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Abstract

In this paper, we extend classical results on (i) signature symmetric realizations, and (ii) signature symmetric and passive
realizations, to systems which need not be controllable. These results are motivated in part by the existence of important
electrical networks, such as the famous Bott-Duffin networks, which possess signature symmetric and passive realizations that
are uncontrollable. In this regard, we provide necessary and sufficient algebraic conditions for a behavior to be realized as the
driving-point behavior of an electrical network comprising resistors, inductors, capacitors and transformers.
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1 Introduction

This paper is concerned with reciprocal systems (see,
e.g., Casimir, 1963; Willems, 1972; Anderson and Vong-
panitlerd, 2006; Newcomb, 1966; van der Schaft, 2011).
Reciprocity is an important form of symmetry in physi-
cal systems which arises in acoustics (Rayleigh-Carson
reciprocity); elasticity (the Maxwell-Betti reciprocal
work theorem); electrostatics (Green’s reciprocity); and
electromagnetics (Lorentz reciprocity), where it follows
as a result of Maxwell’s laws (Newcomb, 1966, p. 43).
Special cases of reciprocal systems include reversible
systems, as arise in thermodynamics; and relaxation
systems, such as viscoelastic materials (Willems, 1972).
In addition, reciprocity is a property of important
classes of electrical, mechanical and structural systems,
such as lightly damped flexible structures (Ferrante and
Ntogramatzidis, 2013). Our focus in this paper is on
linear reciprocal systems. In contemporary systems and
control theory, a linear reciprocal system is typically
defined as a system with a symmetric transfer function.
A fundamental result in systems and control theory
states that if the transfer function is also proper, then
the system possesses a so-called signature symmetric
realization (see Willems, 1972; Anderson and Vongpan-
itlerd, 2006; Fuhrmann, 1983; Youla and Tissi, 1966).
However, this result is subject to one notable caveat:
the system is assumed to be controllable.
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Practical motivation for developing a theory of reci-
procity that does not assume controllability arises from
electrical networks. Notably, the driving-point behavior
of an electrical network comprising resistors, inductors,
capacitors and transformers (an RLCT network) is nec-
essarily reciprocal, and also passive, 2 but it need not be
controllable (see Çamlibel et al., 2003; Willems, 2004;
Hughes, 2017d). Indeed, as noted by Çamlibel et al.
(2003), it is not known what (uncontrollable) behav-
iors can be realized as the driving-point behavior of an
RLCT network. In addition, an RLCT network need not
possess an impedance function, so the conventional def-
inition of a reciprocal system as one with a symmetric
transfer function is inappropriate for such networks.

The purpose of this paper is to address the aforemen-
tioned limitations with the theory of reciprocity. The pa-
per is structured as follows. In Section 3, we review the
classical theory of reciprocal systems, to highlight the
limitations of the existing theory and the contributions
of this paper. The main results follow in Sections 4–7,
and are summarised in the next two paragraphs.

In Section 4, we provide a formal definition of reci-
procity (Definition 5), which was first proposed by New-
comb (1966). The main advantage of this definition is
that it does not assume the existence of a symmetric
transfer function. This is particularly fitting for electri-
cal networks as these need not possess an impedance
function. We then provide a 2-part theorem which we
call the reciprocal behavior theorem. In part 1 (Theo-
rem 7), we provide necessary and sufficient conditions

2 A system is passive if the net energy that can be extracted
from the system into the future is bounded above (this bound
depending only on the past trajectory of the system).
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for a system to be reciprocal in terms of the differential
equations describing the system. We also prove that, for
any given reciprocal system, a simple transformation of
the system’s variables yields a reciprocal system with a
proper symmetric transfer function. Part 2 (Theorem 9)
then proves the existence of a signature symmetric re-
alization for any given system with a proper symmetric
transfer function (irrespective of controllability).

Section 6 contains another 2-part theorem: the pas-
sive and reciprocal behavior theorem. Part 1 (Theorem
17) provides necessary and sufficient algebraic condi-
tions for a system to be passive and reciprocal in terms
of the differential equations describing the system. This
theorem also answers the first open problem posed in
Çamlibel et al. (2003) in the more general setting of
multi-port networks: it shows that a behavior B is realiz-
able as the driving-point behavior of an RLCT network if
and only if B is passive and reciprocal. Part 2 (Theorem
18) then proves the existence of a passive and signature
symmetric realization for any given passive system with
a proper symmetric transfer function. The results in this
section build on earlier results in (Hughes, 2017c,a) on
systems which are passive but not necessarily reciprocal.
The extension to consider passive and reciprocal systems
is by no means trivial, and depends on a number of sup-
plementary lemmas that are provided in Section 7 and
Appendix B. Finally, the proofs in the paper, together
with existing results in the literature, provide an algo-
rithm for constructing an RLCT network realization of
an arbitrary given reciprocal and passive behavior. This
is illustrated by two examples in Section 8.

2 Notation and Preliminaries

We denote the real and complex numbers by R and C,
and the open and closed right-half plane by C+ and C+.
If λ ∈ C, then λ̄ denotes its complex conjugate. The poly-
nomials, rational functions, and proper (i.e., bounded at
infinity) rational functions in the indeterminate ξ with
real coefficients are denoted R[ξ],R(ξ), and Rp(ξ). The
m×n matrices with entries from R (resp., R[ξ], R(ξ),
Rp(ξ)) are denoted Rm×n (resp., Rm×n[ξ], Rm×n(ξ),
Rm×np (ξ)), and n is omitted if n = 1. We denote the
block column and block diagonal matrices with entries
H1, . . . ,Hn by col(H1 · · · Hn) and diag(H1 · · · Hn),
and we will use horizontal and vertical lines to indicate
the partition in block matrix equations (e.g., see (B.5)).
If H ∈ Rm×n,Rm×n[ξ], or Rm×n(ξ), then HT denotes
its transpose, and if H is nonsingular (i.e., det (H) 6=
0) then H−1 denotes its inverse. If H ∈ Rm×n, then
rank(H) denotes its rank; and if G ∈ Rm×n(ξ), then
normalrank(G) := maxλ∈C(rank(G(λ))). IfM ∈ Rm×m,
then spec(M) := {λ ∈ C | det(λI−M) = 0}; and if, in
addition, M is symmetric, then M > 0 (M ≥ 0) indi-
cates that M is positive (non-negative) definite. A ma-
trix Σ ∈ Rn×n is called a signature matrix if it is diagonal
and all of its entries are either 1 or −1. A V ∈ Rn×n[ξ]
is called unimodular if det (V ) is a non-zero constant
(equivalently, V is nonsingular with V −1 ∈ Rn×n[ξ]). If
H ∈ Rn×n(ξ), then H is called positive-real if H is ana-

lytic in C+ and H(λ̄)T +H(λ) ≥ 0 for all λ ∈ C+.
The (k-vector-valued) locally integrable functions

are denoted Lloc
1

(
R,Rk

)
(Polderman and Willems,

1998, Defs. 2.3.3, 2.3.4), and we equate any two lo-
cally integrable functions that differ only on a set
of measure zero. The (k-vector-valued) infinitely dif-
ferentiable functions with bounded support on the
left (resp., bounded support on the right, bounded
support) are denoted D+

(
R,Rk

)
(resp., D−

(
R,Rk

)
,

D
(
R,Rk

)
). The convolution operator is denoted by

?; i.e., if w1,w2 ∈ D+

(
R,Rk

)
, then (w1 ? w2)(t) =∫∞

−∞w1(τ)Tw2(t− τ)dτ .

A main contribution of this paper is to develop a the-
ory of reciprocal systems which doesn’t assume control-
lability, observability, or the existence of a transfer func-
tion. This is relevant to electric networks which can pos-
sess uncontrollable or unobservable internal modes, and
whose driving-point currents and voltages need not ad-
here to the conventional system theoretic input-output
view. The natural framework to formalise these issues
is the behavioral approach (Polderman and Willems,
1998). Accordingly, the remainder of this section con-
tains relevant definitions and results on behaviors.

We consider behaviors (systems) defined as the set of
weak solutions (see Polderman and Willems, 1998, Sec.
2.3.2) to a differential equation:

B = {w∈Lloc
1 (R,Rq) | R( ddt )w=0}, R ∈ Rp×q[ξ]. (2.1)

The behavior B is called controllable if, for any two tra-
jectories w1,w2 ∈ B and t0 ∈ R, there exists w ∈ B and
t1 ≥ t0 such that w(t) = w1(t) for all t ≤ t0 and w(t) =
w2(t) for all t ≥ t1 (Polderman and Willems, 1998, Def.
5.2.2). From (Polderman and Willems, 1998, Th. 5.2.10),
B in (2.1) is controllable if and only if rank(R(λ)) is the
same for all λ ∈ C.

We pay particular attention to state-space systems:

Bs = {(u,y,x)∈Lloc
1 (R,Rn)×Lloc

1 (R,Rn)×Lloc
1

(
R,Rd

)
|

dx
dt = Ax +Bu and y = Cx +Du},

A ∈ Rd×d, B ∈ Rd×n, C ∈ Rn×d and D ∈ Rn×n. (2.2)

Here, we call (A,B) controllable if Bs is controllable; and
we call (C,A) observable if (u,y,x) ∈ Bs and (u,y, x̂) ∈
Bs imply x = x̂ (Polderman and Willems, 1998, Def.
5.3.2). These concepts are equivalent to the well known
algebraic controllability/observability conditions (Pold-
erman and Willems, 1998, Ch. 5).

We also consider behaviors obtained by transforming
and/or eliminating variables in a behavior B as in (2.1).
For example, associated with the state-space system Bs
in (2.2) is the corresponding external behavior B(u,y)

s =
{(u,y) | ∃x with (u,y,x) ∈ Bs}. More generally, if T1 ∈
Rp1×q, . . . , Tn ∈ Rpn×q are such that col(T1 · · · Tn) ∈
Rq×q is a nonsingular real matrix, and m is an integer
satisfying 1 ≤ m ≤ n, then we denote the projection of
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B onto T1w, . . . , Tmw by

B(T1w,...,Tmw) = {(T1w, . . . , Tmw) | ∃(Tm+1w, . . . , Tnw)

such that w ∈ B}.

A representation for the behavior B(T1w,...,Tmw) can be
obtained by the so-called elimination theorem (see Ap-
pendix A). In particular, by eliminating the state vari-
ables x from Bs, we obtain a behavior of the form

B̂={(u,y)∈Lloc
1 (R,Rn)×Lloc

1 (R,Rn) | P̂ ( ddt )u=Q̂( ddt )y},
P̂ , Q̂ ∈ Rn×n[ξ], Q̂ nonsingular and Q̂−1P̂ proper. (2.3)

More specifically, from (Hughes, 2016, Secs. 2 and 4) we
have the following lemma on behavioral realizations.
Lemma 1 Let Bs be as in (2.2) andA(ξ):=ξI−A. There

exist polynomial matrices P̂ , Q̂, Y, Z, U, V,E, F,G where

1.

[
Y Z

U V

][
−D I −C
−B 0 A

]
=

[
−P̂ Q̂ 0

−E −F G

]
;

2.

[
Y Z

U V

]
is unimodular; and

3. G is nonsingular (i.e., 0 6≡ det (G) ∈ R[ξ]).

Furthermore, if conditions 1–3 hold and B̂ is as in

(2.3), then B(u,y)
s = B̂, and we say that (A,B,C,D) is

a realization of (P̂ , Q̂). Also, if B̂ is as in (2.3), then
there exists Bs as in (2.2) and polynomial matrices
Y, Z, U, V,E, F and G satisfying conditions 1–3.

