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Abstract 

Developing a model for the dynamic force generated by a pedestrian's foot on a supporting 

structure (single footfall trace model) is crucial to advanced numerical analysis and vibration 

serviceability assessment of the structure. A reliable model needs to re°ect the inter-subject and 

intra-subject randomness of human walking. This paper introduces a stochastic single footfall 

trace model in the form of a Fourier series in which body weight, walking frequency, and the 

first eight harmonics are treated as random variables. An experiment used 73 test subjects, 

walking at a range of pacing frequencies, to record force time histories and the corresponding 

gait parameters. Two variability descriptors were used to indicate inter-subject and intra-

subject randomness. Further statistical analysis identi¯ed the relationships between key 

parameters as well as the probability distribution functions of random variables. In the final 

step, an application of the proposed single footfall trace model was developed and tested. The 

proposed model represented the experimental data well in both time and frequency domains. 

Keywords: Single footfall trace (SFT); vibration serviceability; walking; inter-subject 

variability; intra-subject variability. 
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1. Introduction 

Modern slender structures such as footbridges, long-span floors and staircases can be sensitive 

to walking-induced vibrations because of their low natural frequencies and low structural 

damping ratios. In turn, excessive structural vibrations can cause the occupants sitting in or 

standing on the structure to perceive uncomfortable or even intolerable conditions [1–4]. In 

rare cases, excessive vibrations can lead to safety problems when structures are damaged to the 

point of collapsing [5]. Walking-induced vibrations can also impair the function of vibration 

sensitive equipment in hospitals, high-tech factories and laboratories. With the rapid 

development of high strength and light weight construction materials, structures are becoming 

lighter, longer and taller than ever before. Examples in China include a pre-stressed concrete 

floor in a sports stadium with a span of 42 m [6] a beam-free composite floor in a residential 

building designed to be 10.0m long and 9.8m wide [7] and the recently completed Zhangjiajie 

Grand Canyon Glass Footbridge, which measures 430m long and 6m wide [8]. Vibration 

serviceability was identified as the key design consideration in these buildings because 

rectifying this issue in a completed structure is difficult and often cost-prohibitive. Thus, 

reliable evaluation of the vibration performance of flexible structures at the design stage is 

crucial in preventing failures in the future. 

A reliable load model is a prerequisite for predicting human-induced structural vibrations. 

Given that walking is the most common activity within a structure, extensive experimental 

studies have been conducted on walking loads and several numerical models have been 

proposed and reviewed in literature [9,10]. A large number of experimental records of walking 

loads are necessary to establish a reliable mathematical model. Force plates are commonly used 

to record walking loads in experiments, but because of their relatively small size, they can 

usually accommodate only a single footfall trace (SFT). However, 2–4 force plates are often 

used to record successive SFTs, fromwhich a continuous force time history can be derived. 

Although a treadmill integrated with force plates is sometimes adopted to measure continuous 

walking load curves [11,12], this device is prohibitively expensive for many research 

establishments and predefined treadmill belt speeds might reduce the variability in test subject's 

gait parameters. Moreover, disciplines like biomechanics [13] and sports science [14] 

traditionally use force plates for collecting SFT records. As a result, a large proportion of the 

current walking load databases around the world consist of SFTs. 



This paper has been published under the following reference: Chen, J., Ding, G. and  Živanović, S. (2019) Stochastic single footfall trace 
model for pedestrian walking load. International Journal of Structural Stability and Dynamics, Vol. 19, No. 3. DOI: 
10.1142/S0219455419500299 

