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Abstract

This thesis investigates the applicability of a range of computational techniques

across a range of open shell chemical systems from the geometrically simple but elec-

tronically complex to the geometrically complex but electronically simple. Initially

an investigation into a range of geometrically simple but electronically complicated

systems is presented. The Monte Carlo Configuration Interaction method (MCCI)

is applied to challenging transition metals dimers such as ScNi in order to establish

the ground state potential energy surface, from equilibrium bond lengths through to

dissociation using highly compact wavefunctions compared to Full Configuration In-

teraction (FCI). It shall be demonstrated that the ScNi dimer represents the current

limit of this technique. Software development of MCCI is then undertaken in order

to perform calculations of spin-orbit coupling interactions. Results on B, C, O, F, Si,

S, F, Cl, OH, NO, CN and C2 species are shown to be comparable with other tech-

niques using the one-electron Breit-Pauli Hamiltonian. The application of quantum

chemistry to geometrically complex but electronically simple systems is then consid-

ered. Density Functional Theory (DFT) is used to investigate the mechanism and

energetic barriers leading to ring inversion of the biscalix[4]arene supra-molecule.

A minimum barrier height of 19.31 kcalmol−1 to inversion is elucidated along with

details of the complete mechanistic pathway to inversion. The focus then moves

to polymetallic clusters of calix[4]arene. A DFT study is made of the preferential

binding of calix[4]arene towards first row transition metals of various oxidation and

spin states. Results indicate that Cu3+ (singlet) species will preferentially bind to

the lower rim over other metals in the study. The final DFT-related work presented

is a study of the preferential binding at the upper rim of polymetallic calix[4]arene

clusters towards a range of important small gas molecules. It was found that gases

such as NH3 and SO2 bind most strongly to the upper rim with the inclusion of a

transition metal at the lower rim providing strengthening of the host-guest binding.
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ŝ Operator for Single Electron Spin
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Chapter 1

Introduction

1.1 Time-Independent Schrödinger Equation

In order to solve problems involving the energies, reactivity or properties of chemi-

cal systems at the molecular level, one must subject the system to a quantum me-

chanical treatment. Here, the mechanics involved deviates significantly from that

described by Newton, requiring instead the Schrödinger wave equation [1], with cor-

respondence between the two mechanical descriptions occurring as the energy levels

of the system coalesce to a continuum as h → 0. Although the Schrödinger equa-

tion was initially derived in time-independent form, with the time-dependent form

subsequently discovered at a later date, it is convenient to present the theory in

the reverse order. Therefore we start from the time-dependent form and derive the

time-independent version from consideration of this [2]. The time-dependent form

of the Schrödinger equation, in atomic units, is shown in equation 1.1, where ~r is a

position vector.

HΨ(~r, t) = ih̄
d

dt
Ψ(~r, t) (1.1)

The solution, Ψ(~r, t), to this differential equation can be constructed, via separation

of distance and time variables, as the product of two functions ψ(~r) and φ(t) as

shown in equation 1.2.

Ψ(~r, t) = ψ(~r)φ(t) (1.2)
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Substituting equation 1.2 into equation 1.1 and dividing throughout by ψ(~r)φ(t)

leads to equation 1.3.

Hψ(~r)φ(t)

ψ(~r)φ(t)
=

ih̄

ψ(~r)φ(t)

d

dt
ψ(~r)φ(t) (1.3)

On the left hand side of this equation, the Hamiltonian operator, H, only contains

spatial dependence allowing commutation with φ(t). On the right hand side of

the equation, ψ(~r) can commute with the partial differential operator leading to

equation 1.4.

φ(t)Hψ(~r)

ψ(~r)φ(t)
=

ih̄ψ(~r)

ψ(~r)φ(t)

d

dt
φ(t) (1.4)

Cancelling out on both sides leads to equation 1.5.

Hψ(~r)

ψ(~r)
=

ih̄

φ(t)

d

dt
φ(t) (1.5)

Because both sides of the above equation now contain only one variable, the only

way they can be equivalent to each other is if they are both equal to the same

constant. This constant is called E and the resultant spatial equation is shown in

equation 1.6 with the time-dependent part shown in equation 1.7.

Hψ(~r) = Eψ(~r) (1.6)

ih̄

φ(t)

d

dt
φ(t) = E (1.7)

The time-dependent equation 1.7 is a first order differential equation with solutions

shown in equation 1.8.

φ(t) = e−iEt/h̄ (1.8)

The wavefunction Ψ(~r, t) can therefore be described as shown in equation 1.9.

Ψ(~r, t) = ψ(~r)e−iEt/h̄ (1.9)
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From here it is a simple matter to show that both the expectation value for any time-

independent operator (Θ̂) and the probability density function of the wavefunction

are both independent of time and can be expressed as shown in equations 1.10 and

1.11.

〈
Θ̂
〉

= 〈ψ(~r)|Θ̂|ψ(~r)〉 (1.10)

|Ψ(~r, t)|2 = ψ∗(~r)ψ(~r) (1.11)

Hence the use of the time-independent Schrödinger equation for systems with non-

varying potential energy is justified and the eigenvectors subsequently form station-

ary states of the system.

1.2 Born-Oppenheimer Approximation

The Schrödinger equation is thus seen to be an eigenvalue equation consisting of

a Hamiltonian operator, H, the eigenvector ψ, which is the wavefunction, and an

eigenvalue constant E. In this case, the constant E is the energy of the system

extracted from the wavefunction based on a Hamiltonian operator which contains

kinetic and potential energy terms pertinent to the system under consideration.

In order to solve the Schrödinger Equation for chemical systems, one must first

construct a suitable Hamiltonian operator H, by consideration of the energetic in-

teractions experienced by the constituent parts of the chemical system. Containing

a series of positively charged nuclei and negatively charged electrons, determination

of the interactions within a chemical system is straightforward: each nucleus and

electron will have kinetic energy, nuclei will experience repulsion from all other nu-

clei, electrons will experience attraction to each nucleus and electrons will repel one

another. Five terms are therefore required in the Hamiltonian operator to fully cap-

ture the energetics of the chemical system (neglecting relativistic effects). In atomic

units, therefore, the non-relativistic Hamiltonian is described mathematically as in

equation 1.12, where M is the number of nuclei, ma is the mass of nucleus a, N is

the number of electrons, Ria is the distance between electron i and nucleus a, Rab is

3



the distance between nuclei a and b and rij is the distance between electrons i and

j.

H = −
M∑
a=1

1

2ma

∇̂2
a −

1

2

N∑
i=1

∇̂2
i −

M∑
a=1

N∑
i=1

Za
ria

+
N∑
i=1

N∑
j=1

1

rij
+

M∑
a=1

M∑
b=1

ZaZb
Rab

(1.12)

This complicated equation can initially be simplified by recognising that the mass of

a proton is approximately 1800 times heavier than that of an electron. On average,

the nuclei and electrons within a molecule tend to share the same kinetic energy as

the molecule moves around. Being much lighter however, the electrons are able to

move much faster than the nuclei. A reasonable approximation can then be made

to model the chemical system as a series of stationary nuclei around which the elec-

trons move. The first term in equation 1.12, the kinetic energy of the nuclei, is then

considered zero. For similar reasons, the fifth term, describing the nuclear-nuclear

repulsion is considered a constant and thus commutes with the Hamiltonian. This

term can therefore be removed from the Hamiltonian and treated as a constant en-

ergy term at the end, leaving only terms which describe the electronic energy of the

system within the Hamiltonian as shown in equation 1.13. This series of approxima-

tions is called the Born-Oppenheimer Approximation [3] and the chemical system

can be thought of as a nuclear framework on which the electrons instantaneously

follow the nuclei as the nuclei move. This essentially results in the concept of a

potential energy surface on which the nuclei freely move.

Helec = −1

2

N∑
i=1

∇̂2
i +

M∑
a=1

N∑
i=1

Za
ria

+
N∑
i=1

N∑
j=1

1

rij
(1.13)

Because this work is concerned only with the electronic Hamiltonian equation, for

clarity, the subscript on Helec is dropped and from this point forward, it is assumed

that H represents the Born-Oppenheimer electronic Hamiltonian.

1.3 Basis Set Expansion

Before discussing the Hartree-Fock approximation, it is an appropriate time to pause

briefly to discuss the concept of basis sets and the variational principle.
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Having described simplifications to the Hamiltonian operator through the Born-

Oppenheimer Approximation, the focus now turns to approximation of the unknown

wavefunction ψ from equation 1.6. A function in Hilbert space can be described by

an infinite linear combination of known basis functions, φµ, which span that space

as described by equation 1.14, where cµi are the coefficients of φµ for a particular

unknown wavefunction ψi.

ψi =
∞∑
µ=1

cµiφµ (1.14)

In terms of practical solutions to the Schrödinger equation, an infinite solution is

not suitable. Nevertheless, we can approximate ψi using a finite length, truncated

series of basis functions pertinent to the problem at hand, mindful of the fact that

any truncation will inevitably result in errors describing the exact wavefunction as

the finite basis set will not be able to span the correct space. The implementation of

truncation therefore takes us to equation 1.15, where K is the basis set truncation

length.

ψi =
K∑
µ=1

cµiφµ (1.15)

From here, the selection of basis functions must be made and this will be covered

later. Substituting the basis set approximation of equation 1.15 into equation 1.6

leaves us with the equation 1.16.

H
K∑
µ=1

cµiφµ = Ei

K∑
µ=1

cµiφµ (1.16)

In order to determine the energy of such a system, it is necessary to calculate the

expectation value for the Hamiltonian (energy) operator in the basis of φµ. This is

done by multiplying both sides of equation 1.16 by c∗νiφ
∗
ν and integrating over all

spatial co-ordinates. This leads to equation 1.17.

K∑
µ,ν=1

c∗νicµi

∫
d~r1d~r2 φ

∗
ν(~r1)Hφµ(~r2) =

K∑
µ,ν=1

Eic
∗
νicµi

∫
d~r1d~r2 φ

∗
ν(~r1)φµ(~r2) (1.17)

We can simplify this equation to use Dirac notation as shown in equation 1.18

5



K∑
µ,ν=1

c∗νicµi 〈φν |H|φµ〉 =
K∑

µ,ν=1

Eic
∗
νicµi 〈φν |φµ〉 (1.18)

which is in the form of equation 1.19

HC = ESC (1.19)

This equation is the general case for non-orthogonal functions. As we shall see later,

simplification is achieved with orthonormal wavefunctions. We have thus converted

the time-independent Schrödinger equation, 1.6, into a system of linear equations

which can be solved using standard computational techniques as will be shown.

1.4 Variational Principle

Because we are using a finite basis set expansion to describe the wavefunction,

not only will errors be introduced into our calculations, we also cannot know the

exact result we are seeking. The variational principle [4] allows us to reach some

conclusions however. The process is relatively simple. In order to solve the time-

independent Schrödinger equation, 1.6, we re-write it as equation 1.20 recognising

that we have more than one wavefunction ψi.

Hψi = Eiψi (1.20)

We then multiply both sides of the equation by ψ∗j and integrate over all space and

spin coordinates. In Dirac notation, we thus have equation 1.21.

〈ψj|H|ψi〉 = E 〈ψj|ψi〉 (1.21)

Now dividing both sides by 〈ψj|ψi〉 allows us to obtain an expression for the energy

as shown in equation 1.22.

E =
〈ψj|H|ψi〉
〈ψj|ψi〉

(1.22)
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If the wavefunctions form an orthonormal set, the denominator will be equal to 1,

simplifying the calculations and we are left with equation 1.23.

E = 〈ψj|H|ψi〉 (1.23)

The variational principle can be stated as in equation 1.24 for such orthonormal

wavefunctions.

〈ψj|H|ψi〉 ≥ εo (1.24)

where εo is the exact ground state energy of the system. In other words we optimise

the wavefunction to produce the minimum energy, at which point we have the best

wavefunction possible to describe the ground state for the basis set used. In order

to optimise our wavefunction and thus obtain the ground state energy, we note that

the wavefunctions ψi and ψj can be expressed in terms of the truncated basis set as

described earlier in equation 1.15. Substituting the truncated basis set into equation

1.24 we obtain equation 1.25.

K∑
µ,ν=1

c∗νicµj 〈φν |H|φµ〉 ≥ εo (1.25)

Because the basis set functions φ are usually fixed, the only available degrees of

freedom are in the choice of the basis set coefficients cµj and cνi and the coeffi-

cients are optimised to produce the minimum energy. The technique used is that

of the Lagrange method of undetermined multipliers, with the constraint that the

wavefunctions used are orthonormalised such that the sum of the squares of the

coefficients is 1. Incorporating this constraint into equation 1.24 and minimising the

energy with respect to the coefficients leads us to the ground state energy of the

system.

1.5 Hartree-Fock Theory

We have, so far, described the simplification of the wavefunction by using a truncated

basis set and we have also described that it is possible to optimise the resultant
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wavefunction to produce a minimum energy for the ground state of the system.

Unfortunately the Hamiltonian, despite simplifications brought about by the Born-

Oppenheimer approximation and the neglect of relativistic effects, is still unsolvable.

The problem can be seen in the Born-Oppenheimer electronic Hamiltonian shown

in equation 1.26.

H = −1

2

N∑
i=1

∇̂2
i +

M∑
a=1

N∑
i=1

Za
ria

+
N∑
i=1

N∑
j=1

1

rij
(1.26)

It is the final electron-electron repulsion term which causes the problem. When we

have more than one electron present, it is not possible to calculate the interaction

between any pair of electrons without knowing their individual interactions with

all of the other electrons and nuclei: essentially the paired electron interactions are

coupled. The result is a highly non-linear problem which cannot be solved analyt-

ically. Before proceeding, further simplifications are required. The first successful

approach to this was the Hartree-Fock approximation, also called the Mean Field

Approximation [5]. In the Mean Field Approximation, the system is treated as a

series of non-interacting electrons, each described by its own wavefunction. This

approximation allows, by separation of variables, the total electronic wavefunction

to be described by a simple product of functions, each representing a single electron,

called the Hartree Product as shown in equation 1.27 for a two electron wavefunction,

dependent on both spatial and spin co-ordinates, (~x1, ~x2...) where χ(~xi) = ψ(~ri)ρ(~ω).

ΨHP = χi(~x1)χj(~x2) (1.27)

The Hartree Product however does not reflect the necessary property that electrons

are indistinguishable and therefore does not satisfy the Pauli Principle, which re-

quires that the wavefunction must be antisymmetrised with respect to exchange of

any two fermionic electrons. In order to satisfy the Pauli Principle, the wavefunc-

tion must take the following form shown in equation 1.28 for a simple two electron

wavefunction where a normalisation factor of 1√
2

is included.

Ψ(~x1, ~x2) =
1√
2

(χi(~x1)χj(~x2)− χj(~x1)χi(~x2)) (1.28)
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This form of the antisymmetrised wavefunction can be expressed in a more compact

fashion using a Slater Determinant as shown in equation 1.29.

Ψ(~x1, ~x2) =
1√
2

∣∣∣∣∣∣χi(~x1) χj(~x1)

χi(~x2) χj(~x2)

∣∣∣∣∣∣ (1.29)

Of course, almost all real systems contain more than two electrons and thus the

more general N-particle solution to equation 1.28 is shown in equation 1.30 (with

~x prefixes dropped) with the equivalent normalised Slater Determinant shown in

equation 1.31. P̂n is the permutation operator which generates the n-th permutation

of the electrons and qn is the number of orbital transpositions required to achieve

that permutation from the original wavefunction.

Ψ(~x1, ~x2, ..., ~xN) =
1√
N !

N !∑
n=1

(−1)qnP̂nχi(1)χj(2)....χk(N) (1.30)

Ψ(~x1, ~x2, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χi(1) χj(1) .... χk(1)

χi(2) χj(2) .... χk(2)

.... .... .... ....

χi(N) χj(N) .... χk(N)

∣∣∣∣∣∣∣∣∣∣∣∣
(1.31)

This single determinant approximation of the wavefunction is the core of the Hartree-

Fock approximation and once this form of the wavefunction is inserted into the

Schrödinger equation, an expression for the energy constructed with it and that

energy subsequently minimised with respect to the orbital coefficients, via the Vari-

ational Principle described earlier, we are left with the Hartree-Fock equation shown

in equation 1.32, where ĥ is the one-electron operator shown in equation 1.33 and

electrons 1 and 2 are used by convention. The next two terms are operators which

are best described when shown acting on an orbital χa(1). Ĵb(1)χa(1) is the two-

electron Coulomb operator defined in equation 1.34 and K̂b(1)χa(1) is called the

two-electron Exchange operator shown in 1.35, a and b are the orbital indices and

electron indices are shortened from ~x1 to simply 1 etc.

[
ĥ(1) +

∑
b 6=a

Ĵb(1)−
∑
b6=a

K̂b(1)

]
χa(1) = εaχa(1) (1.32)
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ĥ(1) = −1

2
∇̂2

1 −
∑
A

ZA
r1A

(1.33)

Ĵb(1)χa(1) =

[ ∫
d~x2 χ

∗
b(2)

1

r12

χb(2)

]
χa(1) (1.34)

K̂b(1)χa(1) =

[ ∫
d~x2 χ

∗
b(2)

1

r12

χa(2)

]
χb(1) (1.35)

The quantity contained within square brackets in equation 1.32 is called the Fock

operator, f̂(1). It can be seen that although the exchange part of the equation has

no classical equivalent, the Coulombic operator shows that the electron in orbital χa

essentially experiences the total average potential of the remaining electrons in the

system. This is in contrast to the exact Schrödinger equation whereby the electron

in orbital χa would experience the individual potential of each of the remaining

electrons through the 1
rij

term as shown in equation 1.26 and is a direct consequence

of approximating the total electronic wavefunction by a single Slater Determinant.

As such, the Hartree-Fock approximation is considered a single reference method

with several consequences which will now be explored.

The use of an average field potential for the two-electron terms means that electron

correlation is not properly taken account of, resulting in electrons being allowed to

unreasonably encroach on each other within Hartree-Fock calculations. Although

there is some correlation, via the Pauli principle, between electrons of the same spin

which prevents those electrons sharing the same spatial orbitals (bearing in mind

however that this correlation is still underestimated due to the Mean Field Approx-

imation), there is no such restraint on electrons of opposing spin. Despite the fact

that electrons of opposing spin still should repel each other, both can co-exist in the

same spatial orbital in the Hartree-Fock approximation. Electrons are allowed to be

packed closer together than expected and therefore Hartree-Fock calculations result

in higher absolute energies as a result of the electrons not having the flexibility to

move further apart under the repulsive forces of the individual electron potentials.

Because of the closer packing of electrons, atoms are allowed to become closer than

they should with consequent reduction in bond length predictions. Despite the prob-

lems described above however, Hartree-Fock calculations recover around 99% of the

total energy of a molecule, with the remaining 1% lost due to the poor treatment of
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electron correlation. Absolute energies of chemical species are of limited importance

in Chemistry applications however. Instead, the relative energy differences between

species are crucial in determining the reactivity, thermodynamics and properties of

chemical systems. These relative energy differences can be comparable with the

correlation energy error and thus it is crucial that correlation errors are addressed

sufficiently to make these ab initio calculations of practical use. Techniques for do-

ing this will be considered later. For now however, the discussion of Hartree-Fock

theory continues with a look at the practicalities of solving the highly non-linear

eigenvalue equation using iterative techniques.

1.6 Roothaan-Hall Equations

The first stage in dealing with the Hartree-Fock equations, shown in equation 1.32,

is to integrate out the spin component. Once this has been completed, using the

closed shell restricted Hartree-Fock case as an example, we are left with the purely

spatial version shown in equation 1.36.

f̂(1)ψi(1) = εiψi(1) (1.36)

At this stage, the entire differential equation problem can be transformed into an

algebraic problem, the Roothaan-Hall equations [6][7], and thus in an ideal form

for solution by computer methods, using linear algebra techniques. The approach

taken by Roothaan was to expand the unknown molecular orbitals in a finite linear

expansion of known basis functions as shown in equation 1.37.

ψi =
K∑
ν=1

cνiφν (1.37)

The task now is to identify the optimal coefficients, cνi. This is done by pre-

multiplying both sides of equation 1.37 by φ∗µ and integrating over all space as

shown in equation 1.38.

∑
ν

cνi

[ ∫
d~r1φ

∗
µ(1)f̂(1)φν(1)

]
= εi

∑
ν

cνi

[ ∫
d~r1φ

∗
µ(1)φν(1)

]
(1.38)
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Figure 1.1: Procedure for solving Hartree-Fock equation via basis set expansion

This equation takes the form of the algebraic Roothaan-Hall equations shown in

1.39.

FC = SC ε (1.39)

The integro-differential Hartree-Fock equations have now been replaced by the alge-

braic Roothaan-Hall equations and can now be solved using iterative matrix tech-

niques. Notice however from equation 1.38 that although we are attempting to find

the wavefunction as a solution to the equations, the wavefunction also appears in

the operator. In other words we cannot solve the Roothaan-Hall equations to find

the wavefunction unless we already know the wavefunction. This is an example of a

highly non-linear equation which must be solved iteratively using the Self Consistent

Field (SCF) Process as will be described in the next section. In summary then, the

Hartree-Fock process can be summarised in figure 1.1.
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1.7 Self-Consistent Field (SCF) Procedure

The Self-Consistent Field (SCF) procedure [8] is an iterative solution to the highly

non-linear Hartree-Fock equations and, for illustrative purposes, a general solution is

provided here for the Restricted Closed Shell Hartree-Fock case using the Roothaan-

Hall equations derived in the previous section. Initially a nuclear geometry is estab-

lished, representing the system in question. This stage will include specification of

the desired basis set and will also establish necessary parameters such as the various

atomic numbers, Z, the number of electrons in the system, N , and the co-ordinates

of the constituent atoms, which subsequently provide the inter-nuclear distances,

R. From this initial geometry specification, all of the information is available to

calculate the integrals required for the SCF calculations, namely the overlap inte-

grals Sµν , the core Hamiltonian one-electron integrals, HCORE
µν and the two-electron

integrals, (µν|λσ), which are contained within the F term of the Roothaan-Hall

equations. These integrals are defined in equations 1.40, 1.41 and 1.42 respectively.

HCORE
µν =

∫
d~r1 φ

∗
µ(1)

(
− 1

2
∇̂2

1 −
∑
c

Zc
|r1 −Rc|

)
φν(1) (1.40)

Sµν =

∫
d~r1 φ

∗
µ(1)φν(1) (1.41)

(µν|λσ) =

∫
d~r1d~r2 φ

∗
µ(1)φν(1)

1

r12

φ∗λ(2)φσ(2) (1.42)

The Sµν matrix elements cause a problem here in terms of solving the Roothaan-

Hall equations because although the orbitals are normalised, they are not in general

orthogonal. This results in a more complicated set of equations which are difficult

to solve. This situation is resolved by finding a non-unitary transformation matrix,

X , which transforms the orbitals to an orthonormal set as shown in equation 1.43.

φ
′

µ =
∑
ν

Xµνφν (1.43)

This X matrix can be derived from the diagonalisation of S by a unitary matrix,

U , using any one of a number of techniques available for the purpose, such as

the Lanczos, Davidson or Davidson-Liu algorithms [9][10][11]. These techniques
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establish the unitary matrix, U which acts on S to produce a diagonalised matrix, s ,

a transformation possible as a result of the Hermitian character of S . This is shown in

equation 1.44. X can be derived directly from s using one of a variety of approaches

such as Symmetric Orthogonalisation or Canonical Orthogonalisation, equations

1.45 or 1.46 respectively. A guess is then made of the required density matrix for

the system. This density matrix is described in equation 1.47. Of course, at this

stage, the co-efficients cλa and c∗σa are unknown (the SCF procedure is attempting

to optimise them). It is not unusual for the zero density matrix to be used as the

initial guess. A G matrix is then able to be constructed using this density matrix

and the two-electron integrals as shown in 1.48. The Fock matrix is then simply the

addition of the HCORE
µν and Gµν matrices as show in equation 1.49. The Fock matrix

is then transformed using the X matrix to take advantage of the, now orthogonally

transformed, orbitals as shown in equation 1.50.

s = U †SU (1.44)

X symmetric = Us−1/2U † (1.45)

X canonical = Us−1/2 (1.46)

Pλσ = 2

N
2∑
a

cλac
∗
σa (1.47)

Gµν =
∑
λσ

Pλσ[(µν|σλ)− 1

2
(µλ|σν)] (1.48)

Fµν = HCORE
µν +Gµν (1.49)

F
′
= X †FX (1.50)

The Roothaan-Hall equations can now be solved by diagonalising F
′

to give the

orbital energies and the corresponding orbital wavefunction coefficients C
′

which
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can then be transformed using X to recover the C matrix of MO coefficients as

shown in equation 1.51.

C = XC
′

(1.51)

From the C matrix, a new density matrix can be created as in equation 1.47. This

new density matrix is compared to the previous (old) density matrix, perhaps via a

least squares calculation, in order to determine whether differences between them fall

within the convergence criteria set out at the start of the calculation. If convergence

has not yet been achieved, the process of the Fock matrix formation, transformation

of the Fock matrix, diagonalisation of the transformed Fock matrix and the density

matrix formation is repeated until convergence is reached. If on the other hand

the result is considered converged, then the SCF procedure has completed and we

have our set of orbitals with their corresponding energies, from which the electronic

energy of the system can be determined as described by equation 1.52.

Eelec =
1

2

∑
µ

∑
ν

Pνµ(HCORE
µν + Fµν) (1.52)

The total energy of the system can then be found using equation 1.53, where we add

the nuclear-nuclear repulsion term which was omitted from the electronic Hamilto-

nian as a result of the Born-Oppenheimer approximation.

Etotal = Eelec +
M∑
A=1

M∑
B>A

(
ZAZB
RAB

)
(1.53)

Once the SCF calculation is complete, the orbitals can then be used for calculating

the expectation values of other properties of interest, such as dipole moments, or for

geometry optimisation of the system. The SCF process can be summarised in figure

1.2. Note that in this process, the integrals can be stored on disk and recovered

when necessary or can be calculated ”on the fly” using direct methods in situations

where disk storage is limited or performance suffers from slow disk access.

The Hartree-Fock solution therefore is the best possible solution to the Schrödinger

equation using a single Slater Determinant, representing the antisymmetrised wave-

function. In order to improve upon this, electron correlation must be taken into
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Figure 1.2: Overview of the Self-Consistent Field (SCF) method for solving non-

linear Hartree-Fock equations.
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account and this is now discussed.

1.8 Electron Correlation

As a result of the Pauli principle, each electron creates a hole around it known as

the Fermi Hole, in which there is a zero probability of finding another electron with

the same spin. In other words, electrons of the same spin have some correlation,

termed Fermi or Exchange Correlation and the Hartree-Fock approximation allows

some of this correlation energy to be recovered, albeit subject to the constraints

of the Mean Field Approximation described earlier. Another electron of opposite

spin however can inhabit this space: that is, electrons of differing spin have no

correlation and this type of correlation energy is completely neglected in the Hartree-

Fock approximation. In the effort to recover electron correlation, post Hartree-Fock

techniques are employed. Electron correlation can be categorised as either Static

Correlation or Dynamic Correlation and both of these will now be discussed in turn

[12] [13] [14].

1.8.1 Static Correlation

Static Correlation is most easily understood by consideration of molecular systems

at geometries where many low lying electronic configurations approach near degen-

eracy. The situation is illustrated using the H2 molecule shown in figure 1.3. At

equilibrium, the σg and σ∗u molecular orbitals are very well spaced energetically and

thus the HOMO-LUMO gap is large. Under these circumstances a single reference

wavefunction, Ψo =
∣∣σ2
g

〉
, proves to be a very good approximation of the ground

state of the system. As the bond length increases towards dissociation however,

the two molecular orbitals become closer in energy shrinking the HOMO-LUMO

gap towards zero. This results in the lowest excited electronic configurations and

the ground electronic configuration approaching degeneracy. In addition to the

potential for significant convergence problems at these geometries, use of a single

reference wavefunction will not allow sufficient flexibility in the wavefunction to best

capture the description of the real chemical system under investigation. This lack

of flexibility in the wavefunction results in artificially high energy for the ground
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Figure 1.3: Recovery of static correlation when applied to the H2 molecule.

state. Ultimately, at this point it becomes less meaningful to talk about a single

ground state electron configuration and, instead, a superposition of the degener-

ate configurations becomes more appropriate. The artificial increase in energy, due

to using a single reference method to describe what is essentially a multi-reference

system, is termed static correlation and it can be recovered using a variety of post

Hartree-Fock techniques such as Configuration Interaction (some examples of which

include CIS, CISD, MCSCF, CASSCF and MCCI). Allowing all possible electronic

configurations to be included in the wavefunction results in what is called the Full

Configuration Interaction solution. The FCI solution for the H2 molecule contains

only single and double excitations from the HF reference wavefunction, but single

excitations can be eliminated from symmetry considerations. The required wave-

function near dissociation is therefore Φo = c0

∣∣σ2
g

〉
+ c1 |σ2

u〉, where c0 and c1 are

appropriate coefficients.

Static correlation is a weak, long range effect, the recovery of which manifests itself

in a wavefunction containing a relatively small number of electronic configurations

with large coefficients in the wavefunction expansion. CI and FCI will be described

in detail in a later section.

1.8.2 Dynamic Correlation

Dynamic Correlation is perhaps more intuitively simple to understand as it relates

to the energetic contribution caused by the immediate response of an electron to

the approach of another electron. It is a short range effect involving many strong

interactions. As explained above, this dynamic correlation is poorly described by
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Hartree-Fock for electrons of the same spin which approach each other, due to the

use of the Mean Field Approximation. A worse problem however is that there is no

allowance within the Hartree-Fock approximation for electron correlation between

electrons of opposing spins. The net result of both of these problems is that elec-

trons can become artificially close to each other causing bond lengths which are too

short and electronic energies which are too high due to the increased Coulombic

interactions between these electrons. This type of correlation can be most easily

corrected for by using advanced techniques such as Multi-Reference Configuration

Interaction (MRCI), Perturbation Theory (such as MP2) or even by using Density

Functional Theory (DFT). It should be noted, however, that DFT is still considered

a single reference theory and therefore it will generally be poorer at recovery of

dynamic correlation than the other techniques listed above. The use of MRCI has

been shown to recover much of the dynamic correlation energy and this manifests

itself in the large number of electron configurations with small coefficients in the

wavefunction expansion and will be discussed in a later section.

1.9 Perturbation Theory

One way to recover electron correlation is to use Perturbation Theory and a general

discussion of this is now undertaken. In order to obtain solutions to unknown

problems it can be possible to use the result of a known system and apply a small

perturbation using a power series in order to converge on an approximate solution to

the unknown system, providing the perturbation is very small: in other words, the

unknown system differs only slightly from the known system for which a solution

has been obtained. For the Schrödinger equation shown in equation 1.54 this can

be described by splitting the Hamiltonian for the new system into two: one part

for the known solved system, Ho, and the other representing the perturbation, H′ ,

required to move from the solved problem to the new unsolved problem as shown in

equation 1.55. The value of λ dictates the strength of the perturbation, but for the

purposes of this discussion the precise value is not important.

HΨ = EΨ (1.54)
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H = Ho + λH′ (1.55)

This perturbation of the Hamiltonian will have a knock-on effect on the resulting

energy and wavefunction, which can be described as shown in equations 1.56 and

1.57

E = Eo + λE
′

(1.56)

Ψ = Ψo + λΨ
′

(1.57)

Substituting equations 1.55, 1.57 and 1.56 into equation 1.54 and expanding leads

to equations 1.58 and 1.59

(Ho + λH′)(Ψo + λΨ
′
) = (Eo + λE

′
)(Ψo + λΨ

′
) (1.58)

HoΨo + λH′Ψo + λHoΨ
′
+ λ2Ψ

′H′ = EoΨo + λEoΨ
′
+ λE

′
Ψo + λ2E

′
Ψ
′

(1.59)

Comparing terms with equivalent powers of lambda results in equations 1.60, 1.61

and 1.62.

HoΨo = EoΨo (1.60)

H′Ψo +HoΨ
′
= EoΨ

′
+ E

′
Ψo (1.61)

H′Ψ′ = E
′
Ψ
′

(1.62)

Equation 1.60 is just the solution to the unperturbed known problem. Equation 1.61

is the first order corrected equation and equation 1.62 is the second order corrected

equation. For the purposes of this work only the first order correction is of interest.

To find the first order correction to the energy, it is necessary to multiply both sides
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of equation 1.61 by Ψ∗o and integrate over all space. In Dirac notation, equation 1.63

results.

〈Ψo|H
′|Ψo〉+

〈
Ψo

∣∣∣Ho

∣∣∣Ψ′〉 =
〈

Ψo

∣∣∣Eo∣∣∣Ψ′〉+ 〈Ψo|E
′ |Ψo〉 (1.63)

From here it is a simple matter to show that the first order correction to the energy

is as shown in equation 1.64. In other words, the first order correction to the energy

for the unknown system is the expectation value of the perturbation operator acting

on the ground state wavefunction of the unperturbed known system.

E
′
= 〈Ψo|H

′|Ψo〉 (1.64)

Having found the first order correction for energy, the last remaining unknown quan-

tity is the corresponding first order correction to the wavefunction. To proceed, it

is recognised that within the limit of the basis set, the ground state wavefunction of

the solved known solution is a complete set. This means that the perturbed wave-

function for the unknown solution can be expressed as a linear combination of the

ground state orbitals as shown in equation 1.65.

Ψ
′
=
∑
i

ciΨi (1.65)

Substituting this expansion into equation 1.61, pre-multiplying both sides of the

resultant equation by Ψ∗j where j is any configuration other than the ground state,

integrating over all space and re-arranging leads to equation 1.66.

∑
i

ci 〈Ψj|Ho|Ψi〉 −
∑
i

ci 〈Ψj|Eo|Ψi〉 = 〈Ψj|E
′ |Ψo〉 − 〈Ψj|H

′|Ψo〉 (1.66)

Due to the orthonormality of the wavefunctions, the summations collapse to a single

non-zero term when i = j. Additionally, the first term on the right hand side is

zero. Taking this into account leads to equations 1.67 and 1.68 and ultimately to

equation 1.69.

cj 〈Ψj|Ho|Ψj〉 − cjEo = −〈Ψj|H
′ |Ψo〉 (1.67)
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cjEj − cjEo = −〈Ψj|H
′ |Ψo〉 (1.68)

cj =
〈Ψj|H

′|Ψo〉
Eo − Ej

(1.69)

At this stage, the first order corrections to the energy of the system and the wave-

function as a result of the perturbation have been obtained. Higher order corrections

are obtained in a similar way.

1.10 Configuration Interaction

Another way to fully capture the electron correlation energy from a Hartree-Fock

calculation is to extend the wavefunction using a basis of the Hartree-Fock reference

and all possible excited electron configurations from this reference. Mathemati-

cally this is represented as in equation 1.70, where Ψo represents the ground state

Hartree-Fock electron configuration, |S〉 , |D〉 , |T 〉 and |Q〉 represent all of the excited

electron configurations obtained by single, double, triple and quadruple excitation

from the Hartree-Fock reference wavefunction and the Ci values are the respective

coefficients in the Configuration Interaction wavefunction.

Φo = Co |Ψo〉+ CS |S〉+ CD |D〉+ CT |T 〉+ CQ |Q〉+ ... (1.70)

Including all possible configurations within the CI wavefunction is called the Full

Configuration Interaction (FCI) [15] [16]. The number of configurations can be

calculated as shown in equation 1.71 for Slater Determinants, where N , nα and nβ

are the number of spatial orbitals, the numbers of alpha and beta spin electrons

respectively in the system and M is the resulting number of Slater determinants.

M =

(
N

nα

)(
N

nβ

)
(1.71)

For illustrative purposes, figure 1.4 shows the configurations included in the FCI

solution for the H2 molecule using a minimal basis set.
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Figure 1.4: The FCI solution for the H2 molecule (minimal basis set). Note that as

a consequence of Brillouin’s Theorem, the singly excited electron configurations will

not mix directly with the Hartree-Fock reference and in this case can be removed

from the FCI solution on symmetry grounds.

Even for small systems, an FCI solution leads to enormous wavefunctions, and for

almost all systems this becomes computationally intractable. For example, the FCI

solution for H2O using the 6-31g basis set requires 1,656,369 Slater Determinants. In

order to reduce the number of configurations required, a CI wavefunction containing

only single and double excitations (CISD) from the Hartree-Fock reference can be

used as these are usually the most important electron configurations in describing

the system, although in the case of the H2 molecule above this makes no difference

as only single and double excitations are available. At this stage it should be noted

that Brillouin’s Theorem states that the singly excited configurations cannot mix

directly with the Hartree-Fock wavefunction and therefore matrix elements which

involve singly excited configurations and the Hartree-Fock wavefunction will be zero.

In the case of H2 this causes a significant reduction in the number of configurations

required. In general however, singly excited configurations do mix directly with dou-

bly excited configurations and thus mix indirectly with the Hartree-Fock reference

and therefore can be very important in describing the chemical system.

For large systems, CISD can generate too many configurations to be of practical

use and other more advanced techniques are described later. For systems which

can use CI techniques, triple excitations can be estimated and added to the CISD

wavefunction - CISD(T). Alternatively, triple excitations can be calculated directly

with quadruple excitations estimated - CISDT(Q). This will depend on the system

in question and the accuracy required. Truncated CI methods such as CISD do
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however suffer from problems with size extensivity and size consistency [17] and

these problems will be discussed now. From a computational point of view, the

energy of two molecules A and B separated by an infinite distance in the same

calculation should be equivalent to the total energy of each of them calculated in

isolation.

EAB(RAB →∞) = EA + EB (1.72)

For truncated CI calculations, this equation does not hold. In particular, the left

hand side of equation 1.72, EAB(RAB → ∞), is artificially high in energy; an er-

ror called size consistency. The size consistency problem occurs in truncated CI

techniques such as CISD because of the neglect of quadruple excitations in the cal-

culation of the infinitely separated AB dimer on the left hand side of equation 1.72.

The calculations of the isolated A and B molecules include quadruple excitations

indirectly because on the right hand side of the equation, double excitations can

be performed in both calculations at the same time: this is essentially a quadru-

ple excitation in all but name. By definition, the left hand side of the equation

includes both A and B in the same calculation and therefore only double excita-

tions across the entire infinitely-separated dimer is allowed. Consider a system of

N H2 molecules. We should, for example, be able to model N infinitely separated,

and therefore non-interacting, H2 molecules as N times the energy of one molecule.

Because we can see that size consistency problems occur even for N = 2 in the

A − B dimer above, we can be certain that CISD calculations will have increasing

problems as N increases. More generally, truncated CI techniques do not produce

energies which increase in proportion with the number of particles in the system,

a problem known as size extensivity. In other words, the problem is not limited

only to non-interacting molecules: it is also pertinent to atoms. To demonstrate the

scaling problem, it can be shown that for N non-interacting H2 molecules, a CISD

calculation produces a correlation energy as shown in equation 1.73 where ∆ is an

energy term related to the difference in energy between the two molecular orbitals

in the minimal basis H2 molecule and K12 is the exchange energy. This can be

compared to the exact correlation energy shown in equation 1.74.
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NEcorr(CISD) = ∆−
√

∆2 +NK2
12 (1.73)

NEcorr(Exact) = N(∆−
√

∆2 +K2
12) (1.74)

Clearly the CISD correlation energy does not scale correctly with N . Worse still,

as N approaches large values, such as may be found in a macroscopic system, the

CISD correlation energy approaches the value shown in equation 1.75

NEcorr(CISD) −
√
NK12 (1.75)

To see the problem here, divide both sides by N to illustrate the correlation energy

recovered per molecule and allow N to approach ∞, to approximate very large

systems, as shown in equation 1.76. As can be seen the amount of correlation

energy recovered tends towards zero at macroscopic levels rendering CISD useless

for modelling large systems.

lim
N→∞

(NEcorr(CISD)) = −K12√
N

= 0 (1.76)

Examples of the performance of CI can be found in the literature. Rosenberg et al.

[18] used the technique to measure the ground state geometry of the water molecule.

The H-O-H angle was found to be 104.93◦ using CISD and 104.58◦ using CISD with

the Davidson correction shown in equation 1.77. Note that ∆EQ is the correction

for quadruple excitations and a2
o is the coefficient of the HF wavefunction. This

compared very well with the experimental value of 104.52◦. By comparison the SCF

result was 106.08◦. A similar result was found for the equilibrium O-H bond length.

Results were found to be 0.9398 Å (SCF), 0.9527 Å (CISD) and 0.9573 Å (CISDQ)

compared to 0.9572 Å from experiment. Here the problem of over-binding by SCF

is clearly seen, with capture of correlation effects by CI correcting the problem.

∆EQ = (1− a2
o)(ECISD − EHF ) (1.77)
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1.11 Multi-Configuration Self-Consistent Field

Although CISD can be used to capture electron correlation, there are other tech-

niques which aim to optimise this process. Multi-Configuration Self-Consistent Field

(MCSCF) is one such technique [19] [20]. This is achieved through the construc-

tion of a multiconfigurational wavefunction consisting of a linear combination of

a number of Slater Determinants (SDs) or Configuration State Functions (CSFs),

each representing a different electron configuration obtained by excitation directly

from the Hartree-Fock reference. Slater Determinants have been described earlier

and CSFs will be discussed later. As with Configuration Interaction, the variational

principle applies to this MCSCF wavefunction, with the lowest energy initially being

determined from minimisation of the energy with respect to the coefficients of each

SD or CSF. With MCSCF however, unlike CI, after each iteration of the SD/CSF

coefficient minimisation procedure the molecular orbitals (MOs) themselves are also

re-optimised. The cycle of minimising the SD/CSF coefficients is repeated using

these new MOs. Only when the energy is minimised with respect to both SD/CSF

coefficients and MO coefficients is the procedure complete, revealing the final opti-

mised multiconfigurational wavefunction. Unfortunately, for other than very small

systems, the number of configurations included can rapidly become unwieldy even if

only Single and Double excitations from the HF reference wavefunction are included.

A range of techniques can be implemented to ease the computational effort required

by recognising that not all configurations will be important in describing the sys-

tem. Early attempts at solving this problem focussed on selecting the important

configurations through mathematical means. Obviously this is not ideal and other

methods were sought to convert this largely mathematical problem to one which

allowed an element of chemical intuition in determining the key electronic config-

urations. Complete Active Space Self-Consistent Field (CASSCF) [21] is the most

commonly used implementation of this technique and, in general, works by split-

ting the Hartree-Fock orbitals into three separate spaces. Firstly an active space is

determined using chemical intuition. This space consists of the orbitals (occupied

and virtual) and electrons considered most important in describing the system and

the activity or property under investigation (such as bond breaking). A full con-

figuration interaction (FCI) is performed within these orbitals with the addition of

re-optimisation of the MOs themselves. The use of FCI in the active space allows
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this space to be considered complete within the limit of the basis set (hence the

name Complete Active Space). The resulting MOs are transformed into Natural

Orbitals (NOs), which are those orbitals which diagonalise the density matrix, the

eigenvalues of which are interpreted as the orbital occupancies. It is important to

recognise that these orbitals will now have partial electron occupancy with occu-

pancies between 0 and 2. Occupancies close to either 0 or 2 are indicative of a poor

choice of active space and this allows a degree of diagnosis of the MOs chosen. The

second space is the inactive space which consists of MOs which are doubly occupied

in all configurations. Depending on the implementation of CASSCF used, it may be

possible to exclude these MOs from the MO re-optimisation process. The final space

is the external space consisting of all MOs which have zero electron occupancy in all

configurations. The inactive and external spaces are thus included in the wavefunc-

tion in order to correctly optimise the MOs. An example CASSCF space is shown

in figure 1.5 for a seven electron system with an active space of three electrons in

four orbitals.

CASSCF can make use of direct methods of integral evaluation, where the integrals

are re-calculated when needed rather than stored individually. This technique re-

duces the amount of disk storage required at the expense of greater computational

effort but which allows CASSCF to be used in solving very long MCSCF expan-

sions. Whilst the CI coefficients are minimised variationally, MO optimisations are

performed using orbital rotations where the objective is to optimise the MO coef-

ficients to minimise the overall MCSCF energy rather than to minimise the energy

of the individual constituent SDs or CSFs. The energy of the system is invariant

to many MO rotations, for example rotations between two MOs which are always

doubly occupied, and significant computational savings are made by not performing

these MO rotations. This approach is also believed to lead to faster convergence.

One final note regarding MCSCF calculations should be made here. Root-flipping

occurs when a state n is desired where n is not the ground state and is very close

in energy, but slightly higher than another state n− 1. In order to find the energy

of state n, the MOs are optimised for this state. This results in the energy of state

n−1 being artificially higher than optimal due to the variational principle. If the two

states are initially close enough in energy, the calculation can then give the incorrect

impression that state n is lower in energy than state n−1. Subsequently, state n−1
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Figure 1.5: Molecular orbital partitioning for a 7 electron system showing compari-

son of Hartree-Fock, CASSCF and MRCI methods.
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is now optimised as the second root and its energy is lowered variationally whereas

state n is raised in energy and another flip in the ordering of these two states can

occur. Therefore every step in the convergence process involves a flip of these two

energy levels and convergence is never reached. This is called root-flipping. State

averaging solves this problem by using a compromise set of orbitals which is designed

to best describe both states n and n−1 and can be extended to more than 2 excited

states [22].

In summary, therefore, Hartree-Fock gives the optimal orbitals for a single Slater

Determinant solution. CI allows these orbitals to be used to expand the wavefunc-

tion in a linear combination of electron configurations in order to capture electron

correlation. MCSCF techniques then give the optimal orbitals for this CI expansion

through ensuring orbitals are re-optimised.

