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Abstract 20 

The future of the Amazon rainforest is unknown due to uncertainties in projected climate 21 

change and the response of the forest to this change (forest resiliency). Here we explore the 22 

effect of some uncertainties in climate and land surface processes on the future of the forest, 23 

using a perturbed physics ensemble of HadCM3C. This is the first time Amazon forest 24 

changes are presented using an ensemble exploring both land vegetation processes and 25 

physical climate feedbacks in a fully coupled modelling framework. Under three different 26 

emissions scenarios, we measure the change in the forest coverage by the end of the 21st 27 

century (the transient response), and make a novel adaptation to a previously used method 28 

known as ‘dry-season resilience’, to predict the long term committed response of the forest, 29 

should the state of the climate remain constant past 2100. Our analysis of this ensemble 30 

suggests that there will be a high chance of greater forest loss on longer timescales than is 31 

realised by 2100, especially for mid-range and low emissions scenarios. In both the transient 32 

and predicted committed responses, there is an increasing uncertainty in the outcome of the 33 

forest as the strength of the emissions scenarios increase. It is important to note however that 34 

very few of the simulations produce future forest loss of the magnitude previously shown 35 

under the standard model configuration. We find that low optimum temperatures for 36 

photosynthesis and a high minimum leaf area index needed for the forest to compete for 37 

space appear to be precursors for dieback. We then decompose the uncertainty into that 38 

associated with future climate change and that associated with forest resiliency, finding that it 39 

is important to reduce the uncertainty in both of these if we are to better determine the 40 

Amazon’s outcome. 41 

 42 

 43 
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Introduction 44 

There is currently a large focus on the future stability of the Amazon rainforest. This is due to 45 

its roles as an important carbon store and current sink in the climate system (Malhi et al., 46 

2008). Significant loss, or dieback, of the rainforest could result in this carbon sink becoming 47 

a source, releasing stored carbon which would contribute to atmospheric CO2 and so in turn 48 

climate change. Aside from this, the Amazon rainforest is important for other reasons such as 49 

sustaining large biodiversity (Dirzo &  Raven, 2003). 50 

General circulation models (GCMs) give some insight into the future responses of the 51 

rainforest, projecting climate change forced by emissions scenarios, and the forest’s response 52 

to this. Uncertainties in the future forest response due to different components of the Earth 53 

system represent an ongoing challenge, with work exploring the impact of land uncertainties 54 

to an atmospheric climate change (Cramer et al., 2004, Galbraith et al., 2010, Scholze et al., 55 

2006, Sitch et al., 2008), uncertainty in atmospheric drivers on a surface vegetation model 56 

(Rammig et al., 2010, Salazar et al., 2007) or on bioclimatic regions (Malhi et al., 2009) all 57 

readily found in current literature. Poulter et al., (2010) and Huntingford et al., (2013) both 58 

attempt to synthesise uncertainties from both land and atmosphere. 59 

Amazon forest dieback was first simulated in an offline vegetation model when forced by 60 

climate change occurring in HadCM3 (White et al., 1999). Since then, it has also been found 61 

in some coupled GCMs such as HadCM3LC (Cox et al., 2000). Results from the standard 62 

version of the Hadley Centre’s model show much larger dieback compared to simulations 63 

from most other Dynamic Global Vegetation Models (DVGMs) (Galbraith et al., 2010, 64 

Huntingford et al., 2013). This is due to strong regional drying and warming that overwhelm 65 

the rising atmospheric CO2 that contributes to increased photosynthesis (via the CO2 66 

fertilisation effect) and thus productivity of the Amazon rainforest (Cox et al., 2004, Good et 67 
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al., 2011, Good et al., 2013, Huntingford et al., 2013, Malhi et al., 2009). This does not 68 

necessarily mean the response in the Hadley Centre’s model is implausible; Shiogama et al., 69 

(2011) used observational constraints to suggest that the CMIP3 ensemble mean 70 

underestimates the most likely level of drying over the central/eastern Amazon. Nevertheless, 71 

the differences between current projections suggest that the forest’s future is uncertain. 72 

There has been much research into the varied responses of the forest under different GCMs 73 

and Dynamic Global Vegetation Models (DGVMs). For example Sitch et al., (2008) test a 74 

variety of DGVMs under different emissions scenarios whilst using the same GCM. More 75 

recently, Huntingford et al., (2013) test the effect of climate change patterns from 22 GCMs 76 

which explore changes in land vegetation processes (Booth et al., 2012), whilst using a single 77 

