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Abstract: Intensive vibrations may occur in slender structures like footbridges and long-span floors due 8 

to movement of pedestrians. Problems are usually treated in time domain as Fourier series models of the 9 

forcing function, but most methods have disadvantages of neglecting the stochastic character of human 10 

walking, being computationally inefficient for random vibration analysis and overestimating responses in 11 

the case of resonance. Meanwhile, frequency domain models of other types of structural loading are 12 

efficient while being a more acceptable approach widely adopted for dealing with stochastic response 13 

problems. Hence, an experiment-based power spectral density (PSD) model normalized to walking 14 

frequency and order of harmonic is proposed. To construct this model, 1528 individual walking load time 15 

histories were collected from an experiment on a rigid floor. These records were then linked to obtain a 16 

smaller number of longer samples for a good frequency resolution in spectral analysis. Using the linked 17 

samples and for frequency normalized to mean walking frequency, PSD models for the range 1 ± 0.05 for 18 

the harmonic and the sub-harmonic are suggested as Gaussian mixture with eight model parameters. Via 19 

the stationary and non-stationary stochastic vibration theory, the proposed model is used to predict the 20 

structural response in terms of root-mean-square and peak of acceleration. The framework is finally tested 21 

via field measurements demonstrating applicability in practical design work.  22 
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Introduction 24 

Due to the significant advance and wide application of light-weight and high-strength construction 25 

materials, structures like long-span floors and footbridges are even more distinctly characterized with 26 

lightness and slenderness. Accounting for the low natural frequency and damping ratio of this type of 27 

slender structure, when human activities like walking and jumping take place, excessive unpleasant 28 

vibration might appear. In history, many buildings and bridges have experienced this human-induced 29 

vibration problem, with occasional but rare tragic consequences. The most infamous case is the 30 

Millennium Bridge in London which was caused to vibrate dramatically due to crowd loading (Dallard et 31 

al. 2001). In 2013, a pedestrian bridge in Jiangxi Province, China collapsed when a group of tourists 32 

crowded into the bridge, causing some people to fall into the water. To avoid such occurrences, a better 33 

understanding of the human-induced load on such structures is in great demand. 34 

Numerous researchers have studied this field: Blanchard et al. (1977), Bachmann and Ammann (1987), 35 

Rainer et al. (1988), Allen and Murray (1993), Petersen (1996), Kerr (1998), Yoneda (2002) and Chen et al. 36 

(2014) have put forward deterministic walking load models in Fourier series. These previous researches 37 

mainly focused on dynamic load factors (DLF), coefficients for the deterministic models of walking load 38 

in time domain. However, such time-domain models for walking are based on an assumption that both 39 

human feet produce exactly the same force and that the force is periodic. In fact, human walking load is a 40 

kind of stochastic load by nature because people cannot maintain identical amplitude and duration in each 41 

walking step. The proposed models neglect the inter-subject variability (e.g. walking frequency, velocity, 42 

force amplitude, and body weight differing between humans) and the intra-subject variability (e.g. the 43 

inability of humans to repeat the same force in each step) in the walking process (Živanović et al. 2007). 44 

Moreover, though simple in concept and application, deterministic models can overestimate structural 45 
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response in resonance, especially when resonant with higher orders of harmonics of walking load, as 46 

pointed out by Brownjohn et al. (2004) for walking load, and by Racic and Pavic (2010) for jumping load. 47 

This is owing to the energy leakage around each harmonic center frequency in real walking, instead of the 48 

perfect concentration of energy in deterministic models. Furthermore, the higher the harmonic, the greater 49 

the spread of energy. This phenomenon is a result of the stochastic nature of human walking as mentioned. 50 

Probabilistic models, which take account of the randomness, have then been proposed. In time domain, 51 

such models have been suggested by Živanović et al. (2007, 2015) and Racic and Brownjohn (2010). The 52 

probabilistic models in time domain are quite complicated for stochastic problem analysis, requiring time 53 

history calculation and Monte Carlo simulation, which is time-consuming particularly for complex 54 

structures (Živanović et al. 2010, Piccardo & Tubino 2012, Caprani 2014). With the help of random 55 

vibration theory, load models in frequency domain are relatively easy to use in obtaining the structural 56 

response and are more acceptable and widely adopted in dealing with stochastic problems in earthquake 57 

and wind engineering (Haselton et al. 2011, Huang et al. 2015). The theories of stationary and 58 

non-stationary random processes for application to vibration serviceability appeared earliest in the 1980s 59 

(Ohlsson 1982) and later, Brownjohn et al. (2004) first proposed a spectral model based on experimental 60 

data from three test subjects when determining the model parameters. The model was presented in the 61 

form of Fourier amplitude spectra, which was not scaled to the walking frequency and order of harmonic. 62 

Thus, parameters of the first six harmonics in the spectra were identified separately by curve fitting. 63 

Drawbacks of this model are that merely three test subjects were involved in the experiment which is not 64 

enough for describing inter-subject variability; the spectrum neglects the sub-harmonics which is distinct 65 

particularly for the fundamental; the spectrum is only suggested around a certain frequency range of each 66 

harmonic and finally energy for higher harmonics presents noticeable overlap in the spectrum. Thereafter, 67 

