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Abstract 
 

According to quantum field theory an oscillation of boundary conditions in the vacuum 
can generate real photon pairs, which pop into existence from the zero-point energy.  This 
surprising effect is known as the dynamical Casimir effect (DCE). In this thesis, we focus 
our attention on using the DCE as a route to experimentally study the quantum vacuum.  

Initially we explore experimental approaches that rely on an oscillation of vacuum 
boundary conditions. These require a direct temporal modulation of the boundary 
condition, which we achieve by temporally modulating the refractive index through the 
second order nonlinearity of the medium. We show that the key condition for this 
approach is that the medium is subwavelength in thickness. This leads to a temporal 
modulation of the refractive index. We use a mechanically exfoliated MoS2 monolayer. 
We present a detailed study of the second order nonlinearity of 2D (mono-atomic layer) 
dichalcogenide MoS2, and test its potential for spontaneous parametric down-conversion 
(SPDC) i.e. amplification of vacuum fluctuations mediated by optical nonlinearity. We 
present a model of SPDC in MoS2 monolayers and show that our data are compatible with 
theoretical estimates. We show exciting indications that SPDC may be possible in this 
material by performing polarization and lifetime measurements. We also discuss and 
characterise a new photo-luminescence emission around 1500 nm which is enhanced at 
the edges of multi-layer MoS2. 

In chapter three we present experimental approaches using spatially modulated third order 
nonlinear media along the propagation axis. We show that under certain conditions the 
spatial modulation of the boundary conditions along the nonliner media can be considered 
as a temporal modulation. Modulated waveguides provide an intensity variation of the 
pulse along the waveguide. Two different materials are used as substrate material for the 
waveguides; gallium lanthanum sulphide (GLS), which has a high third order nonlinear 
susceptibility and fused silica. We present numerical simulation results for photon 
generation from the modulated waveguides in GLS sample. We also characterise the 
nonlinear response and effects of the waveguides. In both substrates, we show that the 
lack of nonlinearity and different sources of losses prevents the creation of photon pairs.  

Finally, we present an experimental method in which the group velocity dispersion 
(GVD) is modulated along a photonic crystal fiber. Measurements of the temporal 
correlations between the newly generated frequencies is presented with a coincident to 
accidental ratio (CAR) of 7.5: yielding proof of a quantum correlation between the 
generated photon pairs.
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1 Introduction 

1.1 Quantum fluctuation and dynamical Casimir effect 

Quantum field theory has profoundly changed our conception of empty space. Indeed, 

even by removing all the particles from a material enclosure and cooling its temperature 

down to absolute zero, thus eliminating thermal radiation, there is still within the 

enclosure irreducible quantum fluctuations of the electric field. These fluctuations, also 

called vacuum fluctuations or zero-point energy, correspond to an average energy of 

1
2 ω , where ω is the field frequency [1]. One of the amazing aspects of quantum field 

theory is that it predicts the possibility of generating real photon pairs from the vacuum 

state. Quantum vacuum fluctuations inherently lead to the generation of particles, which 

spontaneously pop into existence, if only for a very short period of time. The underlying 

phenomena behind some of the most exciting and fundamental theories about the physics 

of our Universe, such as Casimir force, Unruh effect, Hawking radiation and dynamical 

Casimir Effect (DCE), rely on these fluctuations [1]–[5].  In this thesis, we will focus our 

attention on DCE as a route to experimentally exploring the quantum vacuum. 

In contrast to effects like the Casimir force, which are based on a static quantum vacuum 

and have already been verified experimentally, other effects such as the DCE, which are 

time dependent quantum vacuum effects, have not yet been observed in their pure form.  

The reason for this is due to the extreme experimental conditions required for these effects 

to become measurable. For instance, to observe the DCE one needs to oscillate the 

boundary conditions of the electromagnetic field extremely fast, with frequencies equal 

to that of light [6].  

The DCE is often confused with the static Casimir effect, whose measurable quantity is 

the Casimir force. The Casimir force describes the attraction force felt between two 

parallel plates at rest in the vacuum, this force occurs because of the effective pressure of 

the quantum vacuum on the plates [1]. However, the DCE is a completely different effect. 

The DCE can be described by considering the two mirrors of a laser cavity. When one 
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considers a laser cavity there are certain allowed wavelengths (or modes) that can be 

supported by the cavity, which are dependent on the distance between the two mirrors. 

Since these modes depend on the length of the cavity, the frequency of the supported 

modes will change if one changes the distance between the mirrors. However, if we make 

this change to the cavity rapidly, for instance on a time scale comparable to the inverse 

of the frequency of the propagating light field, the effect becomes very different because 

the field can't keep up with such a fast-moving oscillation. According to quantum field 

theory the result of this non-adiabatic change to the cavity length is that photons will be 

spontaneously produced from the vacuum. 

In fact, if we were to set up a cavity whose length was very rapidly oscillating we would 

expect a change in the vacuum density between the cavity mirrors. However, the radiation 

force due to vacuum fluctuations tends to oppose any movement of the mirrors [7]. The 

mirror therefore undergoes an average force opposing its movement [8]. By conserving 

energy, the mirror must spontaneously emit photon pairs. This radiation shows the 

reciprocal influence between the vacuum fluctuation and the mechanical movement of 

the cavity. 

Directly studying photon production from an oscillating mirror requires extreme 

experimental conditions, therefore researchers have proposed analogue systems to verify 

this effect. The main task to study the photon generation as a consequence of the DCE is 

to oscillate the boundary conditions of the electromagnetic field. This only takes place 

when the acceleration depends on time (as for example in the case of a harmonic 

oscillation of the mirror). This is the most important criteria for the DCE and we will 

consider analogues of this effect. In this thesis, we focus our interest on optical analogues 

of DCE. 

1.2 Dynamical Casimir effect in literature  

The DCE was initially studied in 1970. In this seminal work Moore studied the photon 

generation at zero-point field energy from the moving mirror in one dimensional 

system [5]. The effect of photon generation from the vacuum state due to the oscillation 

of the environment geometry, was first presented in the context of the DCE by 

Yablonovitch and Schwinger [9], [10]. Following this, the connection between the zero-

point energy and boundary motion was presented as the “nonstationary Casimir effect” 

in [11], [12]. Barton et.al [13] and Lambrecht et.al [14] proposed “mirror-induced 
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radiation” and “motion-induced radiation”. Later “quantum time-dependant oscillators” 

and “parametric dynamical Cassimir effect” were proposed, where the photon pairs were 

created from parametric oscillation of vacuum fluctuation in a media rather than by 

physical movement or oscillating boundaries [15], [16]. However, these proposals proved 

experimentally out of reach. 

In 2011 the possibility of the DCE photon production from the vacuum state by providing 

an efficient modulation of the effective optical length of a cavity mode in the near-infrared 

spectral region [17]. In this proposal authors consider the optical cavity resides within a 

photonic nanowire or waveguide and is externally excited by a periodic laser pulse train 

that modulates the cavity optical length through the nonlinear Kerr effect.  

Considering the difficulties in the generation of photon pairs from mechanical oscillation, 

proposals mimicking the oscillation of the boundary conditions has attracted great interest 

among researchers. In 1988, Yablonovitch presented the first experimental proposal to 

use a medium with fast change in refractive index [9]. He also proposed that rapid changes 

of the dielectric properties of a semiconductor can be induced by sub-picosecond laser 

pulses. Ideas based on rapid change of the refractive index of semiconductors induced by 

pulsed laser beam and similar variations upon this scheme were developed in [18]–[20]. 

The concept behind this experimental proposal is to imitate an oscillating mirror with a 

“plasma mirror” formed by electron-hole pairs. This occurs in a thin semiconducting film 

when pumped with a pulsed laser beam. In this case, a layer with higher conducting 

properties will be periodically created in front of the semiconductor film. This happens if 

the carrier recombination time of the material is less than the time gap between laser 

pulses [21].  

There has also been a similar proposal, in which superconducting layers are illuminated 

by intense laser pulses. However, the response of the superconductor to the laser pulse 

leads to the softening of the surface. Under these conditions the dielectric properties of 

the material will change as the result of local surface heating, which leads to the transition 

from the superconducting to normal conducting phase. Tsindlekht et.al reported the 

modulation of the frequency of a superconducting microwave resonator induced by laser 

excitation [22].  

The idea of using the Josephson junctions with time-dependent parameters such as 

capacitance, inductance etc., were proposed in literature [23]–[26]. Eventually, 
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Wilson et.al presented the observation of DCE in a superconducting circuit [27]. In this 

experiment, they modulate the inductance of the superconducting quantum interference 

device at frequency higher than 10 GHz. 

1.3 Nonlinear optical analogues of dynamical Casimir Effect  

From the mathematical point of view, temporal modulation of any parameter in the wave 

equation leads to the modulation of electromagnetic field. In other words, the temporal 

modulation of any parameter in the wave equation is equivalent to the oscillation of the 

boundary conditions of electromagnetic field, which is indeed an analogue of DCE. 

In this thesis, we consider three optical experiments for the verification of the DCE. In all 

these approaches, we imitate the mechanical boundary oscillation by the oscillation of the 

optical parameters, which correspond to nonlinear optical processes such as spontaneous 

parametric down conversion, intensity modulation of electromagnetic field and 

spontaneous four wave mixing. 

1.3.1 Nonlinear wave equation 

It is well known that electromagnetic waves are composed of an electric field and a 

transverse polarization magnetic field. When optical probes are used for the study of 

materials, a polarisation is therefore induced in the latter. 

In linear optics, the induced dipole moment p (physical unit: C.m) can be modelled by an 

equation taking into account only the action of the electric field E (physical 

unit: V/m) [28]:  

 0p αEε=
 

  (1.1) 

where ε0 is the permittivity of the vacuum, α  (physical unit: m3) is defined as the electrical 

polarisability of the atom of the molecule. This is generally written in the form of a tensor 

of rank 2 because the induced dipole moment is not necessarily oriented in the direction 

of the applied electric field, which gives: 

 
x xx xy xz x

y 0 yx yy yz y

z zx zy zz z

p α α α E
p =ε α α α E
p α α α E

    
    
    
        

  (1.2) 
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When one considers a more general expression involving the N atoms constituting the 

material, one obtains the polarization P (physical unit: C/m2) induced by the electric field 

applied and defined by the combination of all the dipole moments induced p (per unit 

volume): 

 0 EP ε χ=
 

  (1.3) 

where χ (without physical unit) is defined as the electrical susceptibility of the material. 

It is also a tensor of rank 2.  

Let us now turn to the relations between polarization and the electric field in the context 

of non-linear optics. Mathematically, the expressions (1.1) and (1.3) are only 

developments in series with respect to the electric field, limited to the first order. When 

the electric field becomes important, that is to say of the order of magnitude of the 

Coulomb field in the atom, we can no longer neglect the terms of higher order as in linear 

optics. Therefore, expressions (1.1) and (1.3) can be rewritten in the form of n-term series 

including the total polarisability and susceptibility of the atom and the material [28]: 

 0 0 0

(1) (2) (3)
0 0 0

p αE E E E E E ...

E E E E E E ...P

ε ε β ε γ

ε χ ε χ ε χ

= + × + × × +

= + × + × × +

      

      

  (1.4) 

where β (m4/V) and γ (m5/V2) are the second and third order hyperpolarisabilities of the 

atom. χ(2) (m/V) and χ(3) (m2/V2)  correspond to the second & third order nonlinear 

susceptibilities of the material whose generalised notation is χ(n), indicating the 

susceptibility of order n of the material, that is to say a tensor of rank (n + 1).  χ(2) is 

therefore a tensor of rank 3 comprising 27 components. Indeed, looking at (1.4), it is 

found that each of the 3 components (x, y, z) of χ(2) is related to each of the components 

(x, y, z) of 2 electric fields. All these components are not necessarily different and some 

may be equivalent or null according to the classes of symmetry that appear in one or the 

other physical system studied. We will discuss this important aspect in the description of 

the samples studied. However, this brief overview already gives us an idea of the 

advantage of the polarization of the electric field of the laser beams (magnetic transverse 

or “p” for a polarization parallel to the plane of incidence of the electric field, electric 

transverse or “s” for a polarization perpendicular to the plane of incidence of the electric 

field): this allows the specific characterisation of the components of the nonlinear 

susceptibility of the solids in different directions.  
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1.3.2 Second- order nonlinear (χ(2)) effects 

Now we show why second-order nonlinear phenomena in materials require the non-

centrosymmetry of their electronic properties. Indeed, suppose that we have a 

centrosymmetric material subjected to two electromagnetic fields, and consider the 

expression of the polarization of the second order on the two drawings of Figure 1.1: 

 
(2)

0

(2)
0

E E

E E

NL

NL

P

P

ε χ

ε χ

= ×

′ ′ ′= ×

  

  

  (1.5) 

Considering the geometry of the polarisation properties of the system on the Figure 1.1, 

the electric fields and the nonlinear polarizations satisfy the following conditions: 

 E ENL NL

NL NLP P

′ = −

′ = −

 

 

  (1.6) 

From which we write immediately by considering Equation (1.6): 

 

(2) (2)
0 0

(2) (2)

(2) (2)

(2)

E E E E

E E ( E) ( E)

0

ε χ ε χ

χ χ

χ χ

χ

′ ′× = − ×

× = − − × −

= −

=

   

   

  (1.7) 

 

Figure 1.1 Diagrams illustrating the property of centrosymmetry in the electronic 

characteristics of a given system. The black dot in the centre of each circle is the  

symmetry inversion centre. (A): incident electric field oriented along the Z axis. (B): 

incident electric field oriented along -Z. 

The only possible solution for the second-order nonlinear susceptibility is therefore zero 

in all directions, which means that centrosymmetric materials have no second order non-

linear response in the electrical dipole approximation.   



7 

 

Non-centrosymmetric materials, which are less numerous, are used for particular 

applications. Some have been indispensable to the realisation of this thesis. These 

materials can generate different harmonics of higher order (2ω, 3ω, ...) or other non-linear 

phenomena such as frequency sum or difference generation. 

We have seen that the study of the nonlinear susceptibility χ(2) involved the components 

of two electric fields. From the experimental point of view, there are two laser beams. 

Let’s to consider the case of two waves polarized in the same direction Z and propagate 

in the direction of the axis X as can be seen in Figure 1.2. Let us limit ourselves to the 

computation of the components of the polarization along the propagation axis X of the 

incident waves [28].   

By taking the electrical components of the two incident waves of frequencies ω1 and ω2 

in Figure 1.2: 

 1

2

1 1 0 1

2 2z 0 2

E E E cos( )

E E E cos( )

z t

t

ω

ω

= =

= =

 

 

  (1.8) 

 

Figure 1.2 Diagram illustrating the computation of the polarization component of the 

molecule in the X direction for two electric fields polarized along the Z direction. 

We write the X component of the polarisation field based on the Equation (1.4) and 

considering just the second order nonlinear part: 

 

(1) (2) 2
0 1z 2z 0 1z 2z
(1) (1)

0 01 1 0 02 2
(2) 2 2 (2) 2 2

0 01 1 0 02 2
(2)

0 01 02 1 2

(E +E ) (E +E )
E cos( ) E cos( )
E cos ( ) E cos ( )

2 E E cos( )cos( )

x xz xzz

xz xz

xzz xzz

xzz

P
t t

t t
t t

ε χ ε χ

ε χ ω ε χ ω

ε χ ω ε χ ω

ε χ ω ω

= + =

+

+ +

+

  (1.9) 

By some trigonometric manipulation and consider only the non-linear component of the 

second-order polarization, we obtain: 

 
(2) (2) 2 2 (2) 2 20 0

01 02 01 1 02 2

(2) (2)
0 01 02 1 2 0 01 02 1 2

[E +E ] [E cos(2 ) E cos(2 )]
2 2

[E E cos( )] [E E cos( )]

x xzz xzz

xzz xzz

P t t

t t t t

ε εχ χ ω ω

ε χ ω ω ε χ ω ω

= + +

+ + + −
  (1.10) 
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We have therefore four contributions associated with this particular component of the 

susceptibility: 

• Optical rectification (OR), which corresponds to the generation of DC 

polarisation; 

• Second Harmonic Generation (SHG), when we have 2ω1 or 2ω2; 

• Sum-Frequency generation (SFG), ω3= ω1 + ω2 generated; 

• Difference frequency generation (DFG), ω3= ω1 - ω2 generated. 

We can now derive an evolution equation for the fields, starting from Maxwell's equations 

which govern all electromagnetic phenomena for the electric field E (r,t), the electric 

displacement D (r,t), the magnetic field B (r,t) and the magnetic field H (r,t): 

 

1

1

0
0

BE
c t

DB
c t

D
B

∂
∇× = −

∂
∂

∇× =
∂

∇ ⋅ =
∇ ⋅ =

  (1.11) 

where B = H +4πM and D = E+4πP. 

One can write the P as: 

 L NLP P P= +   (1.12) 

where PL is the part of the electric dipole polarization linear in the field amplitude and 

PNL is the nonlinear part of this polarization. 

For an isotropic and dispersionless material, the wave equation can be written as [28]: 

 
2(1) 2

2
2 2 2 2

0

E 1E NLP
c t c t
ε

ε
∂∂

∇ − =
∂ ∂

  (1.13) 

The solution of the wave equation for the plane wave with the absence of the nonlinear 

source can be written as: 

 ( )E( , ) .i kz tz t Ae c cω−= +   (1.14) 

where A is a constant and is the amplitude of the field, z is the propagation direction and 

k is the wave-vector, which can be defined by: 
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nk
c
ω

=   (1.15) 

In the case of DFG, we can substitute Equation (1.14) in Equation (1.13) and replace the 

Laplace operator by 
2

2
d

dz as the field propagates along z axis: 

 1 2 3

2 (2) 2
( )z3 3 3

3 1 22 2

22 i k k kd A dAik A A e
dz dz c

χ ω − −−
+ =   (1.16) 

Here index 3 corresponds to the idler, while index 1 and 2 correspond to the pump and 

seed.  

