 501–517, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[132] Policy. Information Security Policy. http://policy.nd.edu/policy files/ Informa-

tionSecurity Policy.pdf, 2009. Accessed March 1, 2012.

[133] Policy. Man-In-The-Middle Attack (MITM). http://policy.nd.edu/policy files/

InformationSecurity Policy.pdf, 2009. Accessed July 12, 2011.

[134] J. Qadir and O. Hasan. Applying Formal Methods to Networking: Theory, Tech-

niques and Applications. CoRR, abs/1311.4303, 2013.

[135] D. R. Quinta. Application of Formal Methods in The ITASAT project. PhD thesis,

Informatic, 2013.

[136] S. M. M. Rahman, N. Nasser, A. Inomata, T. Okamoto, M. Mambo, and

E. Okamoto. Anonymous authentication and secure communication protocol for

wireless mobile ad hoc networks. Security and Communication Networks, 1(2):179–

189, 2008.

[137] S. Rajan, N. Shankar, and M. Srivas. An Integration of Model-Checking with

Automated Proof Checking. In P. Wolper, editor, Computer-Aided Verification,

CAV ’95, volume 939 of Lecture Notes in Computer Science, pages 84–97, Liege,

Belgium, June 1995. Springer-Verlag.

323

BIBLIOGRAPHY

[138] Ranise And Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-

LIB). www.SMT-LIB.org, 2006.

[139] S. Ray. Scalable Techniques for Formal Verification. Springer, Dordrecht, 2010.

[140] M. Reynolds. Lightweight modeling of java virtual machine security constraints.

In Abstract State Machines, Alloy, B and Z, volume 5977 of Lecture Notes in

Computer Science,, page 146159. Springer Berlin Heidelberg,, 2010.

[141] A. Richard, J.-P. Comet, and G. Bernot. Modern Formal Methods and Applica-

tions, pages 83–122. Springer, ISBN: 1-4020-4222-1, 2006.

[142] E. Romanowicz. Verification Of Programs With

Z3, Open Access Dissertations And Theses. Avail-

able:http://digitalcommons.mcmaster.ca/opendissertations/4339, 2010. Accessed

Jul 5, 2012.

[143] J. Rushby. Formal Specification and Verification for Critical Systems: Tools,

Achievements, and Prospects . IEEE Transactions on Software Engineering,

21(2):107–125, 1995.

[144] G. M. L. G. R. B. Ryan P, Schneider S. Modelling and analysis of security protocols.

Pearson Education Ltd, 2000.

[145] G. A. U. A. R. B. C. B. P. A. B. F. B. W. D. N. E. N. E. F. T. G. N. H. J. M. M. M.

A. M. S. C. M. H. J. O. S. S. M. S. K. U. S. U. S. S. Abdennadher, J. Alves Alferes

and G. Wagner. Automated Reasoning on the Web. Communications of Applied

Logic, 9, 2004.

[146] H. Säıdi. Model Checking Guided Abstraction and Analysis. In Proceedings of the

7th International Symposium on Static Analysis, SAS ’00, pages 377–396, London,

UK, UK, 2000. Springer-Verlag.

[147] J. L. M. Silva. GRASP - A New Search Algorithm For Satisfiability. In in Proceed-

ings of the International Conference on Computer-Aided Design, pages 220–227,

1996.

324

BIBLIOGRAPHY

[148] P. A. Song D, Berezin S. Athena: a novel approach to efficient automatic security

protocol analysis. 9:4774, 2001.

[149] F. Stajano, F.-L. Wong, and B. Christianson. Multichannel Protocols To Prevent

Relay Attacks. In Proceedings of the 14th international conference on Financial

Cryptography and Data Security, FC’10, pages 4–19, Berlin, Heidelberg, 2010.

Springer-Verlag.

[150] M. Taghdiri and D. Jackson. A Lightweight Formal Analysis Of A Multicast

Key Management Scheme. In H. Knig, M. Heiner, and A. Wolisz, editors, Formal

Techniques for Networked and Distributed Systems - FORTE 2003, 23rd IFIP WG

6.1 International Conference, Berlin, Germany, September 29 - October 2, 2003,

Proceedings, volume 2767 of Lecture Notes in Computer Science, pages 240–256.

Springer, 2003.

[151] M. Tanaka. ”Using Formal Specifications to Support Testing”. Verifying Security

Protocols Using Theorem Provers, pages 79–86, 2007.

