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In May and September 2016, two intense hybrid cyclones (HCs) developed over the

Great Australian Bight damaging infrastructure and causing a state-wide power outage

in South Australia. These two cyclones motivate the compilation of the first synoptic

climatology of HCs in the Australian region, including an analysis of their importance

for wind and precipitation extremes, and a composite view of the large-scale flow in

which they develop. HCs are identified in ERA-Interim data from 1979 to 2010 using an

objective feature tracking method and a cyclone phase space diagnostic. HCs exhibit a

pronounced seasonal cycle with most of them occurring from May to September. During

these months, HCs are most frequent over the Tasman Sea and the Great Australian

Bight where they account for 50% of all cyclones. A common characteristic of all HCs

is that the strongest precipitation, which is locally extreme in 91% of all HCs, falls in the

warm-sector and along a bent-back warm front on the poleward side of the cyclones.

Moreover, the area affected by extreme precipitation and the maximum precipitation in

HCs are no different from non-hybrid cyclones (NHCs). In contrast, the area affected

by extreme wind gusts is significantly larger in HCs than for NHCs. In both HCs

and NHCs the strongest near-surface wind gusts typically occur in the cold air mass

in the wake of the cyclones, especially in those over the Great Australian Bight. The

upper-tropospheric structure of HCs is characterised by an elongated cyclonic potential

vorticity anomaly embedded between two ridges that eventually cuts off. In contrast,

NHCs are characterised by a zonal flow upstream and upper-tropospheric cyclonic wave

breaking.
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1. Introduction

In May and September 2016, two extratropical cyclones (ECs)

developed explosively over the Great Australian Bight. The May

cyclone affected the Eyre Peninsula and the Adelaide region

with storm-force winds and a damaging storm surge along the

coast (Bureau of Meteorology 2016a). The strong winds and

the record high sea levels caused coastal erosion and damaged

power lines, buildings and other infrastructure. The September

cyclone and its associated cold front affected nearly the same

region with destructive winds, intense rainfall and an outbreak of

severe thunderstorms including hail and at least seven tornadoes

(Bureau of Meteorology 2016b). The winds severely damaged the

South Australian power network resulting in a state-wide power

outage (Bureau of Meteorology 2016b; Lucas 2017). According

to the Bureau of Meteorology, the cyclone produced the lowest

sea level pressure recorded at a weather station in South Australia

at a standard observation time (972.7 hPa at Neptune Island). Both

cyclones were characterised by an upper-tropospheric cold core

and a shallow lower-tropospheric warm core, and are thus defined

as hybrid cyclones (HCs). They provide the motivation for the

present study, which is to document the climatological structure

and evolution of HCs in the Australian region.

Extratropical cyclones are usually asymmetric and derive their

energy from baroclinic energy conversion. Although ECs are

typically characterised by an upper-level cold core, they may

develop either a lower-tropospheric warm core or a lower-

tropospheric cold core. ECs exhibiting a lower- and upper-

troposperic cold core are referred to as non-hybrid cyclones

(NHCs) in this study. The fraction of ECs exhibiting a lower-

tropospheric warm core varies regionally but may be significant

(Čampa and Wernli 2012). For the northwestern hemisphere,

Hart (2003) estimated that 10–15% of ECs develop both an

upper-tropospheric cold core and a lower-tropospheric warm-core

during their lifecycle. These cyclones are referred to as HCs. The

most prominent example of midlatitudes HCs are warm-seclusion

cyclones which constitute the mature stage of the Shapiro and

Keyser (1990) lifecycle paradigm. Further examples of HCs are

extratropical transitioning TCs (e.g., Jones et al. 2003; Evans

et al. 2017), tropical transitioning disturbances originating from

the midlatitudes (e.g., Davis and Bosart 2004; McTaggart-Cowan

et al. 2013), and subtropical cyclones (e.g., Simpson 1952; Evans

and Guishard 2009). Since the present study mainly considers

subtropical cyclones and warm-seclusion cyclones, we briefly

recapitulate their main characteristics in the following.

In their influential book chapter, Shapiro and Keyser (1990)

integrated the results of observational and numerical studies into

a new conceptual model for the life cycle of marine extratropical

frontal cyclones. In their model, cyclogenesis begins along a

continuous and broad low-level baroclinic zone, with fronts

developing as the cyclone intensifies. In contrast to the Norwegian

cyclone model (Bjerknes and Solberg 1922), where the cold front

merges with the warm front to form an occluded front, the cold

front moves perpendicular to the warm front forming a frontal T-

bone. As the cyclone approaches its mature phase, the temperature

gradient related to the warm front is advected cyclonically around

the cyclone centre (e.g., Takayabu 1986; Neiman and Shapiro

1993; Schultz et al. 1998), forming a bent-back warm front. This

bent-back warm front wraps around the cyclone centre, enclosing

a pocket of relatively warm air that is encircled by cold polar air.

Shapiro and Keyser (1990) referred to this pocket of warm air

which forms a lower-tropospheric warm core at the mature stage

of the cyclone as a warm seclusion. Since then, the dynamics of

these cyclones have been investigated in idealised models (e.g.,

Snyder et al. 1991; Hines and Mechoso 1993; Reed et al. 1994;

Schultz et al. 1998) and in observations (e.g., Neiman and Shapiro

1993; Grønås 1995).

Subtropical cyclones form over many ocean basins, including

the subtropical Pacific (e.g., Simpson 1952; Otkin and Martin

2004), the Atlantic (e.g., Guishard et al. 2009; Evans and Braun

2012), and the Tasman Sea (e.g., Holland et al. 1987; Garde

et al. 2010; Browning and Goodwin 2013; Cavicchia et al. 2018).

On the large-scale, subtropical cyclogenesis is typically preceded

by a meridionally-elongated stratospheric intrusion of cyclonic

potential vorticity (PV), often referred to as a PV streamer (e.g.,

Caruso and Businger 2006; Moore et al. 2008; Garde et al. 2010).

