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Abstract

When Al makes an offer to Betty that Betty observes and rejects, Al may suffer a painful and
costly “loss of face” (LoF). LoF can be avoided by letting the vulnerable side move second, or
by setting up “Conditionally Anonymous Environments” that only reveal when both parties say
yes. This can impact bilateral matching problems, e.g., marriage markets, research partnering,
and international negotiations. We model this assuming asymmetric information, continuous sig-
nals of individuals’ binary types, linear marriage production functions, and a primitive LoF term
component to utility. LoF makes rejecting one’s match strictly preferred to being rejected, making
the “high types always reject” equilibrium stable. LoF may have non-monotonic effects on stable
interior equilibria. A small LoF makes high types more selective, making marriage less common
and more assortative. A greater LoF (for males only) makes low-type-males reverse snobs, which
makes high-females less choosy, with ambiguous effects on the marriage rate.

Keywords: Matching, marriage markets, anonymity, reputation, adverse selection, Bayesian games,
emotions. JEL codes: D83, D03

1 Introduction

In a market that involves two-sided matching (as surveyed in Burdett and Coles, 1999), the fear of
rejection can lead to inefficiency. A proposer may not ask someone out on a date, ask for a study
partner, apply for a job, make a business proposition, propose a paper co-authorship, or suggest a
peace treaty, because she does not want the other party to know of her interest and then turn her
down. This may have consequences for reputation and future play, or it may have a direct psychological
cost. In general, we call the disutility from this outcome “loss of face” (LoF). Consider a game where
each player can choose “accept” or “reject” and there is asymmetric information about players’ types.
Assume that the outcome of the game (actions and payoffs) becomes common knowledge after all
actions have been taken. Here LoF may worsen the set of Nash equilibria. There may be a set of
mutually beneficial transactions that would occur without LoF, but do not occur with LoF because:

1. the proposer does not know for sure whether the other party will accept or reject and

2. a high enough probability of rejection can outweigh the expected gains to a successful transaction.

This goes beyond the standard problems of asymmetric information. Even where Al perceives
that his expected utility from actually marrying Betty would be positive, his expected utility from
making an offer may be negative. Thus he may still reject Betty — to avoid LoF — if he anticipates
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a high enough chance she will reject him. It is also distinct from the “self-image preservation” motive,
discussed in Köszegi (2006), that may lead to over- or under-confident task choice. In that model Al
“hates to learn that Betty deems him to be low quality”, as it reduces his self image. In contrast, our
LoF comes from “conditional on her rejecting me, I dislike her knowing that (i) I perceive her as being
good enough for me and (ii) that I have made an offer to her.”

We believe this will be intuitive for most readers. Consider: which scenario below would be more
painful? (Suppose you are romantically interested in women.)

1. A friend or colleague, in whom you have an unexpressed romantic interest, while discussing her
tastes, informs you that she wouldn’t date you because you are not “her type.” You have no reason
to believe that she knows of your interest in her, and you are certain that she is telling the truth.

2. Without having the conversation in scenario 1, you ask this same person out on a date and she
refuses because you are not “her type.”

We speculate that the second scenario would be more painful: now both you and she know that
you have asked her out and she has refused. Although she may have tried to soften the blow by
posing this as a matter of idiosyncratic preference rather than quality, you have lost face, and you
are established as her inferior in one sense. In the first case, although you can presume she is not
interested in you, and this may hurt your self esteem, she doesn’t know you like her, and you have
not lost face, as we define it.

We mainly take this as a primitive (but also present a reputation model in appendix B); future
work could unpack this in a more extensive model. E.g., her knowing I chose “accept”:

1. informs her about my quality, affecting my reputation, which I may care about directly, or
through its impact on my payoffs in future interactions (see appendix B);

2. may be undesirable through a reciprocity motive (Falk et al., 2006): I want to harm someone
who harms me, and playing “reject” may be seen as harmful and “accept” beneficial.

Simple institutional changes can eliminate this risk: if only mutual “accept” choices are revealed,
the rejected party’s choice is thus hidden from the rejector. Al will never have to worry that Betty
will both reject him and learn that he accepted her. (In contrast, whenever Al accepts Betty he will
always learn her choice; his self-image cannot be easily protected.)

As we discuss in section 2, there is evidence that a desire not to lose face is a primal human
concern, perhaps a product of evolutionary factors, or perhaps an automatic internalization of a
reputation motive. (If reputation concerns are long-term, anticipating the additional short-run pain
of losing face may help counteract present-bias as well as overconfidence.) Thus the LoF may enter
into an individual’s utility function directly. There is a special loss from the combined knowledge that
you accepted somebody, but they rejected you.1

When (e.g.) a woman accepts a man and he rejects her, her material payoffs from this one-shot
game are the same no matter what beliefs or information either party has. However, with LoF, her
psychic payoffs are lower when she knows that he knows that she accepted him and he rejected her. In
other words, what the other player knows for sure – the other player’s information – is a component
of a player’s utility function (as in Battigalli and Dufwenberg, 2007). Thus, as long as we know

1This assumption puts our model into the category of a psychological game, as modeled by Battigalli and Dufwenberg
(2007), in which my payoffs may depend on another player’s beliefs about my action. However, in our model, for a
given (exogenous) information structure, the relevant beliefs (are a one-to-one mapping from the players’ actions; thus
our analysis is standard. As described in section 4), we assume the structure of these “terminal information sets” is
common knowledge; we use this terminology to avoid confusion with the standard setup in which information sets are
only defined in connection with decision nodes. The simplicity of our game means we do not have to worry about, e.g.,
actions responding to equilibrium beliefs responding to actions.
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the (terminal) information structure, LoF transforms material payoffs into psychological payoffs in a
straightforward way.2

We focus on the primal LoF interpretation: this is particularly relevant to one-shot games where
no outside parties observe the results. However, we suspect that many of our results will carry over to
a case where the LoF concern can be justified instrumentally. With asymmetric information, as in our
model, in many types of dynamic matching and sorting/screening games, an individual’s willingness
to “accept” another person be taken by others as a negative signal of her type, reducing her utility
and/or her continuation value. To reinterpret Groucho Marx “if I am willing to be part of this club,
how good can I be?” We give a simple formalization of this in a two-period model in appendix B,
where we derive conditions under which a players’ previous “accept” choice hurts her continuation
value. (However, a complete characterization of equilibria for this model is left for future work).

As noted above, if loss of face depends on the terminal information sets in this way, i.e., on the
information each player has at the end of the game over the game’s history, then it can be avoided
by changing the information structure so that players only learn about each other’s behavior if they
both play Accept. For example, speed dating agencies often ask men and women to mark the partners
who they are interested in, and then inform only those couples who both marked each other. Now,
after playing accept, you will still be able to infer if you have been rejected, but the other person will
not know that you accepted them; knowing this, you will not suffer a loss of face. Thus, while your
ego-utility can not be preserved, your face can be. We call such setups Conditionally Anonymous
Environments or CAE’s.

Our paper proceeds as follows. In section 2 we discuss our concept in more detail and offer intuitive,
anecdotal, and academic support for it, motivating the assumptions of our model. We also give a short
survey of the related economic literature. In section 3 we describe our baseline setup (similar to a single
stage of Chade, 2006), and formally define LoF. This environment yields only monotonic equilibria,
following the theory of games with strategic complementarities (summarized in Vives, 2005). In section
5 we characterize the best response strategies and equilibria, considering both a symmetric case and a
case where only males suffer LoF. The latter allows us to consider both direct and indirect effects. We
demonstrate that LoF can make a coordination failure equilibrium tatonnement-stable, and present
monotone comparative statics as LoF is introduced or increased (applying Milgrom and Shannon,
1994). We show that while a small amount of LoF makes the low types “reverse snobs” and generally
reduces the efficiency of the marriage market, a greater LoF may actually increase the marriage rate.
We conclude in section 6, considering extensions and discussing policy implications. Our appendices
(all online) provide longer proofs, details, and numerical examples, a comparison to a “rejection hurts”
model, and our model of reputation concerns in a two-stage game.

2 Background

There is abundant psychological evidence that “rejection hurts” (Eisenberger and Lieberman, 2004)
and that social ostracism can cause a neurochemical effect that resembles physical pain (Williams,
2007). However, these studies do not distinguish between cases where it is common knowledge that
the rejected party has expressed an interest from cases where this is private information. We claim
that people fear proposing, and they fear it more when proposals are known.

2Furthermore, LoF itself has no obvious interpretation in terms of fairness/reciprocity (Rabin, 1993). Since revelation
of “who proposed to whom” or “who was kind to whom” occurs after these decisions were made it should have no impact
on beliefs about whether a player knew his play was “fair” in the sense of being congruent with the other player’s kindness
or unkindness.
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Our speculation in the introduction is consistent with a plausible interpretation of much previous
work. While some of the examples below admit alternative explanations (e.g., self-image preservation),
we believe that the overall picture offers support for our model’s assumptions over LoF. Bredow et al.
(2008) represent previous research through the formula V = f(A×P ) for the “strength of the valence
of making an overture” to a romantic partner, where A represents attraction and P is the estimated
probability that an overture will be accepted. Shanteau and Nagy’s (1979) experimental work finds
that “when the probability of acceptance is low, people’s interest in pursuing a relationship is nil, or
nearly nil, regardless of how attracted they are to the person.” One reason for these attitudes and
preferences might be the fear having one’s overtures known in the event of being rejected. Such a cost
may be intrinsic or reputation-driven, psychological or material.3

The fear of losing face or reputation may motivate people to put in effort and incur costs in order to
learn whether a potential partner is likely to respond positively. Baxter and Wilmot (1984) described
six types of secret tests used in the delicate dance of “becoming more then friends”, e.g., “third-party
tests” (Hitsch et al., 2010). Douglas (1987) “reports eight strategies that individuals reported using
to gain affinity-related information from opposite sex others in initial interactions.”

The fear of LoF is closely related to what psychologists call “rejection sensitivity.” For example,
London et al (2007) provide evidence from a longitudinal study of middle school students that, for
boys, “peer rejection at Time one predicted an increase in anxious and angry expectations of rejection
at Time 2.” They also find that anxious and angry expectations of rejection are positively correlated
to later social anxiety, social withdrawal, and loneliness. In explaining the connection to loneliness,
they posit that the rejection sensitive may exhibit “behavioral overreactions” such as “‘flight’ (social
anxiety/withdrawal) or ‘fight’ (aggression).” It is easy to interpret either of these as a way to choose
“reject” in our matching game in order to avoid further loss of face.

Erving Goffman (2005) has written extensively about losing and preserving face:

The term face may be defined as the positive social value a person effectively claims
for himself by the line others assume he has taken during a particular contact ...The surest
way for a person to prevent threats to his face is to avoid contact in which these threats
are likely to occur. In all societies one can observe this in the avoidance relationship and
in the tendency for certain delicate transactions to be conducted by go-betweens ...

In the context of our paper, Goffman’s “avoidance” is essentially preemptive rejection: you cannot be
matched with a partner if you don’t show up.

In the USA over a recent ten-year period, 17% of heterosexual and 41% of same-sex couples met
online (Rosenfeld and Thomas, 2012), and the dating industry has been reported to constitute “a
$2.1 billion business in the U.S., with online dating services ... representing 53% of the market’s
value” (MarketData Enterprises, 2012). Internet dating itself can be seen as an institution designed
to minimize the LoF that comes with face-to-face transactions, allowing people to access a network of
potential partners who they are not likely to run into again at the office or on the street. However,
going online may not eliminate the LoF; as noted in Hitsch et al. (2010): “If ... the psychological
cost of being rejected is high, the man may not send an e-mail, thinking that the woman is ’beyond
his reach,’ even though he would ideally like to match with her.” (Here, this psychological cost could
include both the loss of face we consider and self-esteem concerns outside our model.)

3For example, in the 2005 “Northwestern Speed-Dating Study” on 163 undergraduate students, “participants who
desired everyone were perceived as likely to say yes to a large percentage of their speed-dates, and this in turn negatively
predicted their desirability” (Eastwick and Finkel, 2008).
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Perhaps in response to this, numerous dating sites and applications have introduced some form of
the CAE environment, where member A can express interest in member B and member B only finds
out about this if B also expresses an interest in A.4 However, there is a trade-off between preserving
face and getting noticed: with thousands of members, each member may only view a fraction of eligible
dates, and if A expresses anonymous interest there is no guarantee that B will even see A’s profile.
This has been applied to the internet context at least since Sudai and Blumberg (1999), who were
granted a patent for such a “computer system”, noting “often, even when two people want to initiate
first steps in a relationship, neither person takes action because of shyness, fear of rejection, or other
societal pressures or constraints.”5

Perhaps the most widely used dating platform is the smartphone app Tinder. The site claims
it has lead to to 1.6 billion swipes per day, 1 million dates per week, and over 20 billion matches
(Tinder, 2018). Here, users are presented a sequence of profiles (with pictures and bios), and can
“swipe right” to indicate their interest. Only mutual right-swipers are informed “It’s a match”, are
then able to chat directly. Swiping right on someone does not imply they will see your profile; the
order in which Tinder’s optimization algorithm presents profiles does not reveal who liked you. Thus,
this app resembles our Conditionally Anonymous Environment. Sean Rad, a founder and CEO, noted
his motivation for this “double opt-in” systems as the app’s impetus. “No matter who you are, you
feel more comfortable approaching somebody if you know they want you to approach them” (Witt,
2014).

