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ABSTRACT
Asymmetric localization of mRNAs is a widespread gene regulatory mechanism that is crucial for many
cellular processes. The localization of a transcript involves multiple steps and requires several protein
factors to mediate transport, anchoring and translational repression of the mRNA. Specific recognition of
the localizing transcript is a key step that depends on linear or structured localization signals, which are
bound by RNA-binding proteins. Genetic studies have identified many components involved in mRNA
localization. However, mechanistic aspects of the pathway are still poorly understood. Here we provide an
overview of structural studies that contributed to our understanding of the mechanisms underlying mRNA
localization, highlighting open questions and future challenges.

KEYWORDS
Drosophila; gene expression
regulation; molecular
mechanism; Post-
transcriptional regulation;
RBP; RNA-protein complexes;
RNA localization; structure;
trans-acting factors

Introduction

The localization of mRNAs is a gene regulatory mechanism, wide-
spread in eukaryotes, that is crucial for many processes, including
patterning of embryonic axes, asymmetric cell division, cell migra-
tion and synaptic plasticity (reviewed in Holt and Bullock, 2009;
Martin and Ephrussi, 2009).1,2 Amongmetazoans, the fruit flyDro-
sophila melanogaster has been most extensively studied, given the
genetic accessibility of this system. During Drosophila oogenesis
and early development, hundreds of mRNAs have been shown to
localize in very defined subcellular patterns.3-5 Among vertebrates,
a model system that has been classically used is Xenopus laevis.1,6

Cell cultures of mammalian neuronal cells and fibroblasts are also
widely used to explore howmRNA localization contributes to neu-
ronal function and cell motility, respectively. Cultured cells-based
systems have allowed transcriptome-wide characterization of
mRNA localization. For example, severalmRNAs have been shown
to be localized in dendrites, in axons or in cell protrusions in these
systems.1,6 Many mRNA-localizing factors initially identified in
Drosophila have homologs in vertebrates, including Staufen,7-9

Bruno,10,11 Bicaudal D (BicD),12 ZBP113-15 and Pumilio (Pum).16

In vertebrates some of the proteins that are involved in mRNA
localization in Drosophila are also involved in mRNA localization,
for example,mammalian Staufen and Fragile XMental Retardation
Protein (FMRP) are required for mRNA localization in
neurons,17-20 and the Exon Junction Complex (EJC) component
eIF4AIII is involved in dendritic mRNA localization.21 Genetic
studies in Drosophila have provided detailed part-lists of mRNA
localization components. However, our mechanistic understand-
ing lags behind the genetic characterization of this pathway.

Here we review the contribution of structural studies to the
mechanistic understanding of mRNA localization. We will

discuss how target mRNAs are recognized, repressed and trans-
ported to their target site within the cell. We will only briefly
touch on RNA recognition mediated by canonical RNA-bind-
ing domains (such as KH, RRM, dsRBD), for which we refer to
more focused reviews.22-24 We will also not address the mecha-
nisms of motor function, mRNA localization studies in fungi,
nor provide an in-depth description of pathways intersecting
with mRNA localization (e.g. mRNA decay), which have been
reviewed elsewhere.25-28

Steps in mRNA localization

The key step in mRNA localization is the specific recognition of
the transcript, which depends on cis-acting elements, generally
found in 30 untranslated regions (30UTR) of mRNAs (reviewed
in Besse and Ephrussi, 2008; Meignin and Davis, 2010; Medioni
et al., 2011)6,29,30 (Fig. 1). These elements are recognized by
trans-acting factors, or RNA-binding proteins (RBPs). Many
RBPs contain several domains, that can contribute to specific
target recognition or mediate the recruitment of additional pro-
tein factors.31 In the case of active localization, mRNAs are
transported along the cytoskeleton either by dynein or kinesin
motor proteins (mediating microtubule minus end- or plus
end-directed transport, respectively) or myosins (which move
along actin filaments). Alternatively, localized expression can
be achieved by selective translational repression or degradation
of the target mRNA in parts of the cell. Often, the localized
messenger ribonucleoprotein particle (mRNP) is maintained at
the destination site by anchoring to the cytoskeleton, generally
actin filaments. Translational repression of the mRNP before
localization is fundamental for both active and passive
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localization mechanisms, to prevent protein expression at
ectopic sites in the cell. Such repression may persist at the desti-
nation site (e.g., during Drosophila oogenesis), until it is
relieved by an extrinsic cue. This translational activation is cur-
rently one of the least understood steps of the mRNA localiza-
tion pathway.