This streamer eventually becomes detached from the stratospheric

cyclonic PV reservoir, resulting in a cut-off which forces ascent in

a weakly stable large-scale environment. The deep vertical ascent

in a region of weak static stability is associated with convectionThis article is protected by copyright. All rights reserved.
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that generates lower-tropospheric PV through latent heating and

hence contributes to the subtropical cyclogenesis (e.g., Caruso

and Businger 2006). Vigorous ascent typically occurs on the

poleward and eastern side of these cyclones in a baroclinic

environment (e.g., Simpson 1952; Davis and Bosart 2004; Hulme

and Martin 2009; Cordeira and Bosart 2011; Bentley and Metz

2016; Cavicchia et al. 2018) which bears similarities with bent-

back warm fronts characteristic of the Shapiro and Keyser

(1990) cyclone model. In the present study, no distinction is

made between subtropical cyclones and warm-seclusion cyclones.

Henceforth, the term HC encompasses both cyclone types.

The most prominent and widely studied cyclones in the

Australian region are known as East Coast Lows, which form

in a maritime environment in the vicinity of the east coast

of Australia (e.g., Holland et al. 1987; Speer et al. 2009).

These cyclones, particularly those that are most intense, possess

structures characteristic of HCs: East Coast Lows tend to be

associated with pronounced upper-level cyclonic PV anomalies

that extend into the subtropics and eventually cut-off from the

main stratospheric PV reservoir (Mills et al. 2010; Garde et al.

2010; Dowdy et al. 2013; Cavicchia et al. 2018). The subtropical

jet lies on the equatorward flank of these cyclonic anomalies and

may be accompanied by a north-west cloud band (Downey et al.

1981) and a subtropical surface front. The cyclogenesis is well

poleward of the subtropical front over a weaker second baroclinic

zone in the southern part of the continent. In agreement with the

Shapiro and Keyser (1990) cyclone model, a bent-back warm front

on the poleward side of the low pressure systems is accompanied

by convection which may cause heavy rain (Mills et al. 2010).

Although strong surface-winds and heavy precipitation in

regions beyond the east coast of Australia have been linked to

HCs (Mills and Wu 1995; Griffiths et al. 1998; Qi et al. 1999;

Mills 2001; Qi et al. 2006; Garde et al. 2010), only a handful

of studies have analysed their dynamics and a comprehensive

synoptic-climatological investigation of this type of cyclone is

missing. Motivated by the two HCs of 2016, the present study

addresses the following questions

• What is the seasonal distribution of HCs in the Australian

region?

• What fraction of cyclones in the region are HCs? And how

does this fraction differ between the Great Australian Bight

and the Tasman Sea?

• In terms of precipitation and near-surface winds, are HCs

more extreme than NHCs?

• Do HCs develop in a particular large-scale flow configura-

tion? And does this configuration differ from that in which

other NHCs form?

The data and methods to compile the climatology are

introduced in Section 2. The two HC developments in May

and September 2016 are discussed in Section 3. The synoptic

climatology of HCs in the Australian region in Section 4 includes

an analysis of the precipitation and near-surface wind extremes,

and the flow configuration in which HCs develop. A concluding

discussion and outlook are presented in Section 5.

2. Data and methodology

All analyses in the present study are based on 6-hourly ERA-

Interim reanalyses (Dee et al. 2011) regridded to a uniform 0.75◦

latitude–longitude grid. Following Catto and Pfahl (2013), six-

hourly accumulated precipitation data are taken from the 0–6 h

and 6–12 h ERA-Interim forecast fields that are initialised at 00

and 12 UTC. Information concerning wind gusts associated with

the cyclones is also taken from ERA-Interim data. The wind gusts

in ERA-Interim are based on the resolved 10-m wind speed and an

empirical multiplier from the turbulence scheme that is designed

to capture the effects of surface friction and stability (ECMWF

2007). The two case studies are augmented with infrared satellite

imagery derived from the GridSat-B1 data (Knapp et al. 2011).

2.1. Cyclone tracking

The methods described in Hodges (1994, 1995, 1999) and

Hoskins and Hodges (2002, 2005) are used here to identify and

track the cyclones. In brief, the cyclone centres are defined as

minima in the 850-hPa relative vorticity field (in the Southern

Hemisphere) truncated to a T42 Gaussian grid. The tracks are

constructed from the cyclone centres using a simple nearest

neighbour approach, then by minimizing a cost function, the most

likely tracks are produced. To ensure that the cyclones are mobile,This article is protected by copyright. All rights reserved.
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the tracks must last at least 2 days and be at least 1000 km long.

The present study focuses on cyclones that were located at least

once during their life cycle between 20–50◦S and 100–180◦E and

reached a peak intensity of less than −6 × 10−5 s−1 (greater than

6 cyclonic vorticity units; CVU) at 850 hPa.

2.2. Cyclone phase space

HCs are identified using the cyclone phase space diagnostic

of Hart (2003) and Evans and Hart (2003). Three parameters

describing the general structure of cyclones define the phase

space. The first parameter is the lower-tropospheric thermal

asymmetry B, which is defined as the storm-motion-relative

900–600-hPa thickness asymmetry within 500 km of the cyclone

centre. The storm motion is calculated as the difference between

the current cyclone position and its position 6 hours before.