Remark 2 For a given behavior B̂ as in (2.3), al-
gorithms for computing a realization (A,B,C,D)

for (P̂ , Q̂) (i.e., a state-space system Bs such that

B(u,y)
s = B̂) are described in (Fuhrmann et al., 2007,

Sec. 4.7) and (Hughes, 2016, Sec. 4). Such behavioral
realizations are not unique. Indeed, it is easily shown
from (Hughes, 2017a, Note A.3) that (Â, B̂, Ĉ, D̂)

is another realization for (P̂ , Q̂) if and only if (i)

D̂+ Ĉ(ξI− Â)−1B̂ = D+C(ξI−A)−1B; and (ii) there

exist matrices T1 ∈ Rd̂×d and T2 ∈ Rd×d̂ such that
CAiT1 = ĈÂi for i = 0, 1, 2, . . ., and ĈÂkT2 = CAk

for k = 0, 1, 2, . . .. Note that the equivalence of trans-
fer functions (condition (i)) is necessary but not suf-
ficient. E.g., let B = 0, C = 1 and D = 1, so
D + C(ξI − A)−1B = 1 for all A ∈ R. If A = −1, then

(u, y) ∈ B(u,y)
s if and only if there exists k1 ∈ R such that

y(t) = u(t) + k1e
−t. But if A = 0, then (u, y) ∈ B(u,y)

s if
and only if there exists k2 ∈ R such that y(t) = u(t)+k2.

3 Signature symmetric realizations of symmet-
ric transfer functions

The following fundamental result in systems and con-
trol theory states that any given controllable system with
a proper symmetric transfer function has a so-called sig-
nature symmetric realization.

Lemma 3 Let B̂ in (2.3) be controllable. Then the fol-
lowing are equivalent.

1. Q̂−1P̂ is symmetric.
2. There exists Bs as in (2.2) and a signature matrix

Σi ∈ Rd×d such that (i) B̂ = B(u,y)
s ; (ii) (A,B) is

controllable; (iii) (C,A) is observable; and (iv)AΣi =
ΣiA

T , ΣiC
T = B, and D = DT .

PROOF. If B̂ in (2.3) is controllable, then there ex-
ists Bs as in (2.2) which satisfies (i)–(iii) in condition 2
(see Hughes, 2017c, App. D). Furthermore, D+C(ξI −
A)−1B = (Q̂−1P̂ )(ξ). Thus, if A,B,C and D are as

in condition 2 then ((Q̂−1P̂ )(ξ))T = DT + BT (ξI −
AT )−1CT = D + CΣi(ξI − ΣiA

TΣi)
−1ΣiB = D +

C(ξI − A)−1B = (Q̂−1P̂ )(ξ), so Q̂−1P̂ is symmetric.
This proves that 2 ⇒ 1. The proof of 1 ⇒ 2 then fol-
lows from (Willems, 1972, Th. 6). This proof proceeds

by first showing that, if Â ∈ Rd×d, B̂ ∈ Rd×n, Ĉ ∈ Rn×d
and D̂ ∈ Rn×n are such that D̂+ Ĉ(ξI− Â)−1B̂ is sym-

metric, (Â, B̂) is controllable, and (Ĉ, Â) is observable,
then there exists a nonsingular symmetric P ∈ Rd×d
such that PÂ = ÂTP , ĈT = PB̂ and D̂ = D̂T . Note
that, with the notation V̂o = col(Ĉ ĈÂ . . . ĈÂd−1)

and V̂c = [B̂ ÂB̂ . . . Âd−1B̂], then PV̂c = V̂ To , where-
upon P can be computed from the explicit formula P =
V̂ To V̂

T
c (V̂cV̂

T
c )−1. Since P is symmetric, then there ex-

ists a signature matrix Σi ∈ Rd×d and a nonsingu-
lar T ∈ Rd×d such that P = TTΣiT . We then let
A := TÂT−1, B := TB̂, C := ĈT−1 and D := D̂.

Of particular interest are controllable systems with
proper symmetric transfer functions that are positive-
real. These arise as the impedances of electrical net-
works containing resistors, inductors, capacitors and
transformers (RLCT networks). In fact, every known
physical system with a non-symmetric positive-real
impedance actually contains active components (see
Ferrante et al., 2016). A second fundamental result
in systems and control theory is that any controllable
system with a proper symmetric positive-real transfer
function has a so-called passive and signature symmetric
realization, in accordance with the following lemma.

Lemma 4 Let B̂ in (2.3) be controllable. Then the fol-
lowing are equivalent:

1. Q̂−1P̂ is positive-real and symmetric.
2. There exists Bs as in (2.2) and a signature matrix

Σi ∈ Rd×d such that (i) B̂ = B(u,y)
s ; (ii) (A,B) is

controllable; (iii) (C,A) is observable;

(iv)

[
−A −B
C D

]
+

[
−A −B
C D

]T
≥ 0; and

(v) AΣi = ΣiA
T , ΣiC

T = B, and D = DT .

PROOF. See (Willems, 1972, Th. 7).
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Fig. 1. Bott-Duffin realization of the driving-point behavior
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dt2
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Using the reactance extraction approach, any real-
ization of the form of Lemma 4 gives rise to an RLCT
network whose impedance is equal to Q̂−1P̂ (see Ander-
son and Vongpanitlerd, 2006). However, Lemma 4 con-
tains several notable assumptions that are not satisfied
by many RLCT networks. First, the theorem assumes
the existence of a proper symmetric transfer function,
yet not all RLCT networks possess a proper impedance
(see Hughes, 2017c, Sec. 3). Second, the theorem assumes
the system is controllable, but not all RLCT networks
have controllable driving-point behaviors. Examples in-
clude the famous Bott-Duffin networks and their sim-
plifications (see Hughes and Smith, 2014, 2017; Hughes,
2017d). One such network is provided in Fig. 1, whose
behavior is described by the state-space realization

dx

dt
=


−2 0 0 −

√
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0 0 0 −
√

2 0 0

0 0 0 0
√
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√
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−
√
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1√
2

i
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[
−
√
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√
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2
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2

√
3

2 v2
v3√

6

√
2
3 i4
√

3i5
√

2i6)

This realization satisfies conditions (iv) and (v) of
Lemma 4, but is neither controllable nor observable.

The aforementioned RLCT networks indicate the im-
portance of removing the assumptions of controllability,
observability, and existence of a proper symmetric trans-
fer function from Lemmas 3 and 4. This is the objective
of this paper. Theorem 9 (resp., 18) generalizes Lemma 3
(resp., 4) to systems that need not be controllable. Also,
Theorems 7 and 17 extend the results to systems that
do not necessarily possess a proper symmetric transfer
function. In particular, Theorem 17 provides necessary
and sufficient conditions for a behavior to be realizable
by an RLCT network.

To conclude this section, we discuss some recent de-
velopments in the literature on uncontrollable systems,
and we contrast these with the results in the present
paper. Motivation for developing a theory of reciprocity
that does not assume controllability was provided in the
behavioral literature in Çamlibel et al. (2003); Willems
(2004). Indeed, Çamlibel et al. (2003) stated an open
problem that we solve in this paper: what behaviors

are realizable as the port (driving-point) behavior of a
circuit containing a finite number of passive resistors,
capacitors, inductors and transformers? This question
concerns (not necessarily controllable) systems that
are both passive and reciprocal. There have since been
papers that have considered the question of uncon-
trollable passive systems (e.g., Hughes, 2017c), and
uncontrollable (cyclo)-dissipative systems (e.g., Pal and
Belur, 2008). 3 But none of these papers consider un-
controllable reciprocal systems. For example, consider
the behavior B̃ := {(i, v) ∈ Lloc

1 (R,R)×Lloc
1 (R,R) |

( ddt + 1)i = ( ddt + 1)(dvdt + v)}. It has been shown in

(Hughes, 2017c,b) that B̃ can be realized as the driving-
point behavior of an electrical network containing resis-
tors, inductors, transformers and gyrators (an RLCTG
network). The present paper proves that (i) this behav-
ior has a signature symmetric realization; and (ii) it can
be realized without gyrators (i.e., by an RLCT network).

In fact, as discussed by Willems (2004), the subject
of uncontrollable reciprocal systems is related to a subtle
yet significant question in the development of the theory
of uncontrollable (cyclo)-dissipative systems: whether
to allow unobservable storage functions. In particular,
both Çamlibel et al. (2003) and Pal and Belur (2008)
define (cyclo)-dissipativity in terms of the existence of
an observable storage function. In the context of passive
systems, this implies that the energy which can be ex-
tracted from a given system from the time t0 onwards is
bounded above by the value at t0 of a differential form
in the external variables. 4

The restriction to systems with observable storage
functions is not fitting for this paper, as unobservable
storage functions frequently arise in electrical networks.
In fact, if we consider an uncontrollable behavior with
a state-space realization that satisfies the signature
symmetry of condition (v) of Lemma 4, then it can
be shown that this realization is both uncontrollable
and unobservable (the energy that can be extracted
from this system from time t0 onwards is bounded
above by 1

2x(t0)Tx(t0), yet x(t0) cannot be inferred

from measurements of u(t0), dudt (t0), dudt (t0), . . . and

y(t0), dydt (t0), d
2y
dt2 (t0), . . .). It can also be shown that

any RLCT realization of an uncontrollable behavior
necessarily has an unobservable storage function, corre-
sponding to the energy stored in the network’s inductors
and capacitors. Accordingly, the approach in this paper

3 A system is cyclo-dissipative if it has a (not necessarily
non-negative) storage function with respect to some supply
rate. It is shown in (Hughes, 2017a) that a system is passive
(in the sense of Definition 13 of the present paper) if it is
cyclo-dissipative with respect to the energy supplied to the
system, and the associated storage function is non-negative.
4 I.e., a function of the external variables and their deriva-
tives of any given order at the time t0. For an electric net-
work, the external variables correspond to the driving-point
currents and voltages, while for the state-space system Bs in
(2.2) these variables correspond to the input u and output y.
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is aligned with Hughes (2017c). That paper provided a
theory of passivity that does not assume controllability
or observability (and removes other alternative assump-
tions prevalent in the literature). In contrast, this paper
focuses on developing the theory of reciprocal systems.

4 Reciprocal behaviors

Following the motivation outlined in the previous sec-
tions, our focus in this paper is on systems of the form:

B={(i,v)∈Lloc
1 (R,Rn)×Lloc

1 (R,Rn) | P ( ddt )i=Q( ddt )v},
with P,Q ∈ Rn×n[ξ],normalrank([P −Q]) = n. (4.1)

The driving-point behavior of any passive electri-
cal circuit necessarily has the above form, where i de-
notes the driving-point currents and v the correspond-
ing driving-point voltages (see Hughes, 2017b). We note
that the partitioning (i,v) need not be an input-output
partition in the sense of (Polderman and Willems, 1998,
Def. 3.3.1). Specifically, Q need not be nonsingular, and
if Q is nonsingular then Q−1P need not be proper. In
this more general setting, it is not possible to define a
reciprocal system as a system whose transfer function
is symmetric. Instead, we adopt the following definition
from (Newcomb, 1966, Def. 2.7).
Definition 5 (Reciprocal system) Let B be as
in (4.1). B is called reciprocal if, for any given
(ia,va), (ib,vb) ∈ B ∩ (D+ (R,Rn) × D+ (R,Rn)), then
vb ? ia = ib ? va.
Remark 6 Our objective in this paper is to develop
a concept of reciprocity that is consistent with the ex-
istence of signature symmetric realizations, and the
driving-point behaviors of RLCT networks. In Lemma
11, we will define the so-called controllable and au-
tonomous parts of a behavior (Bc and Ba), and we note
here that a behavior is reciprocal if and only if its con-
trollable part (Bc) is reciprocal. In particular, it will
follow from Theorems 9 and 17 that whether a system
has a signature symmetric realization depends only on
its controllable part, and whether the driving-point be-
havior of an electric network can be realized without
gyrators also depends only on its controllable part.