RNA localization signals

A variety of mRNA localization signals has been identified to
date, ranging from linear sequences to defined secondary struc-
tures. These signals are critical for providing recognition sites
for proteins of the localization machinery.32-34

Recognition of linear signals

One of the best characterized examples of a linear localization
signal is the zipcode element on b-actin mRNA, recognized by
the Zipcode-Binding Protein 1 (ZBP1).13,35 ZBP1 regulates
local translation of b-actin mRNA at the base of activated den-
dritic spines in hippocampal neurons.36 The crystal structure of
human ZBP1 RNA-binding domains (hnRNP K homology, or
KH domains) revealed an intramolecular pseudo-dimer
arrangement that positions the RNA-binding surfaces on
opposing faces of the protein. This induces the looping of the
bipartite zipcode element around ZBP1 (Fig. 1, 2a). Binding of
both zipcode elements enhances the affinity of ZBP1 for b-actin
mRNA. Since the 2 zipcode elements can only bind if they are
separated by a spacer sequence of defined length, this ensures
specificity in mRNA recognition.37 The occurrence of multiple
domains to obtain high RNA-binding affinity and specificity,
often combined with the remodelling of the target mRNA (as
in the b-actin mRNA and ZBP1), is a recurrent feature of
RNA-protein complexes (reviewed in Lunde et al., 2007).31

Another example is provided by the CUG-binding protein 1
(CUGBP1). The human CUGBP1 protein is a member of the
CUGBP1 and ETR-like factors (CELF) protein family, which
includes the Drosphila translational repressor Bruno (Bru).
CELF family members share a conserved domain architecture,
characterized by two adjacent RNA recognition motifs (RRMs)
in the N-terminal region, and a third C-terminal RRM, which is
separated from the others by a long, non-conserved, linker.10

The two N-terminal RRM domains of CUGBP1 bind with simi-
lar affinities to their respective target sequences (UGUU/G).
NMR studies indicate that the two domains tumble indepen-
dently in solution in the absence of the RNA substrate.38 How-
ever, in the presence of an RNA molecule comprising two
recognition signals the two RRM domains are found in a com-
pact and rigid arrangement (Fig. 2b), which explains the
observed binding cooperativity.38 While the short linker between
RRM1 and RRM2 of CUGBP1 favors cooperative binding of the
two domains on adjacent sequences on the target mRNA, the
longer, and probably disordered, linker that connects RRM3
could allow for recognition of a more distant sequence element,
perhaps belonging to a different mRNA molecule. This mecha-
nism could help in creating a large messenger ribonucleoprotein
particle (mRNP) for transport, and would also contribute to
maintaining the translational repression of the target mRNA, as
has been proposed for Drosophila Bru in oskar (osk) mRNA
regulation.39 In addition, such unstructured regions can cooper-
ate in RNA binding: the linker region N-terminal to the third
RRM in both human CUGBP1 and Drosophila Bru extends the
binding surface of the RNA-recognition motif, which increases
RRM3 affinity for its target mRNA.40,41

Another way to achieve recognition of an RNA sequence
element with high affinity and specificity is by combining mul-
tiple copies of a simple repeated structural motif within a pro-
tein domain. This approach is used by members of the Pumilio