B is approximately zero for highly symmetric cyclones such

as TCs or occluded ECs, but large and positive for developing

ECs. The remaining two parameters are the lower-tropospheric

thermal wind −V LT , and the upper-tropospheric thermal wind

−V UT . These parameters distinguish cold-core from warm-core

structures. −V LT is defined as the vertical derivative of the

cyclone height perturbation ∆Z = Zmax − Zmin between 900

and 600 hPa within a 500-km radius of the centre. Likewise,

−V UT is defined as the vertical derivative of the cyclone height

perturbation between 600 and 300 hPa. A linear regression fit to

the vertical profile in ∆Z at increments of 50 hPa ensures a unique

magnitude and sign for −V LT and −V UT even in non-linear vertical

profiles of the cyclone height perturbation (Hart 2003). Negative

values of −V LT (−V UT ) indicate a low-level (upper-level) cold-

core, whereas positive values indicate a low-level (upper-level)

warm-core. Cold-core ECs are characterised by negative −V LT and

−V UT , though warm-core TCs exhibit positive −V LT and −V UT . By

definition, HCs have positive values of −V LT , implying a larger

perturbation at 900 hPa than at 600 hPa, a positive thermal wind,

and stronger near-surface wind. −V UT is generally negative in

HCs, with only the most intense cyclones (those with minimum

central pressures below 940 hPa) having slightly positive −V UT

values (Hart 2003). With these considerations in mind, HCs

are defined here as cyclones for which B < 10, −V LT > 0 and

−V UT < 0 at their time of peak intensity. Choosing B < 10 instead

of B = 0 accounts for the effects of cyclone tracking uncertainties,

small-scale storm asymmetries and data analysis uncertainties

which can lead to slightly positive/negative values of B even in

mature TCs (Hart 2003). The requirements −V LT > 0 and −V UT <

0 follow the definition of subtropical cyclones in Guishard et al.

(2009) and are in the range of previous studies on HCs (e.g.,

Evans and Braun 2012; Yanase et al. 2014; González-Alemán

et al. 2015).

3. Two illustrative hybrid cyclones

The explosive development of the cyclones in May and September

2016, and their effect on the weather in South Australia provide

the motivation for the present study. In the following, the

development of the two cyclones is described.

3.1. Cyclone phase space for the two hybrid cyclones

The cyclone phase space trajectories for the May and September

2016 cyclones are shown in Fig. 1. As is typical of developing

cyclones, the two cyclones possess an asymmetric deep cold-core

(upper left quadrant in Fig. 1a, lower left quadrant in Fig. 1b)

during the early stages of their life cycle. At the time of their

lowest mean sea level pressures on 8 May and 28 September,

the cyclones have symmetric shallow warm-cores (lower right

quadrants in Figs. 1a, b), and consequently both cyclones are

HCs. After reaching peak intensity, the May cyclone develops

an asymmetric deep cold core lasting until 1200 UTC 9 May,

whereas the September cyclone develops a symmetric deep cold

core lasting until the end of its life cycle.

3.2. The May 2016 cyclone

Two days before the explosive cyclogenesis over the Great

Australian Bight on 7 and 8 May, the midlatitude flow is

characterised by an upper-level ridge over the eastern South Indian

Ocean and a broad trough south of Australia (not shown). At

0600 UTC 7 May an upper-tropospheric PV streamer extends

equatorward to western Australia (blue contours in Fig. 2a), which

is presumably a response to the strong equatorward flow on the

eastern flank of the upstream ridge. At the same time, a broad

region of low sea level pressure (red contours in Fig. 2d) marks

a shallow cyclone ahead of this streamer in the equatorwardThis article is protected by copyright. All rights reserved.
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Figure 2. Development of the May cyclone between 0600 UTC 7 May and 0600 UTC 8 May. (a, b, c) 315-K PV (blue contours at –1, –2 PVU), 950–750-hPa mean PV
(shading in PVU), and 950–750-hPa mean equivalent potential temperature (black contours in K). (d, e, f) brightness temperature of the false-colour infrared satellite
imagery (◦C; shading) derived from the GridSat-B1 data set, 315-K wind speed (semi-transparent shading at 30, 35, 40 m s−1), and sea level pressure (red contours in
hPa).

entrance region of the midlatitude jet (semi-transparent shading

in Fig. 2d). The low pressure system is associated with two

frontal zones in the lower troposphere. A pronounced gradient

in equivalent potential temperature (black contours in Fig. 2a)

marks the cold frontal zone that extends from the low pressure

area northwestward over subtropical Australia. The second frontal

zone, as marked by the equivalent potential temperature gradient,

extends eastward across the Great Australian Bight. Thus, the two

frontal zones delineate a warm-sector over central and eastern

Australia (shading in Fig. 2d). In this warm-sector, the satellite

imagery reveals a cloud band extending from north to southeast

Australia. Generally, the synoptic setup is very similar to that of a

HC development described in Griffiths et al. (1998).

The low-pressure system deepens to a central minimum

pressure of less than 990 hPa by 1800 UTC 7 May (Fig. 2e).

This intensification is accompanied by the development of high-

level clouds as indicated by low brightness temperatures (Fig. 2e)

and the formation of low-level cyclonic PV anomalies at the

southern tip of the warm sector (shading in Fig. 2b). The

development of high-level clouds characterises the period of

explosive cyclogenesis that continues until 0600 UTC 8 May.

According to the Bureau of Meteorology’s manual analyses∗, the

mean sea level pressure falls from 997 hPa at 0600 UTC 7 May

∗The manual analyses are available online at
http://www.bom.gov.au/australia/charts/archive/index.shtml

to 978 hPa at 0600 UTC 8 May. At a latitude of about 36◦S,

this deepening rate corresponds to more than one Bergeron†,

and consequently fulfils the “bomb” criterion for explosive

development (Sanders and Gyakum 1980).

This explosive development, which bears many similarities

with the Shapiro–Keyser cyclone model (Shapiro and Keyser

1990), is also depicted in the mean sea level pressure field of

the reanalysis data. The central pressure falls to 980 hPa at 0600

UTC 8 May (Fig. 2f). As is characteristic for a Shapiro–Keyser

cyclone, the movement of the cold front over the Australian

continent is nearly perpendicular to the warm frontal zone over

the Great Australian Bight, forming a frontal T-bone structure

with a bent-back warm front extending westward of the cyclone

centre and a frontal fracture close to the cyclone centre (Figs. 2b,

c). In association with the rapid intensification, the low-level PV

decreases to less than −1.5 PVU (Figs. 2b, c). The collocation of

the cyclonic PV, tropospheric-deep ascent (not shown), and the

high-level clouds suggests that latent heating contributes to the

cyclone intensification.

