
 1 

 

 

Nighttime ecology: the ‘nocturnal problem’ revisited 

 

 

Kevin J. Gaston 

Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK 

Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, 14193, Berlin, Germany 

 

k.j.gaston@exeter.ac.uk 

 

 

Manuscript type: Synthesis 

Word length: 16462 

Keywords: activity, diel, ecosystems, macroecology, nighttime, nocturnal, time partitioning. 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/161940616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

ABSTRACT: The existence of a synthetic program of research on what was then termed ‘the nocturnal 

problem’, and which we might now call ‘nighttime ecology’, was declared more than 70 years ago. In reality 

this failed to materialise, arguably as a consequence of practical challenges in studying organisms at night 

and concentration instead on the existence of circadian rhythms, the mechanisms that give rise to them, and 

their consequences. This legacy is evident to this day, with consideration of the ecology of the nighttime 

markedly under-represented in ecological research and literature. However, several factors suggest that it 

would be timely to revive the vision of a comprehensive research program in nighttime ecology. These 

include (i) that study of the ecology of the night is being revolutionised by new and improved technologies,; 

(ii) suggestions that far from being a minor component of biodiversity a high proportion of animal species 

are active at night; (iii) that fundamental questions remain largely unanswered as to differences and 

connections between the ecology of the daytime and nighttime; and (iv) that the nighttime environment is 

coming under severe anthropogenic pressure. In this article, I seek to re-establish ‘nighttime ecology’ as a 

synthetic program of research, highlighting key focal topics, key questions, and providing an overview of the 

current state of understanding and developments. 

 

Introduction 

More than 70 years ago, the American ecologist Orlando Park published the last in his series of papers 

addressing various aspects of what he termed the ‘nocturnal problem’ (Park et al. 1931, 1940a, 1940b, 1947; 

Park and Keller 1932; Park 1935, 1937, 1938, 1940, 1941a, 1941b; Park and Sejba 1935; Park and 

Strohecker 1936; Park and Noskin 1947). Of these, his sole authored 1940 paper is not only the longest but 

also the most significant. In this he sought to synthesise understanding of the ecology of the nighttime, 

including such issues as the environmental differences between daytime and nighttime, which animals were 

nocturnal or exhibited nocturnalism (by which he meant ‘those general or specific activities initiated by, or 

enduring at night’), the advantages and challenges of being nocturnal, adaptations to nocturnalism, internal 

and environmental determinants of nocturnalism, and the contribution of nocturnal species to ecological 

communities. Park (1940) felt that this understanding had developed to the point that ‘study of nocturnalism 

and its inter-relations is a comprehensive biological program’. 
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Park’s vision for such a program failed, to this day, fully to materialise. There are number of possible 

explanations. These include that (i) ecologists themselves belong to a diurnal species and therefore have 

found it much easier, and may have had an innate proclivity, predominantly to focus on and study daytime 

phenomena; (ii) there seems to have been a widespread and long standing belief that in the majority of 

ecosystems most species are active and most ecological functioning occurs during daytime, and that 

nighttime is a relatively minor contributor (e.g., Crawford 1934); (iii) the technological challenges of 

studying ecological systems at night long remained too great, with the limited available techniques (e.g., 

making observations under various forms of artificial visible light; Finley 1959) having then unknown but 

likely problematic consequences; and (iv) attention grew, initially during a period when the fields of ecology 

and physiological ecology were regarded as largely synonymous (see Spicer and Gaston 1999), instead to 

focus on the existence of circadian rhythms, the mechanisms that give rise to them, and their consequences 

(e.g., Park 1941b; Calhoun 1944, 1945, 1946; Harker 1958; Panda et al. 2002; Yerushalmi and Green 2009). 

 

This legacy is evident to this day. Only a small proportion of the papers published each year in any of the 

major journals in the field of ecology concern nocturnal phenomena. General monographs on nighttime 

ecology remain lacking. Standard recent ecology texts almost invariably use few nocturnal examples, make 

little or no mention of diel (daily) time partitioning by organisms, and typically do not include in their 

indices terms such as ‘circadian’, ‘diel’, ‘night’, ‘nighttime’ or ‘nocturnal’ (e.g., Begon et al. 2006; Cain et 

al. 2014; Krebs 2014; Molles 2016). Finally, there are seldom sessions at general ecology conferences, and 

indeed there are few dedicated conferences or workshops, that focus on nighttime ecology. 

 

This is not, of course, to say that no ecological studies have been conducted at night. Many have. However, 

rather than that of a broader nighttime ecology these have predominantly been placed foremost in the 

contexts of the ecology of individual taxa (e.g., moths, owls, bats, primates), of particular habitats and 

regions (e.g., pelagic, arctic, antarctic) or of particular phenomena (e.g., interspecific competition, 

migration). Thus, whilst contributing to a general understanding of nighttime ecology, considerable work 

remains to be done to place them in a coherent framework focused on this topic. 
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As Park (1945) observed ‘Within biology, as facts accumulate about some central doctrine, or group of 

principles, and as these facts are collated and synthesized, there emerges a subscience which becomes 

recognizably distinct from its sister subsciences partially as a consequence of its technical content, and 

partially because of its point of view’. Now seems a good point at which to attempt to revive his (Park 1940) 

early vision of a synthetic research program in nighttime ecology. There are several reasons. First, study of 

the ecology of the night is being revolutionised by new and improved technologies that enable organisms to 

be observed, monitored and tracked at night under natural conditions (including camera traps, low light 

cameras, night-vision goggles, acoustic telemetry, PIT tags, satellite tags, laser scanning, radar, 

accelerometers; e.g., Chapman et al. 2011; Mizumoto et al. 2011; Walters et al. 2012; Brown et al. 2013; 

O’Connell et al. 2014; Puttonen et al. 2016; Meyer 2017; Linke et al. 2018). Many novel and important 

insights have already resulted. Second, some have argued that far from being a minor component of 

biodiversity a high proportion of animal species are nocturnal. Hölker et al. (2010) estimate that this is the 

case for 30% of all vertebrates and more than 60% of all invertebrates, which would make nocturnality the 

dominant way of life for animals. Third, fundamental questions remain largely unanswered as to the extent to 

which ecological principles derived (sometimes almost exclusively) from studies of diurnal organisms apply 

to nighttime ones, to which diurnal and nighttime communities are linked and influence one another, and to 

which, more generally, observations of ecological systems made during the day are shaped by processes 

operating at night (and vice versa). Finally, the introduction of artificial nighttime lighting, from streetlights 

and other sources, is disrupting natural diel light cycles, at least as perceived by many organisms, over 

increasingly large areas (Davies et al. 2014; Kyba et al. 2015, 2017; Falchi et al. 2016). This is having major 

ecological impacts on individuals, populations, communities and ecosystems (Gaston et al. 2013, 2014, 

2017), but understanding of these effects, their mechanistic pathways, and their likely consequences is 

limited by knowledge of natural nocturnal states. 

