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Abstract

This thesis presents results regarding one dimensional many-body quantum systems,
obtained by considering the few-body physics of their constituent particles, and
through use of traditional quantum mechanical techniques such as scattering theory
and the variational principle. Choosing a perspective from which the connection
between the microscopic behaviour of the systems’ constituents and its macroscopic
properties is apparent, we investigate two one-dimensional many-body systems: a
flat-banded optical lattice and a fermionic Luttinger liquid. Our choice of approach
allows us to give a transparent description of the low-energy physics of both sys-
tems. For the former, we find that the low-energy eigenstates may be written down
directly in terms of position space creation operators, and that they admit a simple
and intuitive interpretation in terms of the position space behaviour of the atoms
occupying the lattice. For the latter, we employ few-body scattering theory to inves-
tigate a long-held but (until now) untested belief about the parameters appearing
in Luttinger’s model, a general effective low-energy description of one-dimensional
quantum systems. We find this interpretation to be untenable, and give arguments
as to how the parameters should correctly be regarded.
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microscopic interactions of the Fermi gas. In particular, we begin by explain-
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ing how to model effective interactions in one dimension, which we then apply

to the main forward scattering channel – the interbranch collisions – common

to these systems. We renormalise the corresponding interbranch phenomeno-

logical constants in favour of scattering phase shifts. Interestingly, our renor-

malisation procedure shows (i) how Luttinger’s model arises in a completely

natural way – and not as a convenient approximation – from Tomonaga’s

model, and (ii) the reasons behind the interbranch coupling constant remain-

ing unrenormalised in Luttinger’s model. We then consider the so-called in-

trabranch processes, whose phenomenological coupling constant is known to

be fixed by charge conservation, but whose microscopic origin is not well un-

derstood. We show that, contrary to general belief and common sense, the in-

trabranch interactions appearing in Luttinger liquid theory do not correspond

to an intrabranch scattering channel, nor an energy shift due to intrabranch

interactions, in the microscopic theory. Instead, they are due to interbranch

processes. We finally apply our results to a particular example of an exactly

solvable model, namely the fermionic dual to the Lieb-Liniger model in the

Tonks-Girardeau and super-Tonks-Girardeau regimes.
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Chapter 1

Introduction

Since the early days of quantum condensed matter physics, one-dimensional systems

have received a steady stream of interest and study. Their early appeal was down

to their simplicity compared with higher-dimensional models: for instance, the key

ingredients for a solution of the one-dimensional interacting electron problem were

found as early as 1950 [1], whereas physicists required an extra six years - and a

completely different theory - to properly understand the same problem in higher

dimensions [2]. As another appealing feature, one-dimensional (1D) physics hosts a

rich diversity of exactly-solvable models [3], in contrast to higher dimensions, which

admit very few such models. This theoretical interest spurred experimentalists on

towards realising 1D systems, which they have done in a (by now rather wide) variety

of contexts including 1D optical lattices for ultracold atoms [4, 5, 6], quantum wires

[7, 8], and carbon nanotubes [9]. Hence, 1D quantum models are of great relevance

to modern experimental physics.

One-dimensional systems are also an ideal context within which to explore the re-

lationship between microscopic, few-body physics and macroscopic, condensed mat-

ter behaviour. Modern condensed matter theory has become highly sophisticated:

elabourate field theories are often employed [10, 11, 12]; algebraic topology is used

to study band structure [13, 14]; poorly-understood models are routinely mapped

onto other models whose behaviour is well established [15, 16]. This is of course a

wonderful development, allowing us to describe an extremely broad class of physical

systems and phenomena, and to create and explore novel states of matter. The
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Chapter 1: Introduction

role of the underlying microscopic physics is often obscured by treatments of this

sort, however. This is not necessarily a problem: often the “fundamental” degrees

of freedom - the electrons, atoms, or molecules that make up the system - are not

really important degrees of freedom at all, and a clearer picture is obtained by giv-

ing up on a description in terms of these constituents and working instead with

different, more abstract entities. There are situations, however, where a good un-

derstanding of the system is possible in terms its fundamental constituents, and a

treatment relying upon more traditional methods and a consideration of the few-

body physics occurring in the medium can yield an intuitive, easily-understood, and

complete description. In chapter four we present an example of such a system. By

using a traditional variational method and by considering a two-body bound state,

we are able to very accurately solve for the low-energy behaviour of bosons on a

one dimensional lattice, in a regime that has proved inaccessible to sophisticated

techniques.

Lack of proper attention to microscopic physics can also lead to misconceptions.

In particular, many works on Luttinger’s model, a powerful phenomenological model

of one dimensional systems, espouse an interpretation of the model’s parameters

that seems sensible, but has remained untested. To be specific, the phenomenolog-

ical parameters g2 and g4 appearing in Luttinger’s model are commonly believed

to be related to inter- and intrabranch scattering respectively. By considering the

few-body scattering occurring within a dilute Luttinger liquid, we are able to test

this interpretation for the first time. We find that g2 is indeed related to interbranch

scattering, whereas, under certain circumstances, the commonly accepted interpre-

tation of g4 can be shown to be incorrect, casting doubt upon its validity in general.

We give a simple argument as to what the correct interpretation should be. Thus,

we see that there is still much to be gained from applying well established quantum

mechanical methods to, and by considering few-body behaviour within, many-body

quantum systems.
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Chapter 2

Scattering theory

The systems studied in this thesis have another property in common, alongside

one-dimensionality: the macroscopic properties of both systems can be deduced

by simplifying the underlying microscopic models, with the simplification taking a

similar form in both cases. One ignores the possibility of bound state formation,

yielding a model wherein the only interaction processes are scattering processes.

This being the case, the realistic two-body interaction may be replaced with any

potential yielding the same scattering properties, allowing for a dramatic simpli-

fication of the microscopic model. It is necessary to develop a small amount of

scattering theory in order to understand this procedure, and we do so in this chap-

ter. After sketching the basic framework, the applications necessary for the rest of

this thesis - zero-momentum three-dimensional scattering, which is useful for Bose-

Einstein condensates, and one-dimensional scattering, relevant for Luttinger liquids

- are treated.

2.1 Basics and motivation

We now introduce some basic scattering theory, following [17]. Given a single-

particle Hamiltonian H with a potential V satisfying certain conditions1, one can

decompose the Hilbert space as H = HB ⊕HS, where B stands for “bound” and S

1The conditions are as follows: The potential must fall off faster than r−3 at infinity, must be
less singular than r−3/2 at the origin, and must be continuous, save for a finite number of finite
discontinuities.
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Chapter 2: Scattering theory

for “scattering”. States in HS, if evolved by the full Hamiltonian for long enough,

behave like free states: their overlap with the potential goes to zero as t → ±∞.

Let us describe this state of affairs mathematically as

e−iHt/~|ψ〉 →
t→∞

e−iH0t/~|φout〉, (2.1)

e−iHt/~|ψ〉 →
t→−∞

e−iH0t/~|φin〉, (2.2)

where |ψ〉 ∈ HS, and the |φ〉 can be any states. We therefore have the following

picture of a scattering event: the system begins in some state |φin〉, and evolves

freely for some time, until its overlap with the potential becomes significant. The

state then evolves under the full Hamiltonian into |ψ〉, and continues until the effect

of the potential is once again negligible, after which it evolves freely as e−iH0t/~|φout〉.

Consider now a dilute gas. As we will argue in the next chapter, bound state

formation is a rare occurrence in dilute ensembles - provided the initial state does not

contain bound states - so that the dynamics of such systems is well-approximated by

a series of scattering events, that is, by a series of processes mapping |φin〉 → |φout〉.

Let us define a map from in to out asymptotes, S : |φin〉 → |φout〉, and imagine

that there are two Hamiltonians H1 and H2 which give the same S. Suppose that

the gas is prepared in some initial state |ψ(0)〉, and denote its evolution under H1

and H2 by |ψ1(t)〉 and |ψ2(t)〉 respectively. If the gas is dilute enough so that each

two-body scattering process has time to complete, it is clear that |ψ1(t)〉 and |ψ2(t)〉

will follow one another around the Hilbert space, diverging while scattering events

take place, and converging again afterwards (see Fig. 2.1). Thus, if only a few

scattering events are taking place at any one time - a few compared with the total

number of particles, that is - then the Hilbert space trajectories generated by H1

and H2 will agree very closely throughout the evolution. Since a Hilbert space

trajectory is the most complete description of a system that one can have, it is clear

that H1 and H2 will also generate the same macroscopic quantities. It is entirely

legitimate, therefore, to replace a complicated Hamiltonian with a less complicated

one, provided that the two agree on S (at the appropriate energy) and the system

4



Chapter 2: Scattering theory

H

Figure 2.1: Hilbert space trajectories generated by two different Hamiltonians with
identical scattering properties. The trajectories differ during times when particles
are undergoing scattering; otherwise, they agree.

is dilute. This is a key idea, and it underpins much of the work presented in this

thesis2.

Clearly, it is important to determine whether two given Hamiltonians agree on

S. Learning how to do this will be the focus of the next section. As a first step, let

us settle some terminology: we will refer to the state |ψ〉 in Eqs (2.1) and (2.2) as

a scattering state, and the states |φin〉, |φout〉 as incoming and outgoing states. S is

called the S-matrix. Then, let us define maps Ω±, called Møller operators, between

the scattering state and the incoming and outgoing states: Ω+|φin〉 = Ω−|φout〉 =

2As a historical footnote, it is interesting to remark that this idea has been taken to a very
extreme limit, known as S-matrix theory [19]. There, the notion of a process, lasting for a finite
amount of time, whereby an incoming state becomes an outgoing state, is done away with entirely:
one considers only the in and out states to be real, and the mapping between them is the funda-
mental object of study. The theory was abandoned in the 1970s, but produced string theory as an
offshoot.
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Chapter 2: Scattering theory

|ψ〉. It is intuitively clear that

Ω+ = lim
t→∞

e−iHt/~eiH0t/~, (2.3)

Ω− = lim
t→∞

eiHt/~e−iH0t/~, (2.4)

S = Ω†−Ω+. (2.5)

The above relations between H and S are too complicated to work with directly,

due to the matrix exponentiation and the t→∞ limit. Both of these complications

can be removed, however, by exploiting the linearity of the Møller operators and

working with the so-called stationary scattering states. In order to check whether

two S-matrices match, one only needs to know how these states behave outside the

influence of the potential, as we will now show.

Consider the action of Ω+ on some incoming state: |φ+〉 ≡ Ω+|φin〉. Writing this

in the momentum basis, we have

|φ+〉 = Ω+

∫
d3k φin(k)|k〉, (2.6)

=

∫
d3k φin(k)|k+〉. (2.7)

The |k+〉 are called stationary scattering states. They are eigenstates of the full

Hamiltonian, with energies ε(k) = ~2k2/2m (with k ≡ |k|, and assuming the usual

dispersion relation). Now, to find the outgoing state that emerges from |φin〉, one

must act with Ω†−, mapping |φ+〉 to the far future under the full Hamiltonian,

and then back to the present under H0. After the first part of that operation,

the overlap between the state and the potential will be vanishingly small. Thus,

in order to carry out the second step, one needs only to know the |k+〉 outside

of the range of the potential. Also, since the |k+〉 are eigenstates of H, we have

e−iHt/~|k+〉 = e−iε(k)t/~|k+〉, regardless of the form of |k+〉. These facts together

mean that the S-matrix depends only on the |k+〉 outside of the range of the po-

tential, or, equivalently, on the asymptotic behaviour 〈x|k+〉r→∞ (where r ≡ |x|).

So, in order to check whether two models have the same scattering properties, one

6



Chapter 2: Scattering theory

need only compare the asymptotic forms of their stationary scattering states. This

is vastly simpler than working with Eqs (2.3), (2.4) and (2.5) directly. Let us now

develop equations allowing us to perform this comparison. We have

Ω+|k〉 = |k〉+ lim
t→∞

∫ −t/~
0

dτ
d

dτ
eiHτeiH0τ |k〉 (2.8)

= |k〉+ i

∫ ∞
0

dτ e−iHτV eiH0τ |k〉, (2.9)

= |k〉+ i

∫ ∞
0

dτ e−i(H−ε(k))τV |k〉. (2.10)

The integral in Eq. (2.10) does not converge. It is possible to make it convergent

without affecting any physics, however: simply introduce a small time dependence

in the potential as V → e−ηtV , with 0 < η � 1. Since the effect of the potential

vanishes at large times for any scattering event, one can always choose an η small

enough so that e−ηt is negligible whilst V plays a role. Adding the damping term

and performing the integration yields

Ω+|k〉 = |k〉+ lim
η→0+

(ε(k) + iη −H)−1V |k〉, (2.11)

≡ |k〉+ lim
η→0+

G(ε(k) + iη)V |k〉, (2.12)

where in the last equation we have defined the interacting Green’s function G(z). 3

It is easily seen that G(z) satisfies

G(z) = G0(z) +G0(z)V G(z), (2.13)

where G0 is the non-interacting Green’s function, G0(z) = (z − H0)−1. Also, it is

useful to define another operator, the T -matrix, in terms of G(z) as

T (z) = V + V G(z)V. (2.14)

3By the same kind of argument, one sees that Ω−|k〉 = |k〉+ limη→0− G(ε(k) + iη)|k〉.

7



Chapter 2: Scattering theory

The last two equations together imply that

G0(z)T (z) = G(z)V, (2.15)

which can be used in Eq. (2.12) to obtain the so-called Lippmann-Schwinger equa-

tion for |k+〉,

|k+〉 = |k〉+G0(ε(k) + i0+)V |k+〉, (2.16)

which, after taking the position representation and performing a contour integral,

reads

ψk(x) = φk(x)− m

2π~2

∫
d3x′

eik|x−x
′|

|x− x′|
V (x′)ψk(x′), (2.17)

where ψk(x) = 〈x|k+〉 and φk(x) = 〈x|k〉. We are now in a position to inspect the

asymptotic form of |k+〉: it is

ψk(x)r→∞ = φk(x)− m

2π~2

eikr

r

∫
d3x′e−ikx̂·x

′
V (x′)ψk(x′), (2.18)

≡ 1

(2π)3/2

(
eik·x + f(kx̂,k)

eikr

r

)
. (2.19)

where x̂ = x/r. One sees that the stationary scattering states have a very sim-

ple asymptotic form, containing only an incident wave part, φk, and an outgoing

spherical wave, modulated by a function that depends only on the angle between x

and the origin, and on the incoming momentum vector k. Thus, we have reduced

the task of checking whether two theories have the same scattering properties to

that of calculating the modulating function f(kx̂,k), which is called the scattering

amplitude. In the next section, we investigate this amplitude for particles at low

energies.

2.2 Ultracold Scattering

A prominent application of the ideas outlined above is found in the theory of interact-

ing Bose-Einstein condensates. There, one exploits the simplicity of zero-momentum

scattering and replaces the complicated interatomic interaction with a much simpler

8



Chapter 2: Scattering theory

one. We will explain this procedure in more detail when we consider optical lattices

in the next section; for now, our concern is to show that scattering at very low

energies depends only on a single parameter, the scattering length.

When attempting to solve a problem, it is often a good idea to begin by reducing

the size of the space of possible solutions. In the present case, the problem of

scattering at low energies, the quantization of angular momentum provides a natural

way of achieving such a reduction. States with nonzero angular momentum must

pay a finite energy cost, and thus may be eliminated from low-energy considerations.

To see this, consider the Schrödinger equation in spherical coordinates

(
− ~2

2µr2

[
∂r(r

2∂r)− L̂2
]

+ V (r)

)
ψ(r, θ, φ) = Eψ(r, θ, φ) (2.20)

where we have separated center of mass and relative coordinates, and are focusing

on the relative part. Also, we have assumed that the potential depends only on

the interparticle distance r, as is often the case in atomic physics. The fact that

the potential is spherically symmetric allows one to obtain a purely radial equation.

Since L̂ commutes with H, all eigenstates of H must also be eigenstates of L̂, which

fixes the angular dependence of the wavefunction: one has

ψ(r, θ, φ) = R(r)Ylm(θ, φ), (2.21)

where the Ylm are spherical harmonics, eigenfunctions of L̂ with eigenvalue l(l+ 1).

Using this form for the wavefunction in Eq. (2.20), the Ylm may be eliminated, and

we obtain (
− ~2

2µr2

[
∂r(r

2∂r)− l(l + 1)
]

+ V (r)

)
R(r) = ER(r). (2.22)

Thus, a state with nonzero angular momentum experiences a centrifugal barrier

∝ 1/r2. This barrier will inevitably increase the energy of the eigenstates; thus, at

low energies, we are justified in restricting the Hilbert space to states with l = 0.

This drastic simplification leads to a very simple form for the scattering amplitude.

In order to see why, first note that, in the case of a spherically symmetric potential,

the orbital angular momentum operator L̂ commutes with the S-matrix. This is

9



Chapter 2: Scattering theory

due to the role of L̂ as the generator of rotations. It is intuitively obvious that the

S-matrix commutes with rotations for a spherically symmetric potential: rotating

the system before a scattering event or doing so afterwards results in the same

outgoing state. Since the S-matrix commutes with rotations, it must commute with

their generator. Also, since scattering conserves kinetic energy asymptotically, the

S-matrix commutes with H0. Therefore, S shares simultaneous eigenstates with L̂2,

L̂z, and H0. Since the latter three operators define a complete set of commuting

observables, their eigenstates {|E, l,m〉} form a basis for H, and S is diagonal in

this basis. Thus, S has the following representation:

S =

∫
dE
∑
l,m

sl(E)|E, l,m〉〈E, l,m|. (2.23)

The eigenvalues of S are independent of m, as can be seen from the fact that S

commutes with the ladder operators for l. Also, the unitarity of S 4 implies that

sl(E) must satisfy |sl(E)| = 1, so we may for convenience write it as sl(E) = e2iδl(E).

