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Abstract

Iterated learning takes place when the input into a particular
individual’s learning process is itself the output of another in-
dividual’s learning process. This is an important feature to
capture when investigating human language change, or the
dynamics of culturally learned behaviours in general. Over
the last fifteen years, the Iterated Learning Model (ILM) has
been used to shed light on how the population-level charac-
teristics of learned communication arise. However, until now
each iteration of the model has tended to feature a single im-
mature language user learning from their interactions with a
single mature language user. Here, the ILM is extended to
include a population of immature and mature language users.
We demonstrate that the structure and make-up of this popu-
lation influences the dynamics of language change that occur
over generational time. In particular, we show that, by in-
creasing the number of trainers from which an agent learns,
the agent in question learns a fully compositional language
at a much faster rate, and with less training data. It is also
shown that, so long as the number of mature agents is large
enough, this finding holds even if a learner’s trainers include
other agents that do not yet posses full linguistic competence.

Introduction
Human language is a learned system of symbolic representa-
tion that exhibits syntactic structure. Although the commu-
nication systems of other species appear to exhibit, at least
to some degree, one or more of these features, the presence
of all three in human language is arguably what makes it
unique (Smith, 2002b).

Furthermore, human language has a number of notable
design features, such as the way in which utterances are con-
structed from sub-parts, such as words and parts of words,
which are reused and recombined in systematic ways. Thus,
the meaning of an expression is related to the meanings of
its constituent parts and the way in which they are com-
bined. This trait enables language to be expressively open-
ended, and is known as compositionality (Brighton and
Kirby, 2001; Kirby, 2002b; Smith et al., 2003).

Kirby (2007) observes that compositionality endows hu-
man language with an obvious adaptive advantage in terms
of its ability to communicate novel meanings; i.e., those that

have never before been expressed. Given the utility associ-
ated with the ability to construct a wide range of messages
from just a few learned basic units (Kirby, 2013), it is re-
markable that we do not see compositionality being used as
part of a learned mapping between meanings and signals in
the communication systems of other species1.

The view that language is culturally-transmitted, and that
this may have a crucial role in shaping the way in which it
is formed (Smith, 2002a; Brighton et al., 2005; Christiansen
and Chater, 2008) has led to a body of work arguing that
compositional syntax may have arisen, not as a consequence
of its utility to us, but because it better ensures the continued
existence of the language itself (Kirby, 2007). This work
sees the self-preservational development of language occur-
ring as a result of a cultural-evolutionary process termed it-
erated learning (Brighton and Kirby, 2001; Kirby and Hur-
ford, 2002; Smith et al., 2003; Kirby et al., 2008, 2014);
the process whereby an individual learns their cultural be-
haviour from other individuals, who have themselves ac-
quired their cultural behaviour in the same way. In other
words, the input into an individual’s learning process is, it-
self, the output of prior learning in other individuals.

Models of iterated learning and human language, then, in-
volve an agent being presented with a set of meanings that it
wishes to convey, choosing signals for each of these mean-
ings, and then transmitting these meaning-signal pairs, or ut-
terances, to another agent who then learns from them. This
process is repeated generation after generation, and can be
seen to represent how language competence and understand-
ing can develop through observational learning (Brighton,
2002).

The distinction made within iterated learning research be-
tween the observable speech acts that fuel language learning
on the one hand, and the individual’s internal learned rep-
resentation of a language on the other, is reminiscent of the
concepts of I-language and E-language that were originally
put forward by Chomsky (1986):

I-language: This is the pattern of neurons that implements
1Although, as Kirby (2012) observes, bee dances do display

limited compositionality.
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an individual language user’s grammar within their mind.

E-language: This is the set of utterances that make up the
spoken language.

Deacon (1997) argues that in order for language patterns
to continue from one generation to the next, there is a re-
quirement for a mapping from I-language to E-language and
back again; he termed this the linguistic bottleneck.

