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Abstract
A selection hyper-heuristic is used to minimise the objective functions of a well-
known set of benchmark problems. The resulting sequences of low level heuristic
selections and objective function values are used to generate a database of heuristic
selections. The sequences in the database are broken down into subsequences and
the mathematical concept of a logarithmic return is used to discriminate between
“effective” subsequences, which tend to decrease the objective value, and “disruptive”
subsequences, which tend to increase the objective value. These subsequences are
then employed in a sequenced based hyper-heuristic and evaluated on an unseen set of
benchmark problems. Empirical results demonstrate that the “effective” subsequences
perform significantly better than the “disruptive” subsequences across a number of
problemdomainswith 99%confidence. The identification of subsequences of heuristic
selections that can be shown to be effective across a number of problems or problem
domains could have important implications for the design of future sequence based
hyper-heuristics.

Keywords Machine learning · Hyper-heuristics · Offline learning

1 Introduction

Search and optimisation methods such as metaheuristics (see Blum and Roli 2003)
and hyper-heuristics (see Burke et al. 2013) are typically employed to solve computa-
tionally hard optimisation problems. Such algorithms move through a search space by
applying sequences of perturbations to a set of existing solutions. Although the mech-
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anisms for selecting a solution to perturb, and the frequency with which perturbation
operations are applied can vary greatly between algorithms, there exists an identifi-
able sequence of perturbations for a single solution or population of solutions. For
some algorithms, the perturbations and therefore the sequence is fixed. For example,
an evolutionary algorithm will execute a mutation operation and crossover operation
at a given rate for every iteration of the algorithm. In this case, there is little to be said
about the sequences of perturbations which are generated by these types of algorithm.
However, in the case of a selection hyper-heuristic which can select from a wide range
of potential perturbations in any order it chooses, the issue of context and the notion of
sequence becomes important. For example, a disruptive perturbation such as a partial
randomisation of a solution when paired with an exploitative perturbation such as a
local search in that ordermight yield improved solutions. The randomisationmoves the
solution to a new, unexplored region of space and the local search finds the best solution
in that neighbourhood. However, the reverse (local search followed by randomisation)
is likely to be a poor strategy, with the majority, if not all, of the work carried out by
the local search being discarded. From this small example it becomes clear that the
correct ordering of a sequence is imperative if search efficacy is to be achieved.

This paper is concerned with ordered subsets or subsequences of low level heuris-
tics. The role of subsequences in the search and optimisation process is investigated
via the generation and analysis of a large database of perturbation operations across
a number of problems and problem domains. The results of this analysis demonstrate
that it is possible to statistically separate “effective” subsequences of perturbations,
which tend to decrease the objective function value which is to be minimised, from
“disruptive” subsequences of perturbations, which tend to increase the objective value,
across most, but not all, problem domains.

Such effective subsequences can be used to improve hyper-heuristics performance
either directly, by embedding them in a suitable hyper-heuristic design, or indirectly
as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore, by
comparing effective subsequences across different problem domains it is possible to
investigate the potential for cross-domain learning.

The statistical approach presented here establishes that subsequences of perturba-
tions are important structural parts of the heuristic search space and that successful
selection hyper-heuristics must consider the context in which a low level heuristic is
to be executed before making their selection.

1.1 Hyper-heuristics

A heuristic is a process or method that learns to employ loosely defined rules or trial
and error in order to solve a given problem. Heuristics are applied to computationally
hard problems where no known effective algorithmic solution exists. Typically such
problems are presented as optimisation problems where the goal is to minimise an
objective function f defined on a space X of solutions.

In their seminal work on the job scheduling problem Fisher and Thompson (1963)
and Crowston et al. (1963) demonstrate that an unbiased random combination of job
scheduling heuristics outperforms any individual job scheduling heuristic and that it is
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possible to employ “probabilistic learning” to improve performance further. The idea
of applying a combination or permutation of heuristics to a problem to find a better
solution gives rise to the concept of higher level heuristics such as metaheuristics
(see Blum and Roli 2003) and more recently hyper-heuristics (see Burke et al. 2013).
Metaheuristics and hyper-heuristics differ in that most metaheuristics search the space
X of problem solutions, whereas hyper-heuristics search the space S of heuristics. In
practice this means that a metaheuristic can have access to problem specific infor-
mation, while a hyper-heuristic is subject to the limitations of the domain barrier
and is unable to access problem specific information. The domain barrier requires
the hyper-heuristic to perform well in the absence of problem specific information
and therefore, it is hoped, to be “re-useable” across different problem domains with
minimal changes.

Hyper-heuristics are intended to either generate or select low level heuristics. A
generation hyper-heuristic generates new heuristics by discovery, or by modifying
or combining existing low level heuristics. Selection hyper-heuristics, such as those
developed in this paper, must select and apply a heuristic chosen from a set of low
level heuristics. The goal of both types of hyper-heuristics is to improve the search
process through learning and/or optimisation.

1.2 Offline learning

Many selection hyper-heuristics employ learning algorithms to improve optimisation
performance. Typically, the learning algorithm optimises a hyper-heuristic’s internal
structure and parameters in order to improve the selection of heuristics based on the
current (generic) state of a problem. Such learning can be categorised as either online
or offline (see Burke et al. 2013).

Online learning is based on the low level heuristic selections and resulting objective
function values computed during the execution of a hyper-heuristic. The objective is
to improve optimisation performance on the problem at hand. Many algorithms have
been employed successfully for online learning such as genetic algorithms (Fang
et al. 1993), hill climbing (Gratch and Chien 1996), the choice function (Cowling
et al. 2001), Tabu search (Burke et al. 2003), fuzzy systems (Asmuni et al. 2005),
reinforcement learning (Özcan et al. 2010), and adaptive selection probabilities (Soria-
Alcaraz et al. 2014).

In contrast, offline learning is performed on a database of low level heuristic selec-
tions and objective function values computed by a hyper-heuristic on a fixed number
of benchmark problems. The objective is to generalise across the benchmark train-
ing problems leading to improvements in optimisation performance on unseen test
problems. A variety of machine learning algorithms have also been proposed for
offline learning such as classifier systems (Ross et al. 2002), case based reasoning
(Burke et al. 2006), messy genetic algorithms (Terashima-Marín et al. 2008), and the
ILSParam parameter tuning algorithm employed in Soria-Alcaraz et al. (2014). In
Ross et al. (2002) a classifier system is applied to the 1D Bin Packing problem. The
system is trained on a number of benchmark problems and learns a set of rules which
associate characteristics of a current problem state with specific heuristics. Rules
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are selected according to the problem state and the associated heuristics are applied
sequentially. When evaluated on a set of unseen problems, the evolved rule-set was
able to produce an optimal solution for over 78% of the test cases, and in the rest it
produced a solution very close to optimal. In Burke et al. (2006) case based reasoning
is applied to exam timetabling problems. Previous problems and their “good” solu-
tions (called source cases) are collected and stored. A similarity based retrieval process
compares the source cases with the problem at hand, and selects heuristics that were
employed successfully in similar situations. The results demonstrate that the “knowl-
edge of heuristics” discovered offline helped in selecting the “best” heuristics during
the problem solving process, and yielded higher quality solutions. In Terashima-Marín
et al. (2008) the authors present a messy genetic algorithm that produces a population
of hyper-heuristics to solve the dynamic variable ordering problem which occurs in
the field of constraint satisfaction. Each of the chromosomes of the genetic algorithm
represents a selection hyper-heuristic consisting of a set of condition-action rules that
encode a problem’s state and an associated low level heuristic. After a training phase,
when evaluated on unseen examples, these hyper-heuristics solved many of the test
problems very efficiently, and in a few cases, produced better results than the best sin-
gle heuristic for the problem instance. In Soria-Alcaraz et al. (2014) offline and online
learning are combined to optimise an Iterated Local Search (ILS) hyper-heuristic for
the course timetabling problem. ILS uses heuristic selection probabilities to choose
low level heuristics, and these selection probabilities are estimated offline using the
ILSParam algorithm, and then adapted online. The best-performing hyper-heuristic
produced competitive results when compared to the state-of-the-art on the well known
ITC-2007,1 benchmark test set, even producing a new best-known solution.

These four examples demonstrate that offline learning is able to improve hyper-
heuristic performance by generalising over the problems of a domain. However, the
methodologies employed differ markedly and are dictated by the choice of learning
algorithm and/or the choice of problem state space representation. The framework for
offline learning presented here does not depend on either of these factors.