Caprani (2014) took advantage of the previous model (Brownjohn et al. 2004) by digitizing their 68 
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experimental data to provide a new DLF spectral model, which solves the overlap problem but still has the 69 

similar deficiency of limited records. Piccardo and Tubino (2012) and Ferrarotti and Tubino (2016) 70 

suggested models for crowd load with non-dimensional parameters derived from the Fourier series 71 

walking load function, and the final model considers only the first harmonic. Li et al. (2010) studied the 72 

complex crowd-footbridge resonant vibration mechanism with the random vibration approach. Krenk 73 

(2012) developed a spectral model with respect to bandwidth of pedestrian load and a compact explicit 74 

formula to estimate the structural response. Looking through all these models, large volumes of testing 75 

data is prerequisite to represent the randomness of walking load and thus to develop a more accurate 76 

experimental spectral model. In addition, applying parallels to the approach for modelling random wind 77 

gust loading, the spectral model is better presented in a non-dimensional form, as employed in this 78 

research. Thus, a unified function can be adopted to model all the main and sub harmonics.  79 

In this paper, an experiment to collect walking record was conducted, serving as the data source for 80 

power spectral density (PSD) modelling. The PSD model is proposed with a special linking method to 81 

obtain samples with longer duration, and the model parameters are determined accordingly. To predict 82 

structural response, including root-mean-square of acceleration for continuous vibrations as well as the 83 

peak acceleration, a methodology making use of stochastic vibration theory is introduced. Field 84 

verifications of this methodology on a floor model in the lab and an as-built floor in a railway station were 85 

carried out via a comparison of calculated and experimental result. Some limitations and further 86 

development of the proposed model are also discussed in the end. 87 

Experiments for collecting walking load samples 88 

A large number of individual walking load data is necessary to develop a PSD model for a stochastic 89 

dynamic excitation, and force plates are commonly adopted in walking load measurement. The force plate 90 

can only record a single footfall trace (SFT) due to its relatively small size and fixed installation position. 91 
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The SFT records are too short, typically less than one second, for spectral property investigation. 92 

Although an instrumented treadmill can be used to measure continuous walking load forces (Brownjohn et 93 

al. 2004), there are reservations about potential influence of the predefined treadmill belt speed on the test 94 

subject’s gait (thus variability of walking force). To tackle this problem, a novel wireless insole pressure 95 

system (Pedar-x, Germany) was used to measure the continuous walking load time history. While a person 96 

was walking, steps were recorded at sampling frequency of 100 Hz with instrumented insoles in the 97 

subject’s shoes. The Pedar system recorded the pressure distribution under the foot sole using one hundred 98 

micro pressure sensors and transmitted the records to data acquisition center (a laptop) wirelessly via 99 

Bluetooth technology (Fig. 1). On the laptop, the analysis software Novel helped to collect and present 100 

the pressure data, and provided the vertical force and the center of pressure of each foot estimated by 101 

integrating all the pressures. The Pedar system has been widely used in gait and biomechanical studies and 102 

its measurement accuracy is well acknowledged (Lee and Hong 2005, Forner Cordero et al. 2004). 103 

Nevertheless, the Pedar system used in this study was calibrated by comparing its measurements with 104 

those from force plate. Moreover, for each test case the standard test protocol was strictly followed to 105 

reduce pressure sensor’s zeroing effect. As an example, Fig. 2a show time histories of the measured 106 

walking load of the left, right foot and their summation, the Fourier amplitude spectrum of the total force 107 

is shown in Fig. 2b. 108 

 109 

Fig.1. Test subject with Pedar insole system in the experiment 110 
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 111 

 112 

(a) Normalized vertical force of left, right foot and their summation  113 

 114 

(b) Fourier amplitude spectrum of total force 115 

Fig. 2. Typical testing samples at fp = 1.50 Hz 116 

 117 

Fifty-six test subjects participated in the experiment. Statistical features of all the test subjects are 118 

shown in Table 1. Each test subject performed 11 test cases, including eight cases with fixed walking 119 

frequencies fp (1.50, 1.65, 1.75, 1.80, 1.95, 2.00, 2.10, and 2.25 Hz) and three free-walking cases 120 

(self-controlled slow, normal, and fast rates). The eight fixed walking frequencies cover the range for a test 121 

subject to maintain normal gait. Each frequency was instructed by a metronome, e.g. 90 beats per minute 122 

for 1.5 Hz. For each case, each test subject walked along a 40 m long path on a rigid floor and repeated 123 

three times. The test protocol satisfied the requirements by Tongji Medical Ethics Committee. In total, 124 

1528 continuous walking loads were collected from the experiment.  125 

 126 

Table 1. Statistics of age, body mass and height of the test subjects 127 
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 128 

Power spectral density model 129 

This section describes the development of a PSD model for individual walking load that is treated as a 130 

narrowband stationary stochastic process in time domain. The same assumption was adopted in the work 131 

of Brownjohn et al. (2004) and Eriksson (1994). A mathematical expression for PSD is first proposed 132 

whose parameters are identified from the experiment records. 133 

Basic equations  134 

The PSD of a stationary stochastic process ( )x t  is defined as (Wirsching and Paez 2006): 135 

