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Abstract- Bee declines have been associated with various stressors including pesticides and 1 

pathogens. We separately exposed immune-challenged adult worker honey bees (Apis mellifera 2 

L.) to two neonicotinoid pesticides, thiamethoxam (10 ppb) and imidacloprid (102 ppb), by 3 

dietary delivery. We found that whereas neonicotinoid exposure weakly affected transcriptional 4 

responses of antimicrobial genes, it did not detectably affect the physiological antimicrobial 5 

response as measured by a lytic clearance assay of haemolymph. Our findings add to the 6 

evidence that transcriptional responses in immune-related genes are not yet reliable indicators of 7 

pesticide impacts on bee health, which suggests caution in their future use as biomarkers in 8 

pesticide risk assessment. 9 

 10 

imidacloprid/ thiamethoxam/ immunocompetence/ antimicrobial peptide/ gene expression 11 

 12 

1. INTRODUCTION 13 

There is widespread concern over losses of managed honey bees (Apis mellifera L.) but 14 

appropriate responses are unclear because a complex of multiple stressors is likely to be 15 

responsible for the observed decline in bee health (Potts et al. 2010). Therefore recent studies 16 

have been conducted in an effort to investigate the potential interactions among stressors and 17 

their effects on various biological systems of honey bees. In particular, there is growing interest 18 

in the interactive effects of pesticide exposure and pathogen infection in bees (reviewed by 19 

Collison et al. 2016). The European Food Safety Authority (EFSA) Panel on Plant Protection 20 

Products and their Residues (PPR) recently recommended that further work is required to 21 

identify the molecular basis of interactions between exposure to pesticides and the range of 22 

diseases in the honey bee (EFSA 2012). Further, EFSA recommended the development of 23 
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physiological and molecular biomarkers as diagnostic tools that could be valuable in improving 1 

risk assessment procedures for determining the effects of pesticides on bees. To better 2 

understand the mechanisms underlying disease-pesticide interactions, recent studies have been 3 

conducted in an effort to investigate the effects of pesticide exposure on bee immunocompetence 4 

(the ability to mount an immune response), with particular focus on the neonicotinoid pesticides, 5 

which have until recently been widely used in the protection of bee-attractive crops such as 6 

oilseed rape (Brassica napus L.).  7 

The immune response in individual honey bees consists primarily of cellular responses, such as 8 

phagocytosis and encapsulation, and humoral responses via the prophenoloxidase cascade 9 

(leading to melanisation) and antimicrobial effectors (Evans et al. 2006). The expression of some 10 

genes related to these immune processes has been found to change following neonicotinoid 11 

exposure, but with no apparent consistency. For example, dietary exposure to imidacloprid led to 12 

increased transcription of the antimicrobial effector abaecin in larval honey bees in one study 13 

(Derecka et al. 2013), but not in another (Gregorc et al. 2012).  In adult honey bees, by contrast, 14 

neonicotinoid exposure reduced transcription in a different antimicrobial effector, apidaecin (Di 15 

Prisco et al. 2013). Neonicotinoid exposure also causes detectable effects at the physiological 16 

level (Brandt et al. 2016), but again with little apparent consistency (Alaux et al. 2010a). Overall, 17 

therefore, it remains unclear whether neonicotinoid-induced changes in the transcription of 18 

immune genes consistently indicate the levels of immunocompetence that are realised at the 19 

physiological level. Previously, few studies have been conducted to test for these corresponding 20 

effects at both the molecular and the physiological level using both a common exposure scenario 21 

and common immune-related endpoints. Consequently, the extent to which the different 22 

components of the immune response react in concert to neonicotinoid exposure has been unclear. 23 
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Potentially, some of the non-correspondence between gene expression and physiological 1 

responses may have arisen because the studies to date have collected measurements at only a 2 

single sampling point in time, but insect immune studies have demonstrated the importance of 3 

temporality in the response to immune challenge (e.g. Gätschenberger et al. 2013, Korner and 4 