By considering the slowly varying amplitude approximation one can neglect the first 

component in the left-hand side of Equation. (1.16): 

 
2

3 3
32

d A dAk
dz dz

   (1.17) 

Now one can write: 

 1 2 3

2
3 ( )z3

1 22
3

2 eff i k k kiddA A A e
dz k c

ω − −=   (1.18) 

One can also write: 

 

2
1 z1

3 22
1

2
2 z2

3 12
2

2

2

eff i k

eff i k

iddA A A e
dz k c

iddA A A e
dz k c

ω

ω

∗ − ∆

∗ − ∆

=

=

  (1.19) 

where k∆ is the wave-vector mismatch and for DFG can be defined as: 

 1 2 3k k k k∆ = − −   (1.20) 

If the system will experience 0k∆ = , this will define an ideal process, where the wave-

vectors are matched. In this case the coherent length will tend to the infinity. This means 

the phase of the generated wave at any point of propagation along the nonlinear crystal 

will be the same as the first emitted wave in the nonlinear crystal at entrance. In other 

words, it means the amplitude of the emitted wave will increase proportionally to the 

length of the nonlinear crystal. This is clearly shown in the Figure 1.3. The straight line 
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corresponds to the condition of perfect phase matching. However, as was mentioned 

previously, 0k∆ =  presents an ideal condition and in reality, one deals with quasi-phase 

matching Figure 1.3, which describes a case where the amplitude of the emitted field 

grows monotonically but not as fast as perfect matching conditions. 

 

Figure 1.3 Spatial variation of three different scenarios for phase matching conditions. 

Green line corresponds to the ideal conditions, where wave-vectors are equal. Yellow 

line demonstrates the quasi-phase matched conditions. In this case the raise of the 

amplitude of the generated field is less than the perfect phase matching condition, but it 

still increases fast enough along the propagation axis. The red line presents the lack of 

phase matching condition. 

By integrating the Equation (1.18) from z=0 to z=L, the amplitude of the idler is expressed 

as :  

 
2
3 1 2

3 2
3

2 1i kL
effid A A eA
k c i k
ω ∆ −

=  ∆ 
  (1.21) 

This solution leads to the intensity of the signal: 

 
2 2 22 4

3 0 3 1 2
3 2 3

3

8 1i kL
effn d A A eI

k c k
ε ω ∆ −

=
∆

  (1.22) 

The square modulus in the right hand side of the Equation (1.22) can be expressed as: 

 
2

2 21 sinc ( / 2)
i kLe L kL

k

∆ −
= ∆

∆
  (1.23) 
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In an ideal system, when the phase matching condition is satisfied ( 0)k∆ → one can write 

the Equation (1.22) as: 

 
2 2 2 2

0 3 1 2 2
3 3

1 2 3 0

8 effd I I
I L

n n n c
ε ω

ε
=   (1.24) 

where I1 and I2  are the pump and seed intensity. In stimulated (classical) nonlinear optical 

process we should have both pump and seed in order to generate the signal at 3ω . 

1.3.3 Quantum explanation of three wave mixing 

Equation (1.21) clearly shows that if one removes the seed (A2=0) and keeps just the 

pump, the signal intensity will be zero. According to the equations, except for the pump 

field, we do not expect to generate any other field.  However, experiments show new 

fields generate. In this process, the momentum and energy conservation are still satisfied. 

It is exactly the situation, where classical physics cannot describe nonlinear processes like 

Spontaneous Parametric Down Conversion (SPDC). This is the nonlinear process similar 

to DFG, where instead of having pump and seed field, one removes seed and keeps just 

the pump and measures a new signal at 3ω and 2ω . In this process photons are created from 

the vacuum state and quantum fluctuations replace the second input field, which is 

considered in classical model. Hence, the generation of new fields is still possible if one 

will keep the pump field and remove the second field in the input. In quantum field theory, 

this process is referred as spontaneous as it is generated from quantum vacuum 

fluctuations, parametric because of the phase relationship between input and output fields 

and down-converted as a pair of photons is generated as the result of annihilation of a 

photon at higher energy level. Figure 1.4 shows the schematic view of the DFG and 

SPDC. 
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Figure 1.4 An illustration of DFG in a χ(2) crystal (a), an illustration of SPDC in a χ(2) 

crystal (b), energy conversion in DFG process (c), energy conversion in SPDC process (d). 

 The SPDC generation can be considered as the result of the amplification of vacuum 

fluctuations [29]. The rough classical estimation to this amplification can be considered 

as: 

 2 ( )
2SPDC

cP G z
nz

ω≈
∆

   (1.25) 

where G2(z) corresponds to the gain and  2c nz∆  corresponds to the bandwidth. A more 

precise method of the estimation of the SPDC power is the experimental measurement in 

a setup like Figure 1.5 [28], [30]. One can classically treat this phenomenon if the zero-

point energy of the electromagnetic modes bring a sufficient input seed intensity 

equivalent to one photon per mode. Hence, by assuming that there is one idler photon per 

mode in the quantising volume V, the effective idler intensity can be defined as: 

 1

1

i
i

dN cdI
Vn
ω

=
   (1.26) 

where dN1 corresponds to the number of modes between θ and dθ (θ is the angle between 

k vectors of signal and idler). 
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Figure 1.5 Schematic view of the setup for SPDC brightness measurement. 

Here we aim to present the calculation of the SPDC brightness, as we use it for the 

estimation of the number of generated photons in Appendix I. The full approach of this 

calculation is beyond of this thesis and can be found in [31]. In this calculation, just one 

polarisation is considered for each field. Here is the field operator for the signal [32]: 

 †1 ˆ ˆ[ ( , ) ( , )]
2signal s sE E x t E x t= +   (1.27) 

where ˆ
sE is the positive-frequency part. The interaction Hamiltonian for the SPDC 

process is determined by: 

 3 † †0ˆ ˆ ˆ ˆ{ ( , ) ( , ) ( , ) . .}
2I eff p s i

v

H d d x E x t E x t E x t H cε
= − +∫   (1.28) 

where effd corresponds to the effective nonlinear susceptibility of the crystal. The Fermi’s 

Golden Rule is used for as initial equation in order to calculate the signal power. 

According to Fermi’s Golden Rule, the rate of the transition rate from initial state a to 

the final state b  is given by [32]: 

 
22 ˆ

I bW b H aπ ρ=


  (1.29) 

where ˆ
Ib H a is the transition matrix element and bρ  is the density matrix element of 

the final state. This formula assumes that the initial state contains just one pump photon 

and the final state consists of one signal and one idler photon. Energy conservation 

conditions are satisfied and the pump can be considered to be with a single frequency. 

The emitted signal power in the frequency interval, sdω and element 2
sd K can be 

obtained by multiplying Equation (1.29) by sω and integrating over unobserved idler 

transverse wave vector iK : 
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 2
s s s sdP d Wd Kω ω= ⋅ ⋅ ∫   (1.30) 

where 2
sd K  element is obtained by: 

 2 2 2
s s sd K k d u=   (1.31) 

where sk is the wave vector of signal for the value of signal frequency for which the 

crystal is collinearly phase matched and su corresponds to the angle of wave vector in the 

crystal with respect to the z axis. This integration in the case of type II SPDC leads to the 

differential signal power [31]: 

 
2 3 2 2

4
3 2 2 5 2

0 0

2
(2 )eff s i eff p

s p s p s
p p p s i

d L cd L
P P P

c n n
ω ω λ

δ δω π δλ
π ε ω ε λ λ

= =
 

  (1.32) 

where , , ,s i pL ω ω ω and pn correspond to the crystal length, signal frequency, idler 

frequency, pump frequency and refractive index at pump frequency. ,s iλ λ and pλ

correspond to the wavelength of signal, idler and pump respectively. 

DCE photon generation in χ(2) crystals 

As we mentioned in section 1.3, any oscillation of the boundary condition in time, is 

potentially an analogue of DCE and can lead to the emission of correlated photon pairs at 

a frequency which is a function of the oscillation frequency. This emission should also 

satisfy the energy conservation conditions. The idea of the modulation of the refractive 

index in time, which is equivalent to the effective length modulation were theoretically 

considered in the literature in [9], [20], [21], [33]–[35]. 

Here we consider the proposal of the type-I optical parametric oscillator (OPO) and 

design an experiment, where the SPDC from a thin nonlinear crystal with non-

centrosymmetric structure at a subwavelength thickness ( 0.1 )crystal pumpL λ≤ can be 

considered as an optical analogy for DCE [35]. In chapter two we discuss experimental 

realisation of this proposal by using 2D non-centrosymmetric crystal.  Figure 1.6 

demonstrates the schematic view of the OPO with a thin nonlinear crystal. Thickness of 

the nonlinear crystal plays a vital role to make it possible to consider the SPDC emission, 

which occurs because of the vacuum fluctuation from the χ(2) crystal as DCE radiation. 
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The fact of using the OPO cavity in this proposal is to amplify the emitted SPDC signal 

and the SPDC signal by itself is the DCE emission [35]. 

 

Figure 1.6 Schematic view of the optical parametric oscillator with a second order 

nonlinear medium in the left land side mirror [35]. 

The OPO system can be described by the Maxwell equations. As a (2)χ crystal will be 

used in this system under the action of an intense beam, the second order nonlinear part 

of the polarisation should be considered in the polarisation and wave equation. For an 

intense beam one can write the polarisation vector: 

 (1)
0 p NLP E Pε χ= +

  

  (1.33) 

where pE corresponds to the electric field of the pump and nonlinear polarisation NLP can 

be described by the interaction of the pump field and electric field of the seed (vacuum 

fluctuations): 

 (2)0

2
NL p sP E Eε χ= ×
  

  (1.34) 

where sE corresponds to the electric field of the seed (vacuum fluctuation). One can write 

the pump electric field inside the crystal: 

 ( ( ) / )
0 . .p p p pi i t n x c

pE E e e c cθ ω ω− −= +   (1.35) 

where pθ corresponds to the pump phase at x=0, pω , ( )p pn ω  and 0E correspond to the 

pump frequency, refractive index of the crystal at pump frequency along the pump 

polarisation and field amplitude respectively. One can write the polarisation vector for 

the perpendicular direction to the pump polarisation as: 

 0 ss effP Eε χ=
 

  (1.36) 
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With (1) sin[ ( / ) ]eff p p pt n x cχ χ κ ω θ= + − − , where (2)
0p

Eκ χ= and pn  corresponds to 

the mean value of the refractive index along the pump polarisation. (1)χ and (2)χ

correspond to the mean value of first and second order nonlinear susceptibility 

respectively. We use the mean value based on the assumption that the crystal is non-

absorbent and dispersion-free in the spectral range of interest.  

Now if one will pump the crystal in the system illustrated in Figure 1.6 along p 

polarisation, the crystal will behave as a linear dielectric medium in s direction with an 

effective refractive index [35]: 

 2( , ) ( , ) 1s effn x t x tχ= +   (1.37) 

By assuming that the mean value of refractive index 1n  , one can expand the refractive 

index to the first order of κ : 

 ( , ) sin[ ( / ) ]
2s s p p p

s

n x t n t n x c
n
κ ω θ+ − −   (1.38) 

Based on the initial assumption regarding the crystal length ( )l in comparison to the pump 

wavelength, the spatial dependence of the refractive index becomes negligible and one 

can consider just the temporal dependence of the refractive index: 

 ( ) sin[ ( ) ]opt
s s p pn t n t

l
ζ

ω θ= + −   (1.39) 

with (2)
02 popt

s

l E
n

ζ χ . 

This temporal modulation of the refractive index is exactly the key condition of the DCE 

emission, which leads to the temporal modulation of the effective crystal length. In OPO 

this leads to the modulation of the effective length of the cavity. In this case SPDC from 

the crystal can be considered as the generation of photon pairs from vacuum state as the 

result of the temporal modulation of the effective length, which is the definition of the 

DCE. 
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1.3.4 Third-order nonlinear (χ(3)) effects 

As can be seen from the Equation (1.4) the polarisation is written as a Taylor expansion, 

where the third part of this equation corresponds to the third order nonlinear effects. In 

contrast to the second order nonlinear effects, which are not expected from 

centrosymmetric materials, this class of nonlinearity is measurable regardless of the 

spatial symmetry of the material. The third order nonlinear susceptibility is the lowest 

order nonlinearity for the centrosymmetric materials, while all of the even-order nonlinear 

susceptibilities are equal to zero, based on the same principle as in Figure 1.2. 

In this thesis, we consider two third-order nonlinear optical phenomena, self-phase 

modulation (SPM) and four-wave mixing (FWM). 

Self-phase modulation in a (χ(3)) nonlinear medium 

One of the important classes of nonlinear optical effects is the class of self-actions 

associated with the change in the refractive index of the medium as a result of the 

nonlinear polarization induced by the field of the light wave. The self-action of light 

waves is caused by the real component of the non-linear susceptibilities Re χ(3).  

Self-focusing is one of the examples of self-action nonlinear phenomena. The 

corresponding expression for the refractive index of a nonlinear medium follows from 

Equation (1.4) [28]: 

 2( ) ( ) ,   NLn Е n n Еω ω= +   (1.40) 

where n is the linear, and nNL is the nonlinear part of the refractive index. The quantity 

nNL in the general case is a complex function, the form of which is determined by the 

specific mechanism of the nonlinear response of the medium. In the simplest case, the 

nonlinear part of the refractive index can be represented in the form [28]: 

 2
2   NLn Е n I=   (1.41) 

where 

 ( )2 3)
2

(
02 /n nπ χ=   (1.42) 

Self-phase modulation is a nonlinear effect that arises from the dependence of the 

refractive index on the radiation intensity and consists of the appearance of a self-
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induced phase shift, which a light pulse acquires when propagating in a nonlinear 

medium. This leads to a symmetric spectral broadening of optical pulses. The 

nonlinear phase shift of the pulse in the medium after traveling the distance of the L, 

can be defined as [36]: 

 2( ) ( )t n I t L
c
ω

Φ =   (1.43) 

The time dependence of the emitted light intensity makes the nonlinear phase shifting a 

time dependent function, which gives rise to the time-dependent frequency shift [36]: 

 2( ) It n L
c t
ωω ∂

∆ =
∂

  (1.44) 

The resulting maximum frequency broadening can be defined as: 

 0
2

In L
c
ωω

τ
∆ =   (1.45) 

where I0 is the peak intensity and τ is the pulse duration [36]. 

Figure 1.7 demonstrates a typical SPM for a sech-shaped pulse with τ=30 fs in a fused 

silica optical fibre. 

 

Figure 1.7 Typical SPM of a  sech-shaped laser pulse with an initial pulse width of 30 fs 

in a fused-silica optical fibre with n2= 3.2 × 10−16 cm2/W. Curve 1 presents the input 

spectrum of the pulse. The input pulse energy (2) 0.1 nJ, (3) 0.2 nJ, and (4) 0.3 nJ [36]. 

This third order nonlinear effect becomes important when we discuss another 

experimental approach to the DCE in chapter three. In this approach, we use the spatial 

intensity modulation of the pump along the waveguide. According to the Equation (1.40) 
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this intensity modulation leads to spectral broadening along the propagation. SPM is not 

exactly the effect, that we are interested in but this is a common third order nonlinear 

effect and it is more likely that in order to be able to measure DCE photon pairs, we 

should measure the expected SPM. First this criterion is considered by us as a necessary 

condition as a proof of the experimental nonlinearity estimation. In chapter three, this 

effect is discussed with more details for our experimental case. 

Classical four wave mixing (FWM) and Spontaneous four wave mixing 

(SFWM) 

In a classical approach, FWM phenomenon is a third order nonlinear effect, which 

describes the generation of new frequencies as the result of mixing three frequencies 

(Figure 1.8). 

 

Figure 1.8 General type of FWM for χ(3) crystal [36]. 

One can use Equation (1.4) to write the polarisation equation for FWM: 

 linear NLP P P= +
  

  (1.46) 

where 

 (3)
1 2 30NLP E E Eε χ=

   

   (1.47) 

The frequency of the new generated field will be defined as: 

 4 1 2 3ω ω ω ω= ± ±  (1.48) 

The general case, where we have three input electric fields and the interaction of these 

three fields in the χ(3) crystal generates the new frequencies, is known as non-degenerate 

FWM. However, there is also possibility of new frequencies generation, when two 

frequencies coincide. This interaction is called “spontaneous FWM”. Figure 1.9 shows 
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the spontaneous FWM (SFWM). In this case the two new frequencies generate as the 

result of annihilation of two pump photons: 

 2 p s iω ω ω= +   (1.49) 

  

Figure 1.9 Spontaneous FWM as the result of annihilation of two pump photons (a), 

energy conversion of spontaneous FWM (b). 

In chapter three we discuss an experimental approach to the DCE photon pairs generation 

from photonic crystal fiber with modulated dispersion. In this experiment the group 

velocity dispersion (GVD) is modulated along the fiber. This modulation of GVD leads 

to a modulation instability, which can be interpreted as SFWM in the spectral domain. In 

chapter three we establish the important criterion and conditions, where we can consider 

this spatial modulation along the waveguide or the fiber as temporal modulation of 

boundary conditions, which is the necessary and sufficient condition for DCE. 
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2 Transition Metal Dichalcogenides (TMDC) monolayer studies  

2.1 Transition Metal Dichalcogenides (TMDC) 

In 2004, the team of A. Geim at the University of Manchester highlighted the exceptional 

properties of graphene [37]. This major discovery showed that the thickness of a material 

could greatly influence its properties. This has increased the interest of researchers for 

two-dimensional (2D) crystals. There are many materials that can be isolated in the 2D 

form (Figure 2.1). Their properties are also very diverse. Among these 2D crystals, the 

family of TMDs (Transition Metal Dichalcogenides) has been studied extensively in the 

past few years because the associated materials have considerable potential for 

applications in nonlinear optics and electronics [38]. 

 

Figure 2.1 Table listing materials that can crystallize in the 2D form. In yellow, 2D 

crystals which are stable in air and at ambient temperature. In green, those which are 

probably stable in the air. In blue, those which are not stable in the air but which are 

probably stable under an inert atmosphere. 

TMDs are a family of materials of the general formula MX2, where M is a transition metal 

from group 4 to 10 (in the periodic classification of elements) and X is a chalcogenide 

(Figure 2.2). TMDs have different physical properties, ranging from superconductor to 

semiconductor (Table 2.1). From this group of TMDs, we are particularly interested in 

MoS2. 
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Figure 2.2 Mendeleev's periodic table of the elements on which the elements involved 

in the composition of 2D compounds of the TMD family are highlighted. The transition 

metals which crystallise in 2D form with the three chalcogens are completely coloured. 

Partially coloured transition metals only form 2D crystals with some of the chalcogens. 