( ) ( )
21

,     limX
T

S f E X f T f
T→

 = −        (1) 136 

where    E  is the ensemble average,    means the absolute value, f is frequency in Hertz, T and 137 

( ),  X f T  are duration and Fourier transform of x(t) 138 

( ) ( ) i2π, dftX f T x t e t
+

−

−
=    (2) 139 

To avoid use of negative frequency, single-sided PSD is defined as 140 

( )

( )

( )

2            0

0

0 0

X

X X

S f f

G f S f f

f




= =
 

  (3) 141 

Construction of new samples 142 

Generally, in practical work, with limited number of samples of limited durations, PSD is usually 143 

Gender No. 
Age (Year) Body Mass (kg) Height (cm) 

Mean Std. Range Mean Std. Range Mean Std. Range 

Male 39 24.0 2.52 
20-29 

68.3 15.00 
49.8-95.1 

174.6 47.58 
156-197 

Female 17 23.7 6.37 60.3 4.98 162.6 21.28 
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calculated through the periodogram method: PSD of each measured record, i.e., sample realizations of the 144 

stochastic process, can be obtained as sample PSDs and their average is taken as the PSD of the stochastic 145 

dynamic excitation. Equation (2) indicates that in theory a sample with infinite duration is required for 146 

PSD calculation. Moreover, because the walking load is a near-periodic random process, its PSD curve is 147 

expected to have a sharp change at each peak’s adjacent region (Brownjohn et al. 2004). A fine frequency 148 

resolution is therefore imperative for describing local features around each PSD’s peak. The duration of 149 

the original recorded sample is typically 20-36 s leading to a frequency resolution up to 0.05 Hz, which is 150 

very poor for a near-periodic process. As an example, Fig. 3 shows the PSD, around the first four 151 

harmonics, of a 1.5 Hz walking test sample whose actual frequency resolution is df = 0.0325 Hz. 152 

 153 

       154 

(a) The 1st harmonic       (b) The 2nd harmonic      (c) The 3rd harmonic      (d) The 4th harmonic 155 

Fig. 3. The PSD of a walking load sample normalized to body weight at fp = 1.50 Hz (df = 0.0325 Hz) 156 

 157 

To tackle the resolution problem, new samples of longer duration are constructed using original records 158 

by the following steps. Each original record, summation of records of both feet, has been firstly 159 

normalized by the test subject’s static body weight. The normalized record was then truncated from one 160 

foot’s initial contact with the ground of the first footfall (i.e., point A in Fig. 2a) to the same foot’s final 161 

contact with the ground of the last footfall (i.e., point B in Fig. 2a) in the time history. The dominant 162 

frequency of each truncated record of around 20 s was identified from its Fourier amplitude spectrum as 163 

shown in Fig. 2b. Those records whose dominant frequencies are not in the range fp ± 0.025 Hz were taken 164 
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as unqualified ones and excluded from further analysis, where fp is the specified walking frequency in the 165 

test. All the qualified records from the same test case (i.e. the same prompted frequency fp) can be assumed 166 

as samples of the same random stationary process. They were then connected end-to-end to form a new 167 

sample. The durations of the constructed new samples are 3200, 2600, 4000, 2200, 2000, 3000, 1800, and 168 

1800 seconds for walking frequencies 1.50, 1.65, 1.75, 1.80, 1.95, 2.00, 2.10, and 2.25 Hz, respectively. 169 

Run tests (Bendat and Piersol 2000) were conducted on all the new samples, and they all passed the test 170 

with a significance level of 0.05 and a test segment number of 50, indicating that the stationarity 171 

assumption is tenable for all the constructed new samples.  172 

Power spectral density of new sample 173 

To determine the PSD of the new samples, Welch method (Welch 1967) with Hanning window 174 

(Grandke 1983) was used: each new sample was divided into several segments (around 40-70 segements) 175 

with fifty percent overlap. Duration of each segment was so selected that it was long enough for a good 176 

frequency resolution should be N (integer) times over the test pacing period Tp = 1/fp. The second criterion 177 

was adopted to avoid numerical leakage in Fourier analysis and for walking frequency normalization later. 178 

Figure 4 shows the so-obtained PSD ( )
wXG f  (where Xw denotes the walking load) for 1.50 and 2.25 Hz 179 

test walking frequency cases, the frequency resolution in both cases is df = fp/100, i.e. the duration of each 180 

segment is 100 times Tp.  181 

 182 

   183 

 (a) fp = 1.50 Hz                                          (b) fp = 2.25 Hz, 184 
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Fig. 4. The PSD ( )
wXG f  of the new samples normalized to body weight with df = fp /100 185 

 186 

Note from Fig. 4 that the walking load energy mainly distributes around the first several harmonics (i.e., 187 

frequencies at 1, 2, 3, and 4 times of fp) and sub-harmonics (i.e., frequencies at 0.5, 1.5, 2.5, and 3.5 times 188 

of fp). The distribution range becomes more pronounced for higher harmonics. This phenomenon justifies 189 

once again the narrowband stochastic process assumption for walking load. Based on the above 190 

observation, spectral modelling is focused mainly on a range of each harmonic or sub-harmonic of the 191 