The next theorem shows that any given reciprocal
system B can be transformed into a system of the form
of (2.3) that is also reciprocal (condition 3 in Theorem
7). In addition, a necessary and sufficient condition for
reciprocity is provided in terms of the polynomial ma-
trices P and Q (condition 2 in Theorem 7).
Theorem 7 (Reciprocal behavior theorem, part 1)
Let B be as in (4.1). The following are equivalent:
1. B is reciprocal.
2. PQT = QPT .
3. There exist real matrices T1 ∈ Rr×n and T2 ∈

R(n−r)×n such that (i) col(T1 T2) is a permutation

matrix; and (ii) B̂ := B(col(T1i −T2v),col(T1v T2i))

takes the form of (2.3) and Q̂−1P̂ is symmetric.
Remark 8 A well known result in behavioral theory is
that any behavior B of the form of (4.1) necessarily has

an input-output partition. However, condition 3 of The-
orem 7 is not a trivial application of this result. Specifi-
cally, in the definition of a reciprocal system (Definition
5), the system’s variables are partitioned into two halves
(in the context of electrical networks, these two halves
correspond to the driving-point currents and voltages).
Condition 3 of Theorem 7 implies that if the system is
reciprocal then it is possible to choose as input a subset
of the variables from one of the sets together with the
complementary variables from the other set. Note from
the example in (Hughes, 2017c, Rem. 11) that this need
not be true if the system is not reciprocal.

We will also show that the system B̂ in condition 3

of Theorem 7 has a state-space realization B̂ = B(u,y)
s

with the properties described in the next theorem.
Theorem 9 (Reciprocal behavior theorem, part 2)

Let B̂ be as in (2.3). Then the following are equivalent.

1. B̂ is reciprocal.
2. There exists Bs as in (2.2) and a signature matrix

Σi ∈ Rd×d such that (i) B̂ = B(u,y)
s ; and (ii) AΣi =

ΣiA
T , ΣiC

T = B, and D = DT .
The two-part reciprocal behavior theorem (Theorems 7
and 9) is proved in Section 5. Then, in Sections 6–7, we
consider behaviors that are both reciprocal and passive.
Remark 10 We emphasise that Lemma 3 is concerned
only with controllable systems, whereas Theorem 9 is
applicable to any system of the form of (2.3), irrespective

of controllability. Note that, if B̂ in (2.3) is not control-

lable, and Bs in (2.2) satisfies B̂ = B(u,y)
s , then (A,B)

cannot be controllable, so Lemma 3 does not apply.

5 Reciprocity and signature symmetric realiza-
tions

The purpose of this section is to prove the reciprocal
behavior theorem, parts 1 and 2 (Theorems 7 and 9).
We first present the following lemma on the so-called
controllable and autonomous parts of a behavior.
Lemma 11 Let B be as in (4.1). The following hold:

1. There exist F, P̃ , Q̃, U, V ∈ Rn×n[ξ] such that

(i) P = FP̃ and Q = FQ̃; and

(ii)

[
P̃ −Q̃
U V

]
is unimodular.

Also, if F, P̃ , Q̃, U, V ∈ Rn×n[ξ] satisfy (i)–(ii);

Bc := {(i,v) ∈ Lloc
1 (R,Rn)×Lloc

1 (R,Rn) | P̃ ( ddt )i =

Q̃( ddt )v}; and

Ba := {(i,v) ∈ Lloc
1 (R,Rn)×Lloc

1 (R,Rn) | P ( ddt )i =

Q( ddt )v and U( ddt )i = −V ( ddt )v},
then (i,v) ∈ B ⇐⇒ there exist (i1,v1) ∈ Bc and
(i2,v2) ∈ Ba with i = i1+i2 and v = v1+v2.

2. There exist M,N ∈ Rn×n[ξ] such that
(i) PM = QN ; and

(ii) rank(col(M N)(λ)) = n for all λ ∈ C.
Also, if M,N ∈ Rn×n[ξ] satisfy (i)–(ii), then (i,v) ∈
B ∩ (D+ (R,Rn) × D+ (R,Rn)) if and only if there
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exists z ∈ D+ (R,Rn) such that i = M( ddt )z and v =

N( ddt )z. In particular, (i,v) ∈ Bc.

PROOF. This requires only minor modifications to the
proof of Lemma 17 in (Hughes, 2017c).

PROOF OF THEOREM 7 (see p. 5). We let M
and N be as in Lemma 11, and we will show the equiv-
alence of conditions 1–3 to the additional condition:
4. MTN = NTM .
Specifically, we will prove 1 ⇐⇒ 4 ⇐⇒ 3 ⇐⇒ 2.

1 ⇐⇒ 4. Let (ia,va), (ib,vb) ∈ B∩(D+ (R,Rn)×
D+ (R,Rn)). Then, from Lemma 11, there exist za, zb ∈
D+ (R,Rn) such that

ia=M( ddt )za, ib=M( ddt )zb,va=N( ddt )za and vb=N( ddt )zb.

Now, consider a fixed but arbitrary t0 ∈ R, and let

ẑb(t) = zb(t0 − t) for all t ∈ R.

Then ẑb ∈ D− (R,Rn), ib(t0 − τ) = (M(− d
dt )ẑb)(τ) and

vb(t0 − τ) = (N(− d
dt )ẑb)(τ) for all τ ∈ R. Thus,

(vb ? ia)(t0) =
∫∞
−∞(N(− d

dt )ẑb)(τ)T (M( ddt )za)(τ)dτ, and

(ib ? va)(t0) =
∫∞
−∞(M(− d

dt )ẑb)(τ)T (N( ddt )za)(τ)dτ.

It follows from van der Schaft and Rapisarda (2011, Sec.
2.2) that

(vb ? ia−ib ? va)(t0)

=
∫∞
−∞ ẑb(τ)T ((NTM−MTN)( ddt )za)(τ)dτ.

Since t0 is arbitrary, then we conclude that B is recip-
rocal if and only if the above integral is zero for all
za ∈ D+ (R,Rn) and ẑb ∈ D− (R,Rn). In particular, if
NTM = MTN , then B is reciprocal. Conversely, note
that if the above integral is zero for all za ∈ D+ (R,Rn)
and ẑb ∈ D− (R,Rn), then (NTM −MTN)( ddt )za ≡ 0
for all za ∈ D (R,Rn) (since otherwise the integral is
strictly positive with ẑb = (NTM −MTN)( ddt )za). It
then follows from (Polderman and Willems, 1998, Secs.
2.5.6 and 3.3) that NTM = MTN .

4 ⇒ 3. First, bring col(M N) into column proper
form. In other words, let U be a unimodular matrix
with col[M N ]U =: W , in which the leading coefficient
matrix WL of W has full column rank (see Wolovich,
1974, Sec. 2.5). Next, partition WL compatibly with
col(M N) as WL = col(WL

1 WL
2 ), let r denote the

rank of WL
1 , permute the columns of WL

1 so the first r
columns are linearly independent, and then permute the
rows so the first r rows are linearly independent. This
gives permutation matrices T = col(T1 T2) ∈ Rn×n and

S = [S1 S2] ∈ Rn×n and an X ∈ Rr×(n−r) such that

[
M̂
N̂

]
=

 M̂11 M̂12

M̂21 M̂22

N̂11 N̂12

N̂21 N̂22

 :=

[ T1 0
0 −T2
0 T1

T2 0

]
[MN ]U [ S1 S2 ]

is in column proper form, and its leading coefficient ma-
trix col(M̂L N̂L) takes the form

[
M̂L

N̂L

]
=

 M̂L
11 M̂

L
11X

M̂L
21 M̂L

22

N̂L
11 N̂L

12

N̂L
21 N̂L

21X

 =

[ T1 0
0 −T2
0 T1

T2 0

][
WL

1

WL
2

]
[ S1 S2 ]

where M̂L
11 is nonsingular. It is then easily verified that

M̂T N̂ − N̂T M̂ = (US)T (MTN − NTM)(US) = 0.

We will show that M̂L is nonsingular, and it follows
that N̂M̂−1 is proper (see Rapisarda and Willems,

1997, Sec. 2). We then let P̂ := [PTT1 QTT2 ] and

Q̂ := [QTT1 −PTT2 ], we recall that PM = QN , and we

find that P̂ M̂ = Q̂N̂ . This implies that Q̂ is nonsin-
gular with Q̂−1P̂ = N̂M̂−1, which is symmetric since
N̂M̂−1 = (M̂−1)T M̂T N̂M̂−1 = (M̂−1)T N̂T M̂M̂−1 =

(M̂−1)T N̂T . Finally, with i1 := T1i,v1 := T1v, i2 := T2i

and v2 := T2v, then it is easily shown that B̂ takes the
form indicated in the present theorem statement.

To complete the proof of the present implication, it
remains to show that M̂L is nonsingular, or equivalently
that z ∈ Rn and M̂Lz = 0 imply z = 0. To see this, we
denote the column degree of the jth column of col(M̂ N̂)

by d̂j , and we note that the entry in the ith row and

jth column of (M̂L)T N̂L − (N̂L)T M̂L is the coefficient

of ξd̂i+d̂j in the corresponding entry of M̂T N̂ − N̂T M̂ ,
which is necessarily zero. Now, let z ∈ Rn satisfy M̂Lz =
0. Then M̂L

11[I X]z = 0. Since M̂L
11 is nonsingular, it

follows that [I X]z = 0. Since, in addition, (M̂L)T N̂L−
(N̂L)T M̂L = 0, then

0 = [I 0]((M̂L)T N̂L − (N̂L)T M̂L)z

= (M̂L
11)T [N̂L

11 N̂L
12]z + (M̂L

21)T N̂L
21[I X]z

= (M̂L
11)T [N̂L

11 N̂L
12]z.

As M̂L
11 is nonsingular, then [N̂L

11 N̂L
12]z = 0, and it fol-

lows that col(M̂L N̂L)z = 0. But col(M̂L N̂L) has full

column rank as col(M̂ N̂) is in column proper form, and
we conclude that z = 0.

3 ⇒ 4. Let M̂, N̂ ∈ Rn×n[ξ] be such that the

columns of col(M̂ N̂) are a basis for the right syzygy of

[P̂ −Q̂] (see Willems, 2007, p. 85). Similar to before, we

find that M̂ is nonsingular and N̂M̂−1 = Q̂−1P̂ , which is
symmetric. Also, there exists a unimodular U such that

[MN ]U =
[
TT
1 0 0 TT

2

0 −TT
2 TT

1 0

][
M̂
N̂

]
.

6



This follows from (Willems, 2007, pp. 84–85), noting

from the definition of B and B̂ that the columns of the
matrix on the right hand side of the above equation span
the right syzygy of [P −Q]. It can then be verified that

UT (MTN −NTM)U = M̂T N̂ − N̂T M̂ = 0. Since U is
nonsingular, this implies that MTN −NTM = 0.

3 ⇐⇒ 2. The proof is analogous to 4 ⇐⇒ 3. 2

PROOF OF THEOREM 9 (see p. 5). That 2⇒ 1
follows from Theorem 7, noting from the proof of Lemma
3 that (Q̂−1P̂ )(ξ) = D + C(ξI − A)−1B, which is sym-

metric. To see that 1 ⇒ 2, note initially that if B̂ is
controllable then the result follows from Lemma 3 and
Theorem 7. Otherwise, following (Hughes, 2017a, Notes
A.1 and A.3) and (Polderman and Willems, 1998, Cor.