3 

Mathematical representations of walking loads can be broadly divided into two types: 

deterministic and stochastic. The deterministic models usually assume that the walking load is 

a periodic time series in which force is identical in each step. Consequently, a Fourier series is 

used to model the loading function. Such models were incorporated in the design guidelines in 

the UK [15], USA [16], Canada [17] and Japan [18]. They differ from each other in the number 

of forcing harmonics considered in the series (generally from 1 to 4) and the corresponding 

parameters (Fourier coefficients and phase angles). The drawback of deterministic models is 

that they neglect the randomness in human walking, i.e. the fact that no two successive steps 

can be identical. In fact, human walking load is a kind of stochastic process by nature, it has 

inter-subject variability, e.g. different pacing rate, velocity, step length, load amplitude and 

body weight among humans, and intra-subject variability, e.g. the inability of a person to repeat 

the same force in each step [19]. Neglecting these variabilities in the load model will lead to 

overestimation of structural responses as pointed out by Brownjohn et al. [11] and Ding and 

Chen [20]. This is because randomness in real walking produces leakage of load energy around 

each harmonic center frequency, rather than creating a perfect concentration of energy at each 

harmonic in the deterministic load model. Stochastic load models order a better alternative. A 

stochastic walking load model suggested by Živanović et al. [19] treats some parameters in the 

Fourier series model as random variables, including walking frequency, step length and 

amplitude of walking force. As a further improvement, Racic and Brownjohn [12] proposed a 

data-driven stochastic walking load model which relies on random parameters being drawn 

from an experimental database, resulting in an exceptionally detailed representation of both 

temporal and spectral features of the walking-generated force. 

Interestingly, in contrast to the large amount of work published on models for continuous 

walking load time history as mentioned above, there is a paucity of articles addressing the SFT 

model. A mathematical model for SFT has the following potential applications: (1) to fully use 

the database of walking load records, from various disciplines such as biomechanics [13] and 

sport science [14] to study randomness and avoid the erroneous assumption that all footfalls 

are identical; (2) to serve as a base function for reconstructing crowd loads when the time 

instant and spatial positions of heel strike and toe off events for each foot are available from 

measurements such as video and inertia sensor technologies [21,22]; (3) for advanced analysis 

of structures such as staircases on which individual steps are applied on different structural 

components, and (4) to facilitate finite element software development for structural vibration 

serviceability analysis, where it is possible to account for the spatial position of each heel strike. 
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With these applications in mind, this paper aims to develop a stochastic model for a SFT in the 

vertical direction for walking on flat surfaces. The same framework can be used for developing 

SFT models for walking on stairs. The conceptual framework of the proposed model is 

introduced in Sec. 2. Using experimental records, the probabilistic features of the model's 

variables are analyzed in Sec. 3. The application and validation of the suggested model follows 

in Sec. 4. Finally, the main findings of this study are summarized in Sec. 5. 

2. Stochastic Model 

This section describes the framework for development of the stochastic model for SFT. It 

includes definitions of the parameters featured in the model as well as the parameters used to 

describe the variability in the generated force. 

2.1. Single footfall trace 

While walking, a person's body accelerates and decelerates intermittently resulting in a three-

dimensional dynamic force. This force is applied to the supporting surface at discrete points 

where each foot touches the ground. Only the largest, vertical component of the force Fz(t) is 

considered in this study. Typical records of two successive SFTs (solid lines), as well as their 

sum (dashed line), normalized by the test subject's body weight are shown in Fig. 1. The gray 

shaded area in the same figure indicates a double support phase of a walking cycle (when both 

feet are in contact with the ground). 

 
Fig. 1. A record of two consecutive footfalls (male, 85 kg, pacing rate 2.0 Hz). 
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2.2. Stochastic modeling of the single footfall trace 

A single footfall dynamic force Fz(t) can be expressed via a Fourier series function, as follows: 

where G is the pedestrian's body weight, a0 is the mean value of the weight normalized force, 

ak and φk are the amplitude and phase angle of the kth component in the series (hereafter, kth 

harmonic), T is the duration of a single footfall (Fig. 1) and n is the number of harmonics to be 

considered. Furthermore, ak represents the dynamic load factor (DLF) of a SFT (referred 

hereafter as the DLF only) and it therefore should not be confused with the DLF of the total 

dynamic force, typically reported in literature discussing structural engineering applications. 