1.3 Heuristic subsequences

Most of the online and offline learning research cited above aims to improve the
selection of single heuristics (or heuristic pairs). Some research (see for example
Ortiz-Bayliss et al. 2013; Kheiri and Keedwell 2015, 2017; Yates and Keedwell 2017,
2018) has argued that heuristic selections should be understood as part of a sequence
of selections. As noted in Sect. 1, the concept of heuristic sequences is intuitive,
certain heuristic orderings make sense whereas others do not, and it should be noted
that such orderings can be discovered automatically online (see Kheiri and Keedwell
2015, 2017), or offline (see Yates and Keedwell 2017, 2018). In addition, adopting
a sequence based approach can reduce the number of objective function evaluations
required- in the introductory example there is no need to evaluate the result of the
randomisation. This is beneficial because, for many real world problem domains and
problem sizes, evaluating the objective function is computationally expensive.

1 The 2007 International Timetabling Competition (http://www.cs.qub.ac.uk/itc2007/).
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There are several examples in the literature of empirical research concerning subsets
of low level heuristics such as Petrovic and Epstein (2008), Mısır et al. (2012) and
Soria-Alcaraz et al. (2017), and from a purely theoretical perspective (Lehre andÖzcan
2013). For example, in Petrovic and Epstein (2008) subsets of heuristics are randomly
selected from a large pool of available heuristics. Each subset is evaluated on a number
of benchmark problems, and a learning algorithm is used to determine weights for the
elements of the subset. These weights determine an individual heuristic’s probability
of selection. In Mısır et al. (2012) various subsets of heuristics, heuristic selection
mechanisms and acceptance strategies are evaluated on a number of patient admission
scheduling problems. The experimental results demonstrate that different subsets of
low level heuristics produce very different optimisation performances across a number
of hyper-heuristic designs. In Soria-Alcaraz et al. (2017) non-parametric statistical
tests and fitness landscape measurements are used to rank and select subsets of low
level heuristics according to their performance on a set of benchmark problems.

In each case, the objective is to discover small subsets of effective heuristics that
work well together and improve optimisation performance for the problems of a
domain. However, the concept of heuristic sequence is absent, as the order in which the
heuristics in a subset are applied is determined randomly. In contrast, Ortiz-Bayliss
et al. (2013) construct ordered sets or subsequences of low level heuristic pairs to
solve constraint satisfaction problems. Each possible permutation of the heuristics in
a subsequence is evaluated on a set of benchmark problems, and the best performing
permutation is selected. This permutation is then applied repeatedly to optimise test
problems. Here the concept of heuristic sequence is explicit. However the methodol-
ogy presented is only suitable for the analysis of short subsequences of small numbers
of heuristics.

In this research, subsequences of heuristic selections are analysed statistically in
order to distinguish between effective and disruptive subsequences in a manner that
does not depend on the number of heuristics or the length of the subsequences.

1.4 Overview

A single selection hyper-heuristic is run on a number of benchmark problems in order
to generate a database of low level heuristic selections and objective function values.
The sequences of heuristic selections are broken down into subsequences and the
mathematical concept of a logarithmic return is used to construct a statistical frame-
work for the categorisation of these subsequences. Specifically, a statistical method
is used to discriminate between effective and disruptive subsequences. These subse-
quences are then employed in a distinct sequence based selection hyper-heuristic and
are evaluated on unseen examples of the benchmark problems. This allows for the
differential performance of heuristic subsequences to be demonstrated empirically.

The results are compared with those produced by the SSHH hyper-heuristic (see
Kheiri and Keedwell 2015). The SSHH hyper-heuristic is a sequenced based selec-
tion hyper-heuristic which employs online learning of low level heuristics and their
parameters. The results for SSHH are included to provide a comparison between an
online learning hyper-heuristic and the offline methodology presented here.
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The identification of subsequences of heuristic selections that can be shown to be
effective across a number of problems has important implications for the design of
future sequence based hyper-heuristics. Effective subsequences can be used to improve
hyper-heuristic performance either directly, by embedding them in a suitable hyper-
heuristic design, or indirectly as the inputs to an appropriate offline learning algorithm.

Furthermore, by comparing effective subsequences across different problem
domains it is possible to investigate the potential for cross-domain learning by, for
example, attempting to identify a set of effective cross-domain subsequences.

The objective of this research is to assess the scope and limitations of the proposed
statistical framework, and demonstrate empirically its predictive capability on a range
of operational research problems.

2 Experimental methodology

In this section, the experimental methodology employed in this paper is presented.

2.1 Hard problems and the HyFlex framework

All the algorithmsdeveloped in this paper are trained and tested on theHyper-heuristics
Flexible framework (or HyFlex, see Ochoa et al. 2012). HyFlex is a set of benchmark
problems that has been used in a number of studies (see for exampleWalker et al. 2012;
Drake et al. 2012; Mısır et al. 2013; Drake et al. 2015; Kheiri and Keedwell 2015;
Dempster andDrake 2016). HyFlex2 is an implementation of six computationally hard
problem domains:

1. 1D bin packing (BP),
2. permutation flowshop (PFS),
3. Boolean satisfiability (SAT),
4. personnel scheduling (PS),
5. the travelling salesman problem (TSP), and
6. the vehicle routing problem (VRP).

The first four domains are used for experimentation here. The TSP and VRP domains
are not used in this study and are reserved for future experiments.

Each HyFlex problem domain contains 10 distinct problems of varying complexity.
HyFlex hides all problem specific information such as the solution representations,
the solution constructions, and the low level heuristic implementations. Each domain
has 4 general classes of heuristic:

1. parameterised mutation (M) which perturbs a solution randomly,
2. crossover (C) which constructs a new solution from two ormore existing solutions,
3. parameterised ruin and recreate (R) which destroys a given solution partially and

then rebuilds the deleted parts, and

2 HyFlex, Cross-domain Heuristic Search Challenge, CHeSC 2014, was used in this study. However this
library is no longer available, and those wishing to replicate this study should use CHeSC 2011 (http://
www.asap.cs.nott.ac.uk/chesc2011/).
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Table 1 The low level heuristics for each domain

Dom. Heuristics

BP {M0,R1,R2,M3,L4,M5,L6,C7}
PFS {M0,M1,M2,M3,M4,R5,R6,L7,L8,L9,L10,C11,C12,C13,C14}
SAT {M0,M1,M2,M3,M4,M5,R6,L7,L8,C9,C10}
PS {L0,L1,L2,L3,L4,R5,R6,R7,C8,C9,C10,M11}

4. parameterised hill climbing or local search (L) that incorporates an iterative
improvement process and returns a non-worsening solution.

The number and implementation of the low level heuristics in each class differs
between problem domains (see Table 1). It should be emphasised that the heuris-
tic M0 in the BP domain is an entirely different heuristic to M0 in the PFS domain.
However, the general underlying principles of each heuristic class should remain sim-
ilar across domains. For example, a mutation operation should make random changes,
while a local search operation will search the surrounding space.

The local search heuristics differ from the other classes in two respects. Firstly, they
may require more that one objective function evaluation, and secondly, they cannot
produce a solution of worse fitness. The 4 HyFlex domains considered in this study
employ “first-improvement” local search heuristics. These heuristics iteratively apply
neighbourhood functions which typically permute two or more elements of a solution
in some way. For example, in the BP domain, one of the neighbourhood functions is to
take the largest piece from the lowest filled bin, and exchange it with a smaller piece
from a randomly selected bin. During a local search, at each iteration, a neighbour is
generated using the neighbourhood function, and it is accepted immediately if it has
superior or equal fitness. If the neighbour is worse, then the change is not accepted.
The number of iterations, and therefore the number of objective function evaluations
employed by these heuristics is determined by the “depth of search” parameter.

For each problemdomain there is also a real valued, non-negative,objective function
denoted f . The objective function induces an ordering on the solutions x ∈ X of a
problem, such that given any two solutions x1 and x2,

f (x1) < f (x2)

implies that x1 is a better solution than x2.

2.2 The DBGen hyper-heuristic

Subsequences of heuristics are extracted from a database of low level heuristic
selections and objective function values. This database in generated by a selection
hyper-heuristic denoted DBGen which is designed to sample the space of possible
heuristic selections.

A selection hyper-heuristic consists of a set of low level heuristics, a selection strat-
egy, and an acceptance strategy (see Burke et al. 2013). The selection strategy selects
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a particular low level heuristic s and its parameters p = (q1, . . . , qk). Given a solu-
tion x the low level heuristic computes a new solution x ′ = s(x, p). The acceptance
strategy, which is a (possibly stochastic) Boolean function, then decides whether to
accept or reject the new solution. If the new solution is accepted, x ′ becomes the cur-
rent solution, and f (x ′) becomes the current objective function value, otherwise x ′ is
discarded and x continues as the current solution. Iterating this process, starting from
some given initial solution x0, for n selections or iterations gives rise to sequences of

1. low level heuristic selections s = s1, . . . , sn ,
2. low level heuristic parameters p = p1, . . . , pn ,
3. solutions x0, x1, . . . , xn , and
4. objective function values f (x0), f (x1), . . . , f (xn) also denoted o0, o1 . . . , on .