In the mid- to upper-troposphere, the cyclone intensification

is accompanied by a LC1-type wave breaking (Thorncroft et al.

1993) and a cyclonic wrap-up of the PV streamer (Figs. 2b, c).

This wrap-up is reflected in the satellite image as a cloud-free

†1 Bergeron = 24 hPa (sin φ/sin 60) where φ is the latitude of the cyclone centre.This article is protected by copyright. All rights reserved.
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Figure 1. Cyclone phase space diagram for the May cyclone (black line) and the
September cyclone (red line). Phase evolution: (a) −V L

T vs B and (b) −V L
T vs

−V U
T . A marker is placed every 6 h and the shading of each marker indicates the

cyclone mean sea level pressure in hPa.

area that spirals toward the cyclone centre (Fig. 2f). At 0600 UTC

8 May, the leading edge of the PV streamer is collocated with

the low-level cyclonic PV along the warm front. Thus, the two

cyclonic PV anomalies form a vertically stacked and troposphere-

spanning PV-tower which is characteristic of the mature stage of

cyclone development (e.g., Rossa et al. 2000; Wang and Rogers

2001; Čampa and Wernli 2012).

Characteristic of the Shapiro–Keyser cyclone model, a pool of

relatively warm air in the cyclone centre is the warm-seclusion

(Fig. 2c). In the satellite image, the cyclone centre is detached

from the northwest cloud band and it has a symmetric structure

with a cloud-free area reaching the cyclone centre. Consistent

with the Shapiro–Keyser cyclone model the cyclone deepening

terminates shortly after the development of the warm-seclusion at

0600 UTC 8 May.

3.3. The September 2016 cyclone

The large-scale synoptic pattern prior to the cyclone development

in September 2016 is similar to that in May 2016. The flow at

315 K is characterised by an upper-level ridge over the eastern

South Indian Ocean and a trough to the south of western Australia

(Fig. 3a). Ahead of the axis of this trough and on the poleward side

of the upper-level jet, a secondary low starts to develop at 0600

UTC 27 September as indicated by a local mean sea level pressure

minimum of less than 1000 hPa at 120◦E and 36◦S (Fig. 3d).

To the south and west of the pressure minimum, low brightness

temperatures indicate high-level clouds (Fig. 3d) related to ascent

in a region of a low-level baroclinic zone (Fig. 3a). The proximity

of this cloud-feature to open cellular convection in the cold air and

its location on the poleward side of the upper-level jet indicates an

instant-occlusion type cyclogenesis (e.g., Zillman and Price 1972;

Browning and Hill 1985; Evans et al. 1994), very similar to the

cyclone investigated in Griffiths et al. (1998).

Still located ahead of the axis of the upper-level trough at

315 K, the low pressure system deepens to less than 985 hPa

at 1800 UTC 27 September (Figs. 3b, e). The period of

intensification is accompanied by an expansion of the high-level

clouds mostly to the south of the low pressure system. As for the

May cyclone, the area of high-level clouds is collocated with a

warm frontal zone as shown by the lower tropospheric gradient in

equivalent potential temperature. On the triple point between the

warm and the cold front, a negative low-level PV anomaly of less

than –1 PVU develops.

The intensification continues until 0600 UTC 28 September.

According to the Bureau of Meteorology’s manual analysis,

the mean sea level pressure reaches 973 hPa. The mean sea

level pressure falls within 24 h from 1000 to 973 hPa, exceeding

1 Bergeron. As for the May cyclone, the low pressure system

strongly resembles a Shapiro–Keyser cyclone. At this time a bent-

back warm front extends from west of the cyclone to its southeast

(Fig. 3c), which is collocated with an elongated negative PV

anomaly that is strongest in the cyclone centre. A pronounced

cold front, extending from the cyclone to northwestern Australia,This article is protected by copyright. All rights reserved.
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Figure 3. As Fig. 2, but for September cyclone between 0600 UTC 27 September and 0600 UTC 28 September . (d, e, f) Semi-transparent shading of the 315-K wind
speed at 40, 45, 50 m s−1.

moves perpendicular to the bent-back warm front. Relatively low

brightness temperatures in the infrared satellite image over South

Australia indicate deep convection along the cold front (Fig. 3f),

coinciding with thunderstorms, hail and tornadoes at around this

time (Bureau of Meteorology 2016b), which led to the state-wide

power outage in South Australia.

4. Synoptic climatology

4.1. Climatological distribution

From 1979 to 2010, 1014 HCs reaching a peak intensity of at least

6 CVU at 850 hPa were identified between 20 to 50◦S and 100

to 180◦E. Although HCs occur all year round, their frequency

exhibits a pronounced seasonal cycle (black bars in Fig. 4a).

About two HCs per month occur from November to April. The

number of HCs peaks in Southern Hemisphere winter with up to

four cyclones per month in July. The frequency of NHCs exhibits

a seasonal cycle too (grey bars in Fig. 4a). However, it is much less

pronounced so that the fraction of HCs relative to NHCs is larger

during winter than during summer. This is particularly noticeable

for the Tasman Sea (see white lines in Fig. 4b for definition of

the Tasman Sea and Great Australian Bight). In all seasons except

for winter, NHCs are more frequent in the Tasman Sea than HCs

(cf. hatched blue bars and filled blue bars in Fig. 4a). In Southern

Hemisphere winter, however, HCs amount to roughly 50% of all

ECs in the domain considered. During July, they occur even twice

Table 1. Number of HCs and NHCs reaching their peak intensity during
MJJAS in the region 20 to 50◦S and 100 to 180◦E and for three different
regions.

total Great Tasman East Coast
Australian Bight Sea Low region

HCs 573 41 141 61
NHCs 2248 46 151 51

as frequent than NHCs. Likewise, HCs over the Great Australian

Bight occur as frequently as NHCs in June and July (cf. filled red

bars and hatched red bars in Fig. 4a).