In the vibration serviceability assessment of pedestrian structures, frequency of walking fp is 

accepted as a key random parameter, and it is usually expressed in Hz (i.e. the number of steps 

per second). For this reason, the frequency of walking in this study is treated as a primary 

random variable, while other random variables (T, a0, ak and φk) in Eq. (1) are tested for 

correlation with fp. The remaining variable G in Eq. (1) is another independent random variable 

[23]. Therefore, the stochastic model of SFT in Eq. (1) has 2n+4 random variables, fp, G, a0, T, 

ak and φk, where k= 1; 2; . . . ; n. Characteristics of these variables will be discussed in Sec. 3. 

2.3. Inter- and intra-subject variability 

As mentioned above, the randomness in the SFT originates from two sources: intersubject 

variability and intra-subject variability. The former denotes differences in SFTs between 

different persons in a population of walkers, The latter refers to differences in SFTs generated 

by the same person [10]. 

All variables in Eq. (1) possess both types of variability, apart from G which is characterized 

by inter-subject variability only. Let x represent a variable possessing both types of variability. 

The inter-subject variability descriptor for variable x can then be defined as 

where �̅�  is the mean value of the parameter (over a series of steps) for the ith person, and �̅� is 

the mean value of parameter x on the observed population of pedestrians, i.e. �̅� is the 

population mean of all �̅� . The inter-subject descriptor, therefore, quantifies how much each 

person's mean differs from the mean of the population. 
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The intra-subject variability descriptor of variable x, on the other hand, can be 

where 𝑥 𝑗  is the value of the parameter x in the jth step for the ith person. The intra-subject 

descriptor quantifies how much each step for the ith person differs from the mean value of the 

parameter for the same person. 

Based on the two descriptors, parameter x for the ith person in his/her jth walking step can be 

expressed as 

Using this expression in practical applications requires determining population mean �̅� and the 

probability distributions of 𝜉  and 𝜁 𝑗 . Specifics about these two distributions can be 

obtained from experimental data. 

3. Probability Distribution Functions of Model Parameters 

This section describes an experimental program designed for identifying the model parameters. 

It investigates potential correlations between different parameters and determines relevant 

probability distributions. 

3.1. Experimental programme 

The motion capture system Vicon and two force plates (type: AMTI OR6-7) were flush-

mounted to the laboratory floor to record the kinematics and kinetics of 73 volunteers while 

walking. The dimensions of the force plate were 464mm x 508mm x 82.55mm. There were 59 

males (mean age plus standard deviation: 23.4 ± 2.3 yrs, weight: 65.1 ± 4.1 kg; height: 1.71 ± 

0.074 m) and 14 females (age: 22.8 ± 1.25 yrs, weight: 51.2 ± 8.8 kg; height: 1.62 ± 0.025 m) 

that took part in the experiments in a gait lab in Shanghai. There is evidence that no clinical 

difference in ground reaction forces exists between young and old subjects [22]. The 

participants were students or staff of Tongji University. Selection of the test participants and 

the test protocol satisfied the requirements of the Medical Ethics Committee of Tongji 

University. 

Thirty-nine reflective markers were firmly attached to the anatomical landmarks of each 

participant's body (Fig. 2). Each test subject was then instructed to step on the two force plates 

in two successive steps, practicing several times so that they would step fully on the force plate 
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by natural gait during the real test. Apart from the force plates recording the SFTs for the two 

footsteps, 10 infrared cameras in the Vicon system recorded spatial trajectories of the markers. 

The data collected for the three markers on each foot was used only for identifying the duration 

of SFTs, the step length and for eliminating suspicious experimental records, e.g. when one's 

foot did not fully land on the force plate. The sampling frequency of the force plate was set as 

1000 Hz. A detailed description of the walking experiments can be found elsewhere [25]. 

Each volunteer completed seven test cases: three free-walking cases (self-selected slow, 

normal and fast walking) and four metronome-controlled walking cases (at 1.5, 1.75, 2.0 and 

2.25 Hz). Each case consisted of the test subject producing either 9 or 10 SFTs in total. The 

program yielded 4814 SFTs of good quality. Each SFT was accompanied by the 

corresponding gait parameters, which were determined by Vicon system including the 

duration of the SFT, the achieved walking frequency (which was not necessarily the same as 

the target frequency in the metronome-controlled tests), the step length and the duration of 

the double-support phase. The test subject's body weight was used to normalize each SFT Eq. 