PSD curve, which is [0.95nfp, 1.05nfp] where n is the order of harmonic or sub-harmonic. The energy, in 192 

other words, the enclosed area of PSD curve within the distribution frequency range, for each harmonic 193 

(sub-harmonic) can be calculated as 194 

( )
p

w
p

1.05

0.95
 d

nf

n X
nf

S G f f=    (4) 195 

The calculation results for the first four harmonics, i.e., n = 1, 2, 3, and 4, and the first four 196 

sub-harmonics, i.e., n = 0.5, 1.5, 2.5, and 3.5, are shown in Table 2. To account for the load energy between 197 

each harmonic later, total energy of the PSD curve in the whole frequency range (0-50 Hz) was also 198 

calculated and given in Table 2 as S0.  199 

( )
w

50

0
0

 dXS G f f=    (5) 200 

 201 

Table 2. PSD energy normalized to body weight of every harmonic Sn (10-3) 202 
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* ΣSsub = S0.5 + S1.5 + S2.5 + S3.5, ΣSn = ΣSsub + S1 + S2 + S3 + S4. 203 

 Non-dimensional experimental PSD model 204 

Note from Table 2 that the first four harmonics and sub-harmonics contain most of the walking load 205 

energy, so rationally, they are considered in the following modelling process. First, the PSD values within 206 

[0.95nfp, 1.05nfp] of each curve are divided by its corresponding Sn, i.e., the energy for each harmonic as 207 

shown in Table 2, thus making the enclosed area of each curve to be unity. Second, the frequency axis was 208 

divided by walking frequency fp and the amplitude axis multiplied fp, leading to the eight 209 

frequency-normalized PSD curves (four harmonics and four sub-harmonics) as shown in Fig. 5 together 210 

with an average curve. Third, all the eight average PSD curves in Fig. 5 were normalized to their 211 

corresponding order of harmonic (or sub-harmonic). This was done by normalizing the frequency axis by 212 

n and multiplying the amplitude axis by n. The normalized curves are shown in Fig. 6a for harmonic case 213 

and Fig. 6b for sub-harmonic case.  214 

 215 

fp 

(Hz) 

Harmonics Sub-harmonics Total 
ΣSsub / ΣSn* 

( - ) 

ΣSn / S0 

( - ) 
S1 S2 S3 S4 S0.5 S1.5 S2.5 S3.5 S0 

1.50 12.72 2.48 1.02 0.86 0.87 0.35 0.21 0.15 22.61 8.47%  83% 

1.65 21.05 1.91 0.85 0.92 0.89 0.44 0.20 0.13 30.73 6.29%  86% 

1.75 28.76 1.48 0.90 1.03 1.12 0.51 0.21 0.18 40.03 5.91%  85% 

1.80 33.52 1.34 0.85 1.05 0.94 0.49 0.16 0.09 43.38 4.37%  89% 

1.95 52.63 2.33 0.76 1.19 1.47 0.75 0.22 0.13 63.47 4.32%  94% 

2.00 56.25 2.30 0.83 1.29 1.21 0.70 0.22 0.13 66.92 3.59%  94% 

2.10 62.73 2.84 0.80 1.22 1.17 0.67 0.20 0.12 74.17 3.10%  94% 

2.25 84.76 3.33 1.05 1.46 1.20 0.75 0.23 0.14 99.09 2.50%  94% 
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 216 

(a) The 1st harmonic                                 (b) The 2nd harmonic 217 

 218 

(c) The 3rd harmonic                            (d) The 4th harmonic 219 

 220 

(e) The 1st sub-harmonic                             (f) The 2nd sub-harmonic 221 
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 222 

(g) The 3rd sub-harmonic                           (h) The 4th sub-harmonic 223 

Fig. 5. Superimposed PSD of the new samples and their average 224 

 225 

After order-normalization, for different harmonics, the frequency spacing (i.e., df/n) is not the same, as 226 

demonstrated by the symbol of each curve in Fig. 6. Thus, all the curves were resampled to the same 227 

length and their average, which was weighted with E(Sn), i.e., mean of Sn of the eight walking frequencies 228 

corresponding to each harmonic, was calculated and plotted in Fig. 6.  229 

 230 

  231 

 (a) Harmonic                                     (b) Sub-harmonic 232 
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Fig. 6. Normalized PSDs of four harmonics (sub-harmonics), the average and the two-term Gaussian fit 233 

 234 

Mathematical expression for PSD of walking load 235 

After all the above operations, i.e. normalization of area, frequency, order and taking average, a unified 236 

non-dimensional PSD model can then be developed based on results in Fig. 6. Notice the symmetrical 237 

bell-shape of the average curve in Fig. 6 and by trial-and-error procedure, a Gaussian mixture for the PSD 238 

of walking load at any given walking frequency fp within [1.5, 2.25] Hz were given as : 239 

( )

( )