Figure 1. mRNA localization requires multiple factors. The mRNA to be localized is recognized by RNA-binding proteins (RBPs, in red) that interact with linear or struc-
tured localization signals, or cis-acting elements, on the mRNA. These RBPs can recruit adaptor proteins (in blue), which mediate anchoring or transport of the localizing
messenger ribonucleoprotein complex (mRNP) along the cytoskeleton through the action of molecular motors (in gray). Other proteins (in teal) are required to maintain
the mRNP in a translationally repressed state, for example by competing directly with components of the translation machinery (e.g.: Cup) or by recruiting the CCR4:NOT
complex to promote shortening of the poly(A) tail on the target mRNA (e.g.: Smg, Nos, Pum). Special RBPs are represented by the Exon Junction Complex (EJC, in orange),
the cap-binding protein eIF4E (in green) and the Poly(A)-Binding Protein (PABP, in purple). Asterisks (�) indicate proteins with no known ortholog in vertebrates. Not all of
the proteins depicted here will associate at the same time point, or to the same mRNA.
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and fem-3 mRNA binding factor (Puf) protein family, of which
Drosophila Pumilio (Pum) is the founder (reviewed in Wickens
et al., 2002).16 Puf proteins are characterized by the presence of
a sequence-specific RNA-binding domain known as the Pum
homology domain (Pum-HD), comprising 8 sequence repeats
of three helices each, plus N- and C-terminal flanking
regions.42,43 This helical domain is reminiscent of the Arma-
dillo repeat domain, a protein-protein interaction module
found in a wide range of proteins with diverse functions,
including nucleo-cytoplasmic transport, intracellular signaling,
and cytoskeletal organization (reviewed in Hatzfeld et al., 1999;
Coates, 2003).44,45 The Pum-HD domain contacts RNA
through its concave surface, where each nucleotide is recog-
nized by a triumvirate of amino acid side chains at conserved
positions within the helical repeats46 (Fig. 2c). In addition, the
Pum-HD domain can interact with the CCR4:NOT deadenyla-
tion complex and promote shortening of the poly(A) tail on
the target mRNA.47,48 In this way, Puf proteins control stability
and translation of a variety of different mRNAs, recognized
through a Pum response element (PRE) in their 30UTRs.

Recognition of structured signals

Given the difficulty in predicting tertiary or even secondary
structures of RNAs with high reliability, the characterization of
structured localization signals has proven more challenging
and relies on experimental verification.49 This is well exempli-
fied by the Drosophila fs(1)K10 Transport and Localization
Signal (K10 TLS), which mediates minus-end-directed, dynein-
dependent transport along the microtubules during early
Drosophila development. The structure of this localization
element, derived by NMR spectroscopy, has revealed a stem-
loop conformation in which purine-purine stacking within the

double stranded (ds) region forces the stem to adopt an unusual
A0-form conformation. This conformation has 2 widened
major grooves which are oriented at 90� to one another in con-
trast to the standard A-form dsRNA where major and minor
grooves have similar widths (Fig. 3). This specific arrangement
(reminiscent of B-form dsDNA) is required for the localization
of K10 TLS-containing mRNAs in vivo33 (Fig. 3a). Other
mRNAs that are transported at various stages during Drosoph-
ila oogenesis and early development toward the minus end of
microtubules also contain localization signals that could form
hairpins of similar structure but of different primary sequence
as the K10 TLS.33 This suggests that widened major grooves in
dsRNA, rather than being used for primary sequence recogni-
tion, represent an unusual structural feature that can be sensed
by a common localization machinery. Indeed, several of these
elements, including the K10 TLS, are recognized by the protein
Egalitarian (Egl).50 Egl does not contain a canonical RNA-bind-
ing domain, but rather contacts RNA through a large region
including a domain that displays homology to 30-50 DEDD exo-
nucleases (Exo-domain), which usually catalyze the exonucleo-
lytic cleavage of nucleic acids.50,51 Mutation of the putative
catalytic residues within Egl Exo-domain does not affect
mRNA localization in vivo or RNA-binding activity in vitro
indicating that, if the protein is a functional exonuclease, this
activity is dispensable for protein function.50,52 Similarly, the
protein Exuperantia (Exu) uses a catalytically inactive Exo-
domain to bind and localize bicoid (bcd) mRNA during early
oogenesis in Drosophila.53 Both Egl and Exu recognize mRNA
signals with defined secondary structures, though the molecular
details of the interaction are not known.