These sequences represent a trace of the hyper-heuristic’s execution on a given problem
x0 over n time steps.

The unbiased, random, single selection hyper-heuristic DBGen used to generate the
database of heuristic selections and objective function values is shown in listing (1).
The function selectHeuristic() (line 9) selects a single heuristic class at random from
the set {C,L,R,M }. The functionapply() (line 10) takes the heuristic class and chooses,
again at random, a low level heuristic and its parameters, from the available heuristics
of that class. The low level heuristic is then applied to the current solution, and if the
class is C, to the current crossover solution. An objective function evaluation (line 11)
and an acceptance check (lines 12–19) are then performed. The function ran() (lines
12 and 16) returns a uniformly distributed pseudorandom number in the interval (0, 1).
If a new solution’s objective value is less than the current solution’s objective value or
ran() < 0.5 then it is accepted. Otherwise the new solution is rejected. The random
term allows new solutions to be accepted regardless of their objective function 50% of
the time. Accepting states that may lead to a large increase in objective function value
forces the DBGen hyper-heuristic to explore the space of low level heuristic selections
instead of optimising the problem efficiently.

When crossover heuristics are available, the choice of crossover mechanism also
affects hyper-heuristic performance (see Drake et al. 2015). The DBGen crossover
mechanism is a simplification of the crossover management scheme employed by
AdapHH (see Drake et al. 2015) which uses a population of five potential crossover
solutions including the current best solution. The DBGen crossover mechanism
employs a population of one solution (lines 12–15).

2.3 An offline subsequence database

The DBGen hyper-heuristic is run on the HyFlex problems in order to generate a
database of low level heuristic selections and objective function values. Specifically,
DBGen is executed 40 times on each of the 40 HyFlex problems for 150 iterations; a
total of 1600 runs and 240,000 heuristic selections and objective function values. To
put these figures into perspective, as the set of low level heuristic classes {C,L,R,M}
contains four symbols there are 4150 ≈ 2.0370 × 1090 unique sequences of length
150.
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Algorithm 1 The DBGen hyper-heuristic in pseudocode.
1. ITERATIONS ← 150
2. new-sol ← initialiseSolution()
3. new-obj ← f (new-sol)
4. cross-sol ← initialiseSolution()
5. cross-obj ← f (cross-sol)
6. while (ITERATIONS > 0) do
7. cur-sol ← new-sol
8. cur-obj ← new-obj
9. Heuristic h ← selectHeuristic()
10. new-sol ← apply(h, new-sol, cross-sol)
11. new-obj ← f (new-sol)
12. if (new-obj < cross-obj or ran() < 0.5) then
13. cross-sol ← new-sol
14. cross-obj ← new-obj
15. end
16. if (new-obj ≥ cur-obj and ran() ≥ 0.5) then /∗ reject the new solution ∗/

17. new-sol ← cur-sol
18. new-obj ← cur-obj
19. end
20. ITERATIONS ← ITERATIONS − 1
21. end

Each DBGen run is seeded by a single unique number defined by

seed = 4000 + (40 p) + r

where p = 0, . . . , 39 is the problem index and r = 0, . . . , 39 is the run index.
The number of 40 runs was chosen so as to ensure that robust statistics could be

calculated for each problem. The number of iterations or run length of 150 was chosen
for computational feasibility, although results for much longer runs also show similar
effects (see Sect. 4.6).

Each distinct sequence or run is then broken down into consecutive subsequences
of length n = 2, 3, . . . , 149. For example, given a sequence {MCLLR } of length 5
note that the sets of subsequences of lengths 2, 3, and 4 are

{MC,CL,LL,LR } {MCL,CLL,LLR } and {MCLL,CLLR }

respectively. The finite set of all such subsequences is denoted S.

2.4 Logarithmic returns

Each problem domain has its own objective function f , and the range of f may
differ between problems and problem domains. Without a priori knowledge of the
objective functions, the objective function values from different problems or problem
domains cannot be compared directly. Instead, normalised subsequences of objective
function values are compared. Consider a subsequence of objective function values
o0, o1, . . . , on observed after applying a subsequence s ∈ S of n low level heuristics
to some initial solution x0. The log objective values3 are

3 Objective functions that can produce 0 values must be suitably transformed so as to remove them.
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log(o0), log(o1), . . . , log(on).

The log returns of this series are simply the sequential differences of the log objective
values

log(o1) − log(o0), log(o2) − log(o1), . . . , log(on) − log(on−1)

and such subsequences are invariant to scaling.
Each low level heuristic si in s = s1, . . . , sn is associated with a log return. The

sum of the n log returns is equal to the log return over the whole subsequence, since
all but the first and last log objective values cancel out. In symbols

n∑

i=1

(
log(oi ) − log(oi−1)

) = log

(
on
o0

)
.

This is not the case for subsequences of decimal returns.4 Although subsequences of
decimal returns are scale invariant, they cannot be easily added or subtracted because
the denominators of each return may differ. Furthermore, decimal returns are not
symmetric, that is, a change d of x , followed by a change −d of x does not return the
original value x .

The log return α of a subsequence s of length n is defined by

α(s) = log10

(
on
o0

)
.

The unit log return β of a subsequence s of length n is defined by

β(s) = 1

n
α(s).

The length of a subsequence is important because for many real world optimisation
applications the execution times of the low level heuristics and objective function
evaluations can be non-trivial. The unit log return β induces an ordering on the sub-
sequences s ∈ S. Given any two subsequences s1 and s2,

β(s1) < β(s2)

implies that s1 is a better subsequence than s2.

4 The formulae to convert between log10 returns r and decimal returns d, are

r = log10(d + 1) and d = 10r − 1.
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2.5 Selecting subsequences with the �-ratio

The unit log return of a set of N subsequences is

β({s1, . . . , sN }) =
N∑

i=1

β(si ).

Let S+ be the set of all subsequences with α(s) > 0, and let S− be the set of all
subsequences with α(s) ≤ 0, and note that S = S+ ∪ S−. The positive and negative
parts of β can be separated out by β = β+ − β− where

β+(U ) = β(U ∩ S+) and β−(U ) = −β(U ∩ S−)

for every subset U of S.
A subsequence s may occur a number of times in the database and each occur-

rence will have a different subsequence of objective function values depending on the
problem, the run, and the position in a run where s arises. The set

Us = {s1, . . . , sNs }

is the set of all occurrences of a subsequence, where Ns is the number of occurrences
of s. The function β+(Us) measures the propensity of subsequence s to increase the
objective value, while β−(Us) measures the propensity of subsequence s to decrease
the objective value. The larger the measure, the larger the propensity for change in
the objective value. The word propensity is used deliberately in order to emphasise
that applying a subsequence with a large β+ (or β−) could still lead to a decrease (or
increase) in the objective function value. Indeed, it is quite possible for a subsequence
to have a large (or small) measure under both β+ and β− and still produce a small (or
large) change. The probability (estimate) that s produces a negative (unit) log return
is

P(α(s) ≤ 0) = N−
s

Ns

where N−
s is the number of occurrences of s where α(s) ≤ 0.

The functions β, β+, β−, and P(α(s) ≤ 0) can be used to categorise and select
subsequences from S. In this study the γ -ratio, defined by

γ (Us) = β−(Us)

β+(Us) + 1

is used to select subsequences from the offline database. Values of γ (Us) > 1 indicate
an effective subsequence while values of γ (Us) < 1 indicate a disruptive sequence.
The γ -ratio is used in preference to the mean unit log return
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�β({s1, . . . , sN }) = 1

N

N∑

i=1

β(si )

for selecting subsequences as it produces consistently better results.
For notational convenience γ (Us), �β(Us), and P(α(s) ≤ 0) are abbreviated to

γ (s), �β(s), and P(s ≤ 0) in the following sections.

2.6 The EvalHH hyper-heuristic

The EvalHH selection hyper-heuristic is used to evaluate subsequences and is shown
in listing (2). It is a sequence based hyper-heuristic, and it employs a fixed set of k
heuristic subsequences of varying lengths.