The central contribution of the Iterated Learning Model
(ILM) is first to have successfully idealised this process in a
simplified setting that is amenable to study, and then to have
demonstrated that the character of this bottleneck is crucially
important to both whether or not language can be success-
fully passed from generation to generation and, in the situa-
tions where this transmission can be achieved successfully,
show that it is also crucial to the character of the language
that arises.

There have been numerous incarnations of the iterated
learning model. Kirby, for example, has used versions of the
ILM to look at the recursive properties of language (Kirby,
2002a) and compositionality (Brighton and Kirby, 2001).
Hurford (2000) explores generalised phrase structure, while
Brighton (2002) uses an ILM to explore the concept of the
poverty of the stimulus (the fact that the data available to a
language learner is sparse, yet the knowledge of language
that they achieve is complex) and its relationship with a ge-
netically coded innate language acquisition device.

Support for the ILM and the role of learner bias in lan-
guage change has come about in recent years from both it-
erated learning experiments involving human participants,
which have supported much of the work previously done
with computational simulation (Kalish et al., 2007; Kirby
et al., 2008), and from other methods of research such as the
statistical analysis work of Lupyan and Dale (2010), who
found that languages that are spoken by larger groups of in-
dividuals, such as modern English, tend to have simpler in-
flectional morphology2 than those spoken by smaller groups.

It has even been suggested that the rarity of language in
nature could, in part, be due to the rarity of iterated learning
in the natural world (Kirby et al., 2014)3.

However, language learning in humans takes place within
a complex social setting. Rather than each immature lan-
guage user being assigned a single mature language user as
a tutor, language users are exposed to linguistic input from a
range of language users, some more mature than others.

This paper explores the changes to the behaviour exhib-
ited by the ILM that result from situating language learning
within a population of mature and immature learners. In the
next section, we introduce an existing variant of the ILM,

2The process whereby adding a morpheme to a word either cre-
ates a different form of the word (i.e. car −→ cars) or a new word
with a different meaning (i.e. car −→ caring).

3It is noteworthy, that certain species of songbird appear to learn
their songs through a process akin to iterated learning.

and replicate its basic findings. We then describe an ex-
tended model featuring a population of learners and present
results from this model. Finally we discuss the findings and
conclude the paper.

The Iterated Learning Model
There have been several published variants of the Iterated
Learning Model (ILM). Here we will extend one that was
originally discussed by Kirby and Hurford (2002). It has
four components:

1. A finite meaning space,M
2. A finite signal space, S
3. One speaker
4. One learner

Here, a language is defined as a mapping between a fi-
nite space of signals and a finite space of meanings. Each
meaning and each signal are represented as an 8-bit binary
string:

M = {m1,m2, . . . ,m256}

S = {s1, s2, . . . , s256}
Each agent’s personal mapping from signals to meanings

is implemented in the form of a three-layer feed-forward ar-
tificial neural network with eight nodes in each layer (see
figure 1). Each of the eight nodes in the input layer is influ-
enced by one of eight bits in an uttered signal. The degree
of activation of each node in the input and hidden layers in-
fluences every node in the immediately downstream layer
via a weighted connection. Each node’s activation is de-
termined by the weighted input it receives from upstream
nodes, squashed by a standard logistic activation function:

yi =
1.0

1.0 + e−xi
+ θi + Ii

xi =
∑

j

ωjiyj

Where yi is the activation level of neuron, i, and xi is in-
coming stimulation received by i, calculated as the weighted
sum of upstream activation values. Each neuron also re-
ceives a constant bias input, θi = 1.0, and may receive an
external input Ii ∈ {0, 1} if it is part of the input layer.

The activation values of the output layer are then trans-
lated into an 8-bit binary meaning by thresholding each
node’s activation around the value 0.5. This string repre-
sents an agent’s best guess as to the meaning of the utter-
ance that was input into the network. During learning, an
agent updates the weights of its network using back prop-
agation with a learning rate of 0.1 and no momentum term
(Rumelhart et al., 1986).
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Figure 1: The agent’s neural network architecture.