(1) and was then used to fit the normalized SFT curve to determine the corresponding model 

parameters, i.e. a0, ak and 𝜑k. Finally, the experimental records were analyzed statistically to 

quantify the parameters required for defining the SFT model. 

 
Fig. 2. Test subject with reflective markers participating in the experiment. 

3.2. T and a0 as functions of the walking frequency 

Figures 3 and 4 show how T and a0 each correlate with the achieved walking frequency fp, 

respectively. All the SFTs records are used to plot Figs. 3 and 4. In both cases, the data scatter 

is relatively low and T and a0 both are functions of fp, indicating that they are not independent 
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variables. Regression analysis was used to establish the correlations with fp (solid lines in the 

two figures) as follows: 

Equations (5) and (6) calculate the duration T (in seconds) and coefficient a0 (dimensionless 

number) for a given walking frequency fp (in Hz) at each step. The value of coefficient a0 

increases very slightly with walking frequency and is around 0.8 since it is related to a SFT 

only. For the analysis of a total force, this coefficient would be equal to 1.0, which shows that 

the mean value of the total dynamic force is equal to the weight of the walker. 

 
Fig. 3. Relationship between duration of the single footfall and walking frequency. 

 
Fig. 4. Relationship between the constant coe±cient of SFT and walking frequency. 
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3.3. Population mean for ak and 𝝋k as functions of the walking frequency 

By trial and error, it was established that n=8 harmonics are required for a successful 

reconstruction of SFT in the time domain (Fig. 5). Namely, it was found that using fewer than 

eight harmonics might result in a continuous force time history that fails to describe the double 

support area sufficiently. 

  

Fig. 5. Comparison of measured SFT with its representation by n = 2,4,6 and 8 harmonics (test walking 
frequency: 2.0 Hz). 

Figures 6(a)–6(h) show the first eight DLFs as functions of the walking frequency for all 

measured SFTs. The results for the corresponding phase angles are shown in Figs. 7(a)–7(h). 

The first four DLFs and phase angles exhibit some correlation with the walking frequency, 

while the higher harmonics seem to be random. Large scatter in these figures demonstrate that 

both inter-variability and intra-variability need to be considered for these variables. Assuming 

all 16 variables have a conditional mean value at a given walking frequency fp [26] regression 

analysis was performed to determine the relationship of the mean values and fp. The resulting 

mathematical expressions are summarized in Table 1 and their plots are shown in Figs. 6 and 

7 by solid lines. 

Table 1. Mathematical expressions for conditional mean values of DLFs and phase angles at given 
walking frequency fp. 
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Fig. 6. Variation of DLFs with walking frequency. 
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Fig. 7. Variation of phase angles with walking frequency. 
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3.4. Inter-subject variability of ak and 𝝋k 

Equation (2) calculated the inter-subject variability coe±cient for the 16 variables (ak and 𝜑k) 

at each walking frequency. Statistical analysis of 𝜉ak and 𝜉𝜑k  (k = 1–8) showed that they follow 

normal distributions N(1,𝜎). The results for  𝜉a1 and 𝜉𝜑1 are shown in Fig. 8. The standard 

deviations 𝜎 for all variables were frequency dependent. The linear functions shown in Table 

2 approximate these relationships. 

 
Fig. 8. Statistical analysis result of 𝝃a1 and 𝝃𝝋1. 

Table 2. Standard deviation of inter-subject variability 𝝃ak and 𝝃𝝋k  (normal distribution with mean value 
1.0). 

 

The linear correlation coe±cients between the 16 𝜉ak and 𝜉𝜑k  coefficients are given in Table 3. 