Algorithm 2 The EvalHH hyper-heuristic in pseudocode.
1. ITERATIONS ← 150
2. THRESHOLD ← 1.05
3. new-sol ← initialiseSolution()
4. new-obj ← f (new-sol)
5. cross-sol ← initialiseSolution()
6. cross-obj ← f (cross-sol)
7. while (ITERATIONS > 0) do
8. cur-sol ← new-sol
9. cur-obj ← new-obj
10. Subsequence ss ← selectSubsequence()
11. for (i ← 0 to length(ss)) do
12. Heuristic h ← ss[i]
13. new-sol ← apply(h, new-sol, cross-sol)
14. ITERATIONS ← ITERATIONS − 1
15. end
16. new-obj ← f (new-sol)
17. if (new-obj < cross-obj * THRESHOLD) then
18. cross-sol ← new-sol
19. cross-obj ← new-obj
20. end
21. if (new-obj < cur-obj) then
22. THRESHOLD ← 1.05
23. else if (new-obj < cur-obj * THRESHOLD) then
24. THRESHOLD ← THRESHOLD − 0.01
25. if (THRESHOLD < 1) then
26. THRESHOLD ← 1
27. end
28. else /∗ reject the new solution ∗/

29. new-sol ← cur-sol
30. new-obj ← cur-obj
31. end
32. end

The function selectSubsequence() (line 10) selects a subsequence at random from
this set. The function apply() (line 13) is then called for each heuristic class in the
subsequence in order to choose, again at random, a low level heuristic and its parame-
ters from the available heuristics of that class. This low level heuristic is then applied
to the current solution, and if the class is C, to the current crossover solution. At the
end of a subsequence, an objective function evaluation (line 16) and an acceptance
check are performed (lines 17–31). If a new solution’s objective value is less than
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the current solution’s objective value or the current solution’s objective value multi-
plied by THRESHOLD, then it is accepted (lines 17–27). Otherwise the new solution is
rejected (lines 28–31). The threshold allows solutions with a small increase in objec-
tive function value (up to 5%) to be accepted. A low threshold forces the EvalHH
hyper-heuristic to optimise the problem instead of exploring the space of low level
heuristic selections.

The acceptance mechanism employed here is adapted from SSHH. The crossover
mechanism used in the SSEval and SSHH hyper-heuristics is similar to themechanism
used by DBGen and operates on a population of one solution. As a result, any bias
due to the crossover mechanism should be similar for all three hyper-heuristics.

The EvalHH hyper-heuristic is employed for evaluation purposes in order to ensure
that any observed differences in performance are not dependant on the structure of
DBGen which generated the subsequences. It should be emphasised that the EvalHH
hyper-heuristic is not an attempt to produce a superior or novel hyper-heuristic algo-
rithm. Rather EvalHH is intended to serve as a test bed and a “level playing field”, in
order to evaluate the performance of a number of subsequence sets which are selected
using the γ -ratio.

2.7 Measuring hyper-heuristic performance

In this study, the performance of a hyper-heuristic is measured against 5 criteria:

1. the overall change in objective function value,
2. the number of heuristic selections required to find the best solution xmin,
3. the number of objective function evaluations required to find xmin,
4. the time required to find the best solution xmin, and
5. the overall run time.

The change in objective function is measured by the final log return α f . The final
log return of a hyper-heuristic run or sequence s is the log return between the initial
solution of the sequence x0 and the best final solution xmin found during the run, which
has objective value omin. In symbols

α f (s) = log10

(
omin

o0

)
.

The mean final log return of a set of N sequences is

�α f ({s1, . . . , sN }) = 1

N

N∑

i=1

α f (si ).

The function �α f is the mean of log values. In general, the mean of the logs is not
equal to the log of the mean.5 The anti-log of the mean of the logs is equivalent to the
geometric mean. In symbols

5 In fact, it is the median of logs that is equal to the log of the median.
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log−1
(
1

N

N∑

i=1

log(xi )

)
= N

√
x1 · x2 . . . xN

assuming the values xi all have the same sign. The geometric mean is used so that no
range dominates the average. Although the use of sequences of log returns normalises
the ranges of different objective functions, the log return values can still differ signif-
icantly, as some problems are harder to optimise than others. For this reason, in this
study,�α f is used in preference to the arithmetic mean of the decimal returns, although
this value is also quoted (as a percentage) for comparison purposes.

As has been noted above, the number of objective function evaluations are impor-
tant because, for certain problem sizes and problem domains, evaluating the objective
function is computationally expensive. In addition, each objective function evaluation
provides the hyper-heuristic with information regarding the progress of the optimi-
sation process. More objective function evaluations provide more information which
often leads to improved performance.

The number of selections and the time required to find the best solution are corre-
lated. However, as the low level heuristics have different time complexities, a larger
number of selections does not automatically imply a longer time to best solution.

The overall run time provides a simple measure of a hyper-heuristic’s time com-
plexity over an entire run. The overall run time combines low level heuristic execution
time, objective function evaluations time, and the time necessary to perform other
computations such as selection, acceptance or online learning.

3 Experimental setup

The γ -ratio is used to select sets of effective and disruptive subsequences of heuristics
from the offline database. These subsequence sets are used to parameterise the EvalHH
hyper-heuristic which is executed on unseen HyFlex problems in order to evaluate the
subsequences. The EvalHH results are then compared with results produced by the
SSHH hyper-heuristic.

The experiments presented here are designed to explore the effect of calculating γ

for low level heuristics, and then for heuristic classes at a domain and cross-domain
level. For clarity, the experiments are labeled according to the following convention.
The results of selecting subsequences using a γ calculated over the low level heuristics
of a particular domain have a suffix -DH where the D denotes domain statistics and
the H denotes low level heuristics. When γ is calculated for the heuristic classes of a
particular domain the suffix is -DC. Finally, when γ is calculated across all domains in
the database the suffix is always -GC as it is not possible to to calculate cross domain
statistics for individual low level heuristics, only classes.

In Sect. 4.1 an effective subsequence set of low level heuristics is selected using a
γ -ratio that is calculated over each domain. In Sect. 4.2 this experiment is repeated
for subsequences of heuristic classes. The intention is to assess the scope and limita-
tions of the proposed statistical framework, and demonstrate empirically its predictive
capability.
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A primary objective of this study is to determine the existence of effective cross-
domain subsequences of heuristic classes. With this in mind, in Sect. 4.3, an effective
and a disruptive subsequence set of heuristic classes are selected using a γ -ratio that
is calculated over the whole database. Section 4.4 presents a detailed analysis of these
results for the Bin Packing domain.

In each case, the EvalHH hyper-heuristic results are compared with the results
produced by the SSHH hyper-heuristic. The SSHH hyper-heuristic has been tested on
the HyFlex problems (taken from the CHeSC 2011 competition) and compared with
a number of other hyper-heuristics. The published results demonstrate that SSHH is
able to outperform the then best-in-class hyper-heuristic AdapHH (see Mısır et al.
2013) on these problems.

These experiments employ short subsequences of length 2 and 3. There are three
reasons for this. Firstly, it is logically necessary to demonstrate that the proposed sta-
tistical framework works with short subsequences before considering subsequences
of longer lengths. Secondly, short subsequences occur much more frequently than
longer subsequences in the offline learning database. As a result, the statistics calcu-
lated within and across problem domains are more reliable. Thirdly, as some work
has already been carried out with heuristic pairs (see for example Mısır et al. 2012), it
was decided to include subsequences of length 3. In Sect. 4.5 the issue of subsequence
length is examined by selecting and evaluating an effective cross-domain subsequence
set, where the subsequences have unrestricted length.

All of the preceding experiments employ a run length of 150 heuristic selections,
and for some problems this can be considered to be a small number over which to
evaluate a hyper-heuristic. The final experiment addresses the issue of run length.

The abbreviations used throughout the results sections together with their descrip-
tions are summarised in Table 2.

The experiments were conducted on a Mac Pro computer with a 3.5 GHz, 6 core,
Intel Xeon E5 processor, and 16 GB of 1866 MHz memory. Each hyper-heuristic

Table 2 Experimental abbreviations and descriptions

Abbreviation Description

DBGen Hyper-heuristic used to generate the learning database

SSHH Sequenced based hyper-heuristic used for comparisons

EvalHH Hyper-heuristic used to evaluate subsequence sets

TOP-DH Subsequences of low level heuristics with the largest γ (by domain)

TOP-DC Subsequences of heuristic classes with the largest γ (by domain)

TOP-GC Subsequences of heuristic classes with the largest γ (all domains)

BOT-GC Subsequences of heuristic classes with the smallest γ (all domains)

SINGLE The individual heuristic classes {L,C,R,M }
RAND Randomly generated subsequences of heuristic classes

LONG-GC Arbitrary length subsequences of heuristic classes

{L} Singleton heuristic class

{LL} Singleton heuristic class subsequence
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evaluation takes approximately 4 h running on a restricted number of threads. This is
to ensure that the processor always has spare capacity so that the recorded timings are
reliable.

4 Results

In this section, the experimental results of this paper are presented.

4.1 Subsequences of low level heuristics

Each problem domain has its own set of low level heuristics (see Table 1). In this
section, the γ -ratio is used to select subsequences of low level heuristics.