  -S2 -Se2 -Te2 

Mo Semiconductor 

Monolayer: 1.8 eV 

Bulk: 1.2 eV 

Semiconductor 

Monolayer: 1.5 eV 

Bulk: 1.1 eV 

Semiconductor 

Monolayer: 1.1 eV 

Bulk: 1 eV 

W Semiconductor 

Monolayer: 1.9-2.1 
eV 

Bulk: 1.2 eV 

Semiconductor 

Monolayer: 1.7 eV 

Bulk: 1.2 eV 

Semiconductor 

Monolayer: 1.7 eV 

 

Ta Metallic, 
superconductor 

Metallic, 
superconductor 

Metallic 

Nb Metallic, 
superconductor 

Metallic, 
superconductor 

Metallic 

Table 2.1 Electronic properties of different TMDs, which can be prepared as 2D 

(monolayer) crystal. 
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2.2 Material structure of MoS2 

Molybdenum disulphide, a chemical compound of the formula MoS2, is a naturally 

occurring crystal (Figure 2.3 (a)). Its structure has been known since the beginning of the 

20th century [39]. It has a lamellar structure: it consists of a stack of layers each consisting 

of a plane of atoms of molybdenum situated between two planes of sulphur atoms; In 

each plane, the atoms are organized hexagonally (Figure 2.3 (b)). Within each layer, the 

atoms are covalently bonded, while the interlayer bonds are of the van der Waals type. 

This explains why the MoS2 can be cleaved and that a monolayer of this material can be 

isolated. The isolation of a MoS2 monolayer was first achieved in 1986 [40]. A monolayer 

of MoS2 has a thickness of 0.65 nm [41]. The way in which the MoS2 layers are stacked 

gives rise to three polytypes (Figure 2.3 (c)): the 1T and 3R polytypes are metastable 

whereas the most common naturally occurring polytype 2H is stable. 

 

Figure 2.3 MoS2 crystal (a). Diagram of a double layer of MoS2 (b). Diagram of the 

structure of the different polytypes of MoS2 (c). 

2.3 MoS2 monolayer Fabrication 

There are different methods for MoS2 monolayer fabrication. We will briefly discuss the 

most famous and popular methods. 

2.3.1 Mechanical exfoliation 

The first method is mechanical exfoliation. Due to the experimentally observed higher 

second order nonlinear susceptibility ( (2)χ ) response of the crystal from mechanically 
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exfoliated crystal in comparison to other methods, we decided to use this method of 

fabrication [42].  The reported value of (2)χ  for the mechanically exfoliated crystal is 

around 510 /pm V  while the (2)χ for chemical vapor deposition (CVD) grown crystal is 

around 35 10 /pm V⋅  for SHG measured at the pump wavelength of 810 nm. We also 

underline that this method of fabrication also limits us with the size of the monolayer 

crystal. The typical size of the fabricated monolayer with this method is between 

5 20 mµ−  by 30 40 mµ− . The monolayers obtained by this method are in a limited 

number, of inhomogeneous thickness and distributed sparsely on the substrate. 

In this method we use adhesive tape to separate a part of the bulk crystal. In order to do 

this, we take clean tape and then contact the sticky side of the tape with bulk crystal and 

add a little bit of pressure by cotton swab. We then use another clean part of the tape to 

contact with the other part of tape with crystals and again add gentle pressure with cotton 

swab. By then pulling the two tapes from each other we mechanically cleave the crystal 

step by step to fewer number of layers. We repeat the same procedure in order to increase 

the probability of obtaining monolayer crystals. We then we use a “sticky stamp”, which 

is a soft double sided sticky layer of commercially available viscoelastic material 

(Gelpack) to transfer the crystals from a small area on the adhesive tape, where we expect 

to have a monolayer or few monolayer crystals with higher probability than other parts 

of the tape. We carefully place a small piece (roughly 5 mm by 10 mm) of the gel pad on 

a microscope slide. We then place the chosen part of the adhesive tape on the gel pad and 

gently add pressure with a cotton swab. We follow this procedure by holding down the 

corner of the gel pad and quick pulling off the tape from the gel stamp. Then this gel 

stamp is studied carefully under 50 x Zeiss microscope to visibly identify the monolayer 

crystal and measure the size of the crystal. For further investigation of the crystal, it is 

very important to make sure that the microscope works in both back scattering and 

transmission modes.  Later we present a method for the optical identification of the 

monolayer flakes based on the contrast of the illumination. It is also possible to carry out 

Raman spectroscopy and atomic force microscopy (AFM) to identify the number of layers 

of the crystal. We found that the brightness and optical contrast study of the crystals is 

enough at this stage to identify the monolayer crystals and distinguish them from bilayer 

and few-layer samples.  We also discovered that the immediate transferring of the crystal 

from the adhesive tape to the gel pad after exfoliation is critically important for making a 

high quality sample. We confirm that the freshly transferred samples are more stable in 
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signal emission during experiments. After the identification of the monolayer crystal, the 

next step, which is the most delicate part of the process, is the deposition (transferring) of 

the fabricated monolayer crystal to the target substrate. In Appendix IV, we discuss about 

the choice of different types and structures of substrate. By using different methods, such 

as laser writing or scratching with diamond, we make a map on the substrate in order to 

track the crystal on the substrate easily during experiment. We fix the target substrate by 

strong double side tape on a heavy platform, which is placed on the 3D (x-y & rotation) 

stage.  The microscope slide with the gel pad is placed upside down on the 3D (x-y-z) 

stage shown in Figure 2.4. At this point we need to find the crystal by using microscope 

and bring it to the marked part of the substrate where we want to transfer the crystal. After 

that we gently reduce the height of the microscope slide and step by step bring it to the 

substrate. It is very important to reduce the distance slowly and it is very clear when the 

stamp starts to touch the substrate surface. It is very important to give the crystal a minute 

to relax on the substrate. Because of the Van der Waals force the crystal will stick on the 

substrate. The final stage is to gently detach the stamp from substrate. 

Figure 2.5 (b) presents our largest sample 100 mµ x 50 mµ , which was mechanically 

exfoliated.At this point, our sample is ready for inspection by atomic force microscope 

(AFM).  We use this method to be sure about the number of layers of the crystal. 

Notwithstanding that the optical inspection is a confident method for us to make sure 

about the number of layers, we use AFM inspection as an additional check. Figure 2.5 (c) 

demonstrates a typical AFM result for one of our samples.  

 

Figure 2.4 Combination of X-Y and rotational stage (left hand side) with linear X-Y-Z 

translation stage (right hand side) for flake transfering from gelpad to substrate.  
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There are also other methods to produce a large area of MoS2 monolayer: liquid 

exfoliation associated with a filtration or spin coating type deposition method, direct 

sulphurization of films containing molybdenum-containing compounds [43]–[45] and 

deposition Chemical vapor deposition (CVD) [42], [46], [47]. We will briefly describe 

CVD method of fabrication as this method is the alternative method of fabrication of the 

MoS2 monolayer for optical purposes. 

 

 

Figure 2.5 Photograph illustrating the mechanical exfoliation technique of MoS2 (a), 

large mechanically exfoliated crystal (b), AFM image of a mechanically exfoliated 

MoS2 sheet (c).  

2.3.2 Chemical vapor deposition (CVD) 

Chemical vapor deposition (CVD) is the reaction in the gas phase of precursors containing 

molybdenum and sulphur. In general, elemental sulphur and molybdenum trioxide 

(MoO3) are used. The schematic of an oven typically used for MoS2 CVD growth is 

shown in Figure 2.7. Generally, two different crucibles are used to arrange the MoO3 and 

sulphur powders. Indeed, MoO3 and sulphur have very different evaporation temperatures 

(750 °C. and 250 °C. respectively): it is preferable to heat the two compounds at two 
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different temperatures so that the sulphur does not evaporate too soon. The substrate on 

which MoS2 will grow is located above the MoO3 crucible, face down. Heating of the 

furnace results in the evaporation of the precursors, which are transported by the carrier 

gas (typically argon or nitrogen) to the growth substrate. MoO3 is reduced in the gas phase 

by sulphur to MoO3-x. Sulphur and MoO3-x then react on the surface of the substrate to 

form MoS2. 

 

Figure 2.6 Schematic of a tubular furnace typically used for MoS2 CVD growth [42]. 

Large areas of MoS2 monolayers were obtained for the first time by this method in 2012 

by the T.W team of Tunghai University of Taiwan (Figure 2.7) [42]. After characterizing 

the material by Raman spectroscopy and photoluminescence, they evaluated its electronic 

performance by making transistors based on this material. The transistor studied in the 

article has an ION / IOFF ratio of 104 and a mobility of 0.02 cm²/(V.s). Despite a suitable 

ION / IOFF ratio, mobility is well below those obtained from MoS2 exfoliated. In order to 

get closer to the quality of the exfoliated MoS2 sheets, it is necessary to optimize the 

growth parameters. However, the growth of MoS2 is affected by numerous experimental 

parameters, notably: 

• The temperature profile; 

• The quantity of precursors and the ratio between the two quantities; 

• The distance between the crucibles; 

• The position of the substrates with respect to the precursor crucibles; 

• The flow rate and the pressure of the carrier gas. 

These parameters are also interdependent: for example, the distance between the crucibles 

influences the ratio of concentrations of the two precursors in the gas phase at the level 

of the growth substrate. Therefore, it is difficult to study one parameter independently of 
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the others. This complexity is also reflected in the literature by a set of experimental 

protocols that are very different but functional [42]. 

 

Figure 2.7  Diagram illustrating the CVD furnace used by the T.W. team at Tunghai 

University of Taiwan for the synthesis of MoS2(a). Images under an optical microscope 

showing the synthesized MoS2 domains (b). Atomic force microscopic image of a 

monolayer MoS2 domain (c). Height profile of the MoS2 domain presented in (c) (d). 

Its thickness is 0.72 nm. Figure from [42]. 

2.3.3 Visible contrast identification of monolayer up to few layers of MoS2 

Using the optical microscope is the most efficient and convenient way to identify 

monolayer flakes. However, identification of the monolayer flake from bilayer is not 

straightforward. To calculate the reflected light intensity and the optical contrast of the 

flakes the Transfer Matrix Method (TMM) can be used, which yields compact 

expressions for stacked optical media. We use this method for initial identification of 

monolayer flakes. Here we consider the slabs of the optical media stack along a horizontal 

axis, illuminated with a light beam at normal incidence. The transfer matrix M that relates 

the right going (a) and left going (b) wave amplitudes of the electromagnetic field at the 

start (in) and the end (out) of the stack of optical media is: 

 11 12

21 22

in out out

in out out

a a am m
M

b b m m b
      

= =      
      

  (2.1) 
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In order to simplify the optical identification process, it is interesting to measure a 

quantity that does not depend on the illumination intensity I0. The optical contrast C, also 

named Michelson contrast in the literature, between two objects (the bare substrate and 

the substrate with a MoS2 flake on top) is defined as [41]: 

 crystal substrate

crystal substrate

I I
C

I I
−

=
+

  (2.2) 

Where crystalI and substrateI are the reflected intensity from the crystal and the substrate. This 

value is independent from the I0. The coefficient of the reflected intensity R for a media 

stack is:  

 
2

0; . ,in
reflected

in

bR I R I
a

= =   (2.3) 

where bin is the amplitude of the reflected (right going) wave and ain is the amplitude of 

the incident (left going) wave. 

If the medium 1j N= +  is semi-infinite then 0outb = . Using Eq. 3.1 with flakeM M= we 

find: 

 
2 2

11

21

1 ,in out

in out

a m a
R b m b
= =   (2.4) 

Which gives: 

 
2

21

0 11

reflected
crystal

I mR
I m

= =   (2.5) 

For the regions without a flake deposited, the Expression 3.5 is also valid with 

substrateM M= . The optical contrast, Equation 2.2, can be now written as: 

 0

0

( ) ( )
,

( ) ( )
crystal substrate crystal substrate crystal substrate
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  (2.6) 

We use s numerical code in MATHEMATICA to determine the optical contrast. This 

method works if the individual layers are thiner than the coherence length of the typical 

white light. 
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2.4 MoS2 Optical properties characterisation 

In this section, we present the characterisation of optical properties of MoS2.  

2.4.1 MoS2 band-gap  

The intrinsic band-gap of TMDCs is in the visible side of the spectrum and is tuneable 

with the number of layers, thus making this group of materials of interest for photonic 

applications. Molybdenum disulphide is the most extensively studied in among TMDC 

materials. MoS2 is a semiconductor with a band gap whose width depends on the number 

of layers. It is 1.2 eV for the bulk MoS2 crystal [48].  The MoS2 has a direct bandgap when 

it is in monolayer and indirect for two or more layers (Figure 2.8). The direct band gap is 

at point K. As for the indirect band gap, the top of the valence band is at point Γ while the 

bottom of the conduction band is midway between point Γ and the point K. When the 

number of MoS2 layers decreases, the energy of the bottom of the conduction band 

increases due to quantum confinement, which causes the indirect / direct band gap 

transition. Due to this, MoS2 monolayer strongly emits photoluminescence as reported in 

[49]. 

 

Figure 2.8 Band structures of bulk, bilayer and monolayer of MoS2 . Figure from [48]. 

2.4.2 Photoluminescence emission from MoS2 monolayer 

For the characterisation of MoS2 monolayers the photoluminescence signal from the 

monolayer is measured. This measurement is performed with a CW laser source and we 

use and an Andor Technologies EMCCD camera integrated with the Andor Shamrock 

spectrometer. Figure 2.9 (a) shows the photoluminescence emission from the MoS2 
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monolayer under blue (405 nm) and green (532 nm) CW excitation. Notwithstanding that 

the main peak around 684 nm under blue pump looks broader than the peak around 675 

nm under green excitation, the shape of these two photoluminescence signals are very 

similar. These curves are background corrected. This background includes the 

photoluminescence from the objectives and other optical elements. Figure 2.9 (b) presents 

the photoluminescence emission from the substrate and other optical elements in the 

setup. We also performed a photoluminescence measurement under blue (405 nm) 

excitation in a cryogenic chamber at 4 K. Figure 2.10 shows the results for this 

measurement. In this measurement, the crystal on a Fused Silica substrate is placed on 

the 3D (x-y-z) piezo stage with nanometre precision. We make a 3D map of the MoS2 

monolayer, where the colour corresponds to the signal intensity in given wavelength 

diapason in Figure 2.10 (a, b, c, d). By comparing (c) and (d), we see that the intensity of 

the photoluminescence signal is localised for different wavelengths and we see 

enhancement of the emission for different wavelengths from different parts.  
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Figure 2.9 Photoluminescence emission from the MoS2 monolayer. Green line 

corresponds to the signal under the 532 nm excitation and the blue line corresponds to 

the emitted signal from monolayer crystal under 405 nm pump. The pump power for 

both measurement was 10 mW (a). Photoluminescence emission from the optical 

elements in the setup. Green line corresponds to the signal under the 532 nm excitation 

and the blue line corresponds to the emitted signal from monolayer crystal under 405 

nm pump. The pump power for both cases is 10 mW (b). 
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Figure 2.10 Photoluminescence emission map of the MoS2 monolayer at 4 K. 

Brightness of the pixels correspond to the intensity of the collected signal in (b, c, d, e,). 

The dash line corresponds to area of the monolayer crystal (a). We observe a very 

intense and narrow peak centred at 852 nm from the edge area where the monolayer 

crystal during transferring procedure to the substrate is screwed and applies mechanical 

strain to the crystal in these regions (b). The integrated signal in diapason of the 

wavelength from 800-820 nm (c). The integrated signal in diapason of the wavelength 

from 750-770 nm (d).  The integrated signal in diapason of the wavelength from 740-

910 nm (e).        

2.4.3 Nonlinear response of the MoS2 monolayer 

In the 2H stacking order (see Figure 2.3), MoS2 displays a layered structure where a layer 

of molybdenum is surrounded by two layers of sulphide 𝐷𝐷𝐷𝐷6ℎ crystal symmetry. This 

structure presents a centrosymmetric structure. As it was mentioned in the chapter one, 

the second order nonlinear susceptibility (2)( )χ  vanishes in the centrosymmetric structure 

and the third order nonlinear susceptibility (3)( )χ  becomes a lowest order nonlinear 

susceptibility for these materials with centrosymmetric structure. However, in the odd 

number of layers of MoS2 the inversion symmetry is broken and one can expect a second 
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order nonlinear effect such as second harmonic generation (SHG) and spontaneous 

parametric down conversion (SPDC) [50]–[52].  

The second order nonlinear susceptibility from a MoS2 reported [from 7000 to 9000 

pm/V ] is a few orders of magnitude higher than for typical bulk crystals such as Lithium 

Niobate (LiNbO3) and beta Barium borate (β- BaB2O4) (BBO). However, different values 

for the (2)χ are reported in publications, which vary within three orders of magnitude 

[50]–[53]. Also, as was mentioned in the section 3 of this chapter, the monolayer obtained 

from mechanically exfoliation method presents about 20 times higher (2)χ than the 

monolayer made with CVD method [50], [54].  

χ (2) value (pm/V) Wavelength 

range (nm) 

Estimation method/ Crystal 

fabrication method 

Ref. 

100 750 Theoretical [53] 

105 810 Experimental/ mech. exf. [50] 

5·103 810 Experimental/ CVD [50] 

0.8·104 860 Experimental/ mech. exf. [51] 

400 1100 Experimental CVD [55] 

Table 2.2  Comparison of second order nonlinear susceptibility of MoS2 monolayer in 

literature. 

2.4.4 Second order nonlinear susceptibility (χ(2)) and photoluminescence 

measurement of the MoS2 monolayer 

As discussed in section 2.5.2, reported (2)χ values  are very different (see Table 2.2). It 

was described in chapter one that the (2)χ  value has a quadratic contribution in the 

intensity of SHG and SPDC. It is therefore necessary for us to measure the (2)χ  value 

experimentally by ourselves.  Figure 2.11 presents the experimental setup for this 

measurement. In this case, we use a tunable Ti-Sapphire femtosecond laser source at 

80 MHz. In order to do this measurement, we found the position of half wave-plate and 

the polariser where we get the max value for the intensity of the SHG.  
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Figure 2.11 Experimental setup for pump wavelength dependence of the MoS2second 

order nonlinear susceptibility.  

We aim to characterise the SHG intensity as a function of pump wavelength, which leads 

us to the estimation of the (2)χ value. The operational wavelength range for this 

experiment is from 710 nm (1.75 eV) to 1000 nm (1.24 eV). In order to estimate the value 

of the (2)χ we used the following formula [50]: 

 
2 2(2) 2

2 3 3
2 0

1 . . .
8 . . .

dI I
n n cω ω

ω ω

ω χ
ε

 
= ⋅ 

 
  (2.7) 

where n2ω≈ 4.5, nω≈ 6 [41], ω is the pump frequency and the thickness of the monolayer 

is d=0.65 nm. Figure 2.12 demonstrates the experimental results for our measurement and 

the reported results in reference [56]. As one can see the measured spectral dependence 

of the (2)χ  looks very similar to the reported one. However the published data in [51] are 

roughly 20 times lower  than our experimental results. 
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Figure 2.12 Black circles are normalised χ(2)
 values measured in literature [51] (not in 

scale, magnified 20 times), Green line with dots are our experimental data for χ(2)
 

measurement, where the left hand side y-axis corresponds to the real calculated value of 

χ(2)
 in our experiment. 

