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Abstract. Natural hazards, such as European windstorms,
have widespread effects that result in insured losses at mul-
tiple locations throughout a continent. Multivariate extreme-
value statistical models for such environmental phenomena
must therefore accommodate very high dimensional spatial
data, as well as correctly representing dependence in the ex-
tremes to ensure accurate estimation of these losses. Ideally
one would employ a flexible model, able to characterise all
forms of extremal dependence. However, such models are re-
stricted to a few dozen dimensions, hence an a priori diagnos-
tic approach must be used to identify the dominant form of
extremal dependence.

Here, we present various approaches for exploring the
dominant extremal dependence class in very high dimen-
sional spatial hazard fields: tail dependency measures, copula
fits, and conceptual loss distributions. These approaches are
illustrated by application to a data set of high-dimensional
historical European windstorm footprints (6103 spatial maps
of 3-day maximum gust speeds at 14 872 locations). We find
there is little evidence of asymptotic extremal dependency in
windstorm footprints. Furthermore, empirical extremal prop-
erties and conceptual losses are shown to be well repro-
duced using Gaussian copulas but not by extremally depen-
dent models such as Gumbel copulas. It is conjectured that
the lack of asymptotic dependence is a generic property of
turbulent flows. These results open up the possibility of using
geostatistical Gaussian process models for fast simulation of
windstorm hazard fields.

1 Introduction

Multivariate statistical models are increasingly used to ex-
plore the spatial characteristics of natural hazard footprints
and quantify potential aggregate losses. For example, such
models for European windstorms are used by academics
and (re)insurers to create catalogues of possible events, ex-
plore loss potentials, and benchmark synthetic events from
atmospheric models (Bonazzi et al., 2012; Youngman and
Stephenson, 2016).

Natural hazards, such as European windstorms, have
widespread effects, often causing insured losses at many lo-
cations throughout a continent. Therefore, statistical models
for such hazards must accommodate very high dimensional
data in order to represent the full hazard domain. Moreover,
since natural hazards are rare events in the tail of the dis-
tribution, these statistical models must also correctly repre-
sent the dependence in the extremes to ensure valid inference
and, hence, a realistic representation of the hazard’s aggre-
gate losses.

When modelling multivariate extremes, variables can be
described as being either asymptotically dependent, where
large values of the variables tend to occur simultaneously, or
asymptotically independent, where the largest values rarely
occur together (Coles et al., 1999). As noted by Wadsworth
et al. (2017), examples of modelling joint extremes often
assume asymptotic dependence in order to accommodate
asymptotically justified extreme-value max-stable models,
which can potentially lead to overestimation of the joint oc-
currences of extremes. The assumption of asymptotic de-
pendence is common in the field of natural hazard research.
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Coles and Walshaw (1994) used a max-stable model for the
dependence in maximum wind speeds in different directions,
Blanchet et al. (2009) to model snow fall in the Swiss Alps,
Huser and Davison (2013) to model extreme rainfall, and
Bonazzi et al. (2012) to model windstorm hazard fields at
pairs of locations in Europe. Indeed, Bonazzi et al. (2012)
simply base this modelling assumption on being “in line with
many examples found in the literature”. However, it is impor-
tant to question this assumption of asymptotic dependence.

Two approaches are used for exploring, and correctly
representing, extremal asymptotic dependence. Either one
can estimate the dependence by fitting a suitably flexible
extreme-value model capable of representing dependence
and independence, or alternatively one can perform diagnos-
tic tests to identify the dependence class, i.e. whether or not
extremal dependence is present.

There is a growing literature in the area of flexible models
for extremal dependence, originating from the bivariate tail
model of Ledford and Tawn (1996). Wadsworth and Tawn
(2012) developed a spatial model, involving inverted max-
stable and max-stable models, able to incorporate both forms
of extremal dependence. This model, however, requires the
estimation of a large number of parameters and is only able to
transition between dependence classes at a boundary point of
the parameter space. Following this, Wadsworth et al. (2017)
explored more flexible transitions between extremal depen-
dence classes and developed a model able to represent a
wider variety of dependence structures, although limited to
the bivariate case. Huser et al. (2017) went on to develop a
flexible extension of the Wadsworth et al. (2017) model us-
ing Gaussian scale mixtures, in which the two asymptotic de-
pendence regimes are smoothly blended. As noted by Huser
and Wadsworth (2018), however, this model either makes the
transition between dependence class at a boundary point of
the parameter space (as in Wadsworth and Tawn, 2012) or
is inflexible in its representation of the asymptotic indepen-
dence structure. Most recently, Huser and Wadsworth (2018)
presented a flexible model able to provide a smooth transi-
tion between both extremal dependence classes using only a
small number of parameters.

While these models provide advantages in terms of flexi-
bility and are growing in their applicability to higher dimen-
sions, none are computationally feasible yet for very high di-
mensional data sets (Huser and Wadsworth, 2018). For exam-
ple, max-stable models for asymptotic dependence are lim-
ited in application to a few dozen variables due to the com-
putational demand of existing fitting methods (de Fondev-
ille and Davison, 2018). Hence, as noted by Huser and
Wadsworth (2018), with the exception of the specific high-
dimensional peaks-over-threshold model of de Fondeville
and Davison (2018), truly high-dimensional inference for
spatial extreme-value models has yet to be achieved.

Therefore, when aiming to model very high dimensional
data, the alternative, a priori identification approach must be
taken. Several studies have developed and/or employed diag-

nostic measures to identify the form of extremal dependence
between variables. Ledford and Tawn (1996, 1997) devel-
oped a bivariate tail model in which one of the parameters,
named the coefficient of tail dependence, is used within a di-
agnostic approach to help identify the bivariate extremal de-
pendence class. Coles et al. (1999) introduced two extremal
dependence coefficients, χ(p) and χ(p), characterising the
conditional probability of a pair of locations exceeding the
same high quantile threshold 1−p, for which the asymptotic
limit (as p→ 0) provides a diagnostic of bivariate extremal
dependence. Bortot et al. (2000) used pairwise scatter plots
and empirical estimates of χ(p) and χ(p) to diagnose the
form of extremal dependence present in a three-dimensional
data set of sea surge, wave height, and wave period in South
West England. They found evidence for asymptotic inde-
pendence and hence developed a multivariate Gaussian tail
model for their data, derived from the joint tail of a multivari-
ate Gaussian distribution with margins based on univariate
extreme-value distributions. Similarly, Eastoe et al. (2013)
applied the coefficient of tail dependence, the χ and χ mea-
sures, and the conditional extremes model of Heffernan and
Tawn (2004) to estimate the form of extremal dependence in
3 hourly sea surface elevation maxima at 15 locations, iden-
tifying, in general, asymptotic dependence. Similarly, more
recently, Kereszturi et al. (2015) employed the coefficient of
tail dependence and χ and χ measures within a comprehen-
sive theoretical framework to assess extremal dependence of
North Sea storm severity along four strips of 14 locations
within the North Sea.