5.2.25), we can construct a realization (Ã, B̃, C̃,D) of

(P̂ , Q̂) such that (C̃, Ã) is observable; and

Ã =
[
Ã11 Ã12

0 Ã22

]
, B̃ =

[
B̃1
0

]
, C̃ = [ C̃1 C̃2 ],

where (Ã11, B̃1) is controllable, (C̃1, Ã11) is observable,

and Q̂−1P̂ (ξ) = C̃1(ξI − Ã11)−1B̃1 + D, which is sym-
metric. It then follows from the proof of Lemma 3 that
there exists a symmetric P such that PÃ11=ÃT11P ,

C̃T1 =PB̃1, and D=DT . Now, let

Â :=

[
Ã11 Ã12 0

0 Ã22 0

ÃT
12P 0 ÃT

22

]
, B̂ :=

[
B̃1
0
C̃T

2

]
, Ĉ := [ C̃1 C̃2 0 ],

and S :=
[
P 0 0
0 0 I
0 I 0

]
.

Since (Ã, B̃, C̃,D) is a realization for (P̂ , Q̂), then so too

is (Â, B̂, Ĉ,D) (this follows from Remark 2, as ĈÂk =

[C̃Ãk 0] for k = 0, 1, 2, . . .). Also, SÂ = ÂTS and SB̂ =

ĈT . Finally, as P is symmetric, there exists a real matrix
R and a signature matrix Σ̃i such that P = RT Σ̃iR, and
we define T and Σi (partitioned compatibly) as

T :=

R 0 0

0
1√
2
I − 1√

2
I

0
1√
2
I

1√
2
I

, and Σi :=

[
Σ̃i 0 0
0 −I 0
0 0 I

]
.

Then S = TTΣiT , and A := TÂT−1, B := TB̂, C :=
ĈT−1 satisfy the conditions of the present theorem. 2

Remark 12 Note that the proofs of Lemma 3 and The-
orem 9 provide an algorithm for the construction of the
realization (A,B,C,D) and the signature matrix Σi in
Theorem 9. Specifically, P in the proof of that theorem
can be obtained from the explicit formula in the proof
of Lemma 3, whereupon R and Σ̃i can be obtained from
an eigenvalue decomposition for P .

6 Passive and reciprocal behaviors

In this section, we present our main results concern-
ing passive and reciprocal systems. We define passivity
in accordance with (Hughes, 2017c, Def. 5) as follows.

Definition 13 (Passive system) B in (4.1) is called
passive if, given any (i,v) ∈ B and any t0 ∈ R, there
exists a K ∈ R (dependent on (i,v) and t0) such that, if

t1 ≥ t0 and (̃i, ṽ) ∈ B satisfies (̃i(t), ṽ(t)) = (i(t),v(t))

for t < t0, then −
∫ t1
t0

ĩT (t)ṽ(t)dt < K.

Remark 14 Here, −
∫ t1
t0

ĩT (t)ṽ(t)dt is the net energy

extracted from the system between t0 and t1, and the
bound K is necessarily non-negative (as the integral is
zero when t1 = t0). Thus, Definition 13 formalises the
concept that a system is passive if the net energy that can
be extracted from the system into the future is bounded
above (this bound depending only on the past trajec-
tory of the system). It is shown in Hughes (2017a) that
this definition is consistent with the existence of a non-
negative quadratic state storage function with respect
to the energy supplied to the system.

The next concept of a positive-real pair was intro-
duced by Hughes (2017c), where it was shown that B in
(4.1) is passive if and only if (P,Q) is a positive-real pair.
Definition 15 (Positive-real pair) Let P,Q ∈
Rn×n[ξ]. We call (P,Q) a positive-real pair if:
(a) P (λ)Q(λ̄)T +Q(λ)P (λ̄)T ≥ 0 for all λ ∈ C+;
(b) rank([P −Q](λ)) = n for all λ ∈ C+; and
(c) if p ∈ Rn[ξ] and λ ∈ C satisfy p(ξ)T (P (ξ)Q(−ξ)T+

Q(ξ)P (−ξ)T ) = 0 and p(λ)T [P −Q](λ) = 0, then
p(λ) = 0.

Remark 16 Note that, in contrast with reciprocity, it
is possible for the controllable part of a system to be
passive yet for the system itself to not be passive. E.g.,
let Bs be as in (2.2) with B = 0, C = 1 and D = 1, so
D+C(ξI−A)−1B = 1 for allA ∈ R (i.e., the controllable
part of the system is independent of A). From Remark

2, if A = −1, then for any given (u, y) ∈ B(u,y)
s , there

exists k1 ∈ R such that −
∫ t1
t0

(uy)(t)dt =
∫ t1
t0
−(u(t) +

k1
2 e
−t)2 +

k21
4 e
−2tdt ≤ k21

8 e
−2t0 , so this system is passive.

But if A = 0, then there exists (u, y) ∈ B(u,y)
s with

u = −k22 = −y for all t ∈ R and for some 0 6= k2 ∈
R, in which case −

∫ t1
t0

(uy)(t)dt =
k22
4 (t1 − t0). Thus,

for any given K ∈ R, there exists t1 > t0 such that

−
∫ t1
t0

(uy)(t)dt > K, so this system is not passive.

In the next theorem, we state necessary and sufficient
algebraic conditions for B in (4.1) to be passive and re-
ciprocal. We also show that these conditions are equiv-
alent to B being realizable by an RLCT network, thus
solving the first open problem in Çamlibel et al. (2003).
Theorem 17 (Passive and reciprocal behavior
theorem, part 1) Let B be as in (4.1). The following
are equivalent:
1. B is passive and reciprocal.
2. (P,Q) is a positive-real pair and PQT = QPT .
3. B is the driving-point behavior of an RLCT network.

In our final theorem, we generalize Lemma 4 to sys-
tems that need not be controllable.
Theorem 18 (Passive and reciprocal behavior
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theorem, part 2) Let B̂ be as in (2.3). Then the fol-
lowing are equivalent.

1. B̂ is passive and reciprocal.
2. There exists Bs as in (2.2) and a signature matrix

Σi ∈ Rd×d such that

(i) B̂ = B(u,y)
s ;

(ii)

[
−A −B
C D

]
+

[
−A −B
C D

]T
≥ 0; and

(iii) ΣiA = ATΣi, ΣiB = CT , and D = DT .
The two-part passive and reciprocal behavior theorem
(Theorems 17 and 18) is proved in Section 7. The proofs
can be combined with existing results in the literature to
obtain a passive and reciprocal realization for any given
passive and reciprocal system of the form of (2.3), and
to obtain an RLCT realization for an arbitrary given
passive and reciprocal system of the form of (4.1). This
will be illustrated by two examples in Section 8.

7 Proof of the passive and reciprocal behavior
theorem

The purpose of this section is to prove Theorems 17
and 18. These two theorems will be proved in reverse
order. First, we prove the following result, which uses
the supplementary lemmas in Appendix B.

Lemma 19 Let B̂ in (2.3) be passive and reciprocal.

Then there exists Bs as in (2.2) such that B̂ = B(u,y)
s and

the following properties both hold:
1. there exists X ∈ Rd×d such that X > 0 and[
−XA−ATX CT −XB
C −BTX D +DT

]
≥ 0; and

2. there exists a symmetric nonsingular S ∈ Rd×d such
that SA = ATS, SB = CT , and D = DT .

PROOF. We will prove this first for the case in which
D +DT > 0, and then for the general case.

Case (i): D + DT > 0. We let Â, B̂, Ĉ,D and S

be as in the proof of Theorem 9, and we letA = Â, B = B̂
and C = Ĉ. From that proof, condition 2 of the present

theorem statement holds. Also, B̂ = B(u,y)
s is passive and

(C,A) is detectable. Thus, from Lemma B.2, there exists
K ∈ Rd×d such that K > 0 and Υ(K) ≥ 0, where Υ(K)
is as in (B.1). It can then be verified that X := K−1

satisfies condition 1 of the present theorem statement.

Case (ii): general case. Let P1 := P̂ and Q1 :=

Q̂, and consider the following three statements (c.f.,
Hughes, 2017a, proof of Th. 13):
(R1) Pi, Qi ∈ Rni×ni [ξ] where (Pi, Qi) is a positive-

real pair and Q−1
i Pi is proper and symmetric.

(R2) Pi, Qi are as in (R1), Pi is nonsingular, and
limξ→∞((Q−1

i Pi)(ξ)) = diag(Iri 0).
(R3) Pi, Qi are as in (R1), and either ni = 0 or

limξ→∞((Q−1
i Pi)(ξ)) = I.

By (Hughes, 2017c, Th. 7) and Theorem 7 of this pa-
per, P1, Q1 satisfy condition (R1). Then, using Lem-

mas B.4 and B.6, we construct P2, . . . , Pm, Q2, . . . , Qm
such that condition (R1) is satisfied, ni ≤ ni−1, and
deg (det (Qi)) ≤ deg (det (Qi−1)), for i = 2, . . . ,m; and

(1) if, for i = k − 1, (R2) is not satisfied, then (R2)
is satisfied for i = k, and if Pk−1 is singular then
nk < nk−1 (Lemma B.4);

(2) if, for i = k−1, (R2) is satisfied but (R3) is not, then
deg (det (Qk)) < deg (det (Qk−1)) (Lemma B.6).

This inductive procedure terminates in a finite number of
steps with polynomial matrices Pm and Qm that satisfy
conditions (R1)–(R3). An example is given in Section 8.

Next, we consider the following three statements:
(S1) There exist polynomial matrices Ai(ξ):=ξI −Ai,
Yi, Zi, Ui, Vi, Ei, Fi, and Gi, with Gi nonsingular (i.e.,
0 6= det (Gi) ∈ R[ξ]), and[
Yi Zi

Ui Vi

][
−Di I −Ci
−Bi 0 Ai

]
=

[
−Pi Qi 0

−Ei −Fi Gi

]
,

where the leftmost matrix is unimodular.
(S2) The matrix Xi ∈ Rdi×di satisfies Xi > 0 and

Ωi(Xi) :=

[
−ATi Xi−XiAi C

T
i −XiBi

Ci−BTi Xi Di+D
T
i

]
≥ 0.

(S3) There exists a symmetric Si ∈ Rdi×di such that
SiAi = ATi Si, SiBi = CTi and Di = DT

i .
From case (i) and Lemma 1, there exist real matrices
Am, Bm, Cm, Dm, Xm and Sm such that (S1)–(S3) hold
for i = m. Then, using Lemmas B.4 and B.6, we find that
there exist real matrices Ai, Bi, Ci, Di, Xi and Si such
that (S1)–(S3) hold for i = m − 1, . . . , 1. Since P = P1

andQ = Q1, then lettingA = A1, B = B1, C = C1, D =
D1, S = S1 and X = X1, we obtain a state-space real-

ization B̂ = B(u,y)
s with the required properties. 2

PROOF OF THEOREM 18 (see p. 8). That 2
⇒ 1 follows from Theorem 9 and (Hughes, 2017c, Th.
13), noting that condition 3 of that theorem holds with
X = I. To see that 1 ⇒ 2, consider the realization in
Lemma 19. From that theorem, (P̂ , Q̂) has a realization

(Ã, B̃, C̃, D̃) with the following properties:

1. there exists X̃ ∈ Rd×d such that X̃ > 0 and[
−X̃Ã− ÃT X̃ C̃T − X̃B̃
C̃ − B̃T X̃ D̃ + D̃T

]
≥ 0; and

2. there exists a symmetric nonsingular S̃ ∈ Rd×d such
that S̃Ã = ÃT S̃, S̃B̃ = C̃T , and D̃ = D̃T .