Schmid-Hempel 2004, Riddell et al. 2011). In summary, there is a need to investigate how 5 

neonicotinoid pesticides affect immunocompetence in honey bees and whether such an impact 6 

can be reliably detected by examination of molecular responses. 7 

To begin to address this need, we investigated the effect of dietary neonicotinoids on the 8 

antimicrobial peptide (AMP) component of the honey bee immune response. We carried out a 9 

series of laboratory experiments investigating temporal correspondences between changes in 10 

gene expression and measures of physiological AMP activity following exposure to either 11 

imidacloprid or thiamethoxam. Besides testing the impact of these neonicotinoids on 12 

physiological indicators of immunocompetence, our study enabled us to evaluate gene 13 

expression as a biomarker of pesticide effects on bee health.   14 

We investigated the effects of two neonicotinoid insecticides that have been widely used in crop 15 

protection: imidacloprid and thiamethoxam. In Europe and North America, imidacloprid has 16 

been replaced in normal agricultural practice by other neonicotinoids, such as thiamethoxam. 17 

Imidacloprid is nevertheless of interest because it has been the most commonly tested subject in 18 

ecotoxicological investigations of neonicotinoid impacts on bees. For our investigation, we 19 

tested the effect of a dietary concentration (102 parts per billion, ppb) that is much higher than 20 

environmentally realistic levels (<10 ppb), because we wanted to improve the chance of 21 

detecting the response to intoxication. By contrast, in our experiment on thiamethoxam, we used 22 

a dietary dose (10 ppb) that exposed bees to environmentally realistic residue levels (e.g 11 ppb 23 
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in nectar observed by Stoner and Eitzer 2012) as any findings made relative to this dose may 1 

have greater ecological relevance. 2 

Each study was designed as a fully factorial experiment in which two levels of the pesticide 3 

(absent, present) were combined with three levels of immune-challenge (see below). Our 4 

approach principally aimed to both elucidate the effects of pesticide exposure on immune 5 

responses and to test the correspondence of molecular and physiological immune endpoints. We 6 

did not set out to establish dose-dependent effects or to determine threshold levels of toxicity 7 

(e.g. NOECs). 8 

In order to stimulate the immune system of honey bees experimentally, we employed an artificial 9 

immune challenge via an injection with lipopolysaccharides (LPS) from Escherichia coli to 10 

mimic a bacterial-like infection. This approach was adopted to standardise the stimulus and to 11 

avoid the variation inherent in using a real pathogen, which can be logistically difficult to 12 

control. The present study, therefore, does not aim to investigate the biological mechanisms 13 

associated with any specific natural infection, but instead seeks to understand better the 14 

fundamental relationships between the temporal dynamics of transcriptional and physiological 15 

changes using a well-established method for insect immune studies. 16 

2. MATERIALS AND METHODS 17 

We exposed newly emerged adult worker honey bees to either un-dosed control or 18 

neonicotinoid-spiked sucrose feeders and imposed an immune challenge after five days of 19 

experimental feeding. While maintaining bees on the same dietary treatment, we collected 20 

samples for immune-related assays over the remainder of the experimental period. In separate 21 

experiments, sample collection followed either a short time course of between 2 h and 48 h post 22 

immune challenge (PIC) or a longer time course of between 24 h and 168 h (1-7 d) PIC. Samples 23 
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were analysed either for expression levels of six AMP genes or for levels of antimicrobial 1 

activity at a physiological (enzymatic) level (Table I, see also supplementary material for an 2 

overall setup of treatment and sampling combinations). 3 

Across all experiments, individual cages (i.e. and all bees within each cage) were randomly 4 

assigned to a specific sampling time point and sample type at the start of the experiment (with a 5 

total of three cages per treatment/time point combination). No repeated measures were taken, and 6 

all cages contained the same number of bees (10) throughout the experimental period, unless 7 

mortality occurred. Six bees within a cage were pooled for immune measurements (as discussed 8 

below) and each cage was treated as a biological replicate (giving a total of three replicates for 9 

each treatment/time point combination). 10 

For details of data analysis, see supplementary material. 11 

2.1. Honey bee provenance and husbandry 12 

All honey bees were from colonies of British hybrid bees maintained on the home apiary at the 13 

Food and Environment Research Agency, Sand Hutton, York, UK. Visual inspections of these 14 

colonies showed no symptoms of disease or parasitic infection, but baseline levels of pathogens 15 

cannot be ruled out. Further confirmation of pathogen levels (e.g. via PCR) in tested bees or their 16 

colonies was not performed. Brood frames were collected from colonies between April and 17 