In all of the above examples these diagnostic approaches
are applied to a relatively small number of locations. Here we
present an approach for systematically exploring the domi-
nant form of extremal dependence within a high-dimensional
natural hazard data set. Specifically, we demonstrate this ap-
proach using a large (6103 events) and very high dimensional
data set (14 872 locations) of climate-model-generated Euro-
pean windstorm footprints.

We introduce the bivariate diagnostic measures of Ledford
and Tawn (1996) and Coles (2001) in the context of our ap-
proach by initially using them to explore the bivariate ex-
tremal dependence in two pairs of locations within the Eu-
ropean domain (London–Amsterdam and London–Madrid)
and subsequently present an approach for systematically ap-
plying the same diagnostics throughout the high-dimensional
domain. We use the simple extremal dependence measures
of Ledford and Tawn (1996) and Coles (2001) as they are
quick to compute and can therefore be calculated for many
thousands of pairs of locations, which is important when ex-
ploring very high dimensional data.

In addition, we contribute a further diagnostic, relevant
for natural hazard modelling, by presenting an approach
for exploring the impact of extremal dependence misspeci-
fication on conceptual aggregate hazard loss estimation. We
use the Gaussian and Gumbel copula models, representing
asymptotic independence and dependence respectively, to
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Figure 1. Hazard footprints for windstorms (a) Kyrill and (b) the Great Storm of October 1987, with the location of the cities of London,
Amsterdam, and Madrid indicated.

model pairs of locations, and quantify the discrepancy be-
tween modelled and observed joint conceptual losses. This
approach is introduced for one central location, paired with
all other locations in the high-dimensional domain, and then
extended to systematically explore the full domain. The ap-
proaches presented in this paper can be used to explore
extremal dependence and develop appropriate multivariate
statistical models for other high-dimensional natural hazard
data sets.

Section 2 describes the windstorm hazard data set used
throughout this paper. Section 3 introduces and applies
the extremal dependence diagnostics of Ledford and Tawn
(1996) and Coles et al. (1999), initially to two pairs of loca-
tions and then to systematically explore the high-dimensional
data domain. Section 4 demonstrates how extremal de-
pendence influences conceptual aggregate losses. Section 5
presents ideas from turbulence theory for why wind gust
speeds are likely to be asymptotically independent, and, fi-
nally, Sect. 6 concludes.

2 Data

The windstorm footprint data set used in this study is the
same as that used in Dawkins et al. (2016) and an extended
version of the data set used in Roberts et al. (2014), consist-
ing of the 6103 high-resolution model-generated windstorm
footprints, for windstorm events that occurred within the Eu-
ropean domain during the 35 extended winters (October–
March) 1979/1980–2013/2014 (kindly provided by Jes-
sica J. Standen and Julia F. Lockwood at the Met Office).

The windstorm footprint is defined as the maximum 3 s
wind gust speed (in metres per second) at grid points in the
region 35 to 70◦ N in latitude and 15◦W to 25◦ E in longitude
and over a 72 h period centred on the time at which the max-
imum 925 hPa wind speed occurred over land. The 925 hPa

wind speed is taken from ERA-Interim reanalysis (Dee et al.,
2011). The 3 s wind gust speed has a robust relationship with
storm damage (Klawa and Ulbrich, 2003) and is commonly
used in catastrophe models for risk quantification (Roberts
et al., 2014). A 72 h windstorm duration is commonly used
in the insurance industry (Haylock, 2011) and is thought to
capture the most damaging phase of the windstorm (Roberts
et al., 2014).

These 6103 historical windstorm events have been identi-
fied using the objective tracking approach of Hodges (1995),
and the associated footprints are created by dynamically
downscaling ERA-Interim reanalysis to a horizontal resolu-
tion of 25 km using the Met Office Unified Model (MetUM).
As described by Roberts et al. (2014), the wind gust speeds
are calculated from wind speeds in the MetUM model,
based on a simple gust parameterisation,Ugust = U10 m+Cσ ,
where U10 m is the wind speed at 10 m altitude and σ is the
standard deviation of the horizontal wind, estimated from
the friction velocity using the similarity relation of Panofsky
et al. (1977). The roughness constant C is determined from
the universal turbulence spectra and is larger over rough ter-
rain.

The MetUM-generated footprints for Kyrill (17–19 Jan-
uary 2007) and the Great Storm of October 1987 (15–17 Oc-
tober 1987) are shown in Fig. 1. The variability in the in-
tensity and location of extreme, damaging winds in these
footprints demonstrates the potential importance of correctly
modelling the spatial dependence between locations for real-
istically representing joint losses.

Using model-generated windstorm footprints for repre-
senting historical storms has benefit in terms of spatial and
temporal coverage; however these estimated maximum wind
gust speeds will differ from those observed at nearby weather
stations. For example, as noted by Roberts et al. (2014), sev-
eral alternative methods for parameterising wind gust speeds
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2936 L. C. Dawkins and D. B. Stephenson: Extremal dependence in natural hazard footprints

5 10 15 20 25 30 35

5
10

15
20

25
30

35

(a)

Observed wind−gust speed 
 London City

M
et

 U
M

 m
od

el
le

d 
w

in
d−

gu
st

 s
pe

ed
 

 L
on

do
n 

gr
id

 c
el

l

20 25 30 35

20
25

30
35

(b)

Observed wind−gust speed 
 London City

M
et

 U
M

 m
od

el
le

d 
w

in
d−

gu
st

 s
pe

ed
 

 L
on

do
n 

gr
id

 c
el

l

Figure 2. (a) The relationship between MetUM windstorm footprint wind gust speeds in the London grid cell and the corresponding observed
wind gust speeds at the London City Airport weather station within the Global Summary of the Day data set, and (b) the same relationship for
the 50 most extreme windstorm events at the London City Airport weather station. In both plots the line y = x has been added for reference
(blue).

are available (see Sheridan, 2011, for a review), which can
lead to large differences in estimated gusts (10–20 m s−1).
The validity of simplistic gust parameterisation stated above
was evaluated by Roberts et al. (2014), who found an over-
estimation in the effect of surface roughness at stations
greater than ∼ 500 m altitude, leading to an underestimation
in MetUM-modelled extreme winds in these locations. In ad-
dition, Roberts et al. (2014) identified a slight underestima-
tion in extreme wind gust speeds greater than ∼ 25 m s−1.
This was found to be due to a number of mechanisms, in-
cluding the underestimation of convective effects and strong
pressure gradients, leading to the underdevelopment of fast-
moving storms (Roberts et al., 2014).