 

In this paper I seek to re-establish nighttime ecology as a synthetic research program. To do this, I (i) draw 

together current understanding of, and important knowledge gaps in, key issues on which such a program 

needs to be centred. In particular, to a large degree echoing those recognized by Park (1940) but not brought 

together since, I focus on environmental conditions, diel time partitioning, traits, community ecology and 

macroecology, and ecosystem functioning (fig. 1); (ii) bring together in one place example studies of these 
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key issues, regardless of the context in which they were originally published (which are often diverse, 

including not just ecological and evolutionary research but also, for example, agricultural science, 

conservation biology and fisheries science); (iii) highlight some of the important linkages between these key 

issues (fig. 1, box 1); and (iv) consider the importance of anthropogenic pressures with respect to each of 

these key issues. These pressures have attained a significance that was virtually unrecognized in Park’s time, 

but in many cases continues to receive rather limited attention. 

 

Whilst much of what has been learnt about some of the key issues (e.g., time partitioning) has been derived 

from laboratory studies, here I will almost exclusively consider studies of wild organisms and field 

experiments. This is important because, for example, the patterns of diel activity of the same species in the 

laboratory and in the wild can sometimes be quite different (e.g., Blanchong et al. 1999; De et al. 2012; 

Tomotani et al. 2012; Fritzsche et al. 2017; Hoole et al. 2017); this is true of some model organisms for 

studying circadian rhythms in the laboratory, such as the golden hamster Mesocricetus auratus which is 

nocturnal in captivity but diurnal in the wild (Gattermann et al. 2008). As did Park (1940), I will also focus 

almost exclusively on animals, although, of course, plants typically exhibit different metabolic, physiological 

and functional activity, and different intraspecific and interspecific interactions, during daytime and 

nighttime. 

 

Environmental conditions 

The nighttime environment provides the ecological theater for the nocturnal play (sensu Hutchinson 1965). 

Its conditions and their spatial and temporal variation remain much less well quantified and understood than 

are those of the daytime environment. Indeed, as with the behaviour of nocturnal animals, knowledge of the 

nighttime environment itself has been improved with technological advances (remote sensing and night sky 

imagery, sensitive photometers and spectrometers, global environmental models; e.g., Foster et al. 2018; 

Román et al. 2018). Many of these advances have been made foremost in the context of studying animal 

vision systems, and have not been drawn into the context of nighttime ecology more broadly. 

 

Perhaps critical to an understanding of nighttime ecology has been recognition that: 
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(i) light levels at nighttime vary over a similar range (four or so) of orders of magnitude as during the 

daytime, albeit at a markedly lower average intensity (Martin 1990). 

(ii) the spectrum of light changes through the day, especially at twilight, providing potentially valuable 

biological cues. On a moonless night, as the sun drops from low on the horizon to below it, a clear sky 

changes from approximately white to reddish to blue and then back to reddish (Johnsen 2012); the moon has 

limited effect until late twilight, but then its phase and altitude significantly alter the colour and brightness of 

objects (Palmer and Johnsen 2015). 

(iii) just as during the daytime, as well as reducing light intensity vegetation cover alters the spectral 

properties of the nighttime light environment, not only such that these changes are measurable but apparently 

sufficiently that they shape the most appropriate organismal vision systems (Veilleux and Cummings 2012). 

 

In short, the nighttime environment is arguably, in terms of light alone, in relative terms as spatially and 

temporally complex as that of the daytime. Indeed, many assumptions as to the irrelevance, for example, of 

visually-oriented behaviours at nighttime (e.g. visual communication, camouflage) have proven to be 

incorrect (see Traits). 

 

Of course, the nighttime environment differs from that of the daytime not just in terms of light; it is not 

daytime without the light. Over land, for example, nighttime also typically has lower temperatures than 

daytime with progressive cooling through the night; differs in surface wind speeds (and sometimes 

prevailing direction) and air turbulence (e.g., Lapworth 2005; He et al. 2013); and, largely driven by cooling 

of the atmosphere and lowering of saturation water pressure, differs in precipitation (e.g., Zhou and Wang 

2017), humidity (e.g., Wang and Gaffen 2001), cloud cover and occurrence of fog (Eastman and Warren 

2014). These differences influence, amongst others, the energetics of animals, their dispersal, and the 

effectiveness of their communication systems (e.g., Kerlinger and Moore 1989; Larom et al. 1997; McNab 

2002; Müller-Schwarze 2006). Despite this, often profound, diel environmental variation, the modeling of 

the spatial distributions of animal species, for example, continues to focus heavily on average daily 

conditions rather than those prevailing at the time of day when individuals would tend to be most active. 
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The level and dynamics of environmental differences between daytime and nighttime are influenced by a 

variety of anthropogenic factors, including global climate change and land use change (e.g., Zhou et al. 

2009; Betts et al. 2013; Song and Wang 2016). For example, global nighttime temperatures (and therefore 

daily minima) have increased more rapidly than have those during the daytime, and have contributed 

disproportionately to shifts in the more widely remarked daily mean temperatures (Karl et al. 1991; Davy et 

al. 2017). Daily and Ehrlich (1996) also argue that faced with tropical forest fragmentation nocturnal species 

fare better than do diurnal ones, because the contrasts between the environmental conditions in remnant 

forest patches and surrounding habitats (e.g., pastures) are far less extreme at night, enabling individuals to 

disperse between the patches much more readily. 