For each problem instance in a domain, the top 10 subsequences with the largest
γ -ratio are selected using the query

select s from subseq where length ≤ 3 order by γ -ratio descend limit 10

where γ is calculated using a leave-one-out cross-validation methodology. Recall that
there are 10 problem instances in each of the four HyFlex domains. For each target
problem in a domain, γ is calculated from the subsequences of low level heuristics
from the remaining nine problems. The subsequences are then evaluated on the target
problem. This ensures that the subsequences are always evaluated on a problem that is
“unseen”. This methodology gives rise to 40 subsequence sets, one for each problem
in each domain. As the γ statistics are quite stable, the selected subsequences for
the problems in a domain are very similar, usually differing by at most one or two
subsequences. This subsequence set is denoted TOP-DH. The subsequence sets and
their γ -ratios (calculated over all the problem instances) for each domain are shown
in Table 3.

Table 3 The TOP-DH subsequences of low level heuristics for each domain

BP γ (s) PFS γ (s) SAT γ (s) PS γ (s)

R2R2 43.8493 M4L7 4.0900 M1M0 16.2481 L4L4 295.7140

M3R2 28.9555 M4L8 3.6249 M1M1 16.1602 L4L3 271.2990

R2L4 28.6750 M4L10 3.2020 L7M1 16.0079 L4L2 269.6110

L4R2 26.1469 R6R6 3.0929 M0M1 15.7271 L3L4 262.8780

R1R2 24.3380 M4L9 3.0856 L7M0 15.4519 L2L4 225.9580

R2L6 19.7258 R5M4 3.0016 M0M0 15.1376 L3L3 224.4890

C7R2 19.6726 M4R6 2.9105 M0L7 14.9501 L1L4 214.2970

R2C7 19.5043 R6M4 2.8195 L7L7 14.9351 L0L2 205.0780

R2M3 19.3604 R5R5 2.6015 M1L7 14.3604 L2L3 201.9660

L6R2 18.4136 R5R6 2.5843 L8M0 11.3984 L0L3 200.1810
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Fig. 1 The scaled mean log returns α of the low level heuristics C, L, M, and R for each domain. In each
domain the α values have been scaled by the largest absolute α value into the interval [−1, 1]

Table 4 The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums, the
probability of a negative log return P(s ≤ 0), the γ -ratio, and the number Ns of occurrences of the
subsequence set TOP-DH of low level heuristics for each domain

Dom. �β(s) β−(s) β+(s) P(s ≤ 0) γ -ratio Ns

BP − 0.0283 257.4574 0.3608 0.9876 189.1929 9098

PFS − 0.0109 33.4832 0.8420 0.8379 18.1776 2986

SAT − 0.0238 150.3768 0.0000 1.0000 150.3768 6314

PS − 0.4848 2371.4710 0.0000 1.0000 2371.4710 4892

Asmight be expected, the best performing subsequences differmarkedlybydomain.
The PS subsequences consist exclusively of local search heuristics whereas the SAT
subsequences combine mutation and local search. The PFS and BP subsequences both
utilise ruin and recreate, mutation, and local search. The underlined subsequences in
Table 3 violate the principle of exploration followed by exploitation. Interestingly,
this principle does not appear to be preserved for the BP or PS domains. In the BP
domain, local search is followed by the ruin and recreate heuristic R2. The BP ruin
and recreate heuristics are destroy x highest bins and destroy x lowest bins. These
heuristics remove all the pieces from the x highest or lowest filled bins where x is
an integer determined by the “intensity of mutation” parameter. They then repack the
pieces using the best-fit heuristic. For low values of x these heuristics preserve most
of the existing solution and, as the number of bins increases, their effect becomes
more exploitative than exploratory. In fact, on the BP domain, the ruin and recreate
heuristics produce, on average, a larger reduction in objective function value than the
local search heuristics (see Fig. 1).

The overall γ -ratio of each subsequence set shown in Table 3 is shown in Table 4
for each domain. As the γ -ratios are greater than 1 each set has a negative mean unit
log return �β ≤ 0. These values suggest that these subsequences will be effective on
the HyFlex problems.

Table 5 shows the results of the EvalHH hyper-heuristic using the subsequence set
TOP-DH (with a leave-one-outmethodology) and the SSHHhyper-heuristic, averaged
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Table 5 The mean final log
return α f for the hyper-heuristic
EvalHH using the subsequence
sets TOP-DH, and the
hyper-heuristic SSHH

Dom. TOP-DH SSHH

BP − 0.3565 − 0.3009

PFS − 0.0074 − 0.0049

SAT − 0.9509 − 0.6908

PS − 1.7708 − 1.7770

All − 0.7714 − 0.6934

The domain statistics are calculated over 400 runs
Winning scores are shown in bold

over 40 runs of each HyFlex problem; a total of 1600 runs. The low level heuristic
parameters are chosen at random.

Each run of 150 selections is seeded by a single unique number

seed = 401 + (40 p) + r

where p = 0, . . . , 39 is the problem index and r = 0, . . . , 39 is the run index. These
seeds are distinct to the seeds used to generate the offline database.

The hyper-heuristic EvalHH using the subsequence set TOP-DH outperforms the
SSHH hyper-heuristic overall, and on the BP, PFS and SAT domains (see Table 5).

In the evolutionary computation literature statistical tests are widely used to com-
pare and rank theperformanceof algorithms (see for exampleDerrac et al. 2011). In this
paper, the non-parametric one tailed Wilcoxon signed-rank test is used to validate the
proposedmethodology by establishing stochastic orderings on two hyper-heuristics A
and B. The null hypotheses of the Wilcoxon test is that the median difference between
pairs of observations is zero, and this is tested at a significance level of 0.01 on sample
sizes of 400 or 1600, The null hypothesis is rejected if the p-value is less than 0.01.
In this case, the alternative hypothesis that the median difference between pairs of
observations is less than zero is accepted with 99% confidence. This implies that the
random variable α f (A) is “smaller” than the random variable α f (B), and thus hyper-
heuristic A is more effective than hyper-heuristic B. The α f (A) and α f (B) values can
be paired because the initial seed and therefore the initial solution for each problem
p = 0, . . . , 39 and run r = 0, . . . , 39 is the same for both hyper-heuristics. The results
of the Wilcoxon test are shown in Table 6.

For each domain, the null hypothesis is rejected as the p-value is less than 0.01
(shown in bold) and the alternative hypothesisα f (TOP-DH) < α f (SSHH) is accepted
with 99% confidence. Overall the median difference is significant and the hyper-
heuristics can be stochastically ordered so that

α f (TOP-DH) < α f (SSHH)

with 99% confidence.
The result that a simple hyper-heuristic such as EvalHH using fixed sets of sub-

sequences (specifically the TOP-DH subsequences) is able to outperform SSHH, a
published hyper-heuristic which employs online learning, demonstrates the utility of
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Table 6 The Wilcoxon test results for α f (TOP-DH) and α f (SSHH)

Dom. d̂ d SD SEM p-value Conf. Int.

BP − 0.0405 − 0.0556 0.1231 0.0062 0.0000 [− ∞, − 0.0253]
PFS − 0.0024 − 0.0026 0.0021 0.0001 0.0000 [− ∞, − 0.0022]
SAT − 0.2584 − 0.2601 0.1032 0.0052 0.0000 [− ∞, − 0.2457]
PS − 0.0013 0.0063 0.1848 0.0092 0.0032 [− ∞, − 0.0013]
All − 0.0685 − 0.0780 0.1631 0.0041 0.0000 [− ∞, − 0.0555]
The sample median difference d̂, the sample mean difference d, the standard deviation SD, the standard
error of the mean SEM, the p-value, and the interval within which the population median difference falls
with 99% confidence

Table 7 The TOP-DC subsequences of heuristics classes ordered by descending γ -ratio from left to right

Dom. Subsequences

BP {RR,RL,LR,RRR,CR,RLR,RC,RRL,LRR,RLL}
PFS {RR,RL,LR,CR,RC,MR,RRL,MRR,RLR,CRR}
SAT {LL,ML,LM,MML,MLM,LMM,MMM,LML,MLL,LLM}
PS {LL,LLL,RLL,LRL,RL,RRL,CLL,MLL,LLR,RLR}

the subsequence based approach and the statistical framework proposed in this study.
Of course, the online method must learn which heuristics to select during execution,
which is not required of the offline method, but it shows that there is scope to improve
the performance of the SSHH hyper-heuristic using offline learning techniques.

4.2 Subsequences of heuristic classes

The number and implementation of low level heuristics varies between domains. As
a result, γ -ratios for subsequences of low level heuristics can only be calculated for a
particular domain. For the case where there are several domains under consideration
the γ -ratiomust be calculated for heuristic classes. Before examining the cross-domain
case, in this section, the γ -ratio is used to select effective subsequences of heuristic
classes within each domain.

For each domain, the top 10 subsequences of length 2 and 3 with the largest γ -ratio
are selected using a γ that is calculated over the subsequences of heuristic classes of
that domain, using the leave-one-out methodology described in the previous section.

The subsequence sets TOP-DC, calculated over all the problem instances for each
domain, are shown in Table 7.