Now, in the previous section we argued that S depends only on the asymptotic form

of the stationary scattering states. This is reflected in the fact that S is completely

determined by the scattering amplitude f ; the two are related via

〈p′|(S − 1)|p〉 =
i

2πm
δ(ε(p)− ε(p′))f(p′,p). (2.24)

Using this relation together with Eq. (2.23), one obtains

f(p′,p) =
∞∑
l=0

(2l + 1)fl(ε(p))Pl(cos θ), (2.25)

where θ is the angle between p and p′, Pl is the l-th Legendre polynomial, and we

have defined the partial wave amplitude

fl(E) ≡ sl(E)− 1

2ip
=
eiδl(E) sin δl(E)

p
. (2.26)

The sum over l in Eq. (2.25) comes from the expansion of S in terms of angular

4This follows directly from the definition in terms of Møller operators: S† = Ω†+Ω− = S−1.

10



Chapter 2: Scattering theory

momentum states; thus, at low energies, only the l = 0 term need be retained.

Dropping all the other terms, then, one finds a very simple form for the scattering

amplitude at low energies:

f(p) =
eiδ0(ε(p)) sin δ0(ε(p))

p
. (2.27)

In the ultracold regime, the majority of particles have momentum close to zero.

Therefore, scattering in an ultracold gas will be controlled by limp→0 f(p) ≡ −a.

This limit can be shown to exist [18] and is called the scattering length “a”. It

completely determines the scattering properties of atoms at very low energies, a fact

that we shall make use of in the next chapter.

2.3 Identical particles and principal value opera-

tors

When calculating the scattering properties of a system of identical particles with

time-reversal-invariant interactions, it is possible to use a simplified formalism, in

which one may “ignore” the infinitesimal imaginary parts in the arguments of the

on-shell Green’s functions and T -matrix. In Chapter 6 we will employ this idea

to simplify a rather long calculation as well as several proofs. The formalism is

interesting from a practical point of view, since it allows one to ignore the imaginary

parts in the Lippmann-Schwinger equation. For ease of notation we particularise to

one dimension in this section, but the arguments presented here also hold in three

dimensions.

The scattering of a pair of identical particles is completely determined by the

equation

|p̃+〉 = Λ̂|p〉+G0(Ep + i0+)T (Ep + i0+)Λ̂|p〉, (2.28)

≡ Λ̂|p〉+G0+(Ep)T+(Ep)Λ̂|p〉, (2.29)

where Λ̂ is the (anti)symmetrisation operator for bosons (fermions), and |p〉 is an
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eigenstate of the relative momentum operator for a pair of particles. We also define

T−(Ep) ≡ T (Ep + i0−), and make the analogous definition for G0−. Note that if we

wish Λ̂ to preserve norm, it must be a non-linear operator, defined as

Λ̂|ψ〉 ≡ (1± P)|ψ〉√
〈ψ|(1± P)2|ψ〉

(2.30)

P is the parity operator. Now, any operator O that is invariant under parity satisfies

OΛ̂ = Λ̂OΛ̂ :

〈p′|OΛ̂|p〉 =
1

2
〈p|(O + P†OP)Λ̂|p〉 (2.31)

=
1

2
(〈p′|OΛ̂|p〉+ 〈−p′|OΛ̂| − p〉) (2.32)

=
1

2
(〈p′| ± 〈−p′|)OΛ̂|p〉 (2.33)

= 〈p′|Λ̂OΛ̂|p〉, (2.34)

where in the last line we have used the fact that
√
〈p|(1± P)2|p〉 = 2. If the potential

is symmetric, both the T -matrix and the Green’s function will be parity invariant,

and thus

|p̃+〉 = Λ̂|p〉+ Λ̂G0+(Ep)Λ̂T+(Ep)Λ̂|p〉 (2.35)

≡ Λ̂|p〉+ G0(Ep)T (Ep)|p〉, (2.36)

where G0(E) = Λ̂G0+(E) and T (E) = Λ̂T+(E)Λ̂. The motivation for defining G0

and T - which we will refer to as principal value operators, for reasons that will

soon become clear - is that they turn out to be simpler than their non-principal-

value counterparts. To see this, it is useful to introduce the time reversal operator

T, defined via

T|p〉 = | − p〉, (2.37)

T|x〉 = |x〉. (2.38)

By considering inner products between position and momentum states, one may

12
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establish that T is anti-unitary, that is, norm preserving and anti-linear. Anti-

linearity implies that 〈φA|TφB〉 = 〈φAT†|φB〉∗, which gives the rather strange rela-

tion, Ti|ψ〉 = −iT|ψ〉. Therefore, assuiming a time-reversal-invariant Hamiltonian,

we have TG0± = G0∓T, and similarly TT± = T∓T. Thus,

〈p′|Λ̂G0+(Ep)Λ̂|p〉 =
1

2
〈p′|Λ̂(G0+(Ep) + T†G0+(Ep)T)Λ̂|p〉, (2.39)

=
1

2
〈p′|(G0+(Ep) +G0−(Ep))Λ̂|p〉, (2.40)

where we have used the fact that Λ̂|p〉 = −TΛ̂|p〉. Comparing the above with Eq.

(2.36), we obtain

G0(E) =
1

2
[G0+(E) +G0−(E)]. (2.41)

To see the simplification offered by working with G0, consider the matrix element

〈p′|G0±(E)|p〉 = 〈p′| 1

E −H0 + i0±
|p〉. (2.42)

Noting that G0 only makes sense as an integral kernel, and using the Sokhotski-

Plemelj theorem [20], we can write

〈p′|G0±(E)|p〉 = 2πδ(p′ − p)
[
P
(

1

E − ε(p)

)
∓ iπδ(E − ε(p))

]
, (2.43)

⇒ 〈p′|G0(E)|p〉 = 2πδ(p′ − p)P
(

1

E − ε(p)

)
, (2.44)

where P denotes principal value integration - hence the name principal value oper-

ators. We see that the imaginary part, which is a needless complication containing

no information about the scattering of identical particles, does not appear in G0. As

for the T -matrix, using Eqs (2.14) and (2.15), we have

〈p′|Λ̂T+(Ep)Λ̂|p〉 = 〈p′|Λ̂
[
V + V G0+(Ep)T+(Ep)

]
Λ̂|p〉 (2.45)

= 〈p′|
[
Vp + VpΛ̂G0+(Ep)Λ̂T+(Ep)Λ̂

]
|p〉. (2.46)

where we have defined Vp = Λ̂V . Thus, the on-shell T -matrix obeys a Lippmann-

13



Chapter 2: Scattering theory

Schwinger equation

〈p′|T (Ep)|p〉 = 〈p′|
[
Vp + VpG0(Ep)T (Ep)

]
|p〉. (2.47)

Finally, one may use equations (2.36) and (2.14) to obtain an implicit equation for

|p̃+〉,

|p̃+〉 = Λ̂|p〉+ G0Vp|p̃+〉. (2.48)

It is convenient to work with the equations (2.36), (2.47), and (2.48) rather than

the usual Lippmann-Schwinger equations when treating the scattering of identical

particles, and we will make use of this formalism in the next section, and in chapter

6.

2.4 Scattering in one dimension

The idea outlined in section 2.1 is ideally suited to the study of one-dimensional

quantum systems. This is because one-dimensional scattering for identical particles

always occurs in a single “angular momentum” channel - even or odd wave - and

is thus controlled by a single parameter, no matter what the energy, in contrast

to higher dimensions where this is true only at low energies. Later on, we will

describe an application to a one dimensional system, and therefore it will be helpful

to establish some relations in one dimensional scattering at this point. We work

with identical fermions, since this will be our application domain; the bosonic case

is analogous.

To begin with, we calculate the position-space representation of the one-dimensional

principal value Green’s function G0(E):

〈x|G0(Ep)|x′〉 =

∫
dp′ 〈x|G0(Ep)|p′〉〈p′|x′〉 (2.49)

= lim
η→0+

m

~2π

∫
dp′ eip

′(x−x′)
(

1

p2 + iη − p′2
+

1

p2 − iη − p′2

)
. (2.50)

This is easily evaluated by contour integration: one closes the contour in either the

upper or the lower half plane, depending on the sign of x− x′, and each term picks
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up one of its two poles, depending on the sign of iη. We obtain

〈x|G0(Ep)|x′〉 =
m

~2|p|
sin(|p(x− x′)|). (2.51)

This leads to the following form for the stationary scattering states:

ψp(x) =
i sin(px)√

2π
+

im

~2|p|

∫
dx′ sin(|p(x− x′)|)Vp(x′)Im[ψp(x

′)], (2.52)

where we have used the fact that ψp(x) is purely imaginary for identical fermions

(as can be seen by iterating 2.48) to pull out its phase in the second term, for later

convenience. Let us inspect the r →∞ limit of ψp(x) (where r = |x|),

ψp(x)r→∞ =
i sin(px)√

2π
− im

~2|p|
sgn(x) cos(|p|x)

∫
dx′ sin(|p|x′)Vp(x′)Im[ψp(x

′)]

(2.53)

≡ i√
2π

(
sin(px)− sgn(x)tan(θp) cos(|p|x)

)
(2.54)

=
i sgn(x)√

2π

sin(p|x|+ θp)

cos(θp)
. (2.55)

We see that one-dimensional stationary scattering states have a particularly simple

asymptotic form: the “incoming” sine wave has its phase shifted by an amount θp,

its magnitude scaled by an irrelevant factor 1/ cos(θp), and nothing more. Thus,

the phase shift θp completely determines the scattering physics for any given pair

of identical particles in one dimension5. In treating a dilute one-dimensional sys-

tem, then, one may replace the realistic interaction with an effective potential that

reproduces the exact phase shift (at a given energy), and can expect to obtain dy-

namics close to that of the realistic model at any energy. We will apply this idea to

Luttinger liquids in Chapter 6.

5In the case of distinguishable particles, two phase shifts are required: one for even, and the
other for odd, waves.
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Optical lattices

In the next chapter we will consider the behaviour of a bosonic atomic gas in the

presence of an optical lattice, and so here we give a sketch of the basic principles

underlying the theory of such systems, and derive their basic model, the Bose-

Hubbard model. The optical lattice idea emerged during the early 1990’s, in the

context of laser cooling. Atoms exposed to laser fields can exchange momentum with

the photon field by radiating, and this behaviour can be exploited in order to cool

a sample. Aside from the term that drives transitions and leads to radiation, the

atom-laser interaction also contains a conservative term that acts as a potential for

the atom’s center of mass, and is proportional to the laser intensity. In 1991, Castin

and Dalibard considered the effect of the latter term upon a laser cooling technique

known as optical molasses [21]. They discovered that the periodic nature of the laser

intensity leads to a Bloch band structure for the atoms’ motion. A few years later,

Jaksch and collaborators hit upon the idea of restricting their description to the

lowest band, and showed that cold atoms in optical lattices are well-described by

a Hubbard-like tight-binding Hamiltonian [33]. This brought about the realisation

that optical lattices could be used to implement Feynman’s quantum simulator idea

[22], in this case as simulators of condensed matter systems [23]. Since then, optical

lattices have been used to simulate existing condensed matter models [24, 25, 26], to

realise novel phases of matter [27, 28, 29], and proposed as components in quantum

technologies [30, 31].

As experimental systems and objects of theoretical study, optical lattices possess
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many appealing features [23, 32]. One of the most obvious is their ability to trap

both bosonic and fermionic particles, allowing us to study the behaviour of bosons

in situations normally encountered only by fermions. Another is the high degree

of control they offer over many parameters, such as tunneling amplitudes, particle-

particle interaction strengths, lattice length, and particle number. One area of study

which exploits all of these advantages is that of bosonic atoms in lattices with flat

bands [16, 34, 35]. Flat bands support bases of strictly localised eigenstates, in

the sense that the wavefunction vanishes exactly over the whole lattice, except for

on a few neighbouring sites [36]. If the lowest-energy band is flat, then below a

certain particle density νc the many-body ground state is a crystal composed of

these localised states. The control offered by optical lattice systems allows us to

investigate the transition away from this crystalline ground state, as the particle

density is increased beyond νc: we can simply construct a lattice that is one unit

cell too short to support the crystal, or add an extra atom on top of a preexisting

crystal. Interestingly, this is a phenomenon where statistics and onsite interactions

are likely to play an important role - indeed, as we will soon see, it is expected that

the system above νc will behave qualitatively differently depending on whether the

particles are allowed to overlap, as in the weakly-interacting bosonic case, or not, as

in the fermionic and strongly-interacting bosonic cases. Therefore an optical lattice

implementation is especially appealing [37], allowing us to study the system in all

of these regimes. In the next chapter we will explore the physics of such a system

at filling slightly above νc.

In order to discuss the physics of optical lattices, one must first understand

the way in which light interacts with matter. This interaction has two facets; a

dispersive part, where the light causes transitions between atomic energy levels, and

a conservative part, taking the form of a coupling between the atomic dipole moment

and the light field. Optical lattices rely on the latter facet, which gives rise to a

potential landscape for the atomic center of mass degrees of freedom. To see how

the field-dipole coupling comes about, let us begin with a description of a single,

free atom; we then introduce a laser field into the picture, and consider the resulting
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dynamics.

3.1 A single atom interacting with light

We now give a description of a single atom, and its behaviour in the presence of a

laser field. When constructing a mathematical picture of a physical system, the first

task is to choose the appropriate formalism. Since the ultimate goal is to understand

optical lattices, which are low-speed, high-photon-number systems, there is no need

to use quantum electrodynamics; rather, a Schrödinger equation description, with

electromagnetism treated classically, is appropriate. The fine structure of the nucleus

may also be neglected; we will treat it as a single particle. Thus, for our purposes,

the degrees of freedom of a neutral atom consist of the nuclear coordinate, rn, and

Z electronic coordinates, rei , Z being the nuclear charge or atomic number. These

fundamental coordinates are not especially useful, however, so let us instead take

the following set:

R =
1

mn + Zme

(
mnrn +me

∑
i

rei

)
, (3.1)

ri = rn − rei , (3.2)

where mn is the mass of the nucleus, and me the mass of an electron. For convenience

let us write down the gradient operators

∇rei
=

me

mn + Zme

∇R −∇ri , (3.3)

∇rn =
mn

mn + Zme

∇R +
∑
j

∇rj . (3.4)

In terms of these coordinates, and in atomic units (which we use throughout this

section), the atom’s Hamiltonian is

Hatom = −∇
2
R

2M
−

Z∑
i=1

(
∇2
ri

2µ
− 2Z

|ri|
+

Z∑
j>i

[
2

|ri − rj|
+
∇ri · ∇rj

mn

])
, (3.5)
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where M = mn + Zme and µ = mnme/(mn + me). The last term in Eq. (3.5) -

the “mass polarization” - is negligible due to the large magnitude of mn/me. A key

observation here is that the center of mass and relative coordinates are decoupled:

we have H = HR +Hr. Therefore the stationary Schrödinger equation has solutions

of the form ψ = ψR ⊗ ψr. Thus, the Hamiltonian gives an idea of the atom’s

low-energy behaviour: the center of mass will delocalise as a plane wave, and the

Coulomb interaction between the nucleus and the electrons ensures that the relative

degrees of freedom will occupy some bound state - or level - of Hr. For future use,

let us denote these levels as |α〉, so that Hr|α〉 = Eα|α〉.

Consider now the effect of exposing the above system to a laser field. The field

enters the Hamiltonian via minimal coupling, ∇xi → ∇xi − eiA(xi, t), where ei is

the ith particle’s charge. This has quite a complicated effect, and the resulting

Hamiltonian requires simplification. To this end, it is convenient to employ the

dipole approximation, which takes advantage of the fact that the bound states of

Hr decay rapidly away from the center of mass R, so that a slowly-varying gauge

field is constant over their effective support, and one can replace A(xi, t)→ A(R, t).

Under this approximation, we have

H = −∇
2
R

2M
+

Z∑
i=1

(
[−i∇ri − eA(R, t)]2

2µ
+

2Z

|ri|
−

Z∑
j<i

2

|ri − rj|

)
, (3.6)

where we note that the center of mass kinetic term is unaffected, as is clear from

Eqs. (3.3) and (3.4): the contributions from the nucleus and from the electrons

cancel one another. R does appear in the relative problem, however, so that the

center of mass and orbital spaces become parametrically coupled. As we will see,

this coupling results in an effective force for the center of mass degree of freedom.