2 2

1 2 p p

p 1 2

1 1
exp exp ,    0.95 ,  1.05

                                                           

0 ,                           

  

     

n
n

n

S f f
G f A A f nf nf

nf

G f



 

       − − 
= − + −            

           

                             otherwise









  (6) 240 

where Gn (f) (unit in second) is the PSD of each harmonic for given walking frequency fp, normalized 241 

frequency ( )pf f nf=  (n = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4), f (unit in Hz) is frequency variable, β 242 

(dimensionless) is an energy compensation factor, Sn (unit in second) is the energy of each considered 243 

harmonic. Parameters in the model, i.e., A1, σ1, A2, and σ2 (all dimensionless), were determined by fitting 244 

Eq. (6) to the two average curves in Figs. 6a and 6b, and the results are shown in Table 3. Considering the 245 

numerical error of curve-fitting, the fitted parameters A1 and A2 were scaled by a factor, which is around 1 246 

± 0.02, to make sure the area enclosed by the normalized PSD function (i.e., right side of Eq.(6)) is exactly 247 

unity.  248 

 249 

Table 3. Parameters fitting Eq.(6) of normalized Gaussian fitting PSD 250 

Parameter A1 σ1 A2 σ2 

Harmonic 40.094 0.0100 5.063 0.034 

Sub-harmonic 15.771 0.017 6.515 0.060 
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 251 

To calculate PSD for walking frequency other than that used in the experiment, Sn in Eq. (6) can be 252 

obtained through Eq. (7) which is fitted by the experiment results of Sn in Table 2, and the fitting results are 253 

summarized in Table 4. 254 

 3 2

p p p p,      1.5,  2.25  HznS af bf cf d f= + + +    (7) 255 

where n = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4. 256 

 257 

Table 4. Parameters for the PSD energy 258 

 259 

The total energy enclosed by PSD curve is crucial for determining response of a structure subjected to 260 

the stochastic excitation. Since only a certain range of the first four harmonics and the first four 261 

sub-harmonics are considered in the proposed PSD model, their summation is less than the total energy of 262 

the PSD curve (as demonstrated in the last column of Table 2). The factor β is therefore introduced to 263 

balance the total energy of the proposed PSD model and that of the real sample, which is defined as 264 

0

4

0.5

n

n

S

S



=

=


  (8) 265 

where S0 is calculated by Eq. (7), which is obtained with the same method as Sn in Eq. (7). 266 

Finally, the whole PSD ( )G f  can be obtained from the superposition of ( )nG f  of all the 267 

Para. 
Harmonic Sub-harmonic Total 

S1 S2 S3 S4 S0.5 S1.5 S2.5 S3.5 S0 

a -0.1383 -0.0082 0.0029 -0.0016 0.0011 -0.0017 0.0009 0.0015 -0.0821 

b 0.7937 0.0557 -0.0144 0.0089 -0.0052 0.0089 -0.0047 -0.0080 0.4952 

c -1.4124 -0.1193 0.0229 -0.0158 0.0086 -0.0153 0.0081 0.0144 -0.8875 

d 0.8122 0.0838 -0.0107 0.0099 -0.0039 0.0088 -0.0044 -0.0083 0.5169 
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harmonics 268 

( ) ( )
4

0.5

n

n

G f G f
=

=    (9) 269 

Structure response prediction using the power spectral density model 270 

Root-mean-square response 271 

With the proposed PSD models G(f) of walking load, the root-mean-square (RMS) and the peak 272 

acceleration of a floor or footbridge under single pedestrian walking load can be evaluated using 273 

stochastic vibration theory (Wirsching and Paez 2006). 274 

 275 

 276 

Fig. 7. Walking path on a structure 277 

 278 

Suppose that a pedestrian walks across a floor along a path as illustrated in Fig. 7, the induced 279 

acceleration at a specified location (hereafter termed as check point) is to be calculated. By the 280 

mode-superposition method (Chopra 2005), the linear equation of motion of the jth mode of the floor can 281 

be expressed as 282 

( ) ( ) ( ) ( )2

, w

1
2 , 1,2, ,j j j j j j j j j p jM q M q q M t x t j m

W
   + + = =   (10) 283 

where jq , jq , jq  are, respectively, the modal displacement, velocity and acceleration, jM  is the modal 284 
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mass, j  is the damping ratio, j  denotes the natural circular frequency of vibration of the jth mode, W 285 

is the pedestrian’s body weight, ( )
wx t  is the walking load normalized with the body weight W, m is the 286 

total number of vibration modes considered for the floor, ( )
,p j t  is the mode shape value at the step point 287 

of the pedestrian on the floor at time instant t. 288 

Unlike a jumping load that usually remains on a fixed location, the walking load changes in a 289 

temporal-spatial manner. The right side of Eq.(10), i.e., the modal force, is non-stationary, though the 290 

walking load ( )
wx t  is stationary, because ( )