To date, there are very few examples of structured localiza-
tion signals in complex with RNA-binding proteins. One is
provided by the RNA-binding domain of yeast Vts1 in complex

Figure 2. Recognition of linear localization signals. (a) Model of RNA binding by KH3 and KH4 domains of the human ZBP1 homolog IMP1 (PDB 3KRM37), showing the
pseudo-dimer arrangement that positions the RNA-binding surfaces on opposing directions of the structure. The RNA molecules bound to KH3 and KH4 are derived from
the structure of Gallus ZBP1 (PDB 2N8L and 2N8M, respectively128), superposed using the cealign command in Pymol v1.7 (www.pymol.org). (b) Model of RNA binding by
RRM1 and RRM2 domains of human CUGBP1 (PDB 3NNH and 3NMR, respectively). The relative orientation of the two RRM domains is modeled as described in Teplova
et al., 200938. (c) Crystal structure of Drosophila Pum in complex with the Pum Recognition Element (PRE) from hunckback (hb) mRNA (PDB 5KLA76).
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with the Smaug (Smg) Recognition Element (SRE) RNA
(Fig. 3c). Vts1 binds RNA through its Sterile a motif (SAM), a
domain consisting of 5 a-helices arranged in a globular bundle,
that was previously thought to be solely a protein-protein inter-
action motif.54,55 The SRE consists of a stem-loop structure, but
only the 5 residues of the loop (CUGGC) are directly contacted
by a shallow, positively-charged surface patch on the SAM
domain. The only residue that is specifically recognized is the
G at position 3 within the pentaloop, while the other protein-
RNA interactions involve non-sequence specific contacts with
the RNA phosphate oxygens.56-58 However, the formation or
stabilization of a base pair within the pentaloop upon protein
binding also seems to be important, suggesting that the G3
nucleotide base within the loop is recognized within a specific
structural context.56,57 The sequence of the stem, as long as

base-pairing is preserved, does not influence Vts1 binding
affinity.54 Yeast Vts1 is a homolog of Drosophila Smg, a protein
that contributes to anterior-posterior axis determination in the
Drosophila embryo. Smg represses nanos (nos) mRNA transla-
tion everywhere in the embryo but at the posterior pole plasm.
This generates a gradient of Nos protein emanating from the
posterior of the embryo. Such gradient is required to trigger a
series of downstream events that result in proper abdominal
segmentation.59 Smg also binds mRNA by its SAM domain,
suggesting evolutionary conservation, but the details of this
interaction are not known. A SAM-like domain is also present
in Exu and mutational analysis suggests that it is important for
RNA binding. However, in Exu there is an additional surface
not present in Smg or Vts1 that contributes to mRNA
binding.53

Figure 3. Recognition of structured localization signals. (a-b) Solution structures of the Transport and Localization Signal from K10 mRNA (K10 TLS; a) (PDB 2KE633) and of
the SOLE hairpin from osk mRNA (b) (PDB 5A1770). A-U base pairs are shown in black; G-C base pairs in blue; G:A base pairs in cyan; G:U base pairs in green; unpaired resi-
dues (loops and bulges) are highlighted in red. Both stem-loops present widened major grooves (indicated by broad arrowheads) as compared with the common A-form
of dsRNA helices (e). (c) Solution structure of yeast Vts1 Sterile a motif (SAM) bound to the Smg Recognition Element (SRE) (PDB 2ESE58). The loop residues forming a
base pair are colored in blue; the specifically recognized G residue at position 3 of the loop is highlighted in red. The position of the major groove is indicated by an
arrowhead. In the case of SRE RNA, the major groove has an intermediate width between that of the K10 TLS and that of an ideal A-form dsRNA and it is not involved in
Smg/Vts1 recognition.54 (d) Solution structure of the third dsRNA-binding domain (dsRBD3) of Drosophila Stau bound to an artificial stem-loop sequence (PDB 1EKZ68).
The N-terminal a-helix (a1-helix), which is potentially involved in sequence-specific contacts with the RNA loop, is highlighted in red. (e) Cartoon representation of ideal
dsRNA structures (generated in Coot129), assuming the canonical A-form (left) or the unusual A’-form conformation (right), which is reminiscent of the B-form of dsDNA.
Major grooves are indicated by arrowheads (thin for A- and broad for A’-form, respectively).
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Another conserved mRNA-localization protein, Staufen
(Stau), presents a distinct RNA-binding mechanism. Members
of the Stau protein family are important for mRNA localization
in many organisms and contain several copies of dsRNA-bind-
ing domain (dsRBD), a domain that was first identified in the
Drosophila Stau protein.7 In Drosophila, Stau is required for oskar
(osk) mRNA localization at the posterior pole during oogenesis,
for bcd mRNA anchoring at the anterior pole in late oogenesis
and early embryogenesis, and for prospero (pros) mRNA transport
during neuroblast asymmetric cell division.60-64,65,66 Structural
characterization of the third dsRBD of Drosophila Staufen in com-
plex with a non-physiologic stem-loop RNA sequence showed
that the dsRBD3 interacts with the RNA sugar-phosphate back-
bone, without making direct contacts with the RNA bases. Some
sequence specificity could be provided by the interaction of the
first a-helix with the nucleotide bases in the hairpin loop67,68