Since X̃ > 0, then there exists a nonsingular R̃ ∈
Rd×d such that X̃ = R̃T R̃. As S̃ is symmetric and
nonsingular, then so too is (R̃−1)T S̃R̃−1. By consider-
ing an eigenvalue decomposition, we conclude that there
exists a signature matrix Σi = diag(I −I) ∈ Rd×d,
a diagonal matrix 0 < W ∈ Rd×d, and an orthog-
onal matrix V ∈ Rd×d (i.e., V T = V −1), such that

(R̃−1)T S̃R̃−1 = V ΣiWV T . Here, ΣiW = WΣi is a diag-

onal matrix containing the eigenvalues of (R̃−1)T S̃R̃−1,
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which are real as (R̃−1)T S̃R̃−1 is symmetric. Now, let

Ŷ =
[
−Â −B̂
Ĉ D̂

]
:=
[
V T R̃ 0

0 I

][−Ã −B̃
C̃ D̃

][
V T R̃ 0

0 I

]−1
.

Then (Â, B̂, Ĉ, D̂) is a realization for (P̂ , Q̂), and

Ŷ =
[
R̃−1V 0

0 I

]T [−X̃Ã −X̃B̃
C̃ D̃

][
R̃−1V 0

0 I

]
,

which implies that Ŷ + Ŷ T ≥ 0. Next, let

Y =
[−A −B
C D

]
:=
[
W 1/2 0

0 I

][−Â −B̂
Ĉ D̂

][
W 1/2 0

0 I

]−1
.

Then (A,B,C,D) is also a realization for (P̂ , Q̂). Also,

with the notation G := R̃−1VW−1/2, then

A = G−1ÃG,B = G−1B̃, C = C̃G, and

GT S̃G = W−1/2V T (R̃−1)T S̃R̃−1VW−1/2

= W−1/2ΣiWW−1/2

= Σi.

Since, in addition, S̃Ã = ÃT S̃ and S̃B̃ = C̃T , then
ΣiA = GT S̃ÃG = GT ÃT S̃G = ATΣi, ΣiB = GT S̃B̃ =
GT C̃T = CT , and D = DT , so diag(−Σi I)Y is
symmetric. Now, note that W 1/2 is diagonal since
W is, and partition W 1/2 compatibly with Σi as
W 1/2 = diag(F1 F2). Also, partition Y and Ŷ compati-
bly with diag(−Σi I) = diag(−I I I) as follows:

Y =
[
F1 0 0
0 F2 0
0 0 I

][−Â11 −Â12 −B̂1

−Â21 −Â22 −B̂2

Ĉ1 Ĉ2 D̂

][
F−1

1 0 0

0 F−1
2 0

0 0 I

]
.

Then, let

Z11:=− F1Â11F
−1
1 , Z22:=

[
F2 0
0 I

][−Â22 −B̂2

Ĉ2 D̂

][
F−1

2 0
0 I

]
Z12:=− F1[ Â12 B̂1 ]

[
F−1

2 0
0 I

]
, Z21:=

[
F2 0
0 I

][−Â21

Ĉ1

]
F−1

1 .

Since diag(−Σi I)Y = diag(−I I I)Y is symmetric,
then we conclude that Z11 and Z22 are both symmetric,
and Z12 = −ZT21. Thus, Y +Y T = diag(2Z11 2Z22), and
to complete the proof it remains to show that Z11 ≥ 0
and Z22 ≥ 0. To prove this, we recall that Ŷ +Ŷ T ≥ 0, so

−Â11 − ÂT11 ≥ 0, and
[
−Â22 −B̂2

Ĉ2 D̂

]
+
[
−Â22 −B̂2

Ĉ2 D̂

]T
≥ 0.

Since Z11 and Z22 are both symmetric, then their eigen-
values are all real. Now, let λ < 0, and let z be a real vec-
tor with Z11z = λz. Then ẑ := F−1

1 z satisfies −Â11ẑ =

F−1
1 Z11z = λF−1

1 z = λẑ. Thus, ẑT (−Â11 − ÂT11)ẑ =

2λẑT ẑ ≤ 0. Since (−Â11 − ÂT11) ≥ 0, then we conclude
that ẑ = 0. It follows that the eigenvalues of Z11 are all

real and non-negative, so Z11 ≥ 0. A similar argument
shows that Z22 ≥ 0, and completes the proof. 2

PROOF OF THEOREM 17 (see p. 7). That 1
⇐⇒ 2 follows from (Hughes, 2017c, Th. 9) and Theorem
7 of the present paper.

If B takes the form of B̂ in (2.3), then from Theorem
18 it follows that B is passive and reciprocal if and only
if B has a state-space realization with the properties
outlined in condition 2 of that theorem. From (Anderson
and Vongpanitlerd, 2006, Secs. 4.4 and 9.4), this holds if
and only if B is the driving-point behavior of an RLCT
network. It remains to consider the case in which B does
not take the form of B̂ in (2.3), i.e., P,Q in (4.1) are such
that Q is singular or Q−1P is not proper.

3 ⇒ 1. That B is passive follows from (Hughes,
2017b, Th. 6). It remains to show that B is recip-
rocal. As explained in (Hughes, 2017b, Sec. 2), any
given RLCT network corresponds to a cascade loading
of two networks: (i) N1, in which all of the elements
(resistors, inductors, capacitors and transformers) are
removed and every single element port is replaced with
an external port; and (ii) N2, which contains each of
the elements in the original circuit (disconnected from
each other). Furthermore, the driving-point behaviors
of N1 and N2 are both reciprocal. 5 Now, let B and
B̃ be fixed but arbitrary reciprocal behaviors, and let
(i) (col(ia,1 ia,2), col(va,1 va,2)) ∈ B, (ia,3,va,3) ∈ B̃,

(col(ib,1 ib,2), col(vb,1 vb,2)) ∈ B, and (ib,3,vb,3) ∈ B̃;
(ii) ia,3 = −ia,2, va,3 = va,2, ib,3 = −ib,2, and
vb,3 = vb,2; and (iii) ia,1, ia,2,va,1,va,2, ib,1, ib,2,vb,1,
and vb,2 have compact support on the left. Then it suf-
fices to show that vb,1 ? ia,1 = ib,1 ? va,1. To prove this,

note that, since B and B̃ are reciprocal, then

vb,1 ? ia,1 + vb,2 ? ia,2 − ib,1 ? va,1 − ib,2 ? va,2 = 0,

and vb,3 ? ia,3 − ib,3 ? va,3 = 0,

whence vb,1 ? ia,1 − ib,1 ? va,1 = 0.
2 ⇒ 3. We will show the following:

(a) If λ0 ∈ C+, z ∈ Cn and Q(λ0)z = 0, then Qz = 0.
(b) There exists a nonsingular matrix T ∈ Rn×n and a

unimodular matrix Ŷ such that

[ P −Q ] = Ŷ [ P̂ −Q̂ ]
[
T 0
0 (TT )−1

]
,

where P̂ and Q̂ have the compatible partitions

P̂ =
[
P̂11 0
0 I

]
and Q̂ =

[
Q̂11 0

0 0

]
,

5 To see this, note initially that the behavior of the network
N1 has the same form as the driving-point behavior of a
transformer (Anderson and Newcomb, 1966). It is then eas-
ily verified that the driving-point behaviors of resistors, in-
ductors, capacitors and transformers are all reciprocal, and
so too are the driving-point behaviors of N1 and N2.

9



and where Q̂11 is nonsingular, Q̂−1
11 P̂11 is symmetric,

and (P̂11, Q̂11) is a positive-real pair.

(c) With P̂11 and Q̂11 as in (b), then the limit

limξ→∞((1/ξ)(Q̂−1
11 P̂11)(ξ)) exists and is non-

negative definite. Also, with the notation K :=
limξ→∞((1/ξ)(Q̂−1

11 P̂11)(ξ)), P̃ (ξ) := P̂11(ξ) −
Q̂11(ξ)Kξ, and Q̃(ξ) := Q̂11(ξ), then Q̃−1P̃ is proper

and symmetric and (P̃ , Q̃) is a positive-real pair.

Now, let P̃ , Q̃ and K be as defined in (c). It follows
from Theorem 18 and (Anderson and Vongpanitlerd,
2006, Secs. 4.4 and 9.4) that there exist RLCT net-
works N1 and N2 whose driving-point behaviors take
the form {(i,v) ∈ Lloc

1

(
R,Rñ

)
×Lloc

1

(
R,Rñ

)
| P̃ ( ddt )i =

Q̃( ddt )v} and {(i,v) ∈ Lloc
1

(
R,Rñ

)
×Lloc

1

(
R,Rñ

)
|

K di
dt = v}, respectively. Next, let T be as in (b), parti-

tion T and T−1 compatibly with P̂ as T = col(T1 T2)

and T−1 = [T̂1 T̂2], and consider the behavior corre-
sponding to the set of locally integrable solutions to

0 0 0 0 P̃ (
d
dt ) 0 0 −Q̃(

d
dt )

0 0 0 0 0 I 0 0
0 I −TT

1 −T
T
2 0 0 0 0

T1 0 0 0 −I 0 0 0
T2 0 0 0 0 −I 0 0

0 0 0 0 K
d
dt 0 −I 0

0 0 I 0 0 0 −I −I




i
v
ṽa

ṽb

ĩa
ĩb
ṽa1

ṽa2

=0, (7.1)

which is the driving-point behavior of the RLCT network
in Fig. 2. We then let

U :=
[
Ŷ 0
0 I

]
[ I Z0 I ], with

Z(ξ) :=
[
−Q̃(ξ)T̂T

1 P̃ (ξ)+Q̃(ξ)Kξ 0 Q̃(ξ) −Q̃(ξ)
0 0 I 0 0

]
,

and it is clear that U is unimodular since Ŷ is unimodu-
lar. Then, following Appendix A, we pre-multiply both
sides in (7.1) by U( ddt ), we note that T̂T1 T

T
1 = I and

T̂T1 T
T
2 = 0, and we find that the driving-point behav-

ior of N is the set of locally integrable solutions to the
differential equation

Ŷ
[

(P̃ (
d
dt )+Q̃(

d
dt )K

d
dt )T1 −Q̃(

d
dt )T̂T

1

T2 0

]
[ i
v ] = 0.

From (b) and (c), it follows that [P −Q]( ddt )col(i v) =
0, so B is the driving-point behavior of N .

It remains to show conditions (a)–(c). To show condi-

tion (a), we let P̂ := P−Q and Q̂ := P+Q. Since (P,Q)

is a positive-real pair, then Q̂(λ)Q̂(λ̄)T − P̂ (λ)P̂ (λ̄)T =
2(P (λ)Q(λ̄)T + Q(λ)P (λ̄)T ) ≥ 0 for all λ ∈ C+. Now,

suppose λ0 ∈ C+ and w ∈ Cn satisfy wT Q̂(λ0) = 0.

Then −wT P̂ (λ0)P̂ (λ̄0)T w̄ ≥ 0, so wT P̂ (λ0) = 0.
But this implies that wT [P −Q](λ0) = 0, whence
w = 0 since (P,Q) is a positive-real pair. We con-

clude that Q̂(λ) is nonsingular for all λ ∈ C+, and

so I − (Q̂−1P̂ )(λ)((Q̂−1P̂ )(λ̄))T ≥ 0 for all λ ∈ C+.