Initially two agents are created, a mature language user
(sometimes referred to as the “speaker”) and an immature
language user (sometimes referred to as the “learner”). At
the outset of the simulation there is no established language
in place so, following Kirby and Hurford (2002), the ma-
ture language user is assigned a language comprising of a
random mapping from each meaning to a randomly chosen
signal. The immature language user is assigned a random
neural network, i.e, each network weight is drawn from a
normal distribution with zero mean and standard deviation
0.1, and each node’s bias input is 1.0.

The mature language user, M , then trains the immature
language user, I , for a number of training episodes, T . Each
episode involvesM being assigned a meaning to express and
generating an associated utterance, and I using their neural
network to infer a meaning associated with that utterance.
Any difference between the true meaning that M attempted
to express and the meaning that I infers results in back prop-
agation making changes to I’s neural network in an effort to
minimise this comprehension error. Note that in order for
this supervised learning to take place, ILM models assume
that I is able to make use of knowledge of the true meaning
that M intended to convey.

The full set of training episodes that an immature lan-
guage user experiences often comprises multiple exposures
to the same fixed set of unique meanings. An agent might
experienceE epochs of training with each epoch comprising
the same set of B randomly chosen unique meanings expe-
rienced in an order that is randomised for each epoch, i.e.,
T = E × B. The number of different meanings communi-
cated to a language learner, B, is referred to as the language
learning “bottleneck”.

After all training episodes are complete, the mature lan-
guage user is discarded, the immature language user is pro-
moted to become the new mature language user, and a new
randomly configured immature user is created to be trained.
This process repeats for some fixed number of generations.
Note that at the start of every generation the immature lan-
guage user is assigned an entirely random neural network;
there is no inheritance of language other than through ex-
perience of language learning episodes. Note also that the
population structure is 1 + 1. At any moment in time one
mature speaker is training one immature learner.

Since ILM agents have a neural network that maps uni-
directionally from signals to meanings, they require an ad-
ditional mechanism in order to generate signals for particu-
lar meanings. To this end, Kirby and Hurford (2002) adopt
the obverter learning procedure that was originally formu-
lated by Oliphant and Batali (1997). Here, each speaker
assumes that the hearer’s internal mapping between signals
and meanings is similar to its own and, consequently, when
choosing which signal to make for a particular meaning, will
choose the signal that, if presented as input to their own
neural network, would most strongly cause them to infer
this meaning, themselves. Oliphant and Batali (1997) prove
that individuals using the obverter will tend to improve their
communicative accuracy over time until an optimal commu-
nication system is achieved. Since the space of signals is
finite and relatively small, this type of mechanism is feasi-
ble in the model.

In order to apply the obverter procedure within the ILM,
Kirby and Hurford (2002) employ a confidence measure to
determine which signal to produce for a given meaning. A
speaker aiming to express a particular meaning,m, identifies
their favoured signal, s∗, in the following manner:

For each signal, s ∈ S , the speaker calculates an associ-
ated confidence value:

Vs =
∏

i(1− |m[i]− o[i]|)

where m[i] is the ith bit of the target meaning and o[i] is the
ith real valued output of the signaller’s neural network. The
signaller then picks s∗ as the signal with the largest confi-
dence

ILM Results
We employ three metrics to evaluate language development,
expressivity, stability and compositionality. A language’s
expressivity, X , is the proportion of possible meanings that
are generated by the full set of possible signals. A language
with maximal expressivity is said to be complete. A lan-
guage’s stability, S, is a relational property involving two
agents and is measured as the proportion of the meaning
space that can be recovered accurately when one agent sig-
nals to another. When a language is maximally stable, any
meaning expressed by one agent can be inferred correctly by
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the other.
The compositionality, C, of an agent’s language is the ex-

tent to which utterance parts convey distinct meanings. A
language with zero compositionality is one in which every
utterance is paired with a meaning in an uncorrelated fash-
ion. Knowing part of the utterance provides no knowledge
of part of the meaning. A fully compositional language is
one in which every part of an utterance conveys perfectly an
associated part of the meaning.