To explore the possible discrepancy in the MetUM wind
gust speed data relevant for this study, we extract daily max-
imum observed wind gust speed recorded at the London City
Airport weather station (the station located within the Lon-
don grid cell used throughout this study) from the Global
Summary of the Day (GSOD) data repository and, for each
of the 6103 windstorm events in our data set, find the maxi-
mum hourly observed gust in the 3-day period centred on the
same date as in the MetUM-generated footprints. A compar-
ison of the observed and MetUM-modelled footprint wind
gusts in London is presented in Fig. 2a, indicating a general
overestimation in modelled wind gust speeds below 25 m−1

and a slight underestimation for wind gust speeds above
25 m−1, reflecting the findings of Roberts et al. (2014). Fig-
ure 2b presents this same relationship for the 50 most ex-
treme events in the observed data set, highlighting this un-
derestimation of modelled extreme wind gust speeds. Indeed,
the root-mean-squared difference between the observed and
modelled footprint wind gust speeds for these 50 extreme

events is 4.57 m s−1, which provides an estimate of the un-
certainty in representing observed extreme windstorm gust
speeds.

This discrepancy in model-generated wind gust speeds
could lead to differences in results, namely the identifica-
tion of the extremal dependence class between locations. To
explore this possibility, we repeat the empirical analysis in
Sect. 3 (Fig. 4) for GSOD data at London City Airport and
Amsterdam Airport Schiphol, shown in Fig. S1 in the Sup-
plement. We find that for this pair of locations the weather
station and MetUM data have very similar relationships in
the extremes, with the weather station data being slightly
less dependent, therefore not changing the conclusions of this
study.

3 Extremal dependency

As a motivating example, the bivariate dependence in wind-
storm footprint wind gust speeds for London paired with
Amsterdam and Madrid is presented in Fig. 3a and c re-
spectively. These three locations are shown in Fig. 1, and
these two pairings are chosen because of their contrasting
separation distances and hence degrees of dependence (as
shown in Fig. S2). These scatter plots show a greater degree
of dependence between London and Amsterdam compared
to London and Madrid. Indeed, multiple windstorms have
losses occurring in London and Amsterdam at the same time,
where loss is associated with wind gust speeds exceeding the
0.99th quantile at a given location, characterised by the top
right-hand corner of each plot in Fig. 3. However, does this
level of dependence between London and Amsterdam neces-
sarily suggest asymptotic dependence?

Nat. Hazards Earth Syst. Sci., 18, 2933–2949, 2018 www.nat-hazards-earth-syst-sci.net/18/2933/2018/
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Figure 3. Scatter plot comparing historical windstorm footprint wind gust speeds (m s−1) in London with those in (a) Amsterdam and
(c) Madrid, and empirical copula plots for London paired with (b) Amsterdam and (d) Madrid. Dashed lines show the 0.99th quantile of
wind gust speed at each location, and labels a–d represent the number of points in each section of each plot, related to being above or below
these high quantile thresholds.

The wind gust speeds at any two locations can be repre-
sented by the n×2 pair of random variables (X1, X2), where
n= 6103 is the number of observations at each location.
The joint distribution Pr(X1 ≤ x1, X2 ≤ x2) is determined
by the marginal distributions of each variable (i.e. FX1(x1)=

Pr(X1 ≤ x1) and FX2(x2)= Pr(X2 ≤ x2)) and their joint de-
pendence. It can be shown that Pr(X1 ≤ x1, X2 ≤ x2)=

C(FX1(x1), FX2(x2)), where C(., .) is a bivariate function
known as a copula (Nelson, 2006). In other words, the
marginal distributions can be factored out by using the re-
spective cumulative distribution functions to transform the
variables into variables (FX1(X1), FX2(X2)) that have uni-
form distributions over the interval [0, 1]. A simple way
to do this is to use the empirical cumulative distribution

function (F̂Xj (x)=
1
n

n∑
i=1

1Xji≤x). This empirical copula ap-

proach simply amounts to considering the respective ranks of
the X1 and X2 values divided by the sample size as shown in
Fig. 3b and d.

3.1 Diagnostic measures

The degree of conditional dependence between X1 andX2 at
a specified high quantile threshold, 1−p, can be explored,
based on the empirical copula, using the extremal depen-
dence measures, χ(p) and χ(p), introduced by Coles et al.
(1999). The asymptotic limit of these measures, as p→ 0,
can then be used to classify the class of bivariate extremal
dependence between X1 and X2 as either asymptotically de-
pendent or asymptotically independent. These measures are
defined as

χ(p)= Pr
(
X2 > x2(1−p)|X1 > x1(1−p)

)
=

Pr
(
X2 > x2(1−p),X1 > x1(1−p)

)
p

, (1)

where x1(1−p) and x2(1−p) are the (1−p)th quantiles of X1
and X2 respectively, 0≤ χ(p) < 1 for all 0≤ (1−p)≤ 1,
and
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Figure 4. Extremal dependence measure χ(p), for p ∈ [0, 0.4], for windstorm footprint wind gust speeds in London paired with (a) Am-
sterdam and (c) Madrid, and dependence measure χ(p), for p ∈ [0, 0.4], for windstorm footprint wind gust speeds in London paired with
(b) Amsterdam and (d) Madrid, calculated empirically and based on the Gaussian, Gumbel, and power law bivariate dependence functions,
as defined in Table A1.

χ(p)=
2log

(
Pr
(
X1 > x1(1−p)

))
log

(
Pr
(
X1 > x1(1−p),X2 > x2(1−p)

)) − 1

=
2log(p)

log(χ(p)p)
− 1=

log(p)− log(χ(p))
log(p)+ log(χ(p))

, (2)

where −1≤ χ(p) < 1 for all 0≤ (1−p)≤ 1. Hence, if
limp→0χ(p)= χ(0) > 0, limp→0χ(p)= χ(0)= 1, and the
pair (X, Y ) are said to be asymptotically dependent, with
strength χ(0). If instead χ(0)= 0, and hence χ(0) < 1, the
pair are said to be asymptotically independent, and the non-
vanishing measure χ(0) represents the strength of this non-
asymptotic dependence.