,p j t  changes with time. To deal with this problem, the 291 

spectral representation method with amplitude and frequency modulation proposed by Deodatis (1996) is 292 

adopted which has been commonly used for seismic response simulation.  293 

Modal force of the jth mode can be written as 294 

( ) ( ) ( ), wj p jz t t x t=   (11) 295 

where ( )wx t  is the stationary stochastic process and the amplitude modulating function ( ),p j t  is not 296 

related to frequency, but only to time. 297 

To start with, the evolution cross PSD ( ), , Z j lG f  of the jth and the lth modal forces, zj(t) and zl(t), can be 298 

derived from the PSD of ( )wx t  (Deodatis 1996), giving 299 

( ) ( ) ( ) ( ), , , , ,Z j l p j p lG t f t t G f =   (12) 300 

Moreover, when the energy distribution is relaxed along with time, e.g. taking its average over time, the 301 

evolution PSD of the non-stationary process can be reduced to PSD of a stationary process as an average 302 

of time integral (Liang et al. 2007) 303 

( ) ( ) ( ) ( ) ( )
, , , , , , 

1 1
,  d  dZ j l Z j l p j p l

z z

G f G t f t G f t t t
T T

 
 

− −
= =   (13) 304 

where Tz is the effective duration of the load z(t).  305 
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When there are totally Np steps on the structure, Eq. (13) can be rewritten in a discrete form as: 306 

( ) ( )
p

, , , , p

1

/

N

Z j l p j p l

p

G f N G f 
=

 
=  
 
  (14) 307 

where ,p j  is the jth mode shape value at pth step point. 308 

According to the mode superposition method, the single-sided PSD ( )RG f  of the acceleration at the 309 

check point will be: 310 

( ) ( ) ( ) ( )2

k, k, , ,

1 1

m m

R j l j l Z j l

j l

G f W H f H f G f  

= =

=   (15) 311 

where k, j  is the jth mode shape value at the check point (denoted by subscript k), ( )jH f  is known as 312 

the complex frequency-response function of acceleration and the asterisk denotes a complex conjugate 313 

( )
( )

2

2 2 2
j

j j j j

f
H f

M f f i ff

−
=

− + +
 (16) 314 

where jf  is the jth mode’s cyclic frequency of the structure, i is the unit imaginary quantity. 315 

Putting Eqs.(10)-(16) together gives ( ) RG f , and RMS of acceleration rms  is 316 

( )2

rms
0

dRG f f
+

=   (17) 317 

Peak response 318 

Peak acceleration is deduced by a peak factor η 319 

peak rms =   (18) 320 

The peak factor suggested by Vanmarcke (1975) is recommended, which can be used for narrowband 321 

random process. The cumulative probability distribution P(η) of peak factor η is defined as 322 
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  (19) 323 

where   is a parameter defined as 324 

1

2
2

0

2
m

m


 
=  

 

  (20) 325 

  is the bandwidth coefficient defined as 326 

2

0 2 1

0 2

m m m

m m


−
=   (21) 327 

0
( ) h

h Rm f G f df
+

=    (22) 328 

where T  is the duration of steady response of structure, and hm  is the hth spectrum moment of the 329 

stationary stochastic process.  330 

For a given guarantee probability q, the corresponding peak factor η can be obtained by 331 

( )P q =   (23) 332 

Two values as q = 75% and q = 50% were used in this study to determine η. 333 

Verification of the proposed PSD model 334 

Guided walking case 335 

Figure 8 compares the proposed PSDs of fp = 1.5, 1.65, 2.0, and 2.25 Hz calculated from Eq. (6)-(9) 336 

with those from experiments. It is demonstrated that the proposed PSD model fits well with the 337 

experimental samples. The observation is the same for other test cases with prompted walking 338 

frequencies.  339 

 340 
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 341 

(a) fp = 1.50 Hz                                (b) fp = 1.65 Hz 342 

 343 

(c) fp =2.00 Hz                                (d) fp = 2.25 Hz 344 

Fig. 8. Comparison of calculated and experimental PSD curves (y axis in logarithmic scale, normalized to weight) 345 

 346 

Free-walking case  347 

Experimental records in the free-walking tests were not utilized in developing the PSD model and 348 

they were therefore adopted to validate the proposed PSD model. For each record, its experimental PSD 349 

was compared with the corresponding theoretical PSD, which was obtained through Eqs. (4)-(7) 350 

assuming fp equals the dominant frequency of the record. Figure 9 shows results of two examples 351 

(fp=1.70 and 2.03 Hz respectively). For both cases, the total spectral energy calculated by the proposed 352 

PSD model is in good agreement with the experimental value; the difference is only 0.7% and 0.3% for 353 

fp=1.70 and 2.03 Hz in terms of total energy, respectively. The results for other test cases are similar.  354 

 355 
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 356 

(a) fp = 1.70 Hz                                     (b) fp = 2.03 Hz 357 

Fig. 9. Theoretical and experimental PSD of free-walking cases (y axis in logarithmic scale, normalized to weight) 358 

 359 

Experiments on floor model 360 

This section compares theoretical response prediction with experimental measurements. To this end, a 361 

10 m × 6 m rectangular concrete floor model was constructed in a lab. The model floor had cast-in-place 362 

concrete of grade C40 (characteristic value of compressive strength fck = 26.8 N/mm2 and modulus of 363 

elasticity Ec = 3.25 × 104 N/mm2) (National Standard of the People's Republic of China 2010) and a 364 

thickness of 110 mm. It was simply supported at two ends of the long span (see Fig. 10a). 365 