Example CASSCF calculations by Roos [21], of the X1Σ+
g ground state of N2 using

an active space consisting of the orbitals: 2σu, 3σg, 1πu, 1πg and 3σu, predict the

equilibrium bond length, Re = 1.108 Å. This compares very favourably with the

experimental value of 1.098 Å and is a significant improvement over Hartree-Fock

estimates of 1.069 Å. Dissociation energies of 8.759 eV compared less well to experi-

ment (9.905 eV) but vibrational frequency prediction of 2332.6 cm−1 was in excellent

agreement with 2358.6 cm−1 from experiment.

1.12 Multi-Reference Configuration Interaction

In adopting techniques to capture electron correlation, consideration must be given

to the nature of the zeroth order wavefunction. In the case of CI calculations, that

zeroth order wavefunction is usually the Hartree-Fock solution, which in most cases

is a relatively poor choice - particularly for systems exhibiting multi-reference be-

haviour in the ground state. For such systems, a CI solution which incorporates

all possible excited configurations from the Hartree-Fock reference will necessarily

require too many configurations to be of practical use. For this reason, CI tech-

niques are normally limited to single and double excitations from the Hartree-Fock

reference as described earlier. For the recovery of dynamic correlation, considerably

more electronic configurations must be included in the wavefunction description.
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This can be best achieved by including singly and doubly excited configurations

from an MCSCF reference wavefunction in a technique called Multi-Reference Con-

figuration Interaction (MRCI) [23] [24] [25]. The MCSCF wavefunction provides

an appropriate zeroth order wavefunction for MRCI, particularly in the case of the

study of excited states or bond formation where a single restricted closed shell refer-

ence provides a very poor description. The MCSCF wavefunction itself suffers from

having to rely on the judicious choice of either active space or important configu-

rations and applying a CI treatment to this zeroth order wavefunction via MRCI

can compensate for any errors introduced as a result of poor choices made at the

MCSCF level. Blind application of single and double excitations using MRCI how-

ever can lead to very large configuration spaces, restricting the size of system which

can be studied. Efficiencies can be found however. For instance, MRCI can re-

sult in unwanted redundancy. This can be clearly seen when considering the fact

that a particular electron configuration can be reached by singly or doubly exciting

more than one reference configuration. To illustrate MRCI further, the Molpro [26]

implementation of MRCI is now discussed.

MRCI, as developed in Molpro, applies a technique of generation of excited electron

configurations from the entire MCSCF wavefunction rather than to each individual

configuration of the reference wavefunction individually. By this process, called

Fully Internal Contracted MRCI, large savings in terms of the MRCI wavefunction

length can be made. Equivalent configurations derived from different references can

be contracted in much the same way as done with Atomic Orbitals within basis sets.

For this implementation of MRCI, the criterion for inclusion in the contraction is

that the proposed new configuration makes first order perturbative corrections to

the zeroth order wavefunction to allow dominant configurations to be included in

a balanced way. This contracted MRCI solution shows results which are as good

as uncontracted MRCI solutions but at a fraction of the cost computationally both

in terms of convergence time and wavefunction length. The MRCI wavefunction

consists of several parts as described in equation 1.78.

Ψ =
∑
k

akψ
r
k +

∑
s

∑
a

casψ
a
s +

∑
p

∑
ab

cabp ψ
ab
p +

∑
I

cIψI (1.78)

The first term, involving ψrk describes the reference MCSCF wavefunction where the
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ak are the coefficients optimised during the MCSCF calculation. These configura-

tions span what is termed the reference subspace. The second term describes both

the configurations where a single excitation has been made into the external sub-

space (i.e. into orbitals not occupied in any of the MCSCF reference configurations)

and also those configurations which have been doubly excited but only one electron

is excited into the external space (the other being excited into the internal space - i.e.

an orbital occupied in one of the MCSCF reference configurations). These doubly

excited configurations are referred to as semi-external doubly excited configurations

and the set of configurations covered by both of these single and double excitations

span what is termed the semi-external subspace. The third term consists of con-

figurations which have been doubly excited and both electrons have been placed

into the external space. These configurations span what is termed the fully external

subspace. The final term is the set of configurations involving only internal orbitals

which are excited to other internal orbitals (those occupied in at least one reference

configuration). The configurations span what is termed the internal space. The ref-

erence configurations from the MCSCF calculations also span the internal subspace.

Figure 1.5 summarises how MOs are partitioned by MRCI for an example system

with seven electrons. The configuration coefficients of each term are re-optimised

during the MRCI calculation but the MO coefficients remain as computed during

the MCSCF calculation with the exception of systems at near degeneracy where it

is necessary to relax (re-optimise) the MO coefficients in order to correctly describe

the system. Figure 1.6 shows each of these terms diagrammatically.

The same principle of full internal contraction (FIC) of configurations finds ap-

plication in methods such as perturbative treatments of CASSCF wavefunctions

(CASPT2 [27] and NEVPT2 [28]). There are however other MRCI methods of con-

traction available. External contraction [25] involves the separate contraction of

singly external excitations and doubly external excitations with contraction coef-

ficients determined by first order Perturbation Theory. PC-MRCI [29] and PC-

CASPT2 [30] both use the method of partially internal contraction (PC). This

method of contraction leaves some classes of excitation uncontracted. Single ex-

citations to the external subspace and single excitations in the internal subspace are

both left uncontracted and this allows the construction of higher order density matri-

ces to be avoided. The method of strong contraction (SC) [29] also finds application
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Figure 1.6: Allowed MRCI excitations. Black and red excitations are those of term

2, blue excitations are for term 3 and green excitations are for term 4 of equation

1.78. The MO partitioning by MRCI is described in figure 1.5.

and results in significantly more compact wavefunctions than those used in other

contractions but this will not be discussed further here. The energy results of MRCI

calculations using FIC, SC and PC contractions on a variety of small molecules such

as N2, O2, CO OH, CH and CN, were compared to uncontracted MRCI results [31].

The SC scheme was found to be least accurate with energy results showing 5-6%

error compared to to the uncontracted results. FIC and PC results were shown

to be more accurate with errors of just 2%. A similar result was seen when other

properties such as excitation energies and geometries were considered.

Werner et al. [23], used the internally contracted MRCI technique on the X2Π

ground state of the OH radical. The equilibrium bond length was calculated as

0.971 Å, in excellent agreement with the experimental value of 0.970 Å. This in-

ternally contracted MRCI scheme showed improvement on MCSCF which predicted

0.973 Å. Dipole moment predictions of 1.672 D were also shown to be improved

over SCF (1.765 D), MCSCF (1.676 D) and CI (1.693 D), with experimental values

of 1.668 D. Vibrational frequency analysis showed ωe predictions of 3737.4 cm−1 in

excellent agreement once again with experimental values of 3737.8 cm−1. The vi-

brational predictions in particular were significantly better for internally contracted
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MRCI than all other techniques reported. Similar improvements were seen for the

treatment of the A2Σ+ first excited state for this radical.

1.13 Monte Carlo Configuration Interaction

As described earlier, in order to fully capture all of the electron correlation en-

ergy associated with a molecular system and achieve an exact result, within the

limitations of the basis set and the Born-Oppenheimer approximation, a FCI cal-

culation is required. CISD was shown to be a suitable alternative for some larger

systems but such truncated CI techniques were seen to suffer from problems of size

extensivity and size consistency problems as well as problems related to the size of

the wavefunction. The Monte Carlo Configuration Interaction technique (MCCI)

[32][33][34][35] is a configuration interaction technique designed to ease the prob-

lems associated with the large wavefunctions present in CISD calculations. MCCI

attempts to include only those single and double excitations which are the most

important in describing the system, thus eliminating relatively unimportant config-

urations and in doing so creates a highly compact wavefunction, in comparison to

CISD, which can recover a large amount of static correlation energy with a wave-

function spanning only a fraction of the configuration space. It is also specifically

designed to overcome the problems of chemical intuition required in specification of

the active space of techniques such as CASSCF and other MCSCF techniques which

require knowledge of important configurations in advance. As such, it is a black

box technique which requires the user to vary a single parameter, cmin, which sets

the cut-off level for the size of coefficient a configuration must possess in the grow-

ing MCCI wavefunction, below which that configuration is discarded. MCCI uses

a single Restricted Open Shell Hartree-Fock (ROHF) wavefunction (where paired

electrons share the same spatial orbital), or Unrestricted Hartree-Fock wavefunction

(where all alpha and beta electrons are allowed to occupy different spatial orbitals)

[36], with one and two electron integrals made available by a variety of other quan-

tum chemical programs such as Columbus [37] and Molpro [26], as a starting point

and augments this reference by generating new electron configurations by perform-

ing random walks in Hilbert space in a process called branching. Branching involves

the generation of new configurations which have been created from random single
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and double excitations initially from the HF reference, retaining the spin and spa-

tial symmetry of the reference. In this way, a CI vector is gradually built up from

the HF reference and these newly constructed configurations which represents the

system under consideration. For subsequent branching iterations, single and dou-

ble excitations can be constructed from any configuration within the growing CI

vector. Once the branching stage is complete, Hamiltonian and Overlap matrices

are constructed during a process called generation, using one and two-electron MO

integrals from the external quantum chemistry packages listed above, in the basis of

the growing CI vector. These matrices are diagonalised, using either the Davidson

[10] or Davidson-Lui [11] diagonalisation algorithms, to reveal the value of the co-

efficients of each configuration. All configurations with a coefficient of less than the

value of cmin are then discarded in a process called pruning. Because MCCI is a

parallel procedure, all processes involved in calculating the CI space now exchange

their respective configuration lists which have been found during this iteration. All

processes receive the new configurations found by all other processes and augment

their own configuration list with these new configurations, removing any duplicates

found. Convergence is then tested in terms of both change in energy and change

in CI vector length. Only when both are converged is full convergence achieved.

As a truncated CI technique, MCCI suffers from problems of size extensivity and

size consistency. These problems can be overcome by reducing the cmin value to

a point where the FCI solution is approached although the size of the system will

determine how practical this approach is. Nevertheless, MCCI is capable of cap-

turing much of the static correlation energy with a highly compact wavefunction a

fraction of the size of those generated by other CI techniques. This highly compact

wavefunction can then be used as the zeroth order wavefunction for further recovery

of dynamic correlation and MCCI contains support for a second order perturba-

tion theory method, PT2, for this purpose [38]. Figure 1.7 summarises the MCCI

process.

An interesting insight is gained by reorganising the MCCI matrix elements,

cA 〈ΨA|H|ΨB〉 cB, in terms of decreasing coefficient. Figure 1.8 [33] shows this per-

formed for the HF molecule using double-zeta basis set and a cmin value of 10−4.

In this diagram, the matrix elements are colour-coded according to the value of the

contribution of the element to the energy. Yellow elements appear on the diagonal,
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Figure 1.7: Block diagram showing the key components of the Monte Carlo Con-

figuration Interaction (MCCI) method. Diagram reproduced by kind permission of

M.J. Paterson from previous unpublished work
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reddish regions represent the strongest non-diagonal terms and blue regions repre-

sent weak non-diagonal interactions. It is clear that smaller coefficients will favour

interaction with larger coefficient terms and will not favour interaction with other

weaker terms.

Figure 1.9 shows the performance of MCCI against a range of other computational

methods [35] for the ground state energy of the Ne atom. As can be seen, MCCI

is able to outperform CISDTQ with less than 10% of the electron configurations

and approaches near FCI performance with just 1.5% of the FCI space. It can also

be seen that despite using stochastic methods, MCCI is capable of predicting the

ground state energy with remarkable levels of consistency over a large number of

runs with reproducibility errors of just 5.8 x 10−8 au. Other systems have shown

similar results [38].

1.14 Basis Sets

A basis set is a collection of n linearly independent vectors which spans an n dimen-

sional space [39]. As a result of this, the basis set can describe any vector within

that space. Because vectors are a general class of object, they can be of any type.

For example, in three dimensional space we could use the basis set of ~x1, ~x2, ~x3 to

describe any spatial vector in the form r = c1~x1 + c2~x2 + c3~x3 where ~r is any spatial

vector in 3 dimensional space and c1, c2 and c3 are the co-ordinates or coefficients of

the basis set. More compactly we can write this as ~r =
∑3

i=1 ci~xi. If we are able to

specify all 3 components of r then the basis set is said to be a complete description

of ~r or simply complete for short. We are however not limited to spatial vectors:

vectors can be functions. Here however, an infinite number of basis vectors must

be used and we write f =
∑∞

i=1 ciφi, the basis vectors in this case being functions

themselves. One reason for expressing any vector as a linear combination of basis

vectors in this way could be for reasons of convenience. It could be, for example,

that a problem may require the addition of two vectors. It is a simple exercise to

perform this type of operation when the vectors in question are described in terms

of the basis set shown above. Alternatively, and pertinent to this work, it may be

that the true nature of the function vector f is not known. In that case, the only

hope we have is to describe the function using the basis set. Of course, use of a
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Figure 1.8: The MCCI matrix elements for the HF molecule, weighted by coefficients,

organised by decreasing value. Yellow/red squares show strong interactions with

blue square representing weak interactions. Here it can be seen that the matrix is

highly sparse with only a relatively small number of interactions having importance.

Figure reproduced from reference [33] with kind permission of publisher.
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Figure 1.9: Comparison between the energy convergence of the Ne atom in the

ground state using MCCI, HF, CISD, CISDT, CISTDQ and FCI [35]
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complete basis set is hopeless as this requires an infinite number of functions. It is

possible however, to make approximations to the function using a truncated basis

set, f =
∑K

i=1 ciφi. Obviously this will result in errors in describing the function

f , but if sufficient care is exercised in the choice of basis function used, reasonably

accurate results can be obtained. Two common types of basis function which find

general application in quantum chemistry are the Slater Type Orbital (STO) and

the Gaussian type orbital (GTO). The aim in quantum chemistry is to use basis

functions to describe a set of molecular orbitals. These orbitals indicate where the

electrons are most likely to be found in any system and they are constructed from

linear combinations of atomic orbitals. Atomic orbitals in turn are constructed di-

rectly from a linear combination of either STO or GTO [40] basis sets. In a real

chemical system, the electrons move around as they feel the attraction and repulsion

from the nuclei and other electrons respectively. The aim is to model this mathe-

matically as realistically as possible and thus the more molecular orbitals there are,

the more positional flexibility the electrons have and the more accurate the model

of the real system is. The format of an STO and a GTO are shown in equations

1.79 and 1.80 and their physical form appears in figures 1.10 and 1.11. Here, we

define the angular momentum of the orbital as L = a + b + c. An s-type orbital

would therefore have a = b = c = 0 whilst a p-type orbital has a choice of either

a = 1, b = c = 0, b = 1, a = c = 0 or c = 1, a = b = 0 as expected for px, py and pz

respectively. ζ controls the width of the function and N is a normalisation constant.

φSTO = Nxaybzce−ζr (1.79)

φGTO = Nxaybzce−ζr
2

(1.80)

An STO displays the correct behaviour for describing an electron in a hydrogenic

atom, with a maximum amplitude close to the nucleus before dropping away to zero

as the distance from the nucleus increases. Unfortunately this type of function can be

difficult to work with in terms of using linear combinations of them to approximate

a molecular system. Instead GTOs are preferred. As can be seen however, the

use of GTOs to approximate STOs introduces some problems: they are too flat

near the nucleus and the fall-off at both medium and long range is too rapid. The
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Figure 1.10: Functional form of a typical STO function. The values of a, b and c

are all zero, ζ = 1 and N = 1

Figure 1.11: Functional form of a typical GTO function. The values of a, b and c

are all zero, ζ = 1 and N = 1
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major advantage of their use however stems from the property that multiplying

two GTOs results in a third GTO which is placed between the first two. This is

particularly useful when manipulating two-electron integrals, which are integrals

involving four atomic centres. Using GTOs, this problem is reduced to a pair of

two atomic centred GTOs. STOs can be approximated by a linear combination of

several GTOs. The result is a contracted GTO (CGTO). An example is shown in

equation 1.81 where each term in the summation is called a primitive GTO. The

basis set STO-nG is a simple example of the use of such a CGTO. Here n primitive

GTOs are linearly combined to produce an approximation to one STO. Once we

have all of the desired approximated STO functions, our set of atomic orbitals is

complete. It is however inefficient and undesirable to have to re-calculate the ci

and the ζ coefficients of equation 1.81 in every calculation. Each atomic orbital will

therefore have a different but optimised and fixed pair of ci and ζ values which will

subsequently not change during molecular orbital optimisation.

φCGTO = N
K∑
i=1

cix
aybzce−ζr

2

(1.81)

For core molecular orbitals, the position of the electrons is relatively fixed and there-

fore such contractions are very valuable in reducing the computational complexity

of the system. Valence orbitals, however, require a greater degree of flexibility and

it is common to find that a split valence approach is used.

Basis sets are arranged in categories. A minimal basis set is the smallest possible

basis set for a system and provides one STO, GTO or CGTO function per occupied

orbital in the atom. For H2, for example, a minimal basis set will provide two

molecular orbitals, the well known σg and σ∗u orbitals. Another example would be

the C2 molecule using STO-3G basis set which uses 3 primitive GTOs per atomic

orbital and 10 CGTOs for the subsequent molecular orbitals.The next step up in

quality would be a double zeta (DZ) basis set whereby 2 basis functions (CGTOs

or GTOs) are used per atomic orbital. For the B atom, this would result in 10

basis functions instead of 5 basis functions for the minimal basis set. Following on

from this we have triple zeta and quadruple zeta etc. which, for the B atom, would

require 15 and 20 basis functions. The value of ζ can be altered in a basis function

to produce a wider or narrower amplitude spectrum depending on what shape of

41



orbital is required for the system. The use of multiple zeta basis sets therefore

allows an increasing degree of flexibility in terms of where electrons can sit radially.

As the size of the atom increases, not all electrons are going to be influenced by

the chemical environment. It can be argued that only valence electrons need the

flexibility offered by multiple zeta functions. In this case split valence basis sets are

useful where the core atomic orbitals are modelled by a single CGTO and valence

orbitals treated with multiple zeta functions. A double zeta split valence basis on

the B atom would then require 1 basis function for the core 1s orbital and 8 basis

functions for the valence orbitals - 9 basis functions in total. For triple zeta split

valence on the B atom we require 13 basis functions and so on.

Beyond simply increasing the size of the basis set, it is possible to introduce flexibility

in the shape of the basis set by introducing polarisation functions. An example would

be to consider the hydrogen atom. The electron density in the free atom is isotropic

and therefore spherical. A 1s orbital is therefore the correct shape to describe the

system. In a chemical bond however, it is known that the electron density of the

hydrogen atom shifts into the space between the bound atoms. In this instance, the

1s orbital is a poor descriptor of the electron density around the hydrogen atom. In

order to introduce anisotropy into the hydrogen atom to prepare it for bonding, the

1s orbital must be mixed with a higher angular momentum orbital, in this case a p

orbital. It is a general rule that to polarise an orbital with angular momentum l, it

is necessary to mix in functions of angular momentum l+ 1. Therefore to polarise a

p orbital, an orbital of angular momentum d must be introduced etc. This mixing

of orbitals of higher angular momentum is called polarisation.

At this point it is worth pointing out that angular momentum functions can be

in pure form or in cartesian form. At the l = 2 level, i.e. d-type orbitals, there

are differences between these forms which require mentioning. There are 5 pure

angular momentum functions at this level: dxy, dyz, dxz, dx2−y2 and dz2 . They are,

however, not eigenfunctions of the angular momentum operator and it is common

to see cartesian d functions used instead - of which there are 6: dx2 , dy2 , dz2 , dxy,

dyz and dxz. This is equivalent to using the 5 pure angular momentum functions

with the addition of an extra linear combination of dx2 + dy2 + dz2 resulting in an

6th s type orbital. Using cartesian basis functions therefore requires one more basis

function than using pure angular momentum and typically results in lower energies
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as the extra basis function provides more flexibility. For angular momentum values

greater than d, there is a widening gap between the number of pure and cartesian

functions. For example, there are 7 pure f momentum functions whilst cartesian

functions use 10 basis functions: a difference of 3 basis functions whilst for g angular

momentum, 14 cartesian basis functions are required compared to 9 pure angular

momentum functions: a difference of 5.

The final category of general basis function we consider here are diffuse functions.

Diffuse functions have very small ζ values to allow capture of electron density far

from the nucleus. This is very useful for anionic systems and systems for which

Rydberg states are important.

A discussion is now presented of the key basis sets used in the course of this work

covering Pople and Dunning basis sets as well as effective core potentials.

1.14.1 Pople-style Basis Sets

The first set of basis sets considered in this work is the series of Pople basis sets.

Our investigations cover the minimal basis set STO-3G [41][42], the split valence

double zeta basis set 6-31G [43][44][45][46], and finally the split valence triple zeta

basis set 6-311G [47][48].

STO-3G is a minimal basis set, originally designed for the first two rows of the

periodic table, which attempts to approximate an STO using a linear combination

of three primitive GTOs as shown in equations 1.82, 1.83, 1.84 and 1.85 for 1s, 2s,

2p and 3d orbitals respectively, with the Gaussian functions themselves described

earlier in equation 1.80. Initially a fit to STOs with ζ = 1 is obtained, followed by

a scaling as shown in equation 1.86 depending on the atom.

φ1s(ζ = 1, r) =
3∑
k

d1s,kg1s(α1k, r) (1.82)

φ2s(ζ = 1, r) =
3∑
k

d2s,kg1s(α2k, r) (1.83)

φ2p(ζ = 1, r) =
3∑
k

d2p,kg2p(α2k, r) (1.84)

43



φ3d(ζ = 1, r) =
3∑
k

d3d,kg3d(α3k, r) (1.85)

φ
′
(ζ, r) = ζ3/2φ(1, ζr) (1.86)

For computational ease, the expansion is built using 1s, 2p and 3dGaussian functions

only with the ns, np and nd expansions sharing the same α value (although the dn,k

values are specific to the atomic orbital). The values of α and dn,k are optimised

by fitting to STO calculated results using a least squares method from UHF atomic

calculations. It is generally considered that the STO-3G basis set is too small for

meaningful calculations. There are also problems near the nucleus as a result of

the inability of three GTOs to effectively reproduce the desired cusp of the STO

function. The basis set performs reasonably well for geometries but is poor for

relative energies, force constants, dipole moments and other properties as a result of

the sensitivity of electron distribution to the value of ζ used. For very large systems

however, this basis set may be the only choice.

Following on from the minimal basis set, we consider the split valence basis sets.

The names for these basis sets follows a standard format: k-lnm++G**. Here the

value of k determines the number of primitive GTOs used for each core orbital and

l, n and m represent the number of GTO primitives used for the inner valence, mid

valence and outer valence regions. The ’++’ symbols represent the use of a diffuse

function for both non-H atoms (first +) and H atoms (second +). The G signifies

that Gaussian functions are being used and the ’**’ symbols represent the inclusion

of polarisation functions for non-H atoms (first *) and H atoms (second *). The basis

set 6-31G therefore uses six GTO primitives for each core orbital, three primitives

for each inner valence region and one primitive for the mid (technically called the

outer in this double zeta case) valence region. 6-31G uses the same mathematical

form for the basis primitives shown in equations 1.87 and 1.88.

φkl =

nk∑
i=1

dkl,igl(αk,i, r) (1.87)

φkd(r) =

nk+1∑
i=1

dkd,igl(αkd,i, r) (1.88)
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The primitives are contracted as follows. The 6 core primitive GTOs form a single

CGTO basis function for each atomic orbital. The 3 inner valence primitives form

a single CGTO and the outer valence is left uncontracted. Thus 1 CGTO and a

uncontracted GTO form the basis for each valence atomic orbital. Therefore for the

carbon atom, as an example, 22 primitives are used (6 for 1s, 4 for 2s and 12 for

2p) and after contraction 9 basis functions are used. Values of α and d, for the first

two rows of the periodic table, are chosen to minimise ground state atomic energies

using UHF calculations for this basis set. For rows three and above, atomic ROHF

calculations are used. The exceptions to this are Na and Mg. For Na, the ground

state is optimised without any 3p functions at all. This is followed by introduction of

3p orbitals and optimisation of the excited 2P state, with no 3s contribution, holding

all other coefficients and exponents fixed. For Mg, the approach is taken to minimise

the 3P excited state with a single electron in each of the 3s and one of the 3p orbitals.

In this way, a good description of the necessary p functions is achieved. Rescaling of

values of ζ were chosen to minimise the molecular energy within standard molecule

sets with no rescaling of core orbitals. One disadvantage of this average rescaling

is that inaccuracies are inevitable. Within each standard molecule set however, the

range of ζ values was found to be fairly small. Significant improvements are seen

over STO-3G results. Atomisation energies are seen to be less than experiment

and both absolute binding energies and dipole moments are poorly characterised.

Relative binding energies and geometries however perform reasonably well against

experiment. Absolute energies are also considerably improved over STO-3G results.

The addition of polarisation functions of higher angular momentum to the 6-31G

basis set to create 6-31G* and 6-31G** allows a shift in the electron density away

from the nucleus, resulting in better descriptions of chemical bonding for systems

exhibiting features such as hyper-valency. Geometries are better matched to exper-

iment and vibrational frequencies are considerably improved.

As with STO-3G, s and p orbitals share the same exponent, α, values. With the

Pople basis sets, care must be taken to prevent valence shells mathematically col-

lapsing into the core region during optimisation as this would improve the core

description at the expense of the more important valence area. To prevent this,

the basis functions are optimised in shells. The core is optimised first holding the

valence area constant. Once the core optimisation is complete, this region is then
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held fixed whilst the valence regions are optimised. Six uncontracted Cartesian d-

type polarisation functions are added to all 2nd row elements and K and Ca from

the third row. Their exponents are optimised by averaging values used to minimise

the energies of a variety of common molecular environments for each atom. Three

p-type polarisation functions are added to H. Transition metals receive 10 uncon-

tracted Cartesian f -type functions which are optimised from average values needed

for the minimisation of the energies of a number of metal fluoride and metal carbonyl

compounds. Coefficients and exponents for the transition metals are obtained by

minimising ROHF high spin, high angular momentum ground states for the atoms.

4p orbitals are included for all third row elements and treated as valence orbitals,

subject to the double zeta treatment. Where it is possible to use them, the 6-31G*

and 6-31G** basis sets are considered the minimum required basis sets for use with

correlated methods.

The most significant disadvantage of the Pople basis sets described so far is that they

are based on atomic calculations with coefficients and exponents optimised using

single determinant methods (UHF/ROHF). We now consider the 6-311G** Pople

basis set which aims to capture electron correlation effects. 6-311G** calculations

attempt to overcome the double zeta limitations in the following way: coefficients

and exponents are optimised to minimise atomic ground states at the UMP2 level of

theory which incorporates some electron correlation effects; a triple zeta approach

on the valence region is employed, giving more flexibility at more diffuse parts of the

valence region; pure uncontracted angular momentum functions are used for d-type

polarisation functions, reducing the number of integrals and a single uncontracted p-

type polarisation function is used for H atoms. The UMP2 calculation is performed

in several steps. Firstly a UHF calculation is performed followed by optimisation of

exponents and coefficients via minimisation of a UMP2 calculation where a frozen

core approach is taken to prevent valence functions optimising the core region at

the expense of the valence region. During the UMP2 stage, the core coefficients and

exponents are held fixed from the UHF stage. Polarisation for the H atom is done

by selecting an exponent which is the average of exponents needed to minimise the

energy of a variety of diatomic hydrides. In the frozen core approximation, Group

1 and 2 elements have the same problem as seen with the 6-31G basis sets and a

similar approach is used to resolve the difficulties. 6-311G** is found to produce good
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agreement with experimental geometries and excellent agreement with experimental

atomisation energies.

1.14.2 Correlation Consistent Basis Sets

The Dunning family of basis sets[49][50][51][52] are labelled as (aug)-cc-pVXZ, where

the (aug) prefix indicates the use of diffuse functions, cc means correlation consis-

tent, p means that polarisation functions are added by default and X = D,T,Q,5

to indicate double zeta, triple zeta etc. The aim of these basis sets is to recover

dynamical correlation from the valence region whilst treating the core orbitals as

frozen. In this context, correlation consistent means that angular momentum func-

tions are progressively added in sets, all members of each set contributing roughly

the same to the electron correlation capture. For example, once a 2nd d function

is added, this is equivalent to adding a single f function and therefore both are

added together. In this example the increase in the basis set would be from 1d to

2d1f . A third d function is equivalent to a 2nd f function and a g function and

therefore the next step is to increase the basis set from 2d1f to 3d2f1g etc. The sp

functions are supplemented every time more higher angular momentum polarisation

functions are added. The VXZ basis set process is therefore described as follows.

Firstly, to include functions with higher angular momentum. Secondly, to intro-

duce these higher angular momentum functions in groups which have similar effects

on recovering the correlation energy. sp functions are optimised from HF atomic

calculations with higher angular momentum functions subsequently optimised from

CISD calculations. This results in a compact basis set which compares favourably

with other much larger basis sets. The O atom is used as the benchmark system

for the entire first row because it contains many of the features found in the other

atoms from B to Ne (a singlet in the 2s orbital and one 2p orbital, and a triplet

in the remaining 2p orbitals). Progressively higher angular momenta were added

and the quantities of each of these higher angular momenta were also increased in

a systematic manner until energy convergence was achieved. Subsequent to bench-

marking on the O atom, comparative checks were made on OH and O2 to ensure

that atomic calculations were still valid in a molecular environment: this proving

to be the case. The same basis set as designed for the O atom was then used for

atoms B to Ne and shown to give comparable results in both atomic and molecular
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environments simply by including electron correlation effects from the CISD calcu-

lations. The contractions for 1st row elements are as follows: [3s2p1d](cc-pVDZ),

[4s3p2d1f](cc-pVTZ), [5s4p3d2f1g](cc-pVQZ), [6s5p4d3f2g1h](cc-pV5Z). As an ex-

ample, the O atom using the cc-pVDZ basis set will use 3 functions for the 2s orbital

and 2 functions for each of the 2p orbitals plus a single set of 5 pure d functions for

a total of 14 basis functions. For elements of the second (and subsequent) row, an

extra sp set has been included.

1.14.3 Effective Core Potentials

The number of basis functions required for larger atoms rapidly becomes unwieldy.

For atoms such as Sn, the vast majority of the 50 electrons within the atom are

core and will not be unduly affected by the chemical environment even where bond

breaking takes place. Therefore, for normal basis set calculations on an atom this

size, an inordinate amount of time would be spent on electrons which are not im-

portant to the problem under study. For this reason, the Effective Core Potential

(ECP) or pseudo-potential was invented [2][19]. The ECP handles the core as a

separate entity from the valence electrons. The core is treated as an averaged po-

tential (which can include relativistic effects) and is approximated as a series of

functions such as parameterised Gaussians or polynomials which will be dependent

on distance between the electrons and the nucleus. From normal all-electron atomic

calculations (such as HF), the valence orbitals then require modification to remove

the nodal structure which penetrates the core region. This is demonstrated in figure

1.12. Following this, the parameters are fitted to produce a set of modified valence

orbitals which match those produced by the all electron calculation. Of course, this

fitting procedure will be dependent on the nature of the basis set and therefore an

ECP will include a pseudo-potential and a basis set and the two must be paired in

order to give a good approximation of the system. As an example of the scale of

reduction in basis functions, using a 3-21G basis set for Sn, 33 CGTOs are required

whilst using the common SDD basis set, just 8 CGTOs are required. We now move

on to discuss the ECPs used within this work.
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Figure 1.12: A qualitative picture showing the modification of a 2s orbital (blue)

to remove the nodal structure within the core region during the development of a

general ECP. Here the orange line shows the modified 2s orbital. Notice that the

core part of the 2s orbital is now free of nodes

1.14.4 Stuttgart-Dresden Effective Core Potential(SDD)

SDD [53] has been used to describe 1st row transition metals within this work. For

these metals, the 3s and 3p orbitals have a similar size to the 3d valence orbitals.

It therefore makes sense to include these as valence orbitals because changes in the

3d orbitals will likely affect both of them. Additionally, the 4s and 4p orbitals are

also included as valence orbitals. SDD therefore specifies a Neon-like, X(Z−10)+ core

for 1st row transition metals where X = Sc → Zn, i.e. 10 electrons are treated as

core. The remaining Z − 10 electrons are treated as valence. The valence Hamilto-

nian can therefore be described as in equation 1.89 where i is the range of valence

electrons. The central term, V̂ (~ri) is the pseudopotential, representing the core,

which is experienced by the valence electrons. The form of this pseudo potential

will not be discussed further other than to say that it contains parameters which

are optimised by fitting to HF valence energies across the various electronic states

of the one-electron X(Z−11)+ cations using Gaussian basis functions with an attempt

made to correct for relativistic effects. The basis set for the valence region of SDD is

an optimised (8s7p6d1f)/[6s5p3d1f]-GTO basis set with exponents and coefficients
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optimised from the minimisation of the lowest s1dn+1 configuration states for Sc →

Cu. For Zn, the 1S ground state, s2d10 is minimised instead. Because of the near

degeneracy of 4s and 4p orbitals, 2 diffuse functions of p-type are added. These are

optimised by minimising the lowest 3P state of Zn, s1p1d10, and the p1dn+1 configu-

ration of Sc → Cu. One further diffuse s and one diffuse d function are both added

without optimisation.

H = −1

2

∑
i

∇̂2
i +

∑
i

V̂ (~ri) +
∑
i<j

1

rij
(1.89)

Errors in the energies of low lying electronic states of the atoms Sc through Zn

were found to be less than 2.5 kcalmol−1 [53]. The effect on Zr4O2(methacrylate)12

clusters of using SDD was investigated by Kreutzer et al. [54] and compared to

the performance obtained using the Def2TZVP basis set. These transition metal

oxo clusters are important nano-particle mimics and provide an easily synthesised

building block for hybrid materials. It was found that there was little difference in

using SDD compared to Def2TZVP (approx. 0.3 to 0.8 kcal mol−1) when considering

ligand binding energies. A similar result was observed when considering bond lengths

within the cluster with SDD showing typical bond length MAE of 0.01 to 0.06Å.

Finally, vibrational mode results were found to be closer to experiment when using

SDD than when using Def2TZVP with results typically within 20 to 80 cm−1 of

experiment depending on the DFT functional used.

1.14.5 BSSE

The use of truncated basis sets in practice causes a problem known as Basis Set

Superposition Error (BSSE). Because basis sets are nuclear centred and truncated,

an error can be introduced when comparing between two different isomers of the

same compound or when comparing the interaction energies of van der Waal bonded

systems. To understand the problem, a weakly bound dimer of two molecules A and

B is considered. When A and B are bound together, the electron density of the

atoms of molecule A are described by the basis functions centred on the atoms of

molecule A but are also partly described by those centred on the atoms of molecule

B. This is as a direct result of the use of truncated basis sets and it is an artefact

of the calculation which results in artificially lowered energies for the dimer. When
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molecules A and B are infinitely separated (modelled in separate calculations), this

artificial lowering of energy is no longer available to either molecule. Therefore when

calculating the binding energy of the dimer, we are confronted by the problem of

over-binding of the dimer. For strongly bound compounds this is not a significant

problem but for weakly bound complexes this can be a serious problem and must

be accounted for. Although increasing the basis set improves matters, this can

rapidly become computationally intractable for large systems. In this work, BSSE

corrections are approximated by a technique called Counterpoise Correction [55].

Three calculations are initially made. Firstly, molecules A and B are geometry

optimised in separate calculations with their respective basis sets a and b. Then the

dimer AB is geometry optimised containing the basis functions from both individual

molecules - ab. The difference between the energy of the dimer and the total energy

of the individual separate molecules is the binding energy as shown in equation 1.90.

Ebind = E(AB)ab − E(A)a − E(B)b (1.90)

Of course this gives a binding energy which contains an error as a result of BSSE

and it is necessary to approximate what this BSSE contribution might be. In order

to do this it should be noted that the geometry of the A and B molecules in the

dimer is not the same as in the free molecules. To proceed, a single point calculation

is performed on molecule A alone at the geometry it holds in the dimer. A second

single point calculation is then performed on molecule A at the geometry it holds

in the dimer but this time including the basis functions (ghost orbitals) centred

throughout space at the locations where atoms from molecule B would be expected

to be found (but without molecule B actually being present in the calculation). This

gives us two single point energies for molecule A at the geometry of the dimer: one

with BSSE and one without. The difference between them is the Counterpoise error

for molecule A. This is repeated for molecule B. To find the true binding energy of

the dimer, we simply subtract the total Counterpoise error for A and B from the

binding energy reported in equation 1.90.
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1.15 Density Functional Theory

The problem of solving the Schrödinger equation involves a wavefunction consisting

of 4N co-ordinates where N is the number of electrons in the system (3 spatial and

one spin co-ordinate per electron). As seen earlier, this creates severe computa-

tional problems, in particular with regard to the number of two-electron integrals.

An alternative attempt to solve the Schrödinger equation uses electron density to

describe the system: a technique called Density Functional Theory (DFT)[13][19],

which requires only 3 spatial co-ordinates. In terms of performance, DFT has a

similar computational cost to Hartree-Fock theory. As will be demonstrated in later

sections, DFT gives very good results for properties such as geometries, vibrational

frequencies and reasonably good results can be produced for reaction energies. It

can also sometimes produce reasonably good results for excited states providing the

excited states involve excitations into low lying unoccupied MOs. Where DFT strug-

gles is in modelling excited states where excitations are into high lying unoccupied

MOs, reaction barriers, reaction rates, systems where weak interactions dominate,

anionic systems, and charge transfer systems: essentially any system involving large

displacement of electrons. Despite these problems however, DFT outperforms HF

theory for a similar computational cost and has largely replaced HF as a standard

computational tool. The benchmark for DFT comes from the G1 database of 55

molecules containing 1st and 2nd row atoms [56][57]. These molecules have exper-

imental atomisation energies known to be correct to within 1 kcal mol−1. The G2

procedure contains the current gold standard of ab initio calculations [58] on this

same set of molecules and involves basis set corrections, perturbative corrections,

quadratic configuration interaction corrections and fitted higher level corrections.

It is against these standards that the performance of DFT methods are judged. It

transpires that DFT methods perform very well against the G2 results although

the G2 results are closer to experiment. DFT however is a vastly simpler method

computationally. We now present a discussion of DFT, mapping the theory from its

early days through to modern times.
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1.15.1 The Thomas-Fermi-Dirac (TFD) Model

The use of electron density to describe chemical systems has its roots in the combined

efforts of Thomas [59], Fermi [60] and Dirac [61] in the 1920’s. The approach taken

assumed that electron density played the central role in understanding the properties

of interacting inhomogeneous gases. In particular, the electrons were treated like a

classical liquid in an effort to understand atoms and impurities in metals.

Thomas was interested in methods of approximating the effective electric field within

heavy atoms, in order to aid the determination of various atomic properties, in the

absence of experimental data. Various approximations were made including the

neglect of relativity, the assumption of 1
r

dependence of the effective potential V on

distance from the nucleus of the atom, the assumption of uniform distribution of

electrons within the atom and the dependence of the potential V on both nuclear

charge and electron distribution. These assumptions and approximations result

in calculations which lose accuracy far from the nuclear centre and therefore the

Thomas method was best suited to regions local to the nucleus where electron density

is highest.

In a similar vein, Fermi regarded heavy atoms as a nucleus surrounded by a gaseous

sea of electrons as a result of their large number in such heavy atoms. In this way,

statistical methods could be deployed to obtain estimates of a variety of atomic

properties. For example, elucidation of the electron distribution within the atom

allowed the calculation of the full ionisation of those atoms. This involved pro-

gressively stripping all of the electrons from the atom under investigation until all

the electrons were removed. Due to the fermionic nature of electrons and the re-

quirement to fulfil the Pauli principle, classical statistical methods were unsuitable

and Fermi derived his own statistical methods to aid his work. The ultimate aim

of Fermi’s work was to therefore determine the nature of the electric field binding

the electrons within the atom and thus learn the relationship between the electric

potential and the distance from the nucleus.

It was Dirac, however, who provided the mathematical and theoretical justification

for the Thomas model, correcting for the exchange terms arising as a result of

the requirement to fulfil the Pauli principle. In the process of this work, it was

discovered that the entire nature of the atom can be deduced from the electron
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density without having to specify the wavefunctions making up that total electron

density. The 4N coordinates of the wavefunction were then able to be reduced to

just 3. The Dirac model results in an exchange-correlation hole where an electron is

less likely to be found. This hole occurs around each electron, causing problems for

the approximation of uniform electron density. The exchange-correlation hole [13]

can be considered conceptually as consisting of two parts - a Fermi (exchange) hole

which deals with the reduced probability of finding another electron in the vicinity

of one with the same spin and a Coulomb (correlation) hole which considers the

probability of finding another electron in the vicinity of one with either the same

or opposite spin. The Fermi contribution to the exchange-correlation hole, which

varies as ρ1/3(~r), dominates although it should be noted that it is the superposition

of both effects which is real. Neither effect exists in isolation.

Although useful for atomic calculations local to the nucleus, the TFD approach

outlined above suffers from qualitative errors in that chemical bonds are not pre-

dicted and oscillations due to shell structure are also not predicted. Additionally,

the model predicts an infinite charge density at the nuclei with a subsequent decay

of r−6 with respect to distance from the nucleus rather than exponential as desired.

It is this featureless decay of charge density which causes the problems of lack of

oscillations. One final problem with the model is the prediction that atomic size

will shrink (Z−1/3) with increasing nuclear charge instead of increasing. The TFD

model therefore proved to be unsuitable for molecular calculations.

1.15.2 Hohenberg-Kohn Theory

The TFD model was adapted in the 1960’s by Hohenberg and Kohn [62] to provide

a potential solution to the Schrödinger equation for interacting, inhomogeneous sys-

tems in an external potential due to a nuclear framework. The initial work of

Hohenberg and Kohn involved proof (the H-K Theorem) that a set of N interacting

electrons within an external potential, υ, provided by the nuclear framework, will

produce a non-degenerate ground state wavefunction, Ψ, and will have, associated

with it, a unique electron density. Proof of this allowed a unique electron density to

essentially be linked to a unique wavefunction representation of the non-degenerate

ground state of the molecule. A knowledge of the exact electron density would,
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therefore, contain all of the information about the system, including theoretically

the exact ground state energy (as a functional of density), but at reduced complex-

ity due to the vastly reduced number of degrees of freedom (3 instead of 4N). The

proof of the unique relationship between the electron density and the wavefunction

representing the non-degenerate ground state of the system is presented in the man-

ner of reducto ad absurdum. Essentially to disprove the H-K Theorem, one needs to

prove that if a unique external potential, υ, with associated non-degenerate ground

state wavefunction, Ψ, gives rise to an electron density ρ, that a different external

potential, υ
′
, with associated non-degenerate ground state wavefunction, Ψ

′
can give

rise to the same electron density, ρ. Because the Hamiltonian contains the external

potential due to the nuclear framework, we can define corresponding Hamiltonians,

H and H′ for the two Schrödinger equations involving wavefunctions Ψ and Ψ
′

re-

spectively. Letting Ψ be the ground state, the energy of the ground state is found as

in equation 1.91. The energy of the state associated with wavefunction Ψ
′

is found

as in equation 1.92.

E = 〈Ψ|H|Ψ〉 (1.91)

E
′
=
〈

Ψ
′
∣∣∣H′∣∣∣Ψ′〉 (1.92)

By definition, for a non-degenerate ground state, E < E
′
. Therefore, applying

the ground state Hamiltonian to the wavefunction Ψ
′

will result in a higher energy

than E. Mathematically this is described as in equation 1.93. Then, expressing

H = H +H′ −H′ leads through to equation 1.95.

E <
〈

Ψ
′
∣∣∣H∣∣∣Ψ′〉 (1.93)

E <
〈

Ψ
′
∣∣∣H +H′ −H′

∣∣∣Ψ′〉 (1.94)

E <
〈

Ψ
′
∣∣∣H′∣∣∣Ψ′〉+

〈
Ψ
′
∣∣∣H−H′∣∣∣Ψ′〉 (1.95)
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E < E
′
+
〈

Ψ
′
∣∣∣H−H′∣∣∣Ψ′〉 (1.96)

The second term of 1.96 contains the differences between Hamiltonians H and H′ .

This is the difference between the external potentials υ and υ
′

and therefore the

second term can be written as an integral in terms of both external potentials

and the electron density associated with both of these potentials (which we are

attempting to show are equal in a bid to disprove the H-K theorem). Equation 1.97

results.

E < E
′
+

∫
d~r ρ(~r)(υ − υ′) (1.97)

Similarly we can apply H
′

to Ψ to obtain an energy E which must be higher than

E
′

and follow a similar procedure to that described above arriving at equation 1.98.

E
′
< E +

∫
d~r ρ(~r)(υ

′ − υ) (1.98)

Adding equations 1.97 and 1.98 and noting that (υ−υ′) = −(υ
′−υ) leads us finally

to equation 1.99 which is impossible.

E + E
′
< E

′
+ E (1.99)

By this method, proof was provided that there must be a one to one mapping

between an external potential established by a nuclear framework and the associated

electron density and that this is associated with a unique wavefunction although

the exact energy functional which links them is as yet unknown. Subsequent to

this initial proof, the application of the variational principle completed the theory.

Applying the variational principle to H-K theory results in separation of the Born-

Oppenheimer Hamiltonian into terms involving the external potential due to the

nuclear framework and terms which include electron kinetic energy and electron-

electron repulsion as shown in equation 1.100 where T is the kinetic energy of the

electrons, Eee is the electron-electron repulsion term and Ene is the external potential

term. Subject to the constraint that the integral of the electron density over all space

is equal to the total number of electrons in the system, Hohenberg and Kohn showed
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that a minimum exists for the correct ground state wavefunction, Ψ. If a different

external potential under the same constraint was introduced, with corresponding

wavefunction Ψ
′
, then it was shown that the corresponding energy E[Ψ

′
] > E[Ψ].

Therefore, in H-K theory, the energy was shown to be variational.

