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Abstract

Understanding how the dynamics of language learning and
language change are influenced by the population structure of
language users is crucial to understanding how lexical items
and grammatical rules become established within the con-
text of the cultural evolution of human language. This pa-
per extends the recent body of work on the development of
term-based languages through signalling games by exploring
signalling game dynamics in a social population with over-
lapping generations. Specifically, we present a model with
a dynamic population of agents, consisting of both mature
and immature language users, where the latter learn from the
formers’ interactions with one another before reaching ma-
turity. It is shown that populations in which mature indi-
viduals converse with many partners are more able to solve
more complex signalling games. While interacting with a
higher number of individuals initially makes it more diffi-
cult for language users to establish a conventionalised lan-
guage, doing so leads to increased diversity within the input
for language learners, and that this prevents them from de-
veloping the more idiosyncratic language that emerge when
agents only interact with a small number of individuals. This,
in turn, prevents the signalling conventions having to be rene-
gotiated with each new generation of language users, result-
ing in the emerging language being more stable over subse-
quent generations of language users. Furthermore, it is shown
that allowing the children of language users to interact with
one another is beneficial to the communicative success of the
population when the number of partners that mature agents
interact with is low.

Introduction
The fact that children around the world are readily able to
learn the language of their given social group, even though
these languages are in a constant state of flux (Hopper, 1987)
and exhibit high levels of variation, flexibility of usage, and
are ever changing over time within dynamic populations
(Christiansen and Kirby, 2003) indicates that cultural factors
play a crucial role in the shaping of human language. The
establishment of the meanings of lexical items and the sub-
sequent change in these meanings over time is, in part, what
led Lewis (1969) to work on the conventionality of mean-
ing; how specific arbitrary signals establish themselves as
referring to a specific meaning. He introduced a signalling

game in order to explore how meaningful language might
evolve from the use of initially random signals. Over the
last decade, renewed interest in these ideas has led to a body
of work that has explored the evolution of term-based lan-
guages through coordination games (Skyrms, 2004, 2009,
2010; Huttegger, 2007; Barrett, 2006, 2009; Argiento et al.,
2009).

In this paper, we further develop this work by imple-
menting a reinforcement learning (R-L) model involving a
single Sender-Receiver pair, which is then extended into a
population-based, multi-generational, simulation. This is
both novel and necessary, given that human language per-
sists in a complex social milieu, which is not captured by
standard R-L models, and employing the R-L procedure in
a population-based model could therefore offer insights into
how lexical items become established within the context of
the cultural evolution of human language in structured pop-
ulations with overlapping generations.

This paper presents a model that demonstrates that, if
agents only interact with a small number of other agents,
then it is easier for these agents to establish a convention-
alised system of language usage than in cases where they
interact with a larger number of the population. However,
by interacting with a smaller subset of the population, these
individuals develop a more idiosyncratic language. Thus, it
becomes difficult for the children of these agents, who learn
from the interactions of their parents, to communicate with
children of other mature agents during future epochs. In
contrast, allowing individuals to interact with a larger pro-
portion of the population does initially make it more diffi-
cult to establish agreed upon conventions of usage, but it
does result in an increased amount of diversity within the
language learner’s training input data. This better enables
the children of these mature agents to successfully interact
with the offspring of other mature agents, previously unen-
countered by the agent in question; this aids the negotia-
tion of conventional signalling in the population as a whole.
This, in turn, leads to the development of a language that
is more stable and consistent over generations of language
users, compared to the case where individuals have to rene-
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gotiate conventions of use in every generation.

The n = 2 game
In a Lewis signalling game there are two players, a Sender
and a Receiver. A single bout of the game commences with
the Sender knowing that the world is in some random state,
t, but the Receiver being ignorant of this information. The
Sender then selects a signal, s, with which to convey the
world state to the Receiver; the Receiver observes s and has
to pick an appropriate action, a. If the action chosen by the
Receiver matches the world state (i.e., a = t), the bout is
considered to have been a success. Here, t, s, and a are
drawn from finite sets T , S, and A, respectively, which are
all of size n; in Lewis’ (1969) original model n = 2.