Given that HCs occur most frequently during May to

September and that the two case studies occurred during these

months, the remaining analyses in this paper focus on HCs

identified during extended winter May to September (MJJAS).

In total, 573 HCs were identified in the region 20 to 50◦S and

100 to 180◦E during MJJAS (Table 1). With 2248 NHCs during

the same period, every fifth cyclone occurring in this region is

a HC. However, the fraction of HCs compared to NHCs varies

substantially depending on the region of interest. In the region of

the climatologically highest cyclone frequency (black contours in

Fig. 4b) between 100 to 120◦E and 40 to 50◦S, the number of

HCs is comparatively low (shading in Fig. 4b). HCs occur most

frequently over the Tasman Sea and the Great Australian Bight

with locally more than two cyclones per month during MJJAS

(Fig. 4b). At the time of peak intensity, 41 (141) HCs were located

over the Great Australian Bight (Tasman Sea) from 1979 to 2010.This article is protected by copyright. All rights reserved.
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dashed grey line marks the East Coast Low region.

During the same period, 46 (151) NHCs occurred over these two

ocean basins. Thus, almost every second cyclone in these two sub-

regions is a HC.

Of special interest in Australia, is the East Coast Low (ECL)

region since cyclones developing in this area can cause major

damage to the coast line of eastern Australia. The ECL region

is bounded by the Australian coast line, 161◦E, 24◦S, and 41◦S

(see Pepler et al. (2017b) for details). During MJJAS 1979–2010,

61 HCs and 51 NHCs reached their peak intensity in this region.

Thus, more than half of all cyclones reaching their peak intensity

in the ECL region are HCs. That a large fraction of HCs develop

in this region, raises the question as to how many ECLs are also

HCs. Taking the ERA-Interim based objective data set of Pepler

et al. (2017b), the cyclone phase space diagnostic is applied to all

ECLs. The main finding is that 46% of all ECLs during MJJAS

fulfil the HC criteria defined in Section 2.2 at least once during

their lifecycle.

4.2. Precipitation and wind extremes

Although storm-force winds and heavy rain have been linked to

HCs in the Australian region in several case studies (e.g., Griffiths

et al. 1998; Mills 2001; Qi et al. 2006; Mills et al. 2010), a

general picture of how HCs are linked to precipitation and wind

extremes is missing. Where the most extreme precipitation and

wind gusts occur relative to the cyclone centre at peak intensity is

also unknown. To study the link between HCs and these extremes

and to compare them against NHCs, we first compute at each grid

point the 99th percentile of the 6-hourly accumulated precipitation

and 10-m wind gusts for each month in the period 1979–2010.

Values exceeding the 99th percentile at each grid point are defined

as extreme. By first masking the area around each cyclone we can

attribute the extremes to a specific cyclone. Following Pfahl and

Wernli (2012), the mask is defined as the area enclosed by the

outermost closed mean sea level pressure contour that contains the

cyclone centre. Since the analysis is performed at the time of peak

intensity, all cyclones have a closed pressure contour. The major

advantage of such a definition is that no a priori assumptions about

the cyclone radius are made. Starting from the cyclone centre,

the closed contours are identified at intervals of 0.5 hPa up to a

maximum length of 7500 km. Grid points of extreme precipitation

or wind that lie within the cyclone mask are attributed to the

cyclone. Performing the same analysis 12 hours prior to the time

of peak intensity does not affect the main conclusions (not shown).

According to a Mann-Whitney-U test, the distributions of the

6-hourly maximum precipitation attributable to all HCs and all

NHCs (Fig. 5a) do not differ significantly. The interquartile range

of the maximum 6-hourly precipitation related to HCs and NHCs

extends from 9–19 mm and from 5–15 mm, respectively. The

extreme precipitation values for cyclones over the Tasman Sea

is notably different from those over the Great Australian Bight.

The average maximum 6-hourly precipitation exceeds 20 mm and

the 99th percentile reaches 70 mm for HCs over the Tasman Sea.

The range of maximum 6-hourly precipitation for cyclones over

the Great Australian Bight is significantly lower. On average, the

maximum 6-hourly precipitation is about 15 mm and the 99th

percentile reaches 25 mm. Both cyclones in May and September

2016 exceeded this 99th percentile (red and black star in Fig. 5a).

Although the 6-hourly precipitation maxima are significantlyThis article is protected by copyright. All rights reserved.
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Figure 5. Box and whisker plots of (a) maximum 6-hourly precipitation, (b) area
affected by extreme 6-hourly precipitation, (c) 10-m maximum wind gusts, and (d)
area affected by 10-m maximum wind gusts for HCs and NHCs at the time of peak
intensity. The subclasses contain all cyclones (all), cyclones over the Tasman Sea
(TAS), and cyclones over the Great Australian Bight (GAB). The median is given
by red lines, interquartile range by boxes, and the whiskers denote the 1 and 99th
percentile, respectively. Blue triangles denote the average value. Black and red stars
denote the respective values for the May and September 2016 cyclones. Percentage
values denote the fraction of cyclones with extreme (b) 6-hourly precipitation and
(d) wind gusts.

lower over the Great Australian Bight, they are still extreme. In

90% of the cases, HCs and NHCs are associated with extreme

precipitation at least at one grid point inside the cyclone mask at

their peak intensity (percentage values in Fig. 5b). Similar values

can be found for cyclones over the Tasman Sea. The area affected

by extreme precipitation does not differ significantly between HCs

and NHCs (Fig. 5b). On average, the affected area reaches similar

values for cyclones over the Tasman Sea and for those over the

Great Australian Bight. The area affected by extreme precipitation

exceeds the 99th percentile of all HCs over the Great Australian

Bight for the May and September 2016 cyclone (red and black star

in Fig. 5b). The area affected by extreme precipitation for the May

cyclone is remarkable and due to the cloud band that extended

over the continent.