E[ρ] = Ene[ρ] + T [ρ] + Eee[ρ] (1.100)

Whilst the first term in equation 1.100, which is the attraction of electrons to the

nuclei, is known, the remaining two terms, which are the kinetic energies of the elec-

trons and the electron-electron repulsion terms respectively, are not known exactly

in DFT and subsequent research involved finding approximations to them. In order

for this equation to be usable, the individual terms need to be expanded to demon-

strate the nature of their dependence on the electron density ρ. The first term Ene

is shown in equation 1.101.

Ene[ρ] = −
Nuc∑
A

∫
d~r

ZAρ(~r)

|RA − r|
(1.101)

The equation represents the interaction energy between the potential of the entire

nuclear framework (hence the summation over all nuclei) and the electron density.

This interaction is attractive, hence the minus sign, and the electron density is spread

out across space, hence the requirement for the integral over ~r. The relationship is

understood as being one of Coulombic attraction. Next we consider the Eee term.

This can be split into two terms: one dealing with the Coulombic electron-electron

repulsion, which shall be called Ĵ [ρ], and the other dealing with the exchange term

necessary to comply with the Pauli principle. This is in direct analogy with HF

Theory. The Ĵ [ρ] term is described as in equation 1.102 and the exchange term will

be explained shortly.

Ĵ [ρ] =
1

2

∫ ∫
d~rd~r

′ ρ(~r)ρ(~r
′
)

|r − r′ |
(1.102)

Essentially this term describes the Coulombic repulsion of electron pair clouds which

are smeared out over space. The factor of 1
2

accounts for the double counting of

repulsion terms.
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1.15.3 Kohn-Sham Theory

Kohn and Sham [63] advanced the work of Hohenberg and Kohn to develop approx-

imate methods for solving inhomogeneous systems of interacting electrons using

wavefunctions and lifting the restriction of uniform electron density. Having devel-

oped DFT Theory to exclude the use of orbitals, these were re-introduced to allow

computation of the electron kinetic energy term to a reasonable degree of accu-

racy. The rationale behind this is straightforward. The kinetic energy contribution

dominates the energy of the system and it is therefore vital that this term is ap-

proximated as accurately as possible. In K-S Theory, the kinetic energy terms are

considered as for quasi-non-interacting particles. In other words, the electrons are

considered to experience the average field of the other electrons rather than be able

to see the individual electrons. This is the same idea behind Hartree-Fock theory

and therefore a similar kinetic energy term results as shown in equation 1.103.

Ts =
N∑
i=1

〈φi|−
1

2
∇̂2|φi〉 (1.103)

DFT is a theory of electron density and the link between these orbitals, called

Kohn-Sham orbitals, is as shown in equation 1.104, with the density in practice

being calculated at discrete points on a numerical grid.

ρ[~r] =
N∑
i=1

|φ(~r)|2 (1.104)

The electrons, in reality, are not non-interacting and this equation carries an error,

T [ρ] − Ts, which needs to be corrected for, where T [ρ] is the exact (but unknown)

kinetic energy. The overall energy functional for DFT is therefore as described in

equation 1.105.

EDFT [ρ] = Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (1.105)

The first three terms are simple enough to evaluate and the majority of DFT func-

tionals will share exactly the same terms. The major difference between the vast

array of available DFT functionals then lies in how the final term, Exc, is dealt

with. This term contains the exchange contribution necessary for compliance with
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the Pauli Principle (the equivalent of the K̂ terms in HF theory) and also the error

in the kinetic energy term as a result of approximating the electrons as quasi-non-

interacting particles. It is common to see this Exc split into two terms: one called

the Exchange functional and the other called the Correlation functional as shown

in equation 1.106. Equation 1.107 shows an alternative description of Exc showing

the source of the errors in the entire DFT equation 1.105.

Exc = Ex + Ec (1.106)

Exc = (T [ρ]− Ts[ρ]) + (Eee[ρ]− J [ρ]) (1.107)

For the ground state of the system, the use of K-S orbitals leads to Hartree-Fock

like equations, with Hamiltonian terms expressed in terms of electron density, see

equations 1.108 to 1.110.

ĥKSφi = εiφi (1.108)

ĥKS = −1

2
∇̂2 + Veff (1.109)

Veff = Vne(~r) +

∫
ρ
′

|r − r′|
d~r
′
+ Vxc(~r) (1.110)

Here, Veff , is the effective potential each electron feels and includes the attraction

to the nuclei and the average field from the other electrons over all space. Also

included are the corrections for the kinetic energy approximation and the exchange

interaction combined under the term Vxc(~r). This final term is the main difference

between Hartree-Fock and DFT. If Exc, from equation 1.106 was known exactly, we

could simply derive the potential Vxc from this potential energy as shown in equation

1.111.

Vxc =
∂Exc[ρ]

∂ρ
(1.111)
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As described in equation 1.106 however, the exchange-correlation energy can be de-

composed into exchange and correlation functionals, each of which can be expressed

in terms of the exchange and correlation potential energies per electron, as shown in

equations 1.112 and 1.113, where εx and εc are sometimes replaced by their exchange

and correlation potentials in these equations.

Ex[ρ] =

∫
d~rρ(~r)εx[ρ(~r)] (1.112)

Ec[ρ] =

∫
d~rρ(~r)εc[ρ(~r)] (1.113)

Development of DFT functionals therefore tends to be split into construction of dif-

ferent exchange functionals and different correlation functionals, with combinations

of each used in conjunction with each other to provide overall DFT functionals.

Examples of these will be shown later.

1.15.4 Local Density Approximation (LDA)

We now turn to a discussion about how approximations are made for these exchange

and correlation terms. The earliest attempt at this was the Local Density Approxi-

mation (LDA) [63] [64] [65], or the Local Spin Density Approximation (LSDA) for

open shell systems where α and β spins are treated differently. Both LDA and

LSDA invoke the uniform electron gas model which describes the electrons as be-

ing equally spaced to effect a uniform electron density everywhere. In reality, the

electron density is highest near the nuclei, forming a cusp, before dropping away

exponentially with distance from the nucleus (there is also the exchange-correlation

hole which disrupts uniformity of electron density). Nevertheless, local to the nuclei,

this approximation can be useful. The LDA exchange-correlation approximation is

shown in equation 1.114 with the LSDA equivalent shown in equation 1.115. ”Per

electron” equivalent equations are shown in equations 1.116 and 1.117

ELDA
x = −Cx

∫
d~rρ4/3(~r) (1.114)
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ELSDA
x = −21/3Cx

∫
d~r

(
ρ4/3
α (~r) + ρ

4/3
β (~r)

)
(1.115)

ELDA
x = −Cxρ1/3(~r) (1.116)

ELSDA
x = −21/3Cx

(
ρ1/3
α (~r) + ρ

1/3
β (~r)

)
(1.117)

As seen earlier, all of the terms in the Hamiltonian are expressible as functionals of

electron density for various reasons: the number of electrons can be found as the

integral over all space of the electron density, the position of cusps in the electron

density identify the position of the nuclear centres and the slope at the cusps de-

termines the nature of the nucleus at that point. The electron-nuclear attraction

term and the electron-electron Coulombic repulsion terms can be expressed explic-

itly in terms of the electron density. The kinetic energy term can be described

as an approximation (local density approximation derived from a consideration of

the uniform density, particle in a box model) following the work of Thomas, Fermi

and Dirac, detailed earlier, in terms of the integral of ρ5/3(~r) over all space. Intro-

ducing the LDA approximation for the exchange contribution, the resulting LDA

energy functional is thus described as equation 1.118, where CF = 3
10

(3π2)2/3 and

Cx = 3
4
( 3
π
)1/3.

E[ρ] = CF

∫
d~rρ(~r)5/3 −

M∑
A

∫
d~r
ρ(~r)ZA
r −RA

+
1

2

∫
d~rd~r

′ ρ(~r)ρ
′
(~r)

r − r′
− Cx

∫
ρ4/3(~r)dr + EC [ρ(~r)]

(1.118)

Although the LDA exchange approximation results from work by Dirac, it is some-

times referred to as Slater (or S) exchange. The final term Ec[ρ(~r)] in LDA has

been approximated by Vosko, Wilk and Nusair and is termed the VWN correlation

functional. It is a very complicated equation which will not be replicated here. The

entire DFT functional using these LDA approximations is named after the exchange

and correlation functionals because it is in these two approximations that most DFT

functional differ from each other. In this case we have the amalgamation of the S
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exchange and the VWN correlation to give us the so-called S-VWN functional. The

term ”local density” is used to describe DFT functionals such as these because the

uniform electron density approximation is only accurate close to the centre of the

electron density - i.e. close to the nucleus. This causes a problem when attempts

are made to predict properties and features of molecular systems because bonding,

for example, happens relatively far from the nuclei and involves overlap of the tails

of exponentially decaying electron clouds.

1.15.5 Generalised Gradient Approximation (GGA)

For reasons just described, LDA calculations are necessarily inaccurate for molecular

species. In order to improve on these results, consideration was given to the nature

of the electron density far away from the nucleus, i.e. the non-local electron density.

It was considered that the non-local electron density could be approximated by a

power series of local electron density derivatives as described in equation 1.119,

where ρnloc is the non-local electron density and ρloc is the local electron density.

ρnloc = ρloc + x
∂ρloc
∂~r

+ x2∂
2ρloc
∂~r2

+ ... (1.119)

The use of just the first derivative of the local electron density as a correction to

LDA is called the Generalised Gradient Approximation (GGA) [64]. This approx-

imation is applied to Exc. GGA calculations show good improvements over LDA

techniques and are sometimes called Semi-Local Functionals because an attempt is

being made to predict non-local behaviour. Some examples of Gradient-Corrected

Exchange Functionals include PW91, B88 (usually just called B) and PW86. Ex-

amples of Gradient-Corrected Correlation Functionals include PW1, PBE and LYP.

Examples of full DFT functionals with gradient-corrections for both exchange and

correlation might therefore perhaps be BLYP, PW91PW91 or PW86PBE for exam-

ple. Although specific DFT functionals will be described later, an example of what

a gradient corrected functional looks like is provided for the gradient-corrected B

exchange functional [66] shown in ”per particle” form in equation 1.120, where

X = |∇ρ|
ρ4/3

is called the reduced gradient.
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εBx [ρ] = εLDAx − βρ1/3 X2

1 + 6βXsinh−1X
(1.120)

As can be seen, this functional uses the LDA exchange functional as a starting point

and applies a gradient correction technique to improve on the result. The gradient is

presented within the X term. Notice that no correlation correction is included. For

this, a gradient-corrected correlation functional such as LYP would be required, thus

combination of B and LYP would therefore give the BLYP DFT functional. Notice

the single β parameter in equation 1.120. This parameter is determined by fitting

to results obtained from other calculations on a test suite of atoms and molecules.

This will be discussed further later.

1.15.6 Hybrid Functionals (Hyper GGA)

Previously we saw that LDA functionals were improved by the inclusion of gradient

corrections of the local electron density using GGA functionals. By this approach,

non-local electron density can be approximated with some degree of success pro-

viding the non-local area was not overly far from the nuclei. Both techniques are

underpinned by the uniform electron density approximation which assumes the elec-

trons are quasi-non-interacting. Of course, the real system is interacting and some

technique is required to link both non-interacting and interacting systems together.

A common technique is to use a perturbation parameter, λ as will be described now.

The non-relativistic, Born-Oppenheimer Hamiltonians for the fully interacting and

the non-interacting systems are as shown in equations 1.121 and 1.122 respectively.

For a fully non-interacting system there are no electron-electron repulsion terms

required.

Hinter = T̂ + V̂ne + V̂ee (1.121)

Hnoninter = T̂s + V̂ne (1.122)

In order to reconcile both of these extreme cases a perturbative parameter λ is

introduced to the fully interacting system described in equation 1.121. We are then

presented with the following adapted equation 1.123. Here we allow λ to be a real
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number between 0 and 1 including both limits. At λ = 1, the equation becomes

the fully interacting Hamiltonian. For λ = 0, the equation collapses to the fully

non-interacting Hamiltonian. λ therefore can be considered as a parameter which

switches on Coulombic electron-electron interaction on a continuous range from fully

off to fully on and all values inbetween. It is therefore of importance in general that

any functionals employing this technique present smooth performance across this

entire range of perturbation strengths, all displaying the same electron density in

order to provide the link between the extremities of full non-interaction and full

interaction.

H = T̂ + V̂ne(λ) + λV̂ee (1.123)

For other values of λ between 0 and 1, the Hamiltonian can represent any interme-

diate system. The process here involves adjusting Vext to produce the same electron

density as found for both cases of λ = 0 and λ = 1. Mathematically, this technique

of ensuring equivalence in terms of electron density as the perturbation strength, λ,

is altered from 0 to 1 allows us to smoothly link the interacting and non-interacting

systems. Exc can be expressed using the Adiabatic Connection Formula [67] shown

in equation 1.124. That is, we integrate over the exchange correlation energies at

each value of λ over the range 0→ 1, where Ψλ is the wavefunction at each value of

λ.

Exc =

∫
〈Ψλ|V̂xc(λ)|Ψλ〉 dλ (1.124)

This cannot be solved exactly but approximations can be made if Vxc is linear in λ.

This can be shown to lead to the so called ”half and half” expression [68] for Exc

shown in equation 1.125. Here the exchange-correlation functional is described as

half of the non-interacting exchange-correlation functional (λ = 0) and half of the

fully interacting exchange-correlation functional (λ = 1). It should be noted that

for the non-interacting system (λ = 0), Ψ0 is a single Slater Determinant. Ψ1 is

unknown and could be ascertained from LSDA.

Exc =
1

2
〈Ψ0|V̂xc(0)|Ψ0〉+

1

2
〈Ψ1|V̂xc(1)|Ψ1〉 (1.125)

64



Because Ψ0 is a Slater Determinant, this first term corresponding to λ = 0 is simply

the Hartree-Fock exchange. Note that there is no Hartree-Fock correlation part

because there is no electron correlation in Hartree-Fock and also for a fully non-

interacting system, there will be no electron correlation anyway. For the situation

where LSDA is used for the second term in equation 1.125, we are then left with

the following equation 1.126. Other exchange-correlation functionals could be used

in place of LSDA for the case where λ = 1. An example of B3LYP [69] [70] is

shown in equation 1.127. As can be seen these functionals contain an element of

exact Hartree-Fock exchange and are therefore categorised as Hybrid or Hyper-GGA

DFT functionals [64].

Exc =
1

2
EHF
x +

1

2
(ELSDA

x + ELSDA
c ) (1.126)

Exc = (1− a)ELSDA
x + aEHF

x + b∆EB
x + (1− c)EVWN

c + c∆ELY P
c (1.127)

Here we see a more complicated DFT functional which contains 3 variable parame-

ters, a, b, and c. In addition, Hartree-Fock exchange, LSDA exchange, B gradient-

corrected exchange, VWN correlation and finally gradient-corrected LYP correlation

are included. The details of this functional will be covered later.

1.15.7 Meta GGA Functionals

After inclusion of first derivatives of the local electron density it is inevitable that

inclusion of second order derivatives would be attempted in a bid to obtain more

accuracy. This inclusion results in DFT functionals which are called meta GGA

functionals [64]. An example of meta GGA functionals is M06L and this functional,

amongst others, will be described later.

1.15.8 Dispersion Correction and Long Range Effects

Although DFT shows itself to model systems very well local to the source of elec-

tron density, a problem occurs at points further away from this source. In particular,

molecules bound by weak van der Waals (VDW) bonding are poorly described by
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DFT. VDW bonding originates in the correlation of electrons on different neigh-

bouring atoms and is dominated by dispersion effects [71] [72]. In this region, the

overlap of electron clouds of the bound species is very small. As described above,

GGA techniques are essentially local electron density models where medium to long

range density is approximated using gradient corrections of the local density. Al-

though this leads to improved results over LDA/LSDA approaches, nevertheless to

all extents and purposes, medium to long range effects are not captured well and this

deterioration in performance is seen to become noticeable just short of the VDW

radius of each atom [71]. In order to capture the correct behaviour at bonding

distances in these weakly bound species it is necessary to correct for the neglect

of, at least, the leading dispersion interaction term - C6R
−6. Shortly, a description

of the pertinent dispersion corrections within this work, GD3 and GD3BJ, will be

discussed. First the common DFT functionals used in this work are considered.

1.16 DFT Functionals

A description of the key DFT functionals used in the course of this work is now

presented covering a series of GGA, hybrid GGA, meta GGA functionals in addition

to long range corrected functionals. Dispersion corrections are also considered.

1.16.1 BLYP, B1LYP and B3LYP

In this section we present an overview of the Becke-type DFT functionals. The origi-

nal DFT exchange functional in this set is that of the B88 exchange functional, more

commonly known simply as the B exchange functional [66]. This GGA functional

was designed to correct errors in existing GGA functionals regarding displaying the

correct asymptotic behaviour of the exchange energy density which, as described

earlier when considering Hartree-Fock Theory, should be −1
r
. The B exchange func-

tional is shown in equation 1.128. It should be noted that this equation is the

integral of equation 1.120 and includes both spin densities, x = |∇ρσ |
ρ
4/3
σ

.

EB
x = ELDA

x − β
∑
σ

∫
d3~r ρ4/3

σ

(xσ)2

1 + 6βxσsinh−1xσ
(1.128)
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The value of β = 0.0042 au, was selected on a least squares fit to a range of exact

atomic exchange results from Hartree-Fock calculations on the noble gases (He to

Rn) and in this sense the B exchange functional is semi-empirical in nature. The

value of β used allows the B functional to give a range of results deviating only

0.11% from the exact Hartree-Fock exchange results with just this single parameter.

At the time, this represented the first GGA functional capable of properly describ-

ing the asymptotic behaviour of exchange density of finite many electron systems.

Benchmarking of the B functional against the G1 and G2 test suites of atoms and

molecules [73] showed that whilst LSDA techniques achieved average atomisation

errors of around 36.2 kcal mol−1 compared to experiment, the B functional achieved

errors of just 3.7 kcal mol−1, simply by the addition of gradient corrected exchange

only. Addition of the LYP [74] correlation functional gives BLYP.

Moving on from the B functional, the 3-parameter hybrid exchange functional B3

[69] and the introduction of exact exchange is presented. Here the exchange and

correlation gradient corrections from the B functional and the PW91 correlation

functional are brought into a modified LDA functional called B3PW91 which uses

a portion of exact HF exchange. The B3PW91 functional results from this and is

shown in equation 1.129.

Exc = ELSDA
xc + a(Eexact

x − ELSDA
x ) + b∆EB

x + c∆EPW91
c (1.129)

In this equation, exact HF exchange from the fully non-interacting limit has replaced

a portion of the LSDA exchange. This is done to ensure the lower λ limit is met from

equation 1.124. In addition to LSDA and exact HF exchange, some gradient cor-

rected B exchange is also introduced as well as gradient corrected PW91 correlation.

The 3 parameters a, b and c are deduced from a fit to experimental data detailed

in the G1 dataset and are therefore semi-empirical in nature. The respective values

are 0.20, 0.72 and 0.81. The absolute average error in atomisation energies against

the G1 data set is found to 2.4 kcal mol−1 which compares very favourably to the

G2 procedure results of 1.2 kcal mol−1 on the same data set. Ionisation potential

errors are shown to be 0.14 eV compared to 0.05 eV for G2 and proton affinities

are 1.2 kcal mol−1 compared to 1.0 kcal mol−1 for G2. Substitution of PW91 cor-

relation with LYP [70][74] gives the B3LYP functional. Here the gradient corrected
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LYP correlation functional is split as follows, ∆ELY P
c = ELY P

c − EVWN
c to allow

for both non-local correlation (through LYP) and local correlation (through VWN).

Substitution of this into the B3PW91 functional gives B3LYP which is described in

equation 1.127 and reproduced for convenience in 1.130. Here the values of a, b and

c are as for B3PW91 above.

Exc = (1− a)ELSDA
x + aEHF

x + b∆EB
x + (1− c)EVWN

c + cELY P
c (1.130)

The B1 functional [75], was designed to avoid the use of the three B3 adjustable

parameters in determining the amount of Hartree-Fock exact exchange to include.

This was performed using a more sound theoretical background to establish the opti-

mal amount of exact exchange to include in advance, as opposed to the technique of

fitting to experimental data as is the case with B3LYP. The B1 functional including

LYP correlation is shown as the standalone B1LYP functional in equation 1.131.

Exc = aEexact
x + (1− a)(EVWN

x + ∆EB
x ) + ELY P

c (1.131)

The single parameter a is determined to be 0.25 using perturbation theory which

establishes a firm theoretical description of the dependence of Exc on λ from the

Adiabatic Connection equation.

1.16.2 Dispersion Effects and B97D3

Finally, in this section, we consider dispersion effects with particular emphasis on

DFT-D, GD3 and GD3BJ dispersion corrections and will reference the B97D3 func-

tional which uses them [76][77].

The B97D3 functional introduced dispersion corrections into the Becke B97 func-

tional [78] which is a non-hybrid GGA functional. B97 itself is based on a systematic

fitting of B3PW91 to the G2 set of thermochemical data to produce optimised gra-

dient correction for both exchange and correlation. As described earlier, dispersion

corrections are necessary due to the almost complete neglect of the medium to long

range effects by GGA functionals, which rely on a model of local electron density.

The technique of simply adding C6R
−6 corrections to the B97 functional comes with
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a problem: both the functional and the dispersion correction will attempt to correct

for the lack of electron correlation in the same areas. An early example of this was

the application of the DFT+D method of Grimme [79]. To fix this within B97D,

re-parameterisation of the entire B97 functional was performed together with VDW

effects included. This included the decision to partition up the correlation space

by allowing the DFT functional to capture only short range correlation and using

C6R
−6 to capture medium and longer range correlation. In this way the entire energy

of the system can be captured as shown in equation 1.132, where Edisp, sometimes

called DFT-D2 is defined in equation 1.133.

EB97D = EB97 + Edisp (1.132)

Edisp = −s6

M−1∑
i=1

M∑
j=i+1

Cij
6

R6
ij

fdamp(Rij) (1.133)

Cij
6 is the pairwise dispersion coefficient for atoms i and j, R6

ij is the sixth power

of the distance between atoms i and j, fdamp(Rij) is a damping function required

to prevent singularities at small Rij and s6 is a scaling factor, the value of which is

dependent on the DFT functional used. The coefficients Cij
6 can be further broken

down as shown in equation 1.134, where Ca
6 is defined for each atom as shown in

equation 1.135. Here Iap is the ionisation potential for atom a, αa is the polarisability

of atom a and N = 2, 10, 18, 36, 54 for atoms from rows 1 − 5 of the periodic table

respectively. Iap and αa are computed using ab initio techniques.

Cij
6 =

√
Ci

6C
j
6 (1.134)

Ca
6 = 0.05NIapα

a (1.135)

fdamp is described as in equation 1.136, where Rr is the sum of atomic VDW radii

calculated using ab initio electron density contour calculations and d = 20. As

can be seen in equation 1.136, when Rij becomes very small with respect to Rr,

the denominator becomes approximately e20 and fdamp goes to zero, cancelling the

effect of the singularity in the rest of equation 1.133. The gradient of the damping

69



function, controlled by the value of d = 20, is also steep enough to ensure that for

distances well under the VDW limit, the corrections for dispersion are negligible,

thus preventing unwanted double counting correlation effects.

fdamp =
1

1 + e−d((Rij/Rr)−1)
(1.136)

It was found that using this set of equations, consistent results were found in terms

of descriptions of elements across the periodic table without having to resort to any

empirical fitting procedures. Some special cases were found regarding large differ-

ences between the free atom and the atom in molecular environments for groups I,

II and transition metals which rendered direct calculations of parameters unreliable.

In these circumstances the C6 coefficients were obtained by averaging the coefficients

found for the preceding noble gas and the subsequent group III element. Providing

the number of such special case atoms were small relative to the number of other

atoms within the system, this approximation could be considered reasonable with

any loss in accuracy essentially lost in the noise.

In a bid to improve the accuracy of the dispersion correction and to broaden the

range of applications which could benefit, attempts were made to modify the above

dispersion scheme by replacing some of the empirical values used with more sound

theoretical underpinnings [80]. In this new dispersion technique, called GD3 or

DFT-D3, the Cij and Rr values were targeted for such treatment. C8R
−8 terms

were also included. Most importantly, the dependence on geometry of the dispersion

coefficients was taken into account to allow for situations where the co-ordination

sphere of the atom distorted the electron density. This allowed a more realistic

dispersion correction for molecular and extended environments whereas previously

isotropic isolated atom electron densities were assumed. This change also allowed

chemical reactions to be treated more appropriately, especially where atoms are

seen to have substantially changed co-ordination spheres. For ease of computation

however, the dispersion coefficients are assumed to be independent of the electronic

structure. Finally, 3-body dispersion terms were also included. The scaling factor

s6 is set to 1 for all DFT functionals with the exception of those functionals which

are already designed to include some long range correction. For such functionals a

value less than 1 was used. s8 values however are DFT functional dependent. The
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inclusion of a Cij
8 R

−8 correction causes problems however because, by definition, this

has a shorter range effect than Cij
6 R

−6 corrections. As a result, this can interfere

with the normal DFT functional short range correlation treatment causing double

counting of correlation effects. The s8 values therefore are used to help counter

these effects. The modified GD3 dispersion correction is thus given in equation

1.137, where E
(n)
disp is the n-body dispersion correction. Equation 1.138 is the GD3

modified version of 1.133, which is the DFT-D2 correction for B97D, taking into

account the changes detailed above. The damping function has been changed to use

a more convenient form following investigations which showed that the precise form

of this function has less impact than first thought. This modified damping function

is shown in equation 1.139.

Edisp = E
(2)
disp + E

(3)
disp (1.137)

E
(2)
disp = −

∑
A,B

∑
n=6,8

sn

(
CAB
n

Rn
AB

)
fd,n(RAB) (1.138)

fd,n(RAB) =
1

1 + 6

(
RAB

Sr,nRABo

)−αn (1.139)

In the above damping equation, 1.139, sr,n is a scaling factor which determines the

VDW cutoff radius, RAB
o . It is DFT functional dependent for n = 6. Sr,6 replaces the

global scaling factor S6 from DFT-D2 and is set to ensure appropriate performance at

short and medium ranges. sr,8 is fixed at unity for all functionals. αn is the steepness

parameter which determines how quickly the dispersion correction is driven to zero

at short range. At these distances, as discussed already, double counting of electron

correlation can occur. The values of α6 = 14 and α8 = 16 have been explicitly

fixed to ensure the GD3 dispersion correction falls under 1% of the total dispersion

interaction at covalent bond distances, leaving the DFT functional to correct for the

rest of the correlation. The dispersion coefficients, Cij
6 are calculated explicitly from

averaged dipole polarisabilities using ab initio (Time-Dependent DFT) methods.

These values are taken from the hydrides of each element from H through to Pu

as opposed to free atom calculations and can be reduced to averaged multi-pole

expectation values. The Cij
8 values are computed recursively from the Cij

6 values.
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The reason for not explicitly calculating these higher order effects is once again

related to the fact that they are short range and cause problems with the operation

of DFT functionals at covalent bond lengths. Therefore calculating these higher

order contributions exactly would be counter-intuitive. The atom pairwise cut-

off radii are no longer approximated from electron density maps as with DFT-D2

dispersion. Instead, they are specifically calculated for all possible homonuclear

diatomics in the range of H2 to Pu2, using DFT energies for each possible dimer.

The cut-off radius is obtained by adjusting the bond length of the dimer until the

energy reaches a certain reference value which was obtained for the C2 dimer as

part of the DFT-D2 work. This specifies where the dispersion corrections cut-

off should occur. The GD3 dispersion correction also includes important changes

to account for changes in the co-ordination environment of each atom where large

changes to the dispersion coefficients can occur depending on the connectivity of the

atom. Covalent bonding of the atom reduces the polarisability of the electron density

around the atom and subsequently the dispersion coefficient. This lowers the energy

of the orbitals and instigates a process called ”quenching” of atomic states. This

effect is approximated by assigning fractional co-ordination numbers for each atom

and feeding these numbers back into the calculation of the Cij
6 coefficients using an

interpolation procedure from known references values. The 3-body dispersion term

is derived from a perturbation treatment for three atoms and this process will not

be described in detail here other than to say that the dispersion coefficients for this

contribution are approximated as the geometric mean of the relevant 2-body terms

as shown in equation 1.140.

CABC
9 = −

√
CAB

6 CAC
6 CBC

6 (1.140)

One of the main problems with the GD3 dispersion correction is that it applies

zero-damping below the VDW cutoff radius to prevent double counting effects in

the covalent bond length range. There is however no theoretical justification for

damping to zero. Additionally, this introduces an artefactual repulsive wall into

calculations as a result of the rapid rise to zero as shown in figure 1.13 which shows

the effect of damping on the dispersion curve for the argon dimer. This figure will

be discussed shortly. The work of Becke et al. [81][82][83], suggested that ”rational

damping” might be a more appropriate way of treating short range dispersion. In
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Figure 1.13: Qualitative example of dispersion damping. GD3 (red) and GD3BJ

(green) methods are compared with the situation where no dispersion damping

(blue) is applied at short range. GD3 dispersion is applied with only the two body

dispersion corrections shown in equation 1.137, n is set to 6 only, CAB
6 , s6 and the

product term RAB
o Sr,6 are all set to 1 and α6 is set to 14. For the situation where no

damping is provided, GD3 is shown with the damping term, fd,6(RAB), set to 1. For

GD3BJ, shown in equation 1.141, n is set to 6 only, S6, CAB
6 , a2 and the product

term a1RAB
o are all set to 1.

this scheme, the damping correction is reduced to a certain value other than zero at

short range. This is also demonstrated in figure 1.13. Incorporating this idea into

GD3 dispersion results in what is known as GD3BJ dispersion.

In this figure, the undamped dispersion (blue line) clearly shows a singularity. The

red line shows the effect of GD3 zero-damping on dispersion. Here the singularity is

corrected but below 3.4 A a repulsive wall has been introduced by the desire to send

the dispersion correction to zero. Counterintuitively, this can, in some cases, result

in longer bond lengths when dispersion corrections are introduced with this type of

damping. Finally, the green curve displays the effect of GD3BJ rational damping

on the dispersion. Here the singularity has been fixed as with zero-damping but

the repulsive wall has been removed. There is however the problem of non-zero

damping correction at covalent bond lengths although it transpires that this is not

a significant issue for the asymptotic fixed value approached by GD3BJ at short
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range. Equation 1.141 shows the GD3BJ dispersion correction.

Edisp = −1

2

∑
A 6=B

Sn
CAB
n

Rn
AB + const

(1.141)

It can be seen that in the limit of Rn
AB → 0, this expression becomes a constant

dispersion correction to the total correlation energy for covalent bonds. Because the

BJ damping correction to GD3 is considered theoretically justified at short range,

the focus now shifts to making corrections to the DFT correlation functionals them-

selves for their shortcomings in this region. The value of the nth order constant

in equation 1.141 is as shown in equation 1.142. S6 is set to unity for GGA and

hybrid functionals with the value of S8 determined by the functional. a1 and a2

are free-fit Becke-Johnson parameters. The expression for R0
AB can be reduced to

a simple geometric mean of atomic multipole-type expectation values and can be

described as 〈r
4〉
〈r2〉 . There are therefore three free-fit parameters for GD3BJ: S8, a1

and a2 and these parameters are fitted, via the least squares method to reference

data from benchmark test sets of non-covalent interactions. Although GD3BJ out-

performs GD3 for thermochemistry, it was found that both performed equally well

on geometries.

const = f(R0
AB)n (1.142)

f(R0
AB)n = a1R

0
AB + a2 (1.143)

R0
AB =

√
CAB

8

CAB
6

(1.144)

As we final note we observe that we obtain the B97D3 functional by applying the

above GD3BJ dispersion scheme to the B97 functional. This dispersion corrected

GGA functional is seen to give enhanced accuracy in applications involving non-

covalent interactions, thermochemistry and transition metals with respect to stan-

dard GGA functionals.
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1.16.3 M06 and M06L

The Minnesota set of meta-GGA DFT functionals are briefly described here. M06L

[84] is a local density functional (it does not contain any exact HF exchange) designed

to improve performance for main group and transition metal systems with particular

regard to non-covalent interactions. This functional was shown to be considerably

faster than B3LYP for large and complex systems. It contains PBE exchange and

exchange gradient corrections, with the addition of an LSDA exchange component

and contains similar correlation to the group’s earlier M05 functional which will

not be described here. The functional is free of correlation self interaction. Testing

against a range of standards, M06L was seen to produce lower mean errors than

B3LYP and is intended for use in applications such as supramolecular chemistry

and systems, where non-covalent interactions dominate but hybrid functionals are

prohibitively expensive. M06 [85] is a hybrid-meta-GGA DFT functional and was

designed for use in systems dominated by organometallic, inorganometallic and non-

covalent interactions. It has the same functional form for exchange and correlation

as M06L but with the inclusion of a portion of exact HF exchange. As with M06L,

there are a number of parameters within the functional which are optimised by

minimising a training function which describes a variety of types of mean error

measures against a known set of standard databases. In particular, one of the

parameters, X, describes the percentage amount of HF exchange to include. M06L

contains 0% HF exchange whilst M06 contains 27%.

1.16.4 ωB97, ωB97X, ωB97XD

The ωB97 family of DFT functionals [86][87] attempts to correct the long range

behaviour of the Becke B97 DFT functional described earlier (as the exchange part

of the B97D3 functional). The B97 functional displays long range behaviour of

−CXr−1 instead of −r−1 which causes particular problems for charge transfer re-

actions and thermochemistry. The ωB97 family divides the Coulomb operator into

short range and long range parts with a parameter, ω, describing the extent of each

part. The short and long range parts are handled by DFT and wavefunction meth-

ods (WFT) respectively. DFT performs well at short range but has not yet been

properly developed for long range. In this family of long range corrected function-
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als, 100% HF exchange is used for the long range with the correlation correction

from B97 remaining intact in both ωB97 and ωB97X. This eliminates self interac-

tion in long range exchange. ωB97 contains 0% HF exchange at short range and

ωB97X contains around 16% HF exchange at short range. These changes result

in performance of these functionals which was shown to be significantly better for

charge transfer systems, atomisation energies and a range of other properties. Short

range self interaction is still a problem for these functionals however. A further

problem is the omission of London interactions at long range and to correct this,

the ωB97XD functional was introduced. This functional is based on the ωB97X

functional described above but with 22% HF exchange at short range and an em-

pirical atomic pairwise correction for dispersion effects which is simply added to the

normal DFT calculated result. The form of this dispersion correction is similar to

that described for GD3BJ. It is truncated to Cij
6 R

−6
ij with zero damping included at

short range. With the inclusion of dispersion corrections ωB97XD shows reasonable

improvements over the other two functionals in this family.

1.16.5 CAM-B3LYP

The CAM-B3LYP functional [88] was designed to correct deficiencies in the stan-

dard B3LYP functional which prevent electron transfer reactions from being studied

computationally along with issues over modelling the polarisability of long chains

and TDDFT excitations using Rydberg states. Similarly to B97 in the discussion

about the wB97 family above, B3LYP predicts long range behaviour of −0.2r−1

instead of the desired −r−1. In order to correct this error, the r−1
12 term is split into

two: a short range term and a long range term, both described using standard error

functions in a manner which allows the proportions of B88 and exact HF exchange

to be altered to describe short range interactions through to long range interactions.

In this functional, at short range, 19% HF exchange and 81% B88 exchange are

used. At long range, this is altered to 65% HF exchange and 35% B88 exchange.

At intermediate ranges, a single parameter µ = 0.33 is used to determine the rel-

ative proportions of HF and B88 exchange thus smoothly linking short and long

range corrections in a single equation. These changes result in improved description

of VDW interactions, Rydberg excitation energies, charge transfer reactions and

the 4s-3d interactions energies of 1st row transition metals (which B3LYP typically
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underestimates).

1.17 CSFs and Spin Contamination

In order to describe the overall spin of a multi-electron system, two operators are

required: one involving the spin angular momentum conventionally projected onto

the z-axis - ŜZ , and the other involving the Ŝ2 operator. In this way, both magnitude

and direction are able to be ascertained as appropriate for a full description of a

vector quantity. The overall wavefunction should ideally be an eigenfunction of both

of these operators as follows in equations 1.145 and 1.146.

ŜZ = MS |Ψ〉 (1.145)

Ŝ2 = S(S + 1) |Ψ〉 (1.146)

Whilst single Slater Determinants representing one electron configuration will always

be eigenfunctions of ŜZ , they won’t necessarily be eigenfunctions of Ŝ2. Restricted

open shell singlets, for example, are not pure spin states and therefore will not be

eigenfunctions of Ŝ2. Indeed, any restricted open shell configuration where the un-

paired electrons are not all of the same spin states will be problematic in this way.

This can be resolved by expressing the wavefunction using Configuration State Func-

tions (CSFs) which are linear combinations of a small number of Slater Determinants

[89][90]. In addition to forcing the wavefunction to be an eigenfunction of Ŝ2, there

will be fewer CSFs than Slater Determinants in the wavefunction description, which

should usually lead to an easing of the computational effort. Some of this computa-

tional saving however can be expended in attempting to create the CSFs in the first

place. These competing effects mean that each case must be treated on its merit.

For unrestricted calculations however, the problem is more severe. Because the α

and β electron ”pairs” are inhabiting different spatial orbitals, they cannot be spin

adapted in this way to produce pure spin states. Instead, it is necessary to approx-

imate these spin states using a linear combination of pure spin states with the spin

manifold appropriate to the overall spin being approximated [91] [92]. An example

of an approximate singlet is shown in equation 1.147 with an approximate doublet
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shown in equation 1.148 and an approximate triplet shown in equation 1.149, where

|1〉, |2〉 and |3〉 etc. represent pure singlet, doublet and triplet spin states.

∣∣1Ψ
〉

= a |1〉+ b |3〉+ c |5〉+ ... (1.147)

∣∣2Ψ
〉

= a |2〉+ b |4〉+ c |6〉+ ... (1.148)

∣∣3Ψ
〉

= a |3〉+ b |5〉+ c |7〉+ ... (1.149)

Note that only pure spin states starting from the desired approximate spin state

are included in the linear expansion. The inclusion of these extra higher order pure

spin states is called spin contamination and introduces an error in the expectation

value of the Ŝ2 operator, resulting in energies which are usually artificially higher

than desired. Additionally, spin contamination can cause problems of artefactual

spin polarisation [93] which can cause problems in electronic structure calculations

where the location of electrons are desired. The level of spin contamination can

be shown, for an unrestricted Hartree-Fock calculation, to be as in equation 1.150,

where 〈Ŝ2〉pure is shown in equation 1.151. In these equations, Nα and Nβ are the

number of alpha and beta spin electrons in the system and the summation of Sαβij

is the summation over the overlap integrals.

〈Ŝ2〉 = 〈Ŝ2〉pure +Nβ −
N∑
i,j

∣∣∣∣Sαβij ∣∣∣∣2 (1.150)

〈Ŝ2〉pure =

(
Nα −Nβ

2

)(
Nα −Nβ

2
+ 1

)
(1.151)

Spin contamination of more than around 10% causes serious problems for unre-

stricted calculations and if it cannot be reduced, another method must be found for

modelling the system. When considering DFT however, no explicit wavefunction

exists leading to problems defining 〈Ŝ2〉 [94][95]. Efforts to produce 〈Ŝ2〉 expecta-

tion values involve approximations which can be subjective in nature. Whilst it

is imperative that spin contamination is reduced as much as possible for accurate

calculations, care must be taken when relying on the numerical value calculated
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by all DFT methods. Modern quantum chemistry tools will attempt to remove

spin contamination through annihilation of the unwanted spin states using projec-

tion methods but the development of improved techniques with which to estimate

accurate values of 〈Ŝ2〉 is a continuing theme of research.

1.18 Wavefunction Stability

Hartree-Fock and DFT calculations attempt to minimise the energy of a wavefunc-

tion with respect to variation of the MO coefficients and this is usually performed

under one or more constraints [96][97] , such as the use of real wavefunctions, the

use of a truncated basis set, the use of spin-orbitals as simple single products of

spatial and spin functions, symmetry restrictions or the use of restricted calcula-

tions for core electron pairs rather than fully unrestricted for example. There is

no certainty that the minimised energy from such a heavily restricted wavefunc-

tion will satisfy the requirement of the final wavefunction being an eigenvalue of

both the SZ and S2 operators, leading to a wavefunction instability. Most quantum

chemical tools support features which seek to identify and rectify these wavefunction

instabilities by progressively relaxing these constraints to identify solutions which

may be more optimal. These instabilities manifest themselves in the following way:

first derivatives of the energy, with respect to nuclear position, of the constrained

system identify a stationary point, with second derivatives usually confirming this

stationary point to be a local minimum. It may be possible that the calculation has

converged on a solution containing one or more imaginary eigenvalues and this type

of wavefunction instability can usually be easily rectified by displacing the geometry

along the imaginary eigenvalue co-ordinate. The presence of further wavefunction

instabilities are then tested by relaxing some of these wavefunction constraints and

re-calculating to confirm that the energy remains as a local minimum, because it is

entirely possible that, following the removal of the constraint, the energy becomes

a stationary point other than a minimum, or it may even be that the energy is no

longer a stationary point at all. The latter two conditions would mean that a lower

energy solution would be available and it is then desirable to attempt to converge

to this lower energy state correctly. How this is performed will depend on the tool

used. For example, relaxing the constraint of double MO occupancy in a calculation
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which results in a singlet being found, may identify the presence of a lower energy

triplet for the system.

An example of a wavefunction instability is the use of RHF to calculate the planar

allyl radical which results in a phenomenon known as symmetry breaking [93][98].

Symmetry breaking occurs when the wavefunction symmetry differs from the sym-

metry of the molecular geometry. In the case of the allyl radical, symmetry breaking

is caused by the neglect of spin polarisation and results in a wavefunction symmetry

of Cs instead of C2v, as with the geometry. This can be seen to produce predic-

tions of a double bond between two carbon atoms and a single electron localised on

the third carbon atom in restricted calculations. Spin polarisation is important in

this radical because of the presence of a node on the central carbon of the SOMO

and also the presence of a pair of π electrons in the subjacent MO which can be

easily polarised. Allowing the electrons the flexibility to occupy different spatial

co-ordinates via an unrestricted calculation eases the problem with the result being

that the unpaired electron is shared between the terminal carbons and the subjacent

π system polarised with most electron density at the central carbon. It should be

noted that because symmetry breaking occurs as a result of neglecting correlation

between electrons of opposing spin, even unrestricted calculations can suffer from it.

Unrestricted HF calculations can be shown to contain both some electron correlation

and some spin contamination from higher spins, as a result of allowing flexibility in

the spatial orbitals of pairs of electrons of opposing spin and from the inclusion of

higher spin states to deal with the absence of pure spin states, respectively.

These two effects are in competition with each other. At smaller bond lengths, spin

contamination is most important and hence an RHF solution is preferred in order to

eliminate it. However, when a bond is stretched, the importance of electron correla-

tion increases rapidly. When the importance of adding electron correlation exceeds

the importance of removing the spin contamination, a RHF/UHF instability occurs

[19]. It is at this point that a switch from a restricted approach to an unrestricted

approach is required. Of course, it may be possible for geometric alterations to

a molecule to occur such that the symmetry of the system is broken (as a result

of Jahn-Teller effects for example), but if the wavefunction breaks symmetry then

this is always considered to be artifactual [98]. Because symmetry breaking results

in localisation of electron density, inspection of spin density and detection of spin
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contamination can help identify situations where the results of the calculation have

been rendered useless by this effect. Under these circumstances, another method for

capturing the system must be sought.

1.19 Geometry Optimisation

The earlier discussion on the SCF procedure is focussed on optimising the wave-

function at a particular nuclear geometry. In order to determine properties such

as equilibrium bond lengths it is necessary to find the stable nuclear geometries.

This is done by identifying stationary points on the nuclear landscape. Two types

are of importance in chemical applications. Energy minima represent stable species

such as products, reactants and intermediates and first order saddle points represent

transition states linking them. In order to find these stationary points, a process

called Geometry Optimisation must take place. The nuclear framework is adjusted

using analytical or numerical derivatives of the potential energy with respect to

nuclear position. These derivatives indicate directions of increasing or reducing gra-

dient. The second derivatives of energy with respect to nuclear position indicate

the nature of any stationary points found. For computational purposes these second

derivatives are stored in matrix form called the Hessian with eigenvalues of this Hes-

sian indicating a minimum (all positive eigenvalues) or a transition state (a single

imaginary eigenvalue with all other eigenvalues positive). At an energy minimum,

the gradient will be zero in all directions, the physical interpretation of this being

zero unbalanced forces between the atoms. Once an acceptable stationary point

is reached, thermodynamic properties can be calculated as described in the next

section.

The algorithm for finding stationary points in this work is the Berny algorithm using

GEDIIS [99]. Here, energy minima can be found using a number of different meth-

ods, all essentially following a downhill energetic slope using the analytical gradients

of the energy with respect to nuclear position. GEDIIS is a technique which creates

a series of vectors representing different nuclear geometries which are calculated dur-

ing each step of the optimisation process. The space spanned by these vectors is then

searched for a local energy minimum with the new geometry adjusted accordingly to

reach this minimum. A new set of geometry vectors is then extrapolated from this
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new position and the process is repeated until the forces between the atoms and the

displacement of the nuclear geometries between optimisation steps are all below a

user-defined threshold which indicates convergence. It is important to recognise that

at each geometry step, the wavefunction is re-optimised using the SCF procedure

detailed earlier. In this way, the resulting solution represents a stationary point in

the nuclear geometry landscape and an optimised wavefunction at that stationary

point. In undertaking the optimisation process, the implementation of the Berny

algorithm using GEDIIS takes advantage of an ability to overcome shallow potential

energy wells combined with smooth and fast convergence near the energy minimum.