2.4.5 Polarisation study of second harmonic generation (SHG) from MoS2 

monolayer 

We also performed a polarisation-dependence analysis of SHG from the MoS2 monolayer. 

In contrast to polarisation dependence of the spontaneous parametric down conversion 

signal which is not studied in literature, the features of the SHG polarisation dependence 

is measured and studied in literature. We use this measurement as an additional test to 

confirm that the target flake is a monolayer crystal. In order to do this measurement, we 

use the 100 Hz femtosecond laser at 790 nm. Figure 2.13 demonstrates the schematic view 

of the experimental setup of this experiment. Figure 2.14 (b) shows the MoS2 flake which 

was used to study the SHG signal from MoS2 monolayer. We pump the crystal with a 10x 

Nikon objective and a relatively large beam size 15 .mµ Flake is transferred on the fused 

silica substrate and both of focusing and collimating objectives were placed on the 3D (x-

y-z) stages. In order to study the polarisation dependence of the SHG from MoS2 

monolayer we place a half wave-plate before the focusing objective (O1) and a polariser 

before the Andor EMCCD camera. Two band-pass filters centred at 395 nm with total 
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OD of 10 and 5 nm bandwidth were placed after the collimating objective (O2) in order 

to block the pump efficiently.  

 

Figure 2.13 Schematic view of the experimental setup for the SHG polarisation 

dependence measurements. Excitation wave length is at 790 nm. Two band-pass filters 

around 395 nm are placed for the pump filtering. The laser is a tunable Ti-Sapphire 

laser.  

In contrast to other experiments from literature, for the polarisation dependence study of 

the SHG emission from the flake, we keep the sample and polariser fixed and rotate the 

fundamental beam polarisation from 0° to360°  in intervals of 10° . Figure 2.14 (a) 

demonstrates the image of the flake for the input beam’s polarisation at position at

45 ,90 .° °  
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Figure 2.14 Image of the MoS2 monolayer from EMCCD camera. The arrows 

correspond to the angle of the  input beam’s polarisation, while the crystal and the 

polariser before the EMCCD camera are fixed (a), MoS2 monolayer crystal under 

microscope (b). 

Figure 2.15 (a) presents a polar plot of the polarisation dependence of the emitted SHG 

signal. In comparison to the common six-fold patterns from literature, with this method 

we see four-folded pattern, which is indeed an equivalent to the same six-fold pattern. If 

we keep the sample axis fixed, choose a polarisation at the output by fixing the polariser’s 

axis fixed at a random angle 0α
 and rotate the pump polarisation by θ, the intensity of 

the measured SHG signal along 0α
  is proportional to: 

 
0

2
0 0(2 ) (cos(2 )cos( ) sin(2 )sin( ))Iα ω θ α θ α∝ −   (2.8) 

However, if we keep the sample fixed and rotate  both pump polarisation and the polariser 

before the EMCCD camera byθ  in the same direction, we measure the six-folded pattern 

shown in Figure 2.15 (b), which indeed is a popular measured pattern in literature, for 

instance in [57].  In this case the intensity of the measured SHG along parallel and 

perpendicular (α θ= , 2
πα θ= + ) polarisation are proportional to: 
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In Figure 2.15 (c), we present another method of polarisation dependence measurement 

of the same SHG signal.  In this method, we keep the crystal fixed and rotate the 
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polarisation of the fundamental beamθ clockwise, while rotating the polariser by θ   

anticlockwise. As one can see in this case we get a two-fold pattern.  

In Appendix II, we present a detailed calculation to demonstrate how the different 

methods of measurement are equivalent and all three methods give us the expected results 

from calculation. Our different methods of measurement can be a reference for further 

studies and one can use the preferred method of measurement and confrim that the 

measured signal is the SHG signal. 

 

Figure 2.15 Polarisation dependence of the SHG signal. SHG polarisation dependence 

measurement with a pump wavelength at 790 nm. We keep the crystal and polariser 

before the EMCCD camera fixed, then rotate the pump polarisation (a) We keep the 

crystal fixed and rotate the pump polarisation by θ clockwise and the polariser by θ also 

clockwise (b) We keep the crystal fixed and then rotate the fundamental beam 

polarisation by θ clockwise and the polariser by θ anticlockwise (c). 

2.5 Spontaneous parametric down conversion (SPDC) measurement 

In this section we present the experimental study of the SPDC from MoS2 monolayer in 

both visible and IR regime. 

2.5.1 SPDC measurement in NIR regime 

As mentioned in Chapter 1 section 1.3.3.1, the proposal of using the optical parametric 

oscillator (OPO) as an optical analogue of DCE with a subwavelength thickness of non-

centrosymmetric crystal as a nonlinear medium was published in 2009 [35]. The main 

idea here for studying the TMDC monolayer, was based on the application as a 
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subwavelength (2)χ crystal for the DCE analogue.  In this section, we show different 

approaches and attempts for SPDC photon pair measurement from a MoS2 monolayer. 

 

Figure 2.16 Experimental setup for the SPDC signal measurement with spectrometer.  

The supersensitive EMCCD camera integrated into the spectrometer is used in this 

setup to detect the expected SDPC signal from the MoS2 monolayer.  

As a first step, we use the Andor Shamrock spectrometer with an EMCCD camera to 

measure the SPDC signal at 790 nm under 395 nm excitation. For this experiment, we 

used a 100 Hz, 110 femtosecond laser. Figure 2.16 presents the experimental setup for 

this experiment. We used the BBO crystal to generate SHG from 790 nm pump and use 

two band-pass filters centred at 395 nm with OD of 10 for the pump for the efficient 

filtering of the 790 nm. The filtering of the pump signal is critically important as our aim 

is to measure the SPDC signal exactly at this wavelength. The experiment on MoS2 

monolayer confirmed that the absorption of the MoS2 crystal for this wavelength is about 

one order of magnitude higher than for the 790 nm. This potentially means that we cannot 

use the same level of energy (100 µJ at 790 nm), which can be used for the SHG. Such a 

high pump energy leads to the immediate damage of the flake.  Figure 2.17 presents the 

damage threshold measurement for the MoS2 monolayer under 395 nm excitation for the 

100 Hz femtosecond laser. It is important to note that the damage threshold for irreversible 

change of the properties of the MoS2 monolayer is less than the physical (i.e. complete 

ablation) damage threshold. After a certain intensity, which is about the 60% to 80% (it 

is different from one crystal to another one) of physical damage threshold, the life-time 
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and number of counts in detector is not stable anymore and changes in time. In order to 

be sure about the stability of the detected signal, it is recommended to keep the intensity 

below 50% of the physical damage threshold. As the SPDC process depends on the 

average power instead of the peak power, we decide to use the CW source instead of the 

pulsed laser source with high peak intensity. 

 

Figure 2.17 Damage threshold measurement of the MoS2 monolayer. This measurement 

is taken under 790 nm, in the setup of Figure 2.13. Green lozenge corresponds to the 

peak power, where the SHG signal is stable. Yellow colour corresponds to the peak 

power where we observe decay in the signal. Red colour corresponds to the peak power 

where we observe an immediate physical damage and monolayer crystal immediately 

disappears.  

Figure 2.9 (a) shows a photoluminescence signal from the MoS2 monolayer and as it clear 

that around 810 nm we have just the tail of the photoluminescence signal. However, the 

expected SPDC and photoluminescence signals both increase linearly with the pump 

power, the increasing of the pump power or the exposure time cannot extract the SPDC 

signal from the typical photoluminescence. Notwithstanding the mentioned argument, 

potentially the SPDC signal can be considered in two different regimes: low gain and 

high gain regime. Here one of the possible and simple approaches for this experimental 

issue, is to use the photoluminescence emission with 405 nm pumping for a very low 

power and use its normalised spectrum to subtract from the normalised signal measure 

under a higher power. This method can work if one assumes that SPDC process has a 

threshold value for the pump power below which the probability of the photon pair 

generation is very low and one does not expect to detect photons around double 

wavelength of the pump. Figure 2.18 demonstrates the normalised emitted signal under 
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50 µW excitation subtracted from the normalised photoluminescence signal under 20 mW 

for the same spot size. As it is clear, there is no peak around the 810 nm by using this 

method. 

 

Figure 2.18 Subtracted of normalised signal from the MoS2 under 405 nm with 50µW 

from the same pump wavelength with 20 mW. The red line corresponds to the region of 

expected SPDC peak. 

The other idea is to use normalised photoluminescence emission from the MoS2 

monolayer under 532 nm pump and to subtract this from the normalised collected signal 

from the MoS2 monolayer under the 405 nm excitation. The reasoning behind this idea is 

that we do not expect to have a SPDC signal centred around 810 nm under the excitation 

at 532 nm, while the expected SPDC from the MoS2 monolayer under the 405 nm 

excitation is expected to be centred around 810 nm. However, by looking at the Figure 

2.9 (a), it is obvious that we cannot use this method, as the photoluminescence signal for 

405 nm and 532 nm excitations are not identical.  

As we did not see any indication for a peak centred around 810 nm, we assume that the 

SPDC is dominated by the photoluminescence emission from the monolayer crystal while 

we aim to measure the quantum cross-correlation of the expected SPDC signal as a 

reliable approach for the SPDC measurement. Figure 2.19 presents the experimental setup 

for the cross-correlation measurement of the expected SDPC signal. We use Excelitas 

NIR SPAD [58] for this measurement. As seen in the green region in the Figure 2.20 (a) 

the maximum of the (2)χ is between 840 nm and 880 nm, and two maxima indicated by 

red vertical transparent lines are at 840 nm and 870 nm.  
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Figure 2.19 Experimental setup for the cross-correlation measurement of the signal 

centred around 875 nm. 

Based on this information and considering the quantum efficiency of the detectors (see 

Figure 2.20 (b)), band-pass filters in the market and the stability of the tunable 80 MHz 

Ti-Sapphire femtosecond laser, it was decided to investigate SPDC signal generation 

around 875 nm using BBO crystal to generate the pump at 437 nm .  

Figure 2.20 Comparison of the χ(2) versus wavelength with the quantum efficiency of 

the detector. Green area presents the most efficient part of the χ(2) and red lines indicate 

the two maximums for the χ(2) (a), Quantum efficiency curve of the Excelitas NIR single 

photon detectors. The green area corresponds to the same wavelengths, where we have 

maximum of the χ(2) [58] . 
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We use the signal from BBO crystal and efficiently filter it with a combination of two 

band-pass filters centred around 440 nm and a short-pass filter (<550 nm) to block the 

fundamental beam at 875 nm with OD 18. We also use the combination of a long-pass 

(>850nm) and a short-pass (<900 nm) filter to make a band pass-filter centred at 875 nm 

with 50 nm bandwidth. As one can see in this setup we collect the emitted signal in the 

transmission direction and use the 50-50 beam splitter to split the signal between two 

single photon counting module. Figure 2.21 (a) presents the results from cross-correlation 

measurement of generated photons over two hours. With the EMCCD camera and flip 

mirror in the setup we can easily control the region of excitation. For this experiment, we 

excited the region of the MoS2 monolayer from where we get the max SHG signal with 

the 5 µm focused spot size, power at 18 µW and measure 37 kHz counts in each detector. 

Figure 2.22 demonstrates the time-resolved signal in this experiment. As one can see this 

time-resolved signal from the crystal is longer than the response function of the detector, 

which is presented by the green dash line. This confirms the hypothesis that the signal is 

mainly due to the photoluminescence (SPDC is expected to be instantaneous) and it is 

why the ratio of the zero-delay peak (correlated peak) in respect to accidental peaks is 

around one. In order to estimate the number of expected detectable correlated photon 

pairs (Nexpected), we use the Equation 1.32 and compare it with the standard deviation of 

the measurement in Figure 2.21 (b) to check the compatibility of the results with theory. 

Detailed calculations for the expected detectable correlated photon pairs can be found in 

Appendix I. Due to the additional source of noise from electronics, which binds the 

minimum error to a fixed percentage of the total counts, we get a higher experimental 

standard deviation in comparison to the theoretical standard deviation. This means that 

we cannot improve the Coincident to Accidental Ratio (CAR) simply by increasing the 

integration time. The expected number of detectable correlated photon pairs, which is 

about 1930 during two hours integration, still about 14 times less than the experimental 

standard deviation, which is about 27kHz counts as illustrated in Figure 2.21 (b). We 

should mention that this calculation is an estimation and the main assumption is the 

isotropic emission from the crystal, i.e. because of the lack of phase-matching inside the 

crystal, the photon pairs will be emitted in all directions. Measuring the long life-time of 

the emitted signal and the lack of a CAR larger than one from the MoS2 monolayer in the 

visible range, leads us to make a conclusion that this signal is mainly due to the strong 

photoluminescence signal in the visible range. In order to work around this issue, it is 

proposed to look for the SPDC signal from the MoS2 monolayer in the IR region.  
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Figure 2.21 Cross-correlation measurement of the emitted signal from MoS2 monolayer, 

centred around 875 nm with 50 nm of bandwidth (a). We investigate the contribution of 

the expected number of detectable photon pairs from the SPDC process in the cross-

correlation measurement and compare it with the experimental standard deviation of the 

measurement (b). 

 

Figure 2.22 Time-resolved visible signal from MoS2 monolayer centred around 875 nm 

with 50 nm bandwidth.  

2.5.2 SPDC measurement in IR regime 

Although we assume that the second order nonlinear susceptibility of the MoS2 

monolayer in IR regime should be less than that in the visible regime, we do not expect a 

significant photoluminescence signal. Pumping the crystal at around 800 nm and 

measuring the signal the IR region should eliminate the residual photoluminescence. 



46 

 

Considering the quantum efficiency of our ultra-low noise single photon detectors (ID 

230) and available efficient band-pass filters, we decided to pump the crystal at 770 nm 

and measure the quantum cross-correlation of the signal in both transmission and 

transmission-reflection configuration within 80 nm of bandwidth centred around 1540 

nm. Figure 2.23 shows the two configurations of the setup for the cross-correlation 

measurement.  

 

Figure 2.23 Two configurations of setup for cross-correlation measurement. 

Transmission configuration with beam splitter. In this configuration, we collect signal 

from the second objective and split it by a 50-50 beam splitter between two detectors 

(a), We use the collected signal from the first and second objective. In this configuration 

we use dichroic mirror between HWP and first objective to direct the selected 

wavelength in the reflection to the SPAD.  
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As a first step, we investigate the IR signal emission from the MoS2 monolayer attached 

to the bulk crystal (few layers) with a spatial resolution of 2 µm Figure 2.24 (b). In order 

to perform this measurement, we keep the position of the focusing and collimating 

objectives fixed and scan the position of the crystal with respect to the focusing beam. As 

one can see the intensity of the IR signal from the bulk crystal is about two orders of 

magnitude higher than the IR signal from the monolayer or a few layer crystal. In 

particular points, the intensity of the IR signal from the bulk crystal’s edge is even more 

intense than the bulk mid area. In order to compare the IR signal and the SHG signal from 

the monolayer and several layers of the MoS2 we make a spatial map of the SHG signal 

from the same area of the crystal with the same spatial resolution. Figure 2.24 (c) shows 

the intensity of the SHG signal collected with a 770 nm pump. We see that a very intense 

signal comes from the monolayer area and some bright spots from the right edge of the 

bulk crystal. We study the power dependence of the SHG and IR signal, which are 

demonstrated in Figure 2.24 (e & d). Power dependence of the SHG signal perfectly fits 

a typical quadratic function while the IR dependence has a linear fit, which completely 

matches the SDPC model and it also can be associated to the photoluminescence signal 

as well.  
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Figure 2.24 Microscope image of the crystal (a). IR signal intensity from the monolayer 

and bulk crystal (b). SHG signal intensity from monolayer and bulk crystal of MoS2 

with 2 μm resolution. The pump wavelength for this measurement and measurement of 

IR signal is 780 nm (c). Pump-power dependence of the IR signal (d). Pump-power 

dependence of the SHG signal (e). The white borders in b&c correspond to the bulk and 

multilayer parts, while the green border correspond to the monolayer parts. 

In Figure 2.25 we measure the lifetime properties of the IR signal by time-correlated 

single photon counting, using a trigger pulse from the femtosecond laser. Surprisingly we 

measure different lifetimes from different points on the bulk edges, as can be seen by 

comparing the black, blue and green curves. When fitted the curves always reveal two 
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exponential contributions, with roughly the same decay times of 0.15 ns and 4.7 ns but 

with different weights from point to point. We verify that the fast component corresponds 

to the response function of the detectors and the electronics, thus indicating a lifetime 

shorter than 0.15 ns for this process. Strikingly the signal from the monolayer only 

presents the fast component. Figure 2.26 presents the fit for the black and red curves, 

which correspond to the signal from the bulk edge and monolayer crystals, respectively. 

 

Figure 2.25 Time-resolved IR signal from the monolayer (red curve) and three different 

point from the bulk edge (blue, black and green curves). Black stars correspond to the 

detectors response function. 

We proceeded to measure the cross-correlation between the two detectors for the signal 

emitted from the monolayer (see Figure 2.27). We pump the monolayer with a 2 µm beam 

at 770 nm and power of 100 mW, just below the damage threshold, obtaining a typical 

count rate of 1.44 kHz against a background of 850 Hz (PL from the fused silica substrate 

and detector dark counts). We also use band-pass filters with 80 nm bandwidth and 

centred around 1540 nm. Here by damage threshold, instead of the physical damage of 

the crystal we mean the power above which the signal from the crystal is not stable and 

experiences decay in time. We need to integrate for about 90 hours in order to obtain the 

results illustrated in Figure 2.27. As in the measurement for the visible range, a CAR 

(coincidence to accidental ratio) of 1 is reported.  
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Figure 2.26 Fit of the IR emitted signal. Fit for the time-resolved IR signal from MoS2 

monolayer (a) Fit for the time-resolved emitted IR signal from the bulk edge (b).  
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Figure 2.27 Cross-correlation measurement of the emitted IR signal from MoS2 

monolayer. This results are achieved by the signal from the collected signal on the 

objective 2 in Figure 2.23 (a).  

In Figure 2.28 we perform the same measurement for the emitted signal from an area on 

the bulk crystal and integrate for about 2 hours. In this case, we pump the crystal again 

with a 2 µm beam at 770 nm and power of 20 mW. We use the same band-pass filters with 

80 nm width and centred around 1540 nm. This is the safe power for the bulk edge. We 

will see a clear decay in number of counts if we pump the edge area with higher intensity. 