 366 

   367 

(a) Tested floor model              (b) Individual walking test          (c) Walking path and check point 368 

Fig. 10. Experimental setup for the floor model 369 

 370 

Fifteen accelerometers (type: Lance LC0132T) were installed beneath the floor to record its responses 371 

at various locations including the floor center whose sampling frequency is 200 Hz. The modal properties 372 
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of the floor were obtained by hammer test. The natural frequencies of the first four vertical vibration 373 

modes are 3.48, 6.14, 6.74, and 14.12 Hz, the corresponding modal masses are 8583, 2587, 9625, and 374 

2423 kg, and the damping ratios are 0.02 for all modes. 375 

As demonstrated in Fig. 10b, a test subject weight 813 N was asked to walk along an oval path (see Fig. 376 

10c) at different walking frequencies guided by a metronome. The steady state acceleration measurement 377 

at the floor center for 1.75 Hz walking frequency is illustrated in Figure 11. The test results, including 378 

RMS for the whole period, peak acceleration and corresponding peak factor, at the floor center for the test 379 

cases at resonant frequency (fp = 1.75 Hz) and three normal walking frequencies (fp = 1.5, 2 and 2.25 Hz) 380 

are summarized in Table 5. The PSD for test response shown in Fig. 12 is obtained via Eq. (1)-(3). 381 

 382 

 383 

Fig. 11. Measured acceleration of steady state from the test at fp = 1.75 Hz 384 

 385 

The theoretical prediction by spectral model was obtained by the following procedures. First, for a 386 

walking frequency fp in the field test, the corresponding PSD G(f) was obtained from Eqs. (6)-(8). Second, 387 

the evolution cross PSD ( ), , Z j lG f  of modal forces was determined by Eq. (14) where the mode shape 388 

values were extracted from a finite element model (mode shapes are shown in Fig. 12). The first four 389 

vertical vibration frequencies of the FE model were 3.52, 6.16, 8.97, and 13.19 Hz showing a good match 390 

with the measured values. Third, via Eq. (15), the PSD ( )RG f  of acceleration at the check point (center 391 

of the floor, as shown in Fig. 10c and Fig. 12) was obtained. Finally, RMS was derived from Eq. (17) and 392 
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peak acceleration with P(η) = 0.5 and P(η) = 0.75 from Eqs. (18)-(22). The predicted results of RMS, peak 393 

acceleration and peak factor of the proposed model at fp = 1.5, 1.75, 2, and 2.2 Hz are summarized in Table 394 

5. 395 

     396 

(a) The 1st mode                                             (b) The 2nd mode 397 

     398 

(c) The 3rd mode                                             (d) The 4th mode 399 

Fig. 12. Mode shapes of FE model of the floor with the step points (●) and the check point (▲) 400 

 401 

Note from Table 5 that the predicted RMS response at resonance frequency (1.75Hz) is about 9% larger 402 

than the measured value. For other three walking frequencies, the predicted RMS responses are close to 403 

the measured ones with a maximum underestimation of about 20% at 2.2 Hz case. As for peak response, 404 

the predicted values for P = 0.5 and P = 0.75 are all larger than the experimental values with only one 405 

exception at 2.2 Hz case. The comparison also shows that P = 0.75 will overestimate the structure’s peak 406 

response especially for resonance situation. Since the floor vibration serviceability problem is not a safety 407 

issue in most cases, a guarantee probability P = 0.5 is recommended to predict floor response using the 408 

proposed PSD model. Figure 13 further compares the predicted PSD ( )RG f  of response around the 409 
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resonant frequency at fp = 1.75 Hz with the experimental counterpart, illustrating that they are similar in 410 

shape, and the total energies of the two PSDs are close. 411 

 412 

Table 5. Comparison between acceleration response at floor center between field test and theoretical prediction 413 

 414 

 415 

Fig. 13. Theoretical and experimental PSD of response at fp = 1.75 Hz 416 

 417 

Field measurements of an as-built long-span floor 418 

Field measurements of a long-span concrete floor in a railway station in China is used to validate the 419 

suggested PSD model. The floor serves as a waiting hall and it has a very long span of 30 m (Fig.14a). The 420 

floor has a special structural form composed of a concrete plate and external prestressing tendons 421 

fp 

(Hz) 

Dur. 