The Hamiltonian as it stands is not particularly transparent, mainly due to the

presence of the gauge field, which is difficult to interpret. It is possible, however, to

eliminate A in favour of the more physical electric field E. In order to do this, first

note that

[−i∇ri − eA(R, t)]2 eieri·A(R,t)ψ(r) = −eieri·A(R,t)ψ(r). (3.7)
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Since the goal is to eliminate A, the above relation suggests the following transfor-

mation:

ψ(r1, ..., rZ ,R)→ exp

[
ie

Z∑
i=1

ri ·A(R, t)

]
ψ(r1, ..., rZ ,R). (3.8)

The gauge field, and therefore the transformation, depends on time, so the new

Hamiltonian is obtained by plugging the above into the time dependent Schrödinger

equation: upon doing this, we obtain

H = −∇
2
R

2M
−

Z∑
i=1

(
∇2
ri

2µ
− 2Z

|ri|
+

Z∑
j<i

2

|ri − rj|
+ eri · E(R)

)
, (3.9)

= Hatom − e
Z∑
i=1

ri · E(R). (3.10)

where we have used the Coulomb gauge relation E = −∂tA. This is a nice result:

upon the introduction of a laser field, the free atomic Hamiltonian is preserved, save

for the addition of a single term which couples the electrons to the electric field in a

simple way [38]. The optical potential that we are seeking for is nothing more than

the energy shift exerted upon the atomic levels by this coupling. To see this, it is

helpful to consider the action of H in the basis of levels, {|α〉}. The action of Hatom

in this basis is clear, so let us concentrate on the extra term, which, if one chooses

the standard complex representation for the laser field, can be written as

V = e
∑
α,β

Z∑
i=1

(E(R)e−iωt + E∗(R)eiωt) · 〈α|ri|β〉 |α〉〈β|. (3.11)

Although the above potential seems to couple all the atom’s levels together, com-

plicating the dynamics considerably, it can in fact represent a significant simpli-

fication, yielding behaviour that is more easily understood than that of the free

atomic system. In particular, if the frequency ω is close to that of some transi-

tion, ω ≈ (Eα − Eα′), then the coupled system can be modeled solely in terms of

the states |α〉 and |α′〉; it becomes effectively a two-level system. This is most

easily seen by transforming to the interaction picture via the unitary operator
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U(t) = exp(−it
∑

αEα|α〉〈α|), whereby the potential V becomes

V =
∑
αβ

Z∑
i=1

(
ei(Eα−Eβ−ω)tE(R) + ei(Eα−Eβ+ω)tE∗(R)

)
· 〈α|ri|β〉 |α〉〈β|. (3.12)

In this picture, one sees that every transition |β〉 → |α〉 comes with a temporally

oscillating coefficient. If one is interested in the dynamics on timescales similar to

that of the slowest oscillation, and if the other oscillations are significantly fast by

comparison, then one may ignore all but the most slowly-oscillating terms: the others

will average out to zero over the relevant timescale. Clearly, the slowest-oscillating

terms are associated with the transition where |Eα −Eβ| is closest to ω. Thus, one

may drop all other terms and regard the potential as driving a transition between

two levels only - call them |g〉 and |e〉. If a free atom is prepared in either state, or

some superposition of the two, and the laser field is subsequently introduced, the

atom will behave as a two-level system. In that case, returning to the Schrödinger

picture, then transforming once again to a time-dependent frame - this time to one

that rotates along with the laser field, ψ → eiωt(|e〉〈e|−|g〉〈g|)ψ - we have

H = −∇
2
R

2m
− ∆

2
|e〉〈e|+

[
Ω(R)e−iωt|e〉〈g|+ h.c.

]
, (3.13)

where we have defined the Rabi frequency Ω(R) =
∑

i 2E(R) · 〈g|ri|e〉, the detuning

∆ = Ee − ω, and have set the ground state energy to zero. For a sufficiently weak

electric field, the energy shift due to the last term can be calculated perturbatively.

To second order, one obtains

∆Eg,e ∝ ±
Ω2(R)

∆
, (3.14)

where the plus sign corresponds to the shift for |g〉. Thus, an atom in the perturbed

ground state1 feels a center-of-mass-dependent potential U(R) = Ω2(R)
∆

due to the

light field. For ∆ > 0, such atoms will seek regions of low field intensity, and the

opposite for ∆ < 0. This is the effect that allows for the creation of an optical lattice

1We assume that the atoms remain in a particular perturbed eigenstate throughout the inter-
action. This is reasonable for large values of ∆.
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[32].

3.2 Many atoms interacting with each other

We have seen how a laser field may induce an optical potential for a single atom.

Optical lattices are interesting because of their ability to hold many atoms, however.

So, as well as the interaction between atoms and light, it is important to understand

the behaviour of a group of atoms that interact with one another. The atoms

occupying optical lattice systems are usually initially Bose-condensed, and so it is

this phase in particular that we must understand.

To begin with, consider the potential between a pair of atoms, which, although

extremely complicated in detail, is often dominated by the dipole-dipole and short-

range repulsive forces, and hence well-approximated by the Lennard-Jones potential,

V (r) ∝ σ12/r
12 − σ6/r

6. This potential supports bound states, so that the ground

state of a many-atom system is a bound cluster. Thus, an ensemble of atoms, suffi-

ciently cooled, might be expected to solidify; indeed, at low temperatures, ensembles

interacting via the Lennard-Jones potential are solid at thermodynamic equilibrium.

There exists, however, a metastable state above the solid phase: the Bose-Einstein

condensate (BEC). In a BEC, the atoms are not bound to one another. Rather, the

main bulk of the many-body wavefunction is concentrated on configurations where

the atoms are well-separated. Despite being thermodynamically unfavourable, this

gaseous phase can persist for a significant amount of time if the gas is sufficiently di-

lute. To see why, note that the requirements of energy and momentum conservation

forbid a pair of initially-unbound atoms from binding by themselves. A third parti-

cle is required, in order to convert the kinetic energy of the pair into binding energy.

In other words, molecule formation requires three-body collisions. In a highly dilute

gas such collisions are very rare, so that the gas is metastable.

Given that three-body processes are rare, and since two-body collisions can-

not lead to bound states, it is clear that two-body scattering events are the most

important interaction processes in the BEC phase. Therefore, rather than using

a hard-to-treat interaction like the Lennard-Jones potential, it seems sensible to
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choose a simpler interaction. As long as the simpler interaction reproduces the

correct two-body scattering properties, it will be suitable for use as an effective po-

tential between the particles in a Bose-condensed gas. Moreover, as was shown in

the previous chapter, two-body scattering properties at low energies are determined

by a single parameter, the scattering length. Therefore one may choose an effective

interaction that also depends only on a single parameter. We opt for

V (r) = gδ(r). (3.15)

For simplicity, let us work with identical bosons and calculate the scattering prop-

erties due to this potential in the principal value formalism. From the Lippmann-

Schwinger equation 2.47 for T , we have

〈p′|T (Ep)|p〉 =
g

(2π)3
+

g

(2π)3
P
∫
d3q
〈q|T (Ep)|p〉
Ep − Eq

. (3.16)

One immediately notices that 〈p′|T (Ep)|p〉 is independent of p′; therefore, when

E is symmetric about Ep (as in the low-energy limit), the principal value integral

vanishes, and we see that

〈p′|T (Ep)|p〉 =
g

(2π)3
. (3.17)

Using this in Eq. (2.36) and taking the position-space representation yields

ψp(x) =
cos(p · x)

(2π)3/2
+

g

(2π)6
P
∫
d3q

eiq·x

Ep − Eq
(3.18)

⇒ ψp(0) =
1

(2π)3/2
(3.19)

On the other hand, from Eq. (2.17) one sees that

ψp(x) =
cos(p · x)

(2π)3/2
− mg

4π~2

eipr

r
ψp(0). (3.20)

where we have used the reduced mass, since we are considering the relative coordi-

nate problem. Thus, from Eq. (2.19) and the definition of the scattering length a,
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we find:

a =
mg

4π~2
. (3.21)

The coupling strength g should be chosen so that a is the actual scattering length for

the particles under consideration - this can be measured experimentally, or calculated

numerically using a realistic interaction. Thus, a dilute ultracold atomic gas is well

described by the (bare) Hamiltonian

H =
∑
i

[
p2
i

2m
+ g

∑
j>i

δ(xi − xj)

]
, (3.22)

where xi is the center of mass coordinate of the ith atom.

3.3 Optical lattices and the Bose Hubbard model

In this section, the basic model for ultracold atoms in optical lattices - the Bose-

Hubbard model - is developed. Upon introducing a BEC to a laser field far detuned

from any of the constituent atoms’ transitions, the center of mass degrees of freedom

of the atoms will experience the energy shift (3.14). Suppose that the laser intensity

is such that the energy shift is given by a periodic function VL(x). The Hamiltonian

for a BEC exposed to such a laser field, in second-quantised form, is

H =

∫
d3xψ†(x)

(
~2

2m
∇2 + VL(x)

)
ψ(x)

+
g

2

∫
d3xψ†(x)ψ†(x)ψ(x)ψ(x),

(3.23)

where we have simply added the laser-induced energy shift to the Hamiltonian

(3.22) and second-quantised it. ψ†(x) creates an atom at position x and satis-

fies [ψ(x), ψ†(x′)] = δ(x−x′). In treating this model, it will once again be useful to

consider low-energy physics. In the previous chapter, such a restriction was facili-

tated by the quantised angular momentum of scattering particles, and the present

model contains a similarly natural energy barrier: the energy difference between the

periodic potential’s lowest Bloch band and the higher bands. According to Bloch’s

theorem, since the potential VL(x) is periodic, the single-particle eigenstates of the
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Hamiltonian (3.23) can be written as

φ
(j)
k (x) = eik·xu

(j)
k (x), (3.24)

with k - referred to as the quasimomentum - in the first Brillouin zone. The u
(j)
k (x)

must have the same periodicity as the lattice. To get an idea of what these functions

look like, let us consider a one dimensional system, and use Bloch’s form for the

eigenfunctions in the single-particle stationary Schrödinger equation. Then, one

sees that the u
(j)
k (x) must satisfy

(
(p̂+ ~k)2

2m
+ VL(x)

)
u

(j)
k (x) = E(j)(k)u

(j)
k (x). (3.25)

If VL(x) is a periodic array of wells, VL(x + d) = VL(x), with d the lattice spacing,

as in an optical lattice, the equation need only be solved for a single well, with

periodic boundary conditions imposed. In the case where k = 0, then, it reduces to

the usual Schrödinger equation over a single well, which will support a number of

bound states. Thus, u
(j)
k is related by a continuous transformation, parameterised

by k, to the jth bound state of the well. As k increases, the u
(j)
k tend to localise

more strongly within the well; this behaviour is illustrated in Fig. 3.1. Similarly,

the function E(j)(k) - referred to as the band’s dispersion - must be equal to the

energy of the jth bound state at k = 0. The extent to which bands are separated

energetically is thus influenced by the energy difference between the bound states -

the band gap. Since with optical lattices one can control the depth of the wells, and

hence the energy gap between the bound states, one can always engineer the system

so that the lowest band is well-separated from the upper bands. In that case, at low

densities and low temperatures, all the particles in the lattice will occupy the lowest

band, and we may restrict the Hilbert space accordingly.

In order to see what the Hamiltonian looks like upon restricting H to the lowest

band, it is convenient to introduce localised functions, known as Wannier functions,

taking the form

w
(j)
R (x) =

1√
N

∑
k∈BZ1

e−ik·Rφ
(j)
k (x), (3.26)
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Figure 3.1: a) The three lowest Bloch bands for a potential V = V0 sin2(x). As V0

increases, so does the gap between the bands. b) The functions u
(0)
k at various values

of k, for a single period of the same potential (plotted in red). The better-localised
state have larger values of k.

where R is a lattice vector, and N is the number of lattice sites in the system.

The convenience of these functions lies in the fact that the set {w(j)} forms an

orthonormal basis for the jth band, and that the wR are localised around R [39];

thus, the w
(0)
R provide a well-localised basis for the lowest band, in terms of which we

can construct a projected Hamiltonian. To carry out the projection, note that the

operator ψ†(x) maps the vacuum |0〉 to a state which we may write in first quantised

notation as |x〉. The projection of ψ†(x) onto the lowest band must therefore map

|0〉 to the projection of |x〉 onto the lowest band. Since the overlap between the

Wannier state
∫
d3xw

(j)
R (x)|x〉 and |x〉 is just w

(j)
R (x), it is clear that the projection

can be implemented as

ψ(x)→
∑
i

w
(0)∗
Ri

(x)bi, (3.27)

where bi is an operator creating a Wannier state at Ri. Plugging the projected

operators into the Hamiltonian (3.23), we obtain the Bose-Hubbard Hamiltonian
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[33],

H =
∑
〈i,j〉

ti,jb
†
ibj +

U

2

∑
i

n̂i(n̂i − 1), (3.28)

where 〈i, j〉 denotes a pair of adjacent lattice sites. Dropping the band index, we

have

U ≈ g

∫
d3x|wRi

(x)|4, (3.29)

representing the onsite repulsion between two atoms2 (assumed to be the same at

all sites, although one can easily add a site index if necessary), and

ti.j = −
∫
d3xw∗Ri

(x)

(
p2

2m
+ VL(x)

)
wRj

(x), (3.30)

which gives the rate of tunneling between the sites i and j. Since ti,j depends on the

distance between the lattice wells, and on their depth, it is tunable. Also, U depends

on g, which in turn depends on the scattering length of the atoms comprising the

BEC. Since this is tunable via magnetic Feshbach resonance [40], U is tunable.

The fact that optical lattices provide experimental control over the Bose-Hubbard

model’s two key parameter sets (tunneling and onsite interactions) makes them ideal

for testing condensed matter models, and for experimentally realising novel phases

of matter.

3.4 Positive tunneling through periodic driving

The next chapter will be concerned with an exotic ground state, found in a lattice

system where the lowest band is flat (i.e, independent of quasimomentum). The

system in question has two bands, only one of which can become flat. Whether this

is the upper or the lower band depends on the sign of the tunneling; if tij is negative,

for instance, only the upper band can become flat. This adds a complication, since

the tij are indeed negative for standard optical lattices, and the lattice that we

wish to work with is no exception [37]. Thus, we require a method for tuning

the hopping parameters through to positive values. Fortunately, periodic driving

2A technique for calculating this quantity non-perturbatively is found in [41]
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provides just such a method: adding a fast periodic term to a Hamiltonian gives

rise to dynamics that are close to the dynamics of the undriven system, but with

the original parameters modified in a way that depends on the driving. This can

be exploited in order to obtain the required hopping sign, by rapidly moving the

lattice along a small elliptical orbit [42]. We now briefly sketch the idea, following

the treatment of [43].

In order to see that a fast periodic driving leads to a dressing of the static

system’s parameters, it is convenient to split the time evolution into inter- and intra-

period parts. Interperiod evolution moves the system forward in time by one period

(denoted T ), and its corresponding evolution operator can be regarded as time-

independent, given a choice of initial time. The intraperiod evolution then accounts

for the remaining dynamics, or micromotion, and is generated by a time-dependent

operator. If the driving is sufficiently fast, the dynamics on the driving timescale

and on the undriven timescale decouple. In that case, the interperiod operator takes

the form of a renormalised undriven evolution operator. The intraperiod operator

rapidly modulates this behaviour and, if one is interested only in dynamics on the

undriven timescale, may be time-averaged away.

Let us see how this works in more detail. To begin with, note that the time

evolution operator for a driven system takes the form

U(t2, t1) = T exp

(
− i
~

∫ t2

t1

dtH(t)

)
(3.31)

where T denotes time ordering. Now, consider the operator U(t1 +T, t1) taking the

system forward in time by one period, starting from time t1. For a fixed t1, this

operator is time independent, and, since it is unitary, it has a Hermitian generator,

which we call the Floquet Hamiltonian H
(t1)
F . Then,

U(t1 + T, t1) = e−
i
~H

(t1)
F T . (3.32)
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From the periodicity, it is evident that

U(t1 + nT, t1) = e−
i
~H

(t1)
F nT . (3.33)

The goal is now to separate fast and slow dynamics, i.e, to consider the evolution

generated by HF separately from that occurring on short, intraperiod timescales. In

order to facilitate this separation, suppose that there are n periods between t1 and

t2, so that t2 − t1 = nT + τ , with 0 ≤ τ < T , and imagine the evolution as a three

step process. In the first step, the system evolves from t1 to t2 under HF . Unless

τ = 0, this evolution clearly will not yield the physical state at time t2. However,

the trajectory generated by HF intersects the physical trajectory at the time t2− τ .

Therefore, as the second step, let the system evolve backwards in time under HF ,

up to t2 − τ . The physical state at time t2 may then be reached in the final step by

evolving under the full Hamiltonian from t2−τ to t2. Mathematically, this argument

reads

U(t2, t1) = U(t2, t2 − τ) e
i
~H

(t1)
F τ e−

i
~H

(t1)
F (t2−t1), (3.34)

≡ e−
i
~K

(t2)τ e−
i
~H

(t1)
F (t2−t1). (3.35)

Thus, we have separated the evolution operator into a time independent part, gen-

erated by H
(t1)
F and governing interperiod evolution, and a time dependent part,

generated by K(t2) and governing the evolution on intraperiod timescales, which

may be averaged over. This is the form of time evolution employed in works on

periodic driving in optical lattices [42, 44, 45, 46].

In order to see that HF does indeed behave like the undriven Hamiltonian with

renormalised parameters, a perturbative approach may be used. From Eqn’s (3.31)

and (3.32), one sees that

H
(t1)
F =

i

~T
log

[
T exp

(
− i
~

∫ t1+T

t1

dtH(t)

)]
. (3.36)

Thus, H
(t1)
F has a Baker-Campbell-Hausdorff expansion, or Dyson series, the nth
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term of which involves an integral over a region whose size is proportional to T n.

If H(t) is independent of T and the driving frequency ω is high, therefore, it is

reasonable to replace the Floquet Hamiltonian by the first term in its Dyson series,

which is nothing but the time average of the full, time-dependent Hamiltonian over a

period. In many cases, however, H(t) does depend on T , since the driving amplitude

often scales with ω. In order to deal with such situations, one may transform to a

time-dependent frame which co-rotates with the driving. Specifically, suppose that

the time-dependent Hamiltonian takes the form

H(t) = H0 + ωαλ(t)H1. (3.37)

Then, it is helpful to transform to a rotating frame as

|ψr(t)〉 = exp

(
iωα

∫ t

t1

dt′λ(t′)H1

)
|ψ(t)〉 ≡ V †(t)|ψ(t)〉. (3.38)

The Hamiltonian becomes

Hr(t) = V †(t)H0V (t). (3.39)

The Dyson series for the Floquet Hamiltonian in this frame is well behaved in the

T → 0 limit; it is just the time average 1
T

∫ T
0
dtHr(t).