We measure about 55 kHz counts in each detector.  

 

Figure 2.28 Cross-correlation measurement of the emitted IR signal from MoS2 bulk 

edge.  

We also measure the cross-correlation of the IR signal from monolayer crystal between a 

detector collecting the signal from objective O1 and second detector collecting the signal 

from O2 (transmission-reflection configuration) and obtaine similar results for CAR.  
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This measurement is taken over 52 hours of integration.  Figure 2.29 presents the results 

of the cross-correlation for the transmission-reflection configuration. We still use the 

same pump intensity, wavelength and band-pass filters as in transmission configuration. 

 

Figure 2.29 Cross-correlation of the IR signal from the MoS2 monolayer for the 

transmission-reflection configuration of the detectors.  

We also study the polarisation dependence and polarisation properties of the emitted 

signal from monolayer and bulk edges. The collected signal from the monolayer crystal 

does not depend on the pump polarisation and the signal by itself is not polarised. Figure 

2.30 presents the polar plot of the polarisation dependence. This behaviour of the 

monolayer crystal completely accounted for by the theoretical prediction of the 

polarisation dependence and polarisation of the generated signal for SPDC, which is 

presented in Appendix II.  
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Figure 2.30 Polarisation dependence of the emitted IR signal from the MoS2 monolayer. 

Blue circles correspond to our measured data and red circles correspond to the 

theoretical calculation of polarisation dependence of the SPDC signal.  

We also investigated the polarisation dependence and the polarisation properties of the 

emitted signal in the IR regime from the bulk and bulk edge. In contrast to the signal from 

monolayer, we observe an unexpected behaviour from bulk and bulk edge. Figure 2.31 

shows different dependence of emitted photons polarisation and how it depends on pump 

polarisation. In order to perform this measurement, we measured the dependence for 

different spatial points of the same bulk crystal. We found 5 different kind of dependence. 

There are points where the emitted signal is well polarised (about 50%) and at the same 

ratio emitted signal depends on pump polarisation (see Figure 2.31 (a)), while in other 

points, the brightness of the signal is higher but the visibility is less and the signal mostly 

depends on pump polarisation or polariser angle (see Figure 2.31 (b)). Figure 2.31 (c) 

shows a point where for the same brightness of the signal we have less dependence of 

pump polarisation, while the signal is mostly polarised (about 80%). We also found points 

where the emitted signal just depends on pump polarisation or polariser’s angle Figure 

2.31 (d&e). In general, the signal depends on both the pump polarisation and polariser 

angle but with different brightness’s for different points. This behaviour from bulk and 

edge state is not fully understood yet.  
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Figure 2.31 Polarisation characteristics of different points of the bulk MoS2. The pink 

and blue curves correspond to the measurements, where the pump has a fixed 

polarisation along vertical and horizontal axis and we rotate the analyser before the 

detector. The red and yellow curves present the measurement, where the analyser’s axis 

is fixed horizontally and vertically while we rotate the polarisation of the pump.  The 

crystal axis for all these measurements is fixed.  
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2.6 Conclusion  

As we mentioned in 2.6.2 we get different life-time and polarisation dependence and 

polarisation properties of the emitted signals from monolayer and bulk crystal. In the case 

of the investigated signal from monolayer, this signal completely fits the theoretical 

prediction for the polarisation characteristics and the dependence on the pump 

polarisation for the SPDC signal, whilst we keep the question open to understand the 

nature of the signal from bulk and bulk edge. The main point here is that based on these 

obvious differences we believe that these two signals from monolayer and bulk belong to 

different physical processes. Notwithstanding that the measured polarisation dependence 

and the life-time of the signal in IR regime completely follows the expectation for the 

SPDC signal, the cross-correlation measurement with CAR higher than 1 is the 

undeniable and the final proof of the quantum correlation of SPDC emission.   

Based on the calculation, presented in the Appendix I, the use of a cavity for the detection 

of SPDC signal can be a solution to increase the CAR. We also recommend the fabrication 

of the sandwiched multilayers of MoS2, still in the subwavelength order. This can be 

another solution to increase the number of photon from SPDC processes to make it 

measurable with current electronics. 
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3 Dynamical Casimir effect in modulated waveguide and modulated 

photonic crystal fiber 

As described in the introduction chapter, the dynamical Casimir effect (DCE) in its 

original form, i.e. the generation of the entangled photon pairs form the vacuum state as 

the result of the oscillation of the two parallel mirrors at optical frequency, is very difficult 

to realise. 

However, we can replace this pure modulation of the real length of a cavity between two 

mirrors by temporal modulation of any parameter, which leads to the temporally varying 

of the boundary condition. Optical analogues of this temporal modulation can be induced 

by a change of the refractive index in time. A refractive index modulation can be done in 

different ways and can lead to the temporal modulation of boundary conditions. 

In this chapter, we present different experimental approaches to the optical analogy of the 

dynamical Casimir effect. The first method considers the experimental approach, where 

we use the spatial modulation of the refractive index along a waveguide. In this method, 

we modulate the intensity of the pulsed laser beam along the propagating axis in the 

waveguide. In order to achieve this intensity modulation, we periodically modulate the 

waveguide diameter.  For a fixed pulse energy, this modulation of the diameter leads to a 

periodic modulation of the intensity. This modulation of the intensity occurs along the 

propagation distance z, where the lab frame is our reference. However, one can consider 

this modulation as the modulation of boundaries in time, which is the concept of the 

dynamical Casimir effect, when one considers the travelling pulse as the new reference 

frame. In other words, for the traveling pulse the changing of the refractive index of the 

waveguide, which leads to the intensity modulation of the pulse occurs in time instead of 

space. Figure 3.1 presents the schematic view of the concept of the intensity modulation 

in the waveguide. Conceptually, the  modulation in space (and not time) in the lab frame, 

can be considered as the modulation in time if we are to transform into the comoving 

frame of the pulse where the modulation happens in time and time only. For this transform 
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to be valid, we need the pulse duration to be less than the modulation frequency, as 

otherwise we see both time and space modulation in the comoving frame.  

 

Figure 3.1 Schematic view of the intensity modulation of the pulse in space & time. 

From the point of view of the observer looking at the system from the lab coordination 

the modulation of the intensity of the pulse is special modulation along z axis, while the 

observer located on the pulse considers this periodic modulation in time. 

As a result of this modulation, we expect to generate entangled photon pairs according to 

the dynamical Casimir effect at detuned frequency 
2DCEϖ Ω

∆ = ±  with respect to the 

pump frequency, where Ω  is the frequency of modulation seen by the pulse as an 

observer [60]. Using this concept, we prepare a dynamical Casimir like process, without 

using a temporal modulation of a cavity. We expect the generated photon pairs to increase 

in number along the waveguide length and, coupled into the waveguide mode, to thus 

produce a measurable intensity in the spectrum. 

We use a nonlinear material as the substrate for the waveguide. As is described in  

section 1.3.4 for intense pulses the refractive index of the material can be considered as 

the combination of the linear and nonlinear part, and we also expect to have other third 

order nonlinear effects such as self-phase modulation (SPM).  In 3.3 we will provide the 

results of numerical studies of the modulated waveguides for different pulse durations 

and periodicity of the modulation and intensities, which gives us references for the 

prediction of the frequency dynamical Casimir photon pairs.  
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3.1 Modulated waveguides in gallium lanthanum sulphide (GLS) substrate 

3.1.1 Gallium lanthanum sulphide (GLS) 

GLS is a member of chalcogenide glass family. The “chalcogens” include the elements 

of the group 16 in Mendeleev periodic table. Chalcogenide glasses contain at least one of 

the chalcogen elements. The density of the chalcogenide glasses is relatively high in 

comparison to the oxide glasses. Density of the GLS material is relatively high and 

therefore has a large refractive index ( 2 3n ≈ − ). The transmission window of the GLS is 

from the visible range to around five micrometres [61]. The atomic structure of the GLS 

is centrosymmetric, which means in normal conditions the second order nonlinearity 

vanishes in this nonlinear glass [62]. The third order nonlinear susceptibility for sulphide 

glasses is reported to be very large due to the high hyperpolarisability of the sulphide ions 

[63], [64]. The optical Kerr nonlinearity is reported to be about 35 times higher than silica 

[61]. The third order nonlinearity of GLS is reported to be around 20 2 21.189 10 /m V−⋅ in 

literature [61]. The wavelength of the zero dispersion of the chalcogenide glasses is in the 

mid-infrared [65]. In comparison to other chalcogenide glasses, GLS has the most 

exciting nonlinear optical properties [66]. Given these outstanding optical properties of 

the GLS, we consider it as a suitable candidate for the waveguide substrate. 

3.1.2 Numerical study results  

We studied different modulation periodicities, amplitude of the modulation and different 

pulse durations in order to optimise the amplification of the dynamical Casimir effect 

side-bands. We used numerical simulations to predict the frequency of dynamical Casimir 

effect side-bands. These are based on the Pseudospectral spatial-domain (PSSD) 

technique, which is a variant of the finite-difference time-domain (FDTD) method. This 

code was developed in [67] where the details of the code can be found. 

We first use a pulse duration of 500 fs with 10 mm propagation to demonstrate the Optical 

Wave Breaking (OWB) before searching for any dynamical Casimir effect side-bands as 

shown in Figure 3.2. 
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Figure 3.2 Optical wave-breaking in a 500 fs pulse [68].   

To minimise OWB, we increase the pulse duration to the picosecond level and vary it 

between 1-5 ps. Numerical simulations show clear dynamical Casimir side-bands outside 

of the OWB in the region of the 3 to 5 ps.  Figure 3.3 presents the Casimir side-bands for 

a 5 ps pump pulse duration along the 30 mm of the propagation in a modulated waveguide 

with 200 µm modulation wavelength.  

 

 

Figure 3.3 Simulation prediction for the Casimir side-bands in logarithmic scale (a). 

Colour map of the same result along the propagation in a modulated waveguide with 

200 µm modulation periodicity, along the 30 mm waveguide length (b) [68]. 

Figure 3.4 presents the result of the simulation for different modulation periodicities. We 

see that by increasing the modulation periodicity, the expected Casimir side-bands 

become more intense, while from the other side the position of these side-bands are more 

close to the pump frequency. The position of the side-bands is very important from the 
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experimental point of view as for detection of these side-bands we need to block the pump 

efficiently. 

 

 

Figure 3.4 Logarithmic scale of the output spectrum of the 5 ps pulse with a peak 

intensity of 221.2 /GW cm for different modulation periodicity. a),b),c) and d) 

respectively correspond to the 150 µm, 200 µm,250 µm, 450 µm of modulation 

periodicity along 30 mm waveguide length. 

Once can see that by increasing the length of modulation periodicity, Casimir side-bands 

become stronger, however in the other hand the side-bands become closer to the pump. 

Experimental detection of these side-bands will be very difficult if we have them close to 

the pump. In Figure 3.5 we show the numerical simulation for the 4 ps pulse duration for 

the 250 µm and 450 µm modulation periodicity. By comparing the results for the 5 ps and 
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4 ps pulse durations for the same modulation periodicity we see dropping of the intensity 

of side-bands in 4 ps pulse duration.  

 

 

Figure 3.5 Logarithmic scale of the output spectrum of the 4 ps pulse with a peak 

intensity of 221.2 /GW cm for 250 µm (a) and 450 µm (b) of modulation periodicity. 

3.1.3 Experimental setup 

As previously mentioned, for experimental studies we need ultrashort laser pulses with 

adjustable pulse durations in the picosecond regime. For this experiment we use a 

femtosecond laser pulse as the main source and then filter it with a spectral pulse filter 

setup [69]. Figure 3.6 shows the setup before optimisation. In this setup, we use just one 

high efficiency diffraction grating. We observe some unexpected peaks around the 

fundamental pump shown in Figure 3.7 at the end of the spectral pulse filter part. We 

discovered that the source of these peaks is the back reflection from the optical slit 

surface.  
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Figure 3.6 Schematic view of the compact spectral pulse filter setup by using one 

grating for spreading and collimating the spectrum. 

 

Figure 3.7 Spectrum of the output from the spectral pulse filter setup. In this spectrum, 

we see unexpected peaks around the fundamental peak at 758 nm. 

To circumvent the problem, we improved the setup where we use two separate diffraction 

gratings, one to stretch the input spectrum and another one to collimate the transmitted 

(thus avoiding reflection problems) spectrum after the slit to get a clean spectrum in the 

output of the spectral pulse filter. We also increase the focal length of the lenses in order 

to stretch the spectrum wider and select a narrower part, which helps us to increase the 
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pulse duration. Figure 3.9 shows the pulse duration as a function of the slit size.  Under 

the assumption that we have a Fourier transform limited pulse at the input and output of 

the pulse filtering system, we can measure the spectrum at the output and perform a 

Fourier transform, in this way we can retrieve the pulse duration.  

 

Figure 3.8 Developed setup of the spectral pulse filter. In this setup, there are two 

separated gratings for the stretching of the input spectrum and collecting of the selected 

spectrum. 

 

 

Figure 3.9 Pulse duration versus the width of slit. These data are taken from the setup 

demonstrated in Figure 3.8 (a), sample output spectrum from the setup in Figure 3.8 (b). 

.  
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After choosing the pulse duration, we couple the pulses into the waveguide. The coupling 

system consists of a focusing lens on the linear 3D translation stage and the waveguide is 

placed on a 4D (X-Y, pitch and yaw) stage. A collection/collimating lens after the 

waveguide is also on a 3D linear stage. The coupling to the waveguide is quite challenging 

as the modulated waveguide’s coupling and transmission efficiency depends sensitively 

on the perfect coupling conditions. When coupling to the waveguide is correct, we should 

be able to couple form one waveguide to another one just by moving the waveguide in X 

direction. Figure 3.10 demonstrates the waveguide coupling part of the setup.  

 

Figure 3.10 Waveguide coupling setup. In the perfect coupling conditions, we need to 

use the x-axis adjustment to move from one modulated waveguide to another one and 

keep the coupling efficiency at the maximum. 

3.1.4 Waveguides specifications  

We use GLS, which has a very high third order nonlinear susceptibility 
(3) 20 2 2( 1.189 10 / )m Vχ −= ⋅  in comparison to the other available materials. The main 

disadvantage of this material is the limited size of the substrate in length, which is indeed 

very important in this experiment. 

The waveguides on the GLS substrate are made in collaboration with Dr. Robert 

Thomsons’ research group at Heriot Watt University. These waveguides were prepared 

using the ultrafast laser inscription (ULI) technique. Davis et al. presented this technique 

in 1996 [70]. The technique found a wide range of application in fabrication of integrated 
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optical devices such as waveguides in bulk media. ULI is a nonlinear process, in which 

sub-bandgap absorption of photons causes an irreversible structural change to the material  

[71]. An ultrafast laser beam is focused inside the bulk material. By selecting the right 

energy and parameters of the inscription laser pulses, the nonlinear absorption in the 

medium can exhibit a positive change of the refractive index [71]. Figure 3.11 shows a 

schematic view of the ULI system. The setup consists of an objective to focus the ultrafast 

laser beam and an x-y-z linear translation stage to position the substrate. The position of 

the objective is fixed and in order to fabricate the waveguide the position of the substrate 

is changed by the translation stage. 

 

Figure 3.11 Schematic view of the ultrafast laser inscription.  

Figure 3.12 (a&b) demonstrate the different type of waveguides under microscope. In  

Figure 3.12 (a) the waveguide is made by performing 200 laser writing scans along the 

waveguide and thus change the refractive index accordingly. We refer to this type of 

waveguide as “modulated waveguide”. However, in Figure 3.12 (b) we have 10 laser 

writing scans along the each side of the boundary of the waveguide. We refer to this type 

of wavguides as “ splitting waveguides”.  Using these two different methods of writing 

affect the coupling efficiency. The coupling efficiency of the sample in Figure 3.12 (b) is 

also very sensitive to the input beam’s polarisation. We achieve better coupling efficiency 

when the input beam is linearly polarised and the polarisation is parallel to the modulation 

axis. Figure 3.12 (c&d) schematically present two methods of the writing methods of the 

waveguides in Figure 3.12 a&b.  
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Figure 3.12 The modulated waveguides with same modulation periodicity and different 

modulation amplitude (0, 12, 16,24, 28 μm) (a), Splitting waveguides with different 

modulation periodicity (150, 200 and 250 μm) and amplitude (0, 12, 16, 24, 28, μm) (b), 

modulated waveguides schematic writing method (c), Splitting waveguide schematic 

writing method (d). 

We expect different coupling efficiency from 5% to 50% for different waveguides 

depending on the modulation periodicity and amplitude of modulation. Figure 3.13 

presents the expected coupling efficiency for different sets of splitting waveguides. 

Reflection loss is also considered for the calculation of the insertion loss. 
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Figure 3.13 Theoretical calculation of the loss in waveguide as a function of modulation 

periodicity and modulation amplitude. Data are from [72]. 

After the coupling system, we use a flip mirror to keep the control on the coupling 

efficiency and the correct coupling mode. If the coupling is perfect, we see the profile of 

the output from the waveguide as in Figure 3.14 (a). This mode and profile should be 

observed for each waveguide in this sample. In Figure 3.14 (b) we observe non-Gaussian 

profile along the horizontal axis. We see similar profiles for all waveguides with 

amplitude of modulation higher than 16 µm. This effect corresponds to the modulation of 

the waveguide along the propagation direction and strongly affect the coupling efficiency. 

We consider the waveguide as a defected waveguide if the output profile looks like the 

Figure 3.14 (c). 
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Figure 3.14 Profile of the output beam of the modulated waveguide in ideal coupling 

conditions (a) output profile of the beam from the waveguides with modulation 

periodicity higher than 16 µm (b) output profile from the defected waveguide (c). 

Figure 3.15 demonstrates the mode field diameter of the waveguides on GLS samples. 

For different waveguides and different methods of writing the relative deviation of the 

mode field diameter is ±10% of this measured value. 

 

Figure 3.15 Mode field diameter of the waveguide.  

3.1.5 Experimental coupling efficiency and damage threshold  

The theoretical loss in the waveguides is calculated to be between 3 to 13 db, which is 

equivalent to in-out coupling efficiency from 5% to 50%. In contrast to the theoretical 
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calculation the minimum insertion loss for the modulated waveguide is 7 db. This value 

is for the waveguide with 200 µm modulation periodicity and 12 µm amplitude of 

modulation. First of all, our aim is to measure the damage threshold for our substrate in 

our experimental conditions for our pulse duration. We characterise the damage threshold 

for the GLS sample for different pulse durations in the picosecond regime with 100 Hz 

repetition rate in Figure 3.16. 