 

Artificial sources also influence nighttime lighting regimes over large areas. Skyglow, caused predominantly 

by upwardly emitted artificial light being scattered in the atmosphere by water, dust, and gas molecules, 

extends conservatively over 23% of the global land surface (Falchi et al. 2016), and 100s of kilometers 

beyond urban sources (Luginbuhl et al. 2014). On clear nights it can readily attain levels that obscure the 

visibility of high proportions of stars (clear night starlight is ∼0.001 lx) and can be sufficient to obscure 

natural light variation due to lunar cycles (full moonlight is ∼0.1 lx; Davies et al. 2013). It is further 

amplified locally by cloud cover (Kyba et al. 2015), although this may limit its spatial propagation. Direct 

lighting is locally more intense (ground-level illuminance immediately under streetlights of ∼10-40 lx 

usually declines to less than 1 lx a few meters away) but more constrained in extent, although an appropriate 

measurement is hard to make given that emissions in the horizontal plane (e.g., from vehicle headlights and 

poorly shielded street lamps) can carry over long distances and remote sensing measurements are typically 

taken closer to the vertical plane (Gaston et al. 2017). Widespread change from lamps of often narrow 

spectra (e.g., low pressure sodium) to ‘broad white’ lighting using light-emitting diodes (LEDs) is both 

exacerbating skyglow and increasing the intensity and extent of direct light emissions (Kyba et al. 2017). 

 

Although largely unremarked, arguably overall the nighttime environment has actually been subject to more 

marked anthropogenic pressure than has that of the daytime. The former has experienced fundamental 

changes to light cycles and more pronounced temperature increases, whilst most other pressures are shared 

more equally between daytime and nighttime (e.g., habitat loss and fragmentation, chemical pollution); 
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pressures that are differentially expressed during the daytime include some forms of overexploitation 

(although much fishing and hunting, for example, is conducted during the night), and physical and noise 

disturbance (although given levels of anthropogenic noise will tend to carry further at nighttime than during 

the day time). Such differential impacts on the nighttime environment accentuate the present desirability of a 

new synthetic approach to the ecology of the nighttime. 

 

Diel time partitioning 

Perhaps reflecting some persistent sense that the nighttime environment is a more challenging one for 

organisms and thus that activities during the night require more explanation, the issue of how organisms 

partition diel time for activity (fig. 1), and the mechanisms that determine this partitioning, have been argued 

to lie at the heart of the study of the ecology of the nighttime (Park 1940). This said, characterisation of this 

partitioning nonetheless remains extremely poor for the vast majority of species of animals, and often limited 

at best to broad extrapolations for entire taxonomic groups based on limited data. It is notable how frequently 

in recent years, often exploiting technological advances, unexpected levels of nighttime activity by particular 

species have been documented (e.g., Newman and Springer 2008; Le Bohec et al. 2003; Lambert et al. 2009; 

Mukhin et al. 2009; Regular et al. 2011; Zavalaga et al. 2011; Donati et al. 2012; Tan et al. 2013; Broekhuis 

et al. 2014; Berge et al. 2015; Tran et al. 2016). These include, for example, findings that cheetahs Acinonyx 

jubatus can be highly active foragers at night (Cozzi et al. 2012), that zooplankton undergo mass vertical 

migration (Last et al. 2016; Ludvigsen et al. 2018) and cormorants Phalacrocorax carbo dive (Grémillet et 

al. 2005) through the polar night, and that some dragonfly species migrate by night (Feng et al. 2006). The 

overall level of nighttime activity by animals is doubtless vastly underestimated; whilst activity of night 

active species in the daytime tends readily to be observed, the converse does not. 

 

There are two prominent, and rather contrasting, perspectives on the consistency of diel time partitioning by 

animals, the current balance between which has yet adequately to be resolved. The first focusses on the 

degree to which this behaviour is phylogenetically conserved, and hence the accuracy with which 

extrapolation can be made from knowledge of individual species to entire clades. Diel activity patterns or 

temporal niches (e.g., diurnal, nocturnal, crepuscular, cathemeral) have been argued to be phylogenetically 

highly conserved (typically maintaining the ancestral condition). This has been shown within groups of 
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mammals (Roll et al. 2006; de Oliveira et al. 2016), across all mammals (Bennie et al. 2014), and across 

tetrapods more widely (Anderson and Wiens 2017). However, I am not aware of such empirical analyses for 

other groups of organisms, although there are numerous examples in which all of the species in a clade 

exhibit the same broad type of diel temporal niche (e.g., within most families of birds). Some attention has 

been paid to examples of narrower clades that whilst predominantly showing one form of diel activity pattern 

have apparently undergone evolutionary transitions by species to others on one or more occasions. But again 

such studies tend to have been confined to vertebrates (e.g., Ankel-Simons and Rasmussen 2008; Gamble et 

al. 2015). 

 

An alternative perspective focusses on evidence of the lability of diel temporal activity within a species. 

Seasonal switches may be quite common, with individuals typically being more diurnal when it is colder and 

more nocturnal when it is warmer (fig. 2 c & d, e & f; e.g., fish - Hautala 2008; mammals - Hayes and 

Krausman 1993; Maloney et al. 2005; Bourgoin et al. 2008; Zschille et al. 2009; Erkert et al. 2012; Hetem et 

al. 2012; Giné et al. 2015; Bu et al. 2016; Clemente et al. 2016; Hofmann et al. 2016; Davimes et al. 2017); 

the evolution of endothermy may have been associated with expanding daily activity into the night (Grigg et 

al. 2004). The degree of nocturnal activity of a species can also be dependent on life stage, age and/or body 

size, sex, migratory phase, density, lunar phase, habitat, weather, and timing of prey activity (table 1, fig. 2 a 

& b). The availability of nighttime seems likely also to be of widespread importance. Empirical examples 

are, nonetheless, very scant. Some species have been shown to exhibit less nocturnal activity at higher 

latitudes (e.g., Dreisig 1981; Theuerkauf 2009; but see Heurich et al. 2014). The distribution of the Indian 

crested porcupine Hystrix indica has also been found to be spatially constrained by the length of the night 

available for foraging (e.g., Alkon and Saltz 1988). 