Notice that some of the subsequences of heuristic classes shown in Table 7 can
also be observed in the subsequences of low level heuristics shown in Table 3. For
example, the most effective subsequence of low level heuristics in the BP domain is
R2R2 while the most effective subsequence of heuristic classes in the BP domain is
RR. The γ -ratio of each subsequence set shown in Table 7 is shown in Table 8. As the
γ -ratios are greater than 1 each set has a negative mean unit log return �β ≤ 0.
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Table 8 The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums, the
probability of a negative log return P(s ≤ 0), the γ -ratio, and the number Ns of occurrences of the
subsequence set TOP-DC of heuristics classes for each domain

Dom. �β(s) β−(s) β+(s) P(s ≤ 0) γ -ratio Ns

BP − 0.0241 452.5768 6.3965 0.8915 61.1881 18,495

PFS − 0.0057 72.7367 9.4039 0.7724 6.9913 11,076

SAT − 0.0140 556.9779 12.6391 0.9580 40.8369 38,922

PS − 0.2766 9897.0400 927.9030 0.8820 10.6545 32,429

Table 9 The mean final log
return α f for the hyper-heuristic
EvalHH using the subsequence
set TOP-DC, and the
hyper-heuristic SSHH

Dom. TOP-DC SSHH

BP − 0.2896 − 0.3009

PFS − 0.0053 − 0.0049

SAT − 0.8275 − 0.6908

PS − 1.8378 − 1.7770

All − 0.7109 − 0.6934

The domain statistics are calculated over 400 runs
Winning scores are shown in bold

Each set of subsequences is evaluated using the EvalHH hyper-heuristic on the
HyFlex problems of that domain. The low level heuristics and heuristic parameters
are chosen at random. Table 9 shows the results of the EvalHH hyper-heuristics using
the subsequence set TOP-DC, and the SSHH hyper-heuristic, over 40 runs of 150
selections for each HyFlex problem.

The subsequence set TOP-DH outperforms the subsequence set TOP-DC overall,
and on the BP, PFS and SAT domains (see Tables 5, 9). This is unsurprising as infor-
mation regarding specific low level heuristics is lost when using heuristic classes.
However, on the PS domain the TOP-DC subsequences outperform the TOP-DH sub-
sequences. One reason for this is that the TOP-DH subsequences for PS contain only
L class heuristics while the TOP-DC subsequences for PS contain several heuristic
types. A lack of heuristic diversity, that is, the lack of other heuristic classes in a set,
can impair performance as noted in Fisher and Thompson (1963) and Crowston et al.
(1963).

The hyper-heuristic EvalHH using the subsequence set TOP-DC outperforms the
SSHH hyper-heuristic overall, and on the PFS, SAT and PS domains (see Table 9).
The Wilcoxon test is used to establish whether the median differences are statistically
significant. The results are shown in Table 10.

For the PFS, SAT, and PS domains the null hypothesis is rejected as the p-value
is less than 0.01 (shown in bold) and the alternative hypothesis α f (TOP-DC) <

α f (SSHH) is accepted with 99% confidence. For the BP domain the α f (TOP-DC)

andα f (SSHH) hyper-heuristics are not stochastically comparable. Overall themedian
difference is significant and the hyper-heuristics can be ordered stochastically so that

α f (TOP-DC) < α f (SSHH)

123



An analysis of heuristic subsequences for offline hyper…

Table 10 The Wilcoxon test results for α f (TOP-DC) and α f (SSHH)

Dom. d̂ d SD SEM p-value Conf. int

BP 0.0097 0.0113 0.0027 0.0054 0.9845 [−∞, 0.0223]
PFS − 0.0004 − 0.0004 0.0020 0.0001 0.0000 [− ∞, − 0.0002]
SAT − 0.1384 − 0.1367 0.0968 0.0048 0.0000 [− ∞, − 0.1273]
PS − 0.0413 − 0.0608 0.1231 0.0062 0.0000 [− ∞, − 0.0318]
All − 0.0357 − 0.0467 0.0003 0.0028 0.0000 [− ∞, − 0.0291]
The sample median difference d̂, the sample mean difference d, the standard deviation SD, the standard
error of the mean SEM, the p-value, and the interval within which the population median difference falls
with 99% confidence

with 99% confidence.
This result is notable because even though information regarding specific heuris-

tics is lost when using subsequences of heuristic classes, the offline methodology is
still superior to SSHH which performs online learning on low level heuristics and
parameters.

4.3 Cross-domain subsequences of heuristic classes

A primary objective of this study is to explore the potential of subsequences to be
effective across problem domains thus demonstrating cross-domain generalisation. In
this section four sets of heuristic classes are evaluated:

1. the top 10 subsequences of length 2 and 3 with the largest γ -ratios denoted TOP-
GC,

2. the bottom 10 subsequences of length 2 and 3 with the smallest γ -ratios denoted
BOT-GC,

3. the set RAND consisting of subsequences of length 2 and 3 that are randomly
generated at each iteration of the optimisation process, and

4. the set SINGLE containing the individual heuristic classes {L,C,R,M }.
The RAND and SINGLE subsequence sets are included to provide results for direct

comparison with TOP-GC and BOT-GC. The random subsequences RAND act as a
control variable in order to assess the relationship between the TOP-GC and BOT-GC
subsequences. The individual heuristic set SINGLEcauses theEvalHHhyper-heuristic
to behave as a single selection hyper-heuristic, and allows for a comparison between
single selection and sequenced based methods. The results for the DBGen and SSHH
hyper-heuristics are also included to provide baseline comparisons.

The effective set of subsequences TOP-GC contains the 10 subsequences

{LL,LLL,RLL,LRL,RL,RRL,MLL,CLL,LLR,MMM }.

As the γ -ratio is greater than 1 the subsequence set TOP-GC has a negative mean unit
log return �β ≤ 0 (see Table 11). Notice that all but two of the subsequences ends in an
L. This is to be expected for two reasons. Firstly, this result supports discussions earlier
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Table 11 The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums, the
probability of a negative log return P(s ≤ 0), the γ -ratio, and the number Ns of occurrences for the
TOP-GC and BOT-GC subsequences

s �β(s) β−(s) β+(s) P(s ≤ 0) γ -ratio Ns

TOP-GC − 0.1322 10087.5530 948.8757 0.8698 10.6199 69,119

BOT-GC 0.1411 301.8259 3386.0429 0.6085 0.0891 21,860

in this paper and in the literature that exploration followed by the exploitation of a local
search operation is the preferable ordering of these heuristics (seeKheiri andKeedwell
2015). Secondly, the fact that the local search heuristic is only able to improve the log
return of a sequence is important. If the solution is already optimal with regard to the
local search landscape, the local search will return the initial solution. Therefore, by
ending with local search, progress made by the subsequence can be exploited with no
potential for generating a worse solution.

In contrast, the disruptive set of subsequences BOT-GC contains the 10 subse-
quences

{CC,CRC,RCC,CCC,CCR,RC,RCM,CRM,CR,CMC }

with the smallest γ -ratios in the database. As the γ -ratio is less than 1 the subse-
quence set has a positive mean unit log return �β > 0 (see Table 11). Notice that no
subsequence contains an L class heuristic. The BOT-GC subsequences contain a large
number of crossover operations and again confirms what might be expected in that
crossover operations are likely to be disruptive to existing good solutions (particu-
larly when executed repeatedly) and are unlikely to deliver significant performance
improvements. These operations are frequently combined with the ruin and recreate
operation which would make for a highly disruptive pairing that would eliminate any
information gained from a search of the local space.

The Table 12 shows the results of the DBGen and SSHH hyper-heuristics and the
EvalHH hyper-heuristic using the subsequence sets TOP-GC, SINGLE, RAND, and
BOT-GC, over 40 runs of 150 selections on each of the HyFlex problems. During
evaluation the low level heuristics and their parameters are chosen at random.

TheWilcoxon test is used to establish whether the median differences observed are
statistically significant. The results are shown in Table 13.

For each pair of hyper-heuristics the null hypothesis is rejected as the p-value is
less than 0.01 and the alternative hypothesis α f (A) < α f (B) is accepted with 99%
confidence. Thus the median differences are significant and the hyper-heuristics can
be stochastically ordered so that

α f (TOP-GC) < α f (SINGLE) < α f (RAND) < α f (BOT-GC)

with 99% confidence (for each comparison).
Table 12 and this statistical comparison illustrates the differences in the various

selection mechanisms. The SSHH hyper-heuristic provides the best performance here,
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Table 12 The mean final log return α f , the mean percent return, the mean number of selections to a
minimum, the mean number of objective function evaluations, the mean time to a minimum (ms), and the
mean run time (ms), for the hyper-heuristics DBGen and SSHH, and the hyper-heuristic EvalHH using the
subsequence sets TOP-GC, SINGLE, RAND and BOT-GC

�α f Percent % Min. Sel. Obj. Eval. Min. T Total T

DBGen − 0.6243 − 49.0924 92.8738 93.8513 24,873 43,998

SSHH − 0.6934 − 55.4024 111.8219 55.7438 36,824 51,643

TOP-GC − 0.6868 − 53.0720 110.5556 39.1931 40,241 58,633

SINGLE − 0.6643 − 52.9842 107.0994 107.0994 18,608 30,507

RAND − 0.6328 − 51.5645 108.1688 40.3231 20,781 30,931

BOT-GC − 0.1781 − 26.4057 86.6506 31.8488 5862 12,404

The statistics are calculated over 1600 runs

Table 13 The hyper-heuristic pair, the sample median difference d̂, the sample mean difference d, the
standard deviation SD, the standard error of the mean SEM, the p-value, and the interval within which the
population median difference falls with 99% confidence

Hyper-heuristics d̂ d̄ SD SEM p-value Conf. Int.