Let us now particularise to the Bose-Hubbard model, to which we add a peri-

odic driving term modulating the onsite energies by functions vi(t) = ri · F, where

F = ω2 (Fcec cos(ωt) + Fses sin(ωt)). Fc,s are driving amplitudes, ec,s are orthogonal

vectors, and ri are the positions of the lattice sites. Such a modification is attainable

experimentally, by methods described in [47, 48]. We have

H(t) =
∑
〈i,j〉

ti,jb
†
ibj +

U

2

∑
i

n̂i(n̂i − 1) +
∑
i

vi(t)n̂i. (3.40)

Transforming to a rotating frame as described above and taking the high-frequency
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limit T → 0, we find the Floquet Hamiltonian (with t1 = 0)

HF =
∑
〈i,j〉

t̃i,jb
†
ibj +

U

2

∑
i

n̂i(n̂i − 1) (3.41)

where

t̃i,j = ti,jJ0 (αi,j) (3.42)

αi,j =

√∑
µ=e,s

[Fµeµ · (ri − rj)]
2, (3.43)

with J0 the zero-order Bessel function [42]. Thus, by modifying the angle of oscil-

lations or the oscillation amplitude, one can tune the effective hopping through to

positive values. As an aside, it is interesting to note that αi,j can be tuned to a zero

of J0, which will suppress tunneling and result in dynamical localisation.
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Flat band Bose-Hubbard system

above critical filling

In this chapter we study a Bose-Hubbard model whose lowest Bloch band is flat,

i.e., has constant energy. The irrelevance of kinetic energy for physics in flat bands

allows for the emergence of strongly correlated phases, and it is this property that

has attracted the strongest theoretical interest historically 1. For instance, flat bands

played a key role in the early understanding of ferromagnetism, where they provided

an ideal setting for the study of magnetic interactions without the distraction of

kinetic behaviour, allowing for the proof of important theoretical results [50, 51, 52].

Physicists studying another strongly correlated phase, the superconductor, have

also found use for flat-banded models [53], and the analogy between flat bands and

Landau levels allows for the use of optical lattice systems as experimental testing

grounds for quantum Hall physics [54, 55, 56].

Flat bands have an intimate connection with localisation: they admit bases of

localised single particle eigenfunctions, allowing for the formation of Wigner-crystal-

like many-body eigenstates. In this chapter, we investigate such a crystalline state,

and in particular its behaviour when an extra particle is introduced on top of the

crystal, in the context of an experimentally realisable optical lattice system [37]. The

lattice that we consider - the sawtooth chain - has a flat lower band and a dispersive

1Note that this is not the only interesting feature of flat banded-systems. They also have highly
unusual few-body scattering properties, a fact that we will touch upon later in this thesis, and that
is explored more fully in [49].
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Figure 4.1: The sawtooth lattice, occupied by a single localised state. The light blue
sites are occupied, with the weights appearing next to them. On the right of the
figure, the tunneling amplitudes leading to a flat band are shown. The interference
effect characteristic of flat bands is illustrated with blue arrows. The sites adjacent
to the localised state receive a total weight of zero from hopping.

upper band, so that the relevant behaviour may be brought about experimentally

by cooling the system to its ground state. We find that the extra particle causes a

defect in the crystal, which inherits the dispersive character of the upper band and

moves throughout the otherwise intact crystalline medium.

4.1 Flat bands and localised states

A flat band is a Bloch band in which energy is constant, that is, independent of

quasimomentum. One of the more striking features characteristic of flat bands is

their connection with localised states: it seems that every flat band supports a basis

of exactly local eigenstates. Surprisingly, there is no known theorem asserting that

this must be so [57] but the present author is unable to find a single example of a flat

band which does not have this property. Given the lack of a general theorem, we give

a few heuristic comments about the relationship between flat bands and localised

states. One can argue in two directions: the existence of the localised states can be

thought of as a consequence of the flatness of the band, or vice versa. Arguing in the

first direction, recall that the single-particle eigenstates of lattice models are Bloch

waves, which are analogous to plane waves in the continuum. In the continuum one

is able to construct almost any position-space function by superposing plane waves,

and it is not hugely surprising that enough of this freedom survives on the lattice so

that one is always able to construct localised states from Bloch waves belonging to

the same band. If the kinetic term is degenerate with respect to quasimomentum,
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as in a flat band, these localised states will be eigenstates. Arguing in the other

direction, one could claim that flat-banded lattices are precisely those on which

tunnelling is frustrated by destructive interference. This is best illustrated with an

example. Fig. 4.1 shows a localised state together with the hopping amplitudes on

the flat-banded sawtooth lattice. Notice how the contribution received by the sites

surrounding the V -state from hopping is zero, because of a cancellation between

contributions from different V -state sites. This kind of destructive interference is

a general feature of localised flat band states, and means that the localised state

behaves like a particle of zero group velocity or of infinite mass, or in other words,

a particle with a constant dispersion relation.

This link between localised states and flat bands leads to a peculiar type of

low energy behaviour in systems whose lowest band is flat. Consider a lattice of

length L with a flat lowest band, and let the associated localised states occupy l

sites each. Also, suppose that the lattice contains N < L/l particles. Then, for

positive interactions U > 0, it is easy to see what the ground state is. The system

can avoid the energetic penalty for particle-particle overlap by forming a crystal

of non-overlapping localised flat band states; since each of these states is itself an

eigenstate, and since they do not overlap, such a crystal is also an eigenstate. Also,

it must be the ground state. The interactions are positive, hence there is no other

arrangement possessing a lower energy.

4.2 The sawtooth chain: band structure and ground

state below critical filling

We choose to work with perhaps the simplest lattice that admits a flat lowest band,

the one-dimensional sawtooth chain. In the following we derive its band structure.

There are two independent hopping amplitudes in the model: hopping between

between two lower sites, which we parameterise by the quantity t, and hopping

between upper and lower sites, parameterised by tα (see Fig. 4.1). Thus, the tij in
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the Hamiltonian (3.28) for this model are

t2i,j = t(δ|2i−j|,2 + αδ|2i−j|,1), (4.1)

t2i+1,j = t α δ|2i+1−j|,1. (4.2)

To find the band structure, we must solve the single-particle stationary Schrödinger

equation Hψ = Eψ. It is convenient to use the first quantised form in order to do

this. We have

∑
µ=±1

t

(
αψ(j + µ) +

(1 + (−1)j)

2
ψ(j + 2µ)

)
= Eψ(j). (4.3)

We now employ Bloch’s theorem, writing the wavefunction as ψ
(n)
k (j) = eikjφ(n)(j).

Since there are two sites per unit cell, n is either 0 or 1, and the φ(n)(j) take only

two values (since φ(n)(j+2) = φ(n)(j)). Therefore without loss of generality we solve

the above for j = 0 and j = 1, obtaining

t
(
2α cos(k)φ(n)(1) + 2 cos(2k)φ(n)(0)

)
= E(n)(k)φ(n)(0), (4.4)

2t α cos(k)φ(n)(0) = E(n)(k)φ(n)(1), (4.5)

where k is in units of inverse lattice spacing. Solving for the energy, we have

E
(±)
k = t

(
cos(2k)±

√
cos2(2k) + 4α2 cos2(k)

)
(4.6)

We must tune α =
√

2 to obtain a flat band. Then,

E+ = 2t(1 + cos(2k)), (4.7)

E− = −2t. (4.8)

Thus, in order for the flat band to have the lower energy of the two, we require t > 0.

Positive hopping parameters do not occur naturally in optical lattices; hence, for

an experimental realisation, the periodic driving technique discussed in the previous

chapter must be employed.
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Figure 4.2: The band structure for the sawtooth chain for a) negative and b) positive
hopping amplitues. The dispersion is plotted for various ratios of the two hopping
parameters, with the flat band at ratio α =

√
2 (see text) highlighted in red. Here,

k is in units of 1/a, with a the lattice spacing (set to unity in the text)

The localised states associated with the flat band are

V †i |0〉 ≡
(√

2b†2i − b
†
2i+1 − b

†
2i−1

)
|0〉. (4.9)

Clearly, at most L/4 of these states can fit on the lattice without overlapping; thus,

the critical density or critical filling is νc = 1/4. Below this value of ν, the degenerate

ground states take the form

|ψ(N)
0 〉 =

∏
i∈S

V †i |0〉 (4.10)

where S = {i1, i2, ..., iN : |im− in| > 1∀m,n}, N being the number of particles. One

can verify that

H|ψ(N)
0 〉 = −2Nt|ψ(N)

0 〉. (4.11)

The ground state energy below critical filling is therefore E0(N) = −2Nt.

4.3 Above critical filling

While the low-energy behaviour of our system is simple below the critical filling

factor νc, it is not at all clear what should be expected when the system contains

more particles than the crystal of localised flat band states can accommodate. The
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rest of this chapter will be concerned with understanding this regime. In particular,

we are interested in how the system behaves when it contains a single particle more

than the critical number.

To begin with, note that one can expect two different classes of behaviour, de-

pending on the magnitude of U as compared with that of the band gap ∆, which

sets the energy scale for interactions. Interaction strengths small compared with ∆

will give rise to qualitatively different behaviour from the case where U > ∆. The

key difference between these two situations is the extent to which the upper band,

and hence kinetic energy, is expected to contribute to the low-energy behaviour. If

U � ∆, overlap between particles is less energetically costly than exciting a par-

ticle to the upper band. Hence, at slightly above critical filling, one expects all of

the particles to remain in the flat band, minimising overlap under this constraint.

Beyond confining the particles to the flat band, then, kinetic energy plays no role

in weakly-coupled systems. If U > ∆, on the other hand, it will be favourable for

particles to avoid overlap, even at the cost of exciting transitions to the upper band.

Therefore dispersive behaviour should play a role at any filling > νc in the strong-

coupling case. The weakly-interacting case has been treated by Altman and Huber

[16]; therefore, our interest will be focused on a strongly-interacting system.

Our first task is to find a method that will allow us to investigate the system

properly. A perturbative approach is impossible: the strongly-correlated nature of

the system means that there is no “non-interacting” state that can be used as a

starting point for perturbation theory. Altman and Huber’s strategy of projecting

onto the flat band is also inappropriate in the strongly-interacting case, since, as

we have just argued, the upper band is expected to contribute once critical filling is

exceeded - in fact, such a projection will result in states with energies of order U .

Thus, we opt for a variational approach, using the Ritz method, which is described

in Appendix A.
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4.3.1 Ground state energy scaling

In order to apply the Ritz method we must guess a set of states that span the

low-energy subspace. To this end, we now attempt to obtain some insight into the

structure of the ground state at one particle above critical filling. Note that there

are two qualitatively different possibilities: upon the addition of an extra particle

to the critically-filled lattice, either the crystalline structure will be completely de-

stroyed and a different configuration will take its place, or the crystal will be mostly

preserved, with the disruption caused by the extra particle confined to a few cells

(the confined disruption may delocalise, of course, but in this case it would do so

through a medium of preserved localised flat band states). We can determine which

of these two behaviours is realised by investigating how the ground state energy

scales with system size. In particular, as we now argue, it is relatively clear what

the ground state energy scaling should look like in the second scenario.

Suppose that adding a single particle to a critically filled lattice disrupts a num-

ber of the crystal’s unit cells, ND. Suppose further that ND is a constant, indepen-

dent of the lattice length L - in other words, no matter whether the lattice is twenty

or two thousand sites long, adding an extra particle on top of the crystal disrupts

exactly ND of its unit cells. The defect caused by the extra particle would have

an energy - call it C - which would also be independent of the lattice length (or,

equivalently since we are always considering critically filled lattices, of the particle

number). The total energy of the system, after the addition of the extra particle,

would thus be C− (N−ND)2t (recall that the localised flat band states have energy

−2t). Let us therefore define

C(N) ≡ E0(N) + (N −ND)2t, (4.12)

where E0(N) is the N -particle ground state energy. If C(N) can be shown to be

independent of N , it is likely that the number of unit cells disrupted by the extra

particle does not depend on the lattice size. In other words, the extra particle cause a

localised defect in the crystal, leaving the rest intact. To check whether this is so, we
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Figure 4.3: C(N) calculated using different numerical techniques. The red dots
represent DMRG results, the black squares are results from exact diagonalisation,
and the blue diamonds are results obtained using a variational ansatz (see text).
Note the scale for C/t. These results agree to a remarkable degree.

carry out some numerical investigations. We numerically diagonalise the system with

periodic boundary conditions for N ∈ [2, 5], and find that C(N) converges toward a

constant value very quickly: C(5)−C(4) = O(10−4t). We also check the behaviour

for larger systems, using DMRG results2 provided by our collaborator, Gabriele de

Chiara (note that Dr. de Chiara produced all of the DMRG data referenced in this

chapter)[58, 59]. These results also show convergence towards a constant C(N),

although it is somewhat slower due to the open boundary conditions necessarily for

a DMRG implementation. The energy in this case is converging around N = 25

(see Fig. 4.3). Thus, energetic considerations suggest that the ground state at

one particle above critical filling contains two disrupted cells, while the rest of the

crystal remains intact. We will use this insight to construct an ansatz for the low-

lying eigenstates in the next section.

4.3.2 Low-energy ansatz

We now attempt to construct an ansatz for the low-energy behaviour of our system.

Consider the ground state on a lattice with L = 4N − 2 sites. We suppose this

to contain N − 2 localised flat band states. The remaining two particles must

2In this case we are forced to use open boundary conditions due to the DMRG implementation
for the periodic sawtooth chain.
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Figure 4.4: A component of the ansatz: the lattice is filled with localised eigenstates,
except for a seven-site block, highlighted in blue here. The block contains two
particles, which occupy the two-body ground state of the seven-site system. The
ansatz is made of a superposition of such components, with the blue block starting
on each lower site: the coefficients are used as variational parameters.

avoid overlapping with these states, and so are confined to a seven-site block (seven

sites being the maximum size of a connected block within an otherwise-undisrupted

crystal - see Fig. 4.4). We assume for simplicity that the wavefunction within

the disrupted block is the ground state of the isolated seven-site system. This

assumption is supported by the fact that the two-body ground state energy of the

seven-site system, which may be calculated numerically, is close to C(N)N→∞. Let

|ψi〉 denote a state in which the disrupted block begins on the 2ith site:

|ψi〉 ≡ B†i

N−2∏
l=1

V †i+2l+2|0〉, (4.13)
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where B†i creates the two-body ground state over a seven-site block beginning on

site 2i. For later use, note that B†i has the form

B†i =
5∑
j=0

6∑
k=j+1

αjkb
†
2i+jb

†
2i+k, (4.14)

with the αij complex numbers. Because B†i creates an eigenstate over the block, we

have

HB†i |0〉 = EBB
†
i |0〉+X†i |0〉, (4.15)

where EB is the seven-site ground state energy and X†i creates the terms that end

up outside of the block upon the application of H:

X†i =
5∑
j=0

αj6b
†
2i+j(
√

2b†2i+7 + b†2i+8) +
6∑
j=1

αj0b
†
2i+j(
√

2b†2i−1 + b†2i−2). (4.16)

This will help to simplify future calculations. Finally, our ansatz is:

|Ψ〉 =
∑
i

βi|ψi〉, (4.17)

with the βi complex numbers to be determined via the Ritz method.

4.3.3 Generalised eigenvalue problem and solution

We now obtain a generalised eigenvalue problem for our system (see Appendix A

and Eq. (A.12). From Equations (4.13) and (4.15), we see that the action of H on

|ψi〉 is

H|ψi〉 =
N−2∏
l=1

V †i+2l+2HB
†
i |0〉 − 2t(N − 2)|ψi〉 (4.18)

= [EB − 2t(N − 2)]|ψi〉+
N−2∏
l=1

V †i+2l+2X
†
i |0〉 (4.19)

Using this in the equation for the βi given by the Ritz method, which reads

∑
j

〈ψi|H|ψj〉bj = E〈ψi|ψj〉bj, (4.20)

41



Chapter 4: Flat band Bose-Hubbard system above critical filling

we obtain

λ
∑
j

〈ψi|ψj〉βj =
∑
j

〈ψi|
N−2∏
l=1

V †j+2l+2X
†
j |0〉βj, (4.21)

where λ = E − EB + 2t(N − 2). We solved the above using a routine [60] from the

GNU scientific library. The solutions turn out to be rather interesting. Let us label

them such that the jth component of the nth solution is β
(n)
j . Then, to machine

accuracy, we find that the solutions to Eq. (4.21) are

β
(n)
j = (−1)jneijkn , (4.22)

⇒ |Ψ(n)〉 =
∑
j

(−1)jneijkn|ψj〉, (4.23)

where kn = 2πn/L. We see that the disrupted block behaves like a single particle

hopping on a lattice with L/2 sites (L being the number of sites in the original

lattice). Its eigenstates are Bloch wave states, with quasimomenta kn and Bloch

functions u(n)(x) = (−1)xn. Of course, our method also reveals the dispersion re-

lation for the block’s motion, which is plotted in Fig. 4.5. It is quadratic at low

momenta, with an effective mass of m∗/t ≈ 1.25. This behaviour can be understood

as a reflection of the dispersive nature of the upper band. Crudely, we can think of

the extra particle as occupying the upper band and causing a defect in the crystal.

The defect therefore inherits the upper band’s dispersive behaviour, and propagates

through the medium of flat band states with dispersion E(k) = k2/2.5t.

4.3.4 Verification and proposed experimental signature

Our results were obtained using a variational principle which relies heavily on a good

guess at the low-energy subspace. Results obtained with such an approach cannot

be trusted a priori and must be verified. As a first step in this direction, we compare

the value of C(N) (see Eq. (4.12)) yielded by the variational calculation to the values

obtained from exact diagonalisation and DMRG. In Fig. 4.3 the values of C(N) from

all three methods are plotted. We find excellent agreement between the variational

result and the exact numerical calculations. For instance, once well-converged, the

variational and DMRG results agree to within 0.1%. We can also access the low-lying
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Figure 4.5: The dispersion relation for the disrupted block (solid red line) together
with a quadratic function f = k2/2.5t (dashed black line). We see that the block’s
dispersion is quadratic at low energies, with effective mass m∗/t = 1.25.

excitations with exact diagonalisation (for small particle number), and we compare

the energy of these with the corresponding variational energies. Fig. 4.6 shows the

comparison. There is good agreement for the lowest five states, which is encouraging

in such a small system. The results begin to diverge at higher energies, but this is

to be expected: we only expect our ansatz to capture low-energy behaviour. The

disagreement may be due to an excitation within the disrupted block, for instance,

or the crystalline order may become disrupted outside of the seven sites.