September (2013, 2014) and placed in an environmental chamber (34 °C, 60 % relative 18 

humidity, constant darkness; Sanyo Versatile Environmental Test Chamber). Workers were 19 

collected from these frames as they emerged and batches of 10 workers were housed in modified 20 

plastic cages (FK-RD8 clear PET containers; Ambican Ltd, London, UK). Each cage was 21 

designed to allow the bees ad libitum access to a sucrose solution (50 % w/v) through a 22 
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punctured 1.5 mL microcentrifuge tube. Cages were maintained in the environmental chamber 1 

throughout the experimental period (34 °C, 60 % relative humidity, constant darkness). The five 2 

separate experiments described in Table I were each set up on a separate occasion between 3 

August 2013 and June 2014 (no winter bees were used) and each used workers derived from a 4 

single honey bee colony.  5 

2.2. Neonicotinoid exposure 6 

All of our experiments used chronic dietary exposures to sublethal concentrations of one 7 

neonicotinoid, either imidacloprid or thiamethoxam. Stock solutions of neonicotinoids were 8 

made in <0.1% acetone, and used to create the appropriate concentrations. In the imidacloprid 9 

studies, the sucrose feeder syrup was spiked with 125 µg/L (= 102 ppb) imidacloprid (Fluka 10 

Analytical 37894, Sigma-Aldrich, UK). In the thiamethoxam studies, the sucrose was spiked 11 

with 12 µg/L (= 10 ppb) thiamethoxam (Fluka Analytical 37924, Sigma-Aldrich, UK). 12 

Analytical verification of test concentrations was not conducted. All cages were designed to 13 

allow bees to feed ad libitum from the sucrose feeder throughout the experiment. No other food 14 

was provided. Control sucrose contained <0.1% acetone, equivalent to the volume of solvent 15 

used in the neonicotinoid treatments. To quantify feeding rates, the feeder of each cage was 16 

weighed every other day and corrected for evaporation using reference feeders kept in empty 17 

cages. To quantify mortality rates, dead bees were recorded and removed every other day. 18 

2.3. Immune challenge 19 

Bees received one of three injection treatments, with all workers within a cage subjected to the 20 

same treatment under ice-immobilisation (see supplementary material for further details). Bees in 21 

the ‘LPS’ treatment group were injected with a 2 µL aliquot of 0.5 mg/mL LPS (Sigma L2755- 22 
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Lipopolysaccharides from Escherichia coli 0128:B12, Sigma-Aldrich, UK) dissolved in Insect 1 

Ringer’s solution (1:1:1 156 mM NaCl : 3 mM KCl : 2 mM CaCl2). This same LPS 2 

concentration has been widely used previously to elicit an immune response in honey bees 3 

without any acute effects on survival (e.g. Alaux et al. 2012, Köhler et al. 2012, Laughton et al. 4 

2011). Bees in the ‘Ringer’s’ treatment group were injected with 2 µL Insect Ringer’s solution to 5 

control for any effects of the injection process itself. In the ‘naïve’ treatment, bees were ice-6 

immobilised but received no further treatment, which served as the unchallenged control. 7 

2.4. Measurement of gene expression 8 

At the designated time points, bees were placed directly into a freezer at -80 °C and stored until 9 

RNA extraction. Total RNA was extracted from pooled homogenates of six bees (entire bodies) 10 

from a single cage. For each feeding/injection treatment combination and time point, separate 11 

homogenates from three cages were used as biological replicates for real-time quantitative PCR 12 

(qPCR) analysis. Pooling of six bees per replicate homogenate served to minimise between-bee 13 

variation in gene expression profiles. Following RNA extraction, cDNA was synthesised and the 14 

relative expression of six AMP genes (abaecin, apidaecin, defensin-1, defensin-2, hymenoptaecin 15 

and lysozyme-1) was measured using qPCR (supplementary material). 16 

2.5. Measurement of antimicrobial activity 17 

Haemolymph was collected from bees that had first been immobilised on ice. A small slit was 18 

made in the abdominal tergites using sterile dissecting scissors and gentle pressure to the thorax 19 

resulted in a bubble of haemolymph exiting this slit. An aliquot of 2-10 µL of this haemolymph 20 

was collected with a pipette and immediately stored at -20 °C for later analysis. The 21 

antimicrobial activity was separately measured in six individual bees from each single cage and 22 



9 
 

the cage mean was used as the biological replicate for statistical analysis. Three cages were 1 

measured for each feeding/injection treatment combination and at each time point. 2 