“Speed dating” was an earlier innovation in the singles scene. These events usually attract an equal
number of customers of each gender; men rotate from one woman to another, spending a few minutes
in conversation with each. Here there is also an effort to minimize the possibility of public rejection
(and perhaps LoF). In fact, speed dating agencies often promote themselves on these grounds, e.g.,
Xpress dating advertised “rejection free dating in a non-pressurized environment” (xpressdating.co.uk,
accessed 2012).Typically, participants are asked to select whom they would like to go on “real dates”
with only after the event is over. In most cases the agency will only reveal these “proposals” where there
is a mutual match, i.e., where both participants have selected each other. “Speed dating” institutions
have been extended outside the realm of romance and marriage, into forming study groups, “speed
networking” and business partnering; these may have been established (in part) to minimize LoF
(Collins and Goyder, 2008; CNN International, 2005).

LoF may not be limited to the dating world. Both psychological LoF and material losses from
publicly observed acceptances and rejections can be seen in many spheres. These concerns may be
present on both sides of the job market. A job-seeker may lose face when she makes a special appeal
and is rejected, and an employee may lose face when rejected for a promotion or a special firm project.
Akerlof’s (2000) model of social exclusion is also relevant. If being seen “acting white” involves
sacrificing Black identity, a Black person may choose not to attempt “admission to the dominant
culture” because she is uncertain about the “level of social exclusion” she will face; e.g., whether
she will be accepted by a school, employer, or White social group. On the other hand, if she can
attempt this anonymously, she can avoid the risk of a public threat to her identity, and also avoid the

4We recognize that other models, e.g., derived from the ”rejection hurts” idea stated above, might justify such policies.
However, we argue in appendix C that the LoF model is the most plausible justification.

5Online dating has been portrayed as a modern analogue to the traditional “matchmaker”, who was able to sepa-
rately interview prospective mates and their families about their likes and preferences, helping arrange marriages while
preserving anonymity (see Ariely and Jones, 2010, chapter 8, forgiving the misuse of the term Yenta). However, the
internet and social media cuts both ways. Although the internet affords the opportunity to make connections outside
one’s usual network, the “gossip network” may grow, increasing reputation concerns.
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potential material costs of social exclusion. In fact, race-based rejection sensitivity has been found
to negatively correlate with measures of African-American students’ success at predominantly White
universities (Mendoza-Denton et al., 2002). This concern might help justify outreach programs for
underrepresented minorities; in effect “asking them first” or letting them know when they will have a
high probability of succeeding.

The employer too may be vulnerable to LoF. Cawley (2003), in his guide for economists on the
junior job market, writes that he has “heard faculty darkly muttering about job candidates from
years ago who led them on for a month before turning them down.” This aggravation may involve
LoF in addition to the loss of time and opportunity costs. This LoF is recognized by professional
recruiters as well: “recruiters lose face when candidates pull out of accepted engagements at the last
minute” (Direct Search Allowance, 2007). Concerns on both sides of the job market may have inspired
companies like Switch (“the Tinder for job apps”) to develop conditionally anonymous (double opt-in)
employment platforms.6

For the rejection-sensitive, any economic transaction that involves an “ask” may risk a LoF. This
may explain the prevalence of posted prices, aversion to bargaining in certain countries, and the rela-
tive absence of neighborhood cooperation, social interaction, consumption and task-sharing in many
modern societies (Putnam, 2001). Rejection sensitivity is particularly disabling for sales personnel,
who may suffer from “call reluctance”.7

Our model may also be important in an archetypal situation where preserving face is valued – the
resolution of personal and political disagreements. Neither side may want to make a peaceful overture
unilaterally – this can be seen as evidence of admission of guilt or weakness, and may be psychologically
painful in itself. Again, where a double-blind mechanism is available, it can resolve this dilemma; if
not, our model offers insight into why negotiations often fail. Often, peace talks are made in secret,
and only announced if a successful agreement has been reached. This contradicts one of Woodrow
Wilson’s famous “14 points”: “Open covenants openly arrived at”, became a principle, according to
Eban (1983). However, Eban claims that “the hard truth is that the total denial of privacy even in
the early stages ... has made international agreements harder to obtain than ever”. Tony Armstrong
(1993) analyzed three key cases of international negotiations finding a high degree of secrecy and few
participants. “In these secret and private negotiations, assurances and commitments were provided,
which were essential for the parties to negotiate ’in good faith”’ (Jönsson and Aggestam, 2008).

While economists have previously studied related concepts, to our knowledge none have considered
the difference between “mutually-observed acceptance and rejection” and “rejection where only one
side knows he was rejected” (and the other side does not know whether or not she was proposed to).
Becker (1973) introduced a model of equilibrium matching in his “Theory of Marriage.” He considers
the surplus generated from marriage through a household production function, and allows the division
of output between spouses to be divided ex-ante according to each party’s outside option in an efficient
“marriage market.” Anderson and Smith (2010) brought reputation into this context, noting “matches
yield not only output but also information about types” (but note that offers are not observed in their
model). Chade (2006) explored a search and matching environment where participants observe “a
noisy signal of the true type of any potential mate.” He noted “as in the winner’s curse in auction
theory – information about a partner’s type [is] contained in his or her acceptance decision.” However,

6Switch has claimed more than 400,000 job applications and 2 million “swipes” as of 2015 (Crook, 2015).
7“Call reluctance, which strikes both individuals and teams, develops in many forms. Representatives may be ‘gun

shy’ from an onslaught of rejection or actively avoid certain calling situations such as calling high-level decision makers
or asking for the order. Call reluctance is the product of fear; fear of failure, fear of losing face, fear of rejection or fear
of making a mistake. If the fear perpetuates, productivity suffers” (Geery, 1996).
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in Chade’s model there is only a single interaction between the same man and woman, and outside
parties do not observe the results; thus there is no scope for either party’s actions to affect their future
reputations, nor any direct cost of being rejected.

Simundza (2015) embeds a two-stage matching game in a marriage model. He finds an equilibrium
where saying “no” in a first round can increase the continuation value in the next round. Our focus
and modeling choices differ in important ways. Simundza considers a binary signal, leading to a
focus on stationary strategies. Simundza’s model isolates the strategic value of reputation (which is
endogenous), and thus has no comparable “Loss of Face” parameter. Thus, unlike Simundza, we can
consider the welfare and distributional implications of changes in the information environment (CAE
to FRE to ARE), changes that are relevant to many real-world contexts, as we note. Our differences
lead to distinct results. For example, Simundza’s high-types have no incentive to “play hard to get,”
i.e. no incentive to reject when observing high signals in the first round. In contrast, our high types
are affected by their own potential LoF, raising their own thresholds or even shutting down completely.
Simundza can compare the co-existing “Nonstrategic” and “Socially Strategic” equilibria; the latter
yield greater assortative matching (sorting); as he assumes productive complementarity, this implies
“mating is more efficient”. In contrast, we compare the marriage rate and assortativeness of stable
interior equilibria (as well as stability of corner equilibria) as the cost of LoF increases.8

3 Model Setup

3.1 Agents

The economy is populated by a continuum of individuals on market sides M and F (“male and female
genders”) endowed with measure 1 each. An individual m ∈M or f ∈ F is characterized by a binary
type xg ∈ {`, h}; the type—“low” or “high”—is an agent’s private information (and g ∈ {m, f}).9 For
brevity, we will sometimes refer to “an h” or “an `”, depicting an individual’s type, and to “an m” or
“an f”, reflecting an individual’s gender, and to “male `-types”, or “a low f”, etc. We will also refer
to a generic individual as “she/her”, except where this would cause confusion. Let the share of high
types be the same on both sides of the market, and denote it by p. (This assumption, for notational
simplicity, does not affect our results qualitatively.)

3.2 Matching

Each individual in M is randomly matched to an individual in F ; all matches are chosen by nature
with equal probability. Individual i obtains a noisy signal sj about the type xj of her match j, but
does not observe si, the signal of her own type that j received. After observing the signals, individuals
accept (A) or reject (R) the match. We distinguish three informational settings (depicted in figure 1):

1. a Full Revelation Environment (FRE) where both observe each others’ actions (proposals) after
they have both been made,

8Simundza’s model somewhat resembles our two-stage “reputation” model (appendix B) However, Simundza considers
the same individuals playing the accept/reject game twice, with no new signals, unlike in our motivating examples. Our
reputation model assumes a new second-round match who observes a new signal; we consider the impact of this match
also observing her match’s previous-round game play.

9While our discussion in the above sections also encompasses one-sided matching, we exclusively model a two-sided
market (labeled “male” and “female” with apologies for political incorrectness). This choice is relevant to many examples
and also allows us to isolate direct and indirect effects of (a fear of) LoF on one side. Note that our prior mimeo (Hugh-
Jones and Reinstein, 2010) derived related results with continuous types under specific functional restrictions.
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2. an Asymmetric Revelation Environment (ARE) where females observe the action A or R taken
by a male but males do not observe females’ proposals (but can infer them ex-post in some
contingencies), and

3. a Conditionally Anonymous Environment (CAE) where neither side directly observes the other
side’s action (proposal), but each player only observes whether or not both parties have played
accept.

I.e., the FRE captures a setting where both males and females are informed of the action of their
match and know that their match will be informed of their own action. By contrast, in the CAE males
and females can infer their match’s actions (proposals) if and only if they themselves play accept. In
an ARE only one market side (here females) is informed about the action of their match; the (male)
player on other side is informed only if the female accepts. Hence, a female will never be observed
accepting a male who rejects her. The ARE is strategically equivalent to a sequential game where
both are vulnerable to LoF, but the male moves first—a second-mover can always avoid losing face
by always playing R after observing R. We discuss this further below (page 9).

3.3 Signals

Individuals in a matched pair each obtain a signal s ∈ [s, s] of the other agent’s type. Signals are drawn
independently and their distribution depends on the type of the sender: type x’s (x ∈ {`, h}) signal
is distributed according to Fx(s) with continuously differentiable density fx(s). We also assume, for
convenience only, that the densities are bounded, f ′x(s) < ∞. Suppose that the signal is informative
in the sense that f`(s) and fh(s) satisfy the monotone likelihood ratio property (henceforth mlrp), i.e.,

Assumption 1. fh(s)/f`(s) > fh(s′)/f`(s′) for all s > s′ where defined.

We assume that the signals are fully revealing at their limits, i.e., observing the best (worst) signal
implies that the type is h (`), i.e.,

Assumption 2. fh(s) = 0, f`(s) > 0, f`(s) = 0, and fh(s) > 0.

Assuming that the probability of a high (low) type converges to one (zero) is needed to ensure that
the game has an interior equilibrium (i.e., signal thresholds for accepting a match will be interior).10

3.4 Payoffs

If both individuals in a matched pair accept they become “married” and each individual’s payoff
depends positively on the pizzazz (see Burdett and Coles, 2006) of their partner: x ∈ {l, h}. low types
have pizzazz ` and high types have pizzazz h, where 0 < ` < h.11 Types (and thus pizzazz) become
fully observable during the marriage. Marriage payoffs for a match (m, f) are given by um(xf ) = xf

and uf (xm) = xm. That is, payoffs are linear in the match’s type, which implies that total surplus
does not depend on the precise assignment of types, but only on the number of marriages formed.
Agents who remain solitary obtain a payoff of uj(xj) = δxj for j ∈ {m, f} with δ < 1. For intuition,

10Otherwise, in the case of overlapping supports, i.e. for all s ∈ [s, s] fh(s) > 0 if and only if f`(s) > 0, we could
not rule out equilibria where high types do not respond to the signal and instead “always accept” or “always reject,”
and these could be stable. However, even under overlapping supports our remaining results carry over for “responsive”
equilibria where high types have interior thresholds. Details are available by request.

11We use the same terms, h and `, to represent both the type index and the pizzazz of this type; this slight abuse of
notation should not cause confusion.
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suppose types represent productivity, production is shared by the married couple, and those who are
more productive alone are also more productive in a marriage.12 Therefore low types always prefer
a marriage to remaining alone. To make the model non-trivial, we suppose h’s prefer to remain
unmarried to marrying an `, i.e., high types have a good outside option:

Assumption 3. δh > `.

In summary, homogenous marriages benefit both partners and mixed marriages benefit `’s more
than they hurt h’s, because h+ ` > δ(h+ `).

3.5 Loss of Face

Loss of face as described in section 2 is an intrinsic psychological pain, which can only matter if a
player’s potentially embarrassing action is observed by the other player. Therefore we define loss of
face as follows.

Definition 1. A player j who suffers from loss of face experiences a loss L when

1. j played accept. j knows that his match, player k, played reject, and

2. j knows that k knows (for certain) that j played accept.

The “j knows that” part of Point 2 of may be necessary for a primal LoF, but not for the repu-
tational LoF we model in appendix B; a player’s reputation and future payoffs may suffer whether or
not she knows that her decision is observed.13

Since LoF results from the common knowledge (or at least the higher order beliefs described above)
of one party accepting and the other rejecting, to model LoF we need to make payoffs depend not
only on actions, but also on the information players hold at the end of the game. These terminal
information sets for players m and f are defined as standard information sets, but they are not at a
decision node: they characterize a player’s knowledge about the complete history of the game after
all actions have been taken.

4 Terminal information sets and game trees

As shown in figure 1, the set of end nodes of the game, defined by their histories, isH = {H1, H2, H3, H4} =
{AA,AR,RA,RR}.14 Let Īf be the collection of f ’s terminal information sets over these end nodes,
and Īm be m’s information partition. Since neither player “has the move” at the terminal node, we
give each history two boxes to depict each player’s terminal information set; Hj(m) and Hj(f) are the
same (for j ∈ {1, 2, 3, 4}).