The coefficient matrix presented in Table 3 is symmetrical. The majority of the correlation 

coefficients have values lower than 0.4 implying a weak correlation. A few exceptions, 

underlined and bolded in the table, exist for DLFs for higher order harmonics as well as for 

the two correlation coe±cients involving the phase angles. The DLFs related to these 

exceptions, e.g. a4 - a7, have much smaller absolute amplitudes compared to those with weak 

correlations, e.g. a1 and a2, implying that they will have less influence in the final shape of a 
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simulated SFT. These findings suggest, that for the purpose of load simulation, the 16 

descriptors of inter-subject variability can be assumed to be independent random variables. 

Table 3. Correlation coefficients of intra-subject variability 𝝃ak and 𝝃𝝋k . 

 

3.5. Intra-subject variability of ak and 𝝋k 

The intra-subject variability 𝜁ak and 𝜁φk for each of the 16 variables was calculated using Eq. 

(3). This is demonstrated in an example related to a1. Suppose a test subject produced nine 

SFTs in a test involving a single pacing frequency. The ratio of a1 for each SFT over the mean 

value of the nine SFTs is found and it represents the intra-subject variability. Records for all 

the test subjects from the same test frequency were statistically analyzed. For each test case, 

results demonstrated that the intra-subject variability follows a normal distribution and the 

standard deviation is nearly the same. That is to say, within the walking frequency range of 

1.5–2.25 Hz considered in this study, the intra-subject variability of ak and 𝜑k is frequency 

independent. Therefore, data from all test subjects for all four walking frequencies were used 

to determine the normal distribution N(1,𝜎) for the intra subject variability descriptors. The 

results are summarized in Table 4. 

Again, linear correlation coefficients among the 16 intra-subject variabilities were calculated 

and the results are given in Table 5. All except two correlation coefficients are less than 0.4, 

implying a weak correlation. Thus, we can treat the intra-subject variabilities of ak and 𝜑k as 

independent variables. 
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Table 4. Standard deviation of intra-subject variability 𝜻ak and 𝜻φk  (normal distribution with mean value 
1.0). 

 

Table 5. Correlation coe±cients of inter-subject variability 𝜻ak and 𝜻φk. 

 

3.6. Walking frequency fp and body weight G 

To simulate load at the design stage, the mean walking frequency 𝑓̅  of an individual pedestrian 

within a group can be selected to meet any particular design requirement, such as (1) walking 

at a predefined frequency (e.g. to simulate a loading scenario where a sound stimulus is present), 

and (2) free walking. The designer should determine the walking frequency (or its distribution 

properties) according to various factors such as type of structure, criteria in local design 

guidelines, characteristics of the local population of pedestrians and similar aspects. For 

instance, a walking frequency to generate resonant response can be assigned to a walking group 

to simulate a severe loading scenario. For free walking, there are many available statistical 

results for pacing rates, such as N (1.99 Hz, 0.17 Hz) by Matsumoto [27] and N (1.87 Hz, 0.19 

Hz) by Živanović [28] for people walking across footbridges. Therefore, the parameters of the 

normal distribution of the mean pacing rate can be selected either from the literature or from 

site-specific data relevant for the structure under analysis. 
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Having determined 𝑓̅  , the walking frequency at each walking step can be obtained by 

introducing intra-subject variability 𝜁 𝑗 , that is 

To determine the intra-subject variability at specific walking frequencies, data collected during 

fixed walking frequency test cases were analyzed using Eq. (3). It was found that the 

distribution of 𝜁 𝑗  is relatively frequency independent. Moreover, Fig. 9 shows the variation 

of 𝜁 𝑗  for walking frequency in free walking cases. The linear correlation coe±cient between 

the two variables is 0.248 indicating a very low correlation. Therefore, all the data (from both 

the fixed frequency tests and free walking tests) were merged, and a normal distribution N (1.0, 

0.0325) for 𝜁 𝑗  identified, as shown in Fig. 10. 