Antimicrobial activity was measured using a lysozyme clearance assay (Cotter et al. 2008) in 3 

which antimicrobial proteins in the haemolymph lyse the peptidoglycan cell walls of the test 4 

bacteria to produce a clear zone in a bacterial suspension, which is a proxy for relative 5 

antimicrobial activity (a larger zone indicates greater antimicrobial activity). Phosphate buffer 6 

solution (PBS) containing 1% agar was inoculated with 0.2 mg/mL lyophilised Micrococcus 7 

lycodeikticus (M3770; Sigma-Aldrich, UK). 8 mL of this suspension was poured immediately 8 

into a 9 cm-diameter petri dish and left to set. Ten wells (approximately 2 mm diameter) were 9 

bored on each plate. Each haemolymph sample was thawed on ice and a 2 µL aliquot was added 10 

per well. Plates were incubated at 27 °C for 72 h, and the diameters of clearance zones were 11 

measured using digital callipers. 12 

3. RESULTS 13 

3.1. Survival 14 

There were no evident effects of pesticide or injection treatments on honey bee behaviour and 15 

activity. No treatment affected mortality, with the exception that Ringer’s injection increased 16 

mortality in Experiment E (Kruskal-Wallis: χ2
2df = 7.57, P = 0.023). In the short time course 17 

experiments (2 d), between 2% and 7% of bees died and between 8% and 21% of bees died in 18 

the longer time course experiments (7 d). The mortality rates were uniformly low across the 19 

treatments including the controls, which indicates that the pesticide concentrations and immune 20 

challenges used were essentially sublethal to worker honey bees. 21 

3.2. Gene expression 22 
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In response to LPS injection, four antimicrobial effector genes (abaecin, apidaecin and defensin-1 

1 and hymenoptaecin) were significantly upregulated, but the immune challenge did not alter the 2 

expression of defensin-2 and lysozyme-1 (Table II). A similar temporal pattern of expression 3 

was observed for all four of the upregulated genes, despite between-gene differences in the 4 

magnitude of changes in expression. Increased expression was typically observed as early as 2 h 5 

PIC, increasing to peak expression at between 8 and 24 h PIC, after which the response showed a 6 

gradual decline over the following six days (Fig. 1; see also Fig. S1-S5). 7 

Exposure to imidacloprid was not found to alter expression of any of the six AMP genes tested 8 

across the short or long time course experiments (Table II). 9 

Exposure to thiamethoxam reduced the expression of abaecin dependent on the injection 10 

treatment, but this effect was not seen in the longer time course study (Table II). Reduced 11 

transcription of abaecin was most notable in response to thiamethoxam exposure 24 h post LPS-12 

injection (Fig. 1). Thiamethoxam exposure also had various effects on expression of apidaecin, 13 

hymenoptaecin and lysozyme-1, but these effects were dependent on the time of sampling, and 14 

only observed in the short time course experiment (Table II). Here, increased transcription of 15 

apidaecin was observed following thiamethoxam exposure, most notably at 24 h post LPS-16 

injection (Fig. S1), whilst reduced transcription of hymenoptaecin was observed following 17 

thiamethoxam exposure between 8 and 24 h PIC (Fig. S2) and the effects of thiamethoxam on 18 

lysozyme-1 were transient (Fig. S5). 19 

3.3. Antimicrobial activity 20 

Antimicrobial activity at a physiological (enzymatic) level was significantly increased in 21 

response to LPS injection in a time-dependent manner during both the short and long time course 22 
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experiments (Table II; Fig. 2). Ringer’s injection also induced a response, but to a lesser extent 1 

than in bees injected with LPS (Fig. 2). A peak in activity occurred between 24 and 72 h PIC, 2 

followed by a gradual decline over the following days, and levels typically had not returned to 3 

the baseline levels by the last sampling point 7 d PIC (Fig. 2). 4 

No effects of exposure to either imidacloprid or thiamethoxam were observed on antimicrobial 5 

activity in any of the experiments (Table II) and the temporal dynamics of the response to 6 

injection were virtually identical in bees fed with control sucrose and those exposed to the 7 

neonicotinoids (Fig. 2). 8 

3.4. Sucrose consumption 9 

Consumption of imidacloprid-spiked sucrose was significantly lower than the consumption of 10 

control sucrose in all experiments (Table S2). In general, there were no significant differences in 11 