In the games defined above terminal information sets depend on the information environment in
place. The three different environments are illustrated in the trees in figure 1, specifying the terminal

12An alternative justification: The payoff to no match may represent the continuation value in an indefinitely repeated
matching game, as in, e.g., Adachi (2003), or as in our two-period model in appendix B. Simundza’s 2015 model finds
a similar related result, as does Chade (2006): higher-type players tend to have higher signals and others accept them
more often.

13We conjecture that making LoF a continuous function of “the probability k puts on j having played accept” would
imply a secular decrease in payoffs for both sides in the CAE, but have no impact on the best-response functions derived
below, implying qualitatively identical outcomes; informal proof available by request.

14We leave nature’s move out of these histories; it does not affect our discussion. For completeness we can assume that
players never learn the other players’ types. Thus, in our model LoF will only depend on the conditional expectation of
the other player’s type, not the type itself.
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(i) CAE (ii) m-Blind (ARE) (iii) FRE

Figure 1: Terminal Information structures

(i) Conditionally Anonymous (CAE): Īm = {(AA), (AR), (RA,RR)} and Īf = {(AA), (AR,RR), (RA)}.
(ii) Asymmetric Revelation (ARE): Īm = {(AA), (AR), (RA,RR)}; Īf = {(AA), (AR), (RA), (RR)}.
(iii) Full revelation Environment (FRE): Īm = Īf = {(AA), (AR), (RA), (RR)}.

information partitions for each case. The payoffs shown include LoF terms whenever the terminal
information structure implies this may be relevant, by our definition above.

Denote an action tuple by (amaf ) ∈ {A,R}2. If both players in a match only observe their own
actions and whether or not there is a marriage (the conditionally anonymous environment, CAE),
both players’ information sets are (AA), {(RA), (AR)}, or (AR), depicted on the left of figure 1. Note
that the (AA) terminal information set is a singleton for both players, while the histories where a
player played “reject” are part of the same terminal information set (for that player). This implies
that females cannot distinguish between action profiles (AR) and (RR), and males cannot distinguish
between (RA) and (RR). Therefore there is no loss of face under the CAE.

In an asymmetric revelation environment (ARE) one market side observes the actions of the other
side, but not vice versa; the other side only learns whether or not a marriage occurred. Here we will
assume that females observe males’ actions in a match, but not vice versa. I.e., consider “males” as
synonymous with “the side vulnerable to LoF.” Hence, in the ARE possible terminal information sets
are (RA), (RR), (AA), or (AR) for females, and (AA), (AR), and {(RA), (RR)} for males. That is,
females can distinguish the action profile (AR) from (RR), whereas males cannot distinguish between
(RA) and (RR). Here, the males lose face when the action profile (AR) is played, but females cannot
lose face under the ARE.

In a full revelation environment (FRE) both genders have four terminal information sets, (RA),
(RR), (AA), or (AR), as shown on the right in figure 1; i.e., both players in a match observe the
choice of their partner, and know that their partner observes their own choice.

Note that while we depict a game with simultaneous actions (or equivalently, incomplete informa-
tion – players don’t observe each other’s actions when they make their choices), in many applications
the game will be sequential, with one side having to make the first offer. If the terminal information
sets are complete and the males must move first, this will be is strategically equivalent to the ARE
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above. The males—moving first— would be vulnerable to LoF. Females, moving second, would only
consider playing accept if the male first-mover also did; thus they will never suffer LoF.
Therefore individual payoffs of the game played by a randomly matched pair (m, f) can be summarized
by the following payoff matrix:

f
m A R

A xf , xm δxm − Lm, δxf
R δxm, δxf − Lf δxm, δxf

. (1)

Setting Lf = Lm = 0 will correspond to the payoffs in the CAE, where no loss of face can occur
by design. In an ARE with males moving first Lf = 0 and Lm = L > 0, and in a FRE with the same
LoF on both sides, Lm = Lf = L > 0. We limit our attention to the case of symmetric loss of face
and to symmetric equilibria of the game in the FRE.

While our setting does not allow for a generic analysis of matching games, it captures a large set of
interactions in matching environments where loss of face may be relevant. Our assumptions embody
agreed-upon preferences over a partner’s type – partners are better or worse along a single dimension,
although this may be a reduction of several characteristics.

Individuals’ acceptance decisions will depend on the inference they make about their match’s type
given the signal and given the event of being accepted. We will look for Perfect Bayesian Equilibria
and consider tatonnement stability, i.e., stability with respect to the iterative responses to deviations
or “cobweb dynamics” (see Hahn, 1962; Dixit, 1986; and Vives, 2005). In this setting tatonnement
stability will require that, if one player slightly deviates from equilibrium play, the other player’s best
response, and the best response to this, ad-infinitum, will gradually move best responses back to the
equilibrium play. (We will also mention when our results hold under the trembling-hand perfection
refinement.)

5 Solving the Model

We note first that the game always has a trivial coordination failure equilibrium where both players
always reject.15 If i’s match rejects with certainty, then for i, rejecting yields payoff δxi, which is at
least as high as i’s payoff when accepting, and strictly greater when i is vulnerable to loss of face.

5.1 Individual best reply functions

High types’ best replies

For an individual i of type h and gender g in a match (i, j), playing R yields a payoff δh, whereas
playing A either yields xj (if j accepts) or δh − Lg (if j rejects). High types of both genders find it
weakly profitable to accept after observing a signal s if and only if the expected payoff from accepting
meets or exceeds the outside option. I.e., for a high type of gender g ∈ {m, f}, letting g′ ∈ {m, f} 6= g,

15This is distinct from a case where low types always accept and high types always reject, which we call the C-F
Equilibrium; we return to this below.

10



A is weakly preferred if

pfh(s)
(1− p)f`(s) + pfh(s)︸ ︷︷ ︸

pr(xj=h|s)

[qg′(h, h)h︸ ︷︷ ︸
marry h

+ (1− qg′(h, h))(δh− Lg)︸ ︷︷ ︸
rejected by h

]

+ (1− p)f`(s)
(1− p)f`(s) + pfh(s)︸ ︷︷ ︸

pr(xj=`|s)

[qg′(`, h)`︸ ︷︷ ︸
marry `

+ (1− qg′(`, h))(δh− Lg)︸ ︷︷ ︸
rejected by `

] ≥ δh︸︷︷︸
solitude

, (2)

where qg(xj , xi) is the probability that an agent j of type xj and gender g accepts an (opposite-gender)
agent i of type xi. Rearranging the above: an h considers the “gains”—relative to solitude—from
marrying another h to the losses from marrying an `, taking into account the probability of rejection
and weighting the relative probabilities of each type, and taking into account the information conveyed
by the event of being accepted (i.e., the acceptance curse). Hence, an h of gender g accepts if

pfh(s) [qg′(h, h)(h− δh)− (1− qg′(h, h))Lg]︸ ︷︷ ︸
E(an h’s “gains” if playing A vs. an h)

≥ (1− p)f`(s) [qg′(`, h)(δh− `) + (1− qg′(`, h))Lg]︸ ︷︷ ︸
E(an h’s “losses” if playing A vs. an `)

, (3)

noting that the first terms on each side express the relative conditional probability the partner is of
each type and “losses” are defined as the negative of gains.

Note that the overall probability of a player i being accepted by some j as a function of types,
qg(xj , xi), does not depend on the signal s that player i observes, as signals are drawn independently
and individuals do not observe the signals of their own type. I.e., in condition 3, only fh(s) and f`(s)
depend on the observed signal s. The mlrp then implies that there is a unique ŝ such that an h

accepts if and only if (s)he observes s ≥ ŝ. That is, high types (of both genders) use “floor” threshold
strategies, accepting only if the signal exceeds their threshold, ŝm and ŝf respectively. This implies
that an h of gender g accepts an agent of type x with probability

qg(h, x) = 1− Fx(ŝg), with g ∈ {m, f}.

Low types’ best replies

The condition for low types of gender g to prefer to accept is similar to (3); using qg(h, `) = 1−F`(ŝg)
it is given by

pfh(s) [(1− F`(ŝg′))(h− δ`)− F`(ŝg′)Lg]︸ ︷︷ ︸
E(an `’s “net gains” if playing A vs. an h)

≥ (1− p)f`(s) [qg′(`, `)(δ`− `) + (1− qg′(`, `))Lg]︸ ︷︷ ︸
E(an `’s “losses” if playing A vs. an `)

, (4)

where g′ 6= g. Again the mlrp implies that the condition is monotone in s and implies there is at most
one value of s such that the condition holds with equality. However, it may never hold with equality:
as low types prefer a marriage to either type partner, for Lg close to zero an ` (of gender g) will prefer
to play A regardless of the signal received, and strictly prefer this unless both types of the opposite
gender play “reject always”.

Rearranging the above, we can characterize the low type’s best response. For Lg sufficiently small
“always accept” is a weakly dominant strategy for low types, and a strict best response where any type
of the opposite gender sets an interior threshold. More generally, “low types always accept” strategies
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(leading to qm(`, `) = qf (`, `) = 1), are mutual best replies if

p
fh(s)
f`(s)

[(1− F`(ŝg′))(h− δ`)− F`(ŝg′)Lg] ≥ −(1− p)(`− δ`) for g ∈ {m, f},∀s ∈ [s, s̄], (5)

which will hold if and only if16

(1− F`(ŝg′))(h− δ`)︸ ︷︷ ︸
an `’s expected gain if plays A vs. an h

≥ F`(ŝg′)Lg︸ ︷︷ ︸
`’s expected LoF if plays A vs. an h

. (6)

Condition: `-types prefer to accept against a certain h

This condition also implies that the left-hand side of (4) is non-negative. Intuitively, if low types
expect a (weak) gain from accepting against a certain h, and they know other low types always accept,
then no signal will deter them from accepting.

However, even where (6) holds, there may also be an equilibrium where low types do not always
accept. If low types of the opposite gender are very selective, the expectation of the gain from marrying
an ` may not outweigh the risk of LoF (i.e., the right-hand side of (4) may be positive). Thus, just as
the high types do, low types may also use a floor threshold ŝg`, rejecting after observing signals that
are “too low”. Intuitively, even though other `’s are less selective, accepting against a certain-h may
yield an expected net benefit, while accepting against a certain-` may yield an expected loss, because
the gain to marrying high exceeds the gain to marrying low.

Next consider the case where (6) fails, implying that the left-hand side of (4) is negative, and low
types expect a loss from accepting against a certain h. Here, even if low types of the opposite gender
always accept, if there is a large enough chance the match is an h, an ` will prefer to reject. Formally,
there is an s̃ ∈ (s, s) such that a low type (of gender g) prefers to reject after observing s > s̃, implying
qg(`, `) < 1. In turn, if qg′(`, `) < 1 (and (6) fails), there is either a unique value of s such that (4)
holds with equality, or it never holds.

The former case implies that a male ` uses a single interior threshold, the latter implies that
he never accepts. As low types here seek to avoid accepting when matched with a high-type, this
threshold must be a ceiling, with low types accepting only after observing lower signals, i.e., if s < šg`,
with šg` = s for the shut-down response. (We use the inverted hat to distinguish ceiling thresholds.)17

We call such behavior “reverse snobbery”.

Summary of best replies

Lemma 1 (Individual behavior). In a Nash equilibrium players use threshold strategies: high types
use floors, i.e. “accept iff s ≥ ŝg” for g = m, f , and low types may use either floors (“accept iff
s ≥ ŝg`”) or ceilings (“accept iff s ≤ šg`”). If low-type males (females) prefer to play A against a
certain-h of the opposite sex (i.e., if condition (6) holds for this gender), then low types of this gender
use floors. Here, if Lg is sufficiently small, then if females (males) accept with positive probability,
then male (female) low-types always accept (i.e., this floor is ŝg` = s) otherwise ŝg` > s. If condition
(6) does not hold for males (females), then low types of this gender use ceilings.

16Proof of equivalence: The bracketed term in 5 represents an `′s expected net gain, relative to solitude, from accepting
when faced with a known h. If this is positive, the left-hand side is minimized at s = s, where it equals zero (zero relative
probability of a high-type); this is thus equivalent to 6. If the bracketed term is negative, it is minimized at s = s, which
implies that this condition fails whenever 6 also fails.

17Note that all equilibrium strategies will involve only at most a single nontrivial threshold, a floor or a ceiling. Thus,
to save notation, where we denote a ceiling threshold š one can assume a trivial floor threshold ŝ = s and vice-versa.
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The proposition describes the players’ best replies: the mlrp ensures every type will have a unique
optimal threshold value given any behavior of the other types (see appendix for detailed best-response
functions). Summarizing, low types are either picky, using floors, they act as reverse-snobs, using
ceilings, or they are indiscriminate, accepting any signal. Note that the responses as characterized
in Lemma 1 allow for multiple equilibria. For instance, all types playing “reject” independently of
observed signals is an equilibrium. Moreover, plugging Lf = Lm = L into the above and using
symmetry, we see that symmetric LoF implies there is a symmetric equilibrium, where ŝm = ŝf and
ŝm` = ŝf`, although this may take the form of a coordination failure.

5.2 Equilibria and stability

We next derive a sufficient condition for the existence of “interior equilibria”: equilibria where high
types of both genders accept with positive probability, i.e., where ŝm, ŝf ∈ [s, s). All work is in
Appendix A.

We consider the best reply functions derived from (3). Note that, independent of ŝf` and ŝm`, a
high-type male’s best response to ŝf = s is ŝm > s, as, even if h-type females always accept, a low
enough signal implies the match is almost surely an `. Taking the total differential with respect to ŝm
and ŝf yields the slope of a high m’s best reply function (henceforth, brf ) in terms of ŝf (equation 22
in the appendix). This brf has zero slope at s and the slope becomes positive for higher values of ŝf
(independent of ŝf`, ŝm`, the `-types’ thresholds). Hence, if this slope exceeds unity at ŝf = s (again,
independent of `-types’ strategies) then the brf crosses the 45◦ line at least once, implying that an
interior equilibrium exists (for graphical intuition, see Figure 2).