As an initial exploration of bivariate extremal dependence
class between variables, these conditional probability mea-
sures can be calculated empirically over a range of quan-
tile thresholds, as shown in Fig. 4 for windstorm footprint
wind gust speeds in London paired with Amsterdam and
Madrid. These empirical estimates are calculated as func-

tions of the counts (a–d) in Fig. 3, as defined in Table A1.
Based on these empirical estimates, for both pairs of loca-
tions, χ(p)→ 0 and χ(p) < 1 as p→ 0, suggesting asymp-
totic independence.

However, here and as in all data sets of environmental
phenomena, the rarity of very extreme events makes it im-
possible to empirically quantify the asymptotic limits χ(0)
and χ(0), necessary for extremal dependence class identifi-
cation. To overcome this, Ledford and Tawn (1996) devel-
oped a bivariate tail model, able to characterise both classes
of extremal dependence, which when fit to a bivariate ran-
dom variable can be used to predict the asymptotic limit of
the conditional probability measures and hence give an esti-
mate of the class of extremal dependence, based on the sub-
asymptotic evidence in the data and the assumption that the
model can be extrapolated to asymptotic levels.

As in Ledford and Tawn (1996), let Z1 and Z2 denote
X1 and X2 transformed to Fréchet margins respectively; that
is, Pr(Z1 ≤ z)= Pr(Z2 ≤ z)= exp(−1/z). Then the joint
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survivor function for Z1 and Z2 above some large quantile
threshold z1−p takes the form

Pr
(
Z1 > z1−p,Z2 > z1−p

)
∼ L

(
z1−p

)
p1/η, (3)

where p = Pr(Z1 > z1−p)= Pr(Z2 > z1−p), 1
2 ≤ η ≤ 1 is a

constant and L(z1−p) is a slowly varying function as p→ 0.
Based on this power law model, as shown by Coles et al.
(1999),

χ(p)∼ L
(
z1−p

)
p1/η−1,

χ(p)=
2log(p)

log
(
L
(
z1−p

))
+

1
η

log(p)
− 1,

→ 2η− 1 as p→ 0.

Hence, the parameter η, named the coefficient of tail depen-
dence by Ledford and Tawn (1996), characterises the nature
of the extremal dependence. When η = 1, χ(0)= L(z1−p)
and χ(0)= 1; hence the pair (X, Y ) are asymptotically de-
pendent on degree L(z1−p). Alternatively, if η < 1, χ(0)= 0
and χ(0)= 2η− 1, and the pair are asymptotically indepen-
dent with non-asymptotic dependence of degree 2η− 1.

For a given pair, e.g. wind gust speeds in London and
Amsterdam, the Ledford and Tawn (1996) model is fit to
the joint survivor function along the diagonal, equivalent to
the univariate distribution of T =min{Z1, Z2}, known as the
structure variable, which has length n. Using the stable two-
parameter Poisson process representation of T presented by
Ferro (2007), who employed the Ledford and Tawn (1996)
model for the verification of extreme weather forecasts, the
exceedance of T above a high threshold w has the form

Pr(T > t)=
1
n

exp
[
−

(
t −α

η

)]
for all t ≥ w, (4)

with location parameter α and scale parameter 0< η ≤ 1,
equivalent to η in Eq. (3), estimated by maximum likelihood
(Ferro, 2007).

Fitting this model to the pairs London–Amsterdam and
London–Madrid requires the specification of the high thresh-
old,w, above which the Poission process model is fit. As dis-
cussed by Ferro (2007), this threshold selection is a trade-off
between being low enough that enough data are retained to
ensure model precision, but high enough that the extreme-
value theory that motivates the model provides accurate es-
timates. In a similar way to choosing the appropriate thresh-
old when fitting a generalised Pareto distribution (see Coles,
2001), empirical diagnostic plots can be used to inform this
selection. These include parameter stability plots, in which
the estimated model parameters and mean excess should be
constant above the chosen high threshold, and quality of fit
plots, in which the transformed excesses, (Z−w)/η, should
be exponentially distributed if an appropriately high thresh-
old has been chosen (see Ferro, 2007, for more details).

Here, the 85 % quantile of the structural variable T is se-
lected, based on these diagnostic plots (example for London–
Amsterdam is presented in Fig. S3). This choice is similar
to the 0.88 % and 0.9 % thresholds selected in the applica-
tions of Ferro (2007) and Ledford and Tawn (1996) respec-
tively. Based on this choice of w, η = 0.78< 1 for London–
Amsterdam and η = 0.58< 1 for London–Madrid, indicat-
ing asymptotic independence for both pairs of locations. This
is further demonstrated in Fig. 4, which shows how the Led-
ford and Tawn (1996) model, referred to as the power law
model, calculated as in Table A1, represents the conditional
dependence measures χ(p) and χ(p) as p→ 0, for London–
Amsterdam and London–Madrid.

In addition, as a comparison (included in Fig. 4), alterna-
tive parametric bivariate dependence models known as the
Gaussian and Gumbel copulas are used to model the pair
(X1, X2) to give further indication of the extremal depen-
dence class present.

The Gumbel bivariate copula model characterises asymp-
totic dependence with the degree of dependence quanti-
fied by parameter r . For each pair of locations, this pa-
rameter is estimated via maximum likelihood using the
copula R package. The Gaussian bivariate model charac-
terises asymptotic independence with dependence parame-
ter ρ, here represented by the Spearman’s rank correlation
coefficient. Both models are fit to the full bivariate data pair,
as presented in Fig. 3. For the Gumbel model the data are
transformed to uniform margins using the empirical distri-
bution function. The same transformation is made for the
Gaussian model, followed by a transformation to Gaussian
margins using the standard normal distribution function. The
parametric forms of χ(p) and χ(p) for these two opposing
models are shown in Table A1. In Fig. 4, the Gumbel model
is calculated as in Table A1; however, since the closed-form
definition for the Gaussian model in Table A1 only holds for
the limit p→ 0, for this model χ(p) and χ(p) are estimated
as the median of 1000 parametric bootstrap simulations from
the associated bivariate normal distribution.

For both pairs of locations in Fig. 4, all three paramet-
ric bivariate dependence models indicate asymptotic inde-
pendence. The power law model estimates χ(0)= 0 and
χ(0) < 1, the Gaussian model matches closely with the em-
pirical estimates and the power law model, and the Gumbel
model overestimates the conditional probability of joint ex-
tremes.