 

Interspecific competition has regularly been dismissed as a significant determinant of time partitioning 

behavior by species, principally on the grounds that there would be no energetic gain to individuals from not 

feeding during most periods, and hence such partitioning has been regarded as a rather unimportant 

dimension of niche differentiation (Jacksić 1982; Schoener 1986). Nonetheless, evidence has continued to 

accrue of taxonomically or functionally similar species apparently avoiding competition by differential use 

of different times (e.g., insects - Albrecht and Gotelli 2001; DeVries et al. 2008; Kamenova et al. 2015; 
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Żmihorski and Ślipinski 2016; mammals - Kronfeld-Schor and Dayan 2003; Gutman and Dayan, 2005; 

Hayward and Slotow 2009; Lucherini et al. 2009; Di Bitetti et al. 2010; Romero-Muñoz et al. 2010; 

Schwartz et al. 2010; Gerber et al. 2012; Scheibler et al. 2013; Ferreguetti et al. 2015; Sunarto et al. 2015; 

Monterroso et al. 2016; but see Vieira and Paise 2011; Guo et al. 2017). These are almost exclusively non-

experimental studies, limiting the inferences that can be drawn. This includes the possibility of 

underestimating the likely occurrence of such partitioning effects by not accounting for those that involve 

‘apparent’ competition (sensu Holt and Bonsall 2017). If time partitioning amongst species does occur with 

even moderate frequency this could have important implications for studies of co-occurrence and community 

structure that otherwise ignore this. 

 

In contrast to interspecific competition, avoidance of predation has long been championed as an important 

driver of the nighttime activity of species. It has frequently been used to explain the ancestral or 

characteristic behaviour of entire taxonomic groups (e.g., Maor et al. 2017), and reciprocal coevolutionary 

changes in the diel activity of predators and prey have been argued to occur (e.g., Wu et al. 2018). There is 

much evidence for daytime predation risk driving greater nocturnal activity by prey species (e.g., crustaceans 

- Bishop and Wear 2005; insects - Culp and Scrimgeour 1993; fish - McCauley et al. 2012; Kadye and Booth 

2014; amphibians - Barr and Babbitt 2007; birds - Keitt et al. 2004; mammals - Swarts et al. 2009; Zapata-

Ríos and Branch 2016), and for nighttime predation risk driving less nocturnal activity (e.g., fish - Fraser et 

al. 2004; amphibians - Velo-Antón and Cordero-Rivera 2017; mammals - Fenn and Macdonald 1995; 

Monterroso et al. 2013; Bischof et al. 2014; Suselbeek et al. 2014; Tambling et al. 2015; Pavey et al. 2016; 

Zapata-Ríos and Branch 2016). By contrast, examples are rather scarce for no marked impacts of predation 

on levels of nocturnal activity (but see Mestre et al. 2013; Monterroso et al. 2013), although this could be 

subject to a ‘file drawer’ problem (sensu Rosenthal 1979). 

 

Time partitioning behaviour observed in the wild may reflect underlying endogenous circadian rhythms, 

and/or the ‘masking’ of these by responses to other factors. The relative importance of these two is a critical 

mechanistic issue, but remains formally to be determined. However, the multiplicity of ways in which 

temporal switching of diel time partitioning occurs suggests that masking seems easily to be achieved, is 
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likely often to be of adaptive significance, and that it is doubtless at least very widespread (Hut et al. 2012; 

Smarr et al. 2013). 

 

Ignorance of, or ignoring, the diel partitioning behaviour, and especially the usually more poorly known 

nighttime activity, of species may have important management and conservation implications. For example, 

it can result in biased assessments of the abundances of species, with implications for sustainable use, by 

failing to estimate these at the most appropriate times of day (e.g., Wolter and Frehof 2004; Waltert et al. 

2006; Aguzzi and Bahamon 2009; Wrege et al. 2011), in key predatory species being overlooked for the 

biocontrol of pests (Woltz and Landis 2013), and in the failure correctly to identify patterns of habitat use 

(e.g., Johnson and Covich 2000; Elliott 2005) and thence to protect habitat that is important for species 

persistence (e.g., Austin et al. 2016). 

 

Given the responsiveness of diel time partitioning behaviour to a variety of abiotic and biotic factors one 

would predict that it is sensitive to anthropogenic pressures. This has indeed proven to be the case. Change in 

the nocturnal behaviour of species has been documented as a consequence of provision of supplementary 

food sources, human recreational activity, hunting, fishing, persecution, predator control, occurrence of feral 

dogs, disturbance, logging, land use, habitat creation and the introduction of artificial nighttime lighting 

(table 2, fig. 2 g & h). In many of these cases the outcome has been for species to become more nocturnal in 

order better to exploit opportunities and/or avoid human activity, although artificial nighttime lighting tends 

to curtail the activity of nocturnal species (as well as extending into the natural nighttime period the activities 

of species that are not nocturnal; e.g., Bakken and Bakken 1977; Wolff 1982; Negro et al. 2000; Frank 

2009). However, even within a population the extent of responses to anthropogenic pressures on the 

nighttime can be variable depending on the experiences of those pressures by individual animals (Kaczensky 

et al. 2006). 

 

Being obligately limited in diel activity behavior will tend to make species more susceptible to some kinds of 

anthropogenic environmental pressures. For example, obligately diurnal or nocturnal mammals have been 

found to be more than twice as likely to respond to climate change (through local population extirpation, 

range contraction, range shift, and through directional change in abundance, phenology, body size or genetic 
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diversity) as those with flexible activity times (McCain and King 2014). Conversely, as has been explored 

for fish under harvesting pressure, species with more flexible diel activity may experience marked 

directional selection over the timing of this activity as a consequence of anthropogenic pressures (Alós et al. 

2012). 