Since a player’s best reply only depends on his or her own LoF parameter Lg this logic applies
to all the environments that we consider. The slope of the brf at ŝf = s will also determine whether
an equilibrium at ŝf = ŝm = s is tatonnement-stable. This case, where high types “always reject”
(although low types still may accept) has the flavor of a coordination failure; we call this the “C-F
equilibrium”. With large enough Lg, this becomes risk-dominant, as increasing LoF decreases the
possible loss when unilaterally deviating from an interior equilibrium, and increasing LoF increases
the possible loss when deviating from the C-F equilibrium. Proposition 1 states this formally.

Proposition 1 (Existence and Stability of Interior and C-F Equilibria).

(a) If Lg is sufficiently close to 0 for both genders and, for both genders g ∈ {m, f}

fh(s)2 > −f ′`(s)
1− p
p

δh− `
h− δh+ Lg

, (7)

i.e., if f ′`(s) ≤ 0 is sufficiently close to 0, then a tatonnement-stable interior equilibrium with
ŝm, ŝf ∈ (s, s) exists.

(b) If condition (7) holds, then all “C-F equilibria”— i.e., equilibria where ŝf = ŝm = s—are
tatonnement-stable and trembling-hand perfect if and only if Lg > 0 for some g = m, f .

(c) For large enough Lg, the C-F equilibrium must risk-dominate all other equilibria.

Condition (7) requires the right tail of f`(s) to be sufficiently flat, or the right tail of fh(s) suf-
ficiently high (implying that the likelihood of having met a high type still increases even for high
signal realizations), or the high type’s loss from matching with a low type sufficiently low compared
to remaining solitary. It would be implied by ∂f`(s)

∂s = 0, i.e., if the `’s signal distribution becomes flat
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at s. This is sufficient, but by no means necessary, see the numerical example in section 5.2.4. For the
remainder of the paper we focus on the case where (7) holds and thus where an interior equilibrium
is guaranteed without LoF.18

5.2.1 CAE: No Loss of Face

Proposition 1 shows that loss of face has a dramatic effect on equilibrium behavior: in particular, a
strategy profile involving coordination failure among high types becomes a stable equilibrium, and
possibly the only one. We thus inspect the case of Lg = 0 for both genders (corresponding to the
CAE, where players know that other players do not observe their action) and examine the effects of
increasing LoF. As the corner equilibria are unstable when Lg = 0 for both genders, we consider a
(stable) interior equilibrium. As noted above (and implied by Lemma 1), without LoF, and where
high types do not shut down, the low type’s strict best response is to play “always accept”. Here, high
types of both genders face the same optimization problem. A male h will find accepting profitable if

fh(ŝm)
f`(ŝm) ≥

1− p
p

δh− `
(1− Fh(ŝf ))(h− δh) ,

and analogously for a female h. The resulting best-reply function is shown in Figure 2, where the
male h’s best reply crosses the 45◦ line exactly once.

Female cutpoint
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s

45°

Male Best
Response

Figure 2: Male high type’s best response to high type female cutpoints; the condition (7) in Proposition (1) holds here.

As low types always accept and the game is symmetric by gender, ŝm = ŝf := ŝ∗ must hold in a
Nash equilibrium (supposing the contrary leads quickly to a contradiction). As noted above, ŝ∗ > s

in any stable equilibrium. Since agents’ actions do not affect other agents’ information sets, beliefs
are always formed according to Bayes’ rule, and the issue of out-of-equilibrium beliefs will not arise.
This yields the following proposition.

Proposition 2. If Lg = 0 for g ∈ {m, f} and Condition (7) holds then at least one interior stable
equilibrium exists, and in any stable equilibrium

1. low types always accept,

2. high types use symmetric cutoff strategies, accepting if s > ŝm = ŝf := ŝ∗, and
18If (7) does not hold for Lg = 0, the C-F equilibrium will be stable, and there may or may not also exist stable

interior equilibria.
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3. ŝ∗ ∈ (s, s) defined by
fh(ŝ∗)
f`(ŝ∗)

p

1− p = δh− `
(1− Fh(ŝ∗))(h− δh) . (8)

The above also implies that the trivial coordination failure (where both types always reject) is
unstable without LoF. Simple calculations yield the following results. Where Condition (7) holds,
expected payoffs for types ` and h in a stable equilibrium of the game without LoF (or for any
strategy profile where low types always accept) are

v(`) = δ`+ p(1− F`(ŝ∗))(h− δ`) + (1− p)(`− δ`) and

v(h) = δh+ p(1− Fh(ŝ∗))2(h− δh)− (1− p)(1− F`(ŝ))(δh− l). (9)

Note v(h) > v(`). The number of marriages is (1−p)2 + 2p(1−p)(1−F`(ŝ∗)) +p2(1−Fh(ŝ∗))2, which
strictly decreases in ŝ∗.

Intuitively, an ` will not marry (and will thus get δ`) unless he meets another ` or fools an h. An
h will marry only if she meets another h and they both send very positive signals, or if she is fooled
by an ` (i.e., she meets an ` who sends a high enough signal).

As noted, in a stable interior equilibrium without LoF, an ` always accepts; in fact, even if there
is no stable equilibrium,“reject always” is weakly dominated for low types. This implies an h rejects
at least against the lowest signals. Thus the acceptance behavior of players of type h and ` differs in
equilibrium, implying that being accepted also conveys some information about the match’s type (the
“acceptance curse” in Chade, 2006).

5.2.2 Symmetric Full Revelation Environment: (FRE) Positive Cost of Loss of Face

We next consider an environment in which both genders are symmetrically vulnerable to loss of face,
implying Lm = Lf ≡ L. Considering L increasing from L = 0, condition (4) ensures that for small
enough L, low types still find it optimal to play “accept” unconditional on the signal in an interior
equilibrium. This implies that for a small enough L an h of gender g ∈ {m, f} will have a threshold
ŝg implicitly defined by:

fh(ŝg)
f`(ŝg)

p

1− p = δh− `
(1− Fh(ŝg′))(h− δh)− Fh(ŝg′)L

, (10)

if (1 − Fh(ŝg′))(h − δh) > Fh(ŝg′)L and ŝm = s otherwise, where g 6= g′. Figure 3 shows the male
h-type’s best response to ŝf with and without positive loss of face.

Since the best replies are symmetric, ŝf = ŝm = ŝh defined by (10), or by ŝ∗h = s (the C-F
equilibrium).

Proposition 1 states that the C-F equilibrium may arise as a stable equilibrium as one moves from
the benchmark setting (the CAE, or in general whenever Lg = 0) to an environment with a positive
LoF term. Without LoF (where condition 7 holds), only an interior equilibrium is stable; for positive
L the C-F equilibrium is always stable. If the C-F equilibrium is plausible, this suggests that LoF
may worsen outcomes:

Remark 1. Compared to an interior equilibrium allocation without loss of face, the C-F equilibrium
in an environment with LoF induces

1. a lower overall marriage rate,
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Figure 3: Male high-type’s best response to (high type) female cutpoints, with and without loss of
face; condition 7 holds here

2. lower aggregate surplus (even without directly including LoF in the surplus calculation), and

3. lower expected surplus (again, even without subtracting the LoF) for both types of both genders.

(Details of this remark are in the appendix.)

We next consider the monotone comparative statics of the equilibrium in L. For small enough
L, low types always accept, implying that equation (10) determines the high types’ equilibrium play.
We examine the behavior of (10) (as a system of two equations for g = m, f) in the neighborhood
of the equilibrium threshold ŝ∗ as we increase L. This yields the following statement (proof in the
appendix).

Proposition 3. Suppose (7) holds where Lg = L = 0. Then there is L̄ > 0 (defined by condition 6
and expression 10) such that for all L ∈ [0, L̄] there is an interior, stable equilibrium where low types
play “accept” unconditionally, and high types use thresholds ŝ∗ implicitly defined by (8).

Under these conditions, for a small increase in L to L′ ∈ (L, L̄] low types still always accept, i.e.
ŝ` = s, and the symmetric equilibrium floor cutoffs for high types will increase in a stable interior
equilibrium (and will decrease in an unstable interior equilibrium).

For L > L̄, in any interior stable equilibrium low types use ceilings, i.e. play “accept if s ≤ š`”, and
high types use thresholds ŝh implicitly defined by (20) and (21). If L̄ > δh−`, for a small increase in L
to L′ ∈ (L, L̄] the symmetric equilibrium ceiling cutoff for low types will decrease, while the symmetric
equilibrium floor cutoffs for high types will increase, i.e., both types play “accept” less often.

For intuition, consider that for equilibrium dynamics, becoming more selective by increasing one’s
cutoff has a twofold effect on the expected quality of a marriage partner. First, there is a screening
effect, increasing the expected quality of a match holding constant the acceptance behavior of the other
gender. Second there is a supply effect in the opposite direction: if one side becomes more selective,
then the other side will react by also becoming more selective, implying a greater acceptance curse
on both sides.19 In the above case, while L remains small, the supply effect only stems from the high

19The equilibrium tradeoff between screening and the acceptance curse was present without LoF. However, in the ARE
LoF makes accepting less attractive for males, and this effect is stronger the more females reject, implying a steeper
reaction function.
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types on the other market side.20

Next consider where L > L̄. Here, the condition L̄ > δh − ` implies that the LoF from being
rejected exceeds a high type’s cost of marrying down, so a high-type who plays accept prefers that a
low type accepts her. This implies that as low types become more reverse-snobbish, high types are
less motivated to play accept against them, thus they become more selective. The above proposition
presents a sufficient condition for this intuitive comparative static.

However, a counter-intuitive response also is possible. If L̄ < δh−`, then, for L ∈ [L̄δh−`], while L
is large enough to make low types become reverse snobs, it is small enough that high types prefer that
low types play reject. Thus, in this range, as L increases, and low types become more reverse-snobbish,
high-types find lower signals less risky, and thus may decrease their threshold, becoming less choosy.
We offer a numerical example of this in the appendix (page 30) .

5.2.3 Asymmetric Revelation Environment (ARE): Positive Cost of Loss of Face

We turn now to the ARE, where only one market side is subject to LoF. For the sake of concreteness
suppose that males move first and know they are observed by females, and thus Lm = L but Lf = 0.
The ARE is of particular interest. Firstly, it allows us to separate out the direct and indirect effects
of LoF; for the vulnerable side and for the opposite side. Secondly, it describes a common situation,
and one that can be easily engineered by requiring one side to move first. Thirdly, it provides a
simpler environment to show the intriguing possibility that the high-types equilibrium cutoffs may
be nonmonotonic in L, and that LoF may even increase the rate of successful matches beyond the
benchmark (CAE) case!

Propositions 1 to 3 carry over to the ARE almost unchanged. Under Condition (7) the CF-
equilibrium is again tatonnement-stable even if only males are vulnerable to LoF.

With asymmetric LoF, equilibrium behavior is also asymmetric. Analogously to Lemma 1 the
three nontrivial thresholds (for high-type females, high-type males, and low-type males) are defined
by the system of equations defining the observed signal that makes each indifferent between accepting
and rejecting:

p

1− p
fh(ŝf )
f`(ŝf ) = δh−`

h−δh
Fh(šm`)

1−Fh(ŝm) , (11)

p

1− p
fh(ŝm)
f`(ŝm) = δh−`

h−δh
1

1−Fh(ŝf )(1+L/(h−δh)) , and (12)

p

1− p
fh(šm`)
f`(šm`)

= l−δ`
h−δ`

1
(1−F`(ŝf ))(1+L/(h−δ`))−1 . (13)

Once again high types use floors, ŝf and ŝm.
In contrast to the FRE, since females face no LoF, by (4) low females always accept (in any stable

equilibrium); i.e., ŝf` = s̄, šf` = s. Thus (again by (4)) low males must always accept for small L ≥ 0
that satisfies (6).21 With severe LoF, (i.e., L > L̄ as defined in Proposition 3) they attempt to avoid
being rejected and use the signal to screen for low females, using a ceiling threshold šm`. Thus, in
the ARE, for large L the low males act as reverse snobs.22

20Note that we cannot rule out a “perverse” equilibrium in the FRE where low types use nontrivial floors even though
L < L̄; if low-types on one side are very selective, low-types on the other side may may prefer to play reject against them
to avoid the risk of LoF, (noting that the marriage gain is also higher in the latter case).

21This rules out the potential “perverse” equilibrium in the FRE (see previous footnote), making the non-monotonic
response below a more general result.

22Reverse snobbery (on both sides) was also possible in the symmetric FRE, if low-types of both genders preferred to
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As L increases further low males become more reluctant to accept. This reduces high females’
risk of being fooled, making them more eager to accept (lowering their thresholds). This in turn
drives down the male h-types’ thresholds. The implications are intriguing: as L increases from 0, high
types become first less and then more inclined to accept. In contrast, as L increases from 0, low-
type male’s behavior first remains constant (always accepting) and then becomes more strict (reverse
snobbery).23,24 This implies that each type’s surplus is non-monotonic. The aggregate matching
frequency may also be non-monotonic, first decreasing and then increasing in L, and positive LoF in
an ARE may even increase the number of successful matches (relative to no LoF), as demonstrated
in the next section.25

5.2.4 ARE: triangular distribution example illustrating non-monotonicity in L

The effect of changes in L on equilibrium behavior depends on the parameters and the distribution
function; it is ambiguous in general. As we were not able to generally characterize all equilibrium
comparative statics, we focus on a convenient specification. Suppose the signal distribution is a
triangular distribution of the form Fh(s) = s2 and F`(s) = 2s − s2 with s ∈ [0, 1]. Under this
assumption an equilibrium without LoF is given by all low types playing “accept” and high types
using the threshold:

ŝ∗ = 1
2

(√
1 + 41− p

p

δh− `
h− δh

− 1
)
. (14)

The equilibrium is interior and stable if 1−p
p

δh−`
h−δh < 2, i.e., if condition (7) is satisfied, implying that

the slope of the high types’ brf is greater than 1 as s approaches s. Proposition 3 carries over (details
in appendix) and thus both ŝm and ŝf increase in L for L ∈ [0, L̄] as defined in the proposition.