As a final diagnostic, analogous to that used by Ledford
and Tawn (1996, 1997), the coefficient of tail dependence
is estimated for a range of high thresholds, w, to explore
the sensitivity of the parameter estimate to this choice. As
in Ledford and Tawn (1996, 1997), here this diagnostic ob-
serves the proportion of time η = 1 is within the profile like-
lihood confidence interval for η, when estimated using w in
the interval of the 0.5–1 quantile of T . The pair (X1, X2)
are said to be asymptotically dependent if η = 1 is contained
within these confidence intervals for a majority of the range
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of w and asymptotically independent otherwise. This explo-
ration is presented for London paired with Amsterdam and
Madrid in Fig. 5, providing further evidence of asymptotic
independence for both pairs, based on this criterion.

3.2 Extension to high dimensions

We now demonstrate a way of extending the quick-to-
calculate coefficient of tail dependence diagnostic approach
to systematically explore the dominant extremal dependence
class across locations in a high-dimensional hazard field.

We first take a stratified (based on the distribution of lo-
cations over longitude and latitude) sample of 100 locations
within the European domain. One such sample is shown in
Fig. 6a. Since the extremal dependence is likely to decrease
with increasing separation distance (Wadsworth and Tawn,
2012) and we hope to understand if asymptotic independence
is dominant and hence present at small separation distances,
for each of these 100 locations, we estimate the coefficient
of tail dependence, η (and the associated 95 % profile like-
lihood confidence interval), when paired with the 100 near-
est locations within the full domain. Figure 6b demonstrates
how the 100 nearest locations are geographically distributed
for one such sampled location in our windstorm footprint
data set. For each pairing, the coefficient of tail dependence
is calculated using w as the 0.9 quantile threshold of the
structure variable, found to ensure stable estimates of η us-
ing diagnostic plots as in Fig. 6c. The estimated η param-
eters and confidence intervals for these 100× 100 pairs of
locations are plotted against separation distance to explore
how, throughout the domain, η varies at small separation
distances and changes with increasing separation distance,
shown in Fig. 6d. The parameter estimate related to the pair
of locations in pink and blue in Fig. 6b is shown in pink.
This method is repeated many times with 10 such repetitions
shown in Fig. S4, showing very similar results.

Figure 6d shows that for small separation distances (<
180 km) a proportion of pairs of locations have coefficient
of tail dependence parameters, η, close to 1, with η = 1
within the confidence interval indicating asymptotic depen-
dence. Within the range (0–50 km) 69 % of pairs of loca-
tions exhibit this behaviour; however this proportion reduces
rapidly as separation distance increases, to 30 % for loca-
tions separated by (50–100 km), 13 % for locations sepa-
rated by (100–150 km), and 3 % for locations separated by
(150–200 km). Hence, while there is evidence of asymptotic
dependence for some locations in close proximity, even at
very small separation distances (50 km) a larger proportion
of locations exhibit asymptotic independence. Indeed, here
and in Fig. S4, beyond a separation distance of approxi-
mately 200 km the coefficient of tail dependence parameter
estimates drop well below 1, indicating asymptotic indepen-
dence. Therefore, since separation distances within the do-
main extend to up to 3500 km, we conclude that asymptotic

independence is the dominant extremal dependence structure
across the spatial domain.

It is important to consider the validity of representing even
this small proportion of asymptotically dependent pairs of
locations incorrectly as asymptotically independent. To ex-
plore this, Bortot et al. (2000) carried out a simulation study
in which they fit the Gaussian, Ledford and Tawn (1996), and
Gumbel models to bivariate data simulated from three parent
populations with different classes of extremal dependence.
They concluded that, for asymptotically independent parent
populations the Gaussian copula is able to provide accurate
inferences for tail probability estimates, outperforming the
Gumbel copula model. Indeed, even for asymptotically de-
pendent parent populations, the estimation error of the Gaus-
sian copula model was deemed to be acceptably small (Bor-
tot et al., 2000). This suggests that, when data dimensional-
ity prohibits the use of flexible extremal dependence mod-
els (e.g. Huser and Wadsworth, 2018) and asymptotic in-
dependence is found to be the dominant extremal depen-
dence structure across the spatial domain, using an asymptot-
ically independent model, such as the Gaussian tail model, is
preferable over using a model for asymptotic dependence.

4 A conceptual loss diagnostic approach

We now contribute a natural hazard loss perspective for ex-
ploring the dominant extremal dependence class, providing
further justification of the selected dependence model. We
define a conceptual hazard loss function and explore the im-
pact of misspecifying the extremal dependence class on ag-
gregate hazard loss estimation, using the Gaussian and Gum-
bel copula models previously introduced. We present this ap-
proach initially based on one central location (London) and
then demonstrate how this can be extended to systematically
explore a high-dimensional hazard field.

Similar to other natural hazard perils, in the absence of
confidential insurance industry exposure and vulnerability
information, it has become common in the literature to define
conceptual windstorm event loss as a function of the footprint
wind gust speeds over the spatial domain (see Dawkins et al.,
2016, for a review). While these conceptual windstorm loss
functions vary in the detail of their composition, it is gener-
ally possible to express these loss functions as special cases
of the generic loss function:

L(X1, . . .,Xm)=

m∑
j=1

ejV
(
Xj
)

1
(
Xj > u

(
Xj
))
, (5)

where j = 1, . . ., m are the m locations in the spatial do-
main; V is a vulnerability function representing the damage
caused by the hazard; ej represents exposure at location j
(e.g. population density); u(Xj ) quantifies a high thresh-
old of the wind gust speed above which losses occur; and
1(x) is an indicator function such that 1(x)= 1 if x is true
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Figure 5. Diagnostic plots of maximum-likelihood estimates (solid) and 95 % profile likelihood confidence intervals (dashed) of η, in Eq. (4),
for threshold w in the range of the 0.5–1 quantile of T , for London paired with (a) Amsterdam and (b) Madrid.

Figure 6. (a) A stratified (based on the distribution of locations over longitude and latitude) sample of locations within the European domain,
with stratified grid shown in grey; (b) a demonstration of the 100 nearest locations (turquoise) to one of these sampled locations (blue),
with one such point selected at random (pink); (c) the coefficient of tail dependence diagnostic plot (as in Fig. 5) for wind gusts at the blue
location paired with the pink location; (d) the coefficient of tail dependence (estimated usingw as the 90 % quantile threshold of the structure
variable) and 95 % profile likelihood confidence intervals, for each of the 100 sampled locations paired with their 100 nearest locations in the
full domain, plotted against separation distance in kilometres, with the estimate based on the pair of locations in (b) and (c) added in pink.
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and 1(x)= 0 otherwise. For example, in the widely used
and rigorously validated conceptual loss function of Klawa
and Ulbrich (2003), V (X)= (X− x0.98)

3, u(X)= x0.98 (the
0.98th quantile of X), and ej is the population density at
location j , whereas Cusack (2013) used a loss function in
which V (X)= (X− x0.99)

3, u(X)= x0.99 (the 0.99th quan-
tile of X), and ej = 1 for all j . See Table 2.1 in Dawkins
(2016) for a summary of previously published conceptual
loss functions in terms of the components of Eq. (5).