Over successive bouts of the game, both players are
expected to adapt their behaviour in order to increase
the chance of achieving communicative success, typically
through some kind of reinforcement learning. The easiest
way to conceptualise this is in terms of urns and balls. At
the outset of the simulation run, an unbiased Sender will
have n urns, one for each state of the world, each of which
contains n balls, one associated with each of the n possible
signals. Let’s suppose that during the first bout of the game,
t = “red”. The Sender picks a random ball from their red
urn. The symbol on this ball dictates the signal to be made,
s; in this case, suppose s =“fah”. Likewise, the Receiver
observes s = “fah”, and picks a random ball from their fah
urn, which indicates the action to be taken, a. Both balls are
then returned to their respective urns. If a = t, the inter-
action was a success, and in accordance with the principles
of Roth-Erev reinforcement learning (Roth and Erev, 1995),
the Sender adds extra balls of type s to urn t and the Re-
ceiver adds extra balls of type a to urn s. The number of
extra balls, u, added to the urns corresponds to the utility as-
sociated with the outcome of the signalling bout; in Lewis’
(1969) original game u = 1 if a bout is successful and u = 0
otherwise. More formally, at any point in time, b(t, s) is the
number of balls for signal s in the Sender’s urn for state t,
and accordingly, b(s, a) is the number of balls correspond-
ing to act a in the Receiver’s urn s. Thus, the behavioural
strategies for Sender (σ) and Receiver (ρ) are as follows:

σ(t, s) =
b(t, s)∑

s′∈S b(t, s
′)

ρ(s, a) =
b(s, a)∑

a′∈A b(s, a
′)
(1)

There are a number of possible signalling equilibria that
can arise in such a game. Perfect signalling strategies result
in optimal pay-offs for the players by mapping each world
state onto a unique signal and each signal onto the unique
appropriate action (Figure 1). This behaviour constitutes
an evolutionarily stable strategy (ESS) because when it is
played by the whole population there is no incentive for any
individual to change their strategy.

Figure 1: Optimal strategies for the n = 2 game.

However, players may spend significant time playing sub-
optimal ‘pooling’ strategies in which Senders employ the
same signal for multiple world states (pooling these world
states together), making it impossible for Receivers to deter-
mine the state of the world from the signals that they receive
(Figure 2). Pooling strategies are not ESSs since adjacent
strategies often achieve equal fitness (e.g., the two pooling
strategies in fig 2). The expected pay-off for such a pooling
strategy is 0.5 when n = 2.

Figure 2: Two of the possible sub-optimal pooling strategies
for the n = 2 game.

It has been shown by way of both computational simu-
lation (Barrett, 2006, 2009; Skyrms, 2010) and mathemati-
cal modelling (Huttegger, 2007; Argiento et al., 2009) that
the n = 2 game will nearly always converge upon an op-
timal signalling system. Indeed, Skyrms (2009) went on to
demonstrate that this behaviour also holds in a case where
there are two Senders and one Receiver. These results are
further supported by Table 1, where it can be seen that a
computational model of the n = 2 game being played for
106 bouts will almost always reach a perfect signalling equi-
librium.

Higher-n games
However, a successful outcome is not always achieved when
the game is played with n > 2, i.e., with a higher num-
ber of states, signals and actions (Skyrms, 2010; Huttegger,
2007; Barrett, 2006, 2009). Here, we adopt the methodol-
ogy of Barrett (2006, 2009). The R-L model that formed
the basis of the population-based R-L model was run multi-
ple times, for various values of n, with each run consisting



of 106 bouts, B, of the game, where a run of the simula-
tion is considered to fail if the number of successful bouts
is less than 90% of the total number of bouts. Table 1 (left)
shows the results of these runs, which agree with those of
Barrett (2006, 2009). Table 1 (right) shows the results of
a smaller sample of 100 runs, with all other parameters be-
ing held constant, and results that are quite similar. It can
be seen clearly from Table 1 that, in a n=3 game, the play-
ers fail to achieve a high enough rate of signalling success
roughly 10% of the time, and that this increases to ≈ 20%
for n=4 games, ≈ 60% for n=8 games, and so on. The
comparison in Table 1 is important to show, as the extended
model presented later is run for 100 runs due to limits on
computational power.

1000 runs
n = 2 0.999
n = 3 0.881
n = 4 0.784
n = 8 0.391
n = 10 0.281
n = 20 0.264

100 runs
n = 2 0.99
n = 3 0.87
n = 4 0.84
n = 8 0.33
n = 10 0.22
n = 20 0.23

Table 1: Table depicting the success rates of the R-L model
after 106 bouts for various values of n, with 1000 runs (left)
and 100 runs (right).