 

Fig. 9. Variation of 𝜻𝒑
𝒊 𝒋  of walking frequency for free walking case. 

The parameter G in Eq. (1) is an independent variable characterized by only inter-subject 

variability. It can be randomly simulated based on its statistical properties. The body weight 

typically follows a normal distribution expressed as N(𝜇, 𝜎 ) or a log-normal distribution 

expressed as logN(𝜇, 𝜎), where 𝜇 and 𝜎 are mean value and standard deviation. Selection of 

values 𝜇 and 𝜎 depend on factors such as race, gender, age, and living area (rural or urban). 

Xiao-guang et al. [29] collated statistics on a sample of 202,749 Chinese participants showing 

that for young adults (ages 18–44 yrs) and middle-age adults (ages 45–59 yrs) in urban areas, 

the body weight distributions were N (62.4 kg, 12.0 kg) and N (64.5 kg, 10.9 kg), respectively. 
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For U.S. residents, Portier et al. [30] reported logN (75.61 kg,18.02 kg) based on a survey of 

13,462 adults aged 18–65. 

 
Fig. 10. Distribution of intra-subject variability for walking frequency. 

For vibration serviceability design simulations, a pedestrian population can be modeled either 

by drawing body weight values from an appropriate distribution or by taking the mean value 

as representative for all pedestrians. The latter approach is especially justifiable for crowd 

simulations given that the vibration response is relatively insensitive to variations in average 

body weight [26]. In addition, body weight can also be selected as a percentile (other than 50%) 

value, depending on the target value for the probability of non-exceedance of the vibration 

response. 

3.7. Final remarks on load simulations 

Two considerations remain for applying SFT model in the vibration serviceability assessment. 

The first is the spatial position of the pedestrian's first foot contact with the structure at the start 

of the crossing. The second is the duration of the double support phase during which the SFTs 

for each foot have to be overlapped. The position of the first contact point can be drawn from 

a uniform distribution [0, ΔL], where the ΔL is the average step length in the pedestrian 

population. The average value was 0.67m in this study; but it will inevitably vary between 

different populations and different structures. The duration of the double support (DS) time can 

be determined on a step-by-step basis using the relationship DS(j)= T(j)-1/fp(j). 
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4. Verification 

4.1. Application procedure for SFT simulation 

Based on the information provided so far by the suggested stochastic SFT model, the procedure 

for generating a time history for the ith person in a walking group can be divided into the 

following 10 steps: 

1) Randomly generate a body weight Gi for individual pedestrians by using the 

appropriate probability distribution function, or by assigning a representative 

percentile value. 

2) Randomly generate the mean frequency of walking 𝑓̅  for each pedestrian from an 

appropriate distribution by following suggestions in Sec. 3.6. 

3) Randomly generate mean step length for each pedestrian from a frequency 

independent, normal distribution available in the literature. An example is N(0.74 m, 

0.08 m) observed on a population of about 2000 people in Podgorica City in 

Montenegro [28]. Dividing the length of the path the pedestrian is walking by the 

mean step length results in the number of steps Mi the ith pedestrian requires to cross 

the structure. 

4) Determine the mean value of DLFs and phase angles for eight forcing harmonics 

using the equations given in Table 1 and 𝑓̅  obtained in Step 2. 

5) Randomly generate the inter-subject variability coefficient 𝜉  for DLFs and phase 

angles using normal distributions, whose parameters are available in Table 2. 

6) For the jth step (j = 1, Mi), randomly generate the intra-subject variability coefficient 

𝜁 (i) for walking frequency from N (1.0, 0.0325). Calculate the walking frequency at 

the jth step using 𝑓 𝑗 = 𝜁 (i) 𝑓̅  then calculate Ti(j) and 𝑎 𝑗  using Eqs. (5) and (6). 

7) For the jth step, generate the intra-subject variability coefficients 𝜁 (j) for the 

parameters of the forcing harmonics using the normal distribution parameters in Table 

4. Calculate 𝑎 (j) and 𝜑 (j), k = 1–8, at the jth step from Eq. (4), where  �̅�, 𝜉  and 

𝜉  are obtained in Steps 3 and 4. 