With a larger loss of face L > L̄ term the equilibrium thresholds must satisfy:

ŝf : p
1−p

ŝf

1−ŝf
= δh− `

h− δh
š2
m`

1− ŝ2
m

, (15)

ŝm : p
1−p

ŝm
1−ŝm

= δh− `
h− δh

1
1− ŝ2

f (1 + L/(h− δh))
, and (16)

šm` : p
1−p

šm`
1−šm`

= l − δ`
h− δ`

1
(2ŝf − ŝ2

f )(1 + L/(h− δ`))− 1
. (17)

We offer a numerical case of this parametric example. Setting p = 1/2, h = 1, ` = 1/4 and
δ = 2/3 (satisfying condition 7), figure 4 shows the equilibrium outcome as L increases. Indeed both
high types’ cutoffs first increase in L up to L̄, and then both decrease as the low male’s cutoff starts
decreasing. This implies that as L increases, high-types’ chance of getting married first decreases and
then increases; as does low types’ chance of marrying high (both in absolute and relative terms).

reject against a known-high-type (see Lemma 1).
23Finally, for very large L the CF-equilibrium becomes risk-dominant, as noted above, and the male `-types’ ceiling

approaches s, implying that the overall marriage rate converges to zero.
24We conjecture that the ARE has an interior equilibrium for any L. As L → ∞, low males accept against only the

lowest signals, while low females always accept. High males only accept for high enough signals, while high females (who
don’t face LoF) accept against all but the lowest signals, as low males have nearly dropped out. Thus high males can
accept against higher signals without fear of LoF.

25We speculate that for stable, interior equilibria in the ARE, an increase in L reduces marriage payoffs for all low
types. For small L, high-types’ cutoffs increase in L (prop. 3). For L > L̄, low males become reverse snobs and lower
their ceiling in L̄, and high types reduce their floors in response. The net effect of this latter increase in L must harm all
low types. This is because high types decrease their floors only when this implies a greater probability of matching other
high types, so the decrease in the floor is overcompensated by the decrease in the low type’s ceiling, making a mixed
marriage less likely.
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Figure 4: Thresholds and percentage of possible marriages formed as functions of loss of face

Turnover—i.e., the number of marriages formed as a share of possible matches—first declines and
then increases in L. It may even increase beyond the turnover achieved for L = 0; for example no
LoF corresponds to a 34.4% turnover, while at L = 2/3 turnover is 35.3%.26 Increases in L are also
accompanied by more assortative mating: homogamous ((h, h) or (`, `)) marriages increase as a share
of all marriages.

We can extend this to the general parametric example. Suppose that 1−p
p

δh−`
L̄+h−δh ≥ 1 holds for the

critical value L̄ defined by condition 6, and suppose a sufficiently great “pizazz ratio” h/`. Then (for
this parametric example) ŝf and ŝm increase in L for L < L̄ and decrease for L > L̄, as shown in the
appendix (page 30). Let m(xf , xm) indicate the measure of marriages between females of type xf and
males of type xm. These responses imply that for L < L̄, m(h, h), m(h, `) and m(h, `) all decrease
in L, while m(`, `) remains constant. They also imply that for L > L̄, m(h, h) and m(h, `), m(`, h)
increase in L, while m(`, `) decreases in L.

This triangular distribution example and the specific case plotted in figure 4 demonstrate the
possibility of several non-intuitive outcomes, summarized below (details in the appendix).

Remark 2. In an ARE under equilibrium behavior, several crucial outcomes may be non-monotonic
in L, both increasing and decreasing as LoF increases. These outcomes include (i) the high types’
probability of getting married, (ii) the low types’ probability of marrying a high type, and (iii) the
overall marriage rate (turnover).

26We derive overall turnover for the numeric example only, in the appendix.
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Which side is affected more?

Only the market side that proposes may incur loss of face, suggesting a contrast from Gale and
Shapley (1962), where the proposers in their deferred-acceptance algorithm secure better matches in
equilibrium. For instance, if men propose to women the men-optimal matching outcome will attain.
This method is often used in practice, e.g. the student-optimal algorithm in school choice. (If LoF is
relevant here, our setup suggests a potential cost to students, which a CAE can avoid.) However, as
noted below, the side that doesn’t face direct LoF (here, females) may still suffer indirect harm, and
this may even exceed the direct cost (to the males).

We consider, for the ARE in general: Is the side that bears the loss of face, (here, males) more
affected than the other side? Note first that low males are always at least as selective as low females, as
the latter always accept. For high types, the possibility of losing face may make males more reluctant
to accept than females. On the other hand, this effect will increase the females’ acceptance curse: it
will decrease the probability that, given a female is accepted, her match was high; thus making high
females more cautious. The first effect dominates:

Proposition 4. In any equilibrium in an ARE with Loss of Face, high males are more selective than
high females, i.e., ŝf ≤ ŝm; this holds strictly if ŝm < s, i.e., if we rule out the C-F equilibrium.

Proof. Let L > 0. Suppose that ŝf ≥ ŝm. Then the monotone likelihood property and equations (12,
11 and 13) imply that

Fh(ŝ`) ≥
1− Fh(ŝm)

1− Fh(ŝf )(1 + L/((1− δ)h)) > 1,

a contradiction.

Thus, considering high types of both genders, unless LoF induces a coordination failure, the gender
facing direct LoF will be more “snobbish” than the gender sheltered from it. This has a surprising
extension: under certain conditions the side not facing direct LoF (females) may suffer more from it!

Note that when L is small enough that ŝ` = s, the probability that a high male marries “below
his station”: 1− F`(ŝ∗m), is less than 1− F`(ŝ∗f ), the probability that a high female does so.

Remark 3. In any stable equilibrium in an ARE with a small amount of LoF: (i) high males marry
less often than high females but get better spouses on average, and (ii) low males marry more often
than low females and get better spouses on average; thus for low types, a small amount of LoF on one
side reduces the marriage payoffs on the other side more.

The vulnerable side may suffer less even including the direct LoF costs:

Remark 4. In an ARE, for, δh sufficiently close to `, a small LoF term causes low males’ expected
total payoffs to decrease less than those of low females even including the direct cost of losing face.

Proof. In the ARE, the change in low types’ total payoffs as L increases from zero is, for low males
and females, respectively:

∂v(`,m)
∂L

= −pF`(ŝ∗f )− p(h+ L− δ`)
∂F`(ŝ∗f )
∂s

∂ŝ∗f
∂L

and

∂v(`, f)
∂L

= −p(h− δ`)∂F`(ŝ
∗
m)

∂s

∂ŝ∗m
∂L

.

For L = 0 the equilibrium is symmetric, so that we know that ŝ∗f = ŝ∗m. Moreover, by Proposition 4,
in a ∂ŝ∗f

∂L < ∂ŝ∗m
∂L . Hence (as noted in the previous remark), starting at L = 0 a marginal increase in L
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will decrease male ` types’ expected marriage payoffs less than those of female ` types. Suppose δh
is arbitrarily close to `, so high types only slightly prefer solitude to marrying low. This leads high
types to become very permissive in the no-LoF equilibrium, i.e., ŝ∗ will approach s (as clearly seen in
equation (14) for the parametric example), implying that F`(f̂∗) will be arbitrarily close to 0 for δh
close enough to `. Then ∂v(`,m)

∂L > ∂v(`,f)
∂L for L in a neighbourhood of L = 0.

6 Conclusions and suggestions for future work

Our simple models illustrate how the presence and level of loss of face may worsen (or improve)
outcomes, providing conditions and intuition for each. There are clear real-world applications. Some
mechanisms and policies may be more efficient than others in the presence of LoF concerns, and firms
and policymakers should take this into account. Although setting up a Conditionally Anonymous
Environment may take some administrative effort, and may require a third-party monitor, we imagine
many cases in which it will lead to more and better matches and improve outcomes. Consider, for
example, the matching of advisors and students in a Ph.D. program. A “tick box system” might work,
although some might be reluctant to participate in such an impersonal system. More generally, the use
of a knowledgable, reliable, and discrete intermediary, might be more effective. Our paper motivates
the use of such “matchmakers” in many contexts.27 We further note (considering the ARE) that if
only one side is vulnerable to LoF costly intermediaries may not be necessary; it would be sufficient
to let the other side choose first (“propose”).

However, in considering implementing a CAE, designers should look closely at the extent to which
LoF seems to be shutting down markets and how it is affecting participants’ strategies. As seen in
the parametric example, LoF may also improve outcomes if it induces low types to become reverse
snobs, and this leads high types to become less selective. However, such gains come at the expense of
low types and, at least in the parametric example, lead to increased assortative mating and perhaps
greater inequality.

Our modeling can be expanded and generalized. For example, while we assume linear payoffs in
the match’s type, future work could consider super- or sub-modularities in the marriage production
function.

In a model allowing both inherent LoF and reputation, the effects of revealing offers on match
efficiency may be complex. If a player is known to be vulnerable to LoF, his making an offer might
actually be interpreted as a signal of his confidence that he will be accepted, thus a positive signal
about his own type. Whenever a player rejects another, there is some possibility that he did so
merely to avoid losing face; noting this possibility should presumably “soften the blow” to a player’s
reputation when he is rejected.

Relaxing the assumptions further, preferences over types may be heterogeneous or involve a hor-
izontal component, this may change the equilibrium reputation effects of revealing offers. We might
also consider the effects of a player who is either altruistic—suffering when the other player loses
face—or spiteful, relishing in making others lose face. Consider a sequential game where only the first

27Merely encouraging face-to-face meetings may allow colleagues to reveal their potential interest slowly and condi-
tionally, lessening the risk of LoF from a “desperate bid”. This may help explain Boudreau et al (2012); who exogenously
facilitated brief meetings between local scientists, and found significant increases in their probability of collaborating.
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mover is vulnerable to LoF and the second mover is a known altruist. Here the first-mover might
manipulate this altruism, playing “accept” and in effect guilting the second-mover into marrying her;
this could lead to inefficient matching.

Empirically, our anecdotal and referential evidence for LoF should be supplemented by experi-
mental evidence. Field experiments (or contextual lab work) in the mold of Lee and Niederle (2015)
will help identify preferences and beliefs. Abstract “induced values” experiments may also shed light
on strategic play and coordination in our simple environment. While a variety of experimental pa-
pers, (see footnote) consider such environments, these do not (i) rely on homegrown preferences and
beliefs over social interactions or partnerships, (ii) have face-to-face interaction, (iii) test the single-
shot matching of our model, (iii) compare environments such as our CAE and ARE, nor (iv) have a
subjects’ previous choices and history reported to later matches.28 By varying whether choices are
revealed on one side, both sides, or neither side, we can identify how fear of LoF affects strategic play
independent of self-image concerns and curiosity motives. However, distinguishing inherent LoF from
reputation concerns may be more challenging; this will require an environment where LoF seems likely
to be psychologically meaningful, but full anonymity is common knowledge.

As well as strengthening the evidence for the existence of the LoF motivation, these experiments
should examine the causes and correlates of LoF, and its efficiency consequences in various environ-
ments. Do people act strategically to minimize their own risk of LoF? Will they be willing to pay to
preserve the anonymity of their offers? Who is most affected by loss of face and when (considering sex,
race, popularity, status, psychometric measures, etc.)? How can these issues be addressed to improve
matching efficiency in real-world environments?

Our results, supplemented by empirical work, will have important implications for government
and managerial policy. Search and matching models examining the workings of labor market policies
may need to adjust for the presence of LoF. Our research suggest that policies that subsidize or
encourage sending applications will appear more advantageous. Organizations may want to closely
consider when offers, payments, proposals, and attempts should be made transparent, and when they
should be obscured. Matchmakers and middlemen in many areas, from actual marriage brokers to
career “headhunters” to venture capital intermediaries may want to guarantee that unrequited offers
will be kept secret. As previously noted, secrecy may be helpful for the success of both international
negotiations and negotiating over business mergers. Both parties may want a mutual guarantee that
no offers or proposals will be leaked. Finally, we note a hub of “sharing economy” organizations
promoting forms of cooperation and sharing that appear efficient but are not yet widely practiced.
The fear of LoF may have served as a barrier to these activities in the past; setting up a “risk-free
partnering exchange” may be helpful.
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Note: For space concerns, all of the appendices below should be placed online.

A Proofs and characterizations

Best responses (Lemma 1 )

The following conditions describe male best responses given female strategies, and expresses these for
the case of symmetric behavior. Responses for females are analogous (switching m and f).