Generational Reinforcement Learning Model
Although interesting in their own right, the dyadic setting
considered so far limits the conclusions that can be drawn.
After all, human language persists in a highly complex so-
cial milieu, and it has been shown that the structure and com-
position of a population can influence the dynamics of lan-
guage change over time (Brace et al., 2015). Thus, the orig-
inal reinforcement learning model (R-L) was extended in a
number of ways. First, whereas the original model focused
on a single Sender and Receiver playing for B bouts, in the
population model (R-L-P), there are a population of agents.
This population is divided into a number of mature agents,
NM , and a number of immature agents, NI ; with all agents
starting life as immature and then being promoted to mature
status after the first epoch of their existence. Mature agents
play bouts of the language game with one another, updating
their language behaviour according to game outcomes. By
contrast, while agents are immature they merely observe the
language bouts played by their mature parent, and update
their language behaviour on the basis of the outcomes of
these observed games. The lifespan of agents is two epochs;
the first as an immature agent and the second as a mature
agent, after which they are removed from the simulation.

It is important to emphasise here that throughout the sim-
ulation, when new immature individuals are introduced to
the population, as in the standard R-L model, they have no
knowledge of the language currently being used. This is

true for the initial population of mature agents, and also true
for new immature agents born into all subsequent epochs.
For each immature agent, each world state, t, is associated
equally with each signal, s, when playing as Signaller, and
each signal, s, is associated equally with each action, a,
when playing as Receiver, i.e., each of an immature agent’s
n state urns contains a single ball for each possible signal,
and each of their signal urns contain a single ball for each
possible action. Thus, any change in communicative per-
formance or language use over generations is the result of
language evolution; there is no biological evolution on the
part of the agents.

Secondly, instead of agents merely interacting B times,
the R-L model is extended to include a generational aspect.
In other words, the model is set up to run for a number of
epochs, E, and during each epoch, every mature agent plays
B bouts as the Receiver with other mature agents; with the
amount of bouts it plays as the Speaker being the result
of how many other agents it is partnered with divided by
B. The number of different mature agents that a mature
agent interacts with, P , is a key parameter of the model;
with each mature agent’s total number of interactions, B,
being equally divided amongst its P unique partners, i.e.,
the number of interactions that an agent has with each part-
ner is B/P (rounding up). A key feature of the model is
therefore that varying P does not vary the number of bouts
played, just the number of players that the bouts are played
with.

The R-L-P model thus proceeds as follows. At the start
of the simulation run, an initial population of NM = 15 un-
biased mature agents are created, with an equal chance of
generating each signal for each world state. For each epoch,
E, a fresh population ofNI = 15 unbiased immature agents
is created, each having an equal chance of generating each
signal for each world state. Each immature agent is assigned
a randomly selected mature agent to act as their parent; with
each mature agent acting as a parent to only one immature
agent. Each mature agent is assigned P unique randomly
selected mature partners with which to play the signalling
game. Each of the mature agents then engages inB/P bouts
with each assigned partner, with each participant updating
their signalling or receiving strategy at the end of each bout
through reinforcement learning. Each child will update their
behaviour based on the outcome of the bouts that their par-
ent are involved in; i.e., at the end of a successful bout, a
Sender’s child will add a ball of type s to urn t, and a Re-
ceiver’s child will add a ball of type a to urn s. At the end
of an epoch, all mature agents are removed, all immature
agents are promoted to mature agent status, and a new set of
unbiased immature agents is created.

Results
The R-L-P model does not achieve a successful signalling
system as often as the standard R-L model. Indeed, compar-



Figure 3: Graph depicting the average number of successful bouts
across epochs for P ∈ {1, 2, 4, 8, 10} for a n = 20 game with
NM = 15, NI = 15, B = 106, and u = 1. Averaged over 30
runs.

ing Table 2 to Table 1 shows how, with P = 1, success rates
are lower for all n-games than in the standard R-L model.

Partners=1 Partners=2 Partners=5 Partners=10
n = 4 0.3 0.36 0.77 0.81
n = 8 0.0 0.3 0.48 0.62
n = 10 0.0 0.2 0.20 0.46
n = 20 0.0 0.0 0.29 0.57

Table 2: Language evolution success rates after 100 R-L-P
model runs of E = 20 epochs each for various values of n
and P , where NM = 15, NI = 15, B = 106, and u =
1. With success being measured using the aforementioned
metric used in Table 1.

However, increasing the value of P does increase the rate
of success (Table 2 and Figure 3). In Figure 3, we see that,
with P = 1 or 2, there is an initial level of success, which
corresponds to the number of successful bouts that would be
seen in the normal R-L model for a n=20 game.