Although the vertical thermal structure of HCs implies stronger

near-surface wind than for cold core NHCs, the 10-m maximum

wind gusts associated with HCs and NHCs do not differ

significantly. This result is valid both when considering all

cyclones and when considering cyclones over the Tasman Sea or

the Great Australian Bight separately (Fig. 5c). The maximum

wind gusts associated with the September 2016 cyclone exceeded
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Figure 6. Composites of (a, b) mean 6-hourly accumulated precipitation (shading in
mm (6 h)−1) and (c, d) mean 10-m wind gusts (shading in m s−1) for HCs over the
(a, c) Tasman Sea (TAS) and (b, d) Great Australian Bight (GAB) at peak intensity.
Grey contours denote the percentage of cyclones at which the 99th percentile of the
respective quantity is exceeded (contour interval is 10%). Black contours show the
850-hPa equivalent potential temperature (every 5 K). Coordinates are given in km
relative to the cyclone centre.

the 99th percentile of maximum wind gusts for all HCs over

the Great Australian Bight (red star in Fig. 5c). Generally

speaking, cyclones over the Tasman Sea tend to be associated

with higher maximum 10-m wind gusts than cyclones over the

Great Australian Bight. For example, 80% of HCs in the Tasman

Sea are associated with extreme wind gusts, whereas only 63% of

HCs over the Great Australian Bight are associated with extreme

wind gusts (Fig. 5d). Even though the maximum wind gusts are

of similar magnitude for HCs and NHCs, the area affected by

extreme wind gusts is significantly larger at the 99th percentile

confidence interval in HCs than for NHCs (Fig. 5d) according

to a Mann-Whitney-U test. For HCs occurring over the Great

Australian Bight, the May 2016 cyclone was exceptional as the

area affected by extreme wind gusts exceeded the 99th percentile

for that region (black star in Fig. 5d).

That HCs over the Tasman Sea are associated with stronger

precipitation than HCs over the Great Australian Bight is also

evident in composite plots of mean 6-hourly precipitation at the

time of their peak intensity (Figs. 6a, b). For HCs over the Tasman

Sea, the strongest 6-hourly mean precipitation (shading in Fig. 6a)

occurs in the warm-sector east of the HC centre and on the

poleward flank in the vicinity of a bent-back warm front which

is indicated by the equivalent potential temperature field (blackThis article is protected by copyright. All rights reserved.
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Figure 7. Composite fields of all (a-c) HCs and (d-f) NHCs during MJJAS at –12 h, 0 h, and 12 h relative to the time of peak intensity. 315-K PV anomaly relative to the
monthly climatology (shading in PVU), the –2-PVU contour at 315 K (green contour), and mean sea level pressure (black contours in hPa). Coordinates are given in km
relative to the cyclone centre.

contours in Fig. 6a). In particular, the precipitation along the bent-

back warm front is extreme since up to 30% of the HCs over

the Tasman Sea exceed the 99th percentile at the same location

relative to the cyclone centre. For HCs over the Great Australian

Bight (Fig. 6b), the strongest mean precipitation is confined to

the warm sector and the poleward flank of the cyclone where it

exceeds the 99th percentile in up to 40% of the cases.

In terms of wind gusts, the wind field associated with HCs

over the Tasman Sea (Fig. 6c) appears to be more symmetric

than that of HCs over the Great Australian Bight (Fig. 6d). At

peak intensity, composite mean wind gusts of more than 18 m s−1

occur along the bent-back warm front and in the cold air mass in

the wake of the cyclones over the Tasman Sea. These winds are

extreme in up to 30% of the cases. Strongest winds related to HCs

over the Great Australian Bight can be found in the cold air mass

in the wake of the cyclone (Fig. 6d). Here, the composite mean

wind gusts of more than 21 m s−1 exceed the 99th percentile in

more than 30% of the cases.

4.3. Cyclone structure

Both HCs in May and September were associated with a

highly amplified flow involving the formation of a meridionally

elongated trough. This raises the question concerning the

environmental flow in which HCs in the Australian region

typically develop. This question is addressed in the following by

analysing composite fields for HCs and comparing them against

composite fields for NHCs.

The composite 315-K PV for all HCs in MJJAS reveals a highly

amplified flow at –12 h relative to the time of peak intensity with a

south–north elongated trough flanked by two ridges upstream and

downstream (green contour in Fig. 7a). The trough is collocated

with a cyclonic PV anomaly of less than –2 PVU compared to the

monthly climatology (shading in Fig. 7a). The most anomalous

cyclonic PV can still be found slightly equatorward and upstream

of the low-level cyclone centre (black contours in Fig. 7a),

indicating favorable conditions for a further baroclinically driven

intensification.

At the time of peak intensity, the upper-level cyclonic PV

anomaly is collocated in west–east direction with a low-level

cyclonic PV anomaly, forming a troposphere-spanning PV-towerThis article is protected by copyright. All rights reserved.
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Figure 8. Composite vertical cross-section of all HCs from (a) west to east and (b) north to south at peak intensity. PV anomaly relative to the monthly climatology
(shading in PVU), PV (green contours at –0.7 and –2 PVU) potential temperature (black contours every 5 K), wind speed perpendicular to cross section (blue contours
every 10 m s−1 starting at±20 m s−1), and vertical velocity (gray contours every 0.1 Pa s−1). Coordinates are given in km relative to the cyclone centre.