consumption between bees feeding on control and thiamethoxam-spiked sucrose. The exception 12 

to this was for bees in Experiment A, where there was significantly reduced feeding in the 13 

thiamethoxam treatment (Table S2). Even when reduced feeding was observed in neonicotinoid-14 

treated bees, bees ingested substantial amounts of sucrose (e.g. in Experiment A, mean daily 15 

sucrose consumption in the four days prior to immune challenge for control-fed: 46 ± 3 mg/bee; 16 

for imidacloprid-fed: 38 ± 4 mg/bee; for thiamethoxam-fed bees: 36 ± 2 mg/bee) and consumed 17 

substantial doses of neonicotinoid (3.0 ± 0.3 ng imidacloprid/bee; 2.8 ± 0.2 ng 18 

thiamethoxam/bee). There was no evidence that injection treatment altered sucrose consumption 19 

(all experiments: ANOVA P > 0.05). 20 

4. DISCUSSION 21 
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Four antimicrobial effector genes showed a clear upregulation in response to the artificial 1 

immune challenge. The response to immune challenge differed between the two defensin genes 2 

tested (defensin-1 and defensin-2), which is consistent with previous studies (Evans 2006) and 3 

known differences in the regulation of the two genes (Klaudiny et al. 2005). The lack of a 4 

detectable response by lysozyme-1 is consistent with most of the previous studies of bacterial 5 

infection in honey bees (e.g. Evans 2006, Yang and Cox-Foster 2005). This may reflect the 6 

proposition that lysozymes act by hydrolysing the peptidoglycan cell wall (Gillespie et al. 1997) 7 

and so are more effective against Gram-positive bacteria, which have a thicker peptidoglycan 8 

layer. Therefore, it is perhaps not surprising that lysozyme-1 was not found to be upregulated in 9 

response to the LPS molecules from Gram-negative E.coli in the present study.  10 

The transcriptional changes in AMP genes in response to immune challenge that occurred in our 11 

study probably have functional significance because they were accompanied by increases in 12 

antimicrobial activity at the protein/enzyme level. Wounding by injection alone induced an 13 

antimicrobial response, albeit to a lesser extent than injection with bacterial LPS, which is 14 

consistent with previous studies (Evans et al. 2006, Laughton et al. 2011, Yang and Cox-Foster 15 

2005). The wound-response to injection that we observed may be similar to the response to other 16 

natural wounding events, such as puncturing by Varroa mites (Kanbar and Engels 2003) and 17 

parasitic flies (Core et al. 2012). It is likely that an increased response in transcription of AMP-18 

related genes following wounding is adaptive by allowing the honey bee to pre-emptively induce 19 

its immune system before microbial infection, because most natural wounds will inevitably be 20 

non-sterile (Erler et al. 2011, Kanbar and Engels 2003). 21 

The effects of neonicotinoid exposure on transcriptional responses in the antimicrobial 22 

component of honey bee immunity were weak and inconsistent. Where transcriptional changes 23 
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were observed, they differed between the two neonicotinoid compounds. Generally, expression 1 

was altered in a greater number of the genes tested following exposure to thiamethoxam than to 2 

the much higher exposure to imidacloprid, but even in the case of thiamethoxam the results were 3 

inconsistent because effects differed between the short- and long- time course experiments, even 4 

at equivalent time points. 5 

Neonicotinoid exposure did not affect the physiological activity of the antimicrobial response in 6 

our study as measured by a lytic clearance assay, even when transcriptional changes in AMP 7 

gene expression were observed. Taken together, our findings therefore suggest that the 8 

transcriptional changes in AMP genes due to neonicotinoid exposure that we observed did not 9 

indicate a detrimental impact on bee health through suppressed immunocompetence, contrary to 10 

what has been proposed by others (e.g. Di Prisco et al. 2013). We tentatively speculate that 11 

differential gene expression may fail to cause a correspondingly altered physiological response. 12 

If the insecticide evokes various positive and negative changes in the expression of antimicrobial 13 

genes, overall, the system may be virtually left in balance. For example, we observed that 14 

thiamethoxam both suppressed hymenoptaecin expression and increased apidaecin expression.   15 