 

Traits 

The challenges and opportunities of nighttime environmental conditions may not only shape the diel activity 

of animals, but also other traits that they exhibit (with presumably some interplay between diel activity and 

other traits; fig. 1). How the traits exhibited by night active species differ from those of other species, and 

most especially the differences in sensory systems and their relations to environmental conditions is the 

aspect of nighttime ecology that has received more attention than any other. Sensory systems are often under 

strong selection pressure because of the high energy costs associated with their maintenance (Niven and 

Laughlin 2008). A wide array of such systems has been argued either to be adapted for, or more specifically 

associated with, nocturnally active species (although interpretation is complicated because nighttime is not 

the only dark environment). More general systems adapted for night activity include visual (e.g., Hall and 

Ross 2006; Land and Nilsson 2012), olfactory (e.g., Healy and Guilford 1990; Cooper 1999), hearing (e.g., 

Fullard et al. 2000; Fullard and Napoleone 2001) and mechanosensory systems (e.g., Pohlmann et al. 2004; 

Seneviratne and Jones 2010; Mitchinson et al. 2011; Schwarz et al. 2011). There have been various attempts 

to use the morphological structure of associated organs to try and differentiate between, and enable inference 

about, species with different diel partitioning behavior (e.g., Bauer and Kredler 1993; Hall and Ross 2006; 

Schmitz and Motani 2011; Hall et al. 2012). Systems that are more specifically associated with night active 

species include echolocation (e.g., Speakman 1993; Thomas et al. 2004; Lindberg and Pyenson 2007), infra-

red detection (Kurten and Schmidt 1982; Goris 2011) and electrosensing systems (Bullock et al. 1983; 

Pettigrew 1999). The relative importance of different sensory systems may vary even between closely related 

species with different daily activity patterns (e.g., Balkenius et al. 2006), although some species are able to 

use the nighttime without any apparent sensory adaptations (e.g., Kelber et al. 2011). 

 

Whilst attention tends frequently to focus on other sensory systems, particularly striking has been growth in 

understanding of the role that vision plays for many night active species, including that (i) some species are 
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able to use remarkably low light levels for, in some cases rapid and spatially accurate, visually orientated 

movement (e.g., Warrant 2004, 2017; Warrant et al. 2004; Somanathan et al. 2008; Last et al. 2016); (ii) for 

their size and metabolic rate nocturnal species visually sample the environment at lower rates, that is they 

have lower critical fusion frequencies (Healy et al. 2013); (iii) some species are able to see in colour even at 

low light levels (Kelber et al. 2002, 2003; Roth and Kelber 2004); (iv) there are nocturnal predators that 

attract prey using colour (Chuang et al. 2007); (v) there are prey that exhibit nocturnal camouflage (Hanlon 

et al. 2007); (vi) visual communication by animals at night is extensive (Penteriani and Delgado 2017); and 

(vii) vision can be important for species in groups for which other sensory systems have received most 

attention (e.g., spiders, electric fish, bats; Rydell and Eklöf 2003; Zhao et al. 2009; Fenk et al. 2010; Pusch et 

al. 2013). 

 

A variety of non-sensory traits have been found to differ between groups of evolutionarily related nocturnal 

and other species, although tests of these relationships remain few and thus the extent and limits to their 

generality are almost invariably unclear. Many of these are related to the different thermodynamic conditions 

that pertain at night (although other explanations have also been proposed). For example, there is evidence 

that compared with their relatives species of nocturnal ectotherm have higher metabolic rates at low 

temperatures (lizards - Hare et al. 2010), metabolic rates that are more dependent on temperature (beetles - 

Lease et al. 2014), lower thermal tolerances (ants - Garcia-Robledo et al. 2018), larger body sizes (insects - 

Luff 1978; Dennison and Hodkinson 1983; Ottesen 1985; Caveney et al. 1995; Guevara and Avilés 2013; 

Medina and Lopes 2014; fish - Hernández-Serna et al. 2015; lizards - Meiri 2008), larger geographic range 

sizes (fish - Luiz et al. 2013), and can have different morphology (fish - Pulcini et al. 2008). Nocturnal 

endotherms also tend to have lower resting metabolic rates (birds - Bennett and Harvey 1987; McNab 1996; 

Duriez et al. 2010; mammals - Hildwein and Goffart 1975; McNab and Wright 1987). Although there are 

such differences, there is little evidence at present that grouping species within a taxon by their diel 

partitioning behaviour provides a strong prediction of the sets of traits that they are likely to exhibit (Pianka 

et al. 2017). 

 

One might predict that given the marked anthropogenic changes to nighttime environments there is 

potentially strong selection on nocturnal traits. A broad suite of traits has been argued potentially to be 
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influenced by artificial light at night, including photoperiod-dependent phenological traits, such as the timing 

of growth and reproduction (Hopkins et al. 2018). It is unclear to what extent some of the numerous 

phenotypic and evolutionary differences between rural and urban populations of species (McDonnell and 

Hahs 2015; Alberti et al. 2016, 2017; Johnson and Munshi-South 2017) are a consequence of differences in 

artificial nighttime lighting, but it could play an important role. The only clear demonstration of such effects 

to date has been reduced flight-to-light behaviour of individuals of the small ermine moth (Yponomeuta 

cagnagella) from light polluted sites compared with those from unpolluted ones (Altermatt and Eber 2016). 

 

Community ecology and macroecology 

All else being equal, one might expect that, based on the relative durations of nighttime and daytime, similar 

numbers of animal species and individuals in communities would be nocturnal as diurnal (Park 1941a). Of 

course, a number of factors could readily and substantially distort such symmetry, including phylogenetic, 

thermal and seasonal constraints. The role of seasonality is potentially particularly significant, shortening the 

numbers of hours that are dark during the warmer months at higher latitudes. 

 

In practice, variation in the relative frequency in communities of nocturnal species and individuals remains 

remarkably poorly understood. Global macroecological studies of lizards (of which most species are diurnal) 

and of mammals (of which most species are nocturnal), based on geographic range maps, have shown that 

the frequency of nocturnal species tends to be lower when nighttime temperatures are low (e.g. at higher 

latitudes and elevations), and higher when daytime temperatures are high (e.g. in deserts), and when periods 

of nighttime are longer and those of twilight shorter (Bennie et al. 2014; Vidan et al. 2017). 

 

Local studies of the relative frequency of nocturnally active species and individuals are also surprisingly 

scarce. Setting aside those groups for which the majority of species share a diurnal or a nocturnal temporal 

niche (e.g. birds, mammals), probably the most research has been conducted into fish assemblages. Here, 

daytime and nighttime assemblages seem often to be similar in richness and abundance or greater numbers 

are active in the nighttime (e.g., Robblee and Zieman 1984; Layman 2000; Arrington and Winemiller 2003; 

Dulčić et al. 2004; Correa et al. 2008; Castillo-Rivera et al. 2011; Roach and Winemiller 2011; Matheson et 

al. 2017). But this can be reversed, with daytime assemblages being larger than nighttime ones (e.g., Rooker 
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and Dennis 1991; Rooker et al. 1997; Nagelkerken et al. 2000), and some have argued that this is the norm 

(Helfman 1978). Those studies that have been conducted for more speciose taxonomic groups have mostly 

been for arthropods, and suggest that, in general, similar numbers of taxa and individuals are active during 

the daytime and at night, or greater numbers are active during the daytime (e.g., Williams 1959; Dondale et 

al. 1972; Janzen 1973; Vickerman and Sunderland 1975; Basset et al. 2001, 2003). The principal exception is 

for arid areas with high daytime temperatures, where nocturnality tends to be most prevalent (e.g., Vonshak 

et al. 2009), but studies in other environments have also found such outcomes (e.g. Costa and Crossley, 

1991). 