(green contours and shading in Fig. 8a). At 315-K the median

PV anomaly reaches –2 PVU with the 10th and 90th percentile

extending from –4 to about –0.2 PVU (Fig. 9a). The 850-hPa

PV anomaly is significantly lower reaching a median value

of –0.4 PVU (Fig. 9b). The PV-tower tilts equatorward with

height as the low-level cyclone centre is slightly displaced to

the south of the upper-level cyclonic PV anomaly (Fig. 8b). As

with the two case studies, the subtropical jet (blue contours in

Fig. 8b) is located on the equatorward flank of this cyclonic PV

anomaly. The upstream ridge weakens slightly compared to 12

hours before, whereas the downstream ridge and its associated

anticyclonic PV anomaly intensify (Fig. 7b). This intensification

of the downstream ridge is particularly noticeable poleward of

the cyclone centre where the trough is thinning considerably. The

horizontal juxtaposition of anomalously cyclonic PV equatorward

of the low-level cyclone centre and anomalously anticyclonic PV

on its poleward side leads to a characteristic inverted treble clef

(in the Southern Hemisphere) structure (e.g., Martin 1998; Posselt

and Martin 2004). There are two parts to the interpretation of

the treble clef structure. First, consistent with the cyclonic upper-

tropospheric PV anomaly, tropospheric isentropes bend upward

immediately equatorward of the cyclone centre, indicative of a

column of relatively cold air (black contours in Fig. 8b). In

contrast, regions of anticyclonic PV immediately poleward of the

cyclone centre are associated with downward bowing isentropes

indicating a column of relatively warm air. Thus, the treble

clef structure is the signature of an occluded structure in the
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Figure 9. Violin-plot of (a) the 315-K and (b) 850-hPa PV anomaly relative to the
monthly climatology for HCs and NHCs in a radius of 200 km around the cyclone
centre at the time of peak intensity. White filled circles indicate median values, the
vertical black thick bar denotes the interquartile range, and the black vertical line
indicates the 10th and 90th percentile.

lower troposphere (Martin 1998) coinciding with the structure

of the low-level equivalent potential temperature field (Fig. 6).

Second, consistent with strong ascent (grey contours in Fig. 8b), it

indicates the presence of diabatic processes, especially latent heat

release, which intensify the notch of the treble clef by dilution

of upper-tropospheric PV (Posselt and Martin 2004). Overall, the

structure of the average HC at peak intensity is similar to the

previously reported case studies of HCs in the Australian region

(Griffiths et al. 1998; Mills et al. 2010), and the two case studies

presented in Section 3.

At 12 h after peak intensity, the 315-K cyclonic PV associated

with the cyclone has cut-off from the main stratospheric cyclonic

PV reservoir (Fig. 7c). This PV cut-off is nearly vertically aligned

with the cyclone centre terminating the intensification of the

cyclone.

Although a relatively clear picture of the structure of HCs and

the flow in which they are embedded emerges from this composite

view, there is still a considerable case to case variability of the

upper-level PV structure. The principal structures associated withThis article is protected by copyright. All rights reserved.
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this variability among the 573 HCs can be expressed through an

empirical orthogonal function (EOF) analysis of the 315-K PV

anomaly in a radius of 2000 km around the cyclone centres. The

three leading EOFs contain 32% of the total variance. The first

EOF which contains 14% of the variability is a dipole centered

between the upstream ridge and the meridionally elongated trough

(Fig. 10a). Thus, in a positive sense, the first EOF defines a less

intense upstream ridge but a strengthened ridge immediately south

and east of the cyclone centre. Accordingly, in a negative sense,

the first EOF corresponds to a highly amplified upstream ridge

and a less amplified ridge southeast of the cyclone centre. Most

of the variability associated with the second EOF is related to the

amplitude of the ridges upstream and downstream of the cyclone

(Fig. 10b). In a positive sense, enhanced ridges upstream and

downstream of the cyclone centre are linked to an equatorward

shift of the cyclonic PV anomaly, likely related to the formation

of a PV cut-off. The third EOF still contains 7% of the variability

(Fig. 10c). Its structure is less clear, although it points to a weaker

downstream ridge in events of a strongly positively tilted trough.

The information of this EOF analysis is used in a companion paper

to separate all HCs into four clusters, and to address the question

how the upper-level PV structure affects the intensity and motion

of HCs.

Composites for the remaining 2248 NHCs reveal that these

cyclones reach their peak intensity in a less amplified flow. At

–12 h (Fig. 7d), a cyclonic PV anomaly of less than –1 PVU

associated with a broad upper-level trough lies upstream of the

cyclone centre providing favorable conditions for intensification.

The upper-level cyclonic PV anomaly is less pronounced than

for the HCs, which is likely due to a weaker upstream ridge

and reduced equatorward advection of anomalous cyclonic PV air

from high latitudes. For instance at the 315-K isentropic level, the

median PV anomaly reaches values of –1.5 PVU (Fig. 9a) and thus

is significantly less cyclonic than the median PV anomaly of HCs

according to a Mann-Whitney-U test. The mean sea level pressure

minimum is nearly collocated with the most cyclonic upper-level

PV (Fig. 7e). The cyclone in the composite field deepens from

990 hPa to less than 980 hPa at peak intensity time and is thus

about 10 hPa deeper than the average HC (cf. Figs. 7b, e). Since

NHCs occur further poleward than HCs (49◦S for NHCs, 41◦S

for HCs), the lower sea level pressure of NHCs compared to

HCs does not necessarily indicate that NHCs are more intense

in terms of near-surface wind speed (see also Fig. 5c). The lower

mean sea level pressure is rather due to the climatologically lower

values at higher latitudes. That the intensity of NHCs and HCs

does not differ significantly is confirmed when analysing the

lower tropospheric PV anomaly around the cyclone centre. The

distributions of the 850-hPa PV anomaly do not differ significantly

at the time of maximum intensity (Fig. 9b).