(Fig. 3d), although structural studies on a physiologic substrate
would be required to confirm this.

For other localized mRNAs, the protein factors required for
the recognition of their structured localization signals are still
unidentified. This is the case of the Spliced osk Localization Ele-
ment (SOLE)69,70 (Fig. 3b). The SOLE is generated upon splic-
ing of the first intron of osk and it is required for plus end-
directed, posterior localization of osk mRNA during oogenesis
in Drosophila.69 Osk localization also requires the deposition of
the EJC upstream of the first exon-exon junction. The isolated
SOLE assumes a stem-loop structure capped by a 5 nucleotide
loop, and, like the K10 TLS, displays a widened major groove.70

A protein binding partner of the SOLE has yet to be identified.

Combinatorial regulation mechanisms (The
importance of a bigger picture)

In many of the examples described above, the specificity of the
RNA-binding proteins (such as Vts156, Egl,50 Stau,23 Exu53)
appears to be less stringent in vitro than in vivo.31,71 This could
be due to the use of isolated RBDs in in vitro assays. The inclu-
sion of multiple domains, where present, would be important
in future studies to better approximate in vivo conditions. In
other cases, the binding affinity and specificity of an RNA-
binding protein (RBP) for its target mRNA is modulated by the
interaction with a protein partner. Such cases highlight the
importance of structural studies focusing on multiprotein com-
plexes together with their bound mRNA targets. The effects of
partner proteins on mRNA binding could be mediated by part-
ner-dependent stabilization of RBPs, as has been proposed for
Drosophila Egl and Bicaudal D (BicD).50,72,73 Alternatively,
binding partners could alter RBP binding specificity either by
promoting conformational changes or by contributing addi-
tional surfaces for binding. A striking example is provided by
the complex of Pum and Nanos (Nos). These proteins co-regu-
late several mRNAs in Drosophila, including repression of
maternal hunchback (hb) mRNA at the posterior pole of the
embryo, and of Cyclin B (CycB) mRNA in primordial germ cells
and germline stem cells.74,75 The crystal structure of the Pum:
Nos complex bound to hb and CycB recognition elements
revealed that Nos not only induces conformational changes in
Pum that increase its affinity for RNA, but also directly contacts
the RNA upstream of the Pum canonical recognition

sequence76 (Fig. 4a–b). In this way, Nos adds upstream recogni-
tion specificity, thereby relaxing the requirement for a perfect
Pum-binding consensus sequence. The Pum:Nos complex can
thus regulate a broader range of mRNA targets than Pum alone.
Cooperativity is also exhibited by the proteins Sex-lethal (Sxl)
and Upstream of N-Ras (Unr). In Drosophila females, the two
proteins bind adjacent sequences in the 30UTR of male-
specific lethal 2 (msl2) mRNA, which encodes for the limiting
component of the dosage compensation complex and repress
its translation.77 The crystal structure of the Sxl:Unr:msl2
mRNA ternary complex showed how the 50 end of the RNA
sequence is recognized by Sxl, while the 30 end is sandwiched
by both proteins. The formation of such a “triple zipper” allows
additional protein:RNA contacts that would not be possible
with either protein alone78 (Fig. 4b–c).