1.20 Thermodynamics

Once a local energy minimum is reached, a variety of properties of the system can

be determined: an example of which would be thermodynamic properties. This

requires accurate frequency analysis to be undertaken involving first and second

derivatives of the energy with respect to nuclear position. In order to perform

such frequency analyses or to determine free energies, an SCF calculation must be

augmented with thermal corrections to account for the fact that the SCF calcula-

tions are performed at 0K rather than room temperature. In this work, Gaussian

09d has been the preferred tool and a short discussion of how Gaussian performs

these thermal calculations follows [100]. Gaussian employs standard classical sta-

tistical thermodynamics approximations to account for thermal corrections to the

SCF energy. An ideal gas is assumed, with non-interacting particles. Additionally,

all excited electronic states are ignored and assumed to be inaccessible. Thermal

corrections for vibration, rotation and translation are therefore deduced from these

approximations. The key quantities for the thermal corrections are as shown in

equations for entropy 1.152, internal energy 1.153 and heat capacity 1.154.

S = R

[
ln(qe) + T

(
∂lnq

∂T

)
V

]
(1.152)

E = NkBT
2

(
∂lnq

∂T

)
V

(1.153)
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CV =

(
∂E

∂T

)
N,V

(1.154)

These three equations are seen to be dependent on the partition function q and can

be split down into the relevant contributions from vibration, rotation, electronic

and translation contributions. The partition functions are constructed from stan-

dard approximation models: particle in a box (translational contributions), rigid

rotor (rotational contributions) and simple harmonic oscillator (vibrational contri-

butions).

First the translational contributions are considered. The quantum partition function

is shown in equation 1.155 with the consequential translational contributions to

entropy, internal energy and heat capacity shown in equations 1.156 1.157 and 1.158

respectively.

qtr =

(
2πmkBT

h2

)3/2
kBT

P
(1.155)

Str = R

(
lnqt + 1 +

3

2

)
(1.156)

Etr =
3

2
RT (1.157)

Ctr =
3

2
R (1.158)

For the electronic contributions, things are a little easier. Because only the ground

state is considered accessible, the partition function is simply the degeneracy of the

ground state, go. As a result of the temperature independence of this partition

function, there are no electronic contributions to either the internal energy or the

heat capacity and both of these are zero. The electronic contribution towards the

entropy however will not be zero. Equations 1.159 to 1.162 describe the relevant

quantities.

qelec = go (1.159)
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Selec = Rlnqe (1.160)

Eelec = 0 (1.161)

Celec = 0 (1.162)

For the vibrational contributions, Gaussian takes the bottom of the potential well

as the zero of energy rather than the lowest vibrational level. The partition function

is a product of contributions from each real vibrational mode, K and is shown in

equation 1.163. The corresponding entropy, internal energy and heat capacity values

are taken as the sum of contributions from each real vibrational mode and are shown

in equations 1.164 to 1.166 where ΘV,K = hνK
kB

is the characteristic temperature of

the vibrational mode.

qvib = ΠK

[
e−ΘV,K/2T

1− e−ΘV,K/T

]
(1.163)

Svib = R
∑
K

[
ΘV,K/T

eΘV,K/T − 1
− ln

(
1− e−ΘV,K/T

)]
(1.164)

Evib = R
∑
K

ΘV,K

[
1

2
+

1

eΘV,K/T−1

]
(1.165)

Cvib = R
∑
K

eΘV,K/T

[
ΘV,K/T

e−ΘV,K/T − 1

]2

(1.166)

Finally, the contribution from rotations is considered. These contributions will be

heavily dependent on the nature of the atom or molecule. For atoms, the partition

function is 1 and consequently there is no temperature dependence at all. Under

those circumstances the contributions to both internal energy and heat capacity are

both zero. The entropic contribution will also be zero because of the value of the

partition function, ln(1) = 0. For linear molecules, the values are as shown in equa-

tions 1.167 to 1.170 and for polyatomic molecules in general the contributions are as

shown in equations 1.171 to 1.174. The parameter σr is called the symmetry number
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of the molecule and is the number of indistinguishable orientations of the molecule.

For example, a heteronuclear diatomic molecule would have one indistinguishable

orientation whereas a homonuclear diatomic would have 2. In those circumstances

σr would take the value 1 or 2 respectively.

qlinearrot =
1

σr

T

Θr

(1.167)

Slinearrot = R(lnqr + 1) (1.168)

Elinearrot = RT (1.169)

Clinearrot = R (1.170)

qpolyrot =
π1/2

σr

[
T 3/2

(Θr,xΘr,yΘr,z)1/2

]
(1.171)

Spolyrot = R(lnqr + 3/2) (1.172)

Epolyrot =
3

2
RT (1.173)

Cpolyrot =
3

2
R (1.174)

Now that these thermal corrections to entropy, internal energy and heat capacity

have been determined, Gaussian then applies them to produce a range of corrected

energy values for the calculation. The total thermochemical corrections for energy,

enthalpy and Gibbs energy are then calculated as shown in equations 1.175 to 1.177

and can be added to the SCF energy in order to produce either energetically, en-

thalpic and Gibbs corrected energies for the system as required. It should be noted

that in equation 1.177, Scorr = Str + Selec + Svib + Srot.
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Etot = Etr + Eelec + Evib + Erot (1.175)

Hcorr = Etot + kBT (1.176)

Gcorr = Hcorr − TScorr (1.177)
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Chapter 2

MCCI - Metal Dimers

2.1 Chapter Abstract

In this chapter, a discussion is presented on the application of the Monte Carlo

Configuration Interaction (MCCI) method to a variety of metal dimers in order

to establish the efficacy of the technique in correctly describing systems exhibiting

multi-reference character. The primary focus of this chapter is the analysis of the

ScNi dimer as part of a wider project undertaken by other colleagues which included

dimers such as the Sc2, Cr2 and Mo2 systems. Potential energy surfaces are created

for ScNi using MCCI and spectroscopic properties are estimated from the resulting

curves. Both potential energy surfaces and properties are compared to experimental

results and also previous computational studies using other techniques. An attempt

is made to quantify the multi-reference nature of the wavefunction and to estimate

the most important molecular orbitals in describing the system. The ScNi results are

compared and contrasted with the dimers investigated as a part of the wider project.

2.2 Metal Dimer Background

For chemical systems consisting of more than one metal atom, state-of-the-art, multi-

reference techniques are often required in order to successfully model the species.

Although geometrically simple, there can be great complexity in the electronic struc-

ture of these molecules. In the case of transition metal dimers, for example, there are
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usually many low lying excited states which results in the system becoming highly

multi-reference at many geometries on the potential energy surface. The effect of

this is that across the potential energy surface there are many important electron

configurations which must be taken into account when attempting to describe the

wavefunction at a particular geometry. For example, Hoyer et al. [1] describe chal-

lenges studying the Fe2 molecule because predictions of ground and electronic excited

states appear to be sensitive to the choice of quantum chemical method. CAS(16,12)

with subsequent CASPT2 and MRCI(+Q) calculations predict the ground state for

Fe2 should be 9Σ−g whilst increasing the active space to CAS(16,15) with subsequent

CASPT2 calculations predicting 7∆u as the ground state. DFT with the OPBE

exchange-correlation functional also experiences difficulties, predicting 7∆u as the

ground state. Compounding the difficulty in predicting the correct ground state, pre-

dictions of the potential energy surfaces using NEVPT2 and NEVPT3 show large

discontinuities across the surface clearly indicating the extreme difficulties in cor-

rectly capturing all of the necessary configurations involved. Other transition metal

dimers are known to cause issues such as reported predictions of a double potential

well for the ground state of the Cr2 dimer [2]. It is proposed that the difficulty lies

in the presence of a delicate balance between static and dynamic correlation as one

progresses across the potential energy surface.

Single reference techniques such as Hartree-Fock theory (HF) and DFT struggle to

deal with systems such as these. It is also possible that for heavier transition metals,

relativistic effects need to be considered. Ideally a Full Configuration Interaction,

(FCI) [3][4], calculation would be performed on the system, but as seen earlier, this

can result in configuration vectors which are simply too large for all but the very

smallest systems. FCI certainly would not be appropriate for systems involving

transition metal dimers, as will be demonstrated. A first attempt to model such

systems might then involve CASSCF. CASSCF is capable of recovering some static

correlation by performing FCI on a small number of the most important orbitals for

the system, but the technique requires prior knowledge of these orbitals. An addi-

tional problem is that this technique becomes computationally intractable for more

than around 16 electrons and 15 orbitals and therefore is only suitable where a small

number of electronic configurations are of importance. CASSCF nevertheless is ca-

pable of performing a first attempt at modelling the system. Subsequent capture of
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the remaining dynamic correlation can be performed by multi-reference techniques

such as Multi-reference Configuration Interaction (MRCI) [5] [6] [7] or perturbative

methods such as CASPT2. Again these techniques become computationally infea-

sible for larger systems and even for smaller systems can result in wavefunctions

which contain extremely large numbers of electronic configurations. Monte Carlo

Configuration Interaction (MCCI) [8] [9] [10] attempts to resolve these problems

and in the process produces highly compact wavefunctions which approximate the

FCI solution. It does so by creating a configuration vector and augmenting it with

randomly selected electronic configurations from the growing vector and routinely

pruning the configurations which prove to be unimportant. This work attempts to

gauge how successfully MCCI can balance the requirements for accuracy with the

need for a compact wavefunction for metal dimer systems which are known to be

challenging systems.

MCCI has been used in several applications. Gyorffy et al. [11] applied the tech-

nique to calculate a few singlet and triplet excitation energies of a number of small

molecules such as CH2 and H2O. MCCI results for excitation energies for these

molecules showed remarkable accuracy with just a few thousand CSFs, of around a

few tenths of an eV compared to the FCI solutions which often required hundreds

of millions of configurations. Across the range of molecules tested, results were es-

sentially the same as those obtained using EOM-CCSDT. Ground state potential

energies were also explored by Coe et al. [12] who investigated dissociation of small

molecules such as N2, F2, HF and CH4 and the H50 lattice. Ground state potential

energy surfaces for systems such as NH3 inversion and ethylene torsion were also

considered with results approaching chemical accuracy in some cases. Following

ground state potential energy work, Coe et al.[13] then found MCCI useful in find-

ing accurate multipole moments for a variety of molecules such as NO (dipole), N2

(quadrupole) and CH4 (octupole) in addition to ionisation potentials for the first

row atoms, Na and Mg, which came within 1.2% of the results for FCIQMC [14].

Electron affinities were found to be less accurate though, probably as a result of

the small magnitude of these quantities relative to the stochastic noise inherent in

a random technique. Coe also augmented the MCCI code to include the calcula-

tion of excited states using State Averaging to avoid the problem of root flipping

and demonstrated that MCCI gave very good results for molecules such as H3.
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Coe et al. [15] developed MCCI to calculate higher order dipole properties up to

hyper-polarisabilities of several small molecules including CO, H4 and HF. Because

hyperpolarisabilities require higher order derivatives of energy, excited states are re-

quired to calculate properties such as these. MCCI was developed to perform sum of

states calculations using a form of state averaging. Essentially FCI-standard results

were obtained for the hyperpolarisability of HF using 120 states whilst a result for

H4 using 40 states came to within 97% of the FCI solution. Further extension of

the MCCI technique by Coe et al. [16] saw the technique developed to determine

X-ray emission and absorption energies, with results for a range of molecules such

as CO, HCN, HCl and NO, comparable with the more computationally expensive

EOM-CCSD technique. Finally, Coe et al. [17] successfully undertook positronic

wavefunction calculations on a range of atoms and molecules which were combined

with positrons, such as positronium hydride, positronium hydroxide and lithium

positride, obtaining essentially FCI standard results with a fraction of the space.

All of the above used small molecules and atoms from the early part of the periodic

table. It is therefore of interest to check whether MCCI is as useful for elucidating

the ground state potential energies for transition metal dimers such as ScNi and a

discussion of that molecule is now presented.

The thirteen valence electron ScNi early-late transition metal diatomic molecule has

historically proven to be a difficult species to characterise in terms of both equilib-

rium bond length and dissociation energy. This species would therefore appear to

be a good candidate on which to test the efficacy of MCCI as a computational tech-

nique. The stability of thirteen valence electron species such as ScNi was predicted

[18][19] to be as a result of synergic bonding between Sc and Ni with 4s electron

σ-donation from the Sc atom to Ni augmented with π-back donation from Ni to

Sc. This σ-donation from the Sc atom is facilitated by the close proximity of the

4s23d8 ground state configuration and the 4s13d9 first excited state configuration of

the Ni atom. Without this, the σ-donation would be an unimportant contribution

to the bonding between the atoms. The π-back donation is facilitated by the vir-

tually empty d orbitals of the Sc atom. In addition to σ and π bonding between

the atoms, there is also δ bonding between the 3dx2−y2 and 3dxy orbitals of both

atoms. The ground state of this species is routinely accepted as 2Σ+ after agree-

ment between computational and experimental work [20][21][22][23][24][25][26] with
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the single unpaired electron found to be mainly localised on Sc. The bonding can be

represented by the molecular orbital configuration 1σ22σ21π41δ43σ∗1 where the 1σ

MO was found to be a strongly bound 4s−4s interaction, the 2σ21π41δ4 MOs found

to be largely localised on the Ni atom with some delocalisation to the Sc atom and

the 3σ∗1 containing the unpaired electron found to be the antibonding equivalent

of the 1σ MO. It is thought that the strength of the binding comes predominantly

from the d orbitals with a bond order of around 5.5.

Experimentally, there is no data for either the dissociation energy or equilibrium

bond length of ScNi. Arrington et al. [22] does however provide details of the

vibrational wavenumber ∆G1/2 = ωe = 334.5 +/- 1.0 cm−1 for the ground state (as-

suming simple harmonic oscillator behaviour at the bottom of the potential energy

curve and neglecting anharmonicity). Various computational approaches have been

attempted with regard to characterising the ground state of ScNi. Early models

used by Miedema et al. [23] applied non-ab initio methods to a large range of het-

eronuclear metal dimers. The value of Do(ScNi) = 3.28 eV is reported. Credence

for this value of 3.28 eV was provided by experimental work [22], which indicated

that a dissociation energy of Do(ScNi) > 1.36 eV was expected with a value likely

to be greater than 2.0 eV (based on extrapolation from the results of a database

of thirteen-valence diatomics such as YNi). No firm experimental value for ScNi

currently exists however. Faegri et al. [24] used a range of computational tech-

niques to model ScNi including post-Hartree-Fock methods such as CASSCF and

MRCI. CASSCF calculations predict Re = 2.04 Å, whilst the more accurate MRCI

calculations predict Re = 2.13 Å, Do = 1.55 eV and ωe = 322 cm−1. Mattar et

al. [25] used LCAO-LDF techniques to investgate not only the 2Σ+ ground state

of ScNI, but also the lowest lying excited states A” 2∆, A’ 2Π, A 2Σ+ and B’2Π,

having shown promise as a technique in the modelling of challenging homonuclear

diatomics such as Cr2, V2, Mn2 and Mo2. Spectroscopic values for the ground state

of ScNi are reported as Re = 2.019 Å, Do = 5.95 eV and ωe = 405.9 cm−1. Whilst

the value for Re shows good agreement with Faegri’s value of 2.04 Å and 2.13 Å for

CASSCF and MRCI respectively, the values of Do and ωe are considerably different.

The reason for this discrepancy is put down to the known problem of over-binding of

the LCAO-LDF method. Of particular interest is the seemingly small energy gaps

of around 0.5 eV to 1.5 eV between the ground state and excited states as this may
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make it difficult to correctly model the ground state. Additionally, the potential en-

ergy surface has only been presented up to just 2.4 Å. Crossing of potential energy

surfaces is demonstrated around the equilibrium bond length and it is reasonable

to assume that further potential energy surface crossing will happen at long bond

lengths as dissociation is approached, causing further computational challenges. It

is interesting that Mattar does not report on this. Following the rise in popularity

and efficacy of DFT methods, it is not surprising to find reports in the literature of

an attempt to apply this technique to metal dimers. Gutsev et al. [26] investigated

the bonding of ground and excited states of ScNi with emphasis on the nature of the

bonding using the BPW91 method with 6-311+G* basis set and natural bond anal-

ysis. Findings included Re = 2.047 Å, Do = 3.30 eV and ωe = 349 cm−1. The value

for ωe in particular is in excellent agreement with Arrington et al. [22] whilst the

equilibrium bond length is in excellent agreement with the computational findings of

Faegri et al. [24]. It is worthwhile noting that all of the computational calculations

detailed here differ significantly from each other and with no reliable experimental

data available, it is not possible to be certain which approach, if any, has resulted

in the most accurate measurement for either Re or ωe

The series of findings above, with particular regard to low lying excited states and

the lack of experimental data, highlight the nature of the challenges facing any com-

putational technique which aims to successfully model the potential energy surface

of the ground state for this diatomic molecule.

2.3 Computational Details - Metal Dimer

A detailed discussion of the operation of MCCI was given earlier but a summary

is reproduced here for ease of following the work. Version 4 of the MCCI software

is used throughout this work [8][27]. MCCI uses as an input, the molecular orbital

integrals (both one and two electron) provided from the output of ROHF Molpro

[28] calculations on the ScNi dimer using the STO-3G basis set. Basis sets larger

than this proved computationally infeasible. These ROHF molecular orbital inte-

grals were then transformed into a CSF within MCCI from the occupied molecular

orbitals. Subsequently, this reference CSF was augmented with new CSFs which

were formed from random single and double excitations. Each of these excitations
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preserved both the spatial and spin symmetry of the reference CSF. In this way a

growing vector of CSFs was produced which represented the entire wavefunction of

the system. After this stage, the Hamiltonian matrix was constructed in a basis of

these CSFs and diagonalised. Subsequent to this, any CSF with an absolute coef-

ficient value below a specified cmin value was discarded. This process was repeated

until convergence was achieved. Calculations were initially run at convergence values

of 10−3 before tightening to 5x10−4. cmin values were initially set at 5x10−4 before

being reduced to lower values until a smooth potential energy curve was achieved. In

order to measure spectroscopic values correctly, the LEVEL 8.0 program was used

[29]. An approximation was made that at the lowest vibrational level, the potential

energy surface could be reasonably modelled as a simple harmonic oscillator. This

allowed an approximate value of ωe to be calculated. Because MCCI is a truncated

CI method, it suffers from size consistency issues. As a result, Do is estimated by

assuming the full dissociation is converged on at very long bond lengths and es-

timates are made of that converged value in the course of this work for the ScNi

dimer. During this work, a quantitative measure of the multi-reference nature of the

ScNi dimer is made using equation 2.1 and 2.2. Here it can be seen that for single

reference systems, MR = 0 and for highly multi-reference systems, MR → 1.

MR =
∑
i

|ci|2 − |ci|4 (2.1)

∑
i

|ci|2 = 1 (2.2)

Finally, the important molecular orbitals are estimated from an analysis of the

percentage of CSFs in which they appear weighted by the |ci|2 value for each CSF.

2.3.1 Results and Discussion - Metal Dimer

For ScNi, the point group is C2v for Molpro calculations and the required symmetry

of A1 and doublet spin is enforced in the wavefunction setup. Initially an MCCI

convergence threshold of 10−3 is used along with cmin values of both 5x10−4 and

2x10−4. 18 orbitals are frozen (36 electrons) with only the 4s and 3d orbitals and

their respective electrons treated as valence for both Sc and Ni atoms in order to
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Figure 2.1: MCCI Energies for the ScNi dimer with cmin = 5x10−4 and cmin =

2x10−4 against bond length (Å) using the STO-3G basis set with 18 frozen orbitals

and 36 frozen electrons.

minimise the computational effort. Single point energy ROHF calculations were

made at a variety of internuclear distances from 2.00 Å to 7.00 Å with MCCI calcu-

lations subsequently performed at each of these points. In order to initially obtain

a smooth ROHF potential energy curve, the wavefunction at 2.50 Å was used as the

starting guess for 3.00 Å and the wavefunction at 4.00 Å was used as the starting

guess at 3.50 Å. No other manipulations were necessary and all other data points

were obtained in isolation from each other. The MCCI potential energy surface

produced is shown in figure 2.1.

As can be seen, the reduction of cmin has shown very little difference in the potential

energy surface. From this data, and subsequent spectroscopic analysis, the following

results are reported for the ScNi MCCI calculations: Re = 2.30 Å, Do = 4.26 eV

and ωe = 329 cm−1 for cmin = 5x10−4 and Re = 2.30 Å, Do = 4.12 eV and ωe =

309 cm−1 for cmin = 2x10−4. There is no difference in equilibrium bond length for

the tighter cmin criterion and a reduction in just 0.14 eV for Do and a 20 cm−1 drop

in ωe. Results are summarised in table 2.1; experimental results are included for

comparison.

Equilibrium bond lengths are seen to be slightly higher with MCCI than with MRCI

and dissociation energies are around the middle of the range of results reported in

the literature to date. In the absence of experimental data however, it is not possible
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Table 2.1: ScNi MCCI Results. Calculations use STO-3G basis set and convergence

at 10−3 Hartrees. Experimental errors are specified in brackets representing +/-

that value. Error values listed as (-) indicate that no data was provided.

Property cmin = 5x10−4 cmin = 2x10−4 MRCI Experiment

Re (Å) 2.30 2.30 2.13 -

Vib. ωe (cm−1) 329 309 322 334.5(1)

Do (eV) 4.26 4.12 1.55 >1.36(-)

Avg. Num MCCI CSFs 7x103 2x104 - -

Num FCI SDs 108 108 - -

Approx. Fraction 10−5 10−4 - -

Num Important MOs 14 14 - -

to be certain which technique is the most reliable. Of interest is that MCCI can

obtain results which are very close to MRCI results for Re and ωe despite using a

minimal basis set such as STO-3G. The ωe results are in particularly good agreement

with experiment and MRCI. In addition to the use of a minimal basis set, MCCI

also obtains these results with, on average, only a fraction of the configuration space

compared to the FCI solution. Nevertheless, the nature of the basis set used in this

work means that results should be treated with caution.

The number of CSFs used across the potential energy surface is shown in figure 2.2.

This figure captures the main multi-reference characteristics across the potential

energy surface of the ScNi dimer. As can be seen, the general trend is towards lower

numbers of CSFs as the bond length is increased from equilibrium but with a spike

around 3.00 Å for both values of cmin. When looking at the MR graph, which forms

the inset in figure 2.2, this coincides with a peak in multi-reference character at the

same bond length. Otherwise the CSF and MR curves would appear not to be par-

ticularly well correlated. Although the number of CSFs changes across the potential

energy surface, the MR value indicates that the system is highly multi-reference

across the range of bond lengths and is well above 0.9 in all cases. As a result, the

difficulty for single reference methods in modelling systems such as the ScNi dimer

is laid bare. Because of the multi-reference nature of the dimer, the importance of

the CSF representing the original ROHF reference for the calculation drops away
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Figure 2.2: Number of CSFs at convergence for the MCCI wavefunction across the

potential energy surface of ScNi with cmin = 5x10−4 and cmin = 2x10−4 using the

STO-3G basis set with 18 frozen orbitals and 36 frozen electrons. Inset is the MR

calculated result across the potential energy surface.

from 15% of the final wavefunction at bond lengths of 2.00 Å to zero at 3.50 Å.

At the same time, single, double, triple and quadruple excitated electron configura-

tions take on significant importance, rising up 80% of the wavefunction across the

same range as the importance of the ROHF reference drops away. Single reference

methods which do not adequately capture this behaviour will over-emphasise the

importance of the ROHF wavefunction and thus underestimate the value of Re at

equilibrium. Indeed, as described above, Faegri discovered a move towards longer

equilibrium bond lengths when using MRCI compared to DFT calculations. It is rea-

sonable to conclude therefore that the DFT results, and possibly also the CASSCF

results, for Re are underestimated. As already stated however, the use of a minimal

basis set and the lack of experimental data means that conclusive statements cannot

be made regarding whether MCCI is performing better than these two methods.

Analysis of the importance of the seven occupied active orbitals for ScNi was under-

taken across the potential energy surface. All of these orbitals were shown to be of

importance at all bond lengths. Seven other virtual orbitals are shown to also be of

importance across the range of bond lengths and thus it is found that 14 orbitals are

required in total. Further analysis of these orbitals could help to guide towards a

more appropriate active space for CASSCF calculations which may eventually lead

to an improved MRCI solution. By this method, the problem of prior knowledge of
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Table 2.2: Comparison of dimer spectroscopic results at the lowest cmin value used

for each species. Equilibrium bond lengths, ground state vibrational frequencies and

zero-point energy corrected dissociation energies are provided. Experimental results

are provided for comparison. Vibrational frequencies in cm−1, bond lengths in (Å)

and energies in eV. Experimental errors are specified in brackets representing +/-

that value. Error values listed as (-) indicate that no data was provided.

Dimer Basis Re Vib. Freq. Do

Cr2 cc-pVDZ 1.70 490 1.22

cc-pVTZ 1.65 530 2.32

Exp. 1.6788(-) 480.6(0.5) 1.53(0.06)

Sc2 cc-pVDZ 2.7 216 2.09

cc-pVTZ 2.7 222 2.02

Exp. - 239.9(-) 1.12(0.22)

Mo2 STO-3G 1.9 467 6.40

LANL2DZ 2.1 253 1.73

Stuttgart 2.05 338 1.65

Exp. 1.940(0.009) 449.1(0.2) 4.474(0.009)

ScNi STO-3G 2.3 309 4.12

Exp. - 334.5(1.0) >1.36(-)

the important orbitals which causes issues in CASSCF calculations could be avoided.

There is one final point to note regarding the use of the STO-3G basis set. Attempts

to use 3-21G, cc-pVDZ and cc-pVTZ were made. All attempts to produce smooth

potential energy curves with these basis sets failed. This was partly due to ROHF

convergence issues and partly due to the size of the configuration space being 1013,

1017 and 1020 respectively despite freezing 18 orbitals. For this reason, only STO-3G

allowed any analysis of ScNi using MCCI.

Tables 2.2 and 2.3 provide a comparison of ScNi with the remaining dimers anal-

ysed by other colleagues within the wider context of this project. MCCI does ap-

pear to give reasonable results for predictions for the equilibrium bond lengths of

the molecules studied. The technique has considerably more difficulty predicting

dissociation energies. For all molecules with the exception of Mo2, vibrational fre-
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Table 2.3: Comparison of dimer multi-configuration features. Average number of

CSFs, and the fraction of FCI space used are compared.

Dimer Basis MCCI CSFs FCI SDs Fraction

Cr2 cc-pVDZ 1.2 x 105 1015 10−10

cc-pVTZ 1.2 x 105 1018 10−13

Sc2 cc-pVDZ 4.3 x 104 4 x 1010 10−6

cc-pVTZ 5.1 x 104 3 x 1012 10−8

Mo2 STO-3G 1.3 x 104 4 x 107 10−4

LANL2DZ 2.7 x 104 1011 10−7

Stuttgart 2.7 x 104 7 x 1014 10−11

ScNi STO-3G 2 x 104 108 10−4

quencies are in good agreement with experiment. For all of these results however

it should be borne in mind that the fraction of the FCI space being used to make

these predictions is extremely small in all cases as shown in table 2.3.

As can be seen, ScNi represents a considerably more difficult system than the

homonuclear diatomic molecules: the latter capable of being calculated using up

to triple zeta basis sets. Two reasons are proposed for this. The homonuclear

diatomic molecules are likely to be able to take computational advantage of symme-

try in the molecule to reduce the numbers of configurations required to produce a

smooth potential energy curve at comparable basis sets. Secondly, in order to obtain

a smooth potential energy curve for the particular basis set, the cmin value must be

lowered to an appropriate amount to cover all points along the surface. Failure to

do this results in discontinuities in the surface. ScNi was found to suffer from these

problems even at basis sets such as 3-21G. The level of cmin required was too low to

be computationally viable. It is likely then that the current limit of MCCI in terms

of use for transition metal dimers rests with homonuclear diatomic molecules.

2.4 Summary and Conclusions - Metal Dimer

Despite the use of a minimal basis set, MCCI showed reasonable performance dur-

ing the calculations of various properties of the ScNi dimer. In particular, the
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equilibrium bond length compared reasonably well against MRCI calculations and

ωe values were very close to experimental values. MCCI produces these results with

a very compact wavefunction compared to more computationally expensive tech-

niques. Further analysis of the wavefunction shows that MCCI holds potential for

the elucidation of the important orbitals required for a better specification of the

active space of subsequent CASSCF calculations without requiring prior knowledge

of those orbitals.

References

[1] C. E. Hoyer, G. L. Manni, D. G. Truhlar, and L. Gagliardi, “Controversial

Electronic Structures and Energies of Fe2, Fe+
2 and Fe−2 Resolved by RASPT2

Calculations,” Journal of Chemical Physics, vol. 141, p. 204309, 2014.

[2] J. P. Coe, P. Murphy, and M. J. Paterson, “Applying Monte Carlo Configura-

tion Interaction to Transition Metal Dimers: Exploring the Balance Between

Static and Dynamic Correlation,” Chemical Physics Letters, vol. 604, pp. 46–52,

2014.

[3] P. J. Knowles and N. C. Handy, “A New Determinant-Based Full Configuration

Interaction Method,” Chemical Physics Letters, vol. 111, no. 4,5, pp. 315–321,

1984.

[4] P. J. Knowles and N. C. Handy, “A Determinant Based Full Configuration

Interaction Program,” Computer Physics Communications, vol. 54, pp. 75–83,

1989.

[5] H.-J. Werner and E.-A. Reinsch, “The Self-Consistent Electron Pairs Method

for Multi-configuration Reference State Functions,” Journal of Chemical

Physics, vol. 76, no. 6, pp. 3144–, 1982.

[6] P. J. Knowles and H.-J. Werner, “An Efficient Method for the Evaluation

of Coupling Coefficients in Configuration Interaction Calculations,” Chemical

Physics Letters, vol. 145, no. 6, 1988.

108



[7] H.-J. Werner and P. J. Knowles, “An Efficient Internally Contracted Multi-

configuration Reference Configuration Interaction Method,” Journal of Chem-

ical Physics, vol. 89, no. 9, 1988.

[8] J. C. Greer, “Estimating Full Configuration Interaction Limits from a Monte

Carlo Selection of the Expansion Space,” Journal of Chemical Physics, vol. 103,

no. 5, pp. 1821–1828, 1995.

[9] J. C. Greer, “Monte Carlo Configuration Interaction,” Journal of Computa-

tional Physics, vol. 146, pp. 181–202, 1998.

[10] L. Tong, M. Nolan, T. Cheng, and J. C. Greer, “A Monte Carlo Configura-

tion Generation Computer Program for the Calculation of Electronic States of

Atoms, Molecules and Quantum Dots,” Computer Physics Communications,

vol. 131, pp. 142–163, 2000.

[11] W. Gyorffy, R. J. Bartlett, and J. C. Greer, “Monte Carlo configuration in-

teraction predictions for the electronic spectra of Ne, CH2, C2, N2, and H2O

compared to full configuration interaction calculations. ,” Journal of Chemical

Physics, vol. 129, p. 064103, 2008.

[12] J. P. Coe, D. J. Taylor, and M. J. Paterson, “ Calculations of potential energy

surfaces using Monte Carlo configuration interaction ,” Journal of Chemical

Physics, vol. 137, p. 194111, 2012.

[13] J. P. Coe, D. J. Taylor, and M. J. Paterson, “Monte Carlo configuration inter-

action applied to multipole moments, ionisation energies and electron affinities.

,” Journal of Computational Physics, vol. 34, pp. 1083–1093, 2013.

[14] G. H. Booth, A. J. W. Thom, and A. Alavi, “Fermion Monte Carlo without

fixed nodes: a Game of Life, death and annihilation in Slater Determinant

space,” Journal of Chemical Physics, vol. 131, p. 054106, 2009.

[15] J. P. Coe and M. J. Paterson, “Approaching Exact Hyperpolarisabilities via

Sum-Over-States Monte Carlo Configuration Interaction,” Journal of Chemical

Physics, vol. 141, no. 12, p. 124118, 2014.

[16] J. P. Coe and M. J. Paterson, “Multireference X-ray Emission and Absorp-

tion Spectroscopy Calculations from Monte Carlo Configuration Interaction,”

Theoretical Chemistry Accounts, vol. 134, p. 58, 2015.

109



[17] J. P. Coe and M. J. Paterson, “Positronic Molecule Calculations Using Monte

Carlo Configuration Interaction,” Chemical Physics Letters, vol. 645, pp. 106–

111, 2016.

[18] N. Engel, “Bonding in transition metals and alloys,” Acta Metallica, vol. 15,

pp. 557–560, 1967.

[19] L. Brewer, “A most striking confirmation of the Engel metallic correlation ,”

Acta Metallica, vol. 15, pp. 553–556, 1967.

[20] R. J. V. Zee and W. Weltner, “ScNi and TiCo Molecules,” High Temperature

Science, pp. 181–191, 1984.

[21] R. J. V. Zee and W. Weltner, “Isovalent transition metal diatomic molecules:

ScNi, ScPd, YNi, YPd,” Chemical Physics Letters, vol. 150, no. 3,4, pp. 329–

333, 1988.

[22] C. A. Arrington and M. D. Morse, “Spectroscopy of mixed early–late transition

metal diatomics: ScNi, YPd, and ZrCo,” Journal of Chemical Physics, vol. 102,

no. 5, pp. 1895–1904, 1995.

[23] A. Miedema, “Model Predictions of the Dissociation Energies of Homonuclear

and Heteronuclear Diatomic Molecules of Two Transition Metals,” Faraday

Symposium Chemical Society, vol. 14, pp. 136–148, 1980.

[24] K. Faegri and C. W. Bauschlicher, “Heteronuclear transition metal diatomics:

The bonding and electronic structure of ScNi, YNi, ScPd, and YPd,” Journal

of Chemical Physics, vol. 153, pp. 399–408, 1991.

[25] S. M. Mattar and W. D. Hamilton, “Electronic structure, bonding, geometry,

and some spectroscopic properties of the scandium-nickel molecule,” Journal of

Physical Chemistry, vol. 96, pp. 8277–8282, 1992.

[26] G. L. Gutsev, P. Jena, B. K. Rao, and S. N. Khanna, “Electronic structure and

chemical bonding of 3d-metal dimers ScX, X= Sc-Zn,” Journal of Chemical

Physics, vol. 114, no. 24, pp. 10738–10748, 2001.

[27] L. Tong, M. Nolan, T. Cheng, and J. C. Greer, “A Monte Carlo configuration

generation computer program for the calculation of electronic states of atoms,

110



molecules, and quantum dots,” Computer Physics Communications, vol. 131,

pp. 142–, 2000.

[28] H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schutz et al.

, “Molpro, version 2012. 1, a package of ab initio programs, see http://www.

molpro. net,” 2012.

[29] R. J. L. Roy, “Level 8. 0: A computer program for solving the radial

Schrodinger equation for bound and quasibound levels, see http://leroy. uwa-

terloo. ca/programs,” 2008.

111



Chapter 3

Development of Spin-Orbit

Coupling for Stochastic

Configuration Interaction

Techniques

3.1 Chapter Abstract

In this chapter a discussion is presented of the application of MCCI to the prediction

of the effect of spin-orbit coupling on the lowest degenerate energy states of a variety

of small atoms and molecules: B, C, O, F, S, Si, Cl, OH, CN, C2 and NO. Spin-orbit

coupling is shown to remove the degeneracy of these ground states and quantitative

measurements of this were attempted. In order to achieve this, the MCCI software

has been modified to accept spin-orbit coupling integrals from the Molpro program and

to subsequently compute spin-orbit coupling matrix elements, using direct methods, in

the basis of degenerate states. Software was also developed to allow the translation

of the spin-orbit coupling integrals from Molpro format into a format suitable for

MCCI for all Abelian subgroups. Details of the software development required for

both tasks are provided along with details of how to perform the calculations in a

stepwise procedure, followed by a discussion of the results from the MCCI calculations

themselves.
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3.2 Spin-Orbit Coupling Theory

A bound electron in an atom will exhibit two forms of angular momentum. The first

is orbital angular momentum and relates to the angular motion of the negatively

charged electron in the vicinity of the nucleus. This orbital angular momentum

gives rise to a magnetic dipole moment. Classically [1], this magnetic moment

can be understood to be derived from a charge moving in a circle, as shown in

figure 3.1 although in reality, the electron is not orbiting the nucleus in a classical

manner. Assuming the electron orbits in a perfect circle at radius r, the distance

travelled in one circuit will be s = 2πr and the time to complete this circuit will be

t = s/v = 2πr/v. The current flowing will be the amount of charge, −e, per unit

time: i.e. I = −e/t = −ev/2πr. The magnetic moment generated by this current is

then given by equation 3.1, where A is the area enclosed by the orbit, πr2. Therefore,

m = −evr/2. In vector form, the angular momentum is defined by the cross product

of the displacement and the linear momentum vectors as shown in equation 3.2,

with linear momentum defined as ~p = me~v. Substituting this into equation 3.2,

leads to definition of the induced magnetic dipole moment shown by equation 3.3.

The convention is to express this magnetic dipole moment in component form in

the direction z and converting to quantum mechanical form by recognising that

lz is quantised as lz = mlh̄, equation 3.4 results for the magnetic dipole moment

due to orbital angular momentum. Here ml can take integer values l → −l. The

second form of angular momentum is spin angular momentum. Because it has no

classical equivalent, the magnetic moment deriving from spin angular momentum is

presented here as equation 3.5 where ms can take values of +1
2

and −1
2
. Notice that

the direction of the magnetic moment is opposite that of the angular momentum in

both cases.

m = IA (3.1)

~l = ~r × ~p (3.2)

~m = (−e/2me)~l (3.3)
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Figure 3.1: An electron orbiting a nucleus at radius r, induces a magnetic dipole

moment at the nucleus. This magnetic dipole moment induces a magnetic field

which is detected at the electron and interacts with the electron’s spin magnetic

dipole moment.

mz(orb) = −
(

e

2me

)
mlh̄ (3.4)

mz(spin) = −ge
(

e

2me

)
msh̄ (3.5)

The orbital magnetic dipole moment can be considered as a tiny bar magnet. As

such a magnetic field is induced. The spin magnetic moment of the electron is able

to energetically interact with this magnetic field (spin-orbit interaction).

Having described the source of the spin and orbital magnetic moments from classi-

cal arguments, it is now time to consider the impact of spin-orbit coupling on the

electronic state. It is clear that in order for the spin and orbital angular magnetic

moments to interact, both must be present. For that to happen, the electronic

state in question must have the necessary non-zero spin and orbital angular mo-

mentum. To illustrate this, the 3P ground state of the carbon atom is considered,

with spin angular momentum S = 1 and orbital angular momentum L = 1. Using

the Russell-Saunders coupling scheme, these angular momenta can align either in

parallel or in opposite directions to give the resultant overall angular momentum

J where J = L + S or J = L − S for the parallel and anti-parallel arrangements

respectively. Alternatively, one electron can align parallel with the orbital angular

momentum and the other anti-parallel to give the resultant overall angular momen-

tum J where J = L + S − 1 as shown in figure 3.2. The differing alignment of
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Figure 3.2: The set of permutations of alignment between orbital angular momentum

and spin angular momentum vectors for the C atom. In the 3P ground state, only

the spin angular momenta of the two p electrons interact with the orbital angular

momentum

the corresponding magnetic moments causes a difference in interaction energy be-

tween the three arrangements and this is the source of the spin-orbit coupling effect.

Without this spin-orbit coupling effect, there would be no interaction between the

magnetic momenta and all three of these relative orientations would be energetically

degenerate. Therefore, spin-orbit coupling removes any degeneracy in the affected

electronic state. This is shown in figure 3.3.

In order to proceed further, the fully relativistic Dirac equation, equation 3.6 [2],

shown in time independent form in the presence of an electric field but in the absence

of a magnetic field, normally replaces the Schrödinger Equation. Here c is the speed

of light, α̂ and β̂ are four component matrices shown in equations 3.7 and 3.8 and V̂

is the external potential provided by the nuclear framework. In equation 3.7, σ̂x,y,z,

refers to the Pauli spin matrices shown in equations 3.9, 3.10 and 3.11. In equation

3.8, I is the two by two unit matrix.

[cα̂ · p̂+ β̂mc2 + V̂ ]Ψ = EΨ (3.6)

α̂ =

 0 σ̂x,y,z

σ̂x,y,z 0

 (3.7)

β̂ =

I 0

0 −I

 (3.8)
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Figure 3.3: Diagram showing the removal of degeneracy of the 3P ground state

of the C atom. Spin-orbit coupling splits this state into three different energy

levels according to the value of total angular momentum J. Further application of

a magnetic field fully resolves these J levels into the respective MJ levels but this

latter effect is not considered further in this work.
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σ̂x =

0 1

1 0

 (3.9)

σ̂y =

0 −i

i 0

 (3.10)

σ̂z =

1 0

0 −1

 (3.11)

The wavefunction solutions to the Dirac equation turn out to be four component

spinors which describe both electronic and positronic states: positronic states being

identified as a continuum of negative energy states [2]. The wavefunction is split

into large and small components, ΨL and ΨS, with each of these further split into α

and β spins. The large components are associated with electronic solutions and the

small components with positronic solutions. Ignoring the different spin parts, the

Dirac equation can be factored into large and small wavefunction parts as shown in

equation 3.12 and 3.13.

c(σ̂ · p̂)ΨS + (mc2 + V )ΨL = EΨL (3.12)

c(σ̂ · p̂)ΨL − (mc2 − V )ΨS = EΨS (3.13)

Solving for ΨS in equation 3.13 and substituting into equation 3.12, reveals equation

3.14 where K is defined in equation 3.15. Here the desired two component electronic

part of the wavefunction has been separated out from the positronic part and it is

now possible to continue the discussion without further reference to the positronic

components.

[
K

(σ̂ · p̂)2

2m
+ V̂

]
Ψ = EΨ (3.14)

K =

(
1 +

E − V
2mc2

)−1

(3.15)
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In the non-relativistic case where c → ∞ and K → 1. equation 3.14 collapses to

the non-relativistic Schrödinger equation. Otherwise, K can be approximated by a

Taylor expansion as shown in equation 3.16

K = 1− E − V
2mc2

(3.16)

In the Dirac equation, there is the problem of the interaction term, V, representing

electron-electron repulsion and electron-nuclear attraction. This interaction occurs

instantaneously and therefore violates the limit of the speed of light. A retardation

correction from quantum electrodynamics is therefore introduced in order to correct

for this. Introducing this into the Dirac equation results in problems because the

equation for the potential energy cannot be described in closed form and there is no

accepted way of resolving this issue. Fortunately, approximations can be made as a

series in 1/c. Including the effects of electric fields produced by the nuclear frame-

work and magnetic fields produced by the movement of electrons, converting the

linear momentum p̂ to a more generalised momentum operator which interacts with

the magnetic field and quantum electrodynamics corrections approximated up to

1/c2, a series of corrective terms are produced, the leading terms of which form the

Breit-Pauli approximation which will be described shortly. If the relativistic effects

are a small part of the overall energy of the chemical system, these terms can be

included in the non-relativistic Hamiltonian as a perturbation [3]. Compared to the

difference in energy between electronic states (ca. 10,000 cm−1), spin-orbit coupling

energies are in the order of 1-1000 cm−1 for systems including atoms from the top of

the periodic table and so for the first three rows of the periodic table a perturbative

treatment is justified. This simplifies matters computationally because perturbative

modifications can be made to standard non-relativistic software codes. The first

order correction can be represented as the expectation of the perturbation operator

acting on the ground state wavefunction, represented in general by equation 3.17

where Φo is the ground state wavefunction, P̂ is the perturbation operator and E1 is

the first order correction for the perturbation which acts on the ground state wave-

function. In this work, the perturbation operator is the Breit-Pauli Hamiltonian,

Hso. Equation 3.17 can then be restated more specifically as in equation 3.18.
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E1 = 〈Φo|P̂ |Φo〉 (3.17)

Eso = 〈Φo|Hso|Φo〉 (3.18)

For spin-orbit coupling, first order degenerate perturbation theory must be used and

therefore the wavefunction in equation 3.18 must be expressed in the basis of a linear

combination of all of the degenerate states to prevent singularities in the first order

correction to the wavefunction and zero first order correction to the energy due to

symmetry as the spin-orbit coupling operator is not totally symmetric for the point

group. As stated earlier, only the leading contributions to the spin-orbit coupling

interaction are considered in this work and the relevant terms of the Breit-Pauli

Hamiltonian [2][4][5] described as shown in equations 3.19, 3.20, 3.21 and 3.22 are

used, where atomic units are used throughout. Other corrections for effects such

as spin-spin, orbit-orbit, mass-velocity and Darwin terms are omitted as they are

considerably smaller than the terms in this work and thus considered negligible.

Hso = Hso
ne +Hso

ee +Hsoo
ee (3.19)

Hso
ne =

1

2c2

Nelec∑
i=1

Nnuc∑
A=1

ZA
ŝi · (r̂iA × p̂i)

r3
iA

(3.20)

Hso
ee = − 1

2c2

Nelec∑
i=1

Nelec∑
j 6=i

ŝi · (r̂ij × p̂i)
r3
ij

(3.21)

Hsoo
ee = − 1

c2

Nelec∑
i=1

Nelec∑
j 6=i

ŝi · (r̂ij × p̂j)
r3
ij

(3.22)

Here Hso
ne is the one-electron operator which captures the interaction between the

spin of an electron and its orbital angular momentum around the nuclei. Hso
ee is the

two-electron operator which captures the interaction between the spin of an electron

and the magnetic field induced by the movement of itself as it moves around other

electrons. Hsoo
ee is the two-electron operator which captures the interaction between

the spin of an electron and magnetic field induced by the movement of the other
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electrons around it. The first of these three interactions has the most significant

impact and the other two terms can sometimes be neglected. The larger the system,

the smaller the effect of including these two-electron terms and in this work, only

the first term Hso
ne is considered.