More recently, Roberts et al. (2014) presented an explo-
ration of the success of a number of these conceptual wind-
storm loss functions in representing insured loss throughout
the European domain, based on the same data set as in this
study, with the aim of developing a method for selecting ex-
treme storms for the eXtreme WindStorms (XWS) catalogue.
While there is much published work on the existence of a
relationship between loss severity and the magnitude of the
wind, in particular the cubed excess wind as used in the loss
functions of Klawa and Ulbrich (2003) and Cusack (2013),
Roberts et al. (2014) found that a conceptual loss function
representing just the area in which the windstorm footprint
exceeds a high loss threshold (i.e. V (Xj )= 1 and ej = 1 for
all j in Eq. 5) to be more successful at characterising a subset
of extreme windstorms known to have caused large insured
losses. It should be noted, however, that this exploration did
not include population density within the Klawa and Ulbrich
(2003) loss function and was therefore not a direct compar-
ison of this measure. In addition, an alternative subjectively
selected subset of extreme storms may have given an alterna-
tive result. The success of this simplistic loss function could
also be due to its relative insensitivity to errors in compo-
nents of the loss estimate not well represented by the climate-
model-generated footprints and may not perform as well if
applied to wind gust observations.

In this study we propose a similar threshold exceedance
conceptual loss function to that used in Roberts et al. (2014)
and Dawkins et al. (2016). Roberts et al. (2014) used an ex-
ceedance threshold of 25 m s−1, while Dawkins et al. (2016)
used a threshold of 20 m s−1, as is commonly used by Ger-
man insurance companies (Klawa and Ulbrich, 2003). Here,
similar to Klawa and Ulbrich (2003) and Cusack (2013), we
propose a locally varying wind gust speed quantile thresh-
old, accounting for local adaptation to varying wind intensity.
We find that the 0.99th quantile of windstorm footprint wind
gust speed is in excess of the commonly used 20 m s−1 loss
threshold for most land locations in Europe, with a higher
loss threshold used in regions where stronger winds occur
(as shown in Fig. S5).

Since, for a given storm event at any pair of locations,
e1V (X1) and e2V (X2) in Eq. (5) are constants, this equation
can be simplified to

L(X1,X2)∝ CX1 1(X1 > u(X1))+CX2 1(X2 > u(X2)), (6)

where CX1 = e1V (X1) and CX2 = e2V (X2). In our case
CX1 = CX2 = 1, and u(X1)= x1(0.99) and u(X2)= x2(0.99),

the 0.99th quantiles of X1 and X2 respectively. Therefore,
while in this study we use just one conceptual loss function
in which the magnitude of the loss is always equal to 1, it
is simple to adapt the following analysis to accommodate al-
ternative loss functions in which the vulnerability function is
not constant across locations.

The probability mass function of the bivariate conceptual
loss function can easily be obtained in terms of the extremal
dependence coefficient, χ(p), by considering the joint prob-
ability of (X1, X2) in each of the quadrants shown in Fig. 3:

Pr
(
L(X1,X2)= CX1 +CX2

)
= χ(p)p,

Pr
(
L(X1,X2)= CX1

)
= Pr

(
L(X1,X2)= CX2

)
= 2(1−χ(p))p,

Pr(L(X1,X2)= 0)= 1+p(χ(p)− 2).

The distribution of loss is completely determined by p

(which is chosen here to be 0.01) and χ(p), and so
χ(0.01) can be used to diagnose and explore the consequence
of extremal dependence assumptions on loss estimation. It
should be noted that the expected loss, E(L(X1, X2)), does
not depend on χ(p). This is because the expectation of a
sum is the sum of the expectations; hence expected total loss
over two or more locations is simply the sum of the expected
losses at each location and so is unaffected by the amount of
dependency between sites.

To compare how well the Gaussian and Gumbel mod-
els represent our empirical bivariate conceptual loss func-
tion, we can therefore compare estimates for χ(p) and χ(p)
for our specified loss threshold p = 0.01, calculated based
on each model, with those calculated empirically (as in Ta-
ble A1). We present the resulting difference in these esti-
mates for London paired with all other land locations in the
European domain in Fig. 7.

Figure 7 demonstrates how well the Gaussian model is
able to represent empirical χ(0.01) throughout the domain.
Conversely the Gumbel model can be seen to greatly overes-
timate χ(0.01) for all pairs of locations. The Gaussian model
also well reproduces χ(0.01) for locations not too distant
from London, with this distance being greater in the west–
east direction, reflecting the common path of storms over
Europe (Hoskins and Hodges, 2002). The Gumbel model
greatly overestimates χ(0.01) for all locations except those
in very close proximity to London.

As well as being relevant for representing the probabil-
ity mass function of the bivariate conceptual loss function,
χ(p) can also be shown to characterise the conditional ex-
pectation of joint loss:

E(L(X1,X2))=
(
CX1 +CX2

)
χ(p)p+CX1(1−χ(p))p

+CX2(1−χ(p))p =
(
CX1 +CX2

)
p,

⇒E
(
L(X1,X2) |L(X1)= CX1

)
=
(
CX1 +CX2

)
χ(p)p+CX1(1−χ(p))p

= p
(
CX2χ(p)+CX1

)
. (7)
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Figure 7. The difference between empirical and modelled χ(0.01) for (a) the Gaussian model and (b) the Gumbel model, and the difference
between empirical and modelled χ (0.01) for (c) the Gaussian model and (d) the Gumbel model, for London paired with all other locations
over land.

The conditional first moment of the loss distribution in
Eq. (7) can therefore be used to compare how well the dif-
ferent dependency models represent the size of the joint
losses, rather than just their conditional probability of oc-
currence, since the expression includes CX1 and CX2 . Here,
CX1 = CX2 = 1; hence the conditional expectation of joint
loss is equivalent to the conditional expectation of loss jointly
occurring at both locations given a loss has occurred at one
location.

Figure 8 presents a comparison of the distribution of the
conditional expected joint loss for London paired with each
land location in our European domain, given a loss has oc-
curred in London, when calculated empirically and using the
two opposing dependence models.

Figure 8 further illustrates the importance of correctly
specifying extremal dependence class when representing
loss. When a conceptual loss occurs in London, the Gumbel
dependence model overestimates the expected conditional
joint loss with other European land locations, while, con-
versely, the Gaussian model provides a very good estimate
of the empirical expected conditional joint loss distribution.