We evaluate the degree of compositionality in an agent’s
language by first employing the obverter procedure to gener-
ate a signal for each of the meanings in the meaning space.
We then calculate the values of each of the 8 × 8 correla-
tions, Cij , between the 256 values at the ith bit of the set
of signals and the 256 values at the jth bit of the set of
meanings. For each row, i, of this matrix we then calculate
Ci∗ = maxi Cij , the maximum correlation between the val-
ues at index i of the signal set and the values at each of the
indices of the meaning set. Finally, compositionality, C is
calculated as the average of these eight maximal correlation
values, C = 1

8

∑
i Ci∗. For a random language mapping

meanings to signals, C = 0.5. Where a complete language
is fully compositional, C = 1, each bit in an utterance con-
veys the value of one bit in the associated meaning.

The model displays three different types of behaviour, de-
pending upon the size of the bottleneck. If the bottleneck
is too small, then the agents do not learn; this results in a
language that is both inexpressive and unstable. If, however,
the bottleneck is too big, then an expressive and stable sys-
tem is eventually reached; although, only after a prolonged
period of time. Agents quickly achieve a language that is
expressive and stable (see figure 2) and fully compositional
(see figure 3) with a bottleneck of size 50.

Population-based Iterated Learning
The authors of the ILM themselves point out that com-
plex population dynamics were traded off for computational
power in the original model. Population structure was not
taken into account, and every agent only ever learns from
one other agent4. Given that the iterated learning model
aims to shed light on the relationship between the proper-
ties of individuals and the population-level behaviour that
they exhibit, and that much of the work done in this area
thus far has been concerned primarily with vertical cultural
transmission, it is of significant interest to explore the be-
haviour of this ILM within a population of agents.

Here we introduce a model in which, at each iteration, a
population of N language users comprises NM mature indi-
viduals andNI immature individuals, whereNM+NI = N .
During each iteration of the model, every immature lan-
guage user is assigned a number of trainers from whom they

4This is more than likely due to the computational capacities of
the hardware at the time when the original model was developed.

Figure 2: Replication of ILM behaviour. The solid line
represents language expressivity, X , the proportion of the
meaning space that is covered by the learner’s language.
The dotted line represents the language instability, 256− S,
the difference between the language mappings of the mature
and immature language users. Here, NM=1, NI=1, B=50,
E=100, MT =1, IT =0.

Figure 3: Langauge compositionality, C, over time for
the ILM replication, where NM=1, NI=1, B=50, E=100,
MT =1, IT =0.

infer the structure of their language through a series of train-
ing episodes. This set of trainers may involve both a number,
MT , of randomly chosen mature trainers, and also, possi-
bly, a number, IT , of randomly chosen immature trainers
(see figure 4). The presence of immature trainers represents
scenarios in which language learners are not kept isolated
from one another, but may influence each others’ language
learning. An immature individual’s total number of train-
ing episodes, T , is evenly split between their trainers with
each trainer being involved in B

MT+IT
episodes per train-

ing epoch5. As in the original ILM, it remains the case that

5Fractional numbers of training episodes are avoided by round-
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Figure 4: Diagrammatic representation of an ILM popula-
tion divided into mature (upper set) and immature (lower
set) agents, with N = NM + NI = 16 agents per gener-
ation. Lines represent one immature agent’s trainers: four
mature trainers (MT = 4, solid lines) and four immature
trainers (IT = 4, dashed lines).

the total number of training episodes, T is the product of
the bottleneck size, B, and the number of training epochs,
E. Hence, T = B × E. The training episodes involving
a specific trainer will involve the same set of randomly se-
lected meanings in each training epoch. The set of B train-
ing episodes that comprise a single epoch are encountered in
random order.

Iterated Learning Population Model Results
Figure 5 depicts a cross section of possible combinations
of MT and IT , and how expressivity, X , and stability, S,
develops in the population model.

In comparing figure 5A with figure 2, it is clear that a
training input from multiple mature agents has a significant
impact upon the number of generations required for a fully
expressive and stable communication system to arise. Un-
surprisingly, given the nature of iterated learning, figure 2B
shows how the system fails to improve above the scores ob-
tained by random chance when MT =0. Figures 2C and 2D
depict how the system is able to produce a largely expressive
and stable system when both MT and IT are set equal, at 5
and 10, respectively.