Finally, we may probe the structure of the ground state by investigating its mo-

mentum distribution. This will further verify our ansatz, and, moreover, will provide

an experimentally viable test of our theory [61, 62, 63]. Rather than considering the

full momentum distribution, in which the contribution from the extra particle will

be washed out by the localised states, we should calculate the change in momentum
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Figure 4.6: Comparison of variational (red circles) and exact (black squares) exci-
tation energies of the seven lowest states, for a system of five particles.

distribution upon addition of the extra particle. For N ≤ Nc particles, we have

〈Ψ(0)|nk|Ψ(0)〉 =
∑
x,y

ei(x−y)k〈0|

[∏
i

Vi

]
b†xby

[∏
i′

V †i′

]
|0〉. (4.24)

Using the fact that none of the localised states overlap when ν ≤ νc, this is equal to

∑
x,y

ei(x−y)k〈0|
N∑
β=1

(
√

2δ2β,x − δ2β+1,x − δ2β−1,x)

[∏
i 6=β

Vi

]

×
N∑
α=1

[∏
i 6=α

V †i

]
(
√

2δ2α,y − δ2α+1,y − δ2α−1,y)|0〉.

(4.25)

Summing over the delta functions, we obtain

〈Ψ(0)|nk|Ψ(0)〉 = N(
√

2− 2 cos(k))2. (4.26)

We can subtract this from the numerical results for N = Nc + 1, obtaining the

right derivative ∂nk/∂ν |+ν=νc , which clearly disagrees with the left derivative at this
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Figure 4.7: Minus the right derivative of momentum density as a function of filling
fraction at critical filling, as obtained variationally with a twenty-particle system
(black line), again variationally with a five-particle system (blue diamonds), and
from exact diagonalisation with five particles (red circles).

point. The discontinuity in the momentum distribution indicates the disruption of

the crystal phase. In Fig. 4.7 the right derivative obtained from our variational

wavefunction is plotted, together with the derivatives from exact diagonalisation.

We see that the variational and exact ground states have very similar momentum

densities - note the close overlap for the five-particle calculations. Also, since our

variational method is computationally inexpensive, we were able to calculate the

derivative for a twenty-particle system for comparison with the five-particle data.

We find a fine-grained oscillatory structure which agrees nicely with the exact five-

particle points, with a strong peak that is also well-reproduced. This excellent

agreement is definitive evidence that our ansatz is a good one, i.e., that the low-

energy behaviour described here is the true low-energy behaviour of the system.
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4.4 Summary and outlook

In this chapter we have explored the physics of a system whose lowest energy band is

flat, and above the critical filling factor where the lattice is saturated with localised

particles. We found that an extra particle added on top of the saturated system

creates a defect, which can be regarded as a two-body bound state, confined to a

seven-site block. The low-energy subspace of the system is spanned by states where

this defect appears within an otherwise-intact crystal of localised particles. The

low lying excitations see the defect moving through the medium with a quadratic

dispersion. This dispersive behaviour has been inherited from the curved upper-

band, which we argued must contribute to the low energy states above critical filling.

It is worth commenting that the above description is transparent to a degree that

is unusual in many-body physics: the behaviour of the system is easily understood

in terms of its constituent bosons, and the structure of the low-lying many-body

excitations is easily visualisable.

It would be interesting to explore the consequences of adding more than one

particle on top of the saturated state. For instance, if the effect is to produce more

defects, it may be possible to calculate their behaviour by modeling them as single

particles and using scattering theory. Also, it is interesting to ask whether the kind

of behaviour found here is a general feature of strongly interacting models with flat

lowest energy bands.
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Chapter 5

The fermionic Luttinger model

5.1 Introduction

The next two chapters are concerned with Luttinger’s model, a very general and

widely applicable model of one dimensional many-body quantum systems. Intro-

duced by its namesake in 1963 [64], the model is actually a slightly modified version

of the earlier Tomonaga’s model, circa 1950 [1]. Tomonaga’s interest at the time

was in solving the interacting electron problem - Fermi liquid theory was still six

years away - and he realised that this could be done after invoking a number of sim-

plifying assumptions, which, unfortunately (from his point of view), included the

assumption that electrons only move in one dimension. While Tomonaga’s method

failed to describe higher-dimensional electron systems, it laid the foundations for a

remarkably powerful effective low-energy theory of the one-dimensional many-body

problem. Tomonaga’s insight was that 1D Fermi systems are best analysed in terms

of their density wave excitations, which are approximately bosonic. He showed that

the low-energy behaviour of the fermionic system, when described in terms of these

bosonic excitations, has an approximate solution which becomes exact in the limit

where the electronic density waves are exactly bosonic. Over a decade later, Lut-

tinger [64], who was unaware of Tomonaga’s work, published a closely related model.

The fermionic density waves in Luttinger’s model are exactly bosonic, and as a con-

sequence it is exactly solvable. This exact solvability comes at a price, however;

Luttinger’s model appears rather esoteric compared with Tomonaga’s, containing
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as it does two species of fermion, each with its own dispersion and an infinitely

deep, filled Fermi sea. One of the goals of the next chapter is to investigate the

connection between Tomonaga’s model, which has a completely clear relationship

with the system it intends to describe, and Luttinger’s model, which does not.

Although Luttinger’s paper contains a solution to his model, it is incorrect; oddly

enough, Luttinger failed to recognise the bosonic nature of the density waves. Two

years after its publication, Mattis and Lieb [71], having rediscovered Tomonaga’s

work, corrected Luttinger’s mistake and found the bosonic excitations, in terms of

which they provided the model’s exact solution. This development provided physi-

cists with access to a large number of experimental predictions for a fairly broad class

of one-dimensional systems; namely, those for which the approximations invoked in

order to arrive at Tomonaga’s model are valid. This class was significantly widened

by Haldane [73], who gave arguments suggesting that most 1D systems behave at

low energies as if they obey Tomonaga’s model, even if they violate the approxi-

mations which lead to it - even, in fact, if they are not composed of fermions at

all. Haldane termed this new universality class the Luttinger liquid, and introduced

a general method for modeling its members, which is nowadays referred to as field

theoretic bosonisaton (as opposed to the more traditional constructive bosonisation,

à la Tomonaga and Luttinger). The universality hypothesis (or Luttinger liquid

hypothesis) has since been successfully tested using exactly-solvable examples [74],

and has received strong theoretical support from renormalisation group methods

and numerical simulations [75, 76, 77] .

Experimentally, signatures of Luttinger liquid behaviour have been observed in

a wide variety of effectively one-dimensional systems including carbon nanotubes

[78, 79, 80, 81], nanowires [82, 83, 84], and optical lattices [61, 85].

In preparation for the next chapter, which is a detailed exploration of the rela-

tionship between Luttinger’s model and the underlying microscopic physics, we give

here a basic description of the model and its solution via bosonisaion.
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5.2 Constructive bosonisation

Bosonisation is the most widely-employed technique for investigating Luttinger liq-

uid behaviour. There are two flavours of bosonisation: field-theoretic, as introduced

by Haldane [73], and constructive, which is based on the earlier work of Tomonaga

[1]. In the constructive approach, one begins with a microscopic Hamiltonian, makes

a number of approximations, and ends up with an exactly solvable model (referred

to as Luttinger’s model). The field-theoretic formalism, on the other hand, is a

manifestation of the Luttinger liquid hypothesis mentioned above, and was invented

as a means of applying bosonisation in cases where the approximations necessary for

constructive bosonisation are not straightlforwardly valid, and to systems that are

already bosonic. It is a phenomenological approach which assumes Luttinger liquid

behaviour from the outset, and yields relations between experimental quantities.

Thus, with field-theoretic bosonisation one gains in generality, but loses in clarity

and connection with the microscopic physics. Since the goal of the next chapter will

be to describe the relation between Luttinger’s model and the microscopic physics

from which it emerges, and to highlight a misconception found in the literature

on the constructive approach, we will ignore field-theoretic bosonisation and work

exclusively with the constructive formalism, of which this section gives a sketch.

5.2.1 Fermionic model

Bosonisation was originally applied to systems of one-dimensional spin-polarised

fermions, and we will give our account in that context. Thus, consider the following

microscopic Hamiltonian:

H =
~2

2m

∑
k

k2c†kck + V̂ , (5.1)

where

V̂ =
1

2L

∑
kk′q

V (q)c†k+qc
†
k′−qck′ck, (5.2)
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and

V (q) =

∫ ∞
−∞

dx eiqxW (x), (5.3)

with W (x) a realistic two-body interaction. Here ck is a fermionic momentum space

annihilation operator satisfying {ck, c†k′} = δk,k′ .

To reduce the above to an exactly solvable model, one must replace the realistic

interaction with a much simpler one. To this end, note that, provided V (q) is not too

strong, the above model’s low-energy sector will not include states containing highly

excited particles: it will consist entirely of Fermi-sea-like states with excitations

about the Fermi points. This observation is useful, because the interaction can only

lead to a few different processes if one restricts to states of this type. For |q| � kF ,

two particles on the same branch may exchange momentum, which we will refer

to as an intrabranch process, or two particles on opposite branches may exchange

momentum, which we will call an interbranch process. For |q| ≈ 2kF , two particles

may swap branches, also an interbranch process. These processes are shown in Fig.

5.1; all others are forbidden at low energies, since they result in a large increase

in kinetic energy. If particles are confined to a narrow enough range of momenta

about the Fermi points, it is reasonable to approximate the potential V (q) as a

constant for each of these processes. When the particles swap branches, one may

set V (q) = V (2kF ); otherwise, V (q) = V (0). Under this approximation, restricting

to a space containing no particles higher than ±(kF + Λ) and no holes deeper than

±(kF − Λ), and including only the interactions enumerated above, the interaction

becomes

V =
1

2L

( ∑
k,k′,q∈I2

g
(0)
2 +

∑
k,k′,q∈I4

g
(0)
4

)
c†k+qc

†
k′−qck′ck, (5.4)

where g
(0)
2 = V (0)−V (2kF ) (this form is due to fermionic statistics, as we will see),

g
(0)
4 = V (0), and I2 restricts the sum to interbranch scattering, and I4 to intrabranch

- the sets are cumbersome to write explicitly, but it should be clear what values they

contain.

The other approximation one must invoke in order to arrive at an exactly-solvable

model involves linearising the dispersion relation. It is clear that this is a sensible
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Figure 5.1: The various types of process produced by the interaction (see text). The
blue section of the dispersion represents the filled Fermi sea, and the green part the
unoccupied states. Note that the bottom right process, and other processes of this
kind, will not occur at low energies, since they cause too large an increase in kinetic
energy.

procedure at low energies, since (kF + δk)2 ≈ k2
F + 2kF δk. Upon carrying it out,

the model’s parameters become renormalised: g
(0)
2,4→ g2,4, where g2 is supposed to

reproduce the realistic interbranch scattering properties, and g4 the intrabranch.

We will have much more to say about this in the next chapter.

The final step towards Luttinger’s model is rather unusual: one switches to

a different, seemingly very contrived model. The low energy physics of this new

model matches that of the old, but it has the advantage of being exactly solvable by

bosonisation, as we will soon see. The new model contains two species of particles,

left movers and right movers, each with unbounded momenta k ∈ (−∞,∞). The

right movers have dispersion ε(k) = vFk, and for the left movers, ε(k) = −vFk,

where vF is the Fermi velocity of the original model. The branches are coupled by
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the interaction

Vinter =
1

2L

∑
k>0,k′<0,q 6=0

g2 c
†
R,kcR,k+qc

†
L,k′cL,k′−q + (R↔ L), (5.5)

where c†R,k creates a right mover of momentum k, and {cη,k, cη′,k′} = {c†η,k, c
†
η′,k′} = 0,

{cη,k, c†η,k′} = δη,η′δk,k′ . There is also an intrabranch interaction,

Vintra =
1

2L

∑
k>0,k′<0,q 6=0

g4 c
†
R,kcR,k+qc

†
R,k′cR,k′−q + (R↔ L). (5.6)

This is Luttinger’s model. Although it seems odd, if one fills the infinite “Fermi sea”

of each branch, it is not difficult to imagine how it might agree with the original

model at low energies.

5.2.2 Bosonisation

5.2.2.1 Momentum space operators

We now show that the two-branch model introduced above admits a simple bosonic

representation. Consider the operator

ρη,k =
∑
q

c†η,k+qcη,q, (5.7)

where k > 0. We will show that this operator, under a very simple modification,

obeys bosonic commutation relations. These commutation relations can be exploited

to write the Luttinger’s model in a form that can be solved via a Bogoliubov trans-

formation.

In order to avoid unnecessary mathematical difficulties, we restrict to a space

where all states have a lowest hole, below which every state is occupied, and a highest

particle, above which all states are unoccupied. Let the momentum of the lowest

hole be k−, and that of the highest particle be k+. The commutator’s restriction

to this space is all that is needed, since a real Luttinger liquid will contain neither

an infinitely excited particle, nor an infinitely deep hole. The action of the ρη,k

upon vectors in this restricted space can generate only a finite number of terms;
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since the result of an infinite sum of vectors depends on the order of the terms, this

restriction gives us the freedom to rearrange the sums. Care must still be taken,

however, as infinite series can appear in the calculation even if the total sum is finite.

In particular, consider the product

ρη,kρη′,k′ =
∑
q,q′

c†η,q+kcη,qc
†
η′,q′+k′cη′,q′ (5.8)

= δη,η′
∑
q

c†η,q+kcη,q−k′ −
∑
q,q′

c†η,q+kc
†
η′,q′+k′cη,qcη′,q′ . (5.9)

Both sums in Eq. (5.9) are finite in our restricted space, except when k′ = −k. In

that case, because of the filled Fermi sea, the first term will give infinity. Therefore

we will have to treat the case k′ = −k carefully. Concentrating on the case when

k′ 6= −k for now, then, one obtains

[ρη,k, ρη′,k′ ] = δη,η′
∞∑

q=−∞

(c†η,q+kcη,q−k′ − c
†
η,q+k+k′cη,q) (5.10)

= δη,η

k++k′∑
q=k−−k

c†η,q+kcη,q−k′ − δη,η
k+∑

q=k−−k′−k

c†η,q+k+k′cη,q. (5.11)

Shifting q → q + k′ in the first sum, one finds that [ρ−k, ρk′ ] = 0. For the k′ = −k

case, it is convenient to work with the product (5.8) rather than directly with the

commutator. Anticommuting the η operators past the η′ gives

ρη,kρη′,−k = δη,η′

 k+∑
q=k−+k

c†η,kcη,k −
k+∑

q=k−+k

c†η,q−kcη,q−k +

k+∑
q=k+k
q′=k−−k

c†η,q−kcη,qc
†
η,q′−kcη,q′

 .

(5.12)

Sending k → −k in the above expression and subtracting yields the commutator:

[ρη′,−k, ρη,k] = δη,η′

k−∑
q=k−−k

c†η,qcη,q. (5.13)
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Since all levels below k− are occupied, we finally have

[ρη′,−k, ρη,k] = δη,η′
Lk

2π
. (5.14)

Clearly, then, the operator

aη,k = i

√
2π

Lk
ρη,k (5.15)

is bosonic, that is to say,

[aη,k, a
†
η′,k′ ] = δη,η′δk,k′ . (5.16)

5.2.2.2 Position space operators

It is also useful to obtain a position-space representation of the relationship between

bosonic and fermionic degrees of freedom. Following [65], we do so using the fact

that ψη(x)|F 〉 is an eigenstate of aη,k, where |F 〉 is the Fermi sea (the state with

both branches full up to their Fermi points) and ψη(x) annihilates an η-mover at x.