Our findings have implications for the future development of molecular biomarkers of bee health 16 

under pesticide and pathogen exposures. There has been recent interest in identifying suitable 17 

molecular biomarkers for pesticide risk assessment on bees (EFSA 2012). However, our findings 18 

do not yet validate the use of the immune-related molecular biomarkers in risk assessment, 19 

principally because we found that enzymatic/protein-level components of honey bee 20 

antimicrobial activity were unaffected by neonicotinoid exposure despite the occurrence of some 21 

temporally coincident, pesticide-induced transcriptional changes in AMP genes. In summary, if 22 

the loci that we studied were to be used as molecular biomarkers, our findings imply that they 23 
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would be overly sensitive indicators of alterations in the physiological capacities of honey bees 1 

to mount an immune response. However, it is unknown whether our findings for neonicotinoids 2 

are typical for other classes of chemical compounds. 3 

We recognise that our findings must be considered with some caveats. First, we conducted a 4 

series of separate experiments on individual honey bee colonies and this may have some bearing 5 

on our conclusions. Specifically, while our findings certainly suggest the potential for differences 6 

in the response of different immune endpoints to pesticide exposure, some of these differences 7 

could result also from between-colony variation in pesticide sensitivity. In the future, further 8 

work could compare transcriptional and physiological responses of honey bees both within a 9 

single colony as well as among a number of colonies, and also within and between seasons. 10 

Second, further research is needed to establish whether the resilience of the response to 11 

simulated immune-stimulus in pesticide-exposed honey bees also arises when they are 12 

challenged by their natural pathogens. We tentatively predict that our findings will generalise to 13 

natural pathogens because of the commonality of responses by several AMP genes under 14 

infection with a broad range of challenges, including honey bee bacterial, fungal and 15 

microsporidian pathogens (Antunez et al. 2009, Evans 2006). In the future, however, only 16 

investigations using natural pathogens can truly assess environmentally relevant impacts of 17 

pesticides on bee health. Finally, our laboratory findings are yet to be generalised to honey bee 18 

colonies under realistic in-hive conditions. Although we detected no functionally significant 19 

impacts on honey bee immunocompetence in laboratory exposures that probably exceed many 20 

environmentally relevant neonicotinoid exposures, we are also tentative in generalising our 21 

findings to bees under field-relevant conditions for three reasons. First, our experimental 22 

exposures were conducted for periods of up to 11 days, whereas realistic in-hive exposures may 23 
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be for longer periods. Second, our laboratory setup did not provide access to a pollen supply and 1 

pollen nutrition has been shown to affect immunocompetence (Alaux et al. 2010b). Third, we 2 

tested only a subset of endpoints and there are many other functionally relevant genes and 3 

enzymes belonging to various pathways in the honey bee immune system. 4 

5. CONCLUSIONS 5 

In summary, our experiments showed an overall clear temporal pattern of AMP gene expression 6 

and physiological activity in response to a bacterial-like infection.  Our principal finding is that 7 

the transcriptional changes in AMP genes following neonicotinoid exposure did not correspond 8 

with immune suppression at the physiological level. If this finding turns out to be general, it 9 

suggests that honey bee immunity may be more resilient to neonicotinoid exposure than 10 

previously thought based on molecular studies only, but this will need further investigation and, 11 

particularly, using honey bees maintained under environmentally realistic conditions. Our 12 

findings begin to enable regulators to better evaluate the potential of gene expression as a 13 

biomarker for bee health. For those genes studied here, bioassays based on gene expression are 14 

not yet reliable indicators of pesticide effects on honey bee immune functioning at a 15 

physiological level. 16 
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FIGURE CAPTIONS 1 

Fig. 1 Gene expression of the AMP gene, abaecin, in response to artificial immune challenge 2 

over time in control-fed (black shapes) and neonicotinoid-exposed (white shapes) bees. Top 3 

plots: Results for exposure to 125 µg/L imidacloprid [Experiments A (left) and D (right)]. 4 

Bottom plots: Results for exposure to 12 µg/L thiamethoxam [Experiments A (left) and E 5 

(right)]. Plots on the left hand side show responses for a period of 2-48 h post immune challenge 6 

(PIC) and plots on the right hand side for a period of 1-7 d PIC. In all plots, shapes indicate 7 

sample means and error bars depict 1 SE. Only upper error bars are shown to simplify the figures 8 

 9 

Fig. 2 Physiological antimicrobial activity to artificial immune challenge over time in control-fed 10 

(black shapes) and neonicotinoid-exposed (white shapes) bees. Top plots: Results for exposure to 11 