3.3 Spin-Orbit Coupling Background

Spin-orbit coupling effects play a vital role in a range of applications from the

removal of degeneracy of energy levels to phosphorescence in living animals through

intersystem crossings. When electronic excited states are close in energy to the

ground state, spin-orbit coupling of these states can allow chemical reactions to

proceed through these excited states when normal thermal processes would not

allow such a reaction [6]. Exact calculation of spin-orbit effects involves solving

the fully relativistic Dirac equation shown in equation 3.6. This proves cumbersome

computationally and efforts to find solutions to this problem rely on using the Breit-

Pauli Hamiltonian which approximates these effects shown in equations 3.19, 3.20,

3.21 and 3.22.

Blume et al. [7][8] modified the Breit-Pauli Hamiltonian to derive four components

from HF Theory with the aim of allowing more accurate predictions of the spin-orbit

coupling constant for a range of atoms with 2p, 3p and 3d valence electrons than

had been hitherto possible. These four components are as follows: a one electron

interaction between the spin and the potential provided by the nuclear framework, a

two electron interaction between the electron spin and the potential due to movement

of the other electrons, a two electron term for the interaction between the spin of

each electron and the field due to its own movement and finally a two electron term

for the interaction between the spins of pairs of electrons. It was found that the

interaction between the unpaired electrons and the core electrons was an effective

one-particle spin-orbit interaction which caused screening of the nucleus from the

electrons, reducing the spin-orbit coupling constant. The value of the spin-orbit

coupling constant was found by diagonalising the Hamiltonian matrix in the basis

of the Hartree-Fock wavefunction. Good agreement with experiment was found in

most cases. In particular, results of the spin-orbit coupling constant were obtained

with an average error of around 6.11% from experiment for B(2P ): 9.74 cm−1 ,
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C(3P ): 13.4 cm−1, O(3P ): -79.6 cm−1, F(2P ): -265 cm−1, Si(3P ): 64.0 cm−1, S(3P ):

-184 cm−1, and Cl(2P ): -545 cm−1.

In much the same way that Slater developed general rules for solving matrix ele-

ments involving the standard energetic Hamiltonian [9], Cooper and McWeeny [10]

developed an analogous set of rules for spin coupled functions including the terms

present in the Breit-Pauli Hamiltonian. These rules are general in the sense that

they do not depend on the nature of the wavefunction. This approach was found

to significantly ease the computational effort involved in more complicated systems

including those where excited electron configurations are involved.

Walker et al. [11] used the Breit-Pauli Hamiltonian described by Blume et al. [7][8]

earlier and applied this to hydrides of the first row of the period table and other

small molecules such as BO and CO. For molecules such as CO where there was

more equality between the masses of the atoms, the two electron integrals were

more important but the team still found that good results could be achieved by

ignoring them. Again, the two electron integral terms were interpreted as providing

shielding of the valence electrons from the core. For OH, the spin-orbit coupling

constant was found to be -141.4 cm−1.

Cooper et al. [12] used fully relativistic calculations on first and second row atoms in

order to compare the accuracy of the Breit-Pauli Hamiltonian. A technique called

Multi-Configuration Dirac-Fock-Extended Average Level (MCDF-EAL) was used

which consists of two steps. Firstly, an SCF calculation was performed on the system

and subsequently a matrix in the basis of CSFs representing the necessary electron

configurations for the degenerate states was diagonalised. Results on the atoms B,

C, O, F, Si, S and Cl showed that the Breit-Pauli approximation was extremely

accurate and that higher order corrections were essentially negligible until the late

second row atoms were attempted. At this point it became clear that it was necessary

to include second and higher order corrections to the Breit-Pauli Hamiltonian. More

importantly, it was found to be necessary to include a correction for the anomalous

magnetic moment. This is described as the magnetic moment discrepancy caused

by the incorrect assumption that the Lande g factor is equal to exactly 2. By the

end of the second row of atoms, this error was found to cause deviations of up to

2cm−1 for Cl splittings.
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The use of MCSCF wavefunctions via CASSCF using the 6-31G(d,p) basis set to

determine spin-orbit coupling constants was attempted by Koseki et al. [13] in

1992. The active space included all valence electrons and orbitals. Of interest

was the spin-orbit coupling constants relevant to the mixing of singlet and triplet

states of small diatomic molecules. Because of the complexity and computational

intractability of using two electron integrals, only the one electron part of the Breit-

Pauli Hamiltonian was used. The nuclear charge term, ZA however was replaced

by an effective nuclear charge, Zeff . The idea was to determine a value of Zeff for

each atom in the first two rows, using calculations from 2Π terms of A-H diatomics

and adjusting Zeff to obtain the correct fine structure splitting from experiment.

Because the two electron terms are interpreted as performing the task of shielding

the electrons from the nuclear charge, this ”semi empirical” inclusion of Zeff was

thought to negate the need for the two electron terms. Results for A-H diatomic

molecules suggested that with only a couple of exceptions, results using one-electron

integrals with Zeff were within 10 cm−1 of experimental results. Using these values of

Zeff for more general diatomics resulted in calculated fine structure splitting values

which were largely within 20 cm−1 of experiment. For this work, the pertinent results

for the spin-orbit coupling constant are OH (-144.12 cm−1), NO(128.52 cm−1) and

CN(-54.62 cm−1).

Bearpark et al. [14] used non-orthogonal sets of orbitals for each state of a spin-

orbit calculation as opposed to the more common method of using an MCSCF

approach with a single set of common orbitals between the states. The Breit-Pauli

approximation was again used. Of interest was the application of this technique to

the 2Π1/2 and 2Π3/2 degenerate states of the OH molecule. The basis of electronic

configurations which represent the fourfold degeneracy are described as:

(1σ)2(2σ)2(3σ)2(1πy)
2(1πx)

α

1σ)2(2σ)2(3σ)2(1πy)
2(1πx)

β

(1σ)2(2σ)2(3σ)2(1πx)
2(1πy)

α

(1σ)2(2σ)2(3σ)2(1πx)
2(1πy)

β

The spin-orbit coupling constant was calculated as the bond length was increased

from 1.3 Å through to 2.75 Å with longer bond lengths ignored as SCF wavefunctions

become inappropriate descriptions of dissociating molecular bonds. Good agreement

was found between these results and those found using CI wavefunctions across the
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potential energy surface. Around the equilibrium bond length, results very close to

experiment were achieved.

The problem of how to handle the two electron terms was reviewed by Hess et al. [15]

in 1996 when attempting to use CI techniques with spin-orbit coupling calculations.

The two electron part of the spin-orbit matrix elements were restricted to having

only one centre terms and the electrons i and j were allowed to move in the mean field

of the other k electrons. These k electrons were those present in at least one of the

CI electron configurations. This resulted in a set of effective one electron operators

with multi-centre two electron integrals neglected entirely. The error introduced by

the neglect of these multi-centre two electron integrals was found to be just 2 cm−1

for palladium complexes such as PdCl and Pd+
2 and the overall accuracy with just

the effective one electron operator approximation was found to be excellent.

A new FCI algorithm was developed by Mitrushenkov et al. [16] which included spin-

orbit components of the Hamiltonian. The aim of this new algorithm, implemented

in Molpro [17], was to reduce the number of matrix elements requiring calculation.

It was found that a certain, relatively small, number of the matrix elements could be

calculated directly, after which a ”recurrence relationship” could be used to derive

the others. This allowed efficient evaluation of matrix elements. Additionally, the

use of light atoms permitted the application of a perturbative treatment to determine

spin-orbit coupling properties. Results for the 3P state of the oxygen atom indicated

a spin-orbit coupling constant value within 1.0 cm−1 of experiment.

Nicklass et al. [18] used the Breit-Pauli Hamiltonian to predict the 2P3/2 −2 P1/2

spin-orbit splitting on the atoms F, Cl and Br using an internally contracted multi-

reference CI method (MRCI). Attempts were made to establish the effect of increas-

ing basis set, tight functions, and higher angular momentum functions on the split-

ting. It was noted that some spin-orbit operations were not bound from below and

would therefore give problems if included in a variational treatment. Additionally,

it was difficult, computationally, to include spin-orbit contributions to the standard

energetic Hamiltonian for the variational procedure. It was therefore deemed that

the spin-orbit coupling splitting should be calculated by means of a perturbation

treatment after the variational procedure was completed. Correlation consistent

basis sets were used. This is important as spin-orbit coupling affects the electrons

closest to the core. In these calculations the anomalous magnetic moment effects
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were neglected. Diffuse basis functions were found to have a negligible impact on the

spin-orbit splitting and were not investigated further. Using basis sets in which the

core electrons were correlated was found to be important for high levels of accuracy:

more so than correlating the valence electrons. The inclusion of a single tight p basis

function was found to improve the convergence of the F atom with increased basis

set although this did not affect Cl or Br in the same way: both of these converging

rapidly with or without the extra p basis function. Recovering more correlation

energy by expanding the active space to include more virtual orbitals was found to

have relatively negligible effect.

The procedure by which Nicklass performed these calculations is detailed by Bern-

ing et al. [5], who introduced a method for evaluating the matrix elements for the

Breit-Pauli Hamiltonian for internally contracted MRCI wavefunctions. The most

important two electron integrals were approximated using an effective one-electron

operator thus easing the computational effort. Here the effective one electron in-

tegrals are created from electron densities, derived directly from the two electron

integrals, rather than semi-empirical methods described by Koseki et al. [13], see

above. These effective one electron integrals are created as weighted sums of the

most important two electron spin-orbit interactions with virtually no loss in accu-

racy. The recommended process of performing large CASSCF calculations on the

system and then using this CASSCF wavefunction as a zeroth order wavefunction

for a subsequent MRCI calculation ensure that both static (from CASSCF) and dy-

namic (from MRCI) correlation energy are recovered. Additionally, direct methods

of integral evaluation are performed which allows large configuration spaces to be

used without the computational overhead of storing the integral values themselves.

It was found that two electron effects can be large for lighter atoms, diminishing as

the size of the atom increases. For the Cl atom using a cc-pV5Z basis set, the ne-

glect of two electron integrals entirely results in 20% error in the spin-orbit coupling

constant calculation for the 2P state. The two electron effects have their greatest im-

pact on core electrons and therefore the inclusion of the most important two electron

integrals via the effective one electron operator captures much of this. The resid-

ual two electron integrals involve the valence electrons and it was therefore found

that neglect of these two electron integrals resulted in errors less than 1%. Where

double excitations feature prominently in a wavefunction however, the inclusion of
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all two electron integrals can be switched on because this would be the only way of

capturing their contribution to the spin-orbit coupling constant, remembering that

for one-electron operators, only single differences in configurations are non-zero. As

found by Nicklass et al. [18], the effect of adding angular momentum functions had

minimal effect and that it was found to be more important to correctly charac-

terise the orbitals near the nucleus (s and p) rather than introducing more virtual

orbitals into the active space. For 2nd row atoms, correlating 2p orbitals in the

MRCI calculation led to dramatic improvements. Best results for the atoms C(3P ),

O(3P ), F(2P ), Si(3P ), S(3P ) and Cl(2P ) were obtained using the cc-pV5Z basis set

with maximum angular momentum of f functions used, full valence active space for

CASSCF calculations and all electrons correlated for subsequent MRCI calculations;

most results falling within 1-2 cm−1 of experiment. Spin-orbit coupling constants

were found to be 13.31 cm−1 for C, -77.26 cm−1 for O, -132.86 cm−1 for F, 72.48 cm−1

for Si, -196.37 cm−1 for S and -294.06 cm−1 for Cl. Small diatomic molecules were

also investigated: OH(2Π), C2(a3Πu), CN(A2Π) and NO(X2Π). Here full valence

CASSCF calculations were performed followed by valence-only correlated MRCI and

all electron correlated MRCI. Again excellent results were obtained with respect to

experiment when the cc-pV5Z basis set was used. Also, the inclusion of core corre-

lation had a greater impact on diatomics with atoms from the 2nd row. The impact

of using the effective one-electron operator in place of the two electron operator was

negligible. Results for the spin-orbit coupling constants for the diatomic molecules

which relate to this work were found to be -136.98 cm−1 for OH, -14.68 cm−1 for

C2, -51.25 cm−1 for CN and 123.36 cm−1 for NO.

Other applications of spin-orbit coupling include mixing of singlet and triplet states.

Furlani et al. [19] used CASSCF as the baseline for spin-orbit coupling constants

between singlet and triplet states of the trimethylene biradical. When mixing triplet

and singlet states, only Ms = 0 of the triplet state will mix with the singlet; the

remaining matrix elements will be zero by symmetry. Using this technique, the spin-

orbit coupling constant was found to be sensitive to the geometry of the molecule.

The role of spin-orbit coupling in the process of inter-system crossing (ISC) in con-

jugated polymers was investigated by Beljonne et al. [20] using correlated methods

(SCI) based on semi-empirical geometry optimisations. The matrix elements once

again were treated as first order perturbation and rates of inter-system crossings
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were able to be evaluated with consideration given to the effect of the geometry of

the system on these rates. Although quantitative details were not able to be made,

several mechanisms were elucidated showing how the ISCs could be realised.

Potential energy surfaces for several diatomic molecules have been investigated by

Li et al. [21][22][23] using the MRCI+Q method to provide insight into species

which are known to be involved in stratospheric ozone depletion. The lowest lying

electronic states of CS were treated using the aug-cc-pwCV5Z basis set taking spin-

orbit coupling effects into account. This allowed for elucidation of several avoided

crossings, spectroscopic constants and radiative lifetimes of triplet states. Similar

calculations were performed on BrF, BrF+ IBr and IBr+ all of which resulted in

good agreement with experiment.

Finally it is noted that state of the art techniques such as DMRG can now be

supplemented with spin-orbit coupling calculations [24]. This will not be discussed

further here other than to mention that the technique shows promise for investigating

the spin-orbit coupling effects on larger systems containing metals. In particular,

results on the spin-orbit splitting in atoms such as Cu and Au show significantly

better performance than CASSCF-SO methods and in many cases also CASPT2-SO.

3.4 Implementation of Spin-Orbit Coupling

A range of atoms and molecules were tested in this work in order to investigate

the efficacy of using MCCI to determine the spin-orbit coupling interactions be-

tween degenerate electronic states of each system. In order to perform this, several

tasks must be undertaken. Initially, a series of ROHF calculations were performed

to identify all of the necessary degenerate wavefunctions of each of the following:

B(2P), C(3P), O(3P), F(2P), Si(3P), S(3P), Cl(2P) atoms and OH(X2Π), CN(A2Π),

C2(a3Πu) and NO(X2Π) molecules. These represent the lowest energy states for

which degeneracy is exhibited by these species bearing in mind that, for spin-orbit

coupling, it is necessary to have non-zero overall spin and non-zero overall orbital

angular momentum. Basis sets cc-pVDZ, cc-pVTZ, cc-pVQZ and cc-pV5Z were

used on all systems.

In order to improve the zeroth order ROHF wavefunctions and capture electron
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correlation, MCCI calculations were performed on the degenerate states of the test-

bed atoms and molecules, using Slater Determinants. For each basis set, the effect

of lowering the cmin value was investigated and calculations were performed at cmin

values of 0.001, 0.0005, 0.0002 and 0.0001. All calculations were performed at a

convergence threshold of 0.001. Having calculated the MCCI wavefunction for each

of the degenerate states, with close agreement in energy between them as expected,

a file containing details of the wavefunction for each of the degenerate states is

produced by MCCI. These files contain the list of Slater Determinants representing

the electronic configurations deemed to be important in capturing the new and

improved MCCI zeroth order wavefunction of each degenerate state. These files are

then collected and submitted to spin-orbit coupling calculations in the x, y and z

directions within MCCI, code for which has been written as part of this work. The

spin orbit code must calculate the expectation value of the Breit-Pauli operator in

the basis of all degenerate states as shown in equation 3.23, where Hso is factored

into a product of L and S terms described in equations 3.24 and 3.25.

〈Φ|Hso|Φ〉 =
∑
x,y,z

〈Φ|Hso
L |Φ〉 〈Φ|Hso

S |Φ〉 (3.23)

Hso
L = −

Elec∑
i=1

Nuc∑
K=1

ZK [r̂iK × p̂(i)]
r3
iK

(3.24)

Hso
S = −

Elec∑
i=1

Nuc∑
K=1

1

2c2
ŝ(i) (3.25)

Integrals of the Hso
L operator in the basis of molecular orbitals are provided by

Molpro and are available in the x, y and z directions, all of which are required. These

integrals are hereafter referred to as LSq integrals where q = x,y,z and are defined

in equation 3.26 and it should be noted that the presence of the linear momentum

operator, p̂ = −i∇, in the Hso
L operator means these integrals are complex.

LSq = 〈ψi|Hso
Lq|ψj〉 (3.26)

The MCCI code developed as part of this work must convert the integrals into a

format suitable for MCCI and then generate a spin-orbit coupling matrix in the
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basis of states which in general form is shown equation 3.27 for a two-by-two matrix

using direct methods, where the matrix elements are as defined in equation 3.28.

It should be noted that the degenerate states are expanded in a linear combination

of electron configurations in the form of Slater Determinants (shown in equation

3.29) and each Slater Determinant is an antisymmetrised product of MOs (shown

in equation 3.30). Overall then the spin-orbit coupling state matrix is defined in

equation 3.31.

Hso =

Hso
aa Hso

ab

Hso
ba Hso

bb

 (3.27)

Hso
ab = 〈Φa|Hso|Φb〉 (3.28)

|Φ〉 =

Cfgs∑
ν

cν |Ψν〉 (3.29)

|Ψν〉 =
1√
N !

N !∑
n=1

(−1)qnPn |χiχj....χk〉 (3.30)

Hso
ab =

Cfgs∑
µ

Cfgs∑
ν

c∗µcν

MOs∑
i,j

〈
Ψi
µ

∣∣Hso
L

∣∣Ψj
ν

〉 〈
Ψi
µ

∣∣Hso
S

∣∣Ψj
ν

〉
(3.31)

The result of these calculations are the spin-orbit coupling matrix elements expressed

in both atomic units and cm−1 in the basis of degenerate states for the directions

x, y and z. From this, the relative splitting of the degenerate energy levels as a

result of spin-orbit coupling can be ascertained by diagonalising a matrix of these

spin-orbit coupling matrix elements in the basis of degenerate symmetry and spin

states.

3.4.1 Conversion of Molpro Integrals

For this work, Molpro was used to undertake the ROHF calculations and to produce

the LSq integrals. It is therefore necessary to consider how Molpro handles molecular

orbitals and symmetry. Molpro converts point groups of molecules into the highest

Abelian subgroup for computational efficiency. For example, the CO molecule with
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point group C∞v is converted to use point group C2v in Molpro. Within the point

group, the irreducible representations labels are converted into symmetry numbers

using a mapping described in tables 3.1 for the C2v point group and 3.2 for the D2h

point group.

Table 3.1: Symmetry Numbers used in Molpro for Irreducible Representations of

the Point Group C2v

Molpro Sym. Num. Irreducible Rep. Function

1 A1 z

2 B1 x, Ry

3 B2 y, Rx

4 A2 Rz

Table 3.2: Symmetry Numbers used in Molpro for Irreducible Representations of

the Point Group D2h

Molpro Sym. Num. Irreducible Rep. Function

1 Ag

2 B3u x

3 B2u y

4 B1g Rz

5 B1u z

6 B2g Ry

7 B3g Rx

8 Au

Molecular orbitals in Molpro are numbered i · j where j is the symmetry of the

molecular orbital and i is the i-th molecular orbital of symmetry j in order of

increasing energy. Molpro therefore orders molecular orbitals by symmetry and

then by increasing energy within that symmetry. For example, a system with two

orbitals of symmetry 1 and one of symmetry 3 would order the molecular orbitals in

the following way: MO 1 = 1·1, MO 2 = 2·1, MO 3 = 1·3. Note that this does not

necessarily mean that MO 2 is lower in energy than MO 3 or that MO 1 is lower in

energy than MO 3. Molpro therefore, has symmetry at the heart of its operation.
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The one-electron Molpro LSq integrals are written in a format based on symmetry

blocks where each integral, in the MO basis, is as shown in equation 3.26 where

Hso
L is defined in equation 3.24 and χi and χj are molecular integrals. It should be

remembered that these integrals do not contain the required factor of 1
2c2

from the

Breit-Pauli Hamiltonian. Neither is the spin component included. That means that

when handling these integrals, both α and β spins of a doublet, for example, must

be taken into account as well as the pre-factor in atomic units. It also needs bearing

in mind that these integrals are complex numbers. In order for MCCI to be able to

read these LSq integrals they must first be converted to the format ”integral value;

i; j; k; l”. Because these LSq integrals are one-electron only, the values of k and l

are zero. The file must end with a row containing an integral value of zero and all

orbital indices zero.

Selection rules govern the result of these molecular integrals. The result of these

integrals are only non-zero when the overall symmetry of the result contains the

totally symmetric irreducible representation of the point group of the molecule. In

other words, this can be written as shown in equation 3.32.

Γi = ΓLSq ⊗ Γj (3.32)

Molpro stores the LSq integrals in symmetry blocks which contain only the permu-

tations of orbitals i and j allowed by the selection rules for the particular type of

spin-orbit coupling operator in the x, y or z direction in equation 3.32. The blocks

are numbered in increasing symmetry number of the point group. Each block is

presented in a tabular format where each row is a molecular orbital of symmetry

Γi listed in increasing order of MO number. The columns are molecular orbitals of

symmetry determined by the irreducible representation symmetry required to make

the direct product with the spin-orbit coupling operator equivalent to the row sym-

metry of that block. Again these column molecular orbitals are listed in increasing

energy from left to right. The number stored at the intersection between a column

molecular orbital and a row molecular orbital is the value of the LSq integral shown

in equation 3.26. The number of columns and rows in any one symmetry block is the

number of molecular orbitals of symmetry type i and j respectively. The symmetry

of the spin-orbit coupling operators transform as Rx, Ry, and Rz for the x, y and
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z directions respectively and the irreducible representation of each of these will be

specific to the point group.

The software designed, written, tested and maintained, as part of this work, to

perform the conversion of these symmetry blocks of integrals into a form suitable for

MCCI is called conv molp prop ints and is written in Fortran 90. Before running

this code, an ROHF Molpro calculation of the chemical system must be performed,

followed by a calculation of the LSq integrals. The inputs for conv molp prop ints

are the Molpro files FCIDUMP, which contains the standard energetic Hamiltonian

one- and two-electron integrals for the ROHF calculation; the Molpro output file

which must be manually renamed molp.out and a file called prop ints which contains

the LSq integrals from Molpro. Now the conv molp prop ints software can be

described in detail:

1) The files molp.out, prop ints and FCIDUMP are opened. The point group is

ascertained from the molp.out file and checked to make sure that it is one of the

supported point groups. All Abelian subgroups are supported in this code. From the

point group, the maximum number of irreducible representations can be deduced.

This sets the maximum number of symmetry blocks produced by Molpro in the LSq

integrals file.

2) Depending on the point group and the subsequent maximum number of irreducible

representations, an appropriate direct product table can be allocated from memory

and set up for the point group. Various other lookup/mapping tables are allocated

for future use, such as mapping tables for the reversible transformation between

molecular orbital numbers and symmetry formats, a table of selection rules and a

table listing the number of MOs per irreducible symmetry for the point group.

3) From FCIDUMP, the number of molecular orbitals of each symmetry number is

read and stored as well as the total number of molecular orbitals.

4) The operator symmetry is retrieved from the prop ints file.

5) A mapping table is made to link the molecular orbital X·Y symmetry format to a

molecular orbital number. This mapping has been described earlier in this section.

For readability, this table is a two-dimensional array with columns representing the

Y irreducible symmetry numbers, for the point group and the rows listing the X

molecular orbitals, of that symmetry. The entry stored against each of these is the
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molecular orbital number. A reverse mapping is also constructed which links the

molecular orbital number back to the X·Y symmetry format.

6) A lookup table linking the direct product of the operator symmetry and each

irreducible representation is created which represents the right hand side of equation

3.32, ΓLSq ⊗Γj. This lookup table essentially links the symmetry allowed Γi and Γj

permutations for the operator symmetry.

7) Now the symmetry blocks of spin-orbit integrals are read, in order, from the

prop ints file. For each symmetry block the symmetry of the rows is known because

the blocks are listed in order of Molpro symmetry number. Each row corresponds to

a different molecular orbital of that symmetry number in increasing energy for that

symmetry. Because the operator symmetry is known and the symmetry of molecular

orbitals arranged in rows of the symmetry block is also known, the symmetry of the

molecular orbitals arranged in the columns is determined from step 6 above (there

is a one-to-one mapping between the column and row symmetries). The number

of rows and columns is also known for each symmetry block because those are the

numbers of molecular orbitals of the particular symmetry numbers read in from the

FCIDUMP file as detailed earlier. It is then a simple matter to step through the

rows of each symmetry block and read in the integral values between each molecular

orbital pairing from Γi ⊗ ΓLSq ⊗ Γj. Once the relevant molecular orbitals in X·Y

symmetry format are converted to molecular orbital number format using step 5

above, these integrals are then stored in an array where the rows and columns are

ordered molecular orbital numbers.

8) The final task therefore remains for the integrals to now be written to file

MCCI PROP INTS DUMP in a format ready to be read by MCCI. Details of the

required file format for this can be found in the literature [25][26].

Pseudo-code for the above conv molp prop ints file is now shown. In bold are

the major steps, variables and filenames in the code:

Step 1:

do read molp.out file

if ”Point Group” found

set max num irreps for point group

endif (”Point Group”)

132



enddo (read molp.out)

Step 2:

allocate sel rule allowed[max num irreps] lookup table

allocate num mos per sym[max num irreps]

allocate irrep dp table[max num irreps][max num irreps]

construct irrep dp table for point group

Step 3:

read FCIDUMP header

extract MOs to num mos per sym[irrep sym type]

extract norb

Step 4:

do read prop ints file

if ”Symmetry” found

set operator symmetry

endif (”Symmetry”)

enddo (read prop ints)

Step 5:

allocate mo integral store[norb][norb]

allocate mosym to monum[norb][max num irreps]

allocate mo to irrep conv[norb][2]

Set mo num → 1

do i:1 → max num irreps

do j:1 → num mos per sym[i]

mo to irrep conv[mo num][1] = j

mo to irrep conv[mo num][2] = i

mosym to monum[j][i] = mo num

increment mo num

enddo (j)

enddo (i)

Step 6:

do i:1 → max num irreps

get j = operator symmetry ⊗ i

sel rule allowed[j] = i

enddo (i)
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Step 7:

do i:1 → max num irreps (step through symmetry blocks one at a time)

num mos per sym[i] → num rows

sel rule allowed[i] → col sym

num mos per sym[col sym] → num cols

ignore symmetry blocks where either col sym or row sym are zero

do j:1 → num rows

get mo num row from mosym to monum[j][i]

columns for each row are in blocks of 5

phys rows per row (for row j) → (num cols % 5)

add extra row if (num cols % 5) gt 0

do k:1 → phys rows per row

read integrals from prop ints file

get mo num col from mosym to monum for column entry file

store integral in mo integral store[mo num row][mo num col]

enddo (k)

enddo (j)

enddo(i)

Step 8:

do i:1 → norb

do j:1 → i

write mo integral store[i][j] → MCCI PROP INTS DUMP file

enddo (j)

enddo (i)

write ”zeros” line to MCCI PROP INTS DUMP

3.4.2 Development of Spin-Orbit Coupling Property Calcu-

lations Using MCCI

Having run the Molpro ROHF calculations for one of the degenerate states of in-

terest (described in the next section), the corresponding FCIDUMP files is used in

the next stage as is the MCCI PROP INTS DUMP file, produced by running the

conv molp prop ints script above. A standard MCCI calculation is run to estab-
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lish the MCCI wavefunction for the state using an MCCI input file called mcci.in

as part of this process [27]. The MCCI wavefunctions for the other states are now

required. The necessary occupied molecular orbitals for the valence electrons for

each state are hand crafted into a modified version of mcci.in and now MCCI

calculations are run on all of these states. The FCIDUMP file is common to all

of the calculations and Slater Determinants are used throughout. Once all MCCI

wavefunction calculations are complete, each of the degenerate states will have a

file called civ out state. These civ out state files are now used alongside the

common MCCI PROP INTS DUMP file and the mcci.in file is modified once

more to perform a Spin-Orbit Coupling calculation on these n states. This process

which was designed as part of this work is now described:

1) The LSq integrals are read in from the file MCCI PROP INTS DUMP. Only

one electron integrals are available from Molpro. Although these integrals would be

expected to be in a two dimensional array, in practice they are stored in a single

dimension array called e1ints for computational performance reasons. This format

is described in the literature [27].

2) The civ out state files for each state are now read into the icij array which stores

each electron configuration, including the molecular orbitals and spin state, present

in each Slater Determinant for each state. The icij array exists in the standard

MCCI code but in this work it has been partitioned to store the details of more

than one state.

3) The prop state matrix is the LSq integral matrix in the basis of electronic states

(one state per civ out state file). Each off-diagonal matrix element is the spin-orbit

coupling interaction between the two respective states. Note that due to the selection

rules, the symmetry of the spin-orbit coupling operator means that all diagonal

elements in this matrix are necessarily zero. The matrix elements are calculated as

shown in equation 3.31. Here, a and b are the various electronic states detailed by

the civ out state files. It should be noted that although the Hso matrix shown in

equation 3.27 is calculated explicitly, each matrix element is the combination of spin-

orbit interactions in the basis of appropriate Slater Determinants and ultimately in

the basis of MOs. The individual Hamiltonian matrices in the basis of both Slater

Determinants and molecular orbitals are not explicitly constructed. Instead each

element is summed ”on the fly” with only the final value of Hso
ab being stored explicitly
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in the final matrix prop state matrix. This is done for computational storage

reasons, similar to the CASSCF and MRCI techniques discussed in the theory section

of this work. When evaluating the matrix element value in the basis of Slater

Determinants, the usual Slater rules can be employed. Because the symmetry of the

spin-orbit operator is not totally symmetric, the bra and ket Slater Determinants

cannot have the same symmetry. Therefore all matrix elements where there are no

orbital differences between the determinants must be zero. Equally, because only

one electron integrals are supported, the Slater rules determine that where there

are differences of two or more orbitals the matrix element must also be zero. It is

therefore only situations where there is precisely one orbital difference between the

Slater Determinants that a non-zero matrix element can exist and Ŝ operators can

be treated as one-electron operators. The MCCI code has been specially modified to

handle these three scenarios specifically for the spin-orbit coupling code. The course

of action taken when one orbital difference is found depends on the symmetry of the

spin-orbit operator. The spin-orbit operators require MCCI to take account of the

spin part of the Breit-Pauli Hamiltonian. This means calculation of Hso in the x, y

and z directions. Therefore the value of 〈Ψi|Hso
S |Ψj〉, in x and y directions requires

the spin of the differing i and j orbitals to be different for a non-zero matrix element

to occur. This is because neither Ŝx nor Ŝy form eigenvalue equations with the ket

vector. For the z direction, the spins must be the same because Ŝz does form an

eigenvalue equation with the ket vector. The effect of the relevant Ŝ operators on

the possible spin states of the differing orbital is summarised in equations 3.33 to

3.38.

Ŝx |α〉 =
1

2
|β〉 (3.33)

Ŝx |β〉 =
1

2
|α〉 (3.34)

Ŝy |α〉 =
i

2
|β〉 (3.35)

Ŝy |β〉 = − i
2
|α〉 (3.36)
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Ŝz |α〉 =
1

2
|α〉 (3.37)

Ŝz |β〉 = −1

2
|β〉 (3.38)

Two added complexities require mentioning. Firstly, as menioned earlier, all of

the LSq integrals are purely imaginary. Secondly, the Ŝy operator is also complex.

This means that all matrix elements in the y direction are of the wrong sign and

need to be negated. The calculated value of 〈χi|Ŝq|χj〉 is then multiplied by the

LSq integral between the same two molecular orbitals. The contribution for the

LSq matrix element in the basis of the respective states is thus the sum of all such

molecular orbital permutations for all of the configurations in each state. Because

the LSq integrals involve complex quantities, integral matrix is Hermitian. The

MCCI code has been modified to allow complex matrices by simply negating the

lower triangle matrix element integral when the corresponding upper triangle matrix

element integral is required. The final Hso matrix values for x and z directions are

purely imaginary and those of the y direction purely real. This must be reflected in

the final state matrix which requires diagonalisation to reveal the spin-orbit coupling

line splitting values.

Because Slater Determinants are used, MCCI by default will orthonormalise the

configurations and hence the overlap matrix, S, will be the unit matrix. It is therefore

not necessary to divide the HAB matrix elements by a normalisation factor. The

final step is to multiply each matrix element HAB by a factor of 1/2c2, taken in

atomic units, to produce a spin-orbit coupling matrix element between the respective

electronic states in the units of cm−1 before printing this to the MCCI output log

file properties output. This entire process must be repeated until all values of the

spin-orbit coupling matrix elements for the x, y and z directions are obtained. From

here a matrix of spin-orbit coupling matrix elements for the full set of spin-orbit

operators is constructed in the basis of the degenerate states bearing in mind that

this will be a complex matrix. Diagonalisation of this matrix will reveal the extent

of spin-orbit coupling on the removal of degeneracy of the original states by detailing

the energy shift of each individual state under this interaction.

Pseudo-code for the above MCCI Spin-Orbit Coupling work is now shown. In bold
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are the major steps, variables and filenames in the code:

Step 1:

do read MCCI PROP INTS DUMP file

get storage index for integral, ij, from ipoint lookup table

store integral → one e propints[ij]

enddo (read MCCI PROP INTS DUMP)

Step 2:

do i:1 → num states

do j:start → EOF

read configs from civ out state i file

store each config in icij matrix sector for state

store coeff of each config in ctemp[j][i]

enddo (j)

store num configs for state in state civec len[i]

enddo

Step 3: copy one e propints to e1ints

init prop state matrix (Hso
ij state matrix elements) to zero

do bra state:1 → num states

do ket state:1 → num states

calculate range of configs (ici and jci) for each bra and ket state

do ici:start ici config → end ici config

do jci:start jci config → end jci config

want Hso
ij = 〈ici|Hso|jci〉 ∀ ici and jci permutations

calc num MO diffs between ici and jci configs

if ndiff = 1 (all others give zero Hso
ij )

get spins of differing MOs (spini and spinj)

get MO numbers of differing MOs iorb and jorb

if parallel spins

if iorb gt jorb (lower triangle)

spin contribution = spinj/2

if LSZ

kk = integral index for iorb and jorb permutation

energy += e1ints[kk]*spin contribution
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endif (LSZ)

- else (upper triangle)

spin contribution = spinj/2

if LSZ

kk = integral index for iorb and jorb permutation

energy -= e1ints[kk]*spin contribution

endif (LSZ)

endif (iorb gt jorb)

else (differing spins)

if iorb gt jorb(lower triangle)

kk = integral index for iorb and jorb permutation

if LSY

spin contribution = -spinj/2

elseif LSX

spin contribution = 1/2 (always positive)

endif (LSY, LSX)

energy += (e1ints[kk]*spin contribution)

else (upper triangle)

kk = integral index for iorb and jorb permutation

if LSY

spin contribution = -spinj/2

energy -= (e1ints[kk]*spin contribution)

else LSX

spin contribution = 1/2

energy -= (e1ints[kk]*spin contribution)

endif (LSY, LSX)

endif (iorb gt jorb)

endif (parallel spins)

endif (ndiff=1)

SOC property value += ici coeff * energy * jci coeff

enddo (jci)

enddo (ici)

prop state matrix[bra state][ket state] = SOC property value * 1/2c2 (au)

enddo (ket state)
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enddo (bra state)

3.5 Results and Discussion - Spin-Orbit Coupling

Boron Atom

The first atom considered is the 2P ground state of the boron atom. The point

group for all atoms in this work within Molpro is D2h. This ground state has six-

fold degeneracy. The following six electron configurations are therefore required:

[He]2s2p1
xα (symmetry B3u)

[He]2s2p1
yα (symmetry B2u)

[He]2s2p1
zα (symmetry B1u)

[He]2s2p1
xβ (symmetry B3u)

[He]2s2p1
yβ (symmetry B2u)

[He]2s2p1
zβ (symmetry B1u)

Under the influence of spin-orbit coupling, this six-fold degenerate 2P state splits

into 2 levels: a four-fold degenerate 2P3/2 level and a two-fold degenerate 2P1/2 level.

The symmetries of the spin-orbit operators, which transform as rotations in the

appropriate direction, are: x direction = B3g; y direction = B2g and z direction =

B1g. Applying selection rules, only the following spin-orbit coupling matrix elements,

involving the levels above, will be non-zero:

〈B1u|Ĥso
x |B2u〉 〈B2u|Ĥso

x |B1u〉

〈B1u|Ĥso
y |B3u〉 〈B3u|Ĥso

y |B1u〉

〈B2u|Ĥso
z |B3u〉 〈B3u|Ĥso

z |B2u〉

Carbon Atom

The 3P ground state of the carbon atom is used in this work. In this case a triplet

ground state exists and the degeneracy of this ground state is nine. The following

nine electron configurations are required:

[He]2s2p1
xα2p1

yα (symmetry B1g)

[He]2s2p1
xα2p1

zα (symmetry B2g)

[He]2s2p1
yα2p1

zα (symmetry B3g)

[He]2s2p1
xβ2p1

yβ (symmetry B1g)

[He]2s2p1
xβ2p1

zβ (symmetry B2g)

[He]2s2p1
yβ2p1

zβ (symmetry B3g)
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[He]2s2p1
xα2p1

yβ (symmetry B1g)

[He]2s2p1
xα2p1

zβ (symmetry B2g)

[He]2s2p1
yα2p1

zβ (symmetry B3g)

For the Ms = 0 states of the triplet, only those states which give an overall symmetry

which will result in a non-zero spin-orbit coupling matrix element with one of the

Ms = +1, -1 states are chosen. Spin-orbit coupling splits this nine-fold degenerate

state into three levels: a five fold 3P2 level, a three-fold 3P1 level and finally a single

non-degenerate 3P0 level. Applying the selection rules, only the following spin-orbit

coupling matrix elements, involving the levels above, will be non-zero:

〈B1g|Ĥso
x |B2g〉 〈B2g|Ĥso

x |B1g〉

〈B1g|Ĥso
y |B3g〉 〈B3g|Ĥso

y |B1g〉

〈B2g|Ĥso
z |B3g〉 〈B3g|Ĥso

z |B2g〉

Oxygen Atom

The 3P ground state of the oxygen atom is used in this work. This atom is handled

in the same way as the carbon atom. The following nine electron configurations are

required:

[He]2s2p2
z2p1

xα2p1
yα (symmetry B1g)

[He]2s2p2
y2p1

xα2p1
zα (symmetry B2g)

[He]2s2p2
x2p1

yα2p1
zα (symmetry B3g)

[He]2s2p2
z2p1

xβ2p1
yβ (symmetry B1g)

[He]2s2p2
y2p1

xβ2p1
zβ (symmetry B2g)

[He]2s2p2
x2p1

yβ2p1
zβ (symmetry B3g)

[He]2s2p2
z2p1

xα2p1
yβ (symmetry B1g)

[He]2s2p2
y2p1

xα2p1
zβ (symmetry B2g)

[He]2s2p2
x2p1

yα2p1
zβ (symmetry B3g)

The non-zero matrix elements are the same as for the carbon atom.

Fluorine Atom

The 2P ground state of the fluorine atom is used in this work. This atom is handled in

exactly the same way as for the boron atom. The six required electron configurations

are:

[He]2s2p2
y2p2

z2p1
xα (symmetry B3u)

[He]2s2p2
x2p2

z2p1
yα (symmetry B2u)

[He]2s2p2
x2p2

y2p1
zα (symmetry B1u)
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[He]2s2p2
y2p2

z2p1
xβ (symmetry B3u)

[He]2s2p2
x2p2

z2p1
yβ (symmetry B2u)

[He]2s2p2
x2p2

y2p1
zβ (symmetry B1u)

The non-zero matrix elements are the same as for the boron atom.

Silicon Atom

The 3P ground state of the silicon atom is used in this work. This atom is handled

in the same way as the carbon atom with the difference being that the [Ne]3s3p

shells are now required. The following nine electron configurations are required:

[Ne]3s3p1
xα3p1

yα (symmetry B1g)

[Ne]3s3p1
xα3p1

zα (symmetry B2g)

[Ne]3s3p1
yα3p1

zα (symmetry B3g)

[Ne]3s3p1
xβ3p1

yβ (symmetry B1g)

[Ne]3s3p1
xβ3p1

zβ (symmetry B2g)

[Ne]3s3p1
yβ3p1

zβ (symmetry B3g)

[Ne]3s3p1
xα3p1

yβ (symmetry B1g)

[Ne]3s3p1
xα3p1

zβ (symmetry B2g)

[Ne]3s3p1
yα3p1

zβ (symmetry B3g)

The non-zero matrix elements are the same as for the carbon atom.

Sulfur Atom

The 3P ground state of the sulfur atom is used in this work. This atom is handled in

the same way as the carbon atom with the difference being that the [Ne]3s3p shells

are now required. The following nine electron configurations are required:

[Ne]3s3p2
z3p1

xα3p1
yα (symmetry B1g)

[Ne]3s3p2
y3p1

xα3p1
zα (symmetry B2g)

[Ne]3s3p2
x3p1

yα3p1
zα (symmetry B3g)

[Ne]3s3p2
z3p1

xβ3p1
yβ (symmetry B1g)

[Ne]3s3p2
y3p1

xβ3p1
zβ (symmetry B2g)

[Ne]3s3p2
x3p1

yβ3p1
zβ (symmetry B3g)

[Ne]3s3p2
z3p1

xα3p1
yβ (symmetry B1g)

[Ne]3s3p2
y3p1

xα3p1
zβ (symmetry B2g)

[Ne]3s3p2
x3p1

yα3p1
zβ (symmetry B3g)

The non-zero matrix elements are the same as for the carbon atom.

Chlorine Atom
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The 2P ground state of the chlorine atom is used in this work. This atom is handled

in exactly the same way as the fluorine atom with the difference being that the

[Ne]3s3p shells are now required. The required electron configurations are

[Ne]3s3p2
y3p2

z3p1
xα (symmetry B3u)

[Ne]3s3p2
x3p2

z3p1
yα (symmetry B2u)

[Ne]3s3p2
x3p2

y3p1
zα (symmetry B1u)

[Ne]3s3p2
y3p2

z3p1
xβ (symmetry B3u)

[Ne]3s3p2
x3p2

z3p1
yβ (symmetry B2u)

[Ne]3s3p2
x3p2

y3p1
zβ (symmetry B1u)

The non-zero matrix elements are the same as for the fluorine atom.

OH radical . The OH radical is the first of the small molecules considered here.

The ground state of X2Π is modelled at a bond length of 0.96966 Å. The ground

state has four-fold degeneracy and spin-orbit coupling causes these degenerate levels

to be split into a two fold X2Π3/2 level and a two fold X2Π1/2 level. The following

four electron configurations are required:

1σ22σ23σ21π2
x1π

1
yα (symmetry B2)

1σ22σ23σ21π2
x1π

1
yβ(symmetry B2)

1σ22σ23σ21π2
y1π

1
xα (symmetry B1)

1σ22σ23σ21π2
y1π

1
xβ (symmetry B1)

The point group for this molecule, as with all molecules in this study within Molpro

is C2v, with the exception of C2, and the symmetries of the spin-orbit operators,

which transform as rotations in the appropriate direction, are: x direction = B2; y

direction = B1 and z direction = A2. Applying selection rules, only the following

spin-orbit coupling matrix elements, for the levels listed above, will be non-zero for

the ground state of the OH radical:

〈B1|Ĥso
z |B2〉 〈B2|Ĥso

z |B1〉

NO radical . The NO radical ground state is X2Π at a bond length of 1.15077 Å

and is four-fold degenerate. It is handled in the same way as the OH radical and

the following four configurations are required:

1σ22σ23σ24σ25σ21π42π1
xα (symmetry B1)

1σ22σ23σ24σ25σ21π42π1
xβ (symmetry B1)

1σ22σ23σ24σ25σ21π42π1
yα (symmetry B2)

1σ22σ23σ24σ25σ21π42π1
yβ (symmetry B2)
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Under the influence of spin-orbit coupling the four-fold degenerate ground state

splits into two levels: a doubly degenerate 2Π3/2 state and a doubly degenerate

2Π1/2 state. The non-zero matrix elements are the same as for the OH radical but

for the NO radical.

CN radical . The ground state of the CN radical is X2Σ. Because this has no

orbital angular momentum there will be no spin-orbit coupling. Instead, the first

excited state A2Π is used instead at a bond length of 1.2333 Å. It is handled in

the same way as the OH radical and the following four electron configurations are

required:

1σ22σ23σ21π44σ25σ02π1
xα (symmetry B1)

1σ22σ23σ21π44σ25σ02π1
xβ (symmetry B1)

1σ22σ23σ21π44σ25σ02π1
yα (symmetry B2)

1σ22σ23σ21π44σ25σ02π1
yβ (symmetry B2)

The non-zero matrix elements are the same as for the OH radical.

C2 radical . The final molecule in this study is the C2 radical. The ground state

of the C2 radical is X1Σ+ which has neither orbital angular momentum nor spin

angular momentum and therefore there will be no spin-orbit coupling. Instead,

the first excited triplet state a 3Πu is used instead at a bond length of 1.3119 Å.