TOP-GC-SINGLE − 0.0075 − 0.0226 0.1166 0.0029 0.0000 [∞, − 0.0040]
SINGLE-RAND − 0.0173 − 0.0385 0.1439 0.0036 0.0000 [∞, − 0.0111]
RAND-BOT-GC − 0.2714 − 0.4547 0.7050 0.0176 0.0000 [∞, − 0.2387]
TOP-GC-RAND − 0.0393 − 0.0540 0.1252 0.0031 0.0000 [∞, − 0.0307]
TOP-GC-BOT-GC − 0.3300 − 0.5087 0.7433 0.0186 0.0000 [∞, − 0.3030]

which is understandable given that it is the only online learning technique and so is
able to adapt itself to the different requirements of each of the problem domains.
Interestingly, the TOP-GC subsequences are the next best performing approach and
are better than both SINGLE and RAND. This is notable because it demonstrates the
increased performance available from using well-chosen subsequences over single
heuristic selections or random subsequences. Predictably, the BOT-GC subsequences
perform badly on this set of test runs.

The mean number of heuristic selections to find a minimum are similar for SSHH,
SINGLE, TOP-GC, and RAND (see Table 12). However when the mean number of
objective evaluations to a minimum is considered, TOP-GC and RAND use less evalu-
ations than SSHH and SINGLE. In particular, when EvalHH is parameterised with the
set SINGLE it operates as a single selection hyper-heuristic, and each selection is fol-
lowed by an objective function evaluation. As a result the mean number of selections
is equal to mean number of objective evaluations. In this case, the extra objective func-
tion evaluations performed when using SINGLE give rise to a superior performance
to RAND. This is because a single selection hyper-heuristic has more opportunities
to accept solutions with low(er) objective function values than a sequence based one.

The TOP-GC subsequence set is the most time expensive. This is due to the large
proportion of L class heuristics in the TOP-GC subsequences, as L heuristics have a
higher time cost than C, R or M heuristics (see Table 14). The SINGLE and RAND sub-
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Table 14 The mean execution time (in milliseconds) of the heuristics classes C, L, M, and R calculated from
the sequences generated by DBGen on the HyFlex problems overall and for each domain

LLH All (ms) BP (ms) PFS (ms) SAT (ms) PS (ms)

C 27.5080 169.1298 0.0408 0.1773 7.6091

L 832.7797 8.2271 41.7763 1.2088 2202.5602

M 8.5262 2.9007 3.4166 16.6931 1.4122

R 256.2476 3.2653 466.0749 0.3983 489.5818

Table 15 A domain by domain
comparison of the mean final log
return α f of BOT-GC and
TOP-GC

Dom. BOT-GC TOP-GC

BP − 0.3079 − 0.2419

PFS − 0.0040 − 0.0051

SAT − 0.1246 − 0.6567

PS − 0.2760 − 1.8437

All − 0.1781 − 0.6868

The domain statistics are calculated over 400 runs
Winning scores are shown in bold

sequences generate a lower number ofL heuristic selections and thus have a lower time
cost. Unsurprisingly, BOT-GC which contains no L heuristics, and many C heuristics
is the most time efficient.

4.4 An analysis of the bin packing problem

The TOP-GC subsequences outperform the BOT-GC subsequences when compared
over runs, problems, and most significantly, domains. Specifically TOP-GC “wins”
1119 runs out of 1600, 34 problems out of 40, and 3 domains out of 4. Table 15
show the mean final log returns �α f for the subsequence sets TOP-GC and BOT-GC
broken down by problem domain. Notice that the BOT-GC subsequences outperform
the TOP-GC subsequences on the Bin Packing problem. In fact, the 6 problems that
BOT-GC “wins” against TOP-GC are all examples of the Bin Packing problem.

The statistics for the TOP-GC and BOT-GC subsequences are shown in Table 11.
These values are calculated from subsequences that have been drawn from all four
problem domains. The γ -ratios and the mean unit log returns �β suggest these sets
should produce a good and poor performance respectively when evaluated on the
HyFlex problems. However on the BP domain, not only has BOT-GC outperformed
TOP-GC but it has produced results comparable to SSHH. In order to explain the
discrepancy, the γ and �β values are recalculated from subsequences drawn only from
the BP domain. The results are shown in Table 16.

Notice that the BOT-GC subsequence set now has a γ -ratio greater than 1 and a
negative mean unit log return �β ≤ 0. Although the TOP-GC subsequences still has a
γ > 1 and �β ≤ 0, when compared to BOT-GC they have smaller magnitudes.
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Table 16 The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums, the
probability of a negative log return P(s ≤ 0), the γ -ratio, and the number Ns of occurrences for the
TOP-GC, BOT-GC, and TOP-DC subsequences on the Bin Packing domain

s �β(s) β−(s) β+(s) P(s ≤ 0) γ -ratio Ns

TOP-GC − 0.0073 155.5739 49.5213 0.8440 3.0794 14,477

BOT-GC − 0.0162 81.3211 15.8588 0.8085 4.8236 4037

TOP-DC − 0.0241 452.5768 6.3965 0.8915 61.1881 18495

These quantities provide an explanation as to why the BOT-GC subsequences per-
form better than the TOP-GC subsequences on the BP domain, and they imply that
statistics calculated at the domain level are more reliable than those calculated across
different domains. In order to understand why domain statistics produce better results
than cross-domain statistics consider Fig. 1 which shows the scaled mean log returns
α for the low level heuristic classes C, L, M, and R calculated over the 400 sequences
of each domain.

The results indicate that the effectiveness of the low level heuristics varies by
domain, as one might expect but that the relationship between heuristics and the BP
domain is diametrically opposed to their behaviour in other domains. For example,
in the BP and PFS domains the L heuristic is less effective than the R heuristic. In
the SAT and PS domains the situation is reversed. This suggests an explanation as to
why the BOT-GC mean unit log returns differ so markedly between the BP domain
and the means calculated over all four domains. In the BP problem domain, the L
heuristic is less effective than the C and R heuristics. As BOT-GC employs more C
and R heuristics and less L heuristics than TOP-GC, the performance of the BOT-GC
subsequences is superior.

The analysis in this section has shown that the interface between heuristics and
problem domain are complex. As the effectiveness of the heuristic classes varies
across the problem domains, what has been learned about a class on one domain
cannot necessarily be transferred to another. However, it should also be noted that
three of the four domains behaved similarly and so good subsequence selections on
one of these would transfer to the other three domains. An important finding is that
this type of statistical analysis can quantify this difference in domains and bespoke
optimisers can be created to cope with the unique demands of an outlier domain such
as Bin Packing.

4.5 Subsequence length

This study has concentrated on short subsequences of length 2 and 3. In this section
the performance of a set of subsequences of arbitrary length chosen using the γ -ratio
is examined.