Extension to high dimensions

We extend the analysis in Fig. 7 to systematically explore the
high-dimensional domain by fitting both the Gaussian and
Gumbel models to a stratified sample of 100 locations paired
with each of the other 99 locations and, for each pair, plot the
difference between empirical and modelled χ(0.01) against
their separation distance, shown in Fig. 9.

This domain-wide comparison indicates that, while the
Gaussian model slightly over- and underestimates empiri-
cal χ(0.01) at small separation distances, this model con-
sistently outperforms the Gumbel model, which overesti-
mates χ(0.01) for all separation distances, even very small
ones. This indicates, as in Fig. 6, that a majority of nearby lo-
cations do not exhibit asymptotic dependence as they are not
well represented by the Gumbel model, further supporting
the diagnosed dominance of extremal independence through-
out the European domain.

Finally, we extend the analysis in Fig. 8 to systematically
explore the high-dimensional domain by replacing London
as the location of origin, with each location within a strati-
fied sample of 100 locations. For each of these 100 locations,
Fig. 10 presents the difference between modelled and em-
pirical relative frequencies of binned ranges of conditional
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Figure 8. For all land locations in the European domain, the condi-
tional expected joint loss with London, given a loss has occurred in
London (Eq. 7), calculated empirically and using the Gaussian and
Gumbel copula models.

expected joint loss, separately for the Gaussian and Gumbel
models, i.e. representing the difference between the mod-
elled and empirical density plots in Fig. 8, but for 100 lo-
cations rather than one. Figure 10b identifies that the dis-
crepancy between the empirical and Gumbel estimates of
conditional expected joint loss shown in Fig. 8 is consis-
tent throughout the domain, with lower values being under-
represented and higher values over-represented by the Gum-
bel model. In a similar way, Fig. 10a shows that the Gaussian
model performs equally well for these 100 locations, with
much smaller discrepancy compared to the Gumbel model,
as found in Fig. 8.

In this windstorm footprint application, we found that,
while the Gumbel model is able to represent some pairs of
locations at very small separation distances, where asymp-
totic dependence is suggested by the coefficient of tail de-
pendence, this model greatly misrepresents the joint-tail be-
haviour and hence the conditional probability of joint loss for
a majority of pairs and separation distances. Conversely, the
Gaussian model is able to represent the joint-tail behaviour
relevant for loss estimation for locations within close prox-
imity to each other, as well as further apart.

As previously mentioned, alternative windstorm loss
thresholds have been implemented in other studies, for ex-
ample the 0.98th quantile in Klawa and Ulbrich (2003), and
the fixed thresholds of 20ms−1 in Bonazzi et al. (2012) and
Dawkins et al. (2016) and 25 m s−1 in Lamb and Frydendahl
(1991) and Roberts et al. (2014). An exploration of the effect
of the choice of loss threshold and, indeed loss function, on
how the opposing dependence models represent joint losses
would be an extremely interesting area of further investiga-
tion but is beyond the scope of this study. Dawkins (2016)
goes some way in addressing this by presenting a compari-

son for the 0.98th quantile and 25 m s−1 fixed loss thresholds
in the same form as Fig. 7. Dawkins (2016) found that the
overall suitability of the opposing models remained the same
for both thresholds, although the discrepancy of the Gum-
bel model was slightly smaller for the lower, 0.98th quantile
loss threshold. This was thought to be because modelled ex-
ceedances further from the upper limit of the joint distribu-
tion were less sensitive to a misspecification of the extremal
dependence characteristic in the Gumbel model.

5 Why are wind gust speeds asymptotically
independent?

It is of interest to ask whether there might be fundamental
fluid dynamical reasons for why extreme wind gust speeds
should be asymptotically independent at different spatial lo-
cations. One approach to answering this question is to con-
sider extremal dependence in turbulent flows. The atmo-
spheric flow in storm track regions is highly chaotic and ir-
regular and is therefore turbulent rather than smoothly vary-
ing laminar flow (see Held, 1999, and references therein).
Furthermore, over short enough spatial distances, the hori-
zontal flow in a storm may be considered to be stationary in
space and directionally invariant, in other words, homoge-
neous isotropic turbulence.

It is useful to first consider the more tractable problem of
dependency in simultaneous wind speeds rather than maxi-
mum wind speeds over a given time period. The dependency
between maximum gust speeds over 3 days will not gener-
ally be less than the dependency between simultaneous wind
gust speeds because maximum wind gusts for a storm do not
occur at the same time at different locations. However, for lo-
cations that are close to one another, maximum gust speeds
for fast-moving extreme storms will occur within a short time
window (e.g. within around 3 h or less for extreme storms
over the UK), and so simultaneous results become more rel-
evant.

As originally proposed by Von Kármán (1937), turbu-
lent wind fields can be efficiently and realistically simulated
using stochastic processes (Mann, 1998). This approach is
widely used for many applications such as testing loads on
new aircraft designs. The basic assumption in homogeneous
turbulence is that the Cartesian velocity components are in-
dependent Gaussian processes, each with a prescribed spatial
covariance function. In the special case of isotropic turbu-
lence, the spatial covariance functions are identical for each
velocity component. Hence, for two-dimensional windstorm
gusts, the wind gust speed at spatial location j is given by
Xj =

√
u2
j + v

2
j , where uj and vj are independent Gaussian

processes having identical covariance functions.
The distribution of each velocity component is expected,

by the central limit theorem, to be close to normally dis-
tributed since the net displacement of a particle in turbulence
is the result of many irregular smaller displacements. The
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Figure 9. The difference between empirical and modelled χ (0.01) for a stratified sample of 100 locations paired with each of the other 99
locations, plotted against separation distance for (a) the Gaussian model and (b) the Gumbel model.

Figure 10. For a stratified sample of 100 locations within the windstorm footprint domain, the difference between modelled and empirical
relative frequencies of binned ranges of expected conditional joint loss for (a) the Gaussian model and (b) the Gumbel model.

distribution of each component has zero skewness due to the
symmetry of the fluid equations (negative deviations are as
likely as positive ones) but can have slightly more kurtosis
(i.e. fatter tails) than the normal distribution due to intermit-
tency in the flow. Measurements of velocity components in
the atmospheric surface layer reveal that the distributions are
near to Gaussian (e.g. Chu et al., 1996).