1. If a male ` prefers to play A against a certain-h female, i.e., if condition (6) holds for males, i.e.,
(1−F`(ŝg′))(h−δ`)−F`(ŝg′)Lm ≥ 0, then male `-types use floors, i.e. “accept iff s ≥ ŝm`”. If the
comparable condition holds for female `-types, they also use floors, and ŝm` = max{s,min{s, ŝ}},
where ŝ satisfies:

fh(ŝ)
f`(ŝ)

p

1− p = F`(ŝf`)Lm − (1− F`(ŝf`))(`− δ`)
(1− F`(ŝf ))(h− δ`)− F`(ŝf )Lm

. (18)

Under these conditions, male h-types play “accept iff s ≥ ŝm”. The floor threshold ŝm =
max{s,min{s, ŝ}}, where ŝ satisfies:

fh(ŝ)
f`(ŝ)

p

1− p = (1− Fh(ŝf`))(δh− `) + Fh(ŝf`)Lm
(1− Fh(ŝf ))(h− δh)− Fh(ŝf )Lm

. (19)

2. Otherwise `-type males use ceilings, i.e., “accept iff s ≤ šm`”. Again, in a symmetric equilibrium,
where the comparable condition holds for females, šm` = max{s,min{s, š}}, where š satisfies:

fh(š)
f`(š)

p

1− p = (1− F`(šf`))Lm − F`(šf`)(`− δ`)
(1− F`(ŝf ))(h− δ`)− F`(ŝf )Lm

. (20)

Under these conditions, male h-types use floor thresholds ŝm = max{s,min{s, ŝ}}, where ŝ

satisfies:
fh(ŝ)
f`(ŝ)

p

1− p = Fh(šf`)(δh− `) + (1− Fh(šf`))Lm
(1− Fh(ŝf ))(h− δh)− Fh(ŝf )Lm

. (21)

Proof of Proposition 1

Totally differentiating (3), using qg(h, h) = Fh(ŝg), and rearranging, the slope of a high male’s (the
female case is analogous) best reply function (henceforth “brf ”) must follow:

∂ŝm
∂ŝf

= fh(ŝm)fh(ŝf )(h− δh+ Lm)
f ′h(ŝm)[(1− Fh(ŝf ))(h− δh+ Lm)− Lm]− 1−p

p f ′`(ŝm)[qf (`, h)(δh− `) + (1− qf (`, h))Lm]
.

(22)
Therefore ∂ŝm

∂ŝf
= 0 if ŝf = s. Inspecting (3) we see that ŝm > s if Lm > 0 or if qf (`, h) > 0. Recall

that if Lm = 0, low males always accept (other than in a trivial coordination failure equilibrium).
This implies low females prefer to accept at least against the lowest signals, implying qf (`, h) > 0.
Thus ŝm > s for any high female brf, implying a high male’s brf is strictly positive at s. Using (3),
the best-reply ŝ∗m(ŝf ) strictly increases in qf (h, h) and thus in ŝf and ŝ∗m(s) = s.

Given this, for an interior equilibrium to exist ŝ∗m(ŝf ) must cross the 45◦ line at least once for
some interior ŝf (and similarly for ŝ∗f (ŝm)). The male brf is flat at its origin, i.e., ∂ŝm

∂ŝf
= 0 must hold
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at ŝf = s. It follows that if ŝm intersects the 45◦ line, there must be at least one intersection such
that ∂ŝm

∂ŝf
< 1. Hence, if a symmetric interior equilibrium exists, there is one that is tatonnement

stable. Existence is guaranteed if the slope of ŝ∗m(ŝf ) is greater than one at ŝf = s (and analogously
for females), i.e., if

fh(s)2(h− δh+ Lm)
f ′h(s)[(1− Fh(s))(h− δh+ Lm)− Lm]− 1−p

p f ′`(s)[qf (`, h)(δh− `) + (1− qf (`, h))Lm]
> 1.

Note here that for Lm > 0 (independent of Lf ) there is some ε > 0 such that ŝf ∈ [s − ε, s]
implies Fh(ŝf )Lm > (1 − Fh(ŝf ))(h − δh), implying h males’ best response threshold is s. Thus
∂ŝm/∂ŝf = 0 at s. Moreover, ∂ŝm/∂ŝf` = 0 at ŝf = ŝm = s as well. Since this implies that
Fh(ŝf )Lm > (1 − Fh(ŝf ))(h − δh) with strict inequality, a marginal change of qf (`, h) still yields the
male best reply s.

Summarizing, ∀Lm > 0∃ε > 0 s.t. ∀ŝj ∈ [s − ε, s], j ∈ {f, f`}, the h males’ best reply is s.
Coordination failure equilibria of the type ŝm = ŝf = s are thus tatonnement stable for Lg > 0,
g ∈ {m, f}, since small changes in other types’ thresholds won’t change h types’ best replies. This
includes the coordination failure where ŝj = s for j ∈ {m, f,m`, f`}. This proves the “if” in proposition
part b.

Since Fh(s) = 1 the condition ∂ŝm
∂ŝf

(ŝf = s̄) > 1 becomes

fh(s)2 > −
f ′h(s)Lm + f ′`(s)[

1−p
p (qf (`, h)(δh− `)) + (1− qf (`, h))Lm]

h− δh+ Lm
≥ 0,

where the last inequality ensures ∂ŝm
∂ŝf

(ŝf = s̄) is positive. Assumption 1 implies f ′`(s)fh(s) < f`(s)f ′h(s)
and given f ′h(s̄)) is bounded; thus f ′`(s̄)) < 0 by f`(s̄) = 0 and fh(s̄) > 0 (Assumption 2). Returning
to part (a) of the proposition, we note qf (`, h) = 1 for Lm = 0, implying the above simplifies to
fh(s)2 > −f ′`(s)

1−p
p

δh−`
h−δh . By continuity under the condition there is also a neighbourhood Lm = ε

with ε > 0 such that an interior equilibrium exists. This proves part (a).
Moreover, this condition holds for all sf ∈ (s, s] if f ′`(s) ≤ 0 sufficiently close to 0, so that a

coordination failure equilibrium with ŝf = ŝm = s is not tatonnement stable, because a small change
in the female threshold will generate a larger change in the male best reply. This proves the “only if”
in part (b).

Trembling-hand perfection and risk-dominance
Trembling hand perfection requires the equilibria of a sequence of games with ε trembles to converge

to the equilibrium of the game without trembles as ε approaches zero. In a game perturbed by an ε

tremble agents play mixed strategies that place at least probability ε on each pure strategy. In the
unperturbed game with L > 0 high males strictly prefer to reject with certainty if high females do
so as well. Thus, for small perturbations resulting in qεj(h, h) > 0 (but still small) high types still
strictly prefer to reject with certainty. This implies that a high male’s best response converges to its
counterpart in the equilibrium in the unperturbed game as ε converges to 0. An analogous argument
holds for females, implying the female h types’ best reply also converges to its counterpart in the
equilibrium in the unperturbed game. Hence, the equilibrium is indeed trembling hand perfect. By
the same token, for L = 0, small perturbations resulting in qεj(h, h) > 0 will lead to the interior
equilibrium if condition (7) holds, for any ε > 0.

We consider the risk dominance concept of Harsanyi et al. (1988). By deviating from an interior
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equilibrium and shutting down, high-types earn their reservation payoff δh with certainty, no matter
the strategies of other players. Subtracting δh from equation 9 yields a lower bound on the absolute
value loss from this deviation (as this ignores the equilibrium cost of LoF, this bound is not tight). By
this calculation, the absolute value loss from this deviation is no larger than p(1− Fh(ŝ))2(h− δh)−
(1− p)(1− F`(ŝ))(δh− l). We compare this to the absolute loss from unilaterally deviating from the
CF-equilibrium to interior play, which is at least pLg − δh; noting that high types on the other side
always reject, leading to the loss Lg. (Again, this bound not tight, as we did not subtract the loss
from marrying low types.) As Lg grows, the latter deviation loss must exceed the former.

Risk dominance (ibid.) considers the relative products of the deviation losses for both types. Thus,
whether or not Lg is symmetric (considering the CAE and ARE), as either gender’s L term increases,
the product of the losses from unilateral deviations away from the CF-Equilibrium must grow to exceed
the product of the losses from deviations in the reverse direction.

Details for Remark 1

(i) In the benchmark case all `-types accept and some h-types do. In the C-F equilibrium with LoF no
h-types accept, but all `-types accept. This yields the reduced marriage rates given in the corollary.

(ii) The reduction in aggregate payoffs follows directly from the linear marriage production func-
tion.

(iii) The argument for the reduced expected surplus of each gender/type relies on a revealed
preference argument. Consider going in the opposite direction, from the C-F equilibrium to the
benchmark. The strict increase in the rate of acceptance for high types requires that they must be
better off when they accept (as their outside option remains the same) and are thus better off in
expectation. (An analogous argument would hold for any increase in the acceptance rate for ` types).
Furthermore, when playing A, both ` and h types are better off when h-types are in the market; their
expected mate will be of higher quality.

Proof of Proposition 3

The changes in ŝ∗h from ŝ∗ associated with the ε increase in L from L = 0 are determined by equation
(10) where ŝg = ŝg′ = ŝ∗h. Taking the total differential in ŝ∗h and L, with changes represented by ∆
terms, yields:

∂
fh(ŝ∗h)
f`(ŝ∗

h
)

∂s

p

1− p∆ŝ∗h = (δh− l) [fh(ŝ∗h)(h− δh+ L)∆ŝ∗h + Fh(ŝ∗h)∆L]
(h− δh− Fh(ŝ∗h)(h− δh+ L))2 ,

for L = ε small enough such that condition (4) holds (so low types still play “always accept”).
Rearranging yields:

∆ŝ∗h
∆L = (δh− `)Fh(ŝ∗h)

∂
fh(ŝ∗

h
)

f`(ŝ∗
h

)

∂s
p

1−p [h− δh− Fh(ŝ∗h)(h− δh+ L)]2 − (δh− `)fh(ŝ∗h)(h− δh+ L)

.
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By taking the total differential of (10), we see that the high male’s best reply ŝm to the high female’s
threshold ŝf , given L, has the slope:

∆ŝm
∆ŝf

= (δh− `)fh(ŝf )(h− δh+ L)
∂

fh(ŝ∗
h

)
f`(ŝ∗

h
)

∂s
p

1−p [h− δh− Fh(ŝ∗h)(h− δh+ L)]2
,

and analogously for high females.
Hence, ∆ŝ∗h

∆L > 0 if ∆ŝm
∆ŝf

< 1 at ŝf = ŝm = ŝ∗h, and vice versa. Hence, starting from an equilibrium
ŝ∗h at some L ≥ 0 such that condition (4) holds, a marginal increase in L will increase ŝ∗h if the
equilibrium was stable, and decrease ŝ∗h otherwise.

Existence of:
L̄ > 0, such that (4) holds for L ≤ L̄ and the associated theŝ∗h in a stable, interior equilibrium,

but not for L > L̄

...follows from
(i) the fact that condition (4) holds with strict inequality for L = 0,
(ii) continuity and strict monotonicity of ŝ∗h in L in a stable interior equilibrium, and
(iii) continuity of the condition (4) in ŝ∗h and L.
For the second part: Suppose L = L̄ and there is a stable interior equilibrium. Let L increase to

L′ > L̄. Note first that assuming that L′ > L̄ and condition (4) holds leads to a contradiction, because
condition (4) implies that ` types play “always accept”, in which case ŝ∗h must increase, implying that
condition (4) cannot hold. Therefore L′ > L̄ implies that condition (4) does not hold and ` and h

types’ best response is given by expressions (20) and (21), respectively.
When condition (4) fails, differentiation of (20) reveals that a gender g low-type’s ceiling ŝg`

decreases in L, increases in the other gender −g’s cutoff for ` types ŝ−g`, but decreases in ŝ−gh.
Differentiation of (21) reveals that ŝgh increases in L and, if L > δh− `, decreases in ŝ−g`. Moreover,
ŝgh increases in ŝ−gh.

Suppose that L > δh−`. In a stable interior equilibrium ŝ∗gh < s and š∗g` > s, which is characterized
by ∆ŝgx

∆ŝ−gx
< 1 at ŝ∗mx = ŝ∗fx for x = `, h, ŝ∗h increases in L and decreases in š∗` , whereas š∗` decreases in

both L and ŝ∗h. This implies that ŝ∗h increases and š∗` decreases in L.

Proof that Proposition 3 extends to the ARE

The changes in ŝf and ŝm from ŝ∗ associated with the ε increase in L are determined by the system
of equations (11) and (12). The total differential of (11) is

∂
fh(ŝf )
f`(ŝf )

∂s

p

1− p
(1− δ)h
δh− `

∆ŝf = fh(ŝh)
(1− Fh(ŝm))2 ∆ŝm,

where the ∆ terms denote the changes in ŝf and ŝm. Note that this already implies that the equilibrium
cutoffs for high females and males move in the same direction as long as L is sufficiently small to ensure
that the ceiling ŝ` = s. For marginal changes we have

∂ŝf
∂ŝm

=
fh(ŝh)

(1−Fh(ŝm))2

∂
fm(ŝf )
f`(ŝf )

∂s
p

1−p
(1−δ)h
δh−`

> 0. (23)
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Conducting a similar exercise for (12) yields

∂ fh(ŝm)
f`(ŝm)
∂s

p

1− p
(1− δ)h
δh− l

∆ŝm = fh(ŝf )(L+ (1− δ)h)∆ŝf + Fh(ŝf )δ`
(1− δ)h(1− Fh(ŝf )(1 + L/((1− δ)h)))2 . (24)

Plugging in ∆ŝf from above and focusing on the neighborhood of L = 0, where ŝf = ŝh = ŝ∗,
yields that for marginal variations in L

∂ŝf
∂L

=
fh(ŝ∗) Fh(ŝ∗)

(1−δ)h

(1− Fh(ŝ∗))4

(
∂

fh(ŝ∗)
f`(ŝ∗)
∂s

)2 (
p

1−p
(1−δ)h
δh−l

)2
− fh(ŝ∗)2

.