This state has eight-fold degeneracy and spin-orbit coupling will split this into three

levels: a 3Πu(2) level, a 3Πu(1) and a 3Πu(0) level. The point group for this molecule is

D2h and the symmetries of the spin-orbit operators, which transform as rotations in

the appropriate direction, are: x direction = B3g; y direction = B2g and z direction

= B1g. The following six electron configurations are required by MCCI:

1σ22σ23σ24σ21π2
x1π

1
yα5σ1

α (symmetry B2u)

1σ22σ23σ24σ21π2
x1π

1
yβ5σ1

β (symmetry B2u)

1σ22σ23σ24σ21π2
x1π

1
yα5σ1

β (symmetry B2u)

1σ22σ23σ24σ21π2
y1π

1
xα5σ1

α (symmetry B3u)

1σ22σ23σ24σ21π2
y1π

1
xβ5σ1

β (symmetry B3u)

1σ22σ23σ24σ21π2
y1π

1
xα5σ1

β (symmetry B3u)

The non-zero matrix elements are as follows:

〈B2u|Ĥso
z |B3u〉 〈B3u|Ĥso

z |B2u〉

Energy Convergence

In order to determine an appropriate basis set to use for spin-orbit coupling calcula-
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Figure 3.4: MCCI Energies for the boron atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.5: MCCI Energies for the carbon atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

tions, the convergence of the energy of the |B3u, α〉 state of the B, F and Cl atoms,

the |B2g, αα〉 state of the C, O, Si and S atoms, the |B1, α〉 state of the OH, NO and

CN radicals and the |B2u, αα〉 state for C2 was calculated in MCCI using a series of

basis sets from cc-pVDZ to cc-pV5Z and a variety of cmin values. The results are

detailed in figures 3.4 to 3.14.

Here it can be seen that rapid convergence appears to occur once the cc-pVQZ basis

set is used, with the exception of the Si, S and Cl atoms. The molecules CN and

NO show increases in energy as the basis set is improved but the reason for this is

clear from the figures. As the basis set is improved, the cmin value must be reduced

accordingly. Looking at the energy obtained with the cc-pV5Z basis set, it is seen

that reducing the cmin value steadily from 0.001 to 0.0001 corrects for this problem.

In most cases however the extra effort in obtaining convergence at the cc-pV5Z level
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Figure 3.6: MCCI Energies for the oxygen atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.7: MCCI Energies for the fluorine atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.8: MCCI Energies for the silicon atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.
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Figure 3.9: MCCI Energies for the sulfur atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.10: MCCI Energies for the chlorine atom with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.11: MCCI Energies for the OH radical with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.
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Figure 3.12: MCCI Energies for the CN radical with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.13: MCCI Energies for the NO radical with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.

Figure 3.14: MCCI Energies for the C2 radical with a variety of cmin values from

0.001 to 0.0001. Energy convergence is 0.001 in all cases. All energies in Hartrees.
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outweighs the absolute energy gain compared to using cc-pVQZ. At the cc-pVQZ

level therefore, a reasonable compromise between accuracy and computational ease

would appear to be obtained. From these initial graphs, it would appear that there

is worthwhile improvement in energy stabilisation using smaller values of cmin. The

absolute energy however is not the crucial parameter: of higher importance is the

variation of spin-orbit coupling matrix element. The convergence of the magnitude

of the spin-orbit coupling matrix elements was therefore investigated for each species.

Results are shown for theHso
z operator using a range of basis sets and cmin values and

are shown in figures 3.15 to 3.25. Once again, good convergence is seen once cc-pVQZ

is used with the exception of the Si, S and Cl atoms. This is not surprising given

that within the computational resources available, these atoms had not displayed

energy convergence with basis set. It should be noted however that the value of

cmin, with the exception of 0.001, did not affect the reported spin-orbit coupling

matrix element for the S or Cl atoms at these higher basis sets. The problem with

the Si atom spin-orbit matrix element at the cc-pV5Z basis set is explained by the

need to drop the value of cmin below 0.0001. Within the computational resources

available, this was not a viable solution and for this atom, the cc-pV5Z basis set

was discarded. Additionally, it is clear that using cmin values smaller than 0.0005

produces very little change in the spin-orbit coupling matrix element on any of the

species in this study. Given the severe computational cost of using the cc-pV5Z

basis set and the invariance of the spin-orbit coupling constant beyond cutoff values

of 0.0005 it was therefore decided to use the cc-pVQZ basis set with cmin values

of 0.0005 on all doublet species. Unfortunately, for triplet species, a problem arose

with the energy calculations of the remaining electron configurations. All of these

electron configurations for a species should have degenerate energy values. For the

triplet species however, the Ms = 0 electron configurations did not converge to the

Ms = -1,1 configuration energies. This was a result of the cmin value being too

low. For the C and O atoms, reducing cmin to 0.0001 with the cc-pVQZ basis set

proved sufficient to achieve degeneracy. Unfortunately for the remaining atoms and

molecules: Si, S and C2, this was not sufficient. Reducing this value below 0.0001

was not computationally feasible, the only recourse was to reduce the quality of the

basis set and convergence was only found when the cc-pVDZ basis set was used with

a cmin cutoff of 0.0001. In summary therefore, the cc-pVQZ basis set with cmin =

0.0005 was used for the B, F, Cl, NO, CN and OH species, the cc-VQZ basis set
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Figure 3.15: MCCI spin-orbit coupling matrix element magnitudes for the boron

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values are in cm−1

Figure 3.16: MCCI spin-orbit coupling matrix element magnitudes for the carbon

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values in cm−1

with cmin = 0.0001 was used for the C and O atoms and finally the cc-pVDZ basis

set with cmin = 0.0001 was used for the Si, S and C2 species.

Following this initial benchmarking work, the full set of spin-orbit coupling matrix

elements were calculated for each species. Calculations for the operators Hso
x , Hso

y

and Hso
z were performed using MCCI in the basis of electron configurations listed

earlier for the atoms and diatomic molecules.

In order to show the removal of degeneracy of the energy levels by spin-orbit cou-

pling, the individual matrix element results for the Hso operator calculations are

formed into a matrix in the basis of degenerate states and spins for each species.

This matrix is then required to be diagonalised and the eigenvalues will be the en-
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Figure 3.17: MCCI spin-orbit coupling matrix element magnitudes for the oxygen

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values in cm−1

Figure 3.18: MCCI spin-orbit coupling matrix element magnitudes for the fluorine

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values in cm−1

Figure 3.19: MCCI spin-orbit coupling matrix element magnitudes for the silicon

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values in cm−1
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Figure 3.20: MCCI spin-orbit coupling matrix element magnitudes for the sulfur

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values in cm−1

Figure 3.21: MCCI spin-orbit coupling matrix element magnitudes for the chlorine

atom with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling

matrix element values in cm−1

Figure 3.22: MCCI spin-orbit coupling matrix element magnitudes for the OH radi-

cal with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling matrix

element values in cm−1
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Figure 3.23: MCCI spin-orbit coupling matrix element magnitudes for the CN radi-

cal with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling matrix

element values in cm−1

Figure 3.24: MCCI spin-orbit coupling matrix element magnitudes for the NO radi-

cal with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling matrix

element values in cm−1

Figure 3.25: MCCI spin-orbit coupling matrix element magnitudes for the C2 radical

with a variety of cmin values from 0.001 to 0.0001. All spin-orbit coupling matrix

element values in cm−1
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ergy level splittings. The general matrix for the atoms exhibiting a doublet ground

state is shown in equation 3.39.

Hso =



0.00 0.00 a 0.00 0.00 b

0.00 0.00 0.00 c d 0.00

e 0.00 0.00 0.00 0.00 f

0.00 g 0.00 0.00 h 0.00

0.00 i 0.00 j 0.00 0.00

k 0.00 l 0.00 0.00 0.00


(3.39)

Here, the following matrix elements are defined:

a = 〈B3u, α|Hso
z |B2u, α〉

b = 〈B3u, α|Hso
y |B1u, β〉

c = 〈B3u, β|Hso
z |B2u, β〉

d = 〈B3u, β|Hso
y |B1u, α〉

e = 〈B2u, α|Hso
z |B3u, α〉

f = 〈B2u, α|Hso
x |B1u, β〉

g = 〈B2u, β|Hso
z |B3u, β〉

h = 〈B2u, β|Hso
x |B1u, α〉

i = 〈B1u, α|Hso
y |B3u, β〉

j = 〈B1u, α|Hso
x |B2u, β〉

k = 〈B1u, β|Hso
y |B3u, α〉

l = 〈B1u, β|Hso
x |B2u, α〉

Recall the matrix elements for the Hso
x and Hso

z operators are pure complex numbers

and the Hso
y elements are pure real numbers.

For atoms exhibiting a triplet ground state, the general matrix is as shown in equa-

tion 3.40
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Hso =



0.00 0.00 0.00 0.00 a 0.00 0.00 b 0.00

0.00 0.00 0.00 c 0.00 d e 0.00 f

0.00 0.00 0.00 0.00 g 0.00 0.00 h 0.00

0.00 j 0.00 0.00 0.00 0.00 k 0.00 0.00

l 0.00 m 0.00 0.00 0.00 0.00 0.00 0.00

0.00 n 0.00 0.00 0.00 0.00 0.00 0.00 p

0.00 q 0.00 r 0.00 0.00 0.00 0.00 0.00

s 0.00 t 0.00 0.00 0.00 0.00 0.00 0.00

0.00 u 0.00 0.00 0.00 v 0.00 0.00 0.00



(3.40)

Here, the following matrix elements are defined:

a = 〈B1g, αα|Hso
x |B2g, αβ + βα〉

b = 〈B1g, αα|Hso
y |B3g, αβ + βα〉

c = 〈B1g, αβ + βα|Hso
x |B2g, αα〉

d = 〈B1g, αβ + βα|Hso
x |B2g, ββ〉

e = 〈B1g, αβ + βα|Hso
y |B3g, αα〉

f = 〈B1g, αβ + βα|Hso
y |B3g, ββ〉

g = 〈B1g, ββ|Hso
x |B2g, αβ + βα〉

h = 〈B2g, ββ|Hso
y |B3g, αβ + βα〉

j = 〈B2g, αα|Hso
x |B1g, αβ + βα〉

k = 〈B2g, αα|Hso
z |B3g, αα〉

l = 〈B2g, αβ + βα|Hso
x |B1g, αα〉

m = 〈B2g, αβ + βα|Hso
x |B1g, ββ〉

n = 〈B2g, ββ|Hso
x |B1g, αβ + βα〉

p = 〈B2g, ββ|Hso
z |B3g, ββ〉

q = 〈B3g, αα|Hso
y |B1g, αβ + βα〉

r = 〈B3g, αα|Hso
z |B2g, αα〉

s = 〈B3g, αβ + βα|Hso
y |B1g, αα〉

t = 〈B3g, αβ + βα|Hso
y |B1g, ββ〉

u = 〈B3g, ββ|Hso
y |B1g, αβ + βα〉

v = 〈B3g, ββ|Hso
z |B2g, ββ〉

Recall the matrix elements for the Hso
x and Hso

z operators are purely imaginary

numbers and the Hso
y elements are purely real numbers.
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For the diatomic molecules other than C2, which have a doublet state, the general

matrix is shown in equation 3.41. All of these numbers are pure complex numbers.

Hso =


0.00 0.00 m 0.00

0.00 0.00 0.00 n

o 0.00 0.00 0.00

0.00 p 0.00 0.00

 (3.41)

Here, the following matrix elements are defined:

m = 〈B1, α|Hso
z |B2, α〉

n = 〈B1, β|Hso
z |B2, β〉

o = 〈B2, α|Hso
z |B1, α〉

p = 〈B2, β|Hso
z |B1, β〉

All of these numbers are purely imaginary numbers because only the matrix elements

for the Hso
z operator are non-zero.

Finally, for the triplet C2, the general matrix is shown in equation 3.42. All of

these numbers are purely imaginary numbers because, once more, only the matrix

elements for the Hso
z operator are non-zero.

Hso =



0.00 0.00 0.00 a 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 b

c 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 d 0.00 0.00 0.00


(3.42)

Here, the following matrix elements are defined:

a = 〈B3u, αα|Hso
z |B2u, αα〉

b = 〈B3u, ββ|Hso
z |B2u, ββ〉

c = 〈B2u, αα|Hso
z |B3u, αα〉

d = 〈B2u, ββ|Hso
z |B3u, ββ〉

The specific matrices for each species are now presented along with the eigenvalues of

those matrices which represent the energetic splitting. Where degenerate eigenvalues
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exist, values are reported as averages as there are slight energy differences between

them due to the stochastic nature of MCCI.

The matrix for the boron atom is shown in equation 3.43.

Hso
B =



0.00 0.00 −10.71i 0.00 0.00 +10.71

0.00 0.00 0.00 +10.70i +10.71 0.00

+10.71i 0.00 0.00 0.00 0.00 −10.71i

0.00 −10.71i 0.00 0.00 +10.70i 0.00

0.00 +10.71 0.00 −10.70i 0.00 0.00

+10.71 0.00 +10.71i 0.00 0.00 0.00


(3.43)

Diagonalisation of this complex matrix results in six eigenvalues split into a group

of two and four as expected. Two eigenvalues of -21.42 cm−1 represent the lower

energy two-fold 2P1/2 level and the four eigenvalues of +10.71 cm−1 represent the

higher energy four-fold 2P3/2 level. This leaves ∆so = 32.13 cm−1 compared to the

experimental value [28] of 15.29cm−1, an error of 110%.

The matrix for the carbon atom is shown in equation 3.44.

H
so
C =



0.00 0.00 0.00 0.00 −20.05i 0.00 0.00 +20.17 0.00

0.00 0.00 0.00 +20.17i 0.00 −20.06i −20.06 0.00 −20.18

0.00 0.00 0.00 0.00 −20.17i 0.00 0.00 −20.05 0.00

0.00 −20.17i 0.00 0.00 0.00 0.00 −28.47i 0.00 0.00

+20.05i 0.00 +20.17i 0.00 0.00 0.00 0.00 0.00 0.00

0.00 +20.06i 0.00 0.00 0.00 0.00 0.00 0.00 +28.47i

0.00 −20.06 0.00 +28.47i 0.00 0.00 0.00 0.00 0.00

+20.17 0.00 −20.05 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −20.18 0.00 0.00 0.00 −28.47i 0.00 0.00 0.00



(3.44)

Diagonalisation of this complex matrix results in nine eigenvalues split into groups

of five, three and one as expected. A single non-degenerate eigenvalue of -56.91

cm−1 represents the lowest energy 3P0 level, three eigenvalues of energy -28.45 cm−1

represent the higher energy 3P1 level and the five eigenvalues of +28.45 cm−1 repre-

sent the highest energy five-fold degenerate 3P2 level. This leaves ∆so = 85.36 cm−1

compared to the experimental value [28] of 43.40 cm−1, an error of 97%.

The matrix for the oxygen atom is shown in equation 3.44.
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H
so
O =



0.00 0.00 0.00 0.00 +77.63i 0.00 0.00 −77.97 0.00

0.00 0.00 0.00 +77.79i 0.00 −77.30i +77.32 0.00 +77.79

0.00 0.00 0.00 0.00 −77.45i 0.00 0.00 −77.09 0.00

0.00 −77.79i 0.00 0.00 0.00 0.00 −109.25i 0.00 0.00

−77.63i 0.00 +77.45i 0.00 0.00 0.00 0.00 0.00 0.00

0.00 +77.30i 0.00 0.00 0.00 0.00 0.00 0.00 +109.22i

0.00 +77.32 0.00 +109.25i 0.00 0.00 0.00 0.00 0.00

−77.97 0.00 −77.09 0.00 0.00 0.00 0.00 0.00 0.00

0.00 +77.79 0.00 0.00 0.00 −109.22i 0.00 0.00 0.00



(3.45)

Diagonalisation of this complex matrix results in nine eigenvalues split into groups

of five, three and one as expected. A single non-degenerate eigenvalue of +219.05

cm−1 represents the highest energy 3P0 level, three eigenvalues of energy +109.51

cm−1 represent the lower energy 3P1 level and the five eigenvalues of -109.52 cm−1

represent the lowest energy five-fold degenerate 3P2 level. This leaves ∆so = 328.57

cm−1 compared to the experimental value [28] of 226.98 cm−1, an error of 45%.

The matrix for the fluorine atom is shown in equation 3.46.

Hso
F =



0.00 0.00 +194.26i 0.00 0.00 −195.30

0.00 0.00 0.00 −194.32i +195.34 0.00

−194.26i 0.00 0.00 0.00 0.00 −195.26i

0.00 +194.32i 0.00 0.00 +195.30i 0.00

0.00 +195.34 0.00 −195.30i 0.00 0.00

+195.30 0.00 +195.26i 0.00 0.00 0.00


(3.46)

Diagonalisation of this complex matrix results in six eigenvalues split into a group

of two and four as expected. Two eigenvalues of +389.93 cm−1 represent the upper

energy two-fold 2P1/2 level and the four eigenvalues of -194.96 cm−1 represent the

lower energy four-fold 2P3/2 level. This leaves ∆so = 584.89 cm−1 compared to the

experimental value [28] of 404.10 cm−1, an error of 45%.

The matrix for the silicon atom is shown in equation 3.47.

H
so
Si =



0.00 0.00 0.00 0.00 +58.41i 0.00 0.00 +58.39 0.00

0.00 0.00 0.00 +58.38i 0.00 +58.35i +58.35 0.00 +58.38

0.00 0.00 0.00 0.00 +58.33i 0.00 0.00 −58.37 0.00

0.00 −58.38i 0.00 0.00 0.00 0.00 +82.71i 0.00 0.00

−58.41i 0.00 −58.33i 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −58.35i 0.00 0.00 0.00 0.00 0.00 0.00 +82.78i

0.00 +58.35 0.00 −82.71i 0.00 0.00 0.00 0.00 0.00

+58.39 0.00 −58.37 0.00 0.00 0.00 0.00 0.00 0.00

0.00 +58.38 0.00 0.00 0.00 −82.78i 0.00 0.00 0.00



(3.47)

Diagonalisation of this complex matrix results in nine eigenvalues split into groups

of five, three and one as expected. A single non-degenerate eigenvalue of -164.03
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cm−1 represents the lowest energy 3P0 level, three eigenvalues of energy -83.64 cm−1

represent the higher energy 3P1 level and the five eigenvalues of +82.38 cm−1 rep-

resent the highest energy five-fold degenerate 3P2 level. This leaves ∆so = 246.41

cm−1 compared to the experimental value [28] of 223.16 cm−1, an error of 10%.

The matrix for the sulfur atom is shown in equation 3.48.

H
so
S =



0.00 0.00 0.00 0.00 +151.06i 0.00 0.00 +151.06 0.00

0.00 0.00 0.00 +150.96i 0.00 +150.92i +150.99 0.00 +150.99

0.00 0.00 0.00 0.00 −150.92i 0.00 0.00 +150.96 0.00

0.00 −150.96i 0.00 0.00 0.00 0.00 −213.53i 0.00 0.00

−151.06i 0.00 +150.92i 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −150.92i 0.00 0.00 0.00 0.00 0.00 0.00 −213.54i

0.00 +150.99 0.00 +213.53i 0.00 0.00 0.00 0.00 0.00

+151.06 0.00 +150.96 0.00 0.00 0.00 0.00 0.00 0.00

0.00 +150.99 0.00 0.00 0.00 +213.54i 0.00 0.00 0.00



(3.48)

Diagonalisation of this complex matrix results in nine eigenvalues split into groups

of five, three and one as expected. A single non-degenerate eigenvalue of +427.49

cm−1 represents the highest energy 3P0 level, three eigenvalues of energy +213.54

cm−1 represent the lower energy 3P1 level and the five eigenvalues of -213.62 cm−1

represent the lowest energy five-fold degenerate 3P2 level. This leaves ∆so = 641.11

cm−1 compared to the experimental value [28] of 573.64 cm−1, an error of 12%.

The matrix for the chlorine atom is shown in equation 3.49.

Hso
Cl =



0.00 0.00 +339.36i 0.00 0.00 −339.39

0.00 0.00 0.00 −339.00i −339.39 0.00

−339.36i 0.00 0.00 0.00 0.00 +339.33i

0.00 +339.00i 0.00 0.00 −339.39i 0.00

0.00 −339.39 0.00 +339.39i 0.00 0.00

−339.39 0.00 −339.33i 0.00 0.00 0.00


(3.49)

Diagonalisation of this complex matrix results in six eigenvalues split into a group

of two and four as expected. Two eigenvalues of +678.62 cm−1 represent the upper

energy two-fold 2P1/2 level and the four eigenvalues of -339.31 cm−1 represent the

four-fold 2P3/2 level. This leaves ∆so = 1017.93 cm−1 compared to the experimental

value [28] of 882.35 cm−1, an error of 15%.

Moving onto the molecules, the matrix for the OH radical is shown in equation 3.50.

159



Hso
OH =


0.00 0.00 +106.15i 0.00

0.00 0.00 0.00 −105.53i

−106.15i 0.00 0.00 0.00

0.00 +105.53i 0.00 0.00

 (3.50)

Diagonalisation of this complex matrix results in four eigenvalues split into two

groups of two as expected. Two eigenvalues of +105.84 cm−1 represent the upper

energy two-fold level and the two eigenvalues of -105.84 cm−1 represent the two-fold

lower energy level. This leaves ∆so = 211.68 cm−1 compared to the experimental

value [29] of 139.21 cm−1, an error of 52%.

The matrix for the CN radical is shown in equation 3.51.

Hso
CN =


0.00 0.00 +46.01i 0.00

0.00 0.00 0.00 +46.02i

−46.01i 0.00 0.00 0.00

0.00 −46.02i 0.00 0.00

 (3.51)

Diagonalisation of this complex matrix results in four eigenvalues split into two

groups of two as expected. Two eigenvalues of +46.02 cm−1 represent the upper

energy two-fold level and the two eigenvalues of -46.02 cm−1 represent the two-fold

lower energy level. This leaves ∆so = 92.04 cm−1 compared to the experimental

value [29] of 52.64 cm−1, an error of 75%.

The matrix for the NO radical is shown in equation 3.52.

Hso
NO =


0.00 0.00 −94.91i 0.00

0.00 0.00 0.00 +94.80i

+94.91i 0.00 0.00 0.00

0.00 −94.80i 0.00 0.00

 (3.52)

Diagonalisation of this complex matrix results in four eigenvalues split into two

groups of two as expected. Two eigenvalues of +94.86 cm−1 represent the upper

energy two-fold level and the two eigenvalues of -94.86 cm−1 represent the two-fold

lower energy level. This leaves ∆so = 189.72 cm−1 compared to the experimental

value [29] of 123.16 cm−1, an error of 54%.
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Finally, the matrix for the C2 radical is shown in equation 3.53.

Hso
C2

=



0.00 0.00 0.00 −25.28i 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 −25.29i

+25.28i 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 +25.29i 0.00 0.00 0.00


(3.53)

Diagonalisation of this complex matrix results in six eigenvalues split into three

groups of two. Two eigenvalues of +25.29 cm−1 represent the upper energy two-fold

level, two eigenvalues of 0.00 cm−1 represent a two-fold lower energy level and two

eigenvalues of -25.29 cm−1 represent the two-fold lowest energy level. This leaves

∆so = 50.58 cm−1 compared to the experimental value [29] of 15.25 cm−1, an error

of 232%.

The energy level splitting is summarised in figures 3.26 and 3.27 with experimental

values shown in red.

The calculated spin-orbit coupling constants are summarised in table 3.3 with all

experimental data collected from references [28], [29], [30], [31] and [32].

It is very clear from table 3.3 that the neglect of two-electron effects, either directly

or via an effective one-electron operator causes significant deviation from experi-

mental results given the agreement between the results of this work and the one

electron results from SEHF. As found by Blume et al. [7][8] and others, the ne-

glect of two electron effects clearly has a greater impact on smaller atoms in this

study: 110% error for the B atom but reducing to 15% error for the Cl atom. for

molecules, the error is seen to increase substantially once more as expected consid-

ering the errors on the C and O atoms. Nevertheless, the calculated results are in

reasonable enough agreement with experiment to suggest that, upon inclusion of the

two-electron effects, MCCI could be used as an alternative method for investigating

spin-orbit coupling effects with the method’s inherent advantage of the formation of

highly compact wavefunctions.

The advantage of MCCI over other techniques is the ability of the method to ac-

curately predict energies and properties of systems using compact wavefunctions
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Figure 3.26: MCCI spin-orbit coupling splitting for the doublet state atoms and

molecules. Energy convergence is 0.001 in all cases.
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Figure 3.27: MCCI spin-orbit coupling splitting for the triplet state atoms and

molecules. Energy convergence is 0.001 in all cases.
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Table 3.3: MCCI spin-orbit coupling constant results. All spin-orbit coupling con-

stant values in cm−1. SEHF (1e) is the comparative one electron contribution to the

spin orbit coupling using Spin Extended Hartree Fock calculations. SEHF (Full) is

the corrected spin orbit coupling constant when two electron terms are subsequently

taken into account. SEHF results obtained from references [31] and [32]. Exper-

imental results from reference [28], [29] and [30]. Where available, experimental

errors have been provided in parentheses.

Atom/Molecule SOC Constant SEHF (1e) SEHF (Full) Exp

B atom +21.42 +23.10 +10.29 +10.19(3.33)

C atom +28.45 +30.09 +13.99 +14.47(3.33)

O atom -109.52 -110.14 -76.36 -75.66(3.67)

F atom -389.92 -395.87 -269.10 -269.4(1)

Si atom +82.14 -74.39(-)

S atom -213.70 -191.21(-)

Cl atom -678.62 -588.23(-)

OH radical -211.68 -215.77 -140.83 -139.21(-)

CN radical -92.04 -52.64(-)

NO radical +189.72 +123.16(-)

C2 radical -50.58 -15.25(-)

compared to other more computationally intensive methods. Table 3.4 lists the rel-

ative numbers of electron configurations required compared to those required for an

FCI solution. As can be seen, for all systems, MCCI achieves reasonable results

compared with experiment using just a fraction of the available FCI space.

3.5.1 Summary and Conclusions - Development of Spin-

Orbit Coupling for Stochastic Configuration Interac-

tion Techniques

MCCI has shown promise as a technique for calculating spin-orbit coupling prop-

erties using highly compact wavefunctions subsequent to the development of sup-

porting software as part of this thesis. Reasonable results are obtained compared to

experiment in this first proof-of-concept work although it is clear that the values of
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Table 3.4: Comparison of approximate number of electron configurations generated

between MCCI and FCI

System Basis cmin MCCI SDs FCI SDs Fraction

B cc-pVQZ 0.0005 1.2 x 103 3.9 x 107 3.1 x 10−5

C cc-pVQZ 0.0001 5.4 x 103 5.1 x 108 1.1 x 10−5

O cc-pVQZ 0.0001 1.1 x 104 9.1 x 1010 1.2 x 10−7

F cc-pVQZ 0.0005 3.1 x 103 1.2 x 1012 2.6 x 10−9

Si cc-pVDZ 0.0001 1.9 x 103 8.1 x 108 2.3 x 10−6

S cc-pVDZ 0.0001 3.1 x 103 1.6 x 109 2.0 x 10−6

Cl cc-pVQZ 0.0005 5.2 x 103 2.8 x 1019 1.9 x 10−16

OH cc-pVQZ 0.0005 6.8 x 103 6.6 x 1013 1.0 x 10−10

C2 cc-pVDZ 0.0001 4.3 x 104 1.2 x 1011 3.7 x 10−7

CN cc-pVQZ 0.0005 1.4 x 104 6.8 x 1019 2.1 x 10−16

NO cc-pVQZ 0.0005 1.8 x 104 1.3 x 1022 3.1 x 10−5

spin-orbit coupling constant for the species in this study suffer from the neglect of

two electron terms in the Breit-Pauli Hamiltonian as demonstrated by the excellent

agreement of the results in this work with the one-electron results from SEHF.

As discussed in the theory section, CASSCF and MRCI techniques require the spec-

ification of the important orbitals in order to properly describe the system. This

clearly makes both of these techniques rely heavily on the skill of the user in estab-

lishing the correct active space. Additionally, the active space may be larger than

can be handled computationally. CASSCF, for example, has the restriction of per-

forming FCI in the active space when this may not be desirable. Other techniques

such as RASSCF allow the active space to be further partitioned but this clearly

enhances the problem of setting up the correct space in advance. MCCI avoids

these problems and requires the user to select only a single parameter: a cmin cutoff

value, with no knowledge of the important orbitals. Clearly this is an advantage for

MCCI but there are disadvantages in this approach. CASSCF and MRCI calcula-

tions partition the resulting orbital space into clear sections. This partitioning has

the potential to ease further calculations on the orbitals as it may, for instance, be

possible to identify integrals or derivatives which may be zero in subsequent property

calculations without having to explicitly make those calculations. MCCI does not
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partition the orbital space and so is unable to take advantage of these simplifications

- all derivatives for example would have to be explicitly calculated. Therefore, like

all techniques, MCCI has advantages and disadvantages and these must be weighed

up when using the method.

Future work in this regard must be focussed on adopting some form of inclusion

of two-electron terms, perhaps via effective one electron operators, before more

advanced studies such as singlet-triplet mixing can be reliably attempted.
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Chapter 4

Ring Inversion of Biscalix[4]arene,

Preferential Binding of Transition

Metals at Lower Rim of

Calix[4]arene and Preferential

Binding of Small Guest Molecules

at Upper Rim of Calix[4]arene

4.1 Chapter Abstract

In this chapter, a body of computational work on calixarenes using Density Func-

tional Theory is presented. The Dalgarno group at Heriot Watt University has an

active interest in the synthesis of novel polymetallic clusters using a variety of cal-

ixarene structures. As part of an ongoing collaboration with this group, a range of

computational insights into various properties of these calixarenes has been provided.

Although geometrically more complex than smaller molecules, the electronic struc-

ture of such species turns out to be simpler than expected, despite the presence of

open-shell metals. The metal-free biscalixarene structure is investigated first and in-

volves the elucidation of the ring inversion of one of the calixarene moieties to allow

a favourable conformation for interesting polymetallic cluster formation. This work
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involved a detailed analysis of the ring inversion mechanism, the identification of the

lowest energy pathway and ultimately the energy barrier associated with that path-

way. The second piece of work is an in-depth analysis of the preferential binding of

calix[4]arene (C4) at the lower rim towards 1st row transition metals. In particular,

an investigation was undertaken to determine whether the calixarene had a prefer-

ence for any particular transition metal and whether the oxidation state or spin state

had any effect on any preference displayed. The final piece of work in this section

considers the binding preferences at the upper rim of the calix[4]arene towards small

guest molecules to identify whether the formation of polymetallic clusters made a

difference to the binding of these guests compared to metal-free C4.

4.2 Calixarene Background

Calix[n]arenes [1][2] are macrocyclic oligomers consisting of n phenolic rings con-

nected by methylene bridges to form a cup shaped molecule. An example, p-tert-

butylcalix[4]arene (TBC4), is shown in figure 4.1 in the four possible stable conform-

ers: cone, partial cone, 1,2-alternate and 1,3-alternate with the cone conformation

found to be the most thermodynamically stable (although there is some dependence

on both solvent and the nature of substituents on the phenyl rings [3]). TBC4

will however undergo interconversion between the various different conformations

by rotation of the phenol rings whereby the OH groups pass through the annulus

of the molecule. The history of these fascinating molecules begins with the work

of Zinke who first postulated their existence in 1941 [4]. It was not until the mid

1950s however, that formal validation of Zinke’s predictions about calixarenes was

achieved, through the work of Cornforth et al. [5][6] to gauge the antituberculous

properties of the phenolic-rich calixarene. In particular, Cornforth was able to show

that Zinke’s method of synthesis was producing tetramers. Subsequent research

then saw the discovery of a variety of four membered rings, during attempts to syn-

thesise phenol-based resins, by industrial company Bakelite [7][8]. Synthesis of these

molecules proved challenging however, with the workers having to rely on the use

of complicated protection groups in an attempt to direct and control the reaction.

Despite these advances, the molecules themselves remained relatively obscure until

the development of a one-pot synthesis involving condensation oligomerisation of
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phenols in the presence of formaldehyde and a suitably strong base such as KOH

[9]. This ease of synthesis resulted in the field of calixarenes gaining much promi-

nence in the literature with an explosion of activity including substitution at the

para position and the methylene bridges in addition to changes at the tetraphenolic

pocket [3][10][11]. Work by Carroll et al. [12] showed that a biscalixarene could be

formed by displacing one of the protons at a methylene bridge by another calixarene

moiety using a strong lithiated base which exploited the acidic αα position.

Several attempts have been made to ascertain the energies associated with full ring

inversion of calixarenes. These attempts primarily consist of Molecular Mechanics

techniques to determine overall barrier heights [13][14][15][16] although a little work

has been done using DFT [17][18] to determine the relative stabilities of each of

the four conformations. It is interesting to note however that no in-depth analysis

has been performed on the mechanism involved in full inversion of calixarenes and

no studies have been performed on the biscalixarene mentioned earlier. This is

addressed in this work.

As can be seen from figure 4.1, the cone conformation possesses a lower rim con-

structed as a tetraphenolic pocket which forms a ring of four hydrogen bonds. These

hydrogen bonds pull the lower rim atoms together with consequent opening up of the

upper rim to produce an overall cup-like shape. This cone conformation opened up

the possibility of forming polymetallic clusters using TBC4 and several successful at-

tempts were made to bind metal atoms to the tetraphenolic pocket using transition

metal and/or lanthanide salts [19][20][21][22][23][24]. These polymetallic clusters

were subsequently shown to display a range of properties including refrigeration and

magnetism and hence have potential for use in applications such as single molecule

magnets, data storage, metal organic frameworks and refrigerants. Two examples of

polymetallic clusters are shown in figures 4.2 and 4.3. The Fe(III) structure shown

in figure 4.2 is the first example of a structure of this type, containing as it does both

a transition metal and a lanthanide (Gd) and provided a synthetic route towards the

formation of 3d-4f bound clusters. The Cu(II) structure on the other hand, shown

in figure 4.3, demonstrates how flexible the structures of polymetallic clusters in-

volving calixarenes can be: in this case an enneanuclear tricapped trigonal prism

Cu(III) centre. Both structures demonstrate important capabilities in the search

for techniques to better direct and control cluster formation. It is expected that the
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ability to exert fine control over the geometric structure of the cluster will open up

the possibility of fine tuning of cluster properties such as magnetism.

The fact that metals have been shown to bind to the lower rim also raises the question

of whether calixarenes can find application as scavenging agents for contaminated

land and water. Studies show a number of heavy metals as well as metals from groups

I and II of the periodic table can indeed be trapped by calixarenes [18][22][25][26][27]

suggesting potential for use in environmental chemistry.

From the structure of the calixarenes shown in figure 4.1, one might also consider

that calixarenes can be used for host-guest chemistry and indeed this is the case.

Early attempts at gas storage using calixarenes [28] employed bridging ligands across

the upper rim of TBC4 to enforce a cone conformation and facilitate capture of

small organic solvents such as alcohols, esters, ketones, benzene and MeCN. As

with many early attempts at gas storage using such structures, fracturing of the

substrate was commonplace. Removal of the bridging ligands from the upper rim

was found to prevent fracturing when storing vinyl bromides [29][30] in a crystal of

TBC4. This was thought to be as a result of a process called Dynamic Transport

which occurs when one or more phenyl rings from the calixarene rotates out of

position, unhindered now that the upper rim bridging ligand has been removed. The

gas, therefore, is not stored statically in one calixarene molecule but moves from

calixarene to calixarene in a dynamic manner. Other groups however found that

when storage increased, structural changes re-occurred, evidenced using techniques

such as XRD and 13C NMR [31][32][33]. Of course, whilst gas storage is an important

concept, it is equally important for the stored gases to be released in a controlled

manner in order to recycle the material. Such reversible storage was demonstrated

for TBC4 for a range of gases such as Xe, NO, air, SO2 and CH4 [34][35][36][37].

The ability to trap guest molecules at the upper rim has seen calixarenes used in a

variety of practical uses such as transport agents for toxic or unstable guest molecules

[38] and gas phase optical detectors [39]. Very little quantitative analysis has been

performed into the nature of binding of guest molecules. Some molecular dynamics

work has estimated the binding energies of small molecules [40][41] although these

seem to underestimate bindings and crucially they incorrectly predict that H2 will

not bind to the upper rim of calixarenes. From some of these results however, it is

apparent that tethering the lower rim of calixarenes to a metal substrate such as gold
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strengthens binding energies of guest molecules at the upper rim by around 1.58 kcal

mol−1 [42]. More accurate methods were used by Hontama et al. [43] who applied

MP2/aug-cc-pVQZ to investigate the strength of binding of H2O to the upper rim of

TBC4. The results showed a calculated binding energy of -8.94 kcal mol−1 against

the experimental value of -8.98 kcal mol−1. Kaneko et al. [44] followed this work up

by using the MP2/CBS on TBC4 and calculated binding energies for NH3 as -11.09

kcal mol−1. This compared with experimental values of -8.00 kcal mol−1 for NH3.

For H2O, they calculated a binding energy of -8.10 kcal mol−1. Finally, Ozbek et

al. [45] discovered that doping calixarenes with iron led to a substantially increased

uptake of CO gas.

Coletta et al. [46] developed the theme of biscalixarenes by changing the tethering

between the two C4 moieties. A series of polymetallic clusters were created by

using alkyl chain (from propyl up to octyl) tethering between the methylene bridges

of the C4 entities rather than connecting them directly as described earlier in this

work. From these biscalixarenes, several polymetallic clusters were created involving

3d, and combined 3d/4f metal ions such as MnIII2 /MnII2 and MnIII4 /GdIII4 . Further

control over 3d/4f metal ion cluster formation was demonstrated [47] by alteration of

the stoichiometric ratio of MnxLny resulting in different polymetallic structures. In

the meantime, research into the use of calixarenes as guest capture devices, sensors

and detectors continues apace and a few recent examples are briefly mentioned here.

C4 derivatives are currently being used as sensors for detection of silver ions in the

environment [48], fluoride ions [49], arsenic [50], NADH [51] and dopamine [52].

4.3 Biscalix[4]arene Ring Inversion Mechanism

The relevant published paper covering the work described in this section is provided

in reference [53]. Following the work of Carroll et al. in discovering the biscalixarene

molecule [12], a DFT analysis is now presented of this important addition to the

family of calixarenes. Of particular interest is the mechanism by which one of the

calixarene moieties undergoes full ring inversion to produce a conformation in which

the two calixarenes adopt a position which is syn to each other from the more

thermodynamically stable anti arrangement as shown in figures 4.4 and 4.5. This

conformational change leads to these biscalixarenes forming polymetallic clusters
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Figure 4.1: TBC4 and stable conformations

Figure 4.2: Fe3+Gd3+ polymetallic cluster based on C4. H atoms hidden for clarity

174



Figure 4.3: Cu2+ polymetallic cluster based on C4. H atoms hidden for clarity

OHOH HOOH

OH OHOH HO

Figure 4.4: Biscalix[4]arene anti conformation

involving octadentate ligation via the two tetraphenolic pockets. As can be seen

in figure 4.4, whilst the anti arrangement would not facilitate clustering (possibly

preferring to form chains), the syn arrangement in figure 4.5 would allow for such a

construction. All key intermediate species are identified along with transition state

structures, relative stabilities of the various stable conformations and identification

of the lowest energy pathway.

4.3.1 Computational Details - Biscalixarene Ring Inversion

All calculations for the work in this subsection were performed using Gaussian 09

D01 [54] Geometry optimisations and all thermal corrections were performed using

B3LYP/6-31G** [55][56]. All energy values are reported as Gibbs energies taken

from subsequent B3LYP/6-311G** single point calculations at these optimised ge-
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Figure 4.5: Biscalix[4]arene syn conformation

ometries at 298.15K and are zero-point corrected. All thermodynamic quantities

are calculated using standard statistical thermodynamics as described earlier in this

thesis. Empirical dispersion GD3BJ [57] was included with all calculations where

supported by the method. Benchmark calculations were performed using AM1 [58],

SVWN [59][60][61] and BP86 [62][63] in order to compare the performance of semi

empirical, LSDA, GGA and hybrid GGA methods in modelling parts of the po-

tential energy surface. Analysis of analytical Hessian computations confirmed the

nature of critical points as either transition states (with one imaginary eigenvalue)

or minima (all positive eigenvalues). Intrinsic reaction co-ordinate (IRC) methods

were attempted in order to link transition states to the corresponding minima either

side of the transition state but were unsuccessful as a result of flat potential energies

around the transition state. An alternative strategy was therefore necessary and is

described as follows: a small displacement was induced in both directions along

the transition state reaction co-ordinate and the geometry was optimised starting

from these displacements to confirm that the subsequent minima found were as

expected. Finally, the need to account for long range bulk solvent on the calcula-

tions were checked using B3LYP/6-31G** with the PCM (with and without SMD)

and CPCM solvent models [64][65][66][67] using both DMF and methanol solvents

(solvents routinely used in the synthesis of biscalixarenes). These solvation mod-

els allow the inclusion of bulk solvent effects without having to perform explicit

solvation calculations [68]. The anti -biscal structure shown in figure 4.4 was used
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as the starting point for geometry optimisation with all p-tert-Butyl substituents

replaced by H atoms for computational ease. All other structures were identified

by performing potential energy scans via rotation of individual phenyl rings in a

stepwise manner, previous studies having ruled out a concerted mechanism as being

energetically unfavourable [16].

4.3.2 Results and Discussion - Biscalixarene Ring Inversion

Because of the size of the bicalixarene molecule, comparison of the optimised anti

structure using semi-empirical (AM1), LSDA (SVWN), GGA (BP86) and hybrid

GGA (B3LYP) methods was performed. In the absence of a biscalixarene crystal

structure, TBC4 crystal data [69] was used as a guide to suitability of these methods

and displayed measurements are averaged over all similar bonds and angles. Table

4.1 shows the results. AM1 calculations resulted in a highly distorted geometry of

the entire molecule and the method is therefore not considered further.

Table 4.1: Biscal lower rim geometries predictions

Property Crystal SVWN BP86 B3LYP

phenolic C-O distance (Å) 1.3854 1.3666 1.3905 1.3819

O-O cis distance (Å) 2.6704 2.4850 2.6192 2.6732

O-O distal distance (Å) 3.7766 3.5144 3.7041 3.7798

phenolic C-C distance (Å) 3.7203 3.6359 3.7307 3.7389

phenolic C-C distal distance (Å) 5.2613 5.1412 5.2764 5.2876

tetraphenolic pocket geometry sq. planar. sq. planar sq. planar sq.plan.

As can be seen, SVWN shows significant overbinding as evidenced by the shorter

bond lengths in all areas of the lower rim. This is to be expected from a LSDA

method. BP86 shows significant improvement with errors of 1.9% in the O-O mea-

surements and 0.3% in all other bond lengths. B3LYP shows the closest match to

the crystal structure with deviations of just 0.1% on the O-O measurements and un-

der 0.5% elsewhere. The choice of B3LYP for the remainder of this work is therefore

justified.

In order to describe the ring inversion process, figure 4.6 is considered. Of interest is

the lowest pathway to full inversion of one calixarene to obtain the syn arrangement.

177



OH
OH

HO
OH

R
R = OH

OH
HO

OH

Phenyl 
Ring A

Phenyl 
Ring B

Phenyl 
Ring C

Phenyl 
Ring D

Figure 4.6: Top view of biscalix[4]arene looking into upper rim.

Only the inversion of a single calixarene is required. Because several conformers of

calixarene have been identified as shown in figure 4.1, the process of inversion is

likely to be stepwise and not concerted. Calculations as part of this work confirm

that the barrier involved in inverting more than one phenyl ring at a time is too

large to be practical at room temperature. Considering then, a stepwise mechanism,

there are four phenyl rings to be inverted: one after another. This gives 4! possible

pathways to full inversion, each with at least 4 energy barriers (one for each phenyl

ring). That leaves 24 pathways and a minimum of 96 transition states to capture.

Figure 4.6 shows symmetry elements however, which can reduce the computational

effort. Phenyl rings A and B are symmetrically equivalent to phenyl rings D and

C respectively. It is therefore only necessary to consider inversion of phenyl rings

A or B as the first phenyl ring to invert. Additionally, matched pathways result

in duplication which can also be ignored from the calculations. For example, if

phenyl rings A and B are already inverted, the subsequent inversion of phenyl ring

C doesn’t depend on which order A and B were inverted. One of these pathways

can be ignored. By identifying and eliminating such pathways, the computational

effort is seen to be dramatically reduced.

The convention for naming structures in this work is now described. The anti

structure is called Start and the syn structure called End. The suffixes TS and

prod indicates the structure is a transition state or an intermediate respectively.

Intermediate and transition states are named after the route by which they were

obtained. For example, the transition state found after inverting phenyl ring B

and attempting to invert phenyl ring A is called BA TS. After overcoming this
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transition state, the intermediate BA prod is formed. If in the process of fully

inverting phenyl ring A a second transition state is found then it is named BA 2 TS.

There are places where pathways cross and in this case the lettering may change.

This is done for overall convenience. For example, after BA 2 TS, full inversion

of phenyl ring A results in AB 2 prod instead of BA 2 prod. The convention

for naming the overall pathway itself follows the order of phenyl ring inversion.

Therefore pathway ABDC indicates that the order of phenyl ring inversion was

A first, followed by B then D and finally C. All mechanistic pathways are shown

in figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19 and

4.20. Each structure is labelled following the convention described above and all

calculated structures can be found in figures 4.21, 4.22 and 4.23.

With a barrier height of 19.31 kcal mol−1, figure 4.7 shows the lowest energy pathway,

BADC. The structural changes, including all transition states and intermediates,

along this lowest energy pathway are shown in figure 4.21 and a discussion of this

mechanism is now considered. The first step is to invert phenyl ring B of the anti

conformer. The resultant barrier height of 15.84 kcal mol−1 to the transition state

B TS consists of the breaking of two hydrogen bonds and an increase in angle

strain on the methylene bridges on either side of phenyl ring B (123.5◦ and 120.9◦)

with the latter angle strain the dominant contributor to the barrier height. Note

that the breaking of the hydrogen bonds cannot be computationally separated from

the angle strain increase and both steps present as a single transition state. This

is the single highest energy barrier (SHEB) in the pathway. Partial relief of the

angle strain to 117.8◦ and 116.3◦, results in B prod, a structure which has full

inversion of phenyl ring B and is 6.93 kcal mol−1 above the anti structure. The next

phenyl ring to be inverted is ring A. This results in hydrogen bond breaking between

phenolic rings A and D and a combined increase in angle strain on the surrounding

methylene bridges resulting in BA TS a barrier of 9.14 kcal mol−1 above B prod.