 

On the basis of present information it is impossible to provide a reliable evaluation of what proportion of 

animal species are nocturnal at local, regional or global scales. Hölker et al. (2010) attempt a global 

calculation based on the rather scant available estimates for major animal groups, concluding that >60% of 

all invertebrates (the vast majority of animal diversity) are nocturnal. This appears to be based on a quite 

liberal interpretation of nocturnal activity, and if so is probably strongly influenced by organisms that have a 

nocturnal stage in their lifecycle, even if the adult form is not nocturnal. If this figure is broadly correct then, 

given all of the associated uncertainties, it may not be that different from Park’s (1941a) expectation of 

rough equality amongst numbers of species that are nocturnal and that are not. 

 

In all environments there is usually substantial turnover in the identities of the species that are active 

between daytime and nighttime, with some evidence that this is higher when the differences in temperatures 

are greater (Basset et al. 2001, 2003). In some systems at least, there may also be marked shifts in the trophic 

composition of assemblages between daytime and nighttime (e.g., Castillo-Rivera et al. 2011). 

 

The introduction of artificial nighttime lighting can have profound effects on the structure of local ecological 

communities, including changes in species composition and abundance, and in fluxes of individuals (Davies 

et al. 2012, 2017; Meyer and Sullivan 2013; Hölker et al. 2015; Spoelstra et al. 2015). There is evidence that 

at broader spatial scales it may also alter the proportions of species present with different kinds of diel time 

partioning behaviour (Bennie et al. 2014). 
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Ecosystem functioning 

The general role of biodiversity and individual species in levels of ecosystem functioning, and the marked 

partitioning of activity of individual species between periods of the day, suggest that the functioning of 

ecological systems may be strongly partitioned between day and night. Some key forms of ecosystem 

functioning that were thought predominantly to occur during the daytime have been found to have strong 

nighttime components (e.g., evapotranspiration - de Dios et al. 2015; O’Keefe and Nippert 2018; 

decomposition in arid environments - Gliksman et al. 2016; tropical seed dispersal - Santana et al. 2016). 

Given the marked differences in environmental conditions and community structures between daytime and 

nighttime it is almost inevitable that ecosystem functioning will also differ. These differences include in such 

diverse phenomena as the functional composition and redundancy of assemblages (e.g., Houadria et al. 

2016), the structure of interaction networks (e.g., Remmert 1969; Devoto et al. 2011), and the cycling of 

materials (e.g., Wilson and Xenopoulos 2013). 

 

The asymmetries in global climate warming between daytime and nighttime have important consequences 

for ecosystem functioning. For example, increased nighttime temperatures have been linked to spatially and 

temporally divergent responses of vegetation growth and carbon sequestration (Alward et al. 1999; Peng et 

al. 2013; Xia et al. 2014; Anderegg et al. 2015), changes in yields of some crops (Peng et al. 2004), 

differences in microbial activity (Freixa et al. 2017) and soil respiration (Xia et al. 2009), and increased top-

down control of plant diversity (Barton and Schmitz 2018). Fundamentally, the temperature dependence of 

respiration is likely to mean that carbon fluxes are profoundly influenced by any diel asymmetry of warming. 

Given this apparent importance of nighttime temperature changes, it is of concern that the vast majority of 

ecological experiments into the impacts of climate change have typically assumed that daytime and 

nighttime temperature changes are the same. 

 

Changes in nighttime lighting conditions through the introduction of artificial sources has been shown to 

result in changes in disparate components of ecosystem functioning, including the trophic structure of 

species assemblages (Davies et al. 2012), the balance of bottom-up and top-down control in communities 

(Bennie et al. 2015; Sanders et al. 2018), carbon cycling (Hölker et al. 2015), pollination (Macgregor et al. 

2015; Knop et al. 2017) and seed dispersal (Lewanzik and Voigt 2014). For example, Davies et al. (2012) 
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found that, both at night and during the day, predator and scavenger invertebrates were more abundant under 

streetlights than between them. 

 

Some of the responses of ecosystem function to temperature change and to artificial nighttime lighting can 

be very similar, begging questions as to the extent to which these drivers have been sufficiently 

differentiated in some (non-experimental) studies, and whether they are synergistic. A study of the combined 

effects of nighttime warming and artificial light pollution on a visually foraging ladybeetle predator species, 

found that these had non-additive effects which together caused much lower abundances of aphid prey 

(Miller et al. 2017). 

 

Conclusions 

Several important conclusions arise from this synthesis: 

 The failure to realize Park’s (1940) original vision of a comprehensive research program in nighttime 

ecology has hindered recognition of the general ecological importance of the night. 

 The ecology of the nighttime should neither be underplayed nor treated as something unusual or odd. 

It is a substantial component of the ecology of the earth. 

 If similar studies of many topics were to be conducted during the daytime or the nighttime, those for 

the nighttime would continue often to contribute proportionally much more to overall ecological 

understanding. 

 There are important questions, particularly concerned with the links between the different key issues in 

nighttime ecology highlighted in this paper (box 1), that remain essentially unanswered. 

 The potential for a ‘golden age’ of nighttime ecological research is undoubtedly with us. There is huge, 

as yet largely untapped, opportunity to exploit technological advances for conducting studies of the 

ecology of the nighttime. Only recently have costs reduced sufficiently to enable some technologies to 

be used very widely (e.g., camera traps) and this has yet to happen for others (e.g., starlight cameras). 
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 It is unclear why issues of time partitioning have become so much more heavily associated with 

nighttime than daytime ecology. Animals use the nighttime in as varied a manner as they do the 

daytime. 

 With species trait combinations well established as being central to much ecosystem function and 

process, it important to understand better how and why non-sensory traits differ between animals that 

are most active at different times of day. 