That is, a marginal increase of L at L = 0 yields a (weak) increase of ŝf (and ŝm by (23)) if, and only
if

∂ŝf
∂ŝm

=
fh(ŝ∗)

(1−Fh(ŝ∗))2

p
1−p

(1−δ)h
δh−`

∂
fh(ŝ∗)
f`(ŝ∗)
∂s

< 1.

Counter-example: ŝ∗h may decrease in L where conditions of Prop. 3 do not hold

If L̄ < δh−` then for L ∈ [L̄, δh−`] we have that ŝ∗h increases in both L and š∗` , suggesting the possibility
that both ŝ∗h and š∗` might decrease in L. Suppose the signal distribution is a triangular distribution of
the form Fh(s) = s2 and F`(s) = 2s− s2 with s ∈ [0, 1]. Suppose further the parametrization p = 1/2,
h = 1, δ = 2/3, and ` = 1/4. Solving (10) for ŝ∗h, which increases in L, yields that condition (4)
holds for L ≤ 0.0267 = L̄. At L̄, ŝ∗h = .829. Increasing L further yields ŝ∗h and ŝ∗` satisfying (20) and
(21). The numerical simulation yields that ŝ∗h strictly decreases in L for L > L̄ to reach ŝ∗h = 0.6504
at L = 0.1507. This demonstrates that the sufficient condition in the proposition is not an empty
statement.

Details for Remark 2

Taking the total differential of the equilibrium thresholds yields:

p

1− p
h− δh
δh− `

1
(1− ŝf )2dŝf = 2šm`

1−ŝ2
m
dšm` + 2š2

m`
(1−ŝ2

m)2dŝm,

p

1− p
h− δh
δh− `

1
(1− ŝm)2dŝm = 2ŝf (1+L/(h−δh))dŝf +ŝ2

f/(h−δh)dL
(1−ŝ2

f
(1+L/(h−δh)))2 ,

p

1− p
h− δ`
l − δ`

1
(1− ŝ`)2dšm` = −2(1−ŝf )(1+L/(h−δ`))dŝf−(2ŝf−ŝ2

f )/(h−δ`)dL
((2ŝf−ŝ2

f
)(1+L/(h−δ`))−1)2 .

For the high-types’ thresholds to increase as L increases from zero
For L small enough such that (5) holds, all low types play “accept” unconditional on the signal,

which means dšm` = 0. We can compute:

(δh− `)
(

1− 4 p

1− pŝ
3
mŝ

2
f (1− ŝf )L+ h− δh

δh− `

)
dŝm = ŝ2

f ŝ
2
m

p

1− pdL. (25)

Since ŝf (1 − ŝf ) ≤ 1/4, a sufficient condition for dŝm/dL > 0 is 1 ≤ 1−p
p

δh−`
L+h−δh .29 Note that

29E.g., for L small, this holds if population shares are equal and h+ ` ≤ 2δh.
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dŝm/dL > 0 implies dŝf/dL > 0, since both thresholds move in the same direction while šm` = šf` = 1.

For the high-types’ thresholds to decrease as L increases from L̄

The condition for ŝ` = 1 is (5), which under our parametrization becomes

(2ŝf − ŝ2
f )(L+ δh− `) ≤ δh− `).

The LHS of the condition increases in ŝf and in L. If dŝf/dL > 0 then the LHS will increase in L.
That is, there exists L̄ defined by condition 6, as in Proposition 3, such that the condition is satisfied
for L ≤ L̄ and does not hold for L > L̄, for L in a neighborhood of L̄.

If L > L̄ then dšm` 6= 0, which is only possible if 1−
√
L/(L+ h− δ`) ≤ ŝf ≤

√
(h− δh)/(L+ h− δh).

Then the total differential implies that1− 4 p

1− pŝ
2
f ŝ

3
m(1− ŝf )L+ h− δh

δh− `
+

16
(

p
1−p

)2
ŝ3
f ŝ

3
m(1− ŝf )3ŝ2

`
(L+h−δh)(L+h−δ`)

(δh−`)(`−δ`)

ŝ` + 4 p
1−p ŝf (1− ŝf )2(L+ h− δ`)/(`− δ`)

 dŝm
= p

1− p
ŝ2
f ŝ

2
m

δh− `
dL−

4
(

p
1−p

)2
ŝ3
f (1− ŝf )(2− ŝf )ŝ2

mš
2
m`

L+h−δh
δh−`

šm` + 4 p
1−p š

2
m`ŝf (1− ŝf )2(1 + L/(h− δ`))

1
l − δ`

dL.

Notice that the first line is positive if dŝh/dL in (25) is positive. The second is negative, however, if

1 + 4 p

1− pšm`ŝf (1− ŝf )2(1 + L/(h− δ`)) < 4 p

1− pŝf (1− ŝF )(2− ŝf )šm`(1 + L/(h− δh))h
`
.

That is,

1 < 4 p

1− pšm`ŝf (1− ŝf )
{

(2− ŝf )(1 + L/(h− δh))h
`
− (1− ŝf )(1 + L/(h− δ`))

}
. (26)

Notice that the expression in curly brackets is greater than (1 + L/(h − δh))h` . For all interior ŝf ,
which must satisfy 1−

√
L/(L+ h− δ`) ≤ ŝf ≤

√
(h− δh)/(L+ h− δh), ŝf (1− ŝf ) is bounded away

from zero for L > 0. Therefore there must be some h/l large enough that condition (26) will hold.

Putting this together, if ` is sufficiently small relative to h and p
1−p

L+h−δh
δh−` ≤ 1, then for all interior

threshold values, both ŝf and ŝm will decrease in L in the neighbourhood of šm` = 1.30 This establishes
the statement in the text immediately before Remark 2.

Turnover response
The measures of (h, h), (`, `), (h, `) and (`, h) matches, where the first entry indicates the female

type, are given by:

m(h, h) = 1
2p

2(1− Fh(ŝf ))(1− Fh(ŝm)),

m(`, `) = 1
2(1− p)2F`(šm`),

m(h, `) = 1
2p(1− p)(1− F`(ŝf ))Fh(šm`), and

m(`, h) = 1
2(1− p)p(1− F`(ŝm)).

30Simulations indicate that the conditions are fairly tight; for instance, assuming h − δh > δh − ` can induce ŝm to
increase in L, but ŝf to decrease in L.
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For L < L̄ as defined above, the results above imply dšm` = 0, while both ŝf and ŝm increase in
L, and thus m(h, h), m(h, `) and m(h, `) all decrease, while m(`, `) remains constant. For L > L̄, if ŝf
and ŝm both decrease and šm` decreases in L (implied by the conditions derived above), then m(h, h)
and m(`, h) increase, while m(`, `) decreases in L. The sign of the change in m(h, `) is ambiguous,
but it will increase if ŝf ≥ 1/2. ŝf ≥ 1/2 is ensured in the neighbourhood of L̄ if ŝf > 1/2 for L = 0
under our assumption. Solving for the L = 0 equilibrium yields ŝf = ŝh = 1

2

(√
1 + 4 δh−`

π(h−δh) − 1
)
.

The assumption p/(1− p)L+h−δh
δh−` ≤ 1 ensures that ŝf > 1/2 at L = 0. Hence, m(h, `) will increase for

L > L̄ in the neighbourhood of L̄.

B A Repeated Matching Market

As argued earlier, even without a primal loss of face, being observed playing accept may have a
negative reputational consequence (which itself may be painful). In a multi-period interaction this
may also lead to material losses, including worse matching prospects in later periods. We demonstrate
this below in a two-period model. We compare the case where a player’s choice in the first period
is private, to a case where it is revealed to her second-period match. We show that in the latter
case playing accept in the first period worsens one’s continuation value, making first-period incentives
equivalent to our primal LoF model in the main text.

Basic payoffs and the information structure follows from section 3. However, we now assume that
the market remains open for two periods. We give the timing below; note that stages 1-3 are essentially
the same as above.

We focus on settings that result in stable, interior equilibria, i.e., settings where Condition 7 holds.

Timing

1. Individuals in M and F are matched to each other randomly. In each match (m, f) each
individual i obtains a noisy signal sj about the other one’s type xj .

2. After observing the signal individuals simultaneously decide on whether to accept or reject the
match.

3. Pairs in which both individuals played accept form a marriage and are removed from the market
and receive payoffs.

4. The remaining individuals are again matched into pairs (m, f) randomly. Again, in each match
(m, f) each individual obtains a noisy signal sj about the other’s type xj .31

5. In an “Asymmetric Partial Revelation Environment” (APRE), but not the “Conditionally Anony-
mous Environment” (CAE), females observe their (male) match’s action in the previous stage,
but not vice-versa.

6. After observing the signal individuals simultaneously decide on whether to accept or reject the
match.

31For brevity, we do not separately index the first and second period match, nor the first and second period signals –
these will be clear from context.
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7. Pairs in which both individuals accepted form a marriage, all others remain single. The market
closes and payoffs are realized.

B.1 Repeated matching market: Conditionally anonymous environment (CAE)

We solve backwards from the second stage; this solution is identical to that of the one-period model
in the main text without LoF, re-labeling some variables; we thus give only a few key equations and
results below. Denote the share of h agents on each side in period 2 by p2, which will depend on
players’ equilibrium strategies. From the assumption that fh(s) = 0 we know that a strictly positive
measure of agents remain in the market at t = 2.32 Thus 0 < p2 < 1. In the second period, an agent
who receives a signal sj assesses the probability of facing a high type as

pr(h|sj) = p2fh(sj)
p2fh(sj) + (1− p2)f`(sj)

.

B.1.1 Equilibrium Behavior

CAE: Second period

As there is no further reputation motive in the final period, nor an intrinsic LoF, nor is previous play
observed in the CAE, this period is equivalent to the CAE (or benchmark model without LoF) from
section 3, replacing p with p2, and noting that s refers to the second-period signal. The results follow
(restating the earlier lemma and corollary with minor adjustments to notation).

Lemma 2. [CAE Second Stage] In a CAE, if an interior stable equilibrium exists (conditions for this
are as in the main text), then for the subgame starting in period 2:

1. low types always accept,

2. high types use symmetric cutoff strategies, accepting if s > ŝm = ŝf := ŝ∗, and

3. ŝ∗ ∈ (s, s).

Note ŝ∗ is defined by equation (2), replacing p with p2.
This yields the following results. Expected payoffs for types ` and h in an interior stable equilibrium

of the second-period subgame of the CAE (or for any strategy profile where low types always accept)
are

v2(`) = δ`+ p2(1− F`(ŝ∗))(h− δ`) + (1− p2)(`− δ`), and

v2(h) = δh+ p2(1− Fh(ŝ∗))2(h− δh)− (1− p2)(1− F`(ŝ∗))(δh− l). (27)

Note v2(h) > v2(`).33 The number of marriages is (1−p2)2 + 2p2(1−p2)(1−F`(ŝ∗)) +p2
2(1−Fh(ŝ∗))2,

which strictly decreases in ŝ∗.
32To violate this both types would have to play “always accept” in the first stage, expecting to remain unmarried with

probability 1 conditional on reaching stage 2. This would be an equilibrium if the expected match quality in period 1
were high enough for a high type to accept regardless of the signal:

p ≥ f`(s)(δh− `)
f`(s)(δh− l) + fh(s)(1− δ)h .

This case is excluded by the assumption that fh(s) = 0. Moreover, if this assumption were not made and this were an
equilibrium, it would not be stable nor trembling hand perfect, since an agent facing a signal s = s in t = 1 would prefer
to take another chance in t = 2 if the proportion of ` and h agents were to remain the same, as it would under a random
tremble.

33This must hold as high types could always adopt the same “always accept” strategy as low types and gain a strictly
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CAE: First Stage

A similar reasoning applies to the first stage: an agent of type xi who observes a signal sj finds
it profitable to accept if and only if the expected payoff exceeds her continuation value v2(xi) after
playing reject. As, in the CAE, the continuation value from rejecting or being rejected are both zero,
we only need to see if the payoff from an expected marriage exceeds this. Stating this in terms of
gains relative to the continuation value we have:

pfh(s)q1(x, h)(h− v2(x)) + (1− p)f`(s)q1(x, `)(`− v2(x)) ≥ 0. (28)

Recall, a high type prefers marrying a high type over remaining single, which she prefers over
marrying a low type; thus her continuation value satisfies ` < δh < v2(h) < h (the strictness of the
latter inequalities follows from 0 < p2 < 1, previously demonstrated, and from an interior equilibrium
in period 2, under conditions specified). Thus, for a high type the first additive term in inequality (28)
must be positive and the second term negative. By the monotone likelihood property, as the signal s
increases the first term increases in magnitude and the second term decreases in magnitude (and this
holds for both types). Thus the high type will set a floor threshold. By a similar argument, for a low
type (x = `) the first term must be positive but the second term may have either sign. If it is negative
the low type must also set a floor threshold. If both terms are positive the low type will always accept
in the first period (a trivial floor at s).

Thus both types will set a floor threshold: there are values ŝx ∈ [s, s] for x = `, h, such that the
agent accepts only if s ≥ ŝx. Similarly to the second stage, where interior, these are implicitly defined
by

pfh(ŝx)(1− Fx(ŝh))(h− v2(x)) = (1− p)f`(ŝx)(1− Fx(ŝ`))(v2(x)− l), (29)

where the left side represents the expected benefit from marrying high relative to staying alone, and
the right side the expected “loss” from marrying low relative to staying alone.