[152] M. Toahchoodee and I. Ray. Using alloy to analyse a spatio-temporal access control

model supporting delegation. Information Security, 3(3):75–113, Sept. 2009.

[153] S. Vakilinia, M. H. Alvandi, M. R. K. Shoja, and I. Vakilinia. Multi-path multi-

channel protocol design for secure qos-aware VOIP in wireless ad-hoc networks.

In WMNC, pages 1–6, 2013.

[154] H. C. A. van Tilborg and S. Jajodia, editors. Encyclopedia Of Cryptography And

Security, 2nd Ed. Springer, 2011.

[155] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura. Efficiently Solving Quan-

tified Bit-Vector Formulas. In Proceedings of 10th International Conference on

Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland,

October 20-23, pages 239–246, 2010.

[156] F. L. Wong. Protocols And Technologies For Security In Pervasive Computing And

Communications. Technical Report UCAM-CL-TR-709, University of Cambridge,

Computer Laboratory, Jan. 2008.

325

BIBLIOGRAPHY

[157] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu. A New Multi-Channel MAC

Protocol With On-Demand Channel Assignment For Multi-Hop Mobile Ad Hoc

Networks. In Proceedings of the 2000 International Symposium on Parallel Archi-

tectures, Algorithms and Networks, ISPAN ’00, pages 232–237, Washington, DC,

USA, 2000. IEEE Computer Society.

[158] T. Ye, D. Veitch, and J. C. Bolot. Improving wireless security through network

diversity. Computer Communication Review, 39(1), January 2009.

[159] C. H. Z. Htike. Cognitive Radio Based Jamming Resilient Multi-channel MAC

Protocol For Wireless Network. Technical report, 2009.

[160] Y. Zhao, Z. Yang, J. Xie, and Q. Liu. Formal Model and Analysis of Sliding

Window Protocol Based on NuSMV. JCP, 4(6):519–526, 2009.

326

	
	
	
	
	
	
	
	
	Introduction
	Motivation
	
	
	
	
	
	
	
	
	
	

	Aims And Objectives
	

	Thesis Structure
	
	
	
	
	
	
	
	
	
	

	Contributions
	

	General Background and Related Work for Security Protocol in Multichannel Wireless and Formal Methods
	Context
	
	

	Wireless Protocol
	
	
	
	
	
	

	Security Protocols
	
	

	Multichannel Protocols
	
	
	

	Background in Security Protocols to Transmit Data Securely Over Multichannel Wireless Networks
	Introduction
	
	
	

	Security Protocols for Data Transmission Over Multichannel Wireless Networks
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Specification and Verification
	
	

	Formal Methods
	
	
	
	

	Formal Specification
	

	Formal Verification
	
	
	

	Distinction Between Formal Specification and Formal Verification
	
	
	
	

	Formal Verifications Techniques
	
	

	Motivation for Using Formal Verification Techniques
	
	
	
	
	

	Model Checking of Protocols
	
	
	
	
	
	
	
	

	Model Checking Using Spin
	
	

	Model Checking Using Linear Temporal Logic (LTL)
	
	
	

	Model Checking Using Alloy
	
	
	

	Alloy and Security
	

	Alloy and Security Definitions
	
	
	
	
	
	
	
	
	

	The Importance of Alloy for Detecting Flaws Using Small Scope
	

	Further Alloy Applications
	
	
	
	
	
	

	Theorem Proving for Proving System Satisfiability
	Introduction
	
	
	
	
	
	

	Difficulties and Advantages of Using Theorem Proving
	
	
	
	
	

	Theorem Proving and Security
	

	Theorem Proving Using Isabelle and Coq
	
	
	

	Theorem Proving using Z3
	
	

	Security Protocols using Z3
	
	

	Existing Approaches Combining Model Checking and Theorem Proving
	
	
	
	
	
	
	
	
	
	
	

	Discussion
	
	
	
	
	
	
	
	
	
	
	

	Foundations: Alloy
	
	Alloy Definition and Process
	
	
	

	Alloy Analyser
	
	
	
	
	
	
	

	Motivation of Using Alloy
	
	
	

	Alloy Problem
	
	Type Declarations and Relation Declarations
	
	
	
	
	
	
	
	
	
	
	

	Signature Extension, Inclusion, and Abstraction
	
	
	
	

	Multiplicity
	

	General Example to Apply Type Declarations, Relation Declarations, Signature Extension, Inclusion, Abstraction, and Multiplicity
	
	
	
	
	

	Fact, Predicate, and Assertion
	
	
	
	

	Expressions
	
	