So what can be deduced about the extremal dependence
class of wind speeds from such turbulence models? Firstly, as
shown in example 5.32 of McNeil et al. (2005), since the in-
dividual velocity components are bivariate normal, the indi-
vidual velocity components are asymptotically independent
at different locations; e.g. u1 and u2 are asymptotically inde-
pendent when locations j = 1 and j = 2 differ, and likewise
for v1 and v2. Furthermore, it can be shown that the square of
each velocity component is also asymptotically independent
(see Appendix).

The squared wind speeds at pairs of locations are sums
of two such independent components, (X2

1 , X2
2)= (u

2
1+ v

2
1 ,

u2
2+ v

2
2), and so it would be counter-intuitive if somehow

these sums were not also asymptotically independent. Un-
fortunately proof of asymptotic independence between (X2

1 ,
X2

2) (and hence (X1, X2)) remains elusive. Nevertheless, the
conjecture can be explored using numerical simulation.

By simulating velocities from bivariate normal distribu-
tions, we have found no evidence of extremal dependence in
wind speeds even when each velocity component is highly
correlated. Figure 11 shows an example obtained by simulat-
ing a million wind speeds at two locations where the u and
v velocity components are independent standard normal vari-
ates each with correlation of 0.9 between locations (i.e. the
correlation between u1 and u2 is 0.9). The squared wind
speeds at each location are chi-squared distributed with 2◦

of freedom but are not independent: there is positive associ-
ation clearly visible in Fig. 11a. To assess extremal depen-
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Figure 11. Simulation of wind speeds at two sites having highly correlated velocities (see main text for details): (a) scatter plot of squared
wind speeds at the two sites (1000 points randomly sampled out of the million); (b) joint versus marginal exceedance probabilities (on
logarithmic axes). The dot shows an example obtained by counting the fraction of points in the upper right and the right-hand quadrants of (a).
The curve has a steeper slope than the dashed line (equal probabilities denoting complete dependence), suggesting asymptotic independence.

dence, Fig. 11b shows how the joint exceedance probability,
Pr(X2

1 > t
2, X2

2 > t
2), and the marginal exceedance prob-

ability, Pr(X2
1 > t

2)= Pr(X2
2 > t

2), behave as threshold t2

is varied. As the threshold is increased, the joint probability
drops to zero faster than the marginal exceedance probabil-
ity (the curve in Fig. 11b is steeper than the dashed line),
which suggests that the ratio, the conditional probability of
exceedance, equivalent to χ in Eq. (1), will tend to zero in
the asymptotic limit.

6 Conclusion

This study has demonstrated how to use the extremal depen-
dence diagnostics of Coles et al. (1999) and Ledford and
Tawn (1996) along with the Gaussian and Gumbel copula
models to explore and identify the dominant extremal depen-
dence class in a very high dimensional natural hazard field.
Furthermore, we have explicitly shown how extremal depen-
dency determines conceptual aggregate loss functions and
have revealed how sensitive the aggregate loss distribution
is to misspecification of extremal dependency.

These methods present strong evidence for asymptotic in-
dependence in windstorm footprint hazard fields, contrary to
what has been assumed in previous studies such as Bonazzi
et al. (2012). The misspecification of this extremal depen-
dency (e.g. by using a Gumbel copula) has been shown
to lead to severe overestimation of the aggregate losses.
Stochastic turbulence theory suggests that asymptotic inde-
pendence of wind speeds is a generic property of turbulent
flows as seen in windstorm footprints. These results provide
justification that simulated windstorm hazard fields can be
represented by a Gaussian geostatistical model (Dawkins,
2016; Youngman and Stephenson, 2016).

Data availability. The windstorm footprint data set used in this pa-
per is not available, but 50 of the 6103 storms can be accessed in the
XWS catalogue at http://www.europeanwindstorms.org/ (European
Wind Storms, 2018).
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Appendix A

Table A1. Empirical and parametric forms for extremal dependence measures χ(p) and χ(p).

χ(p) χ(p)

Empirical a
a+c

2log(a+c)/n
log(a/n) − 1

Power law 1
n exp

(
α
η

)
p

1
η
−1 2log(p)

log
(

1
n

exp
(
α
η

))
+

1
η

log(p)
− 1

Gumbel ∼ 2− (2log(1−p)r )
1
r

log(1−p) = 2− 2
1
r (Coles et al., 1999) 2log(p)

log(2p(1−p)2)
− 1

Gaussian F(1−p,1−p)/p, 2log(p)
log(F (1−p,1−p))

− 1

where F(1−p,1−p)= Pr
(
X1 > x1(1−p) ,

X2 > x2(1−p)
)
∼ (1+ ρ)

3
2 (1− ρ)

1
2 (4π)−

ρ
1+ρ

(− log(p))
ρ

1+ρ p
2

1+ρ as p→ 0(Coles et al., 1999)

Appendix B: Proof of independence in stochastic models
of turbulent flows

Assume the velocity components (u1, v1) and (u2, v2) at two
separate locations in an isotropic turbulent flow can be repre-
sented as bivariate normally distributed vectors (u1, u2) and
(v1, v2) that are independent and identically distributed with
zero expectations.

The individual velocity components, (u1, u2) and (v1, v2),
are both asymptotically independent because of each being
bivariate normally distributed.

The squares of the individual velocity components,
e.g. (u2

1, u2
2), are also asymptotically independent. This is

proven by rewriting the joint probability of exceedance:

Pr
(
u2

1 > t
2,u2

2 > t
2
)

= Pr(u1 > t,u2 > t)+Pr(u1 > t,u2 ≤ t)

+Pr(u1 ≤ t,u2 > t)+Pr(u1 ≤ t,u2 ≤ t)

= χ++Pr(u1 > t)+χ−+Pr(u1 > t)

+χ−+Pr(u1 ≤ t)+χ−−Pr(u1 ≤ t)

= χ++Pr
(
u2

1 > t
2
)
+χ+−Pr

(
u2

1 > t
2
)
,

which is obtained by noting that Pr(u2
1 > t

2)= Pr(u1 > t)+

Pr(u1 ≤ t), and conditional probabilities χ++ = χ−− and
χ+− = χ−+ by symmetry of the bivariate normal distribu-
tion about (0, 0). Since the components are bivariate nor-
mal, χ++ and χ+−→ 0 as t→∞, and so Pr(u12> t2,
u2

2 > t
2)/Pr(u2

1 > t
2)→ 0. Hence, the square of the veloc-

ity component is also asymptotically independent.
Perhaps rather counter-intuitively, the sum of two indepen-

dent identically distributed asymptotically independent vari-
ables is not necessarily asymptotically independent. It, there-
fore, remains to be proven whether or not (u2

1+ v
2
1 , u2

2+ v
2
2)

is asymptotically independent.
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