 It is time that the long-standing questions of how similar are the species richness, abundance and 

biomass of animal communities between daytime and nighttime, and how these interact, are properly 

answered. These are fundamental characteristics of ecological systems. 

 Opportunities to observe nocturnal ecology under natural light cycles are fast disappearing. The 

ecology of the nighttime is under intense anthropogenic pressure, and arguably more so than that of 

the daytime, albeit the two are intimately linked. This gives the development of a synthetic research 

program in nighttime ecology an imperative that has previously been lacking. Estimates that skyglow 

presently influences the nighttime over a quarter of the land surface are conservative and rates of 

increase in this coverage are high, and in some regions (e.g., Europe, eastern North America) 

unpolluted skies are largely gone. 
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Box 1. Some important questions regarding the key issues about nighttime ecology highlighted in this paper 

and their linkages. Numbers refer to linkages in fig. 1. 

 

Environmental conditions 

 Is the nighttime environment under greater anthropogenic pressure than that of the daytime? 

 

Time partitioning 

 How well does conventional categorization of diel partitioning behavior (e.g. diurnal, nocturnal, 

crepuscular, cathemeral) reflect the variety of behaviours actually exhibited? 

 What is the relative importance of endogenous circadian rhythms and the ‘masking’ of these by 

responses to other factors in shaping observed diel activity patterns? (1,3,4) 

 

Traits 

 How well does the diel activity of a species predict the suite of non-sensory traits that it possesses? 

(5) 

 How do differences in the traits of day active and night active communities influence ecosystem 

function? (8) 

 How widespread are evolutionary responses of traits to anthropogenic pressures on the nighttime, 

particularly artificial lighting? (2) 

 

Community dynamics 

 What is the relative species richness, abundance and biomass of day active and night active animals, 

and how does this relate to environmental conditions? (9) 

 How are the community dynamics of day active species influenced by night active ones, and vice 

versa? 

 Do differences in daytime and nighttime community dynamics select for different traits? (6) 
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Ecosystem functioning 

 What is the relative contribution of daytime and nighttime to the overall delivery of different 

ecosystem functions and processing? 

 Do differences in the dynamics of day active and night active communities change ecosystem 

functioning? (7) 

 How important is differential anthropogenic nighttime warming in changing ecosystem functioning? 

(10) 

 

  



 46 

Table 1. Examples of variation in degree of nighttime activity by species as a consequence of intrinsic or 

extrinsic factors. 

Species Trait Variation Source 

Pararge xiphia, 

Hipparchia semele 

[butterflies] 

age/size Diurnal foraging of larvae ceased 

at large sizes while nocturnal 

foraging remained constant or 

increased 

Berger and Gotthard 

(2008) 

Atlantic salmon Salmo 

salar 

age Parr predominantly active at 

night, young-of-the-year equally 

active during day and at night 

Imre and Boisclair 

(2004) 

Atlantic salmon Salmo 

salar 

size Young-of-the-year 

predominantly diurnal in early 

summer and nocturnal in late 

summer 

Johnston et al. (2004) 

Brown bear Ursus arctos age Younger individuals more 

nocturnal 

Hertel et al. (2017) 

European polecat 

Mustela putorius 

sex Females predominantly diurnal 

and crepuscular, males nocturnal 

Marcelli et al. (2003) 

American mink 

Neovison vison 

sex Females predominantly diurnal, 

males nocturnal 

Zschille et al. (2009) 

Pantala flavescens 

[dragonfly] 

migratory phase Migrates at night Feng et al. (2006) 

North American nesting 

birds 

migratory phase Many species that migrate partly 

or exclusively at night are strictly 

diurnal foragers 

Beauchamp (2011) 

Field vole Microtus 

agrestis 

density Predominantly diurnal during 

density peaks, nocturnal during 

population declines, and diurnal 

Halle and Lehmann 

(1992) 
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at low density and early increase 

phases 

Pimelodus maculatus 

[fish] 

lunar phase Nocturnal migratory movement 

lessened during new moon 

Bizzotto et al. (2009) 

59 nocturnal mammal 

species  

lunar phase Across all species, moonlight 

suppressed activity 

Prugh and Golden (2014) 

Red brocket deer 

Mazama americana, 

Paca Cuniculus paca, 

Nine-banded armadillo 

Dasypus novemcinctus, 

Greater long-nosed 

armadillo Dasypus 

kappleri [prey of Puma 

Puma concolor] 

lunar phase Paca and armadillos more active 

on darker nights, and all species 

avoided brighter times of night 

regardless of moon phase 

Pratas-Santiago et al. 

(2017) 

Leopard Panthera 

pardus 

habitat Nocturnally active in savannah, 

diurnal and crepuscular in forests 

Jenny and Zuberbühler 

(2007) 

Golden-lined rabbitfish 

Siganus lineatus 

habitat Diurnal forager on boulder-

shoreline, nocturnal on reef 

Fox and Bellwood 

(2011) 

Mulloway Argyrosomus 

japonicus [fish] 

weather Diurnally active during non-rain 

conditions, more nocturnal after 

rainfall 

Payne et al. (2015) 

Andean cat Leopardus 

jacobita 

timing of prey 

activity 

Timing of activity similar to that 

of main prey mountain vizcacha 

Lagidium viscacia 

Lucherini et al. (2009) 

Jaguar Panthera onca, 

Puma Puma concolor 

timing of prey 

activity 

Timing of activity similar to 

main prey species, Armadillo 

Dasypus novemcinctus and Paca 

Harmsen et al. (2011) 
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Agouti paca respectively 
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Table 2. Examples of changes to nighttime activity of species as a consequence of anthropogenic 

opportunities and pressures. 