This implies that (Q̂−1P̂ )T is bounded-real in ac-
cordance with (Youla et al., 1959, Def. 16), and so

Q̂−1P̂ is bounded-real by (Youla et al., 1959, Cor.
7(c)). It then follows from (Youla et al., 1959, proof
of Th. 7) that, if λ0 ∈ C+ and w ∈ Cn satisfy

(I − (Q̂−1P̂ )(λ0))w = 0, then (I − Q̂−1P̂ )w = 0. Now,
let λ0 ∈ C+ and z ∈ Cn satisfy Q(λ0)z = 0. Then
(P + Q)−1(λ0)Q(λ0)z = 1

2 (I − (P + Q)−1(λ0)(P −
Q)(λ0))z = 0, whence (I − (P + Q)−1(P − Q))z = 0,
and so Qz = 1

2 (P +Q)(I − (P +Q)−1(P −Q))z = 0.
To show condition (b), we let r := normalrank(Q),

and we first show that there exists a nonsingular ma-
trix T = col(T1 T2) ∈ Rn×n with T1 ∈ Rr×n such
that QTT2 = 0. Accordingly, let the columns of W ∈
Rn×(n−r)[ξ] be a basis for the right syzygy of Q (see
Willems, 2007, p. 85). For any given λ0 > 0, W (λ0) ∈
Rn×(n−r) has full column rank and Q(λ0)W (λ0) = 0, so
QW (λ0) = 0 by condition (a). We then let T be a non-
singular matrix whose final n−r rows are W (λ0)T .

Next, note thatQTT1 ∈ Rn×r and normalrank(QTT1 ) =
normalrank(QTT ) = r. Then, by considering the upper
echelon form for QTT1 (see Hughes, 2017c, Note A4), we

obtain a unimodular Y ∈ Rn×n such that Y QTT =: Q̂
takes the form indicated in condition (b), where

Q̂11 ∈ Rr×r[ξ] is nonsingular. Now, let P̃ := Y PT−1. It

is then easily shown that (P̃ , Q̂) is a positive-real pair
since (P,Q) is. Accordingly, we consider a fixed but

arbitrary λ ∈ C+, we partition P̃ compatibly with Q̂ as

P̃ =
[
P̃11 P̃12

P̃21 P̃22

]
,

and it follows that P̃ (λ)(Q̂(λ̄))T+Q̂(λ)(P̃ (λ̄))T ≥ 0, i.e.,[
P̃11(λ)(Q̂11(λ̄))T +Q̂11(λ)(P̃11(λ̄))T Q̂11(λ)(P̃21(λ̄))T

P̃21(λ)(Q̂11(λ̄))T 0

]
≥0.

This implies that P̃21(λ)(Q̂11(λ̄))T = 0. Since this rela-

tionship holds for all λ ∈ C+, and Q̂11 is nonsingular,

then we conclude that P̃21 = 0.
Next, it follows from (Hughes, 2017a, proof of Lem.

D.3 condition 1) that P̃22 is unimodular since (P̃ , Q̂) is
a positive-real pair. Accordingly, we let

Ŷ = Y −1
[
I P̃12

0 P̃22

]
,

and P̂11 = P̃11, and we find that Ŷ is unimodular and
[P −Q] has the form indicated in condition (b). Finally,

it is easily shown that (P̂11, Q̂11) is a positive-real pair,

and P̂ Q̂T − Q̂P̂T = Ŷ −1(PQT − QPT )(Ŷ −1)T = 0 so

Q̂−1
11 P̂11 is symmetric.

The proof of condition (c) follows from (Hughes,
2017a, Proof of Lem. D.4), noting in addition that

(Q̃−1P̃ )(ξ) = (Q̂−1
11 P̂11)(ξ) − Kξ, which is symmetric

since Q̂−1
11 P̂11 and K are symmetric. 2
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Fig. 2. RLCT network realization of the behavior in (7.1).

8 Examples

First, consider the problem of realizing the set of so-
lutions to the differential equation:

( ddt + 1)i = ( ddt + 1)v. (8.1)

We begin by finding a Bs as in (2.2) and matrices X,S ∈
Rd×d as in Lemma 19, and we then find a passive and re-
ciprocal realization for this behavior as in Theorem 18.
Finally, we obtain an RLCT network realization from
this passive and reciprocal realization using results in
Anderson and Vongpanitlerd (2006). This realization
procedure works in the general case, using algorithms
for computing: 1. a state-space realization for a behav-
ior (see Remark 2); 2. the available energy of a passive
system (see (Hughes, 2017a, Rem. 15)); 3. the null space
and column space of a real matrix; 4. a Cholesky decom-
position of a positive-definite matrix; 5. an eigenvalue
decomposition of a symmetric matrix; and 6. solutions
to Lyapunov and Sylvester equations (as in Anderson
and Vongpanitlerd, 2006, Ths. 3.7.3 and 3.7.4).

We first obtain a state-space realization for the be-
havior in (8.1), and we transform this into controller
staircase form (see Polderman and Willems, 1998, Cor.
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5.2.25). In this case, we find that B has a state-space

realization B = B(i,v)
s , where Bs is the set of solutions to

dx
dt = Ãx + B̃i, v = C̃x +Di, where

Ã = −1, B̃ = 0, C̃ = 1, and D = 1.

Then, following Lemma B.1, we let Υ(K) and AΥ(K)

be as in (B.1) with Ã, B̃ and C̃ substituted for A,B and
C. Following the terminology in the proof of Lemma
B.1, we obtain K1 = 4 and K− = 0. Here, K1 satisfies
K1 > 0 and Υ(K1) ≥ 0, and is obtained by first finding
X = K−1

1 by computing the available energy for the
system dx

dt = Ax + Bi, v = Cx + Di (see Lemma B.1).
Also, K− is obtained by computing the available energy
for the system dx̂

dt = AT x̂ − CTu, y = −BT x̂ + DTu
(see Lemma B.1), and satisfies K− ≥ 0, Υ(K−) ≥ 0,
and spec(AΥ(K−)) ∈ C̄−. Next, note from Lemma B.1
that there exists α > 0 such that, for any given 0 <
ε ≤ α, then Kε := εK1 + (1 − ε)K− satisfies Kε > 0,
Υ(Kε) ≥ 0, and spec(AΥ(Kε)) ∈ C̄− . In this case, it
can be verified that K = 1 satisfies K > 0, Υ(K) ≥
0, and spec(AΥ(K)) ∈ C̄−. Now, following the proof

of Theorem 9, we augment the matrices Ã, B̃ and C̃
to obtain an unobservable state-space realization B =

B̂(i,v)
s , where B̂s corresponds to the set of solutions to

dx̂
dt = Âx̂ + B̂i, v = Ĉx̂ +Di, where

Â =
[−1 0

0 −1

]
, B̂ = [ 0

1 ], Ĉ = [ 1 0 ],

and, as before, D = 1. Then, in Lemma B.2, we let
Ã11, Ã21, Ã22, B̃1, B̃2 and C̃1 be obtained by partition-
ing Â, B̂ and Ĉ (here, Ã11 is the top left entry of Â,
and so forth), and we find that (i) K11 = 1 satisfies

Υ̃(K11) = 3
2 ≥ 0 and ÃΥ(K11) = − 1

2 (Here, K11 is
the matrix K obtained earlier in the proof, and satis-
fies spec(ÃΥ̃(K11)) ∈ C̄−); (ii) K12 = − 1

3 solves the

Sylvester equation in Lemma B.2; and (iii)∇ = 1
3 solves

the Lyapunov equation Ψ(∇) = 0 in Lemma B.2. We
thus obtain

K̂ =
[

I 0
KT

12K
−1
11 I

][
K11 0

0 ∇
][
I K−1

11 K12

0 I

]
=

[
1 − 1

3

− 1
3

4
9

]
,

which satisfies K̂ > 0 and −K̂ÂT − ÂK̂ − (K̂ĈT −
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B̂)(D+DT )−1(ĈK̂− B̂T ). We then let X̂ = K̂−1. Also,
following Remark 12, we obtain the matrix

Ŝ = [ 0 1
1 0 ],

which satisfies ŜÂ = ÂT Ŝ and ŜB̂ = ĈT . We have
thus obtained a state-space realization Bs as in (2.2) and
matrices X,S ∈ Rd×d as in Lemma 19.

Next, using a Cholesky decomposition we obtain

X̂ = RTR, with R =

[
2√
3

√
3

2

0
3
2

]
.

Then, following the proof of Theorem 18, we compute
an eigenvalue decomposition of (R−1)T ŜR−1 to obtain

Σi =
[−1 0

0 1

]
, W =

[ 1 0

0
1√
3

]
, and V =

[
− 1

2

√
3

2√
3

2
1
2

]
.

Following the proof of Theorem 18, letG := R−1VW−1/2,
A = G−1ÂG,B = G−1B̂, and C = ĈG, which gives

A =
[−1 0

0 −1

]
, B =

[ √
3

2√
3

2

]
, and C =

[
−
√

3
2

√
3

2

]
.

These satisfy the conditions of Theorem 18.
Next, we use the results in (Anderson and Vongpan-

itlerd, 2006, Secs. 9.2 and 9.4) to obtain an RLCT net-
work which realizes the behavior in (8.1). We let

M :=
[
D C
−B −A

]
, and Σ =

[
1 0
0 −Σi

]
,

and we conclude that M +MT ≥ 0 and ΣM is symmet-
ric. It follows that M takes the form

M =
[
M11 −MT

21

M21 M22

]
,

where M11 ∈ R2×2 and M22 ∈ R are symmetric, and
M11,M22 ≥ 0. In this case, by computing a Cholesky
decomposition for M11, we obtain

M11 =
[ 1 0

−
√

3
2

1
2

][
1 −
√

3
2

0
1
2

]
,M21 =

[
−
√

3
2 0

]
,M22 = 1.

Finally, from (Anderson and Vongpanitlerd, 2006, Secs.
9.2 and 9.4), we find that B is the driving-point behavior
of the RLCT network in Fig. 3.

We next consider the behavior B in (4.1), with

P (ξ) =
[
ξ+1 0

1 1

]
and Q(ξ) =

[
ξ2+2ξ+1 −(ξ2+2ξ+1)

0 0

]
,

for whichQ is singular. We use this example to illustrate
both the proof of Theorem 17 and the inductive proce-
dure described in Lemma 19. Again, the realization pro-
cedure works in the general case. In addition to the pre-
viously listed algorithms, it relies on the computation of
an upper echelon form for a polynomial matrix.

First, following the proof of Theorem 17, we obtain
matrices T = [T1 T2]T and Ŷ ∈ R2×2[ξ], where

T1 = [ 1
0 ], T2 = [ 1

1 ] and Ŷ (ξ) = [ 1 0
0 1 ],

and we find that

PT−1 = Ŷ
[
P1 0
0 1

]
and QTT = Ŷ

[
Q1 0
0 0

]
, where

P1(ξ) = ξ + 1 and Q1(ξ) = ξ2 + 2ξ + 1.

Here, for any given λ > 0, then T ∈ R2×2 is a nonsingu-
lar matrix such that T2 is a basis for the right nullspace
of Q(λ). Also (in general), Ŷ and Q1 are obtained by
computing an upper echelon form for QTT . It then fol-
lows from the proof of Theorem 17 that B is realized by
a network of the form shown in Fig. 2, where Na,1 is a
short circuit, and Na,2 is a network whose driving-point

behavior is the set of solutions to P1( ddt )i1 = Q1( ddt )v1.