To further explore the impact of multiple mature trainers
on model behaviour, a series of tests were conducted with
the aim of exploring the linguistic bottleneck. In figure 6,
we see the result that different bottleneck sizes have upon
compositionality in a population where IT =0 and E=50;
meaning that agents get half of the training sessions that
they did in the original model, which should make learn-
ing far more difficult. The left graph showing MT = 1
and the right showing MT = 10. In both graphs, it can
be seen that, when the bottleneck is set too low, the sys-
tem does not learn. When agents learn from only one ma-
ture trainer, a bottleneck of at least 80 meanings is required

ing up.

Figure 5: System behaviour for a single run of the ILPM
simulation for various combinations of MT and IT . As
above, the solid line depicts expressivity, X , and the dotted
line represents instability, 256 − S. Parameter settings are
as follows: A. MT = 10, IT = 0; B. MT = 0, IT =10; C. MT

= 5, IT =5; D. MT = 10, IT = 10; where NM=15, NI=15,
B=50, and E=100 for all. Both the expressivity score and
stability score are the average of the immature population
after language learning has been completed.

before fully compositional language can survive. However,
with ten mature trainers, a high level of compositionality can
arise and survive with a much smaller bottleneck of around
50. Moreover, when compositional language arises, it does
so far faster when multiple trainers are present.

Figure 7 depicts analogous results for scenarios in which
immature language users are allowed to influence each oth-
ers’ learning (IT = 5). When immature trainers outnumber
mature trainers (figure 7 left), language learning is compro-
mised, with compositionality varying erratically over suc-
cessive generations. Despite this, it is notable that bottleneck
size does influence language with larger bottlenecks allow-
ing languages to achieve somewhat higher compositionality.
When immature trainers are outnumbered by mature trainers
(figure 7 right), language learning is successful for scenar-
ios with larger bottleneck sizes, although compositionality
does vary more from generation to generation by compar-
ison with an equivalent scenario without immature trainers
(compare figure 6 right).

Further evidence of MT impacting the system behaviour
can be seen in figure 8, which plots the average level of com-
positionality that the system exhibits per generation for var-
ious combinations of MT and IT . In line with the above
results, it can be seen that compositional language tends
to arise to the extent that the number of mature trainers is
greater than the number of immature trainers, and that a
greater number of mature trainers enables the system to de-
velop and maintain a higher level of language composition-
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Figure 6: Graph depicting the impact of various value of B. Left: MT = 1; Right: MT = 10. (NM=15, NI=15, IT = 0 and
E=50 in both cases). The compositionality score is the average of the immature population after language learning has been
completed.

Figure 7: Graph depicting the impact of various values of B. Left: MT = 1; Right: MT = 10. (NM=15, NI=15, IT = 5 and
E=50 in both cases). The compositionality score is the average of the immature population after language learning has been
completed.

ality.

Why might dividing the same number of learning
episodes between a greater number of mature trainers lead to
improved language learning in an immature language user?
Several possibilities present themselves: multiple trainers
could allow effective languages to spread through the pop-
ulation more quickly since one trainer can influence sev-
eral learners, or, equivalently, expose learners to a sample
of multiple languages, some of which may be more easy to
learn and use. However, manipulating the population struc-
ture in ways that would be expected to influence this effect
made no difference to performance.

Alternatively, might multiple trainers provide learners
with increased diversity of language experience at the out-
set of the simulation, when naive neural networks tend to

map many meanings onto the same signal. Figure 9 lends
some support for this hypothesis, showing that the number
of unique signals experienced by a language learner at gen-
eration 2 of a run is increased when the learner is exposed to
multiple trainers and that this increase in diversity is directly
proportional to the increase in compositionality of the lan-
guage exhibited a few generations later. However, it should
be noted that although there was a strong relationship be-
tween signal diversity and compositionality across scenar-
ios that differed in terms of the number of trainers, when the
number of trainers was held constant there was not always a
strong relationship of this kind, suggesting that signal diver-
sity may not be the whole story.
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Figure 8: Heatmap of the average amount of compositional-
ity over 50 generations, where NM=15, NI=15, B=50, and
E=100, throughout. The compositionality score is the aver-
age of the immature population after language learning has
been completed.