As such, ψη(x)|F 〉 admits a coherent state representation in terms of the a†η,k. To

see this, compute the commutator

[aη,k, ψη′(x)] = −
∑
q,q′

2π

L
√
k

[c†η,q−kcη,k, e
ik′xcη,k′ ], (5.17)

which can be evaluated by noting that

c†η,q−kcη,kcη′,k′ = −c†η,k−qcη′,k′cη,k (5.18)

= cη′,k′c
†
η,k−qcη,k − {c

†
η,k−q, cη,k′}cη,k (5.19)

⇒ [c†η,k−qcη,k, cη′,k′ ] = −δη,η′δk−q,k′ (5.20)

⇒ [aη,k, ψη′(x)] = iδη,η′

√
2π

Lk
eikxψη′(x). (5.21)

Also, it is easy to see that aη,k annihilates |F 〉. Therefore,

aη′,kψη(x)|F 〉 = iδη,η′

√
2π

Lk
ψη(x)|F 〉, (5.22)
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as claimed. Before giving the coherent state representation in terms of bosnic cre-

ation operators, we must introduce new operators Kη, called Klein factors. The

Klein factors are defined through their action on |F 〉,

Kη|F 〉 = cη,kF |F 〉. (5.23)

In other words, they remove the topmost particle from the η-moving Fermi sea. They

are necessary because ψη(x) annihilates a fermion, while the aη,k conserve fermion

number; thus, in order to relate the two, we need to augment aη,k by combining it

with a fermion annihilation operator. Annihilating the topmost particle from the

Fermi sea gives another Fermi sea, which is also annihilated by the aη,k, and upon

which a coherent state representation in terms of the a†η,k may therefore be built

[67]. This representation is

ψη(x)|F 〉 = exp

(∑
k

√
2π

Lk
eikxa†η,k − iδ

)
Kη|F 〉 (5.24)

≡ e−i(φ
†
η(x)+δ)Kη|F 〉 (5.25)

where δ → 0 in the L→∞ limit (we ignore it in the following). Having found the

bosonic form for ψη(x) acting on the Fermi sea, it is easy to generalise to the whole

Hilbert space. This is because the a†η,k span every constant-particle-number subspace

of the Fermionic model (this is proven in [65]), meaning that an arbitrary state with

fixed fermion number can be written as |ψ〉 = f({a†η,k})|F 〉, where f({a†η,k}) is some

function of the a†η,k. One finds

ψη(x) = lim
α→∞

√
αKηe

−iϕη(x), (5.26)

where ϕ(x) = φ†(x) + φ(x) and the α → ∞ limit will be explained in the next

chapter.
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5.2.2.3 The Hamiltonian

We are now in a position to bosonise the fermionic Luttinger model, beginning with

the interaction (5.5), which can be bosonised by direct inspection. We have

Vinter =
g2

2L

∞∑
q=−∞

ρR,−qρL,q + (R↔ L) (5.27)

=
g2

2π

∑
q>0

q
[
a†L,qa

†
R,q + aL,qaR,q

]
. (5.28)

Similarly, for the intrabranch term,

Vintra =
g4

2π

∑
q>0

q
[
a†R,qaR,q + a†L,qaL,q

]
. (5.29)

As for the kinetic term, by standard manipulations one can show that

[Hkin, a
†
η,k] = vFka

†
η,k. (5.30)

This, together with the canonical commutation relations (5.16), implies that

Hkina
†
η,k|F 〉 = (vFk + E)a†η,k|F 〉, (5.31)

with E the kinetic energy of |F 〉. We see that the a†η,k create eigenstates of Hkin on

top of the Fermi sea, which acts as a kind of vacuum state. Therefore, Hkin must

admit a diagonal representation in the basis created by the a†η,k acting on |F 〉, and

so we have

Hkin = vF
∑
q>0

q
[
a†L,qaL,q + a†R,qaR,q

]
, (5.32)

where we have neglected a chemical potential.

5.2.3 Solving the model

The bosonic form of Luttinger’s model derived in the previous section can be solved

by a Bogoliubov transformation, as we now demonstrate. To begin with, it is con-

venient to combine the contributions from the intrabranch and kinetic terms by
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defining a modified Fermi velocity, v = vF + g4/2π. Then the Hamiltonian can be

written in matrix form as

H = V †MV, (5.33)

where

M =



vq qg2/2π 0 0

qg2/2π vq 0 0

0 0 vq qg2/2π

0 0 qg2/2π vq


, (5.34)

and

V =



aL,q

a†R,q

aR,q

a†L,q


, (5.35)

and we have once again thrown away an irrelevant constant term. If the above

matrix can be made diagonal in a basis of new operators which obey canonical

commutation relations, the Hamiltonian itself will be diagonal in the basis created

by those new operators acting on |F 〉. Let us assume that this is possible, and

denote a new operator by b†L,q, for example. It is clear from the structure of the

matrix that we need only solve

S†M̃S = Diag(α1, α2), (5.36)

where

M̃ =

 vq qg2/2π

qg2/2π vq

 , (5.37)

and

S

bL,q
b†R,q

 =

aL,q
a†R,q

 . (5.38)
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In order to preserve canonical commutation relations, we must set s11 − s12 = 1,

s11 = s22, and s12 = s21, where the sij are the elements of S. Thus,

S =

cosh θ sinh θ

sinh θ cosh θ

 , (5.39)

with θ some real parameter, which we solve for by plugging the above into Eq.

(5.36). We obtain

K = e2θ =

√
1− g2/2πv

1 + g2/2πv
, (5.40)

α1 = α2 = 2vq, (5.41)

where K is the so-called Luttinger parameter. Given K, then, one has a diagonal

representation of the Hamiltonian, and thus easy access to many aspects of the

system’s behaviour. In other words, if the approximations invoked to pass from the

microscopic model to Luttinger’s are valid, all one needs to do in order to obtain

a complete description of the system’s low-energy dynamics is calculate g4 and v.

This is clearly a very powerful technique, and the fact that it is possible shows that

there is a great deal of universality in the low-energy behaviour of one-dimensional

Fermi systems.

5.2.4 Example: correlation functions

Linear response theory provides, via Kubo formulae, relations between correlation

functions and experimentally measurable quantities: if one knows all correlation

functions for a particular system, one can easily calculate the system’s response to

any external perturbation, as long as the perturbation is weak enough so that the

response is linear. One of the advantages conferred by bosonisation is the ability

to easily calculate correlation functions. Since our interest in the next chapter is

towards the microscopic interpretation of Luttinger’s model rather than its macro-

scopic consequences, we will do no more than demonstrate this with a quick sketch

of the calculation for a single-particle correlation function at zero temperature.
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To begin with, let us write down the relationship between a microscopic position-

space annihilation operator and its counterparts in Luttinger’s model:

ψ(x) = lim
α→∞

1√
α

(
e−ikFαxψL(x) + eikFαxψR(x)

)
. (5.42)

We will prove this relation in the next chapter. It is useful to calculate the equal-

time one-particle correlation function in the non-interacting ground state first. This

is

〈ψ†(x)ψ(0)〉 ∝ e−ikFαx〈ψ†R(x)ψR(0)〉+ eikFαx〈ψ†L(x)ψL(0)〉. (5.43)

Using the bosonisation formula (5.26) and the fact that the Klein factors commute

with the boson fields, we have

〈ψ†η(x)ψη(0)〉 ∝ 〈eiϕη(x)e−iϕη(0)〉, (5.44)

= e[ϕη(x),ϕη(0)]/2〈ei(ϕη(x)−ϕη(0))〉, (5.45)

= −sgn(x)〈ei(ϕη(x)−ϕη(0))〉, (5.46)

where the second line is obtained via the Baker-Campbell-Hausdorff formula, and the

last uses the fact that [ϕη(x), ϕη(0)] = −sgn(x) [65]. In order to evaluate the expec-

tation value, one may use the cumulant theorem 〈exp
(
f(b, b†)

)
〉 = exp

(
〈f 2(b, b†)〉

)
,

with f(b, b†) any quadratic in bosonic creation and annihilation operators [66]. This,

together with the fact that the non-interacting ground state is the vacuum for

bosons, so that ak|F 〉 = 0 ∀k, yields

〈ψ†η(x)ψη(0)〉 ∝ exp
∑
n>0

−1

n

(
ei

2πn
L
x − 1

)(
e−i

2πn
L
x − 1

)
. (5.47)

Finally, using the series
∑

n>0 e
an/n = − ln(1− ea) in the above equation, plugging

the resulting expression for 〈ψ†η(x)ψη(0)〉 into Eq. (5.43), and taking the limit L→

∞, one finds

〈ψ†(x)ψ(0)〉 =
sin(kFx)√
α sin( π

L
x)
, (5.48)

The exact solution of Luttinger’s model found in the previous section makes gen-
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eralising to the interacting case rather simple. In terms of Bogoliubov-transformed

operators, one finds

〈ψ†R(x)ψR(y)〉 ∝ e[ϕη(x),ϕη(y)]/2〈ei(ϕ̃R(x)−ϕ̃R(y))cosh(θ)〉〈ei(ϕ̃L(x)−ϕ̃L(y))sinh(θ)〉, (5.49)

where the expectation value is over the interacting ground state, and we have used

the cumulant theorem again. Here ϕ̃η(x) has precisely the same expansion in terms

of the Bogoliubov-transformed operators bη,k as does ϕη(x) in terms of the original

operators aη,k, so that we can immediately write down the result

〈ψ†(x)ψ(0)〉 =
sin(kFx)

|
√
α sin( π

L
x)|(K+1/K)/2

, (5.50)

where the last equality follows from the definition of K in terms of θ. This power-

law decay of correlation functions is a general characteristic of Luttinger liquid

behaviour.
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The microscopic origin of

phenomenological parameters in

Luttinger’s model

6.1 Introduction

Luttinger’s model is highly phenomenological. It contains three non-universal pa-

rameters: g2, g4, and vF . In the previous chapter, we gave an interpretation of these

parameters that is often encountered in the literature on constructive bosonisation,

according to which g2 and g4 are related to interbranch and intrabranch scattering

processes, respectively [86, 87, 88, 66]. In general these scattering processes are fan-

tastically complicated, involving intractable many-body processes (many meaning

greater than three here), so that renormalising the parameters in favour of realistic

scattering data is impossible in practice. This is not a problem from an empirical

point of view: it takes only one measurement to determine the Luttinger parameter,

after which one can predict many other quantities of interest for the experimental

system at hand; a procedure that is no more objectionable than fixing the charge on

an electron or the gravitational constant by observation1. The Luttinger parameter

is also calculable via heavy-duty numerical techniques such as DMRG [89, 90] and

1This claim is made from the point of view that these “fundamental” constants are not actually
fundamental, but emerge from underlying, as yet unknown physics (which may not be true, of
course).
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Monte Carlo [91, 92], and via a recently-introduced method relying on few-body

scattering (which exploits the ideas presented in this chapter) [93]. Proceeding in

this manner, however, does not allow for any verification of the parameters’ micro-

scopic interpretation, which, from a less pragmatic standpoint, seems unsatisfactory.

If we are to claim a degree of understanding, we should care whether that under-

standing is correct or not. Incorrect assumptions may cause practical problems too.

For instance, one might be led to ask misleading or irrelevant questions.

The main aim of this chapter is to test the usual interpretation of g2 and g4. To

see how this is possible, note that the relationship between underlying microscopic

physics and macroscopic theory is well understood in several cases, sometimes to

the extent that the effective theory’s parameters are easily calculable from two-body

physics - as we have seen, the theory describing Bose-Einstein condensation in the

dilute limit is a prominent example. Taking inspiration from this, we construct

Luttinger’s model as an effective theory for a system that is simple enough to allow

one to keep track of the relevant microscopic quantities. We consider a dilute 1D

system of spin-polarised fermions, so that two-body scattering is the dominant in-

teraction process, and construct an effective theory from the bottom up, replacing

the full Hamiltonain by a simpler one (in this case Luttinger’s Hamiltonian) that

reproduces the pertinent realistic microscopic properties at the relevant energy. If

the usual interpretation of g2 and g4 is correct, g2 will appear as a parameter to be

tuned to give the realistic two-body phase shift for interbranch scattering, and g4

the same for intrabrach processes. We find, however, that tuning g4 to reproduce in-

trabranch scattering properties is impossible. This is because two-body intrabranch

scattering in Luttinger’s model is pathological. Also, the intrabranch phase shift for

spin-polarised 1D fermions vanishes at the relevant energy, making it an irrelevant

microscopic process. On the other hand, conservation of charge requires a finite g4

[86]. We conclude that g4 is unrelated to intrabranch scattering; instead, we find

that its role is to account for the energy shift exerted upon density wave excitations

by the interbranch interaction. By showing that the usual interpretation of g4 fails

for this simple realisation of Luttinger’s model, we cast serious doubt on its validity
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in general.

While constructing Luttinger’s model as an effective theory, we uncover its rela-

tionship with Tomonaga’s. The extent to which density waves in Tomonaga’s model

fail to be bosonic turns out to be inversely proportional to the Fermi energy, leading

us to take the Fermi points to infinity (the infinite-density limit). We are able to do

this in such a way that the resulting dispersion relation is exactly linear, interbranch

scattering properties are preserved, and the unbounded-from-below Hilbert space of

Luttinger’s model is obtained.

6.1.1 Renormalisation and Tomonaga

In this chapter we will construct an effective theory of 1D Fermi systems at low

energies. It is crucial that our effective model correctly reproduces the aspects of

the microscopic physics from which the universal low-energy behaviour emerges.

Hence, we need to understand what it means for two models to produce the same

physics. In particular, it is very important to realise that two Hamiltonians which

agree approximately within a certain energy window will not necessarily produce

similar physics, even at energies where they agree. For instance, consider the T -

matrix from scattering theory, which satisfies

〈k|T (z)|k′〉 = 〈k|V |k′〉+

∫
dq
〈k|V |q〉〈q|T (z)|k′〉

z − Eq
. (6.1)

It is clear that the T -matrix, and hence the scattering wavefunction, depends on the

whole potential. So, two potentials that are approximately the same for a range of

momenta may still produce markedly different scattering states within that range, if

they disagree elsewhere. If we want a simplified potential to approximate the scat-

tering given by a more complicated interaction, we have to adjust, or renormalise,

its parameters. This idea will play an important role in our treatment.

Renormalisation was invented in the context of quantum electrodynamics. There,

scattering amplitudes are divergent, but these divergences can be removed by adjust-

ing the interaction parameters to absorb the infinities. The procedure was hugely

controversial when it was first introduced, but, thanks largely to Wilson, it has
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since been clarified, and to quite a remarkable extent. We now understand that

quantum electrodynamics - and indeed the standard model - is an effective theory,

which captures the essential low-energy behaviour of some deeper, unknown, under-

lying theory. It so happens that the interactions appearing in this effective theory

lead to divergent scattering amplitudes, but this does not matter: the interaction

parameters must be adjusted so that the effective theory reproduces the scattering

properties of the deeper theory, as measured by experiment, and this adjustment

removes the infinities.

Interestingly, Tomonaga, one of the originators of the renormalisation idea, failed

to take account of precisely these ideas when working on his bosonization paper. He

introduces an effective model that is valid only in a restricted domain, and then

extends it over the whole Hilbert space without adjusting any of the interaction

parameters. It is difficult to blame him, since the ideas of effective theory did not

exist when he was working. Still, had he not been so busy with QED, perhaps

he would instead have invented renormalisation as a way of rigorously introducing

approximations in his quantum wire model, preempting the work of Wilson and

saving physicists decades of uncertainty and controversy over the “hocus-pocus” (as

Feynman put it) that was pre-Wilsonian renormalisation.

6.2 Microscopic system and relevant physics

We do not aim at generality in this chapter; rather, our intention is to investigate the

relationship between microscopic physics and an effective model in a particular case,

where such an investigation is analytically feasible. Hence, we work with a system

that should be describable given knowledge of its microscopic two-body scattering

properties. The system is composed of identical, weakly-interacting, spin-polarised

fermions, obeying the Hamiltonian (5.1), and it is dilute in the sense that the use of

a contact pseudopotential à la BEC theory is valid. Weak interactions are necessary

so that the model’s low-energy subspace is easily determined. Spin-polarisation is

convenient, and helps to highlight the incongruity of interpreting g4 as a measure of

intrabranch scattering. Diluteness allows us to renormalise the model’s parameters
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in favour of two-body scattering data.

Given this setup, we now explore the two pieces of microscopic physics from which

the system’s effective low-energy behaviour will emerge. We begin by illustrating

the importance of density waves.

6.2.1 Density waves

It is not immediately clear what should constitute a “density wave” in a quantum

many-body system. We will take it to mean an oscillation of the density of the many-

body wavefunction as one moves about in the many-body configuration space. Using

this definition, the operator

ρk =

∫
dx eikxψ†(x)ψ(x) (6.2)

creates a density wave, where the wavelength of oscillations is 1/k. To see this, it is

easiest to consider the first-quantized situation, where ρk acts on an N -body state

ψ(x1, ..., xN) as

ρkψ(x1, ..., xN) ∝
N∑
j=1

eikxjψ(x1, ..., xN). (6.3)

The density of the new state is

|ρkψ(x1, ..., xN)|2 ∝

[
N + 2

∑
l<m

cos(k(xl − xm))

]
|ψ(x1, ..., xN)|2. (6.4)

We see that ρk modifies the density of ψ by a cosine in each of the relative coordi-

nates, that is, it creates a density wave on top of the original state. It is easy to see

that ρk has the following second-quantised representation in momentum space:

ρk =
∑
q

c†k+qcq. (6.5)

Let us now consider the weakly-interacting ground state, which, as we saw in the

previous chapter, will contain particle-hole excitations above the Fermi sea, where

none of the excitations are too energetic. Since all the action takes place near the

Fermi points, it is a reasonable approximation to replace the quadratic dispersion
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with a linear one, with slope vF , when searching for the ground state. Writing

k = kF + k̃, one has

E(k) ≈ ~2k2
F

2m
+ vF k̃. (6.6)

where vF = ~kF/m is the Fermi velocity. In this approximation, density waves are

kinetic eigenstates:

Ĥkinρk|F 〉 =

(
~2k2

F

2m
+ vFk

)
ρk|F 〉. (6.7)

This means that, instead of the ck, we can use the ρk as “unperturbed” degrees of

freedom, to be coupled together by the interaction. If this replacement significantly

simplifies our model (and indeed it does) we will be justified in saying that the ρk

represent physically relevant degrees of freedom.

If we are to reformulate our model in terms of density waves, clearly we should

examine their commutation relations (we choose commutation rather than anti-

commutation, because the relations will turn out to be approximately bosonic).