Low P values create a situation where mature agents form
a communicative system based upon conventions agreed
upon between themselves and only a small number of other
agents. Thus, in subsequent epochs, when the children of a
mature agent have to interact with the children of another
mature agent, who has not previously interacted with the
mature agent in question, the agreed upon conventions that
both parties formulated during the first epoch are likely to
be of little use, due to different agents forming conventions
based upon their idiosyncratic experiences. This gives rise
to sub-optimal behaviour at the population-level. However,
any immature agents that are present learn from the success-

Figure 4: Graph depicting the average percentage of successful
communicative bouts between all mature agents plotted against the
number of unique signals presented to them during said bouts in the
second epoch for a n = 20 game, for P=1, 2, 5, 10 and NM = 15,
NI = 15, B = 106, and u = 1. Averaged over 60 runs.

ful bouts of their respective parents, hence the steady in-
crease in success rates for these lower P values1.

In contrast, with high P values, we see an obvious and
immediate increase in communicative success. This is due
to the way an increase in P leads to the children of the
mature agents having more diversity in their training input,
which better enables these individuals to communicate with
a larger number of other agents upon being promoted to ma-
ture agent status (Figure 4).

Imagine a hypothetical mature agent from epoch one, who
is partnered with ten other randomly selected agents, who in
turn, are partnered with ten other agents. In the simulation,
bouts are scheduled in such a way that agent1 will have one
of the allocated bouts with one of its randomly selected part-
ners, then agent2 will do the same; and so on, until we reach
agentMN

. At which point we go back to agent1 and allow it
to have its second bout, again with a randomly selected part-
ner; and so on until each partner of every agent has played
B/P bouts with the agent. In the P=1 case, unsurprisingly,
we see higher levels of initial success during the first gener-
ation than in the P=10, due to the establishment of a con-
vention involving fewer agents having to negotiate with one
another (Figure 5, left).

In contrast, with P = 10, it is slightly harder to establish
a conventionalised usage because each agent has to nego-
tiate with an increased number of different agents, which
results higher levels of signal diversity (Figures 4 and 5,
left). However, when the offspring of the first epoch’s ma-
ture agents are forced to interact with a different subset of
the population in the second epoch, populations with higher

1Given enough epochs, it is likely that the agents would give
rise to a successful communicative system.



Figure 5: Graph depicting the number of successful bouts out of every 100 bouts, over all 106 bouts of a random agent during the first epoch
(left) and the second epoch (right); with P=1 (blue line) and P=10 (red line). Where n = 20, NM = 15, NI = 15, B = 106, and u = 1.

P values exhibit higher communicative success because the
increased signal diversity in the previous epoch, combined
with the immature agents learning from the successful bouts
of their parents, has resulted in these agents having estab-
lished a conventionalised usage that requires less renegotiat-
ing when speaking to previously unencountered agents than
in the P = 1 case, where agents have a more idiosyncratic
language that requires them to renegotiate the conventions
established by their parents (Figure 5, right).

This is why Figure 4 shows an increase in communica-
tive success with higher values of P , while also indicating a
negative trend in each of the data clusters for each specific P
value; although it is harder to establish a language when ne-
gotiating meaning-signal pairs with more individuals, doing
so makes it more stable across generations (Figure 5). In-
deed, as Figure 5 (right) shows, the agreed upon convention
of usage in cases of lower P values has to be renegotiated
in subsequent epochs due to it offering little communicative
success to agents when communicating with newly encoun-
tered individuals.

It is important to note that the increase in communicative
success is the result of higher P values and not of another
variable, such as B. Indeed, Figure 6 demonstrates the av-
erage level of communicative success over twenty epochs is
significantly lower for P = 1 or 2, as compared to P = 4;
a trend that continues as P is increased. Furthermore, it can
be seen from Figure 6 that higher P values allow for an in-
creased amount of communicative success even when agents
have significantly fewer training sessions (lower B values).

However, in the real world, children are not just passive
receivers of linguistic input. They interact with others, in-

cluding other children, who may not yet be fully linguisti-
cally competent. Thus, a number of model runs were con-
ducted whereby immature agents had B bouts with P other
immature agents while witnessing their parents bouts (Fig-
ure 7). In other words, bouts are scheduled in a similar man-
ner to that described above, in that we allow each agent to
have one bout with a randomly selected partner, starting with
agent1 and cycling through to agentNM+NI

, before going
back to agent1 again. In these runs, mature agents only in-
teract with mature agents and immature agents only interact
with other immature agents. Although, immature agents still
learn from their parent’s interactions, in the manner detailed
above.

Figure 7 demonstrates how, performance in the P = 10
case is impeded by allowing interactions between immature
agents. This is to be expected as linguistically underdevel-
oped individuals interacting with one another will add a de-
gree of noise into the communicative system.

However, with P = 1, allowing immature agents to in-
teract with one another dramatically increases communica-
tive success. This difference in behaviour can again be at-
tributed to signal diversity. While in the above results im-
mature agents only learned from the interactions of their
parents, meaning they got a degenerative sample of the lan-
guage because they only ever witnessed the same two indi-
viduals communicating during their first epoch, here they are
also interacting and learning with another individual who is
likely to have witnessed two different mature agent’s inter-
acting with one another. This would increase the amount of
signal diversity in the immature agents training data.