Lemma 3. The first period cutoffs satisfy ŝh > ŝ`.

Proof: Rearranging (29) yields cutoff values ŝh and ŝ` defined by

pfh(ŝh)
(1− p)f`(ŝh) = v2(h)− l

h− v2(h)
1− Fh(ŝ`)
1− Fh(ŝh) and

pfh(ŝ`)
(1− p)f`(ŝ`)

= v2(`)− l
h− v2(`)

1− F`(ŝ`)
1− F`(ŝh) .

Since v2(h) > v2(`) as shown above, the contradiction to the lemma, ŝh ≤ ŝ` implies that

1− Fh(ŝ`)
1− Fh(ŝh) ≤

1− F`(ŝ`)
1− F`(ŝh) .

Rewriting this in terms of integrals yields

1 +
∫ ŝ`
ŝh
f`(s)ds∫ s

ŝ`
f`(s)ds

≤ 1 +
∫ ŝ`
ŝh
fh(s)ds∫ s

ŝ`
fh(s)ds

.

higher payoff than low types. In doing so, both high and low types would always marry when they meet a low type, but
high types would be more likely to marry when meeting another high type (and high type’s unmarried payoff are also
higher).
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This becomes ∫ ŝ`
ŝh
fh(s)ds∫ ŝ`

ŝh
f`(s)ds

≥
∫ s
ŝ`
fh(s)ds∫ s

ŝ`
f`(s)ds

.

The monotone likelihood ratio property implies the contrary, since

fh(s)
f`(s)

<
fh(ŝ`)
f`(ŝ`)

<
fh(s′)
f`(s′)

,

for all s < ŝ` < s′.
Thus high types will be more selective than low types in stage 1.
Equation (29) leads to several results. Recalling assumption 2, that extreme signals fully reveal

types, low types will “accept always” only if v2(`) ≤ l. This cannot be ruled out: the low types’
continuation value may be below the value of marrying low, as they may be rejected in stage 2, which
would leave them worse off.

In contrast, high types do not “accept always” – this would require v2(h) ≤ l, but as we have
shown v2(h) > h and δh > l by assumption. High types will also not “reject always”; this would be
optimal only if v2(h) ≥ h, which could hold only if there are no low types in stage 2. But we know
p2 < 1: even if all `’s accept in stage 1 some will meet high types, give off low signals, and be rejected,
surviving to stage 2. Hence, s < ŝh < s, and s ≤ ŝ` < ŝh. This fully characterizes equilibrium
strategies, summarized in the following proposition.

Proposition 5. [CAE Equilibrium] In an equilibrium of the repeated matching market under the CAE
low types always accept in stage 2 and accept in stage 1 only if sj ≥ ŝ`. ŝ` solves equation 29 (with
x = `), and s ≤ ŝ` < s. High types accept in stage 2 if and only if sj ≥ ŝ2 (where ŝ2 solves the
equivalent of equation 2) and accept in stage 1 if and only if sj ≥ ŝh, where ŝh solves equation 29
(with x = h). ŝh ∈ (s, s) and ŝh > ŝ`.

B.2 Repeated matching market: Asymmetric partial revelation environment

We next consider an environment analogous to the ARE in the main text. In an Asymmetric Partial
Revelation Environment (APRE) a male’s stage 1 choice will be observed if he is present in stage 2. If
we assume, conforming to intuition, that in stage one high types are at least as selective as low types,
then the stage 2 reputational consequences of playing Accept will lead to a loss of continuation value
similar to the intrinsic LoF.34 (However, here the loss of continuation value may depend on one’s type;
we discuss this below.)

Thus we now suppose that in stage 2 a female i matched to a male agent j not only observes
a signal s but also j’s stage 1 action Aj ∈ {A;R}. Hence a male is characterized by pairs xA ∈
{`A; `R;hA;hR}, which we will refer to as an “attribute.” Denote the measure of a male with each
attribute by pmxA. Then pm2 = pmhA + pmhR and as above 0 < pm2 < 1.

Suppose a female agent i observes signal sj and past action Aj . Conditionally on being accepted
and on the other observables, a female i assesses the probability that her match is type h with

Prf (h|s, xi, Aj , acc) =
fh(s)phAj

qf2 (xi, Aj , h)
fh(s)qf2 (xi, Aj , h)phAj

+ f`(s)(1− phAj
)qf2 (acc|xi, Aj , `)

,

34We show the existence of this more intuitive equilibrium, but we do not rule out other equilibria. We save this for
later work more focused on modeling reputation.
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where qf2 (xi, Aj , xj) is the probability that in stage 2 a female of type xi is accepted by a male of type
xj who played action Aj in stage 1.

A male j will assess the probability that, given he is accepted and his prior action, his match is
type h with

Prm(h|s, xj , Aj , acc) = fh(s)p2q
m
2 (xj , Aj , h)

fh(s)p2qm2 (xj , Aj , h) + f`(s)(1− p2)qm2 (xj , Aj , `)
,

where qf2 (xi, Aj , xj) is the probability that in stage 2 a male of type xj who played action Aj in stage
1 is accepted by a female of type xi.

As usual, low-type agents of both genders will always find a marriage profitable regardless of the
signal they observe and the previous action of their match, since ux(`) > `. Thus, for both genders,
in stage 2 low types always accept. A high type agent finds accepting profitable (as before) if and
only if, conditional on being accepted, the expected marriage is a favorable one. I.e., for a high-type
female i, if

phAj
fh(s)qf2 (h,Aj , h)h+ (1− phAj

)f`(s)qf2 (h,Aj , `)`
phAj

fh(s)qf2 (h,Aj , h) + (1− phAj
)f`(s)qf2 (h,Aj , `)

> h,

and for a high-type male j, if

p2fh(s)qm2 (h,Aj , h)h+ (1− p2)f`(s)qm2 (h,Aj , `)`
p2fh(s)qm2 (h,Aj , h) + (1− p2)f`(s)qm2 (h,Aj , `)

> h.

Since the acceptance probabilities of one’s match do not depend on the realization of the signal s
one observes, the monotone likelihood ratio property implies that the left-hand side strictly increases
in the observed signal s and a high-type agent uses a threshold strategy of the type “accept if and
only if s ≥ ŝ2” as above. Let ŝm(h,Aj) denote the cutoff for a high-type male who played Aj in stage
1, and ŝf (h,Aj) denote the cutoff for a high-type female (the low types always accept) matched to a
male who played Aj .

Using the conditions above the threshold values are thus implicitly defined by

phAj
fh(ŝf (Aj))(1− Fh(ŝm(Aj)))h+ p`Aj

f`(ŝf (Aj))`
phAj

fh(ŝf (Aj))(1− Fh(ŝm(Aj))) + p`Aj
f`(ŝf (Aj))

= δh, (30)

for females, and by

p2fh(ŝm(Aj))(1− Fh(ŝf (Aj)))h+ (1− p2)f`(ŝm(Aj))`
p2fh(ŝm(Aj))(1− Fh(ŝf (Aj))) + (1− p2)f`(ŝm(Aj))

= δh (31)

for males. This yields four different cutoff values: ŝf (A) for a female when facing a male who accepted
in stage 1, ŝf (R) for female facing a male who rejected, ŝm(A) for a male who accepted in stage 1 and
ŝm(R) for a male who rejected.

Note that, in contrast to the CAE, we must consider cases where types are known for certain,
conditional on previous acceptance behavior. This yields ŝf (Aj) = s if Pr(h|Aj) = 1 and ŝ

Aj

f = s if
Pr(h|Aj) = 0. I.e., there is a possibility of a fully separating equilibrium where h and ` play different
actions in the first stage allowing perfect revelation of type in the second stage. It is, however,
straightforward to bring this possibility to a contradiction with equilibrium play.35 ; The cutoff values

35Two possibilities emerge: h’s play “always accept” and `’s “always reject” in stage 1, in which case an ` would have
a profitable deviation by playing ‘always accept” in stage 1. Second, h’s play “always reject” and ` “always accept” in
stage 1, in which case an ` could do better by playing “always reject” in stage 1, which gives players of both genders
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defined in equations 30 and 31 satisfy

phA
p`A

fh(ŝf (A))
f`(ŝf (A)) (1− Fh(ŝm(A))) = δh− `

(1− δ)h = phR
p`R

fh(ŝf (R))
f`(ŝf (R)) (1− Fh(ŝm(R)))

and fh(ŝm(A))
f`(ŝm(A)) (1− Fh(ŝf (A))) = δh− `

(1− δ)h = fh(ŝm(R))
f`(ŝm(R)) (1− Fh(ŝf (R))).

The second statement in turn implies that ŝf (A) > ŝf (R)⇔ ŝm(A) > ŝm(R), i.e., if high type females
are more choosy with respect to males who chose a certain action, males who chose that action will be
more choosy than males who did not. Suppose that phA/p`A < phR(p`R. Then (with the equivalent of
condition 7 from the main text holding, ensuring an interior equilibrium exists) ŝf (A) ≤ ŝf (R) yields
a contradiction. Hence, ŝf (A) > ŝf (R) if phA/p`A < phR/p`R.

To verify that this screening behavior may indeed lead to a reputational loss of face, motivating
our setup above, note that expected stage 2 payoffs for the different types of male players are

v2(`Ai) = δ`+ (1− p2)(1− δ)l + p2(1− F`(ŝf (Ai)))(h− δ`) and

v2(hAi) = δh+ (1− p2)(1− F`(ŝm(Ai))(`− δh) + p2(1− Fh(ŝm(Ai))(1− Fh(ŝf (Ai))(1− δ)h.

This means that low males will face a reputational loss of face (i.e., L = v2(`A) − v2(`R) > 0) if
ŝf (A) > ŝf (R), i.e., females are pickier when facing a male who accepted in round 1. Note that also
high type males will face a reputational loss of face (i.e., v2(hA) > v2(hR)) if ŝf (A) > ŝf (R), using
an envelope argument, noting that the effect of marginal changes of ŝx(·) will satisfy (31).

That is, L > 0 if ŝf (A) > ŝf (R). From above we know that for any L ≤ 0 high type males are more
selective than low males, so that phA < phR and p`R < p`A, which implies that indeed ŝf (A) > ŝf (R).
The following proposition summarizes these derivations.

Proposition 6. In an APRE in stage 2 a male player who has played accept in stage 1 has lower
expected payoff than if he had played reject. That is, there is reputational loss of face in the two period
matching market.

C LoF versus “Rejection Hurts”

One could define a Rejection Hurts (RH) model as one of the following.36

“RH-0: I lose whenever I am rejected, even if I don’t know that I was rejected”. In particular,
this implies (R,R) will yield a lower payoff to the first guy than (R,A). Here the CAE should have no
direct effect, as what I learn does not matter.

Alternatively, “RH-1: I lose when I know I was rejected, I lose nothing if I’m uncertain about
whether I am rejected.” In either case I don’t care whether the other side knows what I did. The
FRE payoffs are the same (as in R1’s upper right table) for either of these versions. Under the CAE
I learn if I was rejected only if I play Accept. If I reject in the CAE I never learn if I was Rejected.
Thus, under RH-1 in the CAE (but not in the FRE), by playing Reject I can protect myself from
the “sting” of learning I might have been rejected. (Note that this implicitly implies that updating
my belief downwards —about the probability I was accepted—hurts, but updating it in a positive
direction does not help me, or at least the former outweighs the latter in expectation).

(through imitating the good signal for male, and staying in the game to access a better pool for females) a positive
probability to marry an h-type in stage 2, and does not decrease the probability of being accepted by an `-type.

36We thank an anonymous referee for this suggestion.
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Suppose this were the case, considering, e.g., a speed dating agency. Under the FRE clients always
learn who rejected them, so they have no “sting-avoidance” reason to accept or reject anyone. If
they do not care about what the other side learns, they will Accept if and only if they anticipate
their marriage utility (taking into account the acceptance curse) to be positive. This will presumably
lead to the maximum number of marriages given the information structure, and, in our model, the
highest material welfare. However, people will also sometimes learn they were rejected, and feel a
sting. Introducing the CAE would give people a way to avoid this sting, by rejecting and remaining
ignorant (perhaps particularly when they anticipate likely being rejected). Presumably this would
lead people to tick fewer partners, and lead to a lower rate of marriage (but we would need to look
into this more carefully and formally). However, this still might make participants better off (if the
sting is very costly), leading dating agencies to adopt it.

However, if RH-1 held as stated above, then presumably a dating agency or site could find a different
policy to remove this sting without also substantially reducing the number of offers/marriages. For
example, they could promise that they will never tell people that the other person rejected them “for
sure”. When a man plays “Accept” and his partner Rejects, you could report “you may have been
rejected, or we may have randomly selected to not report this match.” To make this truthful, when
both play “Accept”, the agency could inform them “you have a mutual match” 99.5% of the time, but
0.5% of the time they will give the previous message. If people only feel a sting from the knowledge
that they were certainly rejected, this would completely avoid it, while giving people no “strategic
ignorance” incentive to misreport their true preferences (as the CAE would induce).

Still, there may be reasons why such sites and agencies should want to allow people to strategically
remain ignorant, at least in certain situations. We acknowledge that this provides an interesting
empirical test between these two models, which would be worth exploring in future.

As an overall empirical matter, we expect that both motivations are relevant; both the desire not
to know I was rejected and the desire not to have others know that I accepted them particularly when
they have rejected me. However, the former has been fairly extensively modeled, while the latter is our
own innovation (to the best of our knowledge). These sometimes seem to point in the same direction,
e.g., both might justify the CAE as a welfare-improvement, but they also have distinct implications.
We hope future work may put these together into an integrated model, and bring further evidence on
these.
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