Here we give quite a detailed treatment, since the result will be important for un-

derstanding the connection between Tomonaga’s model and Luttinger’s. The first

step is to split ρk into left and right moving density waves:

ρk =
∑
q>0

c†q+kcq +
∑
q<0

c†q+kcq = ρ+
k + ρ−k . (6.8)

Here we lose the q = 0 state, but this is irrelevant for our treatment (it is a constant

for charge-conserving systems). It is clear that ρ+
k , ρ−k are also kinetic eigenstates,

so our argument above applies to them just as well as it does to ρk. We calculate

[ρ+
k′ , ρ

+
k ] =

∑
q>0

Ξ(q − k′)c†q+kcq−k′ −
∑
q>0

Ξ(q + k)c†k+k′+qcq, (6.9)

were Ξ(k) is the step function (we reserve θ for the scattering phase shift, which

will be very important later). To simplify things, suppose that both k and k′ are

positive - the other cases lead to slightly different forms for the commutator, but
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the following argument applies to all of them. Then we have

[ρ+
k′ , ρ

+
k ] =

k′∑
q=0

c†q+kcq−k′ . (6.10)

Notice that this operator only affects states with momentum ∈ (−k′, k′ + k), which

will be important later. For k, k′ sufficiently small, this operator vanishes when

acting on the kinds of states we are interested in. To be precise, consider a state

in which there are no holes deeper than α kF , where 0 < α < 1 (it makes sense to

measure the position of the deepest hole this way, since whether we should consider

a hole at some momentum k0 to be “deep” or not depends on how large the Fermi

momentum is). Then, if k, k′ < αkF/2 and k 6= −k′, the commutator vanishes, since

the creation operator always hits an occupied level. When k = −k′, the summand

is the number operator, and since all the levels it hits are occupied, the sum is equal

to k. Therefore, for small enough k, k′, we have

[ρ+
k′ , ρ

+
k ] = kδ−k′,k. (6.11)

Similarly, and under the same constraints on k, k′, one can show that

[ρ−k′ , ρ
−
k ] = −kδ−k′,k, (6.12)

[ρ−k′ , ρ
+
k ] = 0. (6.13)

We see that the left and right moving density waves obey bosonic commutation

relations, if their momenta are small enough. As shown in Tomonaga’s paper, writ-

ing the Hamiltonian in terms of these operators, with their commutators replaced

by the bosonic ones given above, simplifies it greatly, to the extent that it is quite

easily solvable (provided one also linearises the dispersion). We will not show this

here. The argument is not very different from the bosonization of Luttinger’s model

described in the previous chapter. The reason we calculated the commutators ex-

plicity was to highlight the fact that there is a momentum scale, proportional to

kF , above which the bosonic description breaks down. Replacing the real commu-
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tation relations for the density waves with their bosonic approximations over the

whole Hilbert space is equivalent to taking this scale to infinity, that is, taking kF

to infinity. In fact, as we will see later, there exists a transformation on the model

which takes kF to infinity and simultaneously yields a linear dispersion relation.

This transformation maps Tomonaga’s model to Luttinger’s.

To return to the original point, we stress that the model becomes very simple

when written in terms of density waves and thus the ρ
(+,−)
k represent important

degrees of freedom, and we can expect them to play a prominent role in the low

energy physics.

6.2.2 Interbranch scattering

Having argued that low-lying density wave excitations play a key role at low ener-

gies, let us try to understand which interaction processes are likely to be important.

In the previous chapter, we enumerated the low-energy processes caused by a pair-

wise density-density interaction, and divided them into intrabranch and interbranch

processes. One might imagine that all of the processes listed in that section play

an important role in the low energy behaviour. It turns out, however, that only

interbranch scattering is important in our system. This is because the phase shift

for one-dimensional spin-polarized fermions vanishes in the zero relative momentum

limit, as can be seen using the fact that sin(px) = px+O(p3) (using relative coordi-

nates for a pair of particles) and the equivalent expansion for cos(px), and iterating

Eq. (2.54), which gives

ψp(x)r→∞ =
i sin(px)√

2π
− ipm√

2π
sgn(x)

∫
dx′x′2Vp(x

′) +O(p2). (6.14)

Therefore, in the limit as p→ 0, we have

θp = arctan

(
pm√

2π

∫
dx′x′2Vp(x

′)

)
, (6.15)

=
pm√

2π

∫
dx′x′2Vp(x

′) +O(p3), (6.16)

→ 0. (6.17)
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Since low-energy intrabranch scattering occurs only between particles that are both

near the same Fermi point, the relative momentum for such processes will be small,

and the phase shift correspondingly negligible. Therefore, interbranch scattering is

the only scattering process that can be expected to contribute significantly to the

low-energy physics.

The situation can be summed up like this: at low energies, density wave excita-

tions are kinetic eigenstates. They are the dispersing “particles” that get coupled

by the interaction. This interaction, at low energies, consists only of interbranch

scattering. Therefore, we identify the two pieces of physics that our effective model

must reproduce as 1) the low-energy dispersion relation for density waves and 2) the

interbranch scattering properties between the Fermi points. Having identified what

we suppose to be the important low-energy physics, we may proceed with building

our effective theory.

6.3 The effective interaction

We now begin constructing the effective model, requiring that it reproduces the

microscopic density wave excitation energies and interbranch scattering properties

between ±kF . As a first step, we introduce an effective interaction, which, since

our system is dilute, we can take to be a contact-like interaction depending on a

single parameter, g2. Since we are working with spin-polarised fermions, however,

there is a small subtlety. Due to the exclusion principle, the straightforward contact

interaction has no effect, as may easily be seen in the principal value formalism. If

V (x) = δ(x), one has Vp(x) = δ(x) − δ(−x) = 0. This does not mean we should

abandon the idea of using a contact-like interaction, however; we just have to account

for the antisymmetry of the fermionic wavefunction when defining the potential.

This is best done via the second-quantised formalism, which is well-suited to dealing

with symmetry issues. Writing the momentum-space first-quantised potential in

second-quantised language, we have

〈k′|V |k〉 ≡ 〈0|cl+2k′clV̂ c
†
mc
†
m+2k|0〉, (6.18)
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where V̂ is of the form (5.2), and l, m satisfy m+ k = l+ k′, ensuring conservation

of momentum. From this one sees that the first-quantised potential must satisfy

〈k′|V |k〉 = −〈−k′|V |k〉. (6.19)

Thus, we can choose an effective potential that is essentially a contact interaction,

but which is also a valid interaction for identical fermions satisfying (6.19), as follows:

〈k|V |k′〉 = g2sgn(k)sgn(k′). (6.20)

The task now is to calculate the scattering properties due to this potential, yielding

a value for g2 in terms of the realistic phase shift. This might seem like an un-

necessary step. After all, we still have to linearise the dispersion, which will - one

would think - necessitate further renormalisation of g2. However, our linearisation

procedure will leave the interbranch phase shift of the quadratic model unchanged,

and it is easier to calculate the phase shift with a quadratic dispersion than with

a linear one. Therefore, we use (6.20) in (2.47), and, upon taking the momentum

space representation and inspecting the k, k′ dependence of T , we discover that

T (k, k′, E) = sgn(k)sgn(k′)τ(E). Eq. (2.47) thus reduces to

τ(Ek) = g2 +
g2τ(Ek)√

2π
P
∫
dq

1

Ek − Eq
. (6.21)

The principal value integral vanishes, and so we have

T (k, k′, E) = g2sgn(k)sgn(k′). (6.22)

Plugging the T -matrix (6.22) into Eq. (2.36) and taking the position representation,

we obtain

ψk(x) =
i sin(kx)√

2π
+ sgn(k)

img2√
2π
P
∫ ∞

0

dq
sin(qx)

k2 − q2
. (6.23)
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After a relatively simple but involved calculation, given in appendix B, we find the

scattering state

ψk(x) = i

(
1√
2π
− mg2√

2π~2|k|
Ci(|kx|)

)
sin(kx)− img2√

2π~2|k|
Si(kx) cos(kx), (6.24)

where Ci and Si are the cosine and sine integrals respectively. To find the phase

shift, we take the asymptotic limit. Using

lim
x→±∞

Ci(x) = 0, (6.25)

lim
x→±∞

Si(x) = ±π
2
, (6.26)

we obtain

ψk(x)x→∞ = i
sin(kx)√

2π
− i
√
πmg2

2
√

2~2k
sgn(x) cos(kx). (6.27)

Comparing with Eq. (2.54), we find the phase shift

tan(θk) = −mg2π

2~2k
. (6.28)

In order for the effective model to reproduce realistic intrabranch scattering, it must

give the correct phase shift for particles of relative momenta kF . Therefore, the

effective potential must be

〈k|V |k′〉 = −2~2kF
mπ

tan(θkF )sgn(k)sgn(k′), (6.29)

where θkF is the relevant realistic phase shift, which in most cases is readily calcu-

lated numerically. In the next section we find that the potential (6.29) reproduces

the necessary scattering even after the dispersion relation has been linearised.

6.4 Linearising the dispersion

As we have seen, density waves play a fundamental role in the physics of 1D Fermi

systems. The effective potential introduced in the last section has a very simple form
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when written in terms of density waves, so that casting the effective model in terms

of these excitations allows one to treat it easily. The kinetic term, however, acts on

density waves in a complicated way, prohibiting a simple treatment of the bosonized

model. The complexity is due to the fact that the dispersion is quadratic, so that the

particle-hole pairs comprising a density wave (see Eq. (6.5)) each receive a different

energy. This would not be so if the dispersion were linear. In that case, as we have

seen, density waves on the Fermi sea would be kinetic eigenstates and the bosonized

model easily solved. Since the dispersion for low-lying particle-hole excitations is

approximately linear around kF , and since, for weakly coupled systems, the kinetic

term dominates the energetics, meaning that only density waves with small k will

appear at low energies, we are in fact justified in using a linear dispersion to model

the low-energy physics. Care must be taken when replacing the quadratic dispersion

with a linear one, however. One must insure that the relevant physics is preserved.

The most obvious way of doing this is to introduce a cutoff Λ in momentum space,

restricting the Hilbert space so that k ∈ (kF − Λ, kF + Λ) ∪ (−kF − Λ,−kF + Λ),

where the dispersion is approximately linear. This approach, while perfectly valid,

does not yield an exactly solvable model. Density waves have only approximately-

bosonic commutation relations, whereas exactly bosonic relations are necessary for

solvability. Another idea would be to introduce a fully linear dispersion with no

cutoff. This would give an exactly solvable model and is allowed as long as we pre-

serve the relevant interbranch scattering properties and the dispersion relation of the

density waves. Thus, we would have to to calculate the interbranch phase shift for

a model with linear dispersion and adjust g2 accordingly. This procedure is slightly

problematic, however. From Eq. (6.21) one sees that the inverse T -matrix for such

a model is ultraviolet divergent, so to proceed along these lines we would have to

reintroduce the momentum cutoff, which we would then remove by renormalisation.

The renormalisation procedure required here is somewhat unconventional, since the

divergence arises from the dispersion rather than the interactions. Hence we will

use an alternative method.

In Section 6.2.1 we showed that it is possible to construct a bosonic description of
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our system, and that this description breaks down at a momentum scale proportional

to kF . We saw that the commutator [ρ+
k , ρ

+
k′ ] tries to create particle hole pairs

between the momenta −k′ and k′ + k, so it vanishes when k 6= k′ if there are no

holes in that momentum range. This condition is satisfied if k′ and k are sufficiently

small compared with kF , suggesting to us the possibly of constructing a model where

kF =∞. Such a model will have the desired commutation relations for all k′ and k.

In fact, as we will now show, it is possible to do this in such a way that the resulting

dispersion relation is exactly linear, and the necessary microscopic scattering and

energetic properties are maintained.

To begin with, let us introduce a new Fermi momentum k̄ ≡ αkF . We param-

eterise k̄F this way in order to keep track of the original kF . We introduce the

dispersion

E(k) =
~2k2

2mα
. (6.30)

We are interested in the behaviour around ±k̄F , and so we write the momentum as

k = Ξ(k) (kFα + kR) + Ξ(−k) (−kFα + kL) , (6.31)

where kL ∈ (−∞, k̄F ) and kR ∈ (−k̄F ,∞). Here we have distinguished between left

and right moving particles, of momentum kL and kR respectively, in our notation, in

order to connect with Luttinger’s model. Plugging this into Eq. (6.30), and taking

the limit α→∞, we arrive at the dispersion

E(k) =
~2k2

Fα

2m
+ vF (Ξ(k)kR − Ξ(−k)kL). (6.32)

The first, infinite term here does not depend on k. It is merely a chemical potential,

and can be neglected for closed systems. We see, then, that α represents the extent to

which the dispersion is linear. Taking it to infinity yields an exactly linear dispersion.

Also, since the term linear in k̄ has coefficient vF , the dispersion correctly reproduces

the microscopic kinetic energy for small excitations around kF , as required. Since

α → ∞ ⇒ k̄F → ∞, the density wave commutation relations will be exactly
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bosonic for all momenta - this was verified in the last chapter. Replacing our original

dispersion with the new one, our model becomes

Hα =
∑
k

~2k2

2mα
c†kck + V̂eff . (6.33)

From the last section and Eq. (6.28) in particular, we see that the two-body phase

shift in this model is

tan(θ
(α)
k ) = −mαg2π

2~2k
. (6.34)

Notice the convenience of using a constant interaction: the phase shift at k = k̄F is

the same as the original phase shift at k = kF .

θ
(α)

k̄F
= θkF . (6.35)

Thus, we have arrived at a linear dispersion without having to renormalise the

interaction.

A couple of comments are in order at this point. Firstly, note that kF depends

on the particle density ρ = N/L as kF = 2πρ. Thus, our new model, in having

k̄F →∞, also has ρ→∞. But, the model is supposed to reproduce the physics of

a dilute electron liquid, which seems incongruous. We are of course rescued by the

fact that we have used a contact-like interaction in the effective model, rendering

the system dilute at any density whatsoever. Also, the relation (6.31) between the

original momenta and the kL, kR appearing in Luttinger’s model, together with the

aforementioned relation between ρ and kF , can easily be seen to imply Eq. (5.42)

from the previous chapter.

6.4.1 Tomonaga vs Luttinger

The procedure outlined above sheds some light on the relationship between Tomon-

aga’s model and Luttinger’s. In Tomonaga’s paper, when approximately bosonic

commutators are replaced by exactly bosonic relations and the dispersion is com-

pletely linearised, the above transformation is implicitly carried out. The full po-
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tential is retained without change, however, which is not valid: in the transformed

model one is interested in scattering between the points k = ±∞, where the poten-

tial may behave very differently from k = ±kF . If one wishes to use a non-constant

potential, one must renormalise the theory upon the introduction of bosonic rela-

tions and a linear dispersion. In Luttinger’s model, by contrast, one begins with

a constant potential and two unbounded branches, which is precisely the α → ∞

limit of the model described above. We see that Luttinger’s model can be thought

of as a limiting case of Tomonaga’s, where the commutation relations are exactly

bosonic, and with an effective interaction that does not require renormalisation after

the limiting process is carried out.

6.5 Intrabranch scattering in the effective model

We mentioned before that intrabranch scattering is not an important microscopic

process. In this section, we show this fact to be crucial to the validity of Luttinger’s

model for spin-polarised fermions. While linearising the dispersion relation preserves

interbranch scattering properties, it irrecoverably mangles intrabranch scattering:

Luttinger’s model simply does not have the capacity to reproduce microscopic in-

trabranch scattering physics. There are several ways of seeing this. As a heuristic

argument, consider the linearisation technique described in the previous section,

whereby the Fermi points are taken to infinity. One reason why interbranch scat-

tering is invariant under this transformation is that the relevant relative momentum

(this being kF ) also goes to infinity, whereas the relevant intrabranch momenta be-

come vanishingly small compared with k̄F . To see the consequences of this, note

that under the transformation (6.30) the two-body kinetic Hamiltonian becomes

H0 =
~2k2

F

m
+

~2kFK

2m
+

~2K2

4mα
+

~2k2

2mα
, (6.36)
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where K is the total, and k the relative, momentum. The Green’s function for the

relative problem is thus

〈x′|G0(Ep − iη)|x〉 =

∫
dp′

eip
′(x−x′)

~2p2
2mα
− iη − ~2p′2

2mα

. (6.37)

For interbranch scattering the relevant energy is E2kF = 2α2~2k2
F/m, and one obtains

〈x′|G0(E2kF )|x〉 =
m

2kF
sin(|kFα(x− x′)|), (6.38)

which is bound (though not convergent) as α → ∞. By contrast, a relative energy

which does not scale with α, as for intrabranch scattering, gives

〈x′|G0(Ep)|x〉 =
mα~
|p|

sin(|pα(x− x′)|), (6.39)

which goes to infinity with α, indicating some pathology with the scattering theory

in this limit.

This situation can be understood as a consequence of a general result concerning

scattering in a flat band, which we prove now. The result is as follows: the stationary

scattering states of a particle (or of the relative coordinate problem for a two-particle

system) in a flat band can be written as

|k+〉 = PI0|k〉 (6.40)

where I0 is the space of eigenstates of V with vanishing eigenvalues, and PI0 is the

projector onto I0. In the continuum the proof is simple: it is easy to show that the

off-shell (E 6= 0) Green’s function is given by

〈x′|G0(E)|x〉 =
δ(x− x′)

E
(6.41)

in the flat band case. Using this in Eq. (2.48), one finds the scattering state

ψk(x) = lim
E→0

φk(x)

1− V (x)
E

. (6.42)
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Clearly the relative energy of a pair of particles in a flat band is zero, so the on-shell

limit is E → 0. In this limit the scattering state vanishes, except at points where

V (x) = 0, where it is equal to the incoming state; this is precisely the position-space

version of the relation (6.40).

A more general proof is possible, which applies to any flat-banded system. Con-

sider the off-shell Lippmann-Schwinger equation for T , for two particles scattering

in a flat band:

〈k′|T (E)|k〉 = V (k′, k) +
1

2π

∫ ∞
−∞

dq
V (k′, q)

E
〈q|T (E)|k〉. (6.43)

The E → 0 limit can be determined by first noting that T inherits the analytic

properties of the principal value interacting Green’s function G = ΛG, as is apparent

from Eq. (2.14). In particular, for a non-vanishing potential, G is finite at E = 0,

and thus, so is T . This, together with Eq. (6.43), means that T has to vanish at

least as fast as linearly as E → 0. If it vanishes faster than linearly, however, Eq.