Next, note that limξ→∞((Q−1
1 P1)(ξ)) = 0, which is

singular. Thus, (P1, Q1) satisfies conditions (R1)–(R2)
on p. 8, but not condition (R3). Then, following Lemma
B.6, we find that limξ→∞( 1

ξ (P−1
1 Q1)(ξ)) = 1, and ac-

cordingly we let K = 1, Q2 = P1, and P2(ξ) = Q1(ξ)−
ξP1(ξ) = ξ+ 1. It can then be verified that B is realized
by a network of the form of Fig. 4. Here, a network real-
ization for the set of solutions to the differential equation
( ddt +1)ic = ( ddt +1)vc was obtained in the first example.

9 Conclusions

This paper developed a theory of reciprocal systems
which does not assume controllability. Necessary and
sufficient algebraic conditions were established for a sys-
tem to be reciprocal, both in terms of the high order dif-
ferential equations describing the system, and in terms
of a state-space realization. Analogous results were ob-
tained for systems that are both passive and recipro-
cal. Notably, we answered the first open problem in
(Çamlibel et al., 2003) by proving that a behavior is re-
alizable as the driving-point behavior of an RLCT net-
work if and only if it is passive and reciprocal.

A The elimination theorem

Let B̂ = {(w1,w2) ∈ Lloc
1 (R,Rn1) × Lloc

1 (R,Rn2) |
R̂( ddt )col(w1 w2)}. From (Polderman and Willems,
1998, Th. 6.2.6), there exists a unimodular U with

UR̂ =
[
R1 0
R2 M2

]
, (A.1)

where the rightmost matrix is partitioned compat-
ibly with col(w1 w2), and M2 has full row rank.

12



Then, from (Polderman and Willems, 1998, Th.

2.5.4), B̂ is the set of locally integrable solutions to
R1( ddt )w1 = 0 and M2( ddt )w2 = −R2( ddt )w1. Now,

let B := {w1 ∈ Lloc
1 (R,Rn1) | R1( ddt )w1 = 0}.

Since M2 has full row rank, then it is easily shown
that for any w1 ∈ D+ (R,Rn1) there exists w2 ∈
D+ (R,Rn2) such thatM2( ddt )w2 = −R2( ddt )w1, whence

(B̂∩(D+ (R,Rn1)×D+ (R,Rn2)))(w1) = B∩D+ (R,Rn1).

But it may not be the case that B̂(w1) = B (see, e.g.,

Polderman, 1997, Example 2.1). If B̂(w1) = B, then w2

is called properly eliminable (Polderman, 1997). From
(Polderman, 1997, Example 3.1), if Bs is as in (2.2),
then x is properly eliminable. Also, the internal currents
and voltages in any given RLCT network are always
properly eliminable (Hughes, 2017b, Sec. 6).

Finally, if B is as in (2.1) and T ∈ Rq×q is a nonsin-
gular real matrix, then it is easily shown that B(Tw) =
{z ∈ Lloc

1 (R,Rq) | (RT−1)( ddt )z=0}.

B The passive and reciprocal behavior theorem,
supplementary lemmas

This appendix contains four supplementary lemmas
used to prove the results in Sections 6 and 7. In the first
two lemmas, for any given symmetric K ∈ Rd×d, we let

Υ(K) := −KAT−AK−(KCT−B)(D+DT )−1(CK−BT ),

and AΥ(K) := AT−CT (D+DT )−1(BT−CK). (B.1)

Lemma B.1 Let Bs be as in (2.2), and let B̂ := B(u,y)
s

be passive, (C,A) be observable, D + DT > 0, and
Υ(K), AΥ(K) be as in (B.1). Then there existsK ∈ Rd×d
such that K > 0, Υ(K) ≥ 0, and spec(AΥ(K)) ∈ C−.

PROOF. Since (C,A) is observable then there exists
X ∈ Rd×d such that X > 0 and −ATX −XA− (CT −
XB)(D + DT )−1(C − BTX) = 0 (see Hughes, 2017c,
Th. 13). Now, let K1 := X−1 ∈ Rd×d, so K1 > 0
and Υ(K1) = 0. Thus, from (Hughes, 2017a, Ths. 10
and 11), there exists K− ≥ 0 such that Υ(K−) = 0,
spec(AΥ(K−)) ∈ C−, and K− ≤ K1 (here, the available
energy Sa for the system dx

dt = ATx−CTu, y = −BTx+

DTu satisfies Sa(x0) = xT0 K−x0 for all x0 ∈ Rd). Now,
let ε be a fixed but arbitrary real number in the interval
0 < ε < 1, and letKε := (1−ε)K−+εK1. Since εK1 > 0
and (1− ε)K− ≥ 0, then Kε > 0. Also,

Υ(Kε) = (1−ε)Υ(K−) + εΥ(K1)

+ ε(1−ε)(K−−K1)CT (D+DT )−1C(K−−K1) ≥ 0,

and so Υ(Kε) ≥ 0. To complete the proof of the present
theorem, we will show that there exists 0 < α < 1 such
that spec(AΥ(Kε)) ∈ C− for all 0 < ε ≤ α. To see this,

note that Z := K1 −K− satisfies Z ≥ 0 and

− ZAΥ(K−)−AΥ(K−)TZ − ZCT (D +DT )−1CZ

= Υ(K1)−Υ(K−) = 0.

Next, let T ∈ Rd×d be nonsingular with TAΥ(K−)TT−1 =
diag(A1 A2) where spec(A1) ∈ C− and spec(A2) ∈ jR
(here, the rows of T1 span the stable left eigenspace
of AΥ(K−)T ), and partition T compatibly as T =
col(T1 T2). Then the row space of T2 is spanned by the
left Jordan chains corresponding to the imaginary axis
eigenvalues ofAΥ(K−). Consider one such Jordan chain:

zT1 AΥ(K−)T = jωzT1 , and

zTkAΥ(K−)T = jωzTk + zTk−1 (k = 2, 3, . . . , N).

Then, by taking the complex conjugate transpose, we
obtain AΥ(K−)z̄1 = −jωz̄1 and AΥ(K−)z̄k = −jωz̄k +
z̄k−1 (k = 2, 3, . . . , N). Thus, for k = 1,

zTk ZC
T (D+DT )−1CZz̄k

= zTk (−ZAΥ(K−)−AΥ(K−)TZ)z̄k

= zTk Zz̄k(jω − jω) = 0, (B.2)

whence CZz̄1 = 0. This implies that (−ZAΥ(K−) −
AΥ(K−)TZ)z̄1 = ZCT (D+DT )−1CZz̄1 = 0, so
AΥ(K−)TZz̄1 = −ZAΥ(K−)z̄1 = jωZz̄1. It follows
that C(Zz̄1) = 0 and A(Zz̄1) = AΥ(K−)T (Zz̄1) =
jωZz̄1, and so Zz̄1 = 0 since (C,A) is observable.
Next, note that (B.2) holds for k = 2, and simi-
lar to before we find that Zz̄2 = 0. Proceeding by
induction, we obtain Zz̄k = 0, whence zTk Z = 0
(k = 1, 2, . . . , N). Since the vectors z1 . . . zN span the
row space of T2, then T2Z = 0. Thus, by partitioning
T̂ := T−1 compatibly with T as T̂ = [T̂1 T̂2], noting
that AΥ(Kε)

T = AΥ(K−)T + εZCT (D+DT )−1C, and

letting Â12 := εT1ZC
T (D+DT )−1CT̂2, we find that

TAΥ(Kε)
TT−1 =

[
A1+εT1ZC

T (D+DT )−1CT̂1 Â12

0 A2

]
.

Thus, spec(AΥ(Kε)) = spec(A1+εT1ZC
T (D+DT )−1CT̂1)

∪spec(A2). Since spec(A1) ∈ C−, then there exists a 0 <

α < 1 such that spec(A1+εT1ZC
T (D+DT )−1CT̂1) ∈

C− for all 0 < ε ≤ α. For any such ε, thenK := Kε satis-
fies the conditions of the present theorem statement. 2

Lemma B.2 Let Bs be as in (2.2), and let B̂ := B(u,y)
s

be passive, (C,A) be detectable (i.e., col(C λI − A) has
full column rank for all λ ∈ C+), D+DT > 0, and Υ(K)
be as in (B.1). Then there exists K ∈ Rd×d such that
K > 0 and Υ(K) ≥ 0.

PROOF. By the observer staircase form (see Hughes,
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2017c, note D2), there exists a T ∈ Rd×d such that

TAT−1 =
[
Ã11 0

Ã21 Ã22

]
, TB =

[
B̃1

B̃2

]
, and CT−1 = [ C̃1 0 ],

with (C̃1, Ã11) observable. As (C,A) is detectable, then

it is easily shown that spec(Ã22)∈C−. Now, let

B̃s = {(u,y, x̃)∈Lloc
1 (R,Rn)×Lloc

1 (R,Rn)×Lloc
1

(
R,Rd̃

)
|

dx̃
dt = Ã11x̃ + B̃1u and y = C̃1x̃ +Du},

Υ̃(K̃) := −K̃ÃT11 − Ã11K̃

− (K̃C̃T1 − B̃1)(D +DT )−1(C̃1K̃ − B̃T1 ),

and ÃΥ̃(K̃) = ÃT11 − C̃T1 (D +DT )−1(B̃T1 − C̃1K̃).

It follows from (Hughes, 2017c, Note D3) that B̃(u,y)
s =

B(u,y)
s , which is passive, so from Lemma B.1 there ex-

ists K11 ∈ Rd̃×d̃ such that K11 > 0, Υ̃(K11) ≥ 0, and

spec(ÃΥ̃(K11)) ∈ C−. Also, spec(Ã22) ∈ C−, so by (An-
derson and Vongpanitlerd, 2006, Th. 3.7.4) there exists
a unique real K12 that satisfies the Sylvester equation

Ã22K
T
12 +KT

12ÃΥ̃(K11)

= −Ã21K11 − B̃2(D +DT )−1(B̃T1 − C̃1K11);

and there exists a (non-unique) ∇ > 0 that satisfies

Ψ(∇) := −∇ÃT22 − Ã22∇−KT
12K

−1
11 Υ̃(K11)K−1

11 K12

−(B̃2−KT
12K

−1
11 B̃1)(D+DT )−1(B̃2−KT

12K
−1
11 B̃1)T ≥ 0.

It can then be verified that

K:=T−1
[

I 0
KT

12K
−1
11 I

][
K11 0

0 ∇
][
I K−1

11 K12

0 I

]
(T−1)T>0,

and Υ(K) = T−1
[

Υ̃(K11) 0
0 Ψ(∇)

]
(T−1)T ≥ 0. 2

Remark B.3 It is easily shown that K in Lemma B.2
satisfies spec(AΥ(K))=spec(AΥ̃(K11))∪spec(A22)∈C−.