Species Anthropogenic change Effect Source 

Black bear Ursus 

americanus  

provision of 

supplementary food 

sources 

Greater nocturnal 

activity in areas with 

garbage 

Beckmann and Berger 

(2003) 

Southern stingray 

Dasyatis americana 

provision of 

supplementary food 

sources 

Greater diurnal activity 

in supplementary feeding 

area 

Corcoran et al. (2013) 

Bobcat Lynx rufus, 

Coyote Canis latrans, 

and Mule deer 

Odocoileus hemionus 

human recreational 

activity 

Greater nocturnal 

activity by Bobcats in 

sites with higher human 

recreation 

George and Crooks 

(2006) 

Mediterranean mouflon 

Ovis gmelini musimon x 

Ovis sp. 

human recreational 

activity 

Greater nocturnal 

activity in area with 

intense tourism 

Marchand et al. (2014) 

Leopard Panthera 

pardus 

human recreational 

activity 

Greater nocturnal 

activity in presence of 

tourist activity 

Ngoprasert et al. (2017) 

Puma Puma concolor hunting Greater crepuscular and 

nocturnal activity in 

areas with less protection 

from hunting and 

logging 

Paviolo et al. (2009) 

Brown bear Ursus arctos hunting Greater nocturnal 

activity during hunting 

season 

Ordiz et al. (2012) 

Mediterranean mouflon hunting Greater nocturnal Marchand et al. (2014) 
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Ovis gmelini musimon x 

Ovis sp.  

activity in hunted areas 

Audouin's gull Larus 

audouinii 

fishing Greater nocturnal 

activity when greater 

nocturnal fishing fleet 

activity 

Oro (1995) 

Coral reef fish fishing Greater diurnal activity 

of nocturnal species on 

predator depleted reefs 

McCauley et al. (2012) 

African wild dog Lycaon 

pictus 

persecution Greater proportion of 

hunts under moonlight 

when human presence 

and persecution greater 

Rasmussen and 

Macdonald (2011) 

Dingo Canis lupus dingo predator control Less active at dusk and 

more active before dawn 

at sites where numbers 

controlled 

Brook et al. (2012) 

Eight carnivore species feral dogs Greater dusk activity by 

Ring-tailed mongoose 

Galidia elegans in 

presence of dogs 

Gerber et al. (2012) 

10 mammal species feral dogs Greater nocturnal 

activity by mountain 

tapir Tapirus pinchaque, 

and greater diurnal 

activity by Andean bear 

Tremarctos ornatus and 

Little red brocket deer 

Zapata-Ríos and Branch 

(2016) 
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Mazama rufina, when 

dogs present. 

Hainan Eld’s deer 

Cervus eldi hainanus 

disturbance Greater nocturnal 

activity when living 

amongst villagers 

Pan et al. (2011) 

European Red deer and 

North American Elk 

Cervus elaphus 

disturbance Greater nocturnal 

activity in region with 

greater human 

disturbance 

Ensing et al. (2014) 

Red fox Vulpes vulpes disturbance Decrease in diurnal 

activity in areas with 

higher levels of human 

disturbance 

Díaz-Ruiz et al. (2015) 

Collared brown lemur 

Eulemur collaris 

disturbance Decrease in diurnal 

activity in areas with 

higher levels of human 

disturbance 

Donati et al. (2015) 

12 carnivore species disturbance Decrease in diurnal and 

increase in nocturnal 

activity by Puma Puma 

concolor, Bobcat Lynx 

rufus and Coyote Canis 

latrans in areas with 

higher levels of human 

disturbance 

Wang et al. (2015) 

Seven bat species logging Early night activity 

reduced in logged 

compared with control 

Castro-Arellano et al. 

(2009) 
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forest for three species 

Spotted hyena Crocuta 

crocuta 

land use Greater nocturnal 

activity with increased 

livestock grazing 

Boydston et al. (2003) 

Serval Leptailurus serval land use Greater nocturnal 

activity on intensively 

farmed land 

Ramesh and Downs 

(2013) 

Japanese sika deer 

Cervus nippon 

land use, feral dogs Greater nocturnal 

activity with more 

agricultural land, forestry 

area, natural grassland, 

subalpine vegetation and 

greater dog density 

Agetsuma et al. (2016) 

White seabream 

Diplodus sargus 

habitat creation Greater nocturnal 

activity on artificial 

compared with natural 

reefs 

Koeck et al. (2013) 

Santa Rosa beach mouse 

Peromyscus polionotus 

leucocephalus 

introduction of artificial 

nighttime lighting 

Fewer food patches 

exploited with artificial 

lighting 

Bird et al. (2004) 

Common spiny mouse 

Acomys cahirinus and 

Golden spiny mouse 

Acomys russatus 

introduction of artificial 

nighttime lighting 

Nocturnal species 

decreased activity and 

foraging with artificial 

lighting; diurnal species 

did not respond 

Rotics et al. (2011) 

15 bat species introduction of artificial 

nighttime lighting 

Activity in early night of 

some species influenced 

by artificial lighting 

Lacoeuilhe et al. (2014) 
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House mouse Mus 

musculus 

introduction of artificial 

nighttime lighting 

Activity and foraging 

reduced by artificial 

lighting 

Farnworth et al. (2016) 
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Figure 1: The key issues in nighttime ecology highlighted in this paper, and some key questions concerning 

these and their linkages (see Box 1). 

 

Figure 2: Examples of how levels of nighttime activity by species change with environmental factors. 

Mulloway Argyrosomus japonicus [fish] in southeastern Australia during (a) non-rain period and (b) rain 

period (acoustic accelerometer data with activity in m.s-2; data from Payne et al. 2015); ant Messor capitattus 

in northeastern Spain (number of individuals observed at baits, standardised to the maximum hourly activity 

recorded) in (c) spring and (d) summer (data from Cros et al. 2016); Short-beaked echidna Tachyglossus 

aculeatus in western Australia (accelerometer data; frequency of activity per hour) in (e) spring and (f) 

summer (data from Clemente et al. 2016); and Dingo Canis lupus dingo in north and central Australia on 

properties that (g) did not control and (h) did control the species (camera trap data - proportion of records; 

data from Brook et al. 2012). Time in hours from midnight. 
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Figure 1 
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Figure 2 

 

(a)      (b) 

 

 

(c)      (d) 

 

  

5 10 15 20

0
.5
0

0
.5
5

0
.6
0

0
.6
5

Time

A
c
ti
v
it
y

5 10 15 20

0
.5
5

0
.6
0

0
.6
5

0
.7
0

0
.7
5

Time

A
c
ti
v
it
y

5 10 15 20

0
2
0

4
0

6
0

8
0

Time

A
c
ti
v
it
y

5 10 15 20

0
2
0

4
0

6
0

8
0

1
0
0

Time

A
c
ti
v
it
y



 57 

(e)      (f) 

 
 

(g)      (h) 
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