(6.43) becomes V (k′, k) = 0, which is not true. Therefore T vanishes linearly with

E: T (E) = Et(0) for E → 0. The Lippmann-Schwinger equation becomes

V (k′, k) = − 1

2π

∫ ∞
−∞

dq V (k′, q)〈q|t(0)|k′〉. (6.44)

The integral over q is merely a resolution of identity, hence the following operator

relations hold:

V = −V t(0), (6.45)

⇒ t†(0)V = −V, (6.46)

where the latter identity makes clear that the columns of V are eigenvectors of t†(0),

with eigenvalues all equal to −1. In a basis where V is diagonal (in our case {|x〉},

but we denote the eigenvectors by {|αq〉} to highlight the generality of the argument,

which could for instance find application in lattice systems), we have

〈αq′ |t†(0)|αq〉 = −δ(αq − αq′)ω(αq) (6.47)
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where αq is the eigenvalue of |αq〉. Clearly, ω(αq) = 2π as long as αq 6= 0. However,

ω(0) is not fixed by this argument. Denoting the set of eigenvectors whose eigen-

values vanish as I0, and its compliment by IV , and inserting a resolution of identity

into the Lippmann-Schwinger equation, we obtain

|k+〉 = |k〉+

∫ ∞
−∞

dk′

2π

[
ω(0)

∫
I0

dq′

2π
〈k′|αq′〉

∫ ∞
−∞

dq

2π
〈αq|k〉 −

∫
IV

dq

2π
〈k′|αq〉〈αq|k〉

]
.

(6.48)

Since ω(0) is arbitrary, we are free to set it to zero, which immediately yields (6.40).

This result implies that there are only two S-matrices possible in a flat band, de-

pending on whether one uses a finite or infinite range potential. For a finite range

potential, it is clear that S = 1, while an infinite range potential gives S = 0, which

is not an S-matrix at all. Thus, in a flat band, finite range scattering does not alter

the incoming states, while infinite-range scattering is ill-defined.

To return to Luttinger’s model; taking the α → ∞ limit in Eq. (6.36) gives

a kinetic term that is independent of relative momentum. Therefore intrabranch

scattering in this limit is equivalent to flat band scattering. Thus, assuming a finite

range potential, we see that linearising the dispersion leads to a situation where

intrabranch scattering essentially does not occur. Thankfully, this corresponds to the

actual microscopic situation. If intrabranch scattering were an important process at

the microscopic level, however, Luttinger’s model would inevitably fail to reproduce

it, and would thus give a poor description of the relevant physics.

6.6 Interpretation of phenomenological parame-

ters

The picture painted in the last section is seemingly at odds with the usual interpreta-

tion of g4. This is not yet a certainty, however: in order to rescue the interpretation,

one might be tempted to set g4 = 0, in which case it would correctly reflect the lack

of intrabranch scattering. In this section, we show that setting g4 to zero leads to a

model that gives an incorrect dispersion relation for density wave excitations, and
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hence fails to reproduce an important aspect of the microscopic physics.

That g4 should be interpreted as an energy shift for excitations rather than a

measure of scattering should not come as too great a surprise, given that the bosonic

form of the intrabranch term, Eq. (5.29), is no different from the bosonised kinetic

term, except that it appears multiplied by g4/2π rather than vF . No matter what

the microscopic interpretation of g4 is, then, its role in the effective model must be

to modify the speed of the bosons in some way. We can use this fact to calculate g4

in terms of the realistic potential, by demanding that the density waves’ microscopic

kinetic behaviour is preserved in the effective model.

A little thought shows that this procedure is indeed necessary. The energy of

density waves in the microscopic model depends not only on the kinetic term, but

also on the interaction: a density wave with momentum q over the Fermi sea will

have energy

Eq = 〈F |ρ†q (H0 + V ) ρq|F 〉. (6.49)

If the ρq are to appear as fundamental degrees of freedom in the effective model,

it is clearly important that their energies scale with q in the same way as in the

microscopic model. To see why, let the effective dispersion for density waves be

Ẽq = ṽq, whereas, for small q, their microscopic dispersion is Eq = vq. If ṽ > v,

for instance, then it will be more difficult for the interaction to create excitations in

the effective model than in the microscopic model. Essentially, the effective theory

will correspond to a microscopic system whose interactions are weaker than those

of the system we are trying to model. Thus, it is important to ensure that, for

small q, the microscopic dispersion Eq is preserved in the effective model. Since

this dispersion depends on the interaction, one expects that the act of replacing the

realistic two-body potential with the contact-like interaction (6.20) will change it.

This change must therefore be corrected for, and we calculate this correction now,

within the Hartree-Fock approximation.

To begin with, note that the energy of a density wave of small momentum is the

same as that of a particle-hole pair near a Fermi point. Thus, consider the energy
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expectation value of a low-lying particle-hole pair in the microscopic model,

〈k̃ +Q|H|k̃ +Q〉 = EFS +
~2

2m

(
Q2 + 2k̃Q

)
+ 〈k̃ +Q|V |k̃ +Q〉, (6.50)

where |k̃ + Q〉 ≡ c†
k̃+q

ck|F 〉 with k̃ slightly less than kF , and Q such that k̃ + Q is

slightly greater than kF . Also, EFS is the energy of the non-interacting Fermi sea.

We have

〈V 〉 =
1

2L

∑
kk′q

V (q)〈c†k+qc
†
k′−qck′ck〉 (6.51)

=
1

2L

∑
kk′q

δk′,k+q〈c†k+qc
†
k′−qck′ck〉 (6.52)

= − 1

2L

∑
k,q

V (k − q)〈c†qcqc
†
kck〉 (6.53)

=
1

L

∑
k

V (k̃ − k)−
∑
k

V (k̃ − k +Q)−
kF∑

k=−kF
q=−kF

V (k − q)
2

 (6.54)

The last term in Eq. (6.54) does not depend on either k̃ or Q, and as such represents

a constant contribution to the energy which, since we are only interested in the

dispersion relation for particle-hole pairs, we may safely ignore. Thus, taking the

limit L → ∞, performing the resulting integral, and considering the limit of a

low-lying particle hole pair, so that k̃ ≈ kF and Q ≈ 0, we obtain

〈V 〉 =
Q

2π
[V (0)− V (2kF )]. (6.55)

We now consider the same expectation value in the effective model, which is given

by

〈k̃ +Q|Heff |k̃ +Q〉 = vFQ+ 〈Veff〉. (6.56)

The second term is trivially evaluated by noticing that Veff(0) = Veff(2kF ) = g2,

so that by Eq. (6.55), which we derived without assuming anything about the
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dispersion or the potential, 〈Veff〉 = 0. Ignoring constants, then, we have

〈H −Heff〉 =
Q

2π
[V (0)− V (2kF )]. (6.57)

We see that the effective model does not produce the correct energetics for micro-

scopic density waves. Not only is the energy incorrect, it is wrong by an amount

that depends on the relative momentum between the particle-hole pairs compris-

ing the waves. Clearly this situation is unacceptable; we can think of the effective

model as it stands as having the wrong Fermi velocity. There is however a very

simple remedy: one can introduce an effective, or renormalised, Fermi velocity to

compensate. We define

v = vF +
g4

2π
, (6.58)

with g4 = V (0) − V (2kF ). Replacing vF with v in (5.32) yields a model that gives

the correct excitation energy for the bosons.

It is obvious that g4 does not vanish identically for any realistic interaction,

given the way it depends on vF . Therefore g4 can in no way be thought of as a

measure of intrabranch scattering in our model; it must instead be regarded purely

as an energy shift exerted upon density waves by the full interaction. In fact, it

can be seen from Eq. (6.18) that 〈kF |V̂ |kF 〉 = V (0) − V (2kF ), i.e., g4 is precisely

the interaction matrix element governing interbranch scattering. In the first Born

approximation T = Vp, therefore, we have g4 = g2 (see Eq. (6.22)). Thus, we see

that the energy shift is due primarily to interbranch interactions. In light of this,

one sees that the usual fermionic form of Luttinger’s Hamiltonian, which includes

inter- and intrabranch scattering terms, is misleading in what it implies about the

relationship between Luttinger’s model and the underlying physics. We therefore

propose an alternative Hamiltonian for the unbosonised fermionic effective theory,

which emphasises the true physical role of g4:

Heff = v

∞∑
k=−∞

k
[
c†R,kcR,k − c

†
L,kcL,k

]
+ Vinter (6.59)
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with

Vinter =
g2

2L

∑
k,k′,q

c†R,kcR,k+qc
†
k′,Lck′−q,L + (R↔ L), (6.60)

and v = vF + g4/2π.

6.7 Summary and outlook

In this chapter we have essentially conducted a thought experiment, in order to test

a widely-held interpretation of the phenomenological constants appearing in Lut-

tinger’s model. We considered a system of identical, spin-polarised fermions, and

imagined it to be dilute enough so as to be describable via a simple pseudopotential,

fit to two-body scattering data. We found fitting g4 to intrabrach scattering data

to be impossible, and concluded that the usual interpretation of g4 as a measure of

intrabranch scattering is untenable for the model under consideration, casting doubt

upon the validity of the interpretation in general. Instead we showed that g4 appears

as a correcting factor, that must be added in by hand, to account for the energy shift

exerted upon density waves by the realistic interaction, which disappears when one

introduces the contact-like interaction necessary for successful bosonisation. On the

other hand, our treatment shows that the usual interpretation of g2 as a measure of

interbranch scattering is perfectly sensible. We proved that g2 may be fit to micro-

scopic scattering data calculated using a fully quadratic dispersion and then used

directly in the linearly-dispersing Luttinger model, since, as we showed, there exists

a mapping between the quadratic and linear models which preserves interbranch

scattering properties. A consideration of this mapping also highlighted a problem

with Tomonaga’s original treatment, and elucidated the relationship between his

model and Luttinger’s. We also proved a general result about scattering in a flat

band; namely, that two-body scattering basically does not occur.

It would be interesting to discover how much of this picture holds true in more

complex scenarios. One could for instance consider the intrabranch scattering of

spinful fermions; to what extent does allowing for more than one scattering channel,

and for mixed-symmetry wavefunctions, increase the intrabranch scattering ampli-
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tude? Also, we have shown flat band scattering to be a rather strange process.

Generalising to extra channels and exploring the three-body problem there may

yield interesting results.
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Ritz method

In this appendix we explain the variational Ritz method [94], which yields an ap-

proximation not only to the ground state, but also to the low-lying excitations and

their energies. Consider the map from a Hilbert space H to the real numbers:

E(|ψ〉) =
〈ψ|H|ψ〉
〈ψ|ψ〉

, (A.1)

where H is a Hamiltonian operator. We claim that the extrema of this map lie along

the eigenvectors of H, which we denote | i 〉, so that Hi| i 〉 = Ei| i 〉. To see this, it

helps to use the | i 〉 as a basis, writing |ψ〉 =
∑

i ci| i 〉. One can think of the ci as

coordinates on H, and in this coordinate system we have

E(c) =

∑
i |ci|2Ei∑
i |ci|2

. (A.2)

We require the energies to be sorted: E0 < E1 < E2 etc. Then, the function (A.2)

takes its minimum value along the c0 coordinate curve. The other extrema are

saddle points: the function is maximum with respect to {ci|i < j} and minimum

with respect to {ci|i ≥ j} along the cj coordinate curve. Since the ci coordinate

curves follow the directions of the eigenvectors | i 〉, this proves our claim.

It is easy to verify the argument with a calculation. First of all, note that

extremising E with respect to the coordinates ci and doing so with respect to their
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conjugates c∗i , which is simpler, will yield the same answer. Also, we have

〈ψ|ψ〉∂xE = ∂x〈ψ|H|ψ〉 − E∂x〈ψ|ψ〉, (A.3)

where x is any coordinate, so the extrema of E satisfy

∂x〈ψ|H|ψ〉 − E∂x〈ψ|ψ〉 = 0. (A.4)

Then, we calculate

∂c∗i E(c) = 0, (A.5)

⇒ ciEi −
∑

j c
∗
jcjEj∑
j c
∗
jcj

ci = 0, (A.6)

⇒ Ei
∑
j

c∗jcj −
∑
j

c∗jcjEj = 0. (A.7)

This must hold ∀i at an extremum. We therefore have a system of Dim(H) equations

in Dim(H) variables, with a single solution. It is easy to see that c∗jcj ∝ δi,j is a

solution. Therefore it is the only solution, and we see that all the extrema of E do

indeed lie along the directions of the energy eigenstates.

With the Ritz method one uses similar reasoning, but in a finite subspace of H

(call it h), so that the extrema of E in h can be calculated numerically. The idea

is to choose h so that it is close to the space of low-lying states. If this is done

successfully, the extrema of E over h will lie close to the true low-energy eigenstates.

To see how this works, note that a choice of h is essentially a guess at the subspace

spanned by the lowest-lying Dim(h) eigenstates. Ideally, one would guess correctly,

h = Span( { | i 〉 : i < Dim(h) } ), but of course in practice one is always somewhat

off the mark. Let us capture the “wrongness” of the guess in vectors |αi〉, so that

h = Span( { | i 〉+ |αi〉 : i < Dim(h) } ). (A.8)

It is convenient to choose the |αi〉 to be orthogonal to the true low-energy subspace,
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which one can always do without loss of generality1. Then, we may write

|αi〉 =
∑

j≥Dim(h)

α
(i)
j | j 〉. (A.9)

We now take coordinates bi on h, so that any state |ψ〉 ∈ h is written as

|Ψ〉 =
∑

i<Dim(h)

bi

| i 〉+
∑

j≥Dim(h)

α
(i)
j | j 〉

 . (A.10)

Plugging this into Eq. (A.4), we obtain

(
biEi +

∑
i′<Dim(h)
j≥Dim(h)

bi′α
(i)
j α

(i′)
j Ej

) ∑
i′<Dim(h)

b∗i′bi′

−

( ∑
i′<Dim(h)

b∗i′bi′Ei′ +
∑

i′<Dim(h)
i′′<Dim(h)
j≥Dim(h)

b∗i′bi′′α
(i′)
j α

(i′′)
j Ej

)
bi = 0

(A.11)

Arguing as before, this is a system of Dim(h) equations in as many variables, of

which bj ∝ δi,j is a - and therefore the only - solution. Thus, the extrema of E on

the subspace h lie along the directions | i 〉 + |αi〉. If one has made a good guess

at the subspace, the |αi〉 will be small (in the sense of their norms), and so the

extrema of E on h will lie close to the true eigenstates: in other words, extremisng E

with respect to a well-chosen ansatz will yield good approximations to the low-lying

states.

We now show how to use this method to obtain the desired approximate states

in practice. Let us choose a (not necessarily orthogonal) basis {|ψi〉} for the guessed

subspace h, and write |Ψ〉 =
∑

i bi|ψi〉. Plugging this into Eq. (A.4) yields

∑
j

〈ψi|H|ψj〉bj = E〈ψi|ψj〉bj. (A.12)

This is nothing more than a generalised eigenvalue problem, for which numerous nu-

1To see this, let the |αi〉 point in any direction. Then, for instance, we can remove the |1〉
direction from |0〉+ |α0〉 by subtracting 〈1|α0〉(|1〉+ |α1〉). By repeatedly carrying out this kind of
subtraction, one ends up with the desired basis.
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merical routines for computing the Dim(h) solution vectors and associated energies

exist.
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Appendix B

Asymptotic form of scattering

wavefunction

Here we find the asymptotic form of the scattering state

ψk(x) =
i sin(kx)√

2π
+ sgn(k)

img2√
2π
P
∫ ∞

0

dq
sin(qx)

k2 − q2
. (B.1)

Essentially, this boils down to massaging the principal value integral into a state

where the asymptotic limit can be easily taken. We label the integral IP and write

it as

IP =
1

2k
P
∫ ∞

0

dq

(
sin(qx)

k − q
+

sin(qx)

k + q

)
. (B.2)

We focus on the first term for now. Adding zero in the form kx−kx to the argument

of the sine function and using a trigonometric identity, we have

P
∫ ∞

0

dq
sin(qx)

k − q
= P

∫ ∞
0

dq
sin(x(k − q)) cos(kx) + cos(x(k − q)) sin(kx)

k − q
. (B.3)

Focusing on the cosine term and abusing notation slightly,

P
∫ ∞

0

dq
cos(x(k − q))

k − q
=

lim
ε→0+

[
Ξ(k)

(∫ k−ε

0

+

∫ ∞
k+ε

)
+ Ξ(−k)

∫ ∞
0

]
dq

cos(x(k − q))
k − q

.

(B.4)
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Appendix B. Asymptotic form of scattering wavefunction

We deal with the last term first:

∫ ∞
0

dq
cos(x(k − q))

k − q
= −

∫ k

−∞
dq

cos(qx)

q
=

∫ ∞
−k|x|

dq
cos(q)

q
= −Ci(−k|x|). (B.5)

Similarly, we have

∫ ∞
k+ε

dq
cos(x(k − q))

k − q
= −Ci(ε|x|), (B.6)∫ k−ε

0

dq
cos(x(k − q))

k − q
=

(∫ k−ε

−∞
−
∫ 0

−∞

)
dq

cos(x(k − q))
k − q

= Ci(ε|x|)− Ci(k|x|).

(B.7)

Using these results in Eq. (B.4) yields

P
∫ ∞

0

dq
cos(x(k − q))

k − q
= −Ξ(k)Ci(k|x|)− Ξ(−k)Ci(−k|x|) = −Ci(|kx|). (B.8)

By similar calculations, one can show that:

P
∫ ∞

0

dq
cos(x(k + q))

k + q
= −Ci(|kx|) (B.9)

P
∫ ∞

0

dq
sin(x(k + q))

k + q
= P

∫ ∞
0

dq
sin(x(k − q))

k − q
= −Si(kx) (B.10)

Thus, from Eq. (B.2), we see that

IP = −1

k
[Ci(|kx|) sin(kx) + Si(kx) cos(kx)] , (B.11)

which we use in Eq. (6.23), obtaining

ψk(x) = i

(
1√
2π
− mg2√

2π~2|k|
Ci(|kx|)

)
sin(kx)− img2√

2π~2|k|
Si(kx) cos(kx), (B.12)

which is the desired result from which the asymptotic form is easily found.
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