 

 

Figure 3.16 Damage threshold for different pulse duration. The repetition rate of the 

laser is 100 Hz. 

Figure 3.17 (a) shows the surface of the polished waveguides under a microscope. In 

Figure 3.17 (b) we can see the damaged surface of the waveguides under a continued 

exposure of the pulsed beam. The surface damage threshold of GLS is significantly less 

than the bulk threshold. Hence this damage of the surface can be easily removed by 

polishing the surface of the sample, which indeed is an advantage for this substrate.    

 

Figure 3.17 Image of the polished surface of the waveguides under microscope (a) 

Image of the damaged surface of the waveguides under microscope. These damages are 

removable by polishing the damaged surface (b). 



70 

 

3.1.6 Self-phase modulation in waveguides 

As we discussed in 3.1.1 modulation of the intensity in a nonlinear medium leads to the 

number of nonlinear effects. From a theoretical point of view, we know that the 

generation of entangled photon pairs from the vacuum state is a less probable effect in 

comparison to the third order nonlinear effects as SPM and OWB. The numerical study 

of the intensity modulation along the propagation in 3.1.1 also confirms the SPM and 

OWB. Hence we start our measurement from the SPM measurement of the spectrum in 

both straight and modulated waveguides.  Figure 3.18 shows the SPM for modulated 

waveguides and straight waveguide for a 5 ps pulse duration. As one can see the blue 

shifting of the spectral broadening of the pulse looks stronger than the red shifting of the 

SPM broadening. This is due to dispersion that creates a steeper trailing edge in the pulse 

and thus pulse broadening that is stronger to the blue side. Figure 3.18 (a) corresponds to 

the SPM in a modulated waveguide with a 150 µm modulation periodicity and 12 µm 

amplitude of the modulation, while the (b) corresponds to the 150 µm modulation 

periodicity and 24 µm amplitude of the modulation. By comparing Figure 3.18 (a&b) one 

can see that the amplitude of modulation does not seriously affect the quality and 

properties of the SPM. We also see that the SPM broadening does not depend on the 

modulation periodicity if we compare Figure 3.18 (a, d and e), corresponding to the 

150 µm, 200 µm and straight waveguide. 

Coupling efficiency for the waveguides in Figure 3.18 (a, b, c, d and e) are respectively 

22%, 20%, 13%, 21% and 25%. In contrast to the simulation results (Figure 3.4), one can 

see that the spectrum broadening for the pulse duration for the given modulation in 

experimental measurement is about 20 times less than the numerical simulation. This can 

be explained by our limitation in the pump intensity because of the damage threshold and 

the insertion loss, which is minimum 80% in our waveguides.   
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Figure 3.18 Self-phase modulation for different waveguides with a pulse duration of 

5 ps. SPM for modulated waveguide with 150 µm modulation periodicity and 12 µm of 

modulation amplitude (a) SPM for modulated waveguide with 150 µm modulation 

periodicity and 24 µm of modulation amplitude (b) SPM for modulated waveguide with 

200 µm modulation periodicity and 12 µm of modulation amplitude (c) SPM for 

modulated waveguide with 250 µm modulation periodicity and 12 µm of modulation 

amplitude (d) SPM for straight waveguide (e). 

We also studied the SPM for modulated waveguide for different pulse duration of the 

pump. Figure 3.19 shows the spectrum broadening for the modulated waveguide with 

150 µm and 12 µm of the modulation amplitude.  
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Figure 3.19 Spectrum broadening in the output of the modulated waveguide with 150 

µm modulation periodicity and 12 µm of the modulation amplitude under 0.5, 0.75, 1.2 

and 2 ps pulse duration of the pump beam. 

Figure 3.20 presents the cross-corrleation map of the SPM for 2 ps pulse duration and 

peak intensity at 7 MW. By looking at all the data, our conclusion is that in experimental 

condtions we have less spectral broadening of the pulse than expected. 

 

 

Figure 3.20 Cross-correlation map of experimental measurement of the SPM in 

modulated waveguide with modulation periodicity of 150 µm and 12 µm amplitude of 

the modulation. The pump pulse duration is 2 ps.  
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3.1.7 Dynamical Casimir effect in side-bands measurement 

Although the nonlinear effects such as SPM in experimental measurements are about 1 

order of magnitude less than in numerical results, we still tried to measure the DCE side-

bands.  

Figure 3.21 presents the spectrum of the output from the modulated waveguide with 

150 µm modulation periodicity and 12 µm modulation amplitude. Pulse duration for this 

experiment is 5 ps. This measurement is performed with an Andor EMCCD in 5 minutes 

integration and 800 of EM gain and peak laser pulse power at 7 MW. We use two notch 

filters to block the pump with optical density (OD) 12. Literature confirms the existence 

of Raman shift for GLS around 806 nm for the pump wavelength at 785 nm [73]. We 

suppose that the DCE side-band in red side is covered by the Raman peak. As for different 

waveguides with different modulation periodicity we see a similar spectrum in the output, 

we subtract the spectrum of 150 µm from the output spectrum of the modulated 

waveguide with 250 µm and same amplitude of modulation equal to 12 µm. Figure 3.22 

presents the subtracted spectrum of two modulated waveguide with 150 µm and 250 µm 

modulation periodicity and same pump energy for 60 min integration time. As we expect 

a shift in the position of side-bands by changing the modulation periodicity, the aim of 

this measurement is to extract a peak from this subtraction and remove the Raman shift 

and possible photoluminescence, which simply depends on the material rather than the 

modulation periodicity. For a given pump power we expect to have a similar Raman and 

photoluminescence but different position of the DCE side-bands. We clearly see no 

indication of any peak in the region of interest. 

Notwithstanding that the high (3)χ in GLS plays an important role and DCE side-bands 

gain from it, the dimensional limitation of the raw material for the substrate, which is 

30 mm in length restricts the increase of modulations along the propagation, which leads 

to the limitation of the modulation periodicity as well. All these limitations lead us to try 

another material as a substrate for the modulated waveguides.  
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Figure 3.21 Measured spectrum of the output from the modulated waveguide with 

150 µm modulation periodicity and 12 µm modulation amplitude (a), zoomed 

presentation of the same spectrum (b).   
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Figure 3.22 Subtracted spectrum of the waveguide with 250 µm modulation periodicity 

from the spectrum of the waveguide with 150 µm modulation periodicity. The 

amplitude of modulation is the same for both waveguides and is equal to 12 µm.   

3.2 Modulated waveguides in fused silica substrate 

All mentioned limitations in 3.1.6 led us to try fused silica as a substrate for the modulated 

waveguides. In contrast to GLS, using fused silica as the substrate material makes it 

possible to increase the waveguide length up to 100 mm. It helps us to increase the number 

of modulation and modulation periodicities. Another advantage of fused silica in 

comparison to GLS material is its well-known optical properties and higher damage 

threshold level, which makes it possible to increase the pump power. 

3.2.1 Waveguides specifications 

Our modulated waveguides on fused silica substrate are made by Dr. Simon Stutzer 

(working in the Szameit group) at University of Jena in Germany. The structure of this 

sample is different from the structure and method of writing for the GLS sample.  The 

waveguide structure is shown in the figure below: it is composed of two coupled 

structures, one is straight and the other one is sinusoidal modulated section. These 

structures behave as a coupled waveguide system, where the electric field along the 

waveguide can be expressed as a combination of the even and odd modes of the overall 

waveguide [74]. 
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Figure 3.23 Schematic view of the coupled waveguides system. Distribution of the 

electric field is presented for three different sections of the waveguide Blue colour 

corresponds to the electric field in the input of the waveguide.     

The main difference compared to the GLS waveguides is the modulation of just one of 

the waveguide (see Figure 3.23). In this sample, we have waveguides with modulation 

periodicity 400 µm,450 µm, 500 µm, …, 1000 µm modulation periodicities and 2, 3, 4, 5, 

6 µm amplitude of modulation and 9 straight waveguides pairs. The separation between 

straight waveguides is different and varies from 6 µm to 14 µm. The separation between 

straight and modulated waveguide in each pair for the coupler part is 60 µm. 

  

 

Figure 3.24 Schematic view of the modulated waveguide in the fused silica substrate. 

The waveguide consists of two waveguides with separation of 60 µm in the straight part 

(coupler part) between straight and modulated one. We have modulated waveguides 

with 400 µm,450 µm, 500 µm, …, 100 µm modulation periodicities and 2, 3, 4, 5, 6 µm 

amplitude of modulation.  
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In Figure 3.25 the flourescence image for the waveguide along the 99 mm of propagation 

is demonstrated. One can see the uniform propagation and distribution for both sides 

along the waveguide.  

 

Figure 3.25 Fluorescence image of the straight waveguide along the 99 mm of 

propagation.   

In Figure 3.26 we demonstrate the fluorescence image for waveguides. As one can see 

the bended waveguides lead to radiation losses, which strongly depends on the amplitude 

and the modulation periodicity. In comparison to the Figure 3.25 we see that the 

modulated waveguides experience a high loss along propagation. It is mainly because of 

the modulation along the propagation [75]. We see that increasing the modulation 

periodicity also increase the radiation loss and after 99 mm propagation the coupling 

efficiency of the waveguides strongly drops. 
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Figure 3.26 Fluorescence image of the modulated waveguides with 400 µm (a), 650 µm 

(b) and 100 µm (c) modulation periodicity and 2, 3, 4, 5, 6 µm amplitude of modulation.   
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3.2.2 Experimental coupling efficiency and SPM measurement 

For these waveguides in best coupling conditions we achieve up to 30% coupling 

efficiency and 18% coupling efficiency for the modulated waveguide. We achieved the 

maximum coupling efficiency for the modulated waveguide with 400 µm modulated 

periodicity and 6 µm modulation amplitude.  We use 300 fs pulse duration with 40 MW 

peak power for this measurement. 

  

Figure 3.27 Self-phase modulation for the modulated waveguide with 400 µm 

modulation periodicity and 6 µm modulation amplitude.  This SPM is measured for the 

pulse duration of 0.3 ps pulse duration and 28 MW peak power. 

 For the given input pulse spectrum with 0.3 ps pulse duration and given peak power after 

99 mm propagation, we expect to measure 27 nm of SPM at FWHM instead of 5.5 nm of 

spectrum broadening in Figure 3.27. Figure 3.28 presents the numerical calculation of the 

SPM for given spectrum and pulse characteristics. Figure 3.29 presents the output profile 

of the straight waveguides. We use this data to find the effective area for each waveguide 

and compare it with SPM in each waveguide. We also measure the spectral broadening 

for all straight waveguides in the sample. We keep the peak power fixed for all 

waveguides. Figure 3.30 (a) demonstrates the SPM for straight waveguides, while Figure 

3.30 (b) presents the measured value of the 1 effA for each waveguide. We clearly see that 

the spectrum broadening is proportional to this value. However, the SPM is still less than 

our expected value even for straight waveguides. From previous experience with GLS 

sample, without sufficient SPM occurring, we can immediately conclude that there is 
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insufficient nonlinearity to observe DCE. We therefore do not proceed with further 

measurements but instead shift attention to a third kind of waveguide as explained in the 

following section. 

  

 

Figure 3.28 Theoretical calculation of the SPM for the given input spectrum and 

40 MW peak power along 99 mm propagation. Input spectrum (a) calculated SPM for 

the given parameters (b).   
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Figure 3.29 Output profile of the straight waveguides. We use the same pulse duration 

(300 fs) and peak power for all waveguides (40 MW). 
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Figure 3.30 Spectrum broadening for all straight waveguides with different separation 

between two straight waveguides of each pair. Number 0 corresponds to the pump at 

input (a), measured 1/Aeff for each straight waveguide. This value is proportional to the 

growth of the spectrum broadening in waveguides (b).   

3.3 Dispersion modulation in photonic crystal fibers (PCF) 

Here we consider another approach to study the dynamical Casimir effect analogue in 

nonlinear optics.  In this proposal, the periodic modulation of the group-velocity 

dispersion (GVD) during the propagation in a photonic crystal fiber is used for the 

generation of side-bands. This is achieved by a periodic modulation of the fiber core 

diameter. This dispersion modulation in PCF leads to the generation of photon pairs. In 

the normal dispersion regime, this phenomenon can be described by four-wave mixing, 

which satisfies momentum and energy conservation. Considering the phase matching 

conditions and energy conservation, one can write [74]: 

 2 2 0i s p pk k k Pγ+ − + =   (3.1) 

and 

 2i s pω ω ω+ =   (3.2) 

where k is the wave vector, ω and P correspond to the frequency and pump power 

respectively. The i,s,p indexes respectively correspond to the idler, signal and pump and 

γ  is the nonlinear coefficient of the fiber: 
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where pλ is the pump wavelength and effA is the effective area of the fiber.  

Now we consider the nonlinear Schrodinger equation (NLSE) which explains the 

modulation instability (MI) process in optical fibers[74]: 
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where u is the slowly varying amplitude of the pulse envelope and 2β is the longitudinal 

evolution of the GVD along the propagation axis. This GVD can be written as: 

 22 2( ) sin(2 / )Az z Zβ β β π= + ×   (3.5) 

where Z is the period of modulation, 2β  the average group velocity dispersion and 2
Aβ  

corresponds to the amplitude of the GVD modulation. For a uniform fiber 2( )constβ = , 

the MI is governed by [74]:  

2
2 2 0Pβ ω γ∆ + =   (3.6) 

From Equation 1.6 one can see that in the normal dispersion regime 2( 0)β > no perfect 

phase matching can be achieved and consequently MI can not take place. In the 

anomalous dispersion regime 2( 0)β < , on the other hand, we Equation 3.6 has soloution. 

For the case of dispersion modulated fibers, the periodic modulation of the GVD gives 

rise to a dispersion grating which must be taken into account [76]: 

 2
2 ( ) 2 2 /z P k Zβ ω γ π∆ + =   (3.7) 

where k is a positive or negative integer. Equation 3.7 shows that an infinite number of 

MI side bands can be generated in modulated dispersion fibers. Furthermore, an 

expansion of up to the fourth order dispersion term is needed to explain why one can 

observe the MI process in uniform optical fibers that exhibit normal dispersion [77]–[79]. 

The same approach can also be taken for dispersion modulated fibers. When the average 

GVD is very low, i.e. when the pump wavelength is close to the average zero dispersion 

wavelength (ZDW) of the fiber, higher order dispersion terms must be considered and 

Equation 3.7 should be replaced by [80]: 
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 2 4
2 4( ) ( ) /12 2 2 /z z P k Zβ ω β ω γ π∆ + ∆ + =   (3.8) 

where 4β is the average fourth order dispersion. Figure 3.31shows the quasi-phase 

matching curves from Equation 3.8 for a typical dispersion modulated fiber with a ZDW 

of 1059 nm. 

 

Figure 3.31 Quasi-phase matching curves calculated from Equation 3.8 with and 

without the β4 term (blue solid and red dashed lines, respectively) as a function of 

average GVD (a), Quasi-phase matching curves calculated from Equation 3.8 (solid 

line) and measured values of side-bands frequencies achieved by tuning the pump 

wavelength (markers) (b). Figures extracted from Ref. [81] 

In order to highlight the role of the dispersion modulation, we can compare Equation 3.8 

with the expected behavior in the absence of any modulation i.e. a uniform PCF such as 

those shown in [78], [79]. Figure 3.32 (a) shows the prediction of the side-bands positions 

and the corresponding experimental measurements for the uniform PCF pumped with a 

wavelength below the ZDW (in the normal dispersion regime, 2 0β > ). The ZDW for the 

PCF in this experiment is 715 nm. As one can see in Figure 3.32 (a), it is clear that in the 

case of no modulation (k=0) the signal and idler should diverge for larger amounts of 

normal dispersion. In contrast to these results for the uniform fiber, our experimental 

results confirm the opposite trend. This can be explained by looking at the first order of 

the grating. Figure 3.32 (b) presents the cross-correlation measurement of the side-bands 

generated from the uniform PCF pumped in the normal dispersion regime.   
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Figure 3.32 Nonlinear phase-matching diagram for the four-wave mixing process. The 

dashed curve is the simulation using a plain strand of silica suspended in the air, while 

the solid curve is the fit used to retrieve the actual refractive index of the fibre. The 

black points correspond to the experimental data while their error bar is proportional to 

their measured FWHM (a), Time interval histogram showing the correlated photon peak 

and (inset) an enlarged view of the accidental coincidence peak for different pump 

powers (b). Figures are taken from [79]. 
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Figure 3.33 predicts the position of the side-bands for a unifrom PCF with a ZDW (λ0) at 

about 1065 nm [78]. Here, postion of the side-bands are calculated for different pump 

powers. As is expected from Equation 3.8, the frequency shift of the side-bands is also a 

function of  the power. However, in the normal dispersion regime, if the pump wavelength 

is at least 10 nm below the ZDW, the power dependence of the frequency shifts of the 

side-bands is not significant.  

 

Figure 3.33 Typical solution of the nonlinear phase matching and energy conservation 

for given pump powers (Pp=14, 140, 1400 W, blue, red and green curves). λ0  

corresponds to the ZDW of the fiber. Data from [78]. 

3.3.1 PCF specifications 

The fiber is fabricated by Dr. Arnaud Mussot at the University of Lille in France. The 

standard stack and draw technique is used for the fabrication of this PCF [82]. Figure 3.34 

shows a schematic view of the stack and draw method. In this process, the fiber consists 

of cappilaries with specific ratio of the inner to outer diameters.. These capillaries are 

then directed into a triangular lattice by special jigs. The targeted outer diameter for the 

uniform PCF is controlled by the feeding rate, furnace temperature and tractor speed. 

However, for the fabrication of the periodically modulated PCF, the fiber diameter is 

shaped and adjusted by the evolutoin of the drawing speed. 
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Figure 3.34 Schematic of stack-and draw method. (a) Stacking of photonic crsytal fiber 

prefrom. (b) Fiber drawing process. (c) photonic crystal fiber preform. Figure from [83]. 

The fiber is designed with a modulation period of 50 cm with the ZDW at 1062 nm. Figure 

3.35 (a) presents a typical outer diameter modulation versus the fiber length and a 

scanning electronic microscope image of the cross-sections ifor the maximum and 

minimum outer diameters are shown in b & c. Figure 3.35 (d) shows the corresponding 

sinusoidal dispersion modulation along the fiber’s axis.  

 

Figure 3.35 Modulation properties of the photonic crystal fiber. Sinusoidal modulation 

of the outer diameter of the fiber along the propagation (a), scanning electronic 

microscope (SEM) image of the fiber in its maximum outer diameter section (b), SEM 

image of the fiber cross-section in its minimum outer diameter (c), corresponding 

second order dispersion modulation (for the fundamental wavelength at 1062 nm) 

versus the fiber length (d). Figure is taken from [84]. 