Transport and anchoring

Long-range active transport usually depends on microtubules,
with kinesin and dynein motors mediating plus end- and
minus-end directed movement, respectively. There are very few
instances where all biochemical links between the localizing
mRNA and the molecular motor have been identified. These
include the complex linking ASH1 mRNA to myosin 4 motor
during localization to the bud of Saccaromyces cerevisiae
(reviewed in Niedner et al., 2014)26 and Drosophila BicD, a pro-
tein linking localizing mRNAs to the dynein motor during
minus end-directed mRNA localization (reviewed in Hoogen-
raad and Akhmanova, 2016)79 (Fig. 5a). BicD is the founder of
a conserved family of motor adaptor proteins, which, in addi-
tion to coupling the dynein motor to various cargoes, stimu-
lates processive dynein motility by stabilizing dynein
interaction with its constitutive cofactor dynactin.80-82 While
the N-terminal 2 coiled-coil domains of BicD associate simulta-
neously with dynein and dynactin, stabilizing their interac-
tion,82 the C-terminal part of BicD can recognize different
protein partners, that in turn mediate the transport of specific
cargoes.83 In Drosophila, one of the most important partners of
BicD is Egl, which is required for dynein-dependent localiza-
tion of a variety of transcripts.50 Another BicD-associated fac-
tor is FMRP, which has an important role in mRNA
localization in neurons and is mutated in the most common
inherited form of cognitive deficiency in humans.84 All existing
data point to BicD binding to one partner at a time, and in
some cases through overlapping interaction surfaces.83 Though
we can draw a link between localizing mRNPs and dynein-
mediated transport, little is known about kinesin-mediated
transport.

Another key adaptor protein in mRNA localization is
Miranda (Mira). Mira is required for the segregation of the cell
fate determinants Brain tumor (Brat), Prospero (Pros) and
Numb to the basal cortex during the asymmetric cell division
of neuroblasts in Drosophila.66,85-88,89,90 In addition, Mira
directly interacts with the dsRNA-binding protein Stau to local-
ize pros mRNA in an actin-dependent manner both in neuro-
blasts and epithelial cells66,88,91 (Fig. 5b). In this case, the
connection with the cytoskeletal motor is still unknown.

The mechanism by which osk mRNA is anchored at the
posterior cortex during Drosophila oogenesis and early
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embryogenesis is also poorly understood. At the posterior pole,
two Osk protein isoforms are translated from alternative start
codons: Short Osk is necessary and sufficient to induce pole
cell formation and posterior patterning in the embryo, while
Long Osk is required for proper anchoring of both osk mRNA
and Short Osk to the posterior cortex of the oocyte.92-95 Short
Osk recruits the DEAD box helicase Vasa through its N-termi-
nal LOTUS domain to initiate germ plasm assembly.94,96 In
addition, short Osk associates with germ plasm localized
mRNAs, including its own and nos mRNA.96,97 Analogous to
Egl and Exu, Osk binds RNA through an enzyme fold: the C-
terminal OSK domain, which resembles a SGNH hydrolase,
but lacks the catalytic residues.96,97 The RNA sequence specific-
ity of Osk has not been yet determined. In addition to the
LOTUS and OSK domains, Long Osk contains an N-terminal
extension, which is required, but not sufficient, for the posterior
anchoring of osk mRNA.95 Despite the presence of the LOTUS
domain, Long Osk cannot recruit Vasa, suggesting that the N-
terminal extension is somehow modulating the function of the
other Osk domains.92,94,96 Instead, Long Osk stimulates

clathrin-mediated endocytosis and contributes to the organiza-
tion of the actin cytoskeleton at the posterior of the oocyte, pro-
moting its own and Short Osk maintenance at the posterior
pole through a poorly understood mechanism.98

Translational repression and selective degradation

Translational repression mechanisms frequently target transla-
tion initiation, which is generally rate-limiting. During
initiation, the scaffolding factor eIF4G interacts with the cap-
binding protein eIF4E and the Poly(A)-Binding Protein
(PABP), to connect 50 and 30 end of the mRNA in a closed loop
conformation that is thought to stimulate translation; in addi-
tion, eIF4G interacts with eIF3, which in turn recruits the small
ribosomal subunit (reviewed in Jackson et al., 2010).99 The
eIF4E:eIF4G interaction is targeted by a conserved class of
translational repressors, the eIF4E binding proteins (4E-BPs)
(reviewed in Topisirovic et al., 2011).100 A member of this fam-
ily is the Drosophila protein Cup, which is required during