8) Introduce Gi, Ti(j), 𝑎 (j), 𝑎 (j) and 𝜑 (j) into Eq. (1) to calculate the single footfall 

load at the jth step for the ith pedestrian. 

9) Repeat steps 5–7 until the SFTs for all the M steps are simulated.  
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10) If a continuous walking load curve has to be constructed, merge every pair of 

successive steps using the overlapping time calculated from DS(j) = Ti(j) - 1/𝑓 (j). 

This procedure can be used to develop a software program for generating walking load time 

histories, which can then be integrated into a finite element model of a structure [31]. 

4.2. Verification I: Simulating SFT time history 

Figure 11 compares simulated SFTs (dashed lines) with experimental measurements (solid 

lines) for four different walking frequencies. Figure 12 compares simulated continuous walking 

load time histories from the SFT model and the other four existing deterministic models, 

namely ISO-10137 [32], Blanchard [33], Allen and Murray [34] and Young et al. [35]. Figure 

11 shows that the simulated SFTs are similar to the measured records where peak values and 

time instances occur, as well as step duration and force waveform. Due to its stochastic nature, 

it is not easy to judge the SFT model's performance using the single continuous load example 

given in Fig. 12. Nevertheless, the waveform of the simulated time history is compatible with 

those from existing models. 

 
Fig. 11. Comparison between synthetic and measured SFTs. 
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Fig. 12. Comparations of simulated walking time histories from SFT and four different models. 

4.3. Verification II: structural response spectrum 

An important verification step in determining the performance of the model is to see if the 

model is capable of predicting a sufficiently accurate structural response for a range of structure 

to walking frequency ratios. To see how well the proposed model works for calculating 

vibration response, the simulated continuous load curves were applied individually to a single-

degree-of-freedom (SDOF) structure system with unit mass. In the calculation, frequency range 

for SDOFs is 0.05 to 10 Hz with an interval of 0.05 Hz (i.e. in total 200 SDOFs), and 24,000 

walking load time histories were simulated and applied to each SDOF (i.e. 24,000 x 200 times 

dynamic analysis). To be more specific, the walking loads were simulated for 100 people, with 

each person walking at 24 pacing rates, each of which was randomly selected in the range of 

1.4–2.6 Hz. For every pacing rate, ten walking load curves were simulated and each curve had 

62 SFTs, meaning in 24,000 x 62 SFTs were simulated by the proposed approach. The resulting 

acceleration response spectra from the above intensive calculations are shown in Fig. 13. Here, 

the simulated data is compared with the response spectrum that is calculated directly, i.e. by 

using the measured continuous force time histories collected by Chen et al. [36] It can be 
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concluded that the spectrum obtained using simulated walking loads agrees well with that 

obtained using measured walking loads. 

 
Fig. 13. Comparison between calculated SDOF response with response spectrum (damping ratio is 0.02). 

5. Conclusions 

The study developed a stochastic mathematical model to represent single footfall trace for 

pedestrian walking. The model is defined as a Fourier series function in which body weight, 

pacing frequency and step length are independent random variables, while the trace duration, 

DLFs and phase angles for the first eight forcing harmonics are random variables that are 

functions of pacing frequency. The inter-subject and intra-subject randomness of pacing 

frequency and forcing harmonics were modeled by using two descriptors of variability. 

Experiments using 73 test subjects walking at a range of pacing frequencies resulted in a 

database of 4814 single footfall trace records. Statistical analysis of the experimental data was 

performed to establish the relationship between relevant parameters and derive relevant 

probability distribution functions. The procedure for generating single footfall load curves was 

then explained and the quality of its time and frequency domain representations verified. 

Finally, while the relationships among model parameters were determined using experimental 

data for 73 individuals drawn from an Asian population, the conceptual framework of the 

proposed model could readily be applied to other walking load databases to include a more 

diverse set of subjects, if and when required. 
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