The positions of the side bands, which were later measured and the results published [84], 

are defined by the following equation: 
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where Ωk is the frequency detuning from the pump, k is the integer number, Z is the 

modulation periodicity, β2 second order and Pp corresponds to the pump power. 

Here we present the experimental approach for the quantum correlation measurement of 

these side-bands to confirm the entangled photon emission. Figure 3.36 presents the 

schematic view of the setup. In this setup, we use a pulsed laser with a pulse duration of 

1.2 ns and repetition rate of 1 MHz. We use grating (G1) to spatially spread the spectrum 

of the collected signal from the photonic crystal fiber. With this arrangement the spectrum 

of the signal photons can be filtered with a high efficiency using an adjustable slit. The 

slits on either side allow us to adjust the resolution of the coupling signal to the single 

photon detectors. The stages are mainly used for the cross-correlation measurement, 

where we need to find and select the best part of the spectrum to optimise the coincidence-

to-accidental ratio (CAR). Later, in the results section, we discuss the procedure for the 

CAR measurement in details.  

 

Figure 3.36 Schematic view of the setup for characterisation and cross-correlation 

measurement. 

3.3.2 Experimental results 

First we attempt to characterise the spectral filtering system, which consists of grating 

lenses and a slit. With this system we can decrease the spectral bandwith of the signal 

down to 0.3 nm. Figure 3.37 shows the experimental results of the spectral filtering 
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characterisation. In order to perform this measurement, we measure the spectrum for four 

different sizes of the slit with a relatively high pump power of 60 mW. 

 

Figure 3.37 Spectral filtering of the signal and idler from the experimental setup in 

Figure 3.36 for different slit sizes. Signal spectrum for dirrent slit sizes (a), idler 

spectrum for the same slit sizes (b). 

Figure 3.38 presents the measured spectrum at the output of the fiber for a fixed pump 

power. A shift in the side-bands peaks can clearly be observed by tuning the wavelength. 

For a fundamental wavelength less than 1054 nm, the side-band at the right hand side of 

the pump will be covered by Raman emission, which will affect the cross-correlation 

measurement and add counts to the accidental peak leading to the drop of the CAR ratio. 

From this measurement we see that the safe range of the pump wavelength for cross-

correlation purposes is about 1054 nm to 1056 nm. 
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Figure 3.38 Side-bands positions for different pump wavelengths. For this 

measurement, we keep the pump power fixed for all wavelengths. 

ZDW for this fiber is between 1061 nm to 1062 nm. The gain drops dramatically by 

pumping with higher wavelengths close to the ZDW. Figure 3.39 shows the spectrum of 

the signal and idler side-bands for different pump powers. By changing the pump power 

one can observe a shift in the signal and idler peak, this can be explained by considering 

Equation 3.8. 

 

Figure 3.39 Power dependence of the signal and idler peaks for the fixed pump 

wavelength. The pump wavelength for this measurement is 1055.4 nm. 

We characterise the pump power dependence of the signal and idler in the low power 

regime (see Figure 3.40). This  power dependence has a linear fit  as expected for low 

power regime. 
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Figure 3.40 Power dependence of the signal and idler counts for the pump wavelength 

at 1055.4 nm. 

As the next step, we perform the quantum cross-correlation measurement. For this 

purpose we use Excelitas single photon detectors and an IDQuantique ID801 photon 

counter unit. First we present the cross-correlation measurement between the signal and 

idler (see Figure 3.41 (a)). In Figure 3.41, we also compare this measurment with the 

cross-correlation measurment of the Raman peak with the blue shifted side-band (signal 

peak). We use a technique where we find the maximum of the signal peak and then scan 

the x axis of the slit position on the idler side to find the the position with the highest 

CAR. The peak at zero position in the time axis corresponds to the measured number of 

correlated photons in signal and idler peaks. In this measurement, one detector works as 

the start and the other one as stop. This means  the detector on the first channel (start 

channel) measures a photon and the electronics measures the amount of time before a 

click on the second channel (stop channel). If the second photon from the stop channel 

arrives within a very short amount of time (within the response function of the detector, 

which is typically a few hundred picosends) this will contribute to the zero delay peak 

and is considered a correlated photon pair event. Otherwise it is considered to be an 

uncorrelated ("accidental") event and contributes to one of the accidental peaks. 

In order to make the cross-correlation measurement between the signal and Raman 

emission (Figure 3.41 (b)) we keep the position of the slit on the signal side (blue shifted 

side-band) fixed and change the position of the slit on the idler side, which collects the 

photons where we do not expect any correlation and consists mainly of Raman emission. 

One can see that in Figure 3.41 (b) the zero delay peak is similar to the  accidental peaks. 

This means that there is no quantum correlation between the Raman emission and the 
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signal photons. The number of the peaks seen in each window depends on the chosen 

resolution of the photon counting unit (ID801). The time interval between peaks 

corresponds to the repetation rate of the laser. 

 

Figure 3.41 Cross-correlation measurement of the signal and idler peaks (a), Cross-

correlation measurement of the signal peak with the Raman peak (b). 

Additionally, we characterise the power dependence of the CAR for a fixed pump 

wavelength of 1055.4 nm (see Figure 3.42). One can see that by decreasing the pump 

power the CAR increases as expected for quantum correlation measurements. From an 

experimental point of view, using a low pump power means that we have a smaller 

number of counts in each channel. This potentially influences the integration time. The 
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slit positions are reoptimised every time the pump power is changed to ensure the 

maximum CAR is reached. 

 

Figure 3.42 Pump power influence on CAR. The pump wavelength is fixed for all 

measurements and is at 1055.4 nm. 

Additionally we study the influence of the slit size on the CAR (see Figure 3.43). We see 

that by reducing the slit size, we get higher CAR. However, the influence of the slit size 

is not that significant. 

As previously mentioned in this chapter, in order to consider the photon pair generation 

from the spatially modulated boundary conditions, as a DCE-like emission, the main 

criterion is to have a pulse shorter than the modulation periodicity. In this case one can 

consider the modulation of the boundary conditions in the comoving frame of the pulse 

as the oscillation in time. The pulse duration of our laser (1.2 ns) corresponds to a length 

of about 17.2 cm. This is about 3 times shorter than the modulation periodicity which is 

50 cm. By satisfying this criterion, we can claim that the measured correlated photons are 

due to DCE emission.   

As the next step we will prepare the setup to measure a heralded single photon (2) ( )g τ . 

This measurement provides undeniable proof of single photon emission. In this 

experiment three single photon detectors will be used. For this measurement a 

beamsplitter will be placed on the signal side. Coincident events will be measured 

between the two output paths heralded by the arrival of a photon in the idler arm resulting 

in a threefold coincidence measurement. It shows that the photon arrival statistics are sub-

poissonian. Below 0.5 in the zero-delay peak can only be achieved by quantum states 

[85].   
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Figure 3.43 Influence of the slit size on the CAR. In this measurement we keep the 

pump power and the pump wavelength fixed. We stop the measurement, when the zero-

delay peak reaches the fixed number of counts. (a),(b) and (c) correspond to slit sizes of 

300, 400 and 500 µm respectively. 
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3.4 Conclusion 

We demonstrated how the spatial modulation of the waveguide along the propagation 

axis is an optical analogue of DCE. Our numerical study confirms the generation of new 

entangled photon pairs.  We show the dependence of the position of the DCE side-bands 

on the modulation periodicity.   

However, in a GLS sample the low coupling efficiency in comparison to the theoretical 

expectation from one side and the low surface damage threshold from the other, limit us 

in coupling enough power into the waveguide. We also have the dimensional limitation 

of the raw material, which means that we cannot increase the modulation periodicity to 

separate the DCE side-bands or increase the modulation numbers along the propagation 

in order to amplify the number of generated photons to make them measurable and extract 

them from the Raman and photoluminescence signal. However, we measure the SPM 

from the modulated waveguides, but all nonlinear effects are still less than the theoretical 

expectation.   

Using fused silica as the substrate material makes it possible to have a longer propagation 

length in the nonliner medium. However, we still have extremely low coupling efficiency 

and very high radiation loss for the modulated waveguides. We consider the lack of third 

order nonlinearity as the main reason why we measure a SPM about 5 times less than the 

theoretical calculation in modulated waveguide.  

The final approach for the investigation of the correlated photon pairs from the photonic 

crystal fiber, assisted by the nonlinear dispersion of the fiber appears to provide an 

analogue of DCE as we modulate the dispersion as a boundary condition in time. This 

project has been starting in the last months of this PhD research and the project is still 

ongoing in the research group for the further optimisation of CAR and investigation. 

 

  



96 

 

4 Conclusion and future work 

This thesis presents the development of a set of novel optical approaches to study the 

Dynamical Casimir effect (DCE). This work provides a new perspective and insight into 

one of the most exciting and surprising phenomena in Quantum Physics. All of the 

approaches considered use manipulation of material properties through the nonlinear 

optical susceptibility to reproduce the temporal modulation of boundary conditions 

concomitant with the dynamical Casimir effect. We underline how different optical 

processes in the nonlinear medium can be considered as the analogy of DCE.  

In chapter two, we presented the possibility to use a monolayer of MoS2 (2)( )χ  for the 

study of the DCE. Preliminary studies focused on characterisation of this material in both 

the visible and IR regime can, which find broad application and huge potential for novel 

electronic and optoelectronic applications.  We note that these characterisation techniques 

can be used in a number of atomically thin layers of 2D materials ranging from wide-

bandgap insulators and semiconductors to superconductors that can be easily and 

inexpensively isolated from a piece of bulk layered material [1].  

The SHG signal from 2D MoS2 flakes is estimated to be a few orders of magnitude larger 

than that of common bulk materials such as LiNbO3 and β-BaB2O4 (BBO) (7 to 9 pm/V). 

However theoretical estimations and experimental values for the (2)χ currently reported in 

literature are contrasting and vary over 3 orders of magnitude. Some authors [19] estimate 

a susceptibility of the order of 100 pm/V, with on-resonance values rising to 4000 pm/V 

at 800 nm.  We presented measurements of (2)χ for mechanically exfoliated MoS2 

monolayer as a function of input wavelength in the range between 710 nm (1.75 eV) and 

1000 nm (1.24 eV). We presented high resolution data in which we found a maximum 

value of (2) 410 /pm Vχ ≈ , that compares well to the values from [17] which are about 20 

times smaller (400 pm/V at the maximum). Our values are one order of magnitude less 

than those reported by [16] and thus overall compatible with the range of values reported 

in literature.  

In this work, we proposed a mathematical model for the pump polarisation dependence 

and polarisation of the emitted signal of the second harmonic generation (SHG) and 
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spontaneous parametric down conversion (SDPC) from a MoS2 monolayer. We also 

presented different experimental methods of the polarisation measurement of SHG signal, 

which match the theoretical expectation. The possible SPDC signal measurement from a 

2D transitional metal dichalcogenide material was first  performed and discussed in this 

thesis. In the monolayer MoS2 sample we show a perfect match between the 

experimentally measured polarisation dependence of the input and output light emission 

with that predicted by our mathematical model based on SPDC. However, in bulk and 

edge states of the MoS2 sample we see a very different dependency on the polarisation, 

suggesting an alternative mechanism for the light emission.  

We also presented the time-resolved measurement of the expected SPDC signal from a 

MoS2 monolayer. We observe a long life-time of the SPDC signal, which is expected to 

be instantaneous and within the resolution of the detector response function. For detection 

in the visible range of 50 nm bandwidth centred at 875 nm, we find agreement with our 

expectation that SPDC can be strongly dominated by photoluminescence signal. 

However, the emitted signal from the MoS2 monolayer flake in IR regime, where we do 

not expect to have significant photoluminescence signal, shows just one fast exponential 

decay. This fits the response function of the detector, while the emitted signal from a bulk 

and edge state is longer than the response function and is represented by two exponential 

components with different weights from one point to another one on bulk or the edge 

states, respectively.  

These differences between the signal from monolayer and bulk crystal led us to make a 

conclusion that the nature of these signals are different and they belong to different 

physical processes. They indicate, that indeed the fast signal from the monolayer could 

correspond to SPDC, but a stronger emission or more evidence is needed in order to reach 

a definite conclusion. 

Cross-correlation measurements of the emitted signal from MoS2 in both visible and IR 

regime show the coincident to accidental ratio (CAR) around 1. However, our estimation 

for the number of detectable photons in the visible regime proves that the measurable 

number of generated entangled photon pairs is much less (about 14 times) than the 

experimental standard deviation in the cross-correlation measurement. This experimental 

standard deviation is about 15 times higher than the theoretical standard deviation. The 

experimental error comes from electronic noise and scales linearly with integration time. 
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It means that with the current state-of-the-art electronics, it is impossible to measure CAR 

higher than 1 for this type of SPDC. 

However, polarisation dependence and life-time measurement in IR regime are two strong 

indications for SPDC emission from the MoS2 monolayer.  This is strong motivation for 

future experimental measurement of the SPDC signal from a MoS2 monolayer. As 

mentioned in Appendix I, the number of detectable correlated photon pairs scales with 

the square of the collection efficiency µ, which is very low in this experimental 

configuration. Our estimation suggests that a viable strategy to improve the CAR consists 

in increasing the collection efficiency of the emitted signal. 

In chapter three we present two experimental methods for the study of DCE in a different 

nonlinear medium. In this chapter, we use the third order nonlinear optical susceptibility
(3)( )χ  of the material. 

As we mentioned in chapter one, the main criterion for the DCE is the modulation of the 

EM mode boundary condition in time. We presented two main approaches to possibly 

perform study the DCE using  spatial modulation of the boundary conditions of the EM 

mode in the lab frame. In chapter three we demonstrated that a spatial modulation along 

the propagation length acts as a temporal modulation in the co-moving frame of the pulse. 

The first approach considers modulation of the pump field intensity along the length of a 

waveguide. In this case, we modulate the intensity of the pump by modulation of the 

refractive index along the waveguide. We use two different materials as substrate for the 

waveguide. In both cases, we use a Ti-Sapphire 100 Hz femtosecond laser beam centred 

at 785 nm as the pump source.  

The first waveguide is made from a gallium lanthanum sulphide (GLS) substrate. 

However, a number of effects lead to compromised experimental results, such as low 

coupling efficiency, low surface damage threshold and limited size of the substrate . As 

a possible route to improve these experimental results, we suggest that a longer 

waveguide size and more efficient coupling can pave the way to make the DCE effect 

measurable.  

We also used a fused silica substrate for the modulated waveguides. Choosing this 

material makes it possible to increase the waveguide length up to 10 cm. However, the 
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lack of nonlinearity, radiation loss along the waveguide [5] and low coupling efficiency 

strongly affects nonlinear processes. Our measurements show  self-phase modulation in 

the most efficient waveguide in the fused silica substrate to be about one order of 

magnitude smaller than the theoretical expectation.  

In a second approach, presented in chapter three, we use a periodic modulation of the 

group velocity dispersion in a photonic crystal fiber to study the generation of two new 

frequencies resulting from the annihilation of two pump photons. This process can be 

described by spontaneous four wave mixing. We also show that in dispersion modulated 

photonic crystal fiber this criterion is satisfied, which means the new generated pairs of 

photons can be considered as DCE photon pairs. As a proof of this we present cross-

correlation measurements of signal and idler photons, which is the sufficient and 

necessary condition for the presence of quantum correlations. The measurement of the 

temporal correlations between the signal and idler in presented experiments leads to a 

coincident to accidental ratio (CAR) of 7.5. We also present the characterisation of the 

slit size influence on CAR (see Figure 3.43). Notwithstanding that the slit size not 

strongly affect the CAR but it shows that the CAR can be opitimsed by adjusting the slit 

size. 

This thesis presents experiments that are currently ongoing within the Extreme Light 

research group. Presented data are the initial successful measurements and below we list 

future works and experiments that are planned within this field: 

• Using shorter pulses or alternatively using a photonic crystal fiber with longer 

modulation periodicity in order to efficiently satisfy the DCE emission’s condition 

in spatially modulated medium. 

• Increasing the collection efficiency in the experimental setup and more efficient 

filtering. In the short term, an improvement in the performance of the detection 

assembly can be obtained by optimizing the choice of the optical components 

used: the aim is to maximize the reflectivity or transmission of these components 

(diffraction gratings, mirrors, imaging lens, Microscope objective). 

• Presented measurements of the power dependence of CAR in Figure 3.42, clearly 

shows that there is optimal value of the pump power, which gives the higher value 

of the CAR. However, this pump dependence can be done with higher resolution. 

We also assume that the pulse duration of the pump field can affect the CAR. 
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Hence for the optimisation of the CAR, the pulse duration dependence can be 

studied to find the optimal value.  

• As mentioned in chapter three, the current experimental setup does not allow us 

to measure the accidental and zero-delayed peak at the same time. We are 

planning to use other Time-Correlated Single Photon Counting (TCSPC) to 

measure both peaks simultaneously. 

• Measuring the second order correlation function (2)( )g  of the emission.   
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5 Appendices  

5.1 Appendix I   Estimation of the measurable correlated photons from SPDC 

process 

In Figure 2.21 we present the cross-correlation measurement of monolayer MoS2, while 

pumping the crystal at 437 nm and measuring at 875 nm with a bandwidth of 50 nm. As 

one can see, the coincidence-to-accidental ratio (CAR) for this measurement is around 1. 

We assume that the main reason for the lack of CAR>1 in this case is that only a very 

small part of the collected signal is due to the SPDC process, as it is dominated by the 

strong PL signal at this wavelength. In order to confirm this hypothesis, we use 

Equation (1.31) to estimate the contribution of the SPDC signal to the zero-delay peak in 

cross-correlation measurements. It can be seen that the signal power in Equation (1.31) 

scales quadratically with χ(2). It should be noted that the value of χ(2)
 for MoS2  reported in 

literature varies by 3 orders of magnitude; for this estimation we use the value of χ(2) that 

we measured at 875 nm (0.9·104
 pm/V, Figure 2.21). This value is in the middle of the 

reported range and we estimate that it is accurate within a factor of 3, based on the 

experimental sources of error.   

The parameters for this calculation are: 

Variable unit variable unit variable unit variable unit 

0.68L =  nm  18pP =  Wµ  4.5effd =  / Vnm  3.5pn = [86] −  

50sδλ =  nm  437pλ =  nm  875sλ =  nm  875iλ =  nm  

By inserting all these parameters into Equation 1.31, we get: 
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We then divide the signal power by the photon energy in order to find the rate of expected 

SPDC photon pairs emitted from the crystal: 

 5 11.4 10s s
generated

PN
hc s

δ λ
= = ⋅  (App.2) 

 where h is the Planck constant and c is the speed of the light. For simplicity, we use the 

central wavelength of the measured spectrum, which is 875 nm. The error arising from 

this estimation is less than 0.05%, which, in comparison to other assumptions made in 

this calculation, is not significant. 