Figure 4. Examples of combinatorial control. (a-b) Crystal structure of the Drosophila Pum:Nos complex bound to the Pum Recognition Element (PRE) from hunckback (hb)
(a) (PBD 5KL1) or cyclinB (cycB) mRNA (b) (PDB 5KL876). The RNA sequence is written under the corresponding structure, with the nucleotides recognized by Nos in bold;
asterisks indicate nucleotides that deviate from the PRE consensus. The U residue at the 30 end of cycB PRE (in italic) is not visible in the structure. (c) Crystal structure of
the two RRM domains of Sxl in complex with the Sxl-binding element from transformer (tra) mRNA (PDB 1B7F130). (d) Crystal structure of the ternary complex between
Sxl, Unr and the RNA recognition element from male-specific lethal 2 (msl2) mRNA (PDB 4QQB78). Unr binds RNA through its Cold Shock domain.
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oogenesis and early development for repressing translation of
the axis-determining factors osk, nos, and gurken (grk). Cup
does not contact RNA, but is recruited to its mRNA targets by dif-
ferent RBPs (Bru in the case of osk and grk; Smg for nos).101-104

The crystal structure of an N-terminal fragment of Cup in com-
plex with eIF4E revealed how Cup interacts through two binding
motifs (one canonical and one non-canonical), and engages the
same surfaces of eIF4E responsible for interaction with
eIF4G102,104-106,107,108 (Fig. 6). In addition, Cup binding stabilizes
eIF4E and increases its grip on the target mRNA, thus protecting
it from decapping and degradation.107,108 Alternatively, translation
initiation can be inhibited by preventing the recruitment of the
large ribosomal subunit, as described for ZBP1.36

Other proteins repress translation of their target mRNA
by recruiting the CCR4:NOT deadenylation complex: exam-
ples include Cup, Bicaudal C (BicC), Smg, Pum and
Nos.109,47,108,110 For the recruitment of the CCR4:NOT com-
plex, at least some of these proteins rely on short linear
motifs embedded in peptide regions of predicted disorder
(e.g., Nos111). Interestingly, many RNA- and DNA-binding
proteins show a significant enrichment in low complexity
regions when compared with the entire proteome.112 In

addition to providing quickly-evolving interaction surfaces,
these regions have the potential for forming reversible amy-
loid-like fibers in vitro113; in vivo, the same sequences could
mediate oligomerization and assembly of large particles that
would reinforce translational repression by steric exclusion
of the ribosomes, as proposed for osk mRNA.39

Indeed, to ensure efficient repression of the localizing
mRNA, translation is usually inhibited at multiple steps. Com-
plete repression of nos expression, for instance, requires both
Cup-mediated inhibition at the initiation step104 and Smg-
mediated deadenylation.109,114

Translational activation

How mRNA recognition factors, translational repressors and
localization machinery could dissociate from the localized
mRNP is a critical but poorly understood step in the mRNA
localization pathway. Release could be mediated by targeting
the localizing factor for degradation when it is no longer
needed, as has been shown for Mira.88 Another mechanism
involves dissociation of the RBP from the recognition element
on the mRNA. For example, the majority of nos mRNA is

Figure 5. Transport and anchoring. (a) Schematic representation of Egl-BicD mediated transport of K10 mRNA. Structural information is currently available for K10 TLS
(PDB 2KE633); for the first and second coiled coil regions of BicD in complex with the Dynein:Dynactin molecular motor (PDB 5AFU82); and for the C-terminal coiled coil
region of BicD, with the Egl-binding site defined by mutation analysis (PDB 4BL683). Still unknown are the molecular details of Egl interaction with the RNA and with
BicD, as well as the connection between BicD N-terminal and C-terminal coiled coil domains. (b) Crystal structure of a fragment of Mira coiled coil region bound to the
fifth dsRBD (dsRBD5) of Stau (PDB 5CFF91). BicD and Mira both act as homodimers.