The final two lemmas concern the decomposition in
the proof of Lemma 19. We refer to that proof for the
definition of statements (R1)–(R3) and (S1)–(S3).
Lemma B.4 Let Pk−1, Qk−1 ∈ Rnk−1×nk−1 [ξ] satisfy
(R1) for i = k−1, and let nk := normalrank(Pk−1),
mk := nk−1−nk, and rk := rank(limξ→∞(Q−1

k−1Pk−1(ξ))).
The following hold.
1. There exists a nonsingular T ∈ Rnk−1×nk−1 ; uni-

modular W ∈ Rnk−1×nk−1 [ξ] and Q̃22 ∈ Rmk×mk [ξ];

Q̃12 ∈ Rnk×mk [ξ]; and Pk, Qk satisfying (R1) and
(R2) for i=k, with

WPk−1T=
[
Pk 0
0 0

]
,WQk−1(T−1)T=

[
Qk Q̃12

0 Q̃22

]
. (B.3)

2. Let Ak, Bk, Ck, Dk satisfy (S1) for i = k; and let
Ak−1:=Ak,Bk−1:=[Bk 0]T−1,Ck−1:=(T−1)T col(Ck 0),
and Dk−1:=(T−1)T diag(Dk 0)T−1. Then:
(a) (S1) holds for i = k−1.
(b) Let Xk satisfy (S2) for i = k; and let Xk−1 :=

Xk. Then (S2) holds for i = k−1.
(c) Let Sk satisfy (S3) for i = k; and let Sk−1 := Sk.

Then (S3) holds for i = k−1.

PROOF. Condition 1 follows from (Hughes, 2017a,
Lem. D.3, condition 1), noting that TTQ−1

k−1Pk−1T =

diag(Q−1
k Pk 0), so Q−1

k Pk is symmetric since Q−1
k−1Pk−1

is. To see condition 2a, we let Ak, Yk, Zk, Uk, Vk, Ek, Fk
and Gk be as in (S1) for i = k. Following (Hughes,
2017a, Lem. D.3, proof of condition 2), we let

[
Yk−1 Zk−1

Uk−1 Vk−1

]
:=
[
W−1 0

0 I

] [ Yk Q̃12 Zk

0 Q̃22 0

Uk 0 Vk

] [
TT 0
0 I

]
.

It can be verified that each of the above matrices is uni-
modular. Also, with Ak−1(ξ) := ξI − Ak−1, Ek−1 :=
[Ek 0]T−1, Fk−1 := [Fk 0]TT , and Gk−1 := Gk, it can
be verified that (S1) holds for i = k − 1.

The proof of condition 2b follows from (Hughes,
2017a, Lem. D.3, proof of condition 2(c)): with R :=
diag(I T−1), then Ωk−1(Xk−1) = RTdiag(Ωk(Xk) 0)R.
Finally, condition 2c is straightforward to check. 2

Remark B.5 With Pk, Qk, Pk−1 and Qk−1 as in
the above lemma, then the driving-point behavior
Pk−1( ddt )i = Qk−1( ddt )v is realized by a transformer
terminated on a network with driving-point behavior
Pk( ddt )̂i = Qk( ddt )v̂.

Lemma B.6 Let Pk−1, Qk−1 ∈ Rnk−1×nk−1 [ξ] sat-
isfy (R1)–(R2) for i=k−1 (so Pk is nonsingular and
limξ→∞((Q−1

k−1Pk−1)(ξ)) = diag(Irk−1
0)), and let

mk := nk−1 − rk−1 > 0. The following hold.
1. There exists 0 < K ∈ Rmk×mk such that diag(0 K) =

limξ→∞( 1
ξP
−1
k−1Qk−1(ξ)).

2. Let Pk(ξ) := Qk−1(ξ) − Pk−1(ξ)diag(0 Kξ),
and Qk := Pk−1. Then (R1) holds for i = k;
deg (det (Qk)) < deg (det (Qk−1)); and there exist

D̂12 ∈ Rrk−1×mk , D̂21 ∈ Rmk×rk−1 , D̂22 ∈ Rmk×mk

such that

lim
ξ→∞

(Q−1
k Pk(ξ)) =: Dk =

[
Irk−1

D̂12

D̂21 D̂22

]
. (B.4)

3. Let Ak, Bk, Ck, Dk satisfy (S1) for i = k; partition

Bk, Ck compatibly with Dk as Bk = [B̂1 B̂2], Ck =

col(Ĉ1 Ĉ2); and let

Ak−1 :=
[
Ak−B̂1Ĉ1 B̂2K

−1−B̂1D̂12K
−1

D̂21Ĉ1−Ĉ2 D̂21D̂12K
−1−D̂22K

−1

]
,

Bk−1 :=
[
B̂1 0

−D̂21 I

]
, and Ck−1 :=

[
−Ĉ1 −D̂12K

−1

0 K−1

]
.
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Then:
(a) (S1) holds for i = k−1.
(b) Let Xk satisfy (S2) for i = k; and let Xk−1 :=

diag(Xk K
−1). Then (S2) holds for i = k−1.

(c) Let Sk satisfy (S3) for i = k; and let Sk−1 :=
diag(−Sk K−1). Then (S3) holds for i = k−1.

PROOF. First, note that Q−1
k−1Pk−1 = PTk−1(Q−1

k−1)T

implies that Pk−1Q
T
k−1 = Qk−1P

T
k−1, and hence

P−1
k−1Qk−1 = QTk−1(PTk−1)−1. Conditions 1 and 2 then

follow from (Hughes, 2017a, Lem. D.4, conditions 1
and 2), as Q−1

k Pk(ξ) = P−1
k−1Qk−1(ξ) − diag(0 Kξ), so

Q−1
k Pk is symmetric since P−1

k−1Qk−1 and diag(0 Kξ)
are. For condition 3a, we let Ak, Yk, Zk, Uk, Vk, Ek, Fk
and Gk be as in (S1) for i = k. Following (Hughes,
2017a, Lem. D.4, proof of condition 3), we partition the
two matrices on the left-hand side of (S1) compatibly as[

Ŷ11 Ŷ12 Ẑ1

Ŷ21 Ŷ22 Ẑ2

Û1 Û2 V̂

]
and

[ −I
−D̂21

−D̂12

−D̂22
I −Ĉ1

−Ĉ2

− B̂1 −B̂2 0 Ak

]
, (B.5)

and we let

[
Yk−1 Zk−1

Uk−1 Vk−1

]
=

 Ŷ11 Ŷ12 Ẑ1 0
Ŷ21 Ŷ22 Ẑ2 0

−Û1 −Û2 −V̂ 0
0 I 0 −I


 I D̂12 0 0
D̂21 D̂22+Kξ 0 I

B̂1 B̂2 −I 0
D̂21 D̂22+K(1+ξ) 0 I

.
It can be verified that each of the above matri-
ces is unimodular. Then, with Ek−1 := col(Fk 0),

Fk−1(ξ) := col(Ek(ξ) 0) + col(ξÛ2(ξ) I)[0 K], and
Gk−1:=diag(Gk I), we find that (S1) holds for i=k−1.

The proof of condition 3b is identical to (Hughes,
2017a, Lem. D.3, proof of condition 3(c)). Finally,
condition 3c is straightforward to check (noting that

limξ→∞(Q−1
k Pk(ξ)) is symmetric, so D̂12 = D̂T

21, and

D̂11 and D̂22 are symmetric). 2

Remark 20 With Pk, Qk, Pk−1 and Qk−1 as in
the above lemma, then the driving-point behavior
Pk−1( ddt )i = Qk−1( ddt )v can be realized by a parallel
connection of networks with driving-point behaviors
ĩ = diag(0 K d

dt )ṽ and Qk( ddt )̂i = Pk( ddt )v̂.
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Çamlibel, M. K., Willems, J. C., Belur, M. N., Dec. 2003. On the
dissipativity of uncontrollable systems. In: Proceedings of the
42nd IEEE Conference on Decision and Control, Hawaii.

Ferrante, A., Lanzon, A., Ntogramatzidis, L., Oct 2016. Foun-
dations of not necessarily rational negative imaginary sys-
tems theory: Relations between classes of negative imaginary
and positive real systems. IEEE Trans. on Automatic Control
61 (10), 3052–3057.

Ferrante, A., Ntogramatzidis, L., 2013. Some new results in the
theory of negative imaginary systems with symmetric transfer
matrix function. Automatica 49 (7), 2138–2144.

Fuhrmann, P. A., 1983. On symmetric rational transfer functions.
Linear Algebra Appl. 50, 167 – 250.

Fuhrmann, P. A., Rapisarda, P., Yamamoto, Y., 2007. On the
state of behaviors. Linear Algebra Appl. 424 (2 - 3), 570 – 614.

Hughes, T. H., 2016. Behavioral realizations using companion
matrices and the Smith form. SIAM Journal on Control Optim.
54 (2), 845–865.

Hughes, T. H., 2017a. On the optimal control of passive or non-
expansive systems. To appear in IEEE Trans. on Automatic
Control, DOI: 10.1109/TAC.2018.2819656.

Hughes, T. H., 2017b. Passivity and electric circuits: a behavioral
approach. IFAC JournalsOnline, Proceedings of the 20th IFAC
World Congress, Toulouse 50 (1), 15500–15505.

Hughes, T. H., 2017c. A theory of passive linear systems with no
assumptions. Automatica 86, 87–97.

Hughes, T. H., Sept. 2017d. Why RLC realizations of certain
impedances need many more energy storage elements than
expected. IEEE Trans. on Automatic Control 62 (9), 4333–
4346.

Hughes, T. H., Smith, M. C., July 2014. On the minimality
and uniqueness of the Bott-Duffin realization procedure. IEEE
Trans. on Automatic Control 59 (7), 1858–1873.

Hughes, T. H., Smith, M. C., 2017. Controllability of linear passive
network behaviors. Systems and Control Letters 101, 58 – 66.

Newcomb, R. W., 1966. Linear Multiport Synthesis, 1st Edition.
McGraw Hill.

Pal, D., Belur, M. N., 2008. Dissipativity of uncontrollable sys-
tems, storage functions, and Lyapunov functions. SIAM Jour-
nal on Control Optim. 47 (6), 2930–2966.

Polderman, J. W., 1997. Proper elimination of latent variables.
Systems and Control Letters 32 (5), 262–269.

Polderman, J. W., Willems, J. C., 1998. Introduction to Mathe-
matical Systems Theory: A Behavioral Approach. New York :
Springer-Verlag.

Rapisarda, P., Willems, J. C., 1997. State maps for linear systems.
SIAM Journal on Control Optim. 35 (3), 1053 – 1091.

van der Schaft, A. J., 2011. On the relationship between port-
Hamiltonian and gradient systems. Proceedings of the 18th
IFAC World Congress, Milano, 3321–3326.

van der Schaft, A. J., Rapisarda, P., 2011. State maps from
integration by parts. SIAM Journal on Control Optim. 49 (6),
2415 – 2439.

Willems, J. C., 1972. Dissipative dynamical systems, Part II: Lin-
ear systems with quadratic supply rates. Arch. Ration. Mech.
Anal. 45, 352 – 393.

Willems, J. C., Dec. 2004. Hidden variables in dissipative systems.
In: Proceedings of the 43rd IEEE Conference on Decision and
Control, Bahamas. pp. 358–363.

Willems, J. C., 2007. The behavioral approach to open and inter-
connected systems. IEEE Control Systems Magazine 27, 46–99.

Wolovich, W. A., 1974. Linear Multivariable Systems, 1st Edition.
New York : Springer-Verlag.

Youla, D. C., Castriota, L. J., Carlin, H. J., 1959. Bounded real
scattering matrices and the foundations of linear passive net-
work theory. IRE Transactions on Circuit Theory 6 (1), 102–
124.

Youla, D. C., Tissi, P., 1966. N-port synthesis via reactance ex-
traction, Part I. IEEE International Convention Record 14 (7),
183–205.

15


	Introduction
	Notation and Preliminaries
	Signature symmetric realizations of symmetric transfer functions
	Reciprocal behaviors
	Reciprocity and signature symmetric realizations
	Passive and reciprocal behaviors
	Proof of the passive and reciprocal behavior theorem
	Examples
	Conclusions
	The elimination theorem
	The passive and reciprocal behavior theorem, supplementary lemmas