The 10 subsequenceswith the largest γ -ratio are selected using a γ that is calculated
over the subsequences of whole database. This subsequence set is denoted LONG-GC
and is shown in Table 17. It should be noted that the database contains subsequences
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Table 17 The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums, the
probability of a negative log return P(s ≤ 0), the γ -ratio, and the number Ns of occurrences for the
LONG-GC subsequences

s �β(s) β−(s) β+(s) P(s ≤ 0) γ -ratio Ns

LL − 0.2276 4075.5700 0.0000 1.0000 4075.5701 17,904

LLL − 0.2241 1580.0700 0.0000 1.0000 1580.0699 7052

LLLL − 0.2073 635.8680 0.0000 1.0000 635.8680 3068

LLLLL − 0.1866 260.6290 0.0000 1.0000 260.6290 1397

LLLLLL − 0.1685 114.2300 0.0000 1.0000 114.2300 678

RLLLL − 0.1749 135.5010 1.5577 0.8982 52.9769 766

LLLLLLL − 0.1482 49.9410 0.0000 1.0000 49.9410 337

LRLLL − 0.1717 129.8070 2.4087 0.8895 38.0816 742

RLLL − 0.1842 317.3610 7.4553 0.8864 37.5339 1682

LRLLLL − 0.1593 56.1363 0.7107 0.9023 32.8153 348

LONG-GC − 0.2161 7355.1133 12.1324 0.9887 560.0748 33,974

Table 18 The mean final log return ᾱ f , the mean percentage change, the mean number of selections to a
minimum, the mean number of objective function evaluations, the mean time to a minimum (ms), and the
total run time (ms). The statistics are calculated over 1600 runs

�α f Percent % Min. Sel. Obj. Eval. Min. T Total T

DBGen − 0.6243 − 49.0924 92.8738 93.8513 24,873 43,998

TOP-DH − 0.7714 − 59.2435 97.5250 49.1031 62,632 141,847

TOP-DC − 0.7109 − 47.2025 96.0275 37.4350 65,249 99,218

SSHH − 0.6934 − 55.4024 111.8219 55.7438 36,824 51,643

LONG-GC − 0.6932 − 52.3682 107.3506 22.5325 52,455 80,678

TOP-GC − 0.6868 − 53.0720 110.5556 39.1931 40,241 58,633

SINGLE − 0.6643 − 52.9842 107.0994 107.0994 18,608 30,507

{L} − 0.6536 − 46.4370 88.3656 88.3656 37,807 81,847

{LL} − 0.6535 − 46.4447 89.3356 44.3863 38,767 83,240

RAND − 0.6328 − 51.5645 108.1688 40.3231 20,781 30,931

BOT-GC − 0.1781 − 26.4057 86.6506 31.8488 5862 12,404

of up to length 25. Notice that the γ -ratios and the mean unit log returns β have greater
magnitudes than those of the TOP-GC subsequence set (see Table 11).

The subsequence set LONG-GC is dominated by the L heuristic class, and the
question arises as to how a hyper-heuristic using only this heuristic would perform.
With this inmind, EvalHH is also runwith the singleton subsequence sets {L} and {LL}.
Table 18 contains the results for the hyper-heuristic SSHH and the the hyper-heuristic
EvalHH parameterised with the subsequence sets of the preceding sections.

The LONG-GC subsequence set has a slightly better mean final log return than
TOP-GC and uses the lowest number of objective function evaluations due to the
length of its subsequences, but is one of the most computationally expensive sets
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(b)

(a)

Fig. 2 The mean final log return α f plotted against a the mean number of objective function evaluations
Obj. Eval. required to find a minimum, and b the mean overall run time Total T, for the HyFlex domains

due to the dominance of the L heuristic class. The most computationally expensive
set of subsequences is TOP-DH. The overall timings for TOP-DH are dominated
by the results on the PS domain, and these subsequences consist entirely of L class
heuristics (see Table 3). However TOP-DH is more expensive than {L} and {LL}
as its subsequences tend to be the most expensive in the other domains as well (see
Table 14).

Table 18 shows that a well chosen set of subsequences of heuristics such as LONG-
GC or TOP-GC outperform the single heuristic selections SINGLE, demonstrating
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Table 19 A domain by domain
comparison of the mean final log
return α f of TOP-DH and
BOT-DH

Dom. TOP-DH BOT-DH

BP − 0.6515 − 0.0290

PFS − 0.0102 − 0.0004

SAT − 1.1283 − 0.2459

PS − 1.7873 − 0.0485

All − 0.8943 − 0.0809

Winning scores are shown in bold

the benefits of a sequence based approach. Furthermore, combinations of several
individual heuristics such as SINGLE outperform the single heuristics {L} and {LL}
reproducing again the result observed in Fisher and Thompson (1963) and Crowston
et al. (1963). Finally the single heuristics {L} and {LL} are superior to the random and
badly chosen subsequences sets RAND and BOT-GC.

The results of plotting the mean final log returns�α f against the number of objective
function evaluations and the overall run time are shown in Fig. 2. They illustrate the
efficiency trade-offs for the various hyper-heuristic runs.

4.6 Run length

The previous experiments all use a run length of 150 low level heuristic selections.
For many problems, especially those with computationally efficient heuristics, 150 is a
relatively small number overwhich to evaluate a hyper-heuristics’s performance. Thus,
the question arises as to whether the observed gains in performance are still present
after a more realistic execution time. In this section, the TOP-DH subsequences, and a
disruptive set of low level heuristic subsequences BOT-DH are evaluated 10 times on
each of the 40 HyFlex problems for 10 min of wall clock time, using a leave-one-out
methodology; a total of 400 runs. The results are shown in Table 19. The runs produce
much larger numbers of selections, ranging from 941 selections for problem 13 in the
PS domain, up to 6,577,523 selections for problem 8 in the BP domain.

The results show that the difference in performance has increased on each domain
with time and the number of selections. This demonstrates that the subsequence based
approach and the statistical framework employed in this study is also applicable to
longer run lengths.

5 Conclusions

This study has presented a novel statistical framework for the analysis of subsequences
of low level heuristics based on the concept of logarithmic returns. Log returns are
used for the categorisation and selection of subsequences of heuristic selections based
on their associated objective function values. Log returns can also be applied to the
measurement and analysis of hyper-heuristic performance. This framework has been
used to demonstrate that
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1. the expected exploration-exploitation behaviour in sequences is seen in some, but
not all domains,

2. offline learning can outperform online learning of heuristic subsequences,
3. the combination of heuristics into subsequences outperforms individual heuristic

selections, and
4. generalisation across domains is possible for 3 out of the 4 domains tested.

Specifically, the unit log return function β is used to compare subsequences that
have different lengths or have objective values that have different ranges. The mean
final log return�α f is used to compare hyper-heuristic performance over a number of
problems and problem domains, and provides a better measure of performance than
the arithmetic mean.

The γ -ratio is used to select sets of subsequences of heuristic selections from the
offline database. The subsequence set TOP-DH of low level heuristics, and the set
TOP-DC of heuristic classes, are selected according to a γ -ratio that is calculated
for each particular domain. When the EvalHH hyper-heuristic is parameterised with
these sets it significantly outperforms the SSHH hyper-heuristic on the HyFlex prob-
lems. The SSHH hyper-heuristic is known to perform well on HyFlex, and this result
demonstrates the utility of the proposed framework.

In order to determine the existence of effective cross-domain subsequences, statis-
tics are also calculated for heuristic classes across the whole database. The sets
TOP-GC and BOT-GC contain the subsequences with the largest and the smallest γ -
ratios respectively. The results of using these subsequence sets in EvalHH demonstrate
that the effective subsequences TOP-GC perform better than the disruptive sequences
BOT-GC on 3 out of the 4 problem domains, and that this improvement in performance
is also statistically significant.

The BOT-GC subsequence set is more effective than the TOP-GC subsequences
on the Bin Packing domain. This discrepancy can be explained by recalculating the
γ -ratio for these sets on the BP domain, and observing that the γ value for BOT-GC is
now larger than the γ value for TOP-GC. The set TOP-DC contains the subsequences
with the largest γ -ratio for each domain.On theBPdomain, theTOP-DCsubsequences
perform almost as well as the BOT-GC subsequences, and outperform TOP-GC. The
change in γ for BOT-GC is due to the differing performances of the low level heuristics
on different domains, and these differences can be quantified by calculating the mean
log returns α of the heuristic classes in each domain.

The issue of subsequence length is examined by selecting subsequences of unre-
stricted lengths. The resulting LONG-GC subsequence set contains subsequences of
up to length 7 and outperforms the TOP-GC subsequence set, albeit slightly, with 99%
confidence.

Lastly, the issue of run length is addressed by evaluating the TOP-DHandDIS–LLH
subsequences for 10 min of wall clock time. The results show that the differences in
performance observed in the previous experiments are still present after significantly
larger numbers of heuristic selections.

This work has demonstrated that subsequences can be reliably extracted in an
offline manner from a database of heuristic operations that have both effective and
disruptive characteristics. It has also been shown that if those subsequences are well-

123



W. B. Yates, E. C. Keedwell

chosen, they can provide significant improvements in performance. The approach
has also shown that differences between problem domains and the interface between
domain and heuristic class can be quantified by using statistics which is an important
consideration for generalist algorithms such as these.

Effective subsequences of low level heuristics can be used to directly construct a
selection hyper-heuristics, or used as training patterns for an offline learning algorithm
for a specific problem. Furthermore subsequences of heuristic classes can, in some
cases, be useful in constructing optimisers for problems from novel domains.

These findings underpin research in hyper-heuristics that have proposed large num-
bers of algorithms (many of which have been successful) without investigating the
fundamental nature of the low level heuristics and in particular subsequence selection.
Finally, it is encouraging to see that an offline approach to heuristic selection is able
to outperform an online approach. Although the improvement in performance is quite
narrow in the experiments presented here, it perhaps points to a future of hybrid offline
and online selection hyper-heuristics.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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