Figure 6. Translational repression. Crystal structure of Drosophila eIF4E in complex with a peptide from Cup (left) (PDB 4AXG107) or eIF4G (right) (PDB 5T47131).
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evenly distributed throughout the Drosophila embryo and
translationally repressed in a Smg-dependent manner.104,109,114

However, at the posterior pole, Osk protein prevents Smg bind-
ing to nos mRNA, thereby allowing its translation.114-116 The
molecular details of this regulation are still unclear. Osk could
bind Smg directly, and perhaps alter its affinity for RNA115;
alternatively, Osk and Smg could compete for the same binding
site on nos mRNA, as suggested by the discovery that Osk is
also an RNA-binding protein.96,97

Post-translational modifications, such as phosphorylation,
also seem to play an important role. The affinity of 4E-BPs for
eIF4E, for example, is decreased by the phosphorylation of 4E-
BPs at multiple sites.117,118 Analogously, Src-dependent phos-
phorylation of ZBP1 relieves translational repression of b-actin
mRNA by disrupting ZBP1:RNA interaction,36 though the
molecular details of this regulation are still unclear.

Future perspectives

Structural studies have greatly advanced our understanding of
the mechanisms underlying mRNA localization. However,
many issues remain. The challenge for the future is to under-
stand the assembly and dynamics of the large multiprotein-
RNA complexes involved in mRNA localization.

First, structural studies will have to tackle larger multimolec-
ular assemblies. RBPs often contain multiple domains that
combine protein- and RNA-binding activities, and, due to their
complexity and flexibility, offer a challenge for structural stud-
ies. Moreover, many localizing mRNAs assemble in multimeric
complexes, through both protein- (e.g., Exu, Bru, Osk, BicD,
Mira) and RNA-mediated dimerization (e.g., bcd). The increas-
ing number of examples in which combinations of structural
motifs, protein domains and protein interaction partners are
exploited to modulate RNA-binding affinity and specificity,
however, prompts for an effort in the characterization of more
physiologic complexes. It will be challenging to characterize
stable assemblies and to purify them in suitable amounts for
structural studies. Cryo-EM approaches hold promise to solve
large assemblies at high resolution and with the need of less
material. However, inherent flexibility and heterogeneous com-
position of the targets remains an issue across techniques when
tackling large assemblies.

Localizing mRNP composition changes at the different steps
of gene expression. Studies of single molecule dynamics are
particularly promising to gain mechanistic insights of mRNA
localization at high resolution. These studies provide a direct
readout of the spatial and temporal details of localization. It
will be particularly challenging to integrate information from
these kinds of studies with the static information derived from
structural studies. In this respect, structural snapshots of the
same component/complex in different cellular states are very
informative although technically very challenging.

A third avenue will be to integrate the wealth of genetic
information with structural and single molecule studies.
Genetic studies, especially in Drosophila, provide much data on
the identity and hierarchy of the factors required for mRNA
localization, and represent an excellent starting point for a
more detailed biochemical characterization. Furthermore,
novel genome editing techniques will facilitate the in vivo

validation of functional hypotheses from structural data in
reverse genetic approaches.

It will also be essential to chart the complement of RBPs and
RNA target motives by large-scale studies. New methods of
RNA-protein interaction119,120 including CRAC,121 CLIP,122

PAR-CLIP,123 iCLIP,124 hiCLIP125 provide a rich source of RBPs
and RNA targets. Those will be the starting points for structural
studies of complexes to understand RNA binding modes.

The variety of canonical and non-canonical RNA-binding
domains used by RBPs, together with the divergence in RNA
signal sequences, makes it difficult to derive rules for target
mRNA selection. Bioinformatics predictions and studies on iso-
lated RNA elements can provide valuable information. How-
ever, experimental validation of the protein:RNA interaction
remains essential; this is especially true for cases in which the
RNA secondary structure changes following post-transcrip-
tional modifications of the nucleotide bases (e.g., N6-methyla-
denosine-dependent RNA structural switches126), or
interaction with the protein partner (e.g., structural rearrange-
ments in the E3 localization element from yeast ASH1 mRNA
bound to the localization machinery127).
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