125 µg/L imidacloprid [Experiments B (left) and D (right)]. Bottom plots: Results for exposure 12 

to 12 µg/L thiamethoxam [Experiments C (left) and E (right)]. Plots on the left hand side show 13 

responses for a period of 2-48 h post immune challenge (PIC) and plots on the right hand side for 14 

a period of 1-7 d PIC. Note, the y-axis scales differ between plots. In all plots, shapes indicate 15 

sample means and error bars depict 1 SE. Only upper error bars are shown to simplify the figures 16 

  17 
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TABLES 1 

Table I Overview of the test substances, sampling time course and endpoints measured in each 2 

of five experiments. Each experiment was performed with newly emerged honey bees from a 3 

single colony. A different colony was used for each experiment. See supplementary material for 4 

an overall setup of treatment and sampling combinations.   5 

 6 

Experimental details 
Experiment 

A 
Experiment 

B 
Experiment 

C 
Experiment 

D 
Experiment 

E 

Pesticides 

tested in each 

experiment1 

Control vs 

125 µg/L 

IMI 
     

Control vs 

12 µg/L 

TMX 
     

Samples taken 

across either 

‘short’ of 

‘long’ time 

course in each 

experiment 

Short time 

course (2-

48 h) 
     

Long time 

course (24-

168 h) 
     

Endpoints 

measured in 

each 

experiment2 

Gene 

expression 

(qPCR) 
     

AMP 

enzymatic 

activity 

     

Total combinations tested 

(total no. of cages in 

parentheses)3 

54 

(162) 

24 

(72) 

24 

(72) 

60 

(180) 

60 

(180) 

IMI = imidacloprid; TMX = thiamethoxam 7 
1 Where both compounds were tested in a single experiment, each compound was tested independently. i.e. cages of 8 
10 bees were exposed to either IMI or TMX, but never to both. Where boxes are left blank, the pesticide of concern 9 
was not tested in the given experiment. 10 
2 Where both gene expression and enzymatic activity were measured in a single experiment, each endpoint was 11 
tested independently. i.e. individual bees were used in samples for either gene expression or enzymatic activity, but 12 
never for both. Where boxes are left blank, the endpoint of concern was not tested in the given experiment. 13 
3 Combinations of pesticide x immune challenge x sampling time point x measurement type. Please refer to 14 
supplementary material for overview of all combinations. Note, the total number of combinations across all 15 
experiments is greater than 180 because control groups were included in all experiments. In all experiments, 3 cages 16 
(replicates) of 10 bees were tested per combination. 17 
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Table II (next page) ANOVA results for all five experiments. Data analysis was only 1 

conducted between samples within a single experiment, but presented below to show all 2 

comparisons/endpoints tested across the five experiments. Variation among treatments 3 

was analysed by factorial ANOVA with injection (immune challenge) treatment, 4 

pesticide treatment and time post immune challenge as fixed effects. ‘Injection’ refers to 5 

comparison between the ‘Ringer’s’ and ‘LPS’ injection groups; this injection 6 

comparison was seen of most biological relevance as it reflected responses only to the 7 

bacterial molecules (albeit artificial), but not to the injection procedure itself. ‘Pesticide’ 8 

refers to comparison between control-fed and pesticide-fed bees (either imidacloprid or 9 

thiamethoxam, depending on the experiment). 10 

  11 
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Abaecin Apidaecin Hymenoptaecin Defensin1 Defensin2 Lysozyme1 

AMP enzymatic 

activity 

 Experiment A1 Experiment B2 

S
h

o
rt

  
ti

m
e 

c
o

u
rs

e 

(0
 –

 4
8

 h
) 

IMIDACLOPRID df F P F P F P F P F P F P df F P 

Injection 1 106 <0.001 27.0 <0.001 176 <0.001 30.3 <0.001 2.42 0.126 2.68 0.107 1 18.2 <0.001 

Pesticide 1 1.21 0.278 0.617 0.436 0.051 0.823 4.62 0.036 0.497 0.484 1.04 0.313 1 2.93 0.096 

Time 5 141 <0.001 34.3 <0.001 153 <0.001 28.6 <0.001 1.09 0.377 1.98 0.097 3 160 <0.001 

Injection*Pesticide 1 3.39 0.071 2.79 0.101 5.38 0.024 0.532 0.469 0.187 0.668 0.176 0.676 1 4.12 0.050 