Figure 9: The relationship between the average number of
unique signals that an immature learner experiences at gen-
eration 2 and the average compositionality of the language
learned at generation 5 for runs with different numbers of
mature trainers (MT ). Each data point represents an average
over 10 runs where NM = 15, NI = 15, B = 50, E = 50.

Discussion and Conclusions
We have demonstrated that Kirby and Hurford’s (2002)
iterated learning model variant can operate successfully
within a population of agents. Given an appropriately sized
language-learning bottleneck, when each member of a popu-
lation of immature language users learn their language from
enough mature language users, the population is readily able
to converge on a complete, compositional language. More-
over, increasing the number of mature trainers tends to allow
compositional language to pass through a smaller learning
bottleneck and to establish itself in a smaller number of gen-
erations.

Work within the iterated learning paradigm typically
holds that the way in which a language changes over time
can be seen as a compromise the influence of learner biases
and the influence of constraints acting upon language during
transmission (Kirby, 2002a; Brighton et al., 2005; Smith,
2009). For example, the transmission bottleneck favours
languages that can be inferred by language learners from a
limited number of utterances (Kirby, 2002a; Brighton, 2002;
Smith, 2009). Thus, the compositionality of a language rep-
resents an adaptation in response to selection pressures im-
posed by the environment in which it must survive. It is
important to understand the dynamics of iterated learning
within linguistic populations since population structure may
be an additional source of of constraints on language trans-
mission and may therefore influence the form that languages
tend to take over time.

The role of such constraints has been modelled previ-
ously in an iterated learning context. Griffiths (2007), for in-
stance, explored iterated learning dynamics within a model
where learning algorithms were based on the principles of
Bayesian inference. By extending his framework to a pop-
ulation of such Bayesian agents where each learner learns
from a single member of the previous generation, he showed
that iterated learning in this population of Bayesian agents
produced language outcomes that could be understood as
solely the result of the agent’s individual learning biases.
Therefore negating the role of other constraints, such as the
transmission bottleneck.

However, Smith (2009) argues that Griffiths’ (2007) find-
ings imply that it is possible to understand the prior biases
of learners by looking at the typological distributions of lan-
guages. Smith (2009) also presents a model of Bayesian
agents and demonstrates that Griffiths’ results are based
upon the idealisation that a learner learns from a single
teacher, and once multiple teachers are included, the map-
ping from the learner biases to typology breaks down. Based
upon this result, Smith (2009) concludes that inferring learn-
ing bias from typology could yield unsafe results. Further-
more, Griffiths’ (2007) model is limited by the fact that the
agents use very specific statistical learning algorithms, and
are therefore not applicable to cases where the subjects of
study use more general-purpose learning algorithms, which
are more akin to the general purpose cognitive architecture
that is likely to underpin human language (Hurford, 2014).

In a later work, Burkett and Griffiths (2010) explored the
problems raised by Smith (2009) by developing a model
where Bayesian agents were allowed to learn multiple lan-
guages. In doing so, they demonstrated that, so long as
an agents hypothesis space explicitly takes into account the
possibility of receiving input from multiple speakers with
potentially different languages, then Bayesian learning does
tend to reflect the learners inductive biases in the same man-
ner as the single teacher model presented in Griffiths (2007).
However, this model still makes the simplifying assumption
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that agents only receive input from vertical transmission;
this is clearly not the case for real-life language learners,
who are likely to learn from their immature peers as well as
from their mature role-models.

The model presented in this paper differs in this respect in
that it explores the impact of immature language users upon
the learning process, and the emergence of compositional-
ity in particular. Furthermore, unlike Burkett and Griffiths
(2010), we have explored iterated learning dynamics within
a population of agents who are attempting to learn a single
language. We have shown here that the introduction of hor-
izontal language transmission amongst immature language
learners does not tend to prevent languages from arising if
each language learner is exposed to enough mature trainers.
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