Figure 6: Graph depicting the average amount of communicative
success over 20 epochs for various values of B and P . Where
n = 20, NM = 15, NI = 15, B = 106, and u = 1. Averaged
over 30 runs.

Discussion
The results presented here build upon a larger body of work;
both in regards to signalling conventions (Skyrms, 2004,
2010; Barrett, 2006, 2009) and expression/induction mod-
els research in general (Hurford, 2002). It has been shown
that a signal can acquire a conventionalised meaning without
the Sender intending for it to do so. Moreover, the meaning
of such simple signals is dependent upon the stabilisation
of usage conventions, which emerge from functional histor-
ical signal production. Thus, even the most automatic or
reflexive signals can acquire meaning, so long as the produc-
tion and response mechanisms are co-adapted to coordinate
their behaviours in accordance with such an arbitrary signal
(Harms, 2004).

More interestingly, it has been shown that a population
structure that allows for interaction between more of its
members is beneficial in allowing it to evolve an efficient
term-based language.

More specifically, it has been shown that, as intuition
dictates, while it is harder to establish a conventionalised
system of usage with larger numbers of individuals, doing
so enables the emerging language to persist in subsequent
epochs. This is due to the input into language learners being
initially more diverse, which prevents these learners from
developing a more idiosyncratic, communicative system that
makes it harder to communicate with previously unencoun-
tered individuals.

In addition, the results and behaviour reported here can
be seen to be linked to the concept of a linguistic bottleneck.
This refers to how the input data for a language learner will
only be a subset of the potentially large range of grammars
of the Speaker from which it is learning.

A series of computer-based simulations that use the

Figure 7: Graph depicting the average amount of communica-
tive success over 20 generations for P = 1 where only NM in-
teract with one another (blue solid line) and where both NM and
NI interact with other mature and immature agents, respectively
(blue dashed line), and likewise for P = 10 (red solid line and red
dashed line, respectively). Where n = 20, NM = 15, NI = 15,
B = 106, and u = 1. Averaged over 30 runs.

method of iterated learning have shown that the linguistic
bottleneck is crucially important in regards to whether or
not language can be successfully passed from one genera-
tion to the next and, in situations where this transmission
can be achieved successfully, show that it is also crucial to
the linguistic structure that arises (Kirby, 2002b,a; Kirby and
Hurford, 2002; Kirby et al., 2014; Smith, 2002; Smith et al.,
2003; Brace et al., 2015).

Although a similar effect to the bottleneck is seen in other
types of uni-generational models, such as the naming game
(Steels, 1995), the model presented here is novel in that it
demonstrates the impact of bottleneck-like behaviour in a
generational-based simulation that explores term-based lan-
guages. Here, this bottleneck-like behaviour takes the form
of the way in which internal representations of individuals
are induced from limited examples of the behaviour of other
agents (Hurford, 2002).

This supports other work that has demonstrated a link be-
tween the linguistic bottleneck and the number of linguistic
tutors (Brace et al., 2015). Indeed, the behaviour seen in
Figure 7 indicates that the factors underpinning the cultural
transmission of language change and linguistic variation are
perhaps too complicated to be understood by analysing the
nature of just inter- and intra-generational transmission; and
that further research into linguistic change should focus on
the nature of the social network the underpins linguistic pop-
ulations (Wichmann and Holman, 2009; Lupyan and Dale,
2010; Reitter and Lebiere, 2010; Milroy, 2013).

This point becomes more important given that traditional



expression/induction models have largely ignored popula-
tion dynamics so as to function on other aspects of language.
Although, given the aims of such models, it made logical
sense to opt for more simplistic population structures, it has
been shown here that population dynamics can have a sig-
nificant impact upon communicative behaviour.

Indeed, it would be interesting to explore how an expand-
ing and contracting population size, with varying numbers
of mature language users and immature language learners,
could impact the emergence and form of a language (Johans-
son, 1997; Hurford, 2002). An expression/induction model
geared towards this interest could provide valuable insights
for a growing body of research that is interested in the nature
of the relationship between language and population change;
such as the impact of population size on linguistic forms or
the way in which periods of linguistic simplification tend
to coincide with periods where there are a higher number
of language-learners within a population (Johansson, 1997;
Nettle, 1999; Wichmann and Holman, 2009; Lupyan and
Dale, 2010; Milroy, 2013; Trudgill, 2013). These themes
will form the basis of future work.
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