Pesticide*Time 5 0.319 0.899 0.068 0.997 1.41 0.235 0.868 0.509 1.28 0.287 0.876 0.504 3 1.49 0.234 

Injection*Time 5 13.1 <0.001 3.73 0.006 20.3 <0.001 2.39 0.050 0.220 0.952 0.147 0.980 3 6.72 0.001 

Residuals 53             35   

 Experiment A1 Experiment C2 

S
h

o
rt

 t
im

e 
c
o

u
rs

e 
 

(0
 –

 4
8

 h
) 

THIAMETHOXAM df F P F P F P F P F P F P df F P 

Injection 1 96.8 <0.001 31.3 <0.001 93.3 <0.001 20.6 <0.001 0.489 0.487 0.368 0.547 1 27.8 <0.001 

Pesticide 1 11.5 0.001 21.8 <0.001 47.8 <0.001 3.85 0.055 1.67 0.202 8.60 0.005 1 0.013 0.908 

Time 5 81.6 <0.001 35.4 <0.001 87.0 <0.001 27.3 <0.001 2.66 0.033 5.45 <0.001 3 88.6 <0.001 

Injection*Pesticide 1 10.7 0.002 0.615 0.436 3.31 0.075 0.012 0.915 4.70 0.035 1.62 0.209 1 0.952 0.336 

Pesticide*Time 5 1.87 0.115 3.88 0.005 14.3 <0.001 1.28 0.287 2.24 0.064 6.07 <0.001 3 0.811 0.496 

Injection*Time 5 7.45 <0.001 3.12 0.015 16.1 <0.001 3.13 0.015 2.23 0.065 1.88 0.113 3 9.15 <0.001 

Residuals 52             35     

 Experiment D2,3 

L
o

n
g

 t
im

e 
c
o

u
rs

e
 

(0
 –

 1
6

8
 h

) 

IMIDACLOPRID df F P F P F P F P F P F P df F P 

Injection 1 25.4 <0.001 48.3 <0.001 14.6 <0.001 - - - - - - 1 119 <0.001 

Pesticide 1 0.022 0.883 2.75 0.106 0.074 0.787 - - - - - - 1 0.134 0.717 

Time 3 16.0 <0.001 13.2 <0.001 9.41 <0.001 - - - - - - 3 42.1 <0.001 

Injection*Pesticide 1 3.38 0.075 0.879 0.355 0.629 0.433 - - - - - - 1 0.105 0.748 

Pesticide*Time 3 1.18 0.334 0.279 0.840 1.23 0.315 - - - - - - 3 1.36 0.272 

Injection*Time 3 0.801 0.502 0.879 0.485 4.90 0.006 - - - - - - 3 6.99 <0.001 

Residuals 34             34   

 Experiment E2,3 

L
o

n
g

 t
im

e 

co
u

rs
e 

(0
 –

 

1
6

8
 h

) 

THIAMETHOXAM df F P F P F P F P F P F P df F P 

Injection 1 32.9 <0.001 32.2 <0.001 37.0 <0.001 - - - - - - 1 44.3 <0.001 

Pesticide 1 0.989 0.327 0.359 0.554 0.272 0.606 - - - - - - 1 0.039 0.845 

Time 3 13.7 <0.001 15.8 <0.001 15.1 <0.001 - - - - - - 3 35.0 <0.001 

Injection*Pesticide 1 0.25 0.624 1.57 0.219 0.047 0.830 - - - - - - 1 0.088 0.769 
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Pesticide*Time 3 0.799 0.503 0.199 0.896 1.81 0.164 - - - - - - 3 0.655 0.586 

Injection*Time 3 3.06 0.042 4.29 0.012 2.36 0.090 - - - - - - 3 3.39 0.029 

Residuals 33             33     
1 In Experiment A, where imidacloprid and thiamethoxam treatments were both included within the single experiment, the imidacloprid and thiamethoxam datasets 1 
were analysed separately as we were only interested in the differences between each pesticide and the control-fed bees. Since the control dataset was therefore used in 2 
both analyses, in Experiment A a significant effect was defined by P ≤ 0.025 (in bold), accounting for a Bonferroni correction. 3 
2 Significant effect defined by P ≤ 0.05 (in bold). 4 
3 Expression of the genes Defensin1, Defensin2 and Lysozyme1 was not measured in the long time course experiments (experiments D and E). 5 
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