At 119.8◦ and 118.1◦, this angle strain is less than that experienced in the B TS

transition state. Further slight relief in the angle strain to 119.3◦ and 115.7◦ sees

a stabilisation of 1.48 kcal mol−1 at BA prod. The transition state BA 2 TS

is a result of the steric hindrance caused by a deviation of the angle between the

calixarene moieties from 180◦ for the anti arrangement to 163.2◦ which increases

steric hindrance. This deviation results from attempts to reduce the angle strain
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around the rotating phenyl ring A. These two competing effects almost balance each

other out and the resulting transition state is only 2.84 kcal mol−1 above BA prod.

Subsequent recovery of the dihedral angle to 180◦ plus formation of a hydrogen

bond between phenyl rings A and B results in a drop in energy of 4.00 kcal mol−1 to

AB 2 prod. The stabilisation is limited due to an increase in angle strain at the

methylene bridge between phenyl rings B and C. Note that AB and BA pathways are

symmetry equivalent and AB 2 prod is chosen as the name for this intermediate.

The third phenyl ring to invert in this mechanism is ring D. A number of things

happen at once here. Angle strain between phenyl rings D and A builds up to

117.6◦ with further angle strain of 118.7◦ appearing between phenyl rings B and C,

the dihedral angle between the calixarenes becomes severely deformed to 145.1◦ and

the hydrogen bond between phenyl ring D and C is broken. An increase in energy

of 5.55 kcal mol−1 to ABD TS is observed. Further rotation of phenyl ring D sees

some recovery of both the angle strain between A and D to 115.1◦ and the dihedral

angle between the calixarenes although there is an increase in angle strain between

D and C to 119.2◦. The net result of these changes sees a stabilisation of 5.11 kcal

mol−1 to ABD prod. Here the inverting calixarene has now rotated to about 110◦

with respect to the second calixarene. An increase in angle strain of 121.7◦ between

rings C and D is then observed as the system moves to ABD 2 TS, an increase in

energy of 2.07 kcal mol−1 from AB 2 prod. Following this, there is relief of the

angle strain between rings C and D and also between rings B and C. Additionally,

a hydrogen bond between rings D and A is formed. This is however, matched by

an increase in angle strain at the bridge to the second calixarene of 117.0◦. The

net result is a stabilisation of 6.25 kcal mol−1 to ABD 2 prod. Finally, ring C is

inverted. Although the angle strain at the bridge is relieved to 111.6◦, very large

angle strain develops between rings B and C of 121.6◦ and between rings C and D

of 123.6◦. This causes a large energy increase of 9.62 kcal mol−1 to ABDC TS

from ABD 2 prod. This transition state sits at 19.31 kcal mol−1 above the anti

structure and represents the overall energy barrier for the pathway. Once ring C has

fully inverted, the angle strain around ring C is relieved, all four hydrogen bonds

are now reformed and a large stabilisation of energy to the required syn structure

is obtained. In the syn structure, the two tetraphenolic pockets form a clam-like

geometry which is ideal for forming polymetallic clusters.
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Figure 4.7: Biscalix[4]arene ring inversion: lowest Energy BADC Pathway. All

energies are in kcal mol−1 relative to the Start structure. (a)B3LYP/6-31G**

(black). (b)B3LYP/6-311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dis-

persion (blue).
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Figure 4.8: Biscalix[4]arene ring inversion: ACDB Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.9: Biscalix[4]arene ring inversion: BDCA Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.10: Biscalix[4]arene ring inversion: BDAC Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.11: Biscalix[4]arene ring inversion: ABCD 1 Pathway. All energies

are in kcal mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black).

(b)B3LYP/6-311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion

(blue).
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Figure 4.12: Biscalix[4]arene ring inversion: ABCD 2 Pathway. All energies

are in kcal mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black).

(b)B3LYP/6-311G* (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion

(blue).
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Figure 4.13: Biscalix[4]arene ring inversion: ABDC Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.14: Biscalix[4]arene ring inversion: ACBD Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.15: Biscalix[4]arene ring inversion: ADBC Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.16: Biscalix[4]arene ring inversion: ADCB Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.17: Biscalix[4]arene ring inversion: BACD Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.18: Biscalix[4]arene ring inversion: BCAD Pathway. All energies are in kcal

mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black). (b)B3LYP/6-

311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion (blue).
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Figure 4.19: Biscalix[4]arene ring inversion: BCDA 1 Pathway. All energies

are in kcal mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black).

(b)B3LYP/6-311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion

(blue).
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Figure 4.20: Biscalix[4]arene ring inversion: BCDA 2 Pathway. All energies

are in kcal mol−1 relative to the Start structure. (a)B3LYP/6-31G** (black).

(b)B3LYP/6-311G** (red). (c)B3LYP/6-311G**/GD3BJ Empirical Dispersion

(blue).
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Figure 4.21: Biscalix[4]arene ring inversion: structures involved in the lowest energy

BADC pathway
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Figure 4.22: All structures involved in full inversion of biscalix[4]arene
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Figure 4.23: All structures involved in full inversion of biscalix[4]arene (contd.)
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Table 4.2 shows the SHEB and the energy barriers for all of the mechanistic pathways

discovered in this work. For most pathways the SHEB is the rotation of the first

phenyl ring. The exceptions are pathways BDAC, BDCA and BCDA Path 2

where the rotation of ring D is the SHEB. These three exceptions are explained as

follows: After rotating ring B, the next most difficult ring to rotate is ring D because

two hydrogen bonds need to be broken, angle strain needs to be overcome and steric

effects at the bridge cause issues due to the second calixarene. It is therefore to be

expected that ring D is the SHEB for these pathways. The problem with pathway

BCDA Path 2 stems from the fact that ring D attempts to invert before ring C has

completely rotated. This essentially mimics the situation where more than one ring

attempts to rotate in a concerted fashion. Under these circumstances, the relevant

structure BCD 2 TS shows significant angle strain of 119.1◦ at the bridge but a

more serious problem appears at the methylene moiety linking rings C and D where

angle strain of 136.9◦ occurs. This leads to the very large barrier to this transition

state. It is this very large level of angle strain which which occurs when more than

one ring attempts to rotate at the same time, which provides some proof that the

full ring inversion must be a step-wise process rather than concerted mechanism.

Relative energies of the major stable calixarene conformations are shown in table

4.3 in addition to the lowest barrier heights to each of them as the quality of the

basis set is improved and empirical dispersion is added. Note that biscalix[4]arene

has reduced symmetry in comparison to C4 because of the replacement of one of the

methylene H atoms with a second C4 moiety and therefore there are two different

partial cone conformations (paco), three different 1,2-alternate possibilities and two

1,3-alternate possibilities.

As can be seen, the inclusion of a dispersion correction has at least the same effect as

increasing the basis set and in several cases is significantly more important, lowering

the energy in all cases. This is to be expected from systems for which non-covalent

bonding is a vital part of the structure. The two paco structures, A prod with

energy 8.70 kcal mol−1 and barrier height 20.78 kcal mol−1 and B prod with energy

6.93 kcal mol−1 and barrier height 15.84 kcal mol−1, are reached by the breaking

of two hydrogen bonds and by overcoming some angle strain around the methylene

bridges neighbouring the inverting phenyl moiety, but the rotation of phenyl ring

A is more sterically hindered by the second calixarene than phenyl ring B resulting
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Table 4.2: Single Highest Energy Barrier (SHEB) and energy barriers of all mech-

anistic pathways in the ring inversion of biscalix[4]arene. All calculations use

B3LYP/6-311G** and GD3BJ empirical dispersion. All energies are kcal mol−1

and relative to anti biscal Start structure.

Pathway Inversion Barrier SHEB SHEB Barrier

BADC 19.31 Inversion of ring B 15.84

BCDA Path 1 20.76 Inversion of ring B 15.84

ABDC 20.78 Inversion of ring A 20.78

ADBC 20.78 Inversion of ring A 20.78

ADCB 20.78 Inversion of ring A 20.78

ACDB 25.26 Inversion of ring A 20.78

BACD 25.50 Inversion of ring B 15.84

BCAD 21.58 Inversion of ring B 15.84

ABCD Path 1 21.58 Inversion of ring A 20.78

ABCD Path 2 21.58 Inversion of ring A 20.78

ACBD 21.72 Inversion of ring A 20.78

BDAC 30.63 Inversion of ring D 23.70

BDCA 30.63 Inversion of ring D 23.70

BCDA Path 2 50.30 Inversion of ring D 39.11
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Table 4.3: Calculated energies of major stable biscalix[4]arene conformers: paco,

1,2-alternate, 1,3-alternate. All calculations use B3LYP and energies are kcal mol−1

and relative to anti biscal Start structure. Dispersion is GD3BJ. Barrier height

uses 6-311G** and dispersion.

Structure 6-31G** 6-311G** 6-311G**/Disp Barrier

anti biscal (Start) 0.00 0.00 0.00 0.00

paco 1 (A prod) 10.96 10.33 8.70 20.78

paco 2 (B prod) 8.49 7.87 6.93 15.84

1,2-alternate 1 (AB 2 prod) 15.83 15.06 13.43 20.78

1,2-alternate 2 (AD 3 prod) 13.84 13.02 12.00 20.78

1,2-alternate 3 (BC 3 prod) 10.66 9.82 9.23 15.84

1,3-alternate 1 (AC prod) 16.07 14.87 12.62 21.72

1,3-alternate 2 (BD prod) 16.03 14.83 12.58 30.63

syn biscal (End) 3.46 3.98 3.81 19.31

in the higher barrier towards formation of A prod and also the greater relative

stability of B prod. It is therefore predicted that the paco variant B prod will be

more prevalent on both thermodynamic and kinetic grounds.

The three 1,2-alternate structures are BC 3 prod with energy 9.23 kcal mol−1 and

barrier height 15.84 kcal mol−1, AD 3 prod with energy 12.00 kcal mol−1 and

barrier height 20.78 kcal mol−1 and AB 2 prod with energy 13.43 kcal mol−1 and

barrier height 20.78 kcal mol−1. BC 3 prod is expected to be more stable because

the phenyl ring inversions are far away from the bridge to the second calixarene. This

also explains the lower barrier height. AD 3 prod inverts two phenyl rings at the

bridge to the second calixarene. In theory that would give the least stable structure

but AB 2 prod results in the hydrogen atoms of one calixarene encroaching on

second calixarene. AD 3 prod avoids this in the final structure by rotating both

phenyl rings A and D in a symmetrical manner and thus AB 2 prod is the least

stable conformer. It is predicted that BC 3 prod will be the most prevalent form

of 1,2-alternate conformer on both thermodynamic and kinetic grounds.

The two 1,3-alternate structures are AC prod with energy 12.62 kcal mol−1 and

barrier height 21.72 kcal mol−1 and BD prod with energy 12.58 kcal mol−1 and
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barrier height 30.63 kcal mol−1. By symmetry, both of these intermediates are

matched paths of each other and therefore from a thermodynamic point of view

expected to be of the same energy. AC prod does however show a much lower

barrier height because the second inversion is of the phenyl ring furthest from the

bridge to the second calixarene and thus experiences less steric hindrance compared

to BD prod which inverts phenyl ring D which is right next to the bridge. It is

predicted therefore that AC prod will be the most prevalent form of 1,3-alternate

conformer on kinetic grounds.

The syn structure is the end point of the full ring inversion and adopts a double

cone conformation. From a thermodynamic stability point of view, it is only 3.81

kcal mol−1 above the starting anti structure.

Finally, the effect of long range solvent effects on the inversion mechanism is con-

sidered. To do this, two transitions are modelled: Start→A TS→A prod and

ABD 2 prod→ABDC TS→End, both of which are part of the ADBC pathway

shown in figure 4.15. To mimic the synthetic environment for calixarene synthesis,

the commonly used solvents methanol and DMF are tested in these calculations.

The results are shown in tables 4.4 and 4.5. Gas phase calculations are provided for

comparison. As can be seen, for methanol, the solvent results show a stabilisation

of most species of between 0.75 to 1.19 kcal mol−1 compared to the gas phase re-

sults. A similar story emerges from the DMF calculations which shows very similar

results to methanol. CPCM and PCM results show relative invariance between the

two solvents whilst PCM/SMD shows much more variation. Nevertheless, the effect

on all structures is relatively minimal compared to the gas phase predictions. It is

therefore considered that long range bulk solvent effects are relatively minor for the

ring inversion mechanism and they are therefore not considered further.

4.3.3 Summary and Conclusions - Biscalixarene Ring Inver-

sion

In summary, the minimum global energy pathway is predicted to be BADC with

an energy barrier of 19.31 kcal mol−1. The SHEB is 15.84 kcal mol−1 corresponding

to inversion of the phenyl ring B. Most other pathways are energetically achievable

however and all show a range of low barriers separating intermediates suggesting
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Table 4.4: Comparative energies from methanol solvation applied to two transitions

from pathway ADBC of biscalix[4]arene ring inversion. All calculations use B3LYP

and energies are kcal mol−1 and relative to anti biscal Start structure. All energies

use B3LYP/6-31G** and GD3BJ dispersion.

Structure Gas Phase PCM PCM/SMD CPCM

Start 0.00 0.00 0.00 0.00

A TS 23.22 23.52 23.08 23.19

A prod 10.96 10.76 10.49 10.56

ABD 2 prod 11.77 11.46 10.98 11.05

ABDC TS 20.69 19.90 18.68 19.50

End 3.46 2.98 3.20 2.47

Table 4.5: Comparative energies from DMF solvation applied to two transitions from

pathway ADBC of biscalix[4]arene ring inversion. All calculations use B3LYP and

energies are kcal mol−1 and relative to anti biscal Start structure. All energies use

B3LYP/6-31G** and GD3BJ dispersion.

Structure Gas Phase PCM PCM/SMD CPCM

Start 0.00 0.00 0.00 0.00

A TS 23.22 23.48 23.39 23.19

A prod 10.96 10.73 10.81 10.55

ABD 2 prod 11.77 11.41 10.99 11.04

ABDC TS 20.69 19.85 19.48 19.49

End 3.46 2.91 3.28 2.46
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rapid interconversion between the various conformations. The syn conformation is

predicted to be just 3.81 kcal mol−1 above the anti conformation and thus expected

to be thermodynamically stable and kinetically available enough to be a suitable

arrangement for polymetallic cluster formation. Other major stable conformations

were found corresponding to paco, 1,2-alternate and 1,3-alternate and the relative

stabilities of each species were elucidated. Energetic barriers to access these confor-

mations was also found. B prod was predicted to be the most thermodynamically

and kinetically favoured paco conformation, BC 3 prod was predicted to be the

most prevalent 1,2-alternate conformation on kinetic and thermodynamic grounds

and AC prod the most prevalent 1,3-alternate structure on kinetic grounds.

Because crystallisation of these species requires stable species, the predicted rapid in-

terconversion between the various conformers is likely to cause problems for synthetic

chemists attempting to produce polymetallic cluster crystals using biscalix[4]arene.

It is therefore recommended that such crystallisations are attempted in conditions

which mitigate these rapid interconversions such as using cooler temperatures or by

augmenting the bis[4]calixarene structure with substituents which force the struc-

ture into the required conformation and resist interconversion altogether. Variable

temperature NMR might indicate the temperature required to prevent intercon-

version for example. Variation of the amount of base used to deprotonate the

tetraphenolic pockets may also aid in crystallisation efforts for clusters involving

non-syn conformations of the biscalixarene. For example, stoichiometric ratios of

8:1 base:biscalixarene would be required to deprotonate all eight protons of the bis-

calixarene forcing the syn structure, whereas 7:1 base:biscalixarene might promote

a paco arrangement on one of the calixarene moieties. In this way, the base can be

used to effect control over the polymetallic cluster growth.

Finally, it was found that long range bulk solvent effects did not unduly influence

the mechanism of biscalixarene ring inversion.

4.4 Calix[4]arene Lower Rim Binding

The relevant published paper covering the work described in this section is provided

in reference [70]. As described earlier, the known ability for calixarenes to bind to
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heavy metals and metals from Groups I and II of the periodic table suggest that

calixarenes could find practical use in environmental applications for the remediation

of metal-polluted land or water, in addition to having potential for data storage. To

that extent, a detailed study is provided, within this section, of the preferential

binding of calixarenes to the first row of transition metals to determine whether or

not a preference for one type of metal over another exists and whether the oxidation

and spin states of the metals make a difference. Several oxidation and spin states

of each metal are included. Predictions are also made for the binding preferences

for transition metals which have not yet been successfully bound to calixarenes

synthetically.

4.4.1 Computational Details - Lower Rim Binding

All calculations in this subsection were performed using Gaussian 09 D01 [54]. Ge-

ometry optimisations were performed using 6-31G** basis set in conjunction with

DFT functionals BLYP [62][71], B3LYP [55][56][71] and B97D3 [57][72] for non metal

atoms. SDD [73] was used for all metal atoms with 10 electrons included as core.

All energy values are reported as Gibbs energies taken from subsequent B3LYP/6-

311G** single point calculations at these optimised geometries at 298.15K and are

zero-point corrected. All thermodynamic quantities are calculated using standard

statistical thermodynamics [74]. Empirical dispersion GD3BJ [57] was included with

all calculations with the exception of B97D3 which already includes this correction.

After geometry optimisation was performed on each compound, wavefunction stabil-

ity tests [75][76] were carried out. In the presence of instabilities, a new more stable

wavefunction was found and used to re-optimise the structure until no further in-

stabilities were uncovered. Analysis of analytical Hessian computations confirmed

the nature of critical points as minima (all positive eigenvalues). No symmetry

constraints were applied to the calculations.

Binding energies were calculated using the model approach shown in figure 4.24 and

equation 4.1, where EC4 is the energy of the geometry optimised metal-free tetra-

anionic calixarene ligand. Metals atoms were placed in the centre of the tetraphe-

nolic pocket at the lower rim of the calixarene. For metals such as Mn and Fe,

which prefer octahedral or square pyramidal co-ordination spheres respectively, wa-
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Figure 4.24: Binding energy calculation process for the binding of transition metals

to the lower rim of calix[4]arene.

ter molecules were bound in axial positions to mimic the alcohol solvent molecules

which normally occupy those positions in the crystal structures. For Mn, both ax-

ial positions were occupied with water whilst for Fe, just one water molecule was

bound underneath the metal. Tests were carried out on Mn3+ and Fe3+ and binding

energies compared with the situation where no water molecules were used. It was

found that the presence of water molecules added just 1-3 kcal mol−1 to the binding

energies and thus all metals were used in four-coordinate square planar arrangement

for computational ease.

Ebind = Ecomplex − Ecation − EC4 (4.1)

DFT is essentially a single reference method with some recovery of dynamic cor-

relation. The technique is therefore ill-suited to systems which show too much

multi-reference character. To test the efficacy of DFT for systems such as the cal-

ixarenes in this study, which are prone to be multi-reference in nature due to the

presence of transition metals, Truhlar’s multi-reference B1 test has been employed

[77]. Using figure 4.24, a value B1 is calculated as shown in equation 4.2 where

BELY P is the binding energy of the geometry optimised complex at the BLYP/6-

31G** level, BEB1LY P//BLY P is the B1LYP/6-31G** single point binding energy at

the BLYP/6-31G** geometries and n is the number of bonds to be broken in order

to remove the metal from the calixarene (in this work, n = 4). The value of B1 has

units of kcal mol−1 and gives a numerical feel for the multi-reference nature of the

system. Truhlar argues that a value of much greater than 10 kcal mol−1 indicates a

multi-reference system for which the use of hybrid DFT functionals may not be suit-

able. The method is justified as follows: It is known that DFT recovers some static

198



correlation via the exchange functional and dynamic correlation via the correlation

functional [55][78][79]. It is also known that Hartree Fock is very poor at describing

multi-reference systems and that as systems display a greater multi-reference na-

ture, static correlation becomes more important as near degeneracy effects increase.

A multi-reference system would therefore likely show large differences in binding

energy depending on the amount of exact HF exchange included. Truhlar found

that pure DFT functionals such as BLYP (containing 0% HF exchange) performed

better with multi-reference systems whilst hybrid functionals such as B1LYP (con-

taining 28% HF exchange) performed worse with the same system. The B1 test is

therefore comparing the difference in binding energies per bond broken, calculated

by BLYP and B1LYP, and making a judgment that significant differences between

them indicates a multi-reference system. BLYP is considered relatively invariant to

the multi-reference nature of the system whereas B1LYP tends to drift. For values

much greater than 10 kcal mol−1, it would be considered better to use pure DFT

functionals. By way of an example, the B1 test, using the cc-pVDZ basis set, pre-

dicts a value of around 98 kcal mol−1 for the ScNi metal dimer discussed earlier in

this work. A closely related multi-reference test is the Aλ test [80] which uses DFT

functionals with differing levels of exact HF exchange, showing that this type of test

can provide a reasonable indication of the multi-reference nature of systems.

B1 = (BEBLY P −BEB1LY P//BLY P )/n (4.2)

Solvation was performed using the CPCM solvent model [66][67] with water solvent

at the B3LYP/6-311G** level with GD3BJ empirical dispersion. All calculations

were checked for spin contamination [81][82][83][84][85]. The tetra-anionic metal-

free calixarene is modelled as a -4 charged anion. Once solvation is included in

the calculations, the electrons are all bound to the ligand as shown by the charged

ligand having a lower energy than the closed shell neutral version. For gas phase

calculations, the anion appears in every calculation and therefore the net result of

analysing the relative binding energy differences between metals sees any error in

this regard cancelled out. Despite modelling anionic species, diffuse functions were

found to make no overall difference to binding calculations and for computational

ease were not used.
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Spin density calculations were performed using an isovalue of 0.002 on all complexes.

Finally, NBO 3.0 calculations were performed at the B3LYP/6-311++G** level with

GD3BJ empirical dispersion.

NBO (Natural Bond Orbital) calculations analyse the wavefunction in terms of lo-

calised bonds involving electron pairs in order to provide population analysis and aid

in the analysis of the nature of bonding between particular atoms. It is integrated

seamlessly into the Gaussian package, taking, as input, a keyword in the Gaussian

input file, the one electron density matrix in the basis of atomic orbitals, the atomic

orbital overlap matrix, the symmetry and location of each atomic orbital and the

nuclear charge of each atom. The output from this program is a text file contain-

ing details or natural populations, natural bond orbitals and analysis of localised

molecular orbitals of the wavefunction.

4.4.2 Results and Discussion - Lower Rim Binding

B1 test results for each bound metal are shown in table 4.6. In almost all cases,

the values are below the 10 kcal mol−1 mark with only the Cr4+ singlet complex

exceeding this value by 1.13 kcal mol−1. This shall be borne in mind later when

considering the binding energies, however it seems reasonable on the basis of these

results to use DFT functionals such as B3LYP for such systems given that most

results are under 5 kcal mol−1.

In order to determine the best functional for these systems, calculations are per-

formed on a selected range of metal-bound calixarenes where known crystal struc-

tures are available for comparison. The performance of BLYP, B3LYP and B97D3

are compared with respect to predicted optimised geometries and compared to ex-

periment. Results are shown in table 4.7. It should be borne in mind that these

calculations can never exactly match the crystal structure, due to the nature of

the structural approximations used. Nevertheless, good agreement is found for all

geometric properties for all functionals compared to the crystal data. The aver-

age errors across all geometric calculations for the chosen functionals are 1.91% for

BLYP, 2.52% for B3LYP and 2.18% for B97D3 and all three functionals appear to

be subsequently justified for use in this work.

For the purposes of this work, no assumption was made regarding the most likely
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Table 4.6: Results of B1 diagnostic tests on all metal-bound C4 complexes. All

energies are magnitudes in kcal mol−1 and are shown per bond broken, where n=4

in all cases.

Metal Spin B1 Metal Spin B1

Sc3+ singlet 0.76 Mn4+ quartet 6.43

Ti2+ triplet 0.05 doublet 9.91

singlet 1.42 Fe2+ quintet 0.17

Ti3+ doublet 1.72 triplet 2.42

Ti4+ singlet 5.96 singlet 2.31

V2+ quartet 0.33 Fe3+ sextet 5.55

doublet 1.02 quartet 5.27

V3+ triplet 3.03 doublet 6.79

singlet 3.29 Co2+ quartet 0.71

V4+ doublet 8.66 doublet 2.29

Cr2+ quintet 0.82 Co3+ quintet 7.88

triplet 0.84 triplet -6.01

singlet 1.13 singlet -7.20

Cr3+ quartet 4.09 Ni2+ triplet 1.57

doublet 4.12 singlet -3.77

Cr4+ triplet 9.47 Ni3+ quartet 9.02

singlet 11.13 doublet -8.90

Mn2+ sextet 1.24 Cu2+ doublet 1.39

quartet 1.94 Cu3+ triplet 5.95

doublet 2.37 singlet 6.83

Mn3+ quintet 2.92

triplet 4.68

singlet 4.83
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Table 4.7: Predicted geometries of selected metal-bound C4 complexes using a va-

riety of DFT functionals. All distances are averaged and are in angstroms. Crystal

results[20][23][24][86][87] are averaged over all similar bonds and angles. All angles

are in degrees. Values in parenthesis indicate percentage deviation from crystal

data. All functionals use 6-31G** basis set for non-metal atoms and SDD for metal

atoms.

Metal Property Crystal BLYP B3LYP B97D3

Ti4+ singlet M-O distance 1.9630 1.877 (4.4) 1.851 (5.7) 1.866 (4.9)

C-O distance 1.3550 1.361 (0.4) 1.351 (0.4) 1.352 (0.4)

O-M-O angle 155.5 158.3 (1.8) 157.4 (1.2) 158.7 (2.1)

V3+ triplet M-O distance 1.9404 1.911 (1.5) 1.893 (2.4) 1.903 (1.9)

C-O distance 1.3733 1.351 (1.6) 1.338 (2.6) 1.340 (2.4)

O-M-O angle 172.7 168.0 (2.7) 168.1 (2.7) 169.0 (2.1)

Mn3+ quintet M-O distance 1.9362 1.921 (0.8) 1.905 (1.6) 1.933 (0.2)

C-O distance 1.3557 1.350 (0.4) 1.339 (1.2) 1.337 (1.4)

O-M-O angle 175.4 179.2 (2.2) 179.4 (2.3) 178.3 (1.7)

Fe3+ sextet M-O distance 1.9763 1.956 (1.0) 1.929 (2.4) 1.966 (0.5)

C-O distance 1.3633 1.336 (2.0) 1.329 (2.5) 1.326 (2.7)

O-M-O angle 162.6 165.7 (1.9) 169.7 (4.4) 168.4 (3.6)

Cu2+ doublet M-O distance 1.9661 2.007 (2.1) 1.928 (1.9) 2.016 (2.5)

C-O distance 1.3838 1.324 (4.3) 1.312 (5.2) 1.313 (5.1)

O-M-O angle 175.9 178.8 (1.6) 178.4 (1.4) 178.0 (1.2)
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spin state of the bound metal although it might be expected, a priori from ap-

plication of Hund’s Rule, that spin of maximum multiplicity would be the most

thermodynamically stable. Results of calculations on the thermodynamic stability

and binding energy of each metal complex are shown in tables 4.8 and 4.9. As ex-

pected, in most cases the complex containing spin of maximum multiplicity is the

most thermodynamically stable. This is however not observed in six complexes.

Complexes involving Ti2+, Fe3+, Co3+, Ni2+, Ni3+ and Cu3+ favour spin configura-

tions other than high spin. Ti2+ favours the singlet over the triplet, Fe3+ favours

the quartet over the sextet, Co3+ favours the triplet over the quintet, Ni2+ favours

the singlet over the triplet, Ni3+ favours the doublet over the quartet and Cu3+

favours the singlet over the triplet. This pattern is observed across all functionals

used in this study. Because moving from one functional to another affects all of

the spin state energies to the same extent, the issue is not thought to be caused by

the inability of DFT to predict the correct ground state of these species. The func-

tionals used present a range of HF exchange from 0% to around 20% and thus the

issue is invariant to both the functional used and the amount of non-local exchange.

Removing dispersion from the BLYP and B3LYP functionals (results not detailed in

this work) also makes no difference to either the order of stability of these complexes

or the relative stability of the energy levels and this can therefore be ruled out as a

source of error. The multi-reference nature of the complex was also considered and

ruled out as a source of error: the issue affects complexes with both high and low

B1 values. Interestingly, the complex with the highest B1 value, Cr4+ favours the

triplet over the singlet as expected by application of Hund’s Rule. In the absence

of the ability to verify these conclusions by performing MRCI calculations on these

large systems, it can reasonably be concluded that the effect is real. In this case,

one possible explanation might be that the ligand is of intermediate crystal field

strength: in other words, strong enough to invoke stabilisation of the quartet over

the sextet in the Fe3+ complex for example, but not strong enough to allow the

doublet to be the most stable arrangement. Essentially the ligand destabilises the

dx2−y2 orbital just enough that the pairing energy becomes lower than the energy

required to overcome this splitting energy. The observed very small energy gap be-

tween the most stable spin arrangement and the maximum multiplicity arrangement

of around 6-12 kcal−1 in each of these cases lends weight to this theory.
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Table 4.8: Calculated ground state energies of C4-metal complexes (Sc to Mn).

Energies in Hartrees. All calculations use 6-311G** basis set. BLYP and B3LYP

also include GD3BJ empirical dispersion. B97D3 contains dispersion and no further

corrections are used.

Metal Spin BLYP Energy B97D3 Energy B3LYP Energy

Sc3+ singlet -1426.6307 -1426.2054 -1427.1407

Ti2+ triplet -1438.0866 No Results -1438.5848

singlet -1438.0962 -1437.6956 -1438.5925

Ti3+ doublet -1438.1808 -1437.7747 -1438.6775

Ti4+ singlet -1438.0892 -1437.6847 -1438.5680

V2+ quartet -1451.4332 -1451.0661 -1451.9384

doublet -1451.4210 -1451.0427 -1451.9194

V3+ triplet -1451.5015 -1451.1296 -1451.9947

singlet -1451.4920 -1451.1138 -1451.9814

V4+ doublet -1451.4177 -1451.0420 -1451.8844

Cr2+ quintet -1466.7442 -1466.4279 -1467.2573

triplet -1466.7092 -1466.3774 -1467.2169

singlet -1466.6996 -1466.3514 -1467.1992

Cr3+ quartet -1466.7841 -1466.4631 -1467.2761

doublet -1466.7611 -1466.4186 -1467.2483

Cr4+ triplet -1466.6763 -1466.3474 -1467.1444

singlet -1466.6600 -1466.3154 -1467.1117

Mn2+ sextet -1484.0819 -1483.8237 -1484.6036

quartet -1484.0760 -1483.7993 -1484.5762

doublet -1484.0383 -1483.7413 -1484.5365

Mn3+ quintet -1484.1378 -1483.8706 -1484.6382

triplet -1484.1008 -1483.8105 -1484.5841

singlet -1484.0893 No Results -1484.5708

Mn4+ quartet -1484.0205 -1483.7455 -1484.5050

doublet -1483.9847 -1483.6960 -1484.4523
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Table 4.9: Calculated ground state energies of C4-metal complexes (Fe to Cu).

Energies in Hartrees. All calculations use 6-311G** basis set. BLYP and B3LYP

also include GD3BJ empirical dispersion. B97D3 contains dispersion and no further

corrections are used.

Metal Spin BLYP Energy B97D3 Energy B3LYP Energy

Fe2+ quintet -1503.6427 -1503.4241 -1504.1552

triplet -1503.6223 -1503.3871 -1504.1223

singlet -1503.6037 -1503.3533 -1504.0888

Fe3+ sextet -1503.6610 -1503.4468 -1504.1558

quartet -1503.6849 -1503.4572 -1504.1716

doublet -1503.6514 -1503.4023 -1504.1275

Co2+ quartet -1525.5432 -1525.3709 -1526.0525

doublet -1525.5354 -1525.3515 -1526.0332

Co3+ quintet -1525.5634 -1525.3957 -1526.0420

triplet -1525.5742 -1525.4017 -1526.0653

singlet -1525.5589 -1525.3704 -1526.0348

Ni2+ triplet -1550.6328 -1550.5277 -1551.1368

singlet -1550.6468 -1550.5367 -1551.1414

Ni3+ quartet -1550.6492 -1550.5411 -1551.1286

doublet -1550.6682 -1550.5584 -1551.1472

Cu2+ doublet -1577.0186 -1576.9890 -1577.5249

Cu3+ triplet -1577.0269 -1576.9932 -1577.5157

singlet -1577.0500 -1577.0160 -1577.5300
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Figure 4.25: Gas phase binding energies for 2+ metal-bound C4 species. Energies in

kcal mol−1. All calculations use 6-311G** basis set. BLYP and B3LYP also include

GD3BJ empirical dispersion. B97D3 contains dispersion and no further corrections

are used.

Following analysis of the thermodynamic stability of these complexes, the binding

energies of the calixarene to the metals are considered. The results are presented in

tables 4.10 (Sc to Mn) and 4.11 (Fe to Cu). Trends across the various oxidations

states are in figures 4.25 (oxidation state 2+), 4.26 (oxidation state 3+) and 4.27

(oxidation state 4+) for gas phase calculations.

For all oxidation state graphs, the same trend appears, of increasing magnitude of

binding energy across the row of transition metals. It seems clear that the M-O

bonds are primarily electrostatic in nature given the very large increase in binding

energies from oxidation state 2+ to 3+ and then again for oxidation state 4+ in

the gas phase calculations with no overlap between the graphs. The increase in

magnitude of binding energy from the oxidation 2+ graph to the oxidation 3+

graph ranges from 600 to 1000 kcal mol−1 for each metal with a similar jump from

oxidation 3+ graphs to that of oxidation state 4+. The slope of the graphs increases

with oxidation state. From oxidation state 2+ to 3+ an increase in the slope of 30%

is observed whilst the oxidation state 4+ graph is almost twice that of the oxidation

3+ graph. As the oxidation state of a metal increases, the atomic radius decreases,

resulting in a harder acid. That this harder acid should then form progressively

stronger bonds to the relatively hard base of the calixarene suggests that Hard-Soft

Acid-Base (HSAB) theory may explain this increase in magnitude of binding energy
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Table 4.10: Calculated binding energies of C4-metal complexes (Sc to Mn). Energies

in kcal mol−1. All calculations use 6-311G** basis set. BLYP and B3LYP also

include GD3BJ empirical dispersion. B97D3 contains dispersion and no further

corrections are used.

Metal Spin BLYP Binding B97D3 Binding B3LYP Binding

Sc3+ singlet -1713.12 -1779.25 -1741.78

Ti2+ triplet -1160.82 No Results -1182.07

singlet -1186.94 -1268.51 -1206.97

Ti3+ doublet -1837.35 -1915.51 -1857.61

Ti4+ singlet -2760.36 -2839.57 -2769.46

V2+ quartet -1211.04 -1313.69 -1236.69

doublet -1238.25 -1333.90 -1259.61

V3+ triplet -1910.37 -2009.95 -1928.46

singlet -1928.76 -2024.43 -1944.50

V4+ doublet -2926.94 -3024.20 -2928.40

Cr2+ quintet -1264.32 -1398.85 -1294.93

triplet -1289.21 -1413.98 -1316.41

singlet -1293.77 -1408.26 -1315.93

Cr3+ quartet -1979.42 -2110.95 -1996.76

doublet -2006.43 -2124.49 -2020.76

Cr4+ triplet -3033.09 -3159.69 -3035.46

singlet -3050.90 -3167.65 -3042.93

Mn2+ sextet -1255.24 -1426.17 -1291.20

quartet -1326.87 -1486.21 -1349.36

doublet -1329.86 -1476.49 -1351.14

Mn3+ quintet -2046.04 -2211.39 -2068.69

triplet -2079.15 -2229.94 -2091.01

singlet -2084.58 No Results -2095.34

Mn4+ quartet -3150.29 -3310.76 -3162.98

doublet -3175.18 -3326.97 -3177.23
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Table 4.11: Calculated binding energies of C4-metal complexes (Fe to Cu). Energies

in kcal mol−1. All calculations use 6-311G** basis set. BLYP and B3LYP also

include GD3BJ empirical dispersion. B97D3 contains dispersion and no further

corrections are used.

Metal Spin BLYP Binding B97D3 Binding B3LYP Binding

Fe2+ quintet -1361.02 -1556.78 -1391.23

triplet -1402.99 -1588.35 -1425.35

singlet -1403.90 -1579.80 -1416.95

Fe3+ sextet -2029.31 -2227.82 -2048.35

quartet -2132.88 -2322.95 -2146.87

doublet -2143.37 -2320.02 -2150.72

Co2+ quartet -1430.04 -1654.89 -1458.27

doublet -1471.67 -1689.26 -1492.67

Co3+ quintet -2166.70 -2394.47 -2175.68

triplet -2236.86 -2461.57 -2253.65

singlet -2241.90 -2456.59 -2249.09

Ni2+ triplet -1508.00 -1775.04 -1532.91

singlet -1547.22 -1811.11 -1566.24

Ni3+ quartet -2276.80 -2541.97 -2286.24

doublet -2342.13 -2606.18 -2351.29

Cu2+ doublet -1602.96 -1917.39 -1629.28

Cu3+ triplet -2399.77 -2711.58 -2415.08

singlet -2448.24 -2759.93 -2458.06
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Figure 4.26: Gas phase binding energies for 3+ metal-bound C4 species. Energies in

kcal mol−1. All calculations use 6-311G** basis set. BLYP and B3LYP also include

GD3BJ empirical dispersion. B97D3 contains dispersion and no further corrections

are used.
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Figure 4.27: Gas phase binding energies for 4+ metal-bound C4 species. Energies in

kcal mol−1. All calculations use 6-311G** basis set. BLYP and B3LYP also include

GD3BJ empirical dispersion. B97D3 contains dispersion and no further corrections

are used.
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Figure 4.28: Solvent (water) Phase binding energies for 2+ metal-bound C4 species.

Energies in kcal mol−1. All calculations use B3LYP/6-311G** with GD3BJ empiri-

cal dispersion.

with oxidation state. It is unlikely that HSAB theory can explain the trend for

one oxidation state across the transition metals though. The hardness of the acid

is related to its atomic radius but this is not linear across the transition metals.

Instead, the trend of atomic radii [88] is a curve with a minimum around Mn with

increases on either side to Sc and Cu. Of interest is that despite the large variation of

exact HF exchange from 0% to 20%, the binding energy trend across any oxidation

state appears relatively invariant to the functional. B97D3 is seen to diverge a

little as the transition metal series is traversed but absolute binding energies are less

important than differences between metal species. In that light, all three functionals

are seen to perform similarly to each other. In all cases, the trend is towards

increased binding energy as the transition metal series is crossed. It is therefore

predicted that calixarenes will adopt a preference for late transition metals over

early transition metals and will also preferentially bind to higher oxidation species.

The effect of long range bulk solvent effects is now considered using CPCM model

with water as the solvent. As a result of the relative invariance to the DFT functional

used, B3LYP/6-311G** with GD3BJ empirical dispersion was arbitrarily chosen to

investigate solvation effects. Only the most thermodynamically stable species for

each metal oxidation state, as detailed in tables 4.8 and 4.9, were analysed for this

purpose. The results are shown in figures 4.28, 4.29 and 4.30.

As expected, solvation results in considerable reduction in the magnitude of binding
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Figure 4.29: Solvent (water) Phase binding energies for 3+ metal-bound C4 species.

Energies in kcal mol−1. All calculations use B3LYP/6-311G** with GD3BJ empiri-

cal dispersion.
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Figure 4.30: Solvent (water) Phase binding energies for 4+ metal-bound C4 species.

Energies in kcal mol−1. All calculations use B3LYP/6-311G** with GD3BJ empiri-

cal dispersion.
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energies in all cases as a result of the increased stability of all charged species. The

reduction in magnitude of binding energy for oxidation state 2+ is in the order

of 600 to 1000 kcal mol−1, for oxidation state 3+, the reduction is much more

pronounced at 1400-1500 kcal mol−1 and for oxidation state 4+, reductions of over

2000 kcal mol−1 are observed. Because the introduction of solvation is likely to have a

greater effect on higher charged species, this finding is not surprising. Qualitatively,

the solvent phase graphs are no different to the gas phase graphs however. The

same trends appear for each oxidation state. Quantitatively, there is a reduction

in the trend slope of the oxidation state 4+ graph but the 2+ and 3+ slopes are

unaffected by the introduction of solvation. At this stage it is noted that the earlier

B1 tests showed some species which indicated borderline multi-reference nature. For

these species, spin contamination was shown to be present in the calculations. The

calculations presented here show that the spin contaminated species, when included,

fit the overall trend very well. This indicates that although spin contaminated

species have to be treated with care as regards calculations made on them, in the

case of this work, it appears that spin contamination is not a significant factor

in the calculation of binding energies and does not unduly introduce errors in the

process. It could simply be that the scale of the absolute energies involved here

simply swamps the spin contamination error. The inclusion of solvation has however

brought about a significant change in that the various oxidation state graphs now

overlap each other. Some late transition metals such as Ni2+ and Cu2+ are now seen

to be more favoured than early transition metals such as Ti4+ by approximately

50 kcal mol−1 and 140 kcal mol−1 respectively. In fact, only late transition metals

beyond Co3+ are more favoured. Cu3+ is the most favoured species and binds

preferentially compared to any other species in this work. This indicates that whilst

electrostatics are important in the metal-calixarene binding, other factors are also

involved. Of course this work has only established preferential binding for transition

metal cations from a thermodynamic stability point of view. Kinetic factors should

also be considered before more accurate predictions can be made about the likely

outcome of experimental competitive binding exercises. Although Cu3+ is predicted

to preferentially bind before Mn2+, early unpublished tests suggest that in fact Mn2+

bound C4 crystals are exclusively formed in a mixture of Mn2+ and Cu3+ salts. This

work is not yet complete and will not be discussed further.
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Figure 4.31: The crystal field theory d-splitting diagrams for octahedral, tetrahedral

and square planar geometries around a transition metal centre.

Next, consideration is given to the comparison between crystal field theory predic-

tions of d-orbital splitting patterns and those obtained during studies such as this

using DFT. Crystal field theory predicts that when metals are co-ordinated in oc-

tahedral, tetrahedral and square planar fashion, d-orbital splitting is expected as

shown in figure 4.31. This picture changes for the molecules in this study largely

because the restrictions on paired electrons sharing the same spatial orbital are re-

moved. Figures 4.32 and 4.33 show the Mn3+ (quintet spin) co-ordinated C4 as an

example. Here the geometry around the metal atom is square planar and the actual

d-splitting pattern is as shown in figure 4.34.

It can be seen that the orbitals are arranged with the z co-ordinate pointing up

through the C4 ring and the x and y co-ordinates pointing along the M-O bonds at

the tetraphenolic pocket. The spin density for this species is as specified in table

4.13. The dx2−y2 orbitals are virtually unoccupied and also point directly along the

M-O bonds. For both reasons, this orbital is the highest in energy as expected.

The remaining d-orbitals contain a single alpha electron. dz2 points upwards into

the upper cavity of the molecule. This represents a relatively high energy position

compared to the remaining occupied d-orbitals and the dz2 orbital is therefore the

highest occupied d-orbital. The most stable d orbital is that of dxy as this orbital

point between the M-O bonds and also does not extend into the upper rim cavity

space. Finally, the dxz and dyz orbitals have a component which points partially

into the upper cavity and are thus higher in energy than the dxy orbital but lower

in energy than the dz2 orbital because they intrude less into the cavity. Both are

degenerate as expected as their spatial extent into the cavity are equivalent. Thus,

all of the orbitals are ordered in energy as would be expected.
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Figure 4.32: Side view of Mn3+ (quintet spin) co-ordinated C4 showing cartesian

axes superimposed on the structure.
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Figure 4.33: Top view of Mn3+ (quintet spin) co-ordinated C4 showing cartesian

axes superimposed on the structure.
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Figure 4.34: The d-splitting diagrams for Mn3+ (quintet spin) co-ordinated C4.

Here the geometry is square planar. Energies are relative to the dxy orbital energy.

Alpha spin-orbitals shown only. All beta spin d-orbitals are unoccupied and are

considerably destabilised relative to the alpha spin-orbitals and are not presented

here.
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Finally, consideration is given to the use of spin density calculations of each species

in order to determine the location of the unpaired electrons in the system. Results

are shown in figure 4.35 and tables 4.12, 4.13 and 4.14. Results for Sc3+ (singlet),

Ti4+ (singlet), Ti2+ (singlet) and Ni2+ (singlet) all show zero spin density and are

therefore not detailed. As can be seen, most complexes do not show significant levels

of spin density away from the metal centre. More specifically, the bulk of spin density

is found in the metal 3d orbitals. Some minor spin polarisation, evidenced by the

presence of β spin density into the tetraphenolic oxygen atoms and the conjugated

aromatic ring, is exhibited by Ni3+ (doublet), Mn3+ (quintet), Fe3+ (quartet), Cu2+

(doublet) and Co3+ (triplet). There is however no spin contamination in the calcu-

lations for these complexes. Two complexes do stand out however: Mn4+ (quartet)

and Cr4+ (triplet). Spin polarisation in both of these complexes is significant and

results in β spin density well into the aromatic ring system in the calixarene. There

is also a resultant increase in spin contamination in the calculation of around 10%.

Although this is a significant amount of spin contamination, it is at the limit of what

is deemed acceptable for calculations [89] and we therefore include these results in

our work.