A pronounced upper-level ridge of slightly greater than

0.5 PVU has developed downstream of the cyclone centre, which

is potentially enhanced by diabatic processes in the warm-sector

of the cyclone. The upper-level PV anomalies as well as the

cyclone itself weaken until 12 h (Fig. 7f). The collocation of the

most cyclonic upper-level PV and of the cyclone centre indicate

a termination of the cyclone development. Accordingly, the sea

level pressure at the cyclone centre increases to values greater than

980 hPa.

5. Concluding discussion

Two cases of explosive hybrid cyclogenesis over the Great

Australian Bight in May and September 2016 motivate the

compilation of the first climatology of this type of cyclones in

the Australian region. From 1979 to 2010, 1014 HCs, which are

characterised by a symmetric lower-tropospheric warm core and

an upper-tropospheric cold core, are identified in the ERA-Interim

reanalyses using cyclone tracking and phase space diagnostics.

The frequency of these cyclones shows a pronounced seasonal

cycle with a peak in the Southern Hemisphere winter. During

extended winter (MJJAS), HCs are most frequent over the Great

Australian Bight and the Tasman Sea where they account for

nearly 50% of all cyclones. In the East Coast Low region, the

fraction is 6–7% higher. That most hybrid cyclones in the Tasman

Sea occur during Southern Hemisphere winter is consistent with

previous climatologies of subtropical cyclones and East Coast

Lows for the same region (e.g., Braun 2009; Speer et al. 2009;

Browning and Goodwin 2013).

Previous case studies, as well as the two motivating events,

suggest that HCs may be more extreme in their precipitation and

near-surface winds than NHCs in the same region. Although 91%This article is protected by copyright. All rights reserved.
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Figure 10. Composite fields of all HCs as in Fig. 7 at the time of peak intensity, except for the black contours showing (a) EOF1, (b) EOF2, and (c) EOF3 of the 315-K
PV anomaly (contour interval 0.25 PVU). The variance explained by each EOF is given in the subcaptions. Coordinates are given in km relative to the cyclone centre.

of the HCs in MJJAS are associated with extreme precipitation,

the magnitude and the area affected by precipitation extremes do

not differ significantly from NHCs. Instead, it is the geographical

region that determines the magnitude of the precipitation. For

example, cyclones in the Great Australian Bight tend to be

associated with systematically less precipitation than those over

the Tasman Sea. This result is likely due to higher SSTs in

the Tasman Sea than in the Great Australian Bight and reduced

moisture over the continent which can be transported into the

warm sector of the cyclones in the Great Australian Bight. That the

most extreme precipitation typically occurs on the poleward flank

of the cyclones and along the bent-back warm front corroborates

previous case studies and climatologies on East Coast Lows (Mills

et al. 2010; Pepler et al. 2017a) and hybrid cyclones over other

ocean basins (e.g., Simpson 1952; Davis and Bosart 2004; Hulme

and Martin 2009). Also, the magnitude of the maximum near-

surface wind gusts does not differ significantly between HCs

and NHCs. However, the area affected by extreme wind gusts

associated with HCs is significantly larger than that of NHCs.

The strongest wind gusts typically occur in the cold air mass to

the west of the cyclone centre and, for HCs over the Tasman Sea,

along the bent-back warm front. The latter result is consistent with

the satellite-based climatology by Pepler et al. (2017a).

The case studies for the May and September 2016 cyclones, as

well as composite fields for all 573 HCs during extended winter

(May–September), show that the average HC in the Australian

region reaches peak intensity in an amplified flow including upper-

tropospheric ridges upstream and downstream of the cyclone as

well as a south–north elongated trough. This supports previous

case studies (e.g., Griffiths et al. 1998; Garde et al. 2010;

Mills et al. 2010; Cavicchia et al. 2018) as well as composite

analyses of East Coast Lows (e.g., Browning and Goodwin 2013;

Dowdy et al. 2013). At peak intensity, HCs are characterised

by a troposphere-spanning PV-tower which tilts equatorward

with height. This equatorward tilt with height has been noted

for cyclones in general occurring south of Australia (Lim and

Simmonds 2007). The elongated trough develops a characteristic

inverted treble clef (in the Southern Hemisphere) structure due to

ridge-building immediately downstream. Around 12 hours after

the peak intensity, the upper-level PV associated with the HC

detaches from the main stratospheric PV reservoir and forms

a PV cut-off that is collocated with the cyclone centre. This

characteristic development has been noted for hybrid cyclones in

other ocean basins (e.g., Moore et al. 2008; Posselt and Martin

2004) and over the Tasman Sea (Garde et al. 2010). In contrast to

HCs, NHCs develop in a flow that is considerably less amplified

upstream of the cyclones and the associated upper-tropospheric

trough does not develop into a PV cut-off. An EOF analysis

reveals that much of the variability of the upper-tropospheric PV

structure among all HCs is related to the amplitude of the ridges

upstream and downstream of the cyclones. The identified case-to-

case variability motivates a companion study in which all HCs are

separated into four distinct clusters in order to address the question

on how the environmental upper-level PV structure affects the

intensity and motion of HCs.

The conclusions drawn from the present study are valid only

for HCs in the Australian region. Hence, an intriguing research

opportunity may be to extend the analysis to the global scale andThis article is protected by copyright. All rights reserved.
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to elaborate regional differences concerning the structure of HCs

and their link to precipitation and wind extremes.
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González-Alemán JJ, Valero F, Martı́n-León F, Evans JL. 2015. Classification

and synoptic analysis of subtropical cyclones within the northeastern

Atlantic Ocean. Journal of Climate 28(8): 3331–3352, doi:10.1175/

JCLI-D-14-00276.1.

Griffiths M, Reeder MJ, Low DJ, Vincent RA. 1998. Observations of a cut-off

low over southern Australia. Quarterly Journal of the Royal Meteorological

Society 124(548): 1109–1132, doi:10.1002/qj.49712454805.
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