	Formulas
	
	
	
	
	
	

	Counterexample, Scopes and Inconsistency
	
	
	
	

	Instances
	

	An Automated Teller Machine (ATM) Example
	
	ATM System Description
	
	
	
	

	ATM System Analysis
	
	
	
	
	
	

	ATM Model Properties and Requirements
	
	
	

	An Alloy Specification of An ATM System
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Results
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Foundations: Z3 SMT Solver
	
	
	

	SMT Solver
	
	Z3
	
	
	
	
	

	The SMT Language
	
	Declarations
	
	
	

	Assertions and Quantifiers
	
	

	An Automated Teller Machine (ATM) Example in Z3
	
	Type and Subtype Declarations
	
	
	

	Properties Of The Sub-signatures
	
	

	Abstraction
	
	

	Extension
	
	

	Facts
	
	
	

	Relations Declaration
	
	
	
	
	
	
	
	
	
	

	Predicates
	
	
	
	
	
	
	

	Assertion
	
	

	Results
	
	
	
	

	Comparison Between SAT and SMT results, and SAT and SMT Tools
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Problem Specification and Case Study, and Multichannel Security Protocol Modelling and Analysis
	
	

	Proposed Solution for The Case Study
	
	
	
	
	
	
	
	
	
	
	
	
	

	Example in Both Single Channel and Multichannel
	
	Single Channel
	

	Multichannel
	
	
	
	
	
	
	
	

	Conclusion
	

	 Multichannel Security Protocol Modelling Using Alloy
	Overall Framework
	
	
	

	Approach
	

	Motivation
	

	Protocol of Transmitting Data Over Single Channel Case Study
	
	First Protocol: Describing Data Transmitting Over Single Channel WLANs in Secure / Insecure Scope Model
	
	

	Protocol Model Properties and Requirements
	
	
	

	An Alloy Specification of the First Protocol
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Results
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Protocol of Transmitting Data Over Multichannel Case Study
	Second Protocol: Describing Data Transmitting Securely Over Multichannel WLANs in The presence of MitM
	
	Protocol Model Properties and Requirements
	
	

	Model Structure Description
	
	
	

	Modelling and Checking The Protocol Using Alloy
	
	
	
	
	
	
	
	
	
	
	
	

	Results
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Multichannel Security Protocol Proving Using Z3
	Introduction
	
	First Protocol: Transmitting Data Over Single Channel
	Type and Subtype Declarations
	
	
	

	Properties Of The Sub-signatures
	
	

	Abstraction and Extension
	

	Facts
	
	
	
	

	Relation Declarations
	
	
	
	
	
	
	
	
	
	
	
	

	Predicates
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Assertion
	

	Second Protocol: Transmitting Data Over Multichannel
	Type and Subtype Declarations
	
	
	

	Properties Of The Sub-signatures
	
	

	Abstraction
	

	Extension
	

	Facts
	
	
	
	
	
	
	
	
	
	
	
	
	

	Relation Declarations
	
	
	
	
	
	
	
	
	
	

	Predicates
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Assertion
	

	Results
	
	
	

	Discussion
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Systematic Translation Rules: A First Step Towards An Automated Translator
	Introduction
	
	
	

	The Alloy Syntax
	
	
	

	Z3 SMT solver
	
	

	Tool Integration and Methodology
	
	
	
	

	Constructing Alloy Models
	

	Constructing Z3 Models
	

	Systematic Translation Rules
	Type Declarations
	
	Signature Identifier
	

	Abstraction
	

	Subtype/Extension
	
	
	

	Relation Declarations
	Relation
	
	

	Multiplicity
	
	
	
	
	
	
	

	Facts and Assertions
	

	Expression:
	Cartesian Product
	

	Relational Join
	

	Formulas
	
	Subset
	

	Negation
	

	Conjunction
	

	Disjunction
	

	All
	

	The general form for translation
	

	Conclusion and Future Work
	Conclusion
	
	
	
	
	
	
	
	
	
	
	
	
	

	Future Work
	
	
	
	
	
	
	
	

	Appendix ATM Model Using Alloy
	Appendix ATM Proving Using Z3 Theorem Prover
	Appendix Transmitting Data Over Single Channel Model Using Alloy (Second Protocol) in Secure/ Insecure Scope
	Appendix Single Channel Proving Using Z3 Theorem Prover
	Appendix Transmitting Data Over Multichannel Model Using Alloy
	Appendix Multichannel Proving Using Z3 SMT Solver
	Appendix Bibliography