4.4.3 Summary and Conclusions - Lower Rim Binding

It was found that calixarenes are predicted to have a preference for late transi-

tion metals over early transition metals with regard to binding to the tetraphenolic

pocket. From thermodynamic stability considerations, Cu3+ was predicted to pref-

erentially bind ahead of all other first row transition metals regardless of oxidation

state or spin and it is expected that this is due to largely electrostatic effects. The

trend for each oxidation state was seen to be a linear increase in magnitude of bind-

ing energy across the transition metals. The level of exact HF exchange was not

found to be an important factor in these trends indicating that these systems may

be adequately described as relatively single reference in nature. This view is backed

by the results of B1 tests. Whilst solvation was shown to reduce the absolute ener-

gies of each complex, the qualitative trends were unaffected with respect to the gas

phase calculations. Significant overlap between trends was made possible though by

solvation allowing more meaningful and realistic predictions to be made about pref-

erential binding of calixarenes towards metals of different oxidation and spin states.
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Figure 4.35: Spin densities of solvated metal-bound C4 complexes. Blue areas show

an excess of α spin density. Green areas show an excess of β spin density.
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Table 4.12: Spin density values and unpaired electron location within solvated com-

plexes (Sc to Cr). Positive numbers refer to areas of excess α spin density. Negative

numbers refer to areas of excess β spin density. Spin density values are reported as

2〈ŜZ〉

Metal Spin Spin Density

Sc3+ singlet No Spin Density - restricted singlet

Ti2+ singlet No Spin Density - restricted singlet

Ti3+ doublet +0.70 on Ti 3dz2 orbital

Ti4+ singlet No Spin Density - restricted singlet

V2+ quartet +0.79 on V 3dyz orbital

+0.79 on V 3dxz orbital

+0.52 on V 3dz2 orbital

V3+ triplet +0.82 on V 3dyz orbital

+0.69 on V 3dz2 orbital

V4+ doublet +0.77 on V 3dz2 orbital

Cr2+ quintet +0.80 on Cr 3dxy orbital

+0.78 on Cr 3dyz orbital

+0.78 on Cr 3dxz orbital

+0.65 on Cr 3dz2 orbital

Cr3+ quartet +0.81 on Cr 3dxz orbital

+0.81 on Cr 3dyz orbital

+0.71 on Cr 3dz2 orbital

+0.12 on Cr 3dx2−y2 orbital

-0.20 delocalised into O p orbitals

Cr4+ triplet +0.76 on Cr 3dz2 orbital

+0.75 on Cr 3dyz orbital

+0.64 on Cr 3dxy orbital

+0.34 on Cr 3dxz orbital

+0.12 on Cr 3dx2−y2 orbital

-1.20 delocalised into O p orbitals and π system
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Table 4.13: Spin density values and unpaired electron location within solvated metal-

bound C4 Complexes (Mn to Fe). Positive numbers refer to areas of excess α spin

density. Negative numbers refer to areas of excess β spin density. Spin density

values are reported as 2 〈ŜZ〉

Metal Spin Spin Density

Mn2+ sextet +0.82 on Mn 3dxy orbital

+0.82 on Mn 3dxz orbital

+0.82 on Mn 3dyz orbital

+0.81 on Mn 3dx2−y2 orbital

+0.78 on Mn 3dz2 orbital

Mn3+ quintet +0.83 on Mn 3dxz orbital

+0.83 on Mn 3dyz orbital

+0.81 on Mn 3dxy orbital

+0.77 on Mn 3dz2 orbital

+0.27 on Mn 3dx2−y2 orbital

Mn4+ quartet +0.82 on Mn 3dxy orbital

+0.81 on Mn 3dyz orbital

+0.81 on Mn 3dxz orbital

+0.80 on Mn 3dz2 orbital

+0.45 on Mn 3dx2−y2 orbital

-1.36 delocalised into O p orbitals and π system

Fe2+ quintet +0.82 on Fe 3dxz orbital

+0.82 on Fe 3dyz orbital

+0.80 on Fe 3dxy orbital

+0.77 on Fe 3dx2−y2 orbital

Fe3+ quartet +0.81 on Fe 3dxz orbital

+0.79 on Fe 3dxy orbital

+0.77 on Fe 3dz2 orbital

+0.34 on Fe 3dx2−y2 orbital
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Table 4.14: Spin Density Values and Unpaired Electron Location within Solvated

metal-bound C4 Complexes (Co to Cu). Positive numbers refer to areas of excess α

spin density. Negative numbers refer to areas of excess β spin density. Spin density

values are reported as 2 〈ŜZ〉

Metal Spin Spin Density

Co2+ quartet +0.79 on Co 3dxz orbital

+0.72 on Co 3dxy orbital

+0.57 on Co 3dx2−y2 orbital

+0.28 on Co 3dz2 orbital

Co3+ triplet +0.82 on Co 3dxz orbital

+0.77 on Co 3dxy orbital

+0.41 on Co 3dx2−y2 orbital

+0.12 on Co 3dz2 orbital

Ni2+ singlet No Spin Density - restricted singlet

Ni3+ doublet +0.76 on Ni 3dz2 orbital

+0.33 on Ni 3dx2−y2 orbital

+0.19 on Ni 3dxy orbital

-0.50 delocalised into O p orbitals and π system

Cu2+ doublet +0.56 on Cu 3dxy orbital

-0.44 delocalised into O p orbitals and π system

Cu3+ triplet +0.20 on Cu 3dxy orbital

-0.20 delocalised into O p orbitals and π system
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Kinetic studies are required in order to complete the picture and determine whether

kinetic factors are able to counter the thermodynamic trends observed in this work.

DFT was shown to work reasonably well for these types of molecule. The DFT

functionals used were able to accurately predict geometries which matched known

crystal structures to an acceptable degree. Finally, DFT was shown to accurately

predict the energetic ordering of d-orbitals. For all of these reasons, it is reasonable

to conclude that the use of DFT is justified for such systems.

4.5 Calix[4]arene Upper Rim Binding

The relevant published paper covering the work described in this section is provided

in reference [90]. As described earlier, the emergence of polymetallic calixarene

clusters using metals such as Fe and Cu [23][24], involves the binding of transition

metals to the lower tetraphenolic pocket of the calixarene. In addition to affecting

the geometry at the calixarene upper rim, the metal provides an extra binding site

for guest molecules. This work seeks to clarify what effect, if any, the presence of

a transition metal atoms in C4 has on the binding preferences at the upper rim

towards small guest molecules. Some of the guest molecules are ambidentate and

both linkage isomers are investigated. Comparison with metal-free C4 is considered.

4.5.1 Computational Details - Upper Rim Binding

All calculations in this subsection were performed using Gaussian 09 D01 [54]. Ge-

ometry optimisations were performed using 6-31G** basis set in conjunction with

DFT functionals BLYP [62][71], B3LYP [55][56][71], CAM B3LYP [91], M06 [92],

M06L [93], ωB97, ωB97X [94] and ωB97XD [95] for non metal atoms. SDD [73] was

used for all metal atoms with 10 electrons included as core. GD3 [96] empirical dis-

persion was used for calculations involving M06 and M06L, GD3BJ [57] was used for

BLYP and B3LYP and the ωB97 family used no added empirical dispersion. Energy

values are corrected for zero point energy with no symmetry constraints applied.

All systems were checked for multi-reference behaviour using a modification of the

Truhlar B1 test detailed earlier for the lower rim binding preference work. Unlike

with the lower rim binding work detailed earlier, it is necessary to include empirical
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dispersion in the B1 test. GD3BJ is not specified for B1LYP however and B3LYP

has subsequently been used as a substitute. This doesn’t create a problem as B3LYP

contains 20% HF exchange and therefore contains a reasonably comparable amount

with B1LYP. Equation 4.2, with references to B1LYP replaced by B3LYP, applies

to the B1 tests in this work. The value of n = 1 is assumed for all complexes as

this is the worst case scenario. In the absence of certainty over exactly how many

formal bonds are formed between the guest and the calixarene this is a reasonable

position to take.

Analysis of analytical Hessian computations confirmed the nature of critical points

as minima (all positive eigenvalues). After geometry optimisation was performed

on each compound, wavefunction stability tests [75][76] were carried out. In the

presence of instabilities, a new more stable wavefunction was found and used to re-

optimise the structure until no further instabilities were uncovered. All calculations

were checked for spin contamination [81][82][83][84][85].

Basis Set Superposition Error was corrected for using Counterpoise corrections as

implemented within the Gaussian software [97][98] with subsequent basis set im-

provements to 6-311G**, 6-311+G** and 6-311++G** via single point calculations

from the 6-31G* optimised geometry for each species. Binding energies are calcu-

lated as shown in equation 4.3 where Ecomplex is the zero point corrected energy of

the geometry optimised bound calixarene-gas complex, Egas is the zero point cor-

rected energy of the free gas molecule and EC4 is the zero point corrected energy

of the geometry optimised C4 in the cone conformation. In the lower rim work

earlier, all metals were modelled as 4 co-ordinate square planar complexes. Because

of the dominance of dispersion effects in these calculations and the presence of the

guest molecule in an axial position of the metal atom, it was necessary to use water

molecules at the other axial position for metals which were normally 5 or 6 co-

ordinate. Mn and Fe complexes are therefore modelled as 5 co-ordinate calixarenes,

with the upper axial site free for binding to the guest. Cu, Ni and Co species were

all modelled as square planar as before with the guest occupying a 5th co-ordination

site to the metals. Example models are shown in figure 4.36.

Solvation was performed using the CPCM solvent model [66][67] with water solvent

at the B3LYP/6-311++G** level with GD3BJ empirical dispersion. Spin density

calculations were performed using an isovalue of 0.002 on all complexes.
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Figure 4.36: Model complexes for C4 upper rim binding calculations. The guest

in this case is CO2. The water molecule underneath the calixarene for Fe and Mn

is bound to the metal and completes the 6-coordination sphere. In a crystal, this

water molecule would be an alcohol solvent molecule. This is not required for square

planar arrangements such as metal-free C4 or Cu-bound calixarene complexes.

Finally, NBO 3.0 calculations were performed at the B3LYP/6-311++G** level with

GD3BJ empirical dispersion. Details of NBO 3.0 were given earlier for the lower

rim binding preference work.

Ebind = Ecomplex − Egas − EC4 (4.3)

4.5.2 Results and Discussion - Upper Rim Binding

B1 diagnostic tests were performed on a system consisting of a molecule of CO2

bound in endo fashion within the upper rim of C4. A variety of transition metals in

various oxidation and spin states were then placed within the tetraphenolic pocket

before optimising. Results are shown in table 4.15.

All values are well under the 10 kcal mol−1 cutoff value of B1 which would indicate

that all of these systems can reasonably be described as largely single reference. In

this sense, hybrid functionals such as B3LYP are shown to be a reasonable choice

of DFT functional. Before discussing the choice of DFT functional for this work,

basis set choice was explored by examining the effect of a variety of basis sets on

the binding energy of CO2 to the upper rim of C4 with Fe3+ bound to the lower

rim. Here the spin state of Fe3+ is taken to be the quartet as this was the most

thermodynamically stable form found in the previous work on lower rim preferential

bindings. Results are shown in table 4.16.
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Table 4.15: Results of B1 diagnostic tests on all C4 complexes within which a CO2

molecule is bound in endo fashion within the upper rim. All energies are reported

in kcal mol−1.

Metal Spin B1

No Metal N/A -1.21

Mn3+ quintet -0.70

Fe3+ sextet -0.77

quartet -2.17

doublet -1.93

Cu2+ doublet -0.37

Cu3+ triplet -0.23

singlet -0.31

Table 4.16: Effect of basis set on the binding energy of Fe3+ lower-rim-coordinated

C4 (quartet spin) towards endo bound CO2. All energies are reported in kcal mol−1.

All calculations use B3LYP with GD3BJ dispersion. Geometries are based on 6-

31G** for Pople basis sets and cc-pVDZ for Dunning basis sets. All values are

BSSE corrected.

Basis Set Binding Energy

6-31G** -6.31

6-311G** -9.00

6-311+G** -8.87

6-311++G** -8.85

cc-pVDZ -8.48

cc-pVTZ -8.52
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Starting with the Pople basis sets, it can be seen that the greatest difference in

binding energies comes from the move from double-ζ to triple-ζ. Inclusion of diffuse

functions appears to make relatively little difference in comparison. The inclusion

of these diffuse functions however adds little in the way of extra basis functions and

therefore 6-311++G** is the preferred Pople basis set. Good agreement between

this basis set and both cc-pVDZ and cc-pVTZ is found indicating that triplet-ζ may

be close to the basis set limit for binding energies. The difference between cc-pVTZ

and 6-311++G** is just 0.33 kcal mol−1 but cc-pVTZ uses significantly more basis

functions. It is therefore concluded that for this work, 6-311++G** represents a

good compromise between computational cost and accuracy and this basis set is

used for all further work.

The choice of DFT functional follows a similar principle. Using the same model

system as that for the basis set selection, the likely non-covalent nature of the binding

of guests to the calixarene warrants consideration to be given to functionals which are

explicitly designed to correct capture long range effects such as dispersion and non-

covalent bonding. To that end, the functionals CAM-B3LYP, M06, M06L, ωB97,

ωB97X and ωB97XD are investigated along with the more common B3LYP. First

the predicted binding energies on the model system above are compared. Results

are shown in table 4.17 using the 6-311++G** basis set. Dispersion is added as

needed for the functional: GD3BJ for B3LYP and CAM-B3LYP, with GD3 used for

M06 and M06L. No empirical dispersion is added for the ωB97 family of functionals.

In the absence of experimental data, in order to make sense of which of these values

can be relied upon, it is instructive to compare the capability of each of these

functionals of predicting the geometry of the Fe3+ lower-rim-coordinated C4 (quartet

spin) with no bound guest molecule. Crystal data for this complex [23] is used as a

benchmark for the functionals. Key geometric parameters are described in figures

4.37 with results shown in tables 4.18, 4.19 and 4.20.

Table 4.21 shows the average errors for each DFT functional across the ten geo-

metric properties detailed above. Here we see that the Truhlar Minnesota family of

functionals appears to give the best performance with average errors slightly better

than B3LYP. A problem is however seen at the upper rim. Although the surface

area is predicted, by the Truhlar functionals, to be closer to the crystal data than

B3LYP, a rectangular arrangement is predicted. This is at odds with the crystal
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Table 4.17: Effect of DFT functional on the binding energy of Fe3+ lower-rim-

coordinated C4 (quartet spin) towards endo bound CO2. All energies are reported

in kcal mol−1. Appropriate dispersion corrections are included as described in the

text. Geometries are based on 6-31G** with energies subsequently calculated as

single point using 6-311++G** at these geometries. All values are BSSE corrected.

DFT Functional Binding Energy

B3LYP -8.85

CAM-B3LYP -8.69

M06 -11.84

M06L -10.82

ωB97 -7.87

ωB97X -6.29

ωB97XD -8.17

OO OO

C-C upper-rim distal (A)

C-C upper-rim distal (B)

Fe3+

O-O lower-rim distal (B)

O-O lower-rim distal (A)

Figure 4.37: Geometric parameters for Fe3+-coordinated C4 (quartet spin).
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Table 4.18: Comparison of the geometric predictions of Fe3+-bound C4 (quartet

spin) with no guests bound for B3LYP and CAM-B3LYP. All distances in angstroms

and all angles in degrees. Crystal results[23] are averaged over all similar bonds

and angles. Values in parentheses represent percentage error compared to crystal

structure.

Property Crystal B3LYP CAM-B3LYP

C-C upper rim distal (A) 7.8212 8.3301 (6.5) 8.1309 (4.0)

C-C upper rim distal (B) 8.0462 8.3613 (3.9) 8.6475 (7.5)

average C-C upper rim distal 7.9337 8.3457 (5.2) 8.3892 (5.7)

upper rim surface area 62.930 69.650 (10.0) 70.312 (12.0)

Fe-O average distance 1.9763 1.9226 (2.7) 1.8850 (4.6)

Phenolic C-O average distance 1.3633 1.3327 (2.2) 1.3352 (2.1)

O-O lower rim distal (A) 3.9111 3.8459 (1.7) 3.8154 (2.4)

O-O lower rim distal (B) 3.9034 3.8437 (1.5) 3.7212 (4.7)

average O-O lower rim distal 3.9073 3.8448 (1.6) 3.7683 (3.6)

O-Fe-O angle 162.6 178.2 (9.6) 177.0 (8.9)

Table 4.19: Comparison of the geometric predictions of Fe3+-bound C4 (quartet

spin) with no guests bound for M06 and M06L. All distances in angstroms and all

angles in degrees. Crystal results[23] are averaged over all similar bonds and angles.

Values in parentheses represent percentage error compared to crystal structure.

Property Crystal M06 M06L

C-C upper rim distal (A) 7.8212 7.8929 (0.9) 8.1100 (3.7)

C-C upper rim distal (B) 8.0462 8.6125 (7.0) 8.5133 (5.8)

average C-C upper rim distal 7.9337 8.2527 (4.0) 8.3117 (4.8)

upper rim surface area 62.930 67.978 (8.0) 69.043 (9.7)

Fe-O average distance 1.9763 1.9522 (1.2) 1.9387 (1.9)

Phenolic C-O average distance 1.3633 1.3165 (3.4) 1.3243 (2.9)

O-O lower rim distal (A) 3.9111 3.9703 (0.0) 3.9354 (1.3)

O-O lower rim distal (B) 3.9034 3.8335 (1.8) 3.8144 (2.3)

average O-O lower rim distal 3.9073 3.9019 (0.1) 3.8749 (0.8)

O-Fe-O angle 162.6 178.3 (9.7) 177.8 (9.4)
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Table 4.20: Comparison of the geometric predictions of Fe3+-bound C4 (quar-

tet spin) with no guests bound for ωB97, ωB97X and ωB97XD. All distances in

angstroms and all angles in degrees. Crystal results[23] are averaged over all similar

bonds and angles. Values in parentheses represent percentage error compared to

crystal structure.

Property Crystal ωB97 ωB97X ωB97XD

C-C upper rim distal (A) 7.8212 8.1331 (4.0) 8.6130 (4.4) 8.1121 (3.7)

C-C upper rim distal (B) 8.0462 8.6682 (7.7) 8.6547 (7.6) 8.5854 (6.7)

avg. C-C upper rim distal 7.9337 8.4007 (5.9) 8.4089 (6.0) 8.3488 (5.2)

upper rim surface area 62.930 70.499 (12) 70.648 (12) 69.646 (11)

Fe-O average distance 1.9763 1.8902 (4.4) 1.8952 (4.1) 1.9033 (3.7)

Phenolic C-O average dist. 1.3633 1.3409 (1.6) 1.3364 (2.0) 1.3311 (2.4)

O-O lower rim distal (A) 3.9111 3.8267 (2.2) 3.8358 (1.7) 3.8537 (1.5)

O-O lower rim distal (B) 3.9034 3.7304 (4.4) 3.7418 (4.1) 3.7586 (3.8)

avg. O-O lower rim distal 3.9073 3.7786 (3.3) 3.7888 (3.0) 3.8053 (2.6)

O-Fe-O angle 162.6 176.9 (8.8) 177.1 (9.0) 177.3 (9.1)

data which shows an almost square arrangement. Only B3LYP is able to predict

this to any degree of accuracy. A similar story emerges from the results for the

lower rim, with Truhlar functionals again predicting a rectangular arrangement at

the tetraphenolic pocket as opposed to the square geometry of the crystal. Again

B3LYP is the only functional which captures this well. Because the geometry of

upper and lower rims of the structure is the most important for guest-host binding

predictions, it was decided to use B3LYP as the desired DFT functional for all fur-

ther work and the B3LYP energetic binding energy shown in table 4.17 is taken as

the most reliable result. This validation of the use of B3LYP is consistent with our

use of this functional in other calixarene work shown earlier.

A word of caution is necessary at this stage. B3LYP/6-31G* is known to have

two systematic errors and it can be assumed that B3LYP/6-311++G** will also

exhibit these flaws [99]. The two errors are as follows: firstly, the neglect of basis

set superposition error (BSSE) results in over-binding of species and neglect of dis-

persion effects results in under-binding of species. When weak binding is present,

as expected between the guest and the host in this work, both of these errors are
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Table 4.21: Average errors of DFT functionals against the crystal structure for the

ten geometric properties of Fe3+ lower-rim-coordinated C4 with no bound guest

molecule. All values are in percent.

DFT Functional Avg. Error

M06 3.5

M06L 4.3

B3LYP 4.5

ωB97XD 5.0

ωB97X 5.4

ωB97 5.4

CAM-B3LYP 5.6

very serious. Fortuitous cancelling can result in highly accurate calculations but

this can neither be relied upon nor predicted in advance. Following advice in refer-

ence [99], to counter these problems within this work, dispersion effects are added

as GD3BJ empirical dispersion and BSSE is accounted for using the counterpoise

correction available within the Gaussian software package. The use of a triple-ζ

basis set provides additional protection against these problems.

Following the choice of B3LYP/6-311++G**/GD3BJ and BSSE correction, atten-

tion now turns to the effect of the nature of the lower-rim-bound metal atom on the

binding energy of guests at the upper rim. For this task, CO2 is used as the guest

molecule as a range of lower-rim-bound metals are investigated for their effect on

CO2 binding. For comparison, metal free calixarene results are also provided. The

results are shown in table 4.22.

As can be seen, there is relatively little difference in binding energies when the

nature of the metal is changed. The average binding energy of CO2 when a metal

is included is around -8.63 kcal mol−1. It would appear that it is the presence of

a metal of any kind which has the greatest impact on the binding energy rather

than the nature of that metal. This may have implications for practical gas sensors

using C4. As has been described earlier, the work of Ytreberg involves tethering the

calixarene to a gold substrate with an increase in the magnitude of guest binding

by 1.58 kcal mol−1. The results shown here indicate an average increase of 1.97

kcal mol−1, with a range of 1.07 kcal mol−1 to 2.98 kcal mol−1 which is in good
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Table 4.22: Effect of variation of metal on binding energy of C4 towards endo bound

CO2. Values are in kcal mol−1. All calculations use B3LYP/6-311++G** on non-

metal atoms. SDD on metal atoms. GD3BJ empirical dispersion included. All

values BSSE corrected.

Metal Binding Energy

No Metal -6.76

Fe3+ (quartet spin) -8.85

Fe3+ (sextet spin) -8.84

Cu2+ (doublet spin) -8.83

Cu3+ (singlet spin) -8.07

Cu3+ (triplet spin) -8.18

Ni2+ (singlet spin) -8.01

Ni2+ (triplet spin) -8.41

Ni3+ (quartet spin) -7.84

Co2+ (quartet spin) -9.74

Co3+ (quintet spin) -9.08

Mn3+ (quintet spin) -9.05
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Table 4.23: Results of Binding of Fe3+ (quartet) and Mn3+ (quintet) co-ordinated

C4 towards endo-bound small guest molecules. Values are in kcal mol−1. All calcula-

tions use B3LYP/6-311++G** on non-metal atoms. SDD on metal atoms. GD3BJ

empirical dispersion included. All values BSSE corrected.

Guest No Metal Fe3+ Mn3+

H2 -1.51 -1.83 -1.80

O2 -3.69 -4.13 -4.32

N2 -5.12 -7.01 -7.34

H2O -5.27 -10.71 -11.35

N2O (O into cavity) -6.30 -7.93 -8.10

N2O (N into cavity) -6.78 -9.19 -9.59

CO2 -6.76 -8.85 -9.05

HCN (C into cavity) -7.44 -9.86 -9.26

HCN (N into cavity) -7.44 -9.48 -10.12

NH3 -7.22 -16.92 -17.83

H2S -8.86 -12.42 -12.78

SO2 (S into cavity) -10.91 -14.47 -13.80

SO2 (O into cavity) -11.79 -17.08 -17.25

agreement. With calibration, therefore it may be possible to use transition metals

instead of gold in these gas sensors. For the remainder of this work, advantage is

taken of this relative invariance of the metal type and only two metal types are

considered further, to ensure this invariance characteristic holds across the range

of guests. The binding of a range of important small guest molecules at the upper

rim of Fe3+ (quartet) lower-rim-bound C4 and Mn3+ (quintet) lower-rim-bound C4

systems are now investigated. Comparison is made with the metal-free case. Results

are shown in table 4.23 and figures 4.38, 4.39 and 4.40.

The previous predictions that introduction of any metal would be the most impor-

tant factor in changes to the binding energy of CO2 is seen to be replicated across all

of the guest molecules in this study. Most of the molecules experience in increase in

magnitude of binding energy around 0.29 kcal mol−1 to 2.89 kcal mol−1 with the SO2

and H2S experiencing increases in binding of between 2.89 kcal mol−1 and 5.46 kcal

mol−1 depending on the metal and the position of the guest. Overall, most guests
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Figure 4.38: Binding energies of metal-free C4 with a variety of guest molecules.

All calculations B3LYP/6-311++G** with GD3BJ empirical dispersion and BSSE

corrections.

Figure 4.39: Binding energies of C4 with a variety of guest molecules. Fe3+ coordi-

nated to C4. All calculations B3LYP/6-311++G** with GD3BJ empirical disper-

sion and BSSE corrections. SDD on metal atoms.
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Figure 4.40: Binding energies of C4 with a variety of guest molecules. Mn3+ coordi-

nated to C4. All calculations B3LYP/6-311++G** with GD3BJ empirical disper-

sion and BSSE corrections. SDD on metal atoms.

experience an increase in binding of 12% to 45% when a metal atom is included

compared to just 1.0% to 6.8% when the metal is changed between Fe3+ and Mn3+.

Two guests, H2O and NH3, require special mention. Both these guests experience a

substantial increase in binding of 103% and 134% respectively once a metal is added

compared to 5.98% and 5.3% when the metal is changed. Clearly then, the nature

of the metal is of less importance than the inclusion of a metal in the first place.

It should be noted that the metal-free binding energies of H2O and NH3 have been

calculated both experimentally and using MP2. Results are shown in table 4.24. It

can be seen that although MP2 outperforms DFT for H2O (with DFT underbinding),

the opposite is true for NH3. For NH3, DFT is in good agreement with experiment

whilst MP2 shows overbinding. It is therefore evident that MP2 does not necessarily

improve on the DFT results in this work and the method appears to be sensitive to

the choice of basis set. It is also seen from these results that including solvation in

the DFT results causes serious underbinding and is not considered further.

Inclusion of a metal at the lower rim of C4 not only increases the magnitude of

the binding of each guest at the upper rim, it also alters the relative preferential
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Table 4.24: Comparison of Binding of H2O and NH3 to metal-free C4 with ex-

periment and MP2. Values are in kcal mol−1. DFT calculations use B3LYP/6-

311++G** on non-metal atoms. SDD on metal atoms. GD3BJ empirical dispersion

included. All values BSSE corrected. Solvent calculations use CPCM and water.

Values in parentheses after experimental results indicate the error in terms of +/-

that value.

Guest Method Binding

H2O Experiment [43][44] -8.977(0.002)

DFT -5.27

DFT and Solvent -3.61

MP2 (CBS) [44] -8.10

MP2 (aug-cc-pVQZ) [43] -8.94

NH3 Experiment [43][44] <-8.00

DFT -7.22

DFT and Solvent -4.07

MP2 (CBS) [44] -11.09

binding of those guest. Metal-free C4 preferentially binds to SO2 compared to all

other guests in the study, but metal co-ordinated C4 now shows an equal or greater

preference for NH3 compared to SO2 as well as a preference for H2O which is only

slightly less favoured than H2S. This is shown in figures 4.38, 4.39 and 4.40.

The effect on the geometry of adding a metal atom to the lower rim of C4 is il-

lustrated in figures 4.41 and 4.42. Figure 4.41 shows instances of where there is

significant movement of the position of the guest depending on what is bound at

the C4 lower rim, whilst figure 4.42 shows guests which experience little difference.

Figure 4.42 shows the binding geometry when Fe3+ is coordinated to the lower rim.

Quantitatively, the key geometric parameters are the distance between the centroid

of the tetraphenolic pocket and the lowest point of the bound guest within the cav-

ity, see table 4.25, and the surface area of the upper rim once the guest is bound,

see table 4.26.

As can be seen, the addition of a metal atom significantly changes the binding

position of H2O, both linkage isomers of HCN and NH3. HCN is seen to prefer to
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Figure 4.41: Geometry of C4-bound guests showing change of guest position within

the upper rim as metal atoms are co-ordinated to the C4 lower rim. All calculations

B3LYP/6-31G** with GD3BJ empirical dispersion. SDD on metal atoms.

235



Figure 4.42: Geometry of C4-bound guests whose geometric binding position in the

upper rim is not dependent on the C4 lower rim coordination. Shown here is the

case for Fe3+ coordination to the lower rim. All calculations B3LYP/6-31G** with

GD3BJ empirical dispersion. SDD on metal atoms.
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Table 4.25: Effect of metal coordination on binding position of guest molecules

within C4. Centroid of tetraphenolic pocket to lowest point of upper-rim-bound

guest. All distances in angstroms. All calculations use B3LYP/6-31G** on non-

metal atoms. SDD on metal atoms. GD3BJ empirical dispersion included.

Guest No Metal Fe3+ Mn3+

No Guest N/A N/A N/A

H2 3.0910 2.7986 2.8355

O2 2.8533 2.9277 2.9769

N2 2.8445 2.8079 2.8426

H2O 2.6947 2.4008 2.4278

N2O (O into cavity) 2.7214 2.7458 2.7000

N2O (N into cavity) 2.8487 2.7186 2.7335

CO2 2.3705 2.6652 2.6326

HCN (C into cavity) 3.4951 3.8029 3.7894

HCN (N into cavity) 3,4954 2.5468 2.5769

NH3 2.9021 2.4563 2.4995

H2S 3.5314 3.2753 3.2616

SO2 (S into cavity) 3.4184 3.4045 3.4302

SO2 (O into cavity) 2.6853 2.5327 2.5517
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Table 4.26: Effect of metal coordination on binding position of guest molecules

within C4. Surface area of upper-rim-bound guest. All distances in square

angstroms. All calculations use B3LYP/6-31G** on non-metal atoms. SDD on

metal atoms. GD3BJ empirical dispersion included.

Guest No Metal Fe3+ Mn3+

No Guest 71.1 69.6 69.7

H2 70.6 69.2 68.4

O2 70.1 68.4 70.0

N2 69.7 67.9 68.3

H2O 66.9 69.1 69.0

N2O (O into cavity) 70.3 68.4 68.7

N2O (N into cavity) 69.9 67.8 67.8

CO2 64.8 67.9 68.6

HCN (C into cavity) 69.8 68.1 68.3

HCN (N into cavity) 69.8 68.8 68.5

NH3 70.1 69.0 68.7

H2S 69.7 68.6 68.5

SO2 (S into cavity) 67.3 66.9 67.3

SO2 (O into cavity) 66.4 64.3 67.3
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bind with the N atom pointing into the cavity in the metal-free case. Addition of a

metal allows for a stable binding position where the H atom points into the cavity.

Without the metal, this binding arrangement would not be possible. Geometrically,

all three of these guest molecules are drawn further into the cavity which explains

visually why the binding is stronger. Much smaller geometric changes are observed

with the other guest molecules. From table 4.25, it can be seen that changes to the

distance between the centroid of the tetraphenolic pocket to the lowest binding point

of the guest are between 1% and 8% for most guests as a metal is added. Earlier

it was noted that H2O and NH3 were particularly affected by inclusion of a metal.

Here, the geometric impact of that is clearly seen with reduction in the distance

between the centroid and the guest of 14% and 20% respectively when a metal is

added. Interestingly the change in this parameter when the metal is changed is

only between 0.07% and 2.9%. The binding of each guest is now considered in more

detail.

SO2 Binding

SO2 is an ambidentate ligand and can bind with either the O or the S atom pointing

downwards into the cavity. Metal-free C4 is able to stabilise both binding arrange-

ments via interactions between the S-O bonds and the phenyl rings in the upper

rim. If the guest is bound with O pointing into the cavity a further stabilising inter-

action between the O atom and the tetraphenolic rim H atoms is observed hence the

increased stability of this binding arrangement. When a metal is introduced, addi-

tional M-S or M-O bonds are formed, the latter being stronger. Thus the strongest

binding occurs with O pointing into the cavity as evidenced by the shorter centroid

to guest distance as described in table 4.25.

NH3 and H2O Binding

It is the inclusion of the metal which causes substantial increases in magnitude of

binding for both these guests. This is as a result of very strong binding of the metal

to the N or O atoms via lone pairs on these atoms. The more available lone pair on

the N leads to NH3 being favoured by both metals. Removing the metal sees both

guests adopt a position higher up in the cavity although hydrogen bonds are made

with the tetraphenolic pocket in both cases. Orientation of the guests is controlled

by a combination of σ − π binding between the X-H bonds and the aromatic rings

and one or more methylene bridges of the calixarene.
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CO2 Binding

Without a metal atom, CO2 largely binds via interaction between the π bonds of

guest and those of the aromatic rings of the calixarene. Once a metal is included,

the binding is dominated by the interaction between the metal and a lone pair on

the O atom pointing into the cavity.

H2S Binding

H2S primarily binds via interaction between the S-H bond and the aromatic π-

system. Introduction of a metal atom provides additional M-S bonding, further

strengthening the binding with the M-S bond dominating the interactions.

N2, H2 and O2 Binding

These three guests bind the weakest to the calixarene. N2 sits vertically in the cavity

interacting with the aromatic rings via π−π bonding. O2 on the other hand prefers

to interact through the lone pairs on the O atom pointing into the cavity. H2 is

the weakest bonding guest, only interacting via weak van der Waal bonds to the

aromatic ring. The inclusion of a metal atom provides extra binding between the

metal and the lone pair on the N or O atoms. Fe3+ has a greater impact on N2 than

Mn3+. In the case of O2, the M-O bond dominates the interactions. H2 binds to the

metal via the H-H σ bond and this dominates the interaction.

N2O Binding

N2O can bind with either N or O atom pointing into the cavity with the main

interaction being that between the N-N π bond and the aromatic ring. The case

where N is pointing into the cavity is preferred however as this is when the N-N

double bond is geometrically sited at its lowest point thereby strengthening this

interaction. Inclusion of a metal provides an extra M-X bond and again the bond

with N is favoured over O as a result of the more available lone pair.

HCN Binding

For the non-metal case, the guest only binds in one way: that of the N atom pointing

into the cavity. The dominant interaction is that between the aromatic ring and the

C-H σ bond and also to a lesser degree between the aromatic ring and the C and N

atoms. With the inclusion of a metal atom the guest can now additionally bind with

the H atom pointing into the cavity. When the N atom is pointing into the cavity,

the metal atom provides an extra binding point for the C-N π system bringing the
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guest further into the cavity. This brings an increase in binding between the C-N π

system and the aromatic ring π system strengthening the binding of the guest. A

strong interaction is seen between one of the methylene bridges on the calixarene

and the C-N π system. It is noted that Mn3+ has a greater effect on the guest than

Fe3+. This appears to be because Mn3+ opens up the lower rim more than Fe3+,

causing a consequent closing of the upper rim, pushing the aromatic rings closer to

the guest and strengthening the π − π interaction. This explains the increase in

binding energy when Mn3+ is used. When HCN binds with the H atom pointing

into the cavity, the interactions are much weaker as the C-N bond is sited further

out of the cavity away from the aromatic rings. The binding of the guest is therefore

much weaker.

Spin density calculations were carried out to identify the location of the unpaired

electrons in these systems. This was carried out for both Fe3+ (quartet) and Mn3+

(quintet) with results detailed in tables 4.27, 4.28, 4.29 and 4.30. For Fe3+ (quartet),

the 3dyz orbital is doubly occupied in most cases with the three unpaired electrons

occupying the 3dz2 , 3dxz and 3dxy orbitals. When HCN binds with the N atom

points downwards however, the 3dxz orbital becomes doubly occupied with the 3dyz

becoming singly occupied. This suggests that the 3dxz and 3dyz orbitals are close in

energy in the Fe system. For Mn3+ (quintet), three unpaired electrons appear in the

3dz2 , 3dxz and 3dyz orbitals with the fourth unpaired electron varyingly appearing

in either the 3dx2−y2 or 3dxy orbitals suggesting the latter two orbitals are close

in energy in the Mn system. Although some spin polarisation is observed into the

extended π system, this is a minor effect and as expected, spin contamination is not

present to any degree in any of the systems. Finally, as expected, there is no spin

density in any of the bound guest molecules with the exception of the triplet O2

molecule. The presence of the guest molecule therefore doesn’t affect spin density

on the metal atom regardless of how strongly bound the guest is. This is true for

both metals.

4.5.3 Summary and Conclusions - Upper Rim Binding

C4 complexes were investigated for their ability to bind a number of important small

guest molecules. The inclusion of a first row transition metal atom at the lower rim
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Table 4.27: Spin density values for Mn3+ and Fe3+-coordinated C4. Positive values

refer to areas of excess α spin.

Guest Mn3+ Fe3+

No Guest +0.77 on 3dz2 +0.66 3dz2

+0.82 3dxz +0.80 3dxz

+0.82 3dyz +0.15 3dyz

+0.71 3dx2−y2 +0.36 3dx2−y2

+0.36 3dxy +0.77 3dxy

H2 +0.78 3dz2 +0.71 3dz2

+0.82 3dxz +0.81 3dxz

+0.82 3dyz +0.11 3dyz

+0.33 3dx2−y2 +0.36 3dx2−y2

+0.75 3dxy +0.79 3dxy

O2 +1.00 O(px), +0.97 O(py) +0.99 O(px), +0.97 O(py)

+0.77 3dz2 +0.66 3dz2

+0.82 3dxz +0.81 3dxz

+0.82 3dyz +0.11 3dyz

+0.33 3dx2−y2 +0.36 3dx2−y2

+0.75 3dxy +0.79 3dxy

N2 +0.79 3dz2 +0.73 3dz2

+0.83 3dxz +0.81 3dxz

+0.83 3dyz +0.08 3dyz

+0.28 3dx2−y2 +0.37 3dx2−y2

+0.80 3dxy +0.79 3dxy
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Table 4.28: Spin density values for Mn3+ and Fe3+-coordinated C4. Positive values

refer to areas of excess α spin.

Guest Mn3+ Fe3+

H2O +0.80 3dz2 +0.78 3dz2

+0.83 3dxz +0.82 3dxz

+0.83 3dyz +0.04 3dyz

+0.27 3dx2−y2 +0.34 3dx2−y2

+0.80 3dxy +0.79 3dxy

N2O (O into cavity) +0.78 3dz2 +0.72 3dz2

+0.82 3dxz +0.81 3dxz

+0.83 3dyz +0.09 3dyz

+0.28 3dx2−y2 +0.36 3dx2−y2

+0.80 3dxy +0.78 3dxy

N2O (N into cavity) +0.79 3dz2 +0.74 3dz2

+0.82 3dxz +0.81 3dxz

+0.83 3dyz +0.08 3dyz

+0.35 3dx2−y2 +0.37 3dx2−y2

+0.74 3dxy +0.79 3dxy

CO2 +0.79 3dz2 +0.74 3dz2

+0.82 3dxz +0.81 3dxz

+0.82 3dyz +0.08 3dyz

+0.53 3dx2−y2 +0.36 3dx2−y2

+0.55 3dxy +0.79 3dxy
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Table 4.29: Spin density values for Mn3+ and Fe3+-coordinated C4. Positive values

refer to areas of excess α spin.

Guest Mn3+ Fe3+

HCN (C into cavity) +0.77 3dz2 +0.62 3dz2

+0.82 3dxz +0.77 3dxz

+0.82 3dyz +0.22 3dyz

+0.61 3dx2−y2 +0.45 3dx2−y2

+0.47 3dxy +0.72 3dxy

HCN (N into cavity) +0.79 3dz2 +0.78 3dz2

+0.83 3dxz +0.08 3dxz

+0.83 3dyz +0.77 3dyz

+0.28 3dx2−y2 +0.37 3dx2−y2

+0.80 3dxy +0.77 3dxy

NH3 +0.79 3dz2 +0.77 3dz2

+0.83 3dxz +0.82 3dxz

+0.83 3dyz +0.04 3dyz

+0.52 3dx2−y2 +0.37 3dx2−y2

+0.55 3dxy +0.75 3dxy

H2S +0.78 3dz2 +0.74 3dz2

+0.83 3dxz +0.81 3dxz

+0.83 3dyz +0.06 3dyz

+0.29 3dx2−y2 +0.34 3dx2−y2

+0.78 3dxy +0.79 3dxy
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Table 4.30: Spin density values for Mn3+ and Fe3+-coordinated C4. Positive values

refer to areas of excess α spin.

Guest Mn3+ Fe3+

SO2 (S into cavity) +0.77 3dz2 +0.68 3dz2

+0.82 3dxz +0.79 3dxz

+0.83 3dyz +0.14 3dyz

+0.36 3dx2−y2 +0.41 3dx2−y2

+0.72 3dxy +0.74 3dxy

SO2 (O into cavity) +0.79 3dz2 +0.75 3dz2

+0.82 3dxz +0.81 3dxz

+0.83 3dyz +0.07 3dyz

+0.29 3dx2−y2 +0.37 3dx2−y2

+0.81 3dxy +0.79 3dxy

of the calixarene was shown to increase binding of these guests with the nature of

the guest being shown to be less important than the presence of a transition metal

of some kind. In particular, the binding of the guest seemed relatively invariant to

the oxidation or spin state of the metal. This offers the prospect of using cheaper

transition metals as tethering surfaces in practical gas sensors as a replacement

for more commonly used metals such as gold. It was found that SO2 (with the

O atom pointing into the cavity) bound most strongly than other gas molecules

when no metal was present with NH3 binding most strongly when a metal was

introduced. The calculations also predict that with a spread of binding energies

between approximately -2.00 kcal mol−1 and -18.00 kcal mol−1, in a mixture of two

or more gases, metal coordinated C4 could be useful in the preferential detection or

separating out of the most strongly binding gas.
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Chapter 5

Conclusions and Future Work

The body of work covered in this thesis has examined the range of computational

techniques required to deal with a range of systems from those which are geomet-

rically simple but electronically complex through to those which are geometrically

complex but electronically simple. It was discovered that for electronically complex

systems, the multi-reference nature of these systems dictates that the recovery of

electron correlation must be prioritised. The technique of Monte Carlo Configura-

tion Interaction (MCCI) was shown to produce reasonably accurate predictions of

the potential energy surfaces of traditionally challenging transition metal dimers,

with highly compact wavefunctions compared to those required for Full Configu-

ration Interaction (FCI). It was seen that no prior knowledge of the important

molecular orbitals was required and the technique is essentially black box with

the exception of a single parameter, cmin, which determines the minimum value

of coefficient of each Slater determinant or CSF required for inclusion in the wave-

function. The potential energy landscapes of several transition metal dimers were

elucidated, showing reasonably good agreement with both experiment and also with

other computational methods but with significantly smaller wavefunctions compared

to FCI. Having demonstrated the concept, it was then shown that ScNi represents

the current limit of the MCCI method with results showing reasonable comparison

to experiment where data is available.

Following on from this initial evaluation of MCCI, the technique was developed to

determine Spin-Orbit Coupling (SOC) properties of a range of atoms and small

dimers with results showing reasonable agreement with other techniques but again
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with highly compact wavefunctions compared to FCI. One problem however rep-

resents a barrier to the further development of the MCCI method. This problem

relates to the neglect of two electron effects in the Spin-Orbit Coupling implemen-

tation. Comparison of the results in this work with one electron only results from

Spin-Extended Hartree Fock calculations show clearly that two electron effects must

be included for quantitative results. It is possible that this could be achieved through

an effective one electron operator and efforts continue to attempt to establish the

best way forward. Success in this area could allow MCCI to be used to investigate

singlet-triplet interactions, due to spin-orbit coupling, involving non-spin conserving

processes.

Following on from the application and development of state of the art techniques to

examine small atoms and molecules with simple geometry but complicated electronic

structure, larger calixarene systems with more complicated geometries but simpler

electronic structure were then investigated using DFT. Firstly, the mechanism of

ring inversion of biscalix[4]arene was considered and resulted in elucidation of the

key energy barriers, transition states and intermediates involved. It was discovered

that the lowest energy pathway of 19.31 kcal mol−1 was only slightly above the

experimentally observed 13-15 kcal mol−1 expected for a single C4 entity. Although

with energy barriers such as this, the interconversion between the anti-conformation

and the desired syn-conformations (rate constant around 0.05 s−1 when estimated

using the Eyring equation) is relatively slow compared to experimental observations

on C4 (around 150 s−1), the barriers between the intermediates are considerably

smaller indicating much faster interconversion rate constants and synthetic attempts

to crystallise these structures should (and indeed do) prove challenging as a result.

Mitigation procedures are recommended.

In order to better understand the formation of polymetallic clusters involving C4, a

study was undertaken of the binding preferences of the C4 lower rim tetraphenolic

pocket towards the first row transition metals in various oxidation and spin states.

It was found that the bonding between C4 and the metals was electrostatic in

nature with preference towards higher oxidation states and late transition metals.

Maximal spin states were generally but not universally favoured, indicative of a

delicate balance between electron pairing energies and d orbital splitting energies as

illustrated by the Mn3+(quintet spin)-bound calixarene presented in this work.
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Finally, the preference for C4 to bind a range of important small molecules was

investigated and the change in binding for these guest species as the metal at the

lower rim was changed was considered. It was found that increased binding of a few

kcal mol−1 was introduced depending on the type of metal introduced. A range of

binding energies for certain gases such as CO2 and SO2 suggests that polymetallic

clusters could potentially find practical use as gas storage or gas separation devices.

Future work regarding these calixarenes is currently focussed on investigating the

effect on binding of guests when the tetraphenolic pocket design is changed from OH

groups to groups where the hydrogen bonding at the lower rim is disturbed (which

causes subsequent geometric changes at the upper rim). Such calculations are ex-

pected to reveal whether calixarenes can be fine-tuned in this way to preferentially

store specific guests over others and to provide further details of the potential of

these devices for reversible storage of guests. This work is ongoing and is expected

to be published later this summer. Other future work seeks to investigate the nature

of multiple substitution at the biscalixarene methylene bridge hydrogens via a pro-

cess of deprotonation and is designed to help answer a range of questions observed

synthetically by experimentalists. Again this work is expected to be completed and

published in the summer. A more long term piece of future work is to consider

changes at the methylene bridge carbon atoms: replacing them with other atoms

such as O, N and S and to investigate the effect of this on small guest binding.
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