The next step in this calculation is the estimation of the collection efficiency, µ. This 

parameter make a quadratic contribution to the estimation of the SPDC role in the zero-

delay peak, and so plays a critical part [87]. The lack of phase-matching conditions in the 

SPDC process for subwavelength films means that the emission is expected to be isotropic 

on a full solid angle of 4π, along every possible direction. Figure App.1 shows schematic 

view of all possible directions for the SPDC entangled photon pairs generation.  

 

Figure App.1 All possible combinations of the spontaneous parametric down conversion 

entangled photon pairs generation from monolayer MoS2 crystal. 

Since we collect only from one side of the sample, and we separate signal and idler 

photons non-deterministically with a 50/50 beam splitter, a factor of 1/4 is contributed to 

µ, and the collection efficiency of the objective can be estimated from NA=0.85. We then 

consider the collection efficiency of the transmission line, where we take into account the 

transmission efficiency of all optical elements, the coupling efficiency into the fibres, and 

the quantum efficiency of the detectors. Taking into account all these parameters gives us 

a final efficiency of 31.4 10µ −= ⋅ .  By multiplying the rate of generated photons by µ2 we 

find the number of detected photons as coincident photons in the cross-correlation 

measurement (Figure 2.21 (b)):  
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 2 0.268generatedN µ =   (App.3) 

We then multiply this number by the integration time (2 hours) of the measurement in 

order to find the contribution of the real detected coincident photon pairs in zero-delay 

peak: 

 2 1929generatedN tµ ∆ =   (App.4) 

Theoretical calculation of the standard deviation for the peak height in the measurement 

gives an approximate value of 1800, while the experimental standard deviation is ~27000. 

This experimental standard deviation is calculated by integrating each peak in 

Figure 2.22 (a), rather than from the peak height, as this integration corresponds to the 

photon numbers in each peak. This calculation shows that our experimental standard 

deviation is about 14 times higher than our estimated coincident photon numbers for the 

whole measurement.  This is mainly due to the fact that the few detected photons from 

the SPDC signal are strongly dominated by the PL signal. Furthermore, as we mentioned, 

this calculation is based on the assumption that the system is ideal and takes into account 

just the systematic losses, which means the real detected photons due to the SPDC signal 

at zero-delay peak are probably even less than our calculated value. All these facts lead 

to the conclusion that with the currently available electronics and measurement 

techniques it is impossible to see the CAR>1. We can consider different approaches in 

order to have the CAR>1, but the simplest solution will be increasing the efficiency of 

detection. 
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5.2 Appendix II Theoretical calculation of the polarisation dependence of the SHG 

and SPDC from MoS2 monolayer. 

Theorethical calculation of the polarisation properties of the SPDC from MoS2 monolayer 

has never been studied before. This Calculation developed in our research group and is 

presented in this thesis first. 

Figure App.2 (a) presents a schematic view of the experimental setup for polarisation 

measurements.  In this setup, we control the pump polarisation with a half-wave plate 

(HWP) and select the output polarisation using a linear polariser (Pol).  

Assuming the MoS2 monolayer is lying in the x-y plane, and that the incident pump beam 

is traveling along the z axis, we define 2 systems of reference for the polarisation 

measurements. As illustrated in Figure App.2 (b), θ is the angle of the pump polarisation 

given by the electric field pE


with respect to the mirror plane y, andα is the angle of the 

polariser with respect to the same axis. 

In both SPDC and SHG the generated field is proportional to the nonlinear polarisation: 

 (2)
1 2 0 1 2 1 2( ) ( ) ( ) ( )i ijk j k

ijk
P E Eω ω ε χ ω ω ω ω+ = +∑  , (App.5) 

where i, j and k are indexing the directions with respect to the crystal axes. The MoS2 

monolayer is a D3h crystal [56], thus we have [28]: 

 (2) (2) (2) (2)
yyy yxx xxy xyxχ χ χ χ χ= − = − = − ≡  , (App.6) 

and all the other terms of the nonlinear susceptibility vanish. 
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Figure App.2 (a) Experimental setup for the polarisation dependent characterisation. (b) 

Orientation of the pump polarisation with respect to the mirror plane. (c)  Orientation of 

the linear polariser with respect to the mirror plane. (d) Six-folded pattern for the SHG 

polarisation dependence when we have the polariser angle perpendicular to the pump 

polarisation and rotate them together (red line), and when the polariser angle is parallel 

to the pump polarisation and we rotate them together (blue line). (e)  Four-folded 

pattern for the SHG polarisation dependence when we keep the polariser angle 

horizontal and rotate the pump polarisation (red line), and when we fix the vertical 

polariser axis and rotate the pump polarisation (blue line). (f) Polarisation dependence 

of SPDC when we keep the polariser axis fixed at any random angle α0 (here α0=0 – 

blue line, and π/2 – red circles) and rotate the pump polarisation. The graphs above 

panels (d)-(f) represent the legend: the orange and green arrows represent the pump 

polarisation and polariser angle, respectively. The circular arrow indicates the angle of 

rotation, and the black circular arrow indicates that both the pump and polariser angles 

are rotated simultaneously. 

In SHG a pump beam at pω generates a signal at:  

 (2)
0(2 ) (2 ) ( ) ( )i p ijk p j p k p

ijk
P E Eω ε χ ω ω ω= ∑   (App.7) 
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Now, by considering a pump field in the x-y plane at an angel θ with respect to the mirror 

plane (θ is the angel between the mirror plane and the polarisation of the pump beam) as 

in Figure App.2 (c), one can write: 

 
.sin( )
.cos( )

x p

y p

E E
E E

θ

θ

=
 =

 . (App.8) 

For the 𝑥𝑥� and 𝑦𝑦� polarisations (no tensor terms give the polarisation along  𝑧̂𝑧 ), we thus 

have: 

 

(2) (2)
0 0

(2) (2) 2
0 0

(2) 2
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(2) (2)
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2 2
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(2 ) ( ) ( ) ( ) ( )
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ω ε χ ω ω ε χ ω ω

ε χ ω ω
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= + =

= − =

= 2 2

2
0

) sin ( )]

cos(2 )
p

p

E

E

θ

ε χ θ

− =

=

  (App.9) 

So the intensity of second harmonic along 𝑥𝑥� and 𝑦𝑦� is proportional to: 

 
2

2

(2 ) sin (2 )
(2 ) cos (2 )

x

y

I
I

ω θ

ω θ

∝

∝
 . (App.10) 

We can write the polarisation P along the polariser axis in terms of α: 

 cos( ) sin( )y xP P Pα α α= +  . (App.11) 

In most of literature the authors fix both the pump and the polariser angles, θ and α, and 

rotate the sample. This is equivalent to fixing the sample and rotating both the pump and 

the analyser together, which in our notation corresponds to settingα θ= (parallel, 𝑃𝑃∥) or

2
πα θ= + (perpendicular, P⊥ ) in Equation (App.12): 

 

2 2
0 0

2 2 2
0

2 3 2 2
0

2 3 2 2
0 0

(2 ) cos(2 )cos( ) sin(2 )sin( )

((cos ( ) sin ( )) cos( ) 2sin( ) cos( )sin( ))

(cos ( ) sin ( ) cos( ) 2sin ( ) cos( ))

(cos ( ) 3sin ( ) cos( )) cos(3 )

p p

p

p

p p

P E E

E

E

E E

ω ε χ θ θ ε χ θ θ

ε χ θ θ θ θ θ θ

ε χ θ θ θ θ θ

ε χ θ θ θ ε χ θ

= − =

= − − =

= − − =

= − = −



  (App.12) 
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Similarly, we can write for the perpendicular component: 

 

2 2
0 0

2 2 2 2
0

2 3 2
0

2 2 3 2
0 0

(2 ) cos(2 )sin( ) sin(2 )cos( )

((cos ( ) sin ( ))sin( ) 2sin( ) cos ( ))

(cos( )sin( ) sin ( ) 2sin( ) cos ( ))

(3cos ( )sin( ) sin ( )) sin(3 )

p p

p

p

p p

P E E

E

E

E E

ω ε χ θ θ ε χ θ θ

ε χ θ θ θ θ θ

ε χ θ θ θ θ θ

ε χ θ θ θ ε χ θ

⊥
= + =

= − + =

= − + =

= − = −

  (App.13) 

The SHG intensity is proportional to the modulus square of P: 

 
2

2

(2 ) cos (3 )

(2 ) sin (3 )

I

I

ω θ

ω θ⊥

∝

∝
   (App.14) 

This case gives the standard and well-known six-folded pattern and is represented in 

Figure App.2 (d). 

An alternative way to perform the same measurement is what we presented in the main 

text, i.e. keeping the polariser fixed at some angle 0α and rotating the pump polarisation 

angle θ . In this case the intensity of the emitted signal along 0α is: 

 
0

2
0 0(2 ) (cos(2 )cos( ) sin(2 )sin( ))Iα ω θ α θ α∝ −   (App.15) 

In Figure App.2) (e) we plot the case for 0 0, 2α π=  and always find a 4-fold pattern. 

This is indeed what we observed in the SHG experiment. 

For calculating the polarisation dependence of the SPDC, we start by considering a seed 

at sω and calculate the nonlinear polarisation along direction i, at the idler frequency( ),iω

from Equation (App.5): 

 (2)
0( ) ( ) ( ) ( )i i p s ijk p s j p k s

jk
P E Eω ω ω ε χ ω ω ω ω= − = − −∑  , (App.16) 

where pω , sω  and i p sω ω ω= −  are the pump, signal, and idler frequencies, respectively. 

Since for SPDC, sE


 is only given by vacuum fluctuations, we have to average the result 

on all possible directions of the polarisation vector, sE


. 

Now, by considering Equation (App.6) and Equation (App.16) for the x and y components 

of the SPDC polarisation, one can write: 
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*
0

*

* *

( ) { ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )}

y p s yyy p s y p y s
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E E

E E E E

ω ω ε χ ω ω ω ω
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 . (App.17) 

So for yP  we have: 

 * *
0( ) {2 ( ) ( ) 2 ( ) ( )}y p s y p y s x p x sP E E E Eω ω ε χ ω ω ω ω− = −  . (App.18) 

Similarly, for xP one can write: 

 

* *
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* *

* *
0

( ) { ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )}

{2 ( ) ( ) 2 ( ) ( )}

x p s xxy x p x s xxy y p x s

xyx y p y s xyy x p y s
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P E E E E

E E E E

E E E E

ω ω ε χ ω ω χ ω ω

χ ω ω χ ω ω

ε χ ω ω ω ω

− = + +

+ + =

= +

 . (App.19) 

Now, by applying Equation (App.8) to Equation (App.18) and Equation (App.19), one 

can write: 

 
* *

0

* *
0

( ) {2cos( ) ( ) 2sin( ) ( )}

( ) {2sin( ) ( ) 2cos( ) ( )}
y p s p y s x s

x p s p y s x s

P E E E

P E E E

ω ω ε χ θ ω θ ω

ω ω ε χ θ ω θ ω

− = −

− = − +
 . (App.20) 

Assuming that sE


is at a certain angle, sθ , with respect to y, Equation (App.20) becomes: 

 

* *
0

*
0

* *
0

*
0

( ) {2cos( ) cos( ) 2sin( ) sin( )}

2 {cos( )cos( ) sin( )sin( )}
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ε χ θ θ θ θ

ω ω ε χ θ θ θ θ

ε χ θ θ θ θ
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 . (App.21) 

Polarisation of the idler is proportional to: 

 
( ) {cos( ) cos( ) sin( )sin( )}
( ) {sin( ) cos( ) cos( )sin( )}

y p s s s

x p s s s

P
P

ω ω θ θ θ θ

ω ω θ θ θ θ

− ∝ −

− ∝ −
 . (App.22) 

Now, if we consider a polariser at a fixed angel 0α we have: 

 
0 0 0( ) ( )sin( ) ( ) cos( )p s x p s y p sP P Pα ω ω ω ω α ω ω α− = − + −  . (App.23) 

Instead the components parallel and perpendicular to the pump are: 
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  . (App.24) 

Similarly, one can evaluate the components parallel and perpendicular to the seed: 

 
( ) ( )sin( ) ( ) cos( )
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  . (App.25) 

For each case we have to compile the intensity that is proportional to the square of the 

polarisation, e.g.: 
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 . (App.26) 

In the spontaneous amplification case, we have to consider a seed given by the vacuum 

fluctuations at all values of sθ , so that: 

0

2

0
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∫
  ,

 (App.27) 

and similarly: 
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

 . (App.28) 

Therefore, as illustrated in Figure App.2 (f) for any choice of the polariser angle 0α , no 

dependence of the SPDC signal on the pump polarisation angle is expected, as indeed 

observed in our measurements (Figure 2.31). 
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5.3 Appendix III Setup alignment procedure for cross-correlation measurement 

The experimental alignment is very important, especially for the investigation of the 

signal from a monolayer crystal in IR regime. As we mentioned in section 2.6.2, a large 

percentage of the signal is due to the substrate. In order solve this problem we used 

different kinds of substrates. Here, we want to mention important aspects of the setup 

alignment. As one can see we just use the collimation objective to collect the signal from 

the monolayer in the transmission configuration. The first step to align the setup is to 

couple the laser directly to the multimode optical fibre without any additional optical 

elements, such as objectives. This spatial fibre coupler will be used to couple the collected 

signal from collimating objective; in this stage the aim is to minimise the final adjustment 

to this coupler. Using this procedure helps us to be sure that after putting g objectives in 

the system, we still couple the light to the detectors under the same angle. The second 

step is to put in objectives and try to obtain the same coupling efficiency, without touching 

the spatial coupler. The final step, which is very important, is finding the right distance 

of the coupling objective from the sample. For this configuration our flake is on the right 

hand side facet of the substrate. As we work with monolayer flakes with thickness of 

about 0.7 nm, we will rely only on maximising the collected signal to adjust the distance 

of the objective from the flake. The main difficulty of this process is the 

photoluminescence from the substrate at this wavelength. So, maximising the collected 

signal on the single photon detector does not necessarily mean that we couple the image 

of the flake into the fibre, and it can simply be the image and signal from the substrate. 

In order to bypass this issue, we first maximise the signal from the flake and take a note 

of the number of counts “Nf”.  We then change the position of the substrate and look for 

a place where there is no flake and we have just the signal from the substrate “Ns”. We 

slightly decrease the signal from the substrate by increasing the focal distance, and then 

go back to the place where we have the monolayer and take a note of the number of counts 

“Nf”. Finally, the best position for the focal distance of the collecting objective is the 

distance where the ration of “Nf / Ns” is highest. 

For the transmission-reflection configuration, this issue still very important as we use an 

objective for focusing, which has a longer working distance, and there is a layer of 

substrate between focusing objective and flake.  
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5.4 Appendix IV Substrate choice  

Choosing the right substrate plays an important role in the coincidence-to-accidental ratio. 

The photoluminescence emitted from the substrate mainly goes to the accidental peaks, 

while the signal from the crystal mainly makes a contribution to the zero-delay peaks. 

Hence it is very important to reduce the photoluminescence signal from the substrate as 

much as we can. One way to attempt this is to find the best fused silica substrate, which 

theoretically does not emit photoluminescence in IR regime. We tried different substrates 

from different companies, but consistently measure a significant photoluminescence from 

the substrate in comparison to the signal from the monolayer. Our aim is to reduce the 

photoluminescence signal from the substrate by optimising the collection from the flake. 

This is relatively easy to achieve for the transmission configuration, but we still have 

difficulty with the transmission-reflection configuration as the thickness of the substrate 

plays an important role in the reflection side. We use substrates with thicknesses of 

150 µm and 100 µm in order to make it possible to focus and collimate with identical 

objectives. This can improve the collection efficiency and reduce the photoluminescence 

signal from the substrate at the reflection side. This substrate not only makes it very 

difficult to transfer the flake onto it, as they are extremely fragile, but also produces a 

high photoluminescence signal. Another idea for the transmission configuration is to 

make a free standing sample. We tried two ways of implementing this. We make parallel 

lines with a cutter on one side of the silicon wafer substrate with a depth of 60% of the 

thickness, and make another line on the other side of the substrate to 50% of the substrate 

depth, which is perpendicular to the lines on first side. We therefore have a substrate with 

a square extruded cut through all the substrate in the cross point of the two lines. Figure 

App.3 presents a schematic view of this substrate. The main disadvantage of this method 

is the choice of substrate material. Instead of using fused silica, which is very fragile, we 

use silicon for this purpose. Another limiting factor for this method is the size of these 

squares, which is the thickness of the blade (40-50 µm) used for this process. This means 

that to successfully transfer the crystal to the substrate our flake should be about two times 

larger than the square (roughly 100 µm by 100 µm). The largest crystal size which we 

have is 100 µm by 50 µm and it is very difficult to get such a large crystal by mechanical 

exfoliation.  
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Figure App.3 Schematic view of the silicon substrate with rectangle holes. This 

substrate has straight horizontal cuts from one side with the depth of 300 µm and 

vertical cuts from the other side with the depth of 250 µm, while the thickness of the 

substrate is 500 µm. The hole has a square shape with dimension of 40 µm. 

The other idea, which has greater potential, is to make a hole by laser beam on the thin 

fused silica substrate and transfer the flake onto the hole. In this method, we do not have 

a problem with the hole size and the material for the substrate. Figure App.4 (a) presents 

our laser substrates with holes made using a femtosecond Ti-Sapphire laser with 100 Hz 

repetition rate. It is relatively easy to transfer the monolayer flake onto this hole. Figure 

App.4 (b) shows the transferred flake on the hole. After transferring the flake onto the 

whole, surprisingly, we measured a huge photoluminescence signal from the substrate. 

After a test measurement of the photoluminescence from the substrate and the edge of the 

hole, we discovered that as a result of making hole with laser beam, the structure of 

substrate material changes and when we excite the edge of the hole even by a very low 

intensity we measure a very strong photoluminescence from this edge. This important 

disadvantage mean that the best method is to use the normal fused silica substrate and 

chose the transmission configuration as the main method of the cross-correlation 

measurement.   
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a) b)

 

Figure App.4 Laser made hole in fused silica. We use a high power femtosecond laser 

to make a hole on the fused silica (a), and transferred a free standing flake of 

mechanically exfoliated monolayer crystal on the fused silica (b).  
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