(s) 

Experimental Theoretical 

αrms 

(cm/s2) 

αpeak 

(cm/s2) 

  

(-) 

αrms 

(cm/s2) 

P = 50% P = 75% 

αpeak 

(cm/s2) 

  

(-) 

αpeak 

(cm/s2) 

   

(-) 

1.50 82 1.11 4.97 4.46 1.61 5.59 3.48 6.01 3.74 

1.75 84 5.83 13.00 2.23 6.38 19.00 2.98 20.98 3.29 

2.00 45 1.95 5.26 2.70 1.84 6.26 3.40 6.74 3.66 

2.20 34 2.98 7.95 2.67 2.34 7.89 3.37 8.50 3.63 
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underneath the plate (Figs 14b, 14c). The fundamental frequency of the floor was tested as 2.2 Hz and the 422 

damping ratio 0.03. Individual walking tests were conducted on this floor and the floor’s responses were 423 

recorded by accelerometers installed on eight test points (Fig. 14b). The sampling frequency was set as 424 

200 Hz. Figure 15 shows measured accelerations at the floor center from two test cases where the same 425 

test subject weight 813 N was asked to walk across the floor along the path shown in Fig. 14b at a 426 

frequency of 2.3 Hz twice. More details about the floor and field measurement can be found in Chen et al. 427 

(2016).  428 

 429 

    430 

(a) The floor in use                 (b) Finite element model with walking path and test points (●) 431 
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 432 

(c) Side view of the floor system (unit: mm) 433 

Fig. 14. The long-span floor in a railway station in China 434 

 435 



 

26 

 

  436 

(a) Test case 1                                 (b) Test case 2 437 

Fig. 15. Measured acceleration at floor center at fp = 2.3 Hz 438 

 439 

For verification purpose, RMS acceleration response at the center of the floor has been predicted by the 440 

proposed PSD model with computational parameters given in Table 6. The predicted RMS value 441 

calculated from the procedure proposed in this paper is 0.3305 cm/s2 whilst the RMS values of the two test 442 

cases (Fig. 15) are 0.3323 cm/s2 and 0.2808 cm/s2, respectively. The comparison demonstrates that the 443 

proposed PSD model can be used to predict floor’s response to individual walking load.  444 

Table 6. Natural frequencis and modal masses of the floor in the station 445 

 446 

Discussion 447 

Since records of the individual walking load on rigid floor were utilized to develop the PSD model, 448 

the corresponding structural response prediction framework has one limitation that the human-structure 449 

interaction (HSI) effect is not considered and this might be one cause for overrating the structure’s 450 

response (Van Nimmen et al. 2017, Wang et al. 2017). Yet, in most researches relevant to HSI, load 451 

models put forward by experiments on a rigid floor are used as portion of contact forces (Van Nimmen 452 

et al. 2017), indicating that when the HSI is studied in frequency domain, the proposed PSD load model 453 

Mode 1 2 3 4 5 6 7 8 

fn (Hz) 2.26 2.67 3.01 3.80 4.52 4.62 4.79 4.80 

Mn (× 105 kg) 7.425 9.069 7.429 8.115 5.325 5.649 4.504 5.514 
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can be adopted. 454 

In practical design, most codes provide comfort criteria in terms of maximum acceleration or RMS 455 

limits with regard to resonant structural response induced by a single pedestrian (ISO 2007, BSI 2003). 456 

With the assistance of this proposed PSD model, it is not difficult to estimate the response. A further 457 

development of the present work is to model crowd load. To obtain the structural response due to crowd 458 

walking, a similar method in this paper can be used, but only with the prerequisite of knowing PSD for 459 

crowd load ( )G f  presented in matrix as 460 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

h h

h h

h h h h h h h h

1 1 11 1 1 1 1

1 1

1 1     

u u N N

s s s u su s N sN

N N N u N u N N N N

WW G f WW G f WW G f

W W G f W W G f W W G f

W W G f W W G f W W G f

 
 
 
 =
 
 
 
 

G f   (24) 461 

where Gsu(f) is the cross power spectral density between the sth and uth pedestrians. In the matrix, the 462 

diagonal elements are just the auto-PSD for each pedestrian proposed in this paper, while the 463 

off-diagonal elements Gsu(f) (s ≠ u) are undetermined and serve as the kernel of crowd loading problem. 464 

To cope with this, a synchronization factor   is introduced (Wirsching and Paez 2006) 465 

 ( ) ( ) ( )su s uG f G f G f= .  (25) 466 

For two perfectly correlated loads, the synchronization factor  1 = , while for completely 467 

uncorrelated ones, the synchronization factor  0 = . However, a more realistic situation is that the 468 

pedestrian loads present a limited correlation (i.e.,  0 1  ), so evaluating the synchronization factor 469 

would be the primary task in subsequent research.  470 

Conclusions 471 

This study proposes a power spectral density model for individual walking load based on statistical 472 

analysis of a great number of experimental records, employing a larger database compared with previous 473 
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walking models in frequency domain. Accounting for the fact that people cannot maintain identical load at 474 

each walking step, the new model treats walking load as a random process rather than a perfectly periodic 475 

process typically assumed in the majority of existing models. The suggested model describes the spectral 476 

amplitudes around a certain range of the first four harmonic and first four sub-harmonic by summation of 477 

two Gaussian functions, one accounts for the energy concentration degree and the other accounts for the 478 

energy distribution degree of each harmonic or sub-harmonic. The model is expressed in a 479 

non-dimensional form similar to that for wind gust load. Model parameters are identified from the 480 

experimental data. The proposed spectral density model and its application for predicting structure’s 481 

acceleration responses by stochastic vibration theory are finally verified by comparing its predictions with 482 

measured values from an experimental floor model and an as-built floor.  483 
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