DGVM (TRIFFID) (Cox, 2001). They then analyse biomass changes of the forest in the 78 

ensemble used here, along with Sitch et al.’s, (2008) changes due to DVGM differences to 79 

determine there is a larger uncertainty associated with future emissions scenarios than climate 80 

model uncertainty. These works explore uncertainty in the future of the Amazon rainforest by 81 

focusing on specific modelled components (e.g. forest resiliency and climate change 82 

respectively). Poulter et al., (2010) perturb parameter values within the LPJmL DGVM and 83 

combine this with an ensemble of 8 GCMs to determine which parameters are most important 84 

in reducing uncertainty of future Amazon rainforest response. Galbraith et al., (2010) use 85 

factorial simulations to determine the effect certain factors, such as temperature or 86 

precipitation changes, have on vegetation carbon in the Amazon region for three DVGMs.  87 

Here we explore uncertainty in Amazon forest projections using output from a 57-member 88 

perturbed-physics ensemble of HadCM3C (Booth et al., 2013), a GCM whose Amazon 89 

dieback in its standard configuration is at the upper end of current projections. Our 90 

uncertainties in future climate change and forest resiliency are represented by the processes 91 

that are perturbed in the ensemble, allowing the opportunity to determine how sensitive future 92 
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Amazon forest change is to these. This ensemble explores both land vegetation processes and 93 

physical climate feedbacks and represents the first time future Amazon rainforest changes 94 

have been analysed with this uncertainty. Furthermore, this is all carried out within a fully-95 

coupled framework meaning there is no mismatch between atmospheric drivers and changes 96 

in surface conditions. This aspect of our framework is unique. This also allows the vegetation 97 

to feedback on the atmosphere, both locally and globally. We run our ensemble under 3 98 

different emissions scenarios. 99 

The modelled vegetation in the Amazon rainforest (as well as vegetation elsewhere) exhibits 100 

inertia, meaning there is a delay in the response of the forest to the climate change that has 101 

occurred. The eventual response based on the climate change that has happened up to a 102 

certain time, known as the ‘committed response’, can take decades to be realised (Jones et al., 103 

2009). This response may be calculated using ‘equilibrium vegetation’ simulations where the 104 

climate is held at a constant level, allowing the vegetation to settle to equilibrium (Cox, 2001, 105 

Jones et al., 2009).  In a transient scenario (where radiative forcing was steadily increasing), 106 

Jones et al., (2009) found that Amazon dieback lagged the committed forest change by 107 

around 50 years.  Because of this, the transient forest response could be considered a lower 108 

bound to the potential long term forest loss that would occur in the model without reversing 109 

climate change.  Understanding this committed response is important in determining the 110 

longer term outcome of the forest to emissions over the 21st century as, for example, the area 111 

of sustainable forest coverage may be significantly reduced well before transient loss is 112 

observed.  Huntingford et al., (2013) calculate the committed response for the 22 models they 113 

test and find that rainforests that are growing in the transient experiment continue to grow 114 

slightly whereas rainforests which have ‘peaked’ and are on a decline show more dieback in 115 

their eventual committed response.  116 
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The primary controls on the large-scale distribution of committed vegetation under present-117 

day through future conditions are rainfall, temperature and atmospheric CO2 concentration. 118 

Good et al., (2011, 2013) showed that for Hadley Centre models, while considering tropical 119 

(20°N-20°S) land, combinations of dry-season length, the number of months a year that 120 

precipitation falls below a certain threshold or produce a water deficit, and temperature 121 

promote sustainable forest. There is no forest found in areas which are too warm or dry (i.e. 122 

have a long dry-season length). Dry-season length is closely related to Malhi et al.’s, (2009) 123 

maximum cumulative water deficit (MCWD) calculation, which combines information on the 124 

dry-season rainfall level as well as the dry-season length. In these Hadley Centre model 125 

simulations at least, the boundary between sustainable forest and no forest is fairly distinct. 126 

In turn, Amazon rainfall anomalies have been linked to sea surface temperature indices in 127 

both the tropical Pacific (Cox et al., 2004, Harris et al., 2008) and Atlantic (Cox et al., 2008, 128 

Good et al., 2008, Harris et al., 2008). Both of these indices are observable in the real world. 129 

Furthermore, increased rainfall comes from air that has passed over extensive vegetation 130 

suggesting that precipitation changes are also linked to deforestation (Spracklen et al., 2012). 131 

Using observed precipitation values in tropical rainforest areas, potential analysis (Livina et 132 

al., 2010) has been used to determine how vulnerable certain areas of the forest are (Hirota et 133 

al., 2011) which is related to how far away they are from the boundary of not having enough 134 

precipitation to sustain themselves. 135 

Dieback of the Amazon rainforest has been considered a tipping point in the Earth system 136 

(Lenton et al., 2008) and generic early warning signals based on time-series analysis of 137 

variance, autocorrelation and skewness (Lenton, 2011) have also been tested on output of the 138 

ensemble of HadCM3C used here (Boulton et al., 2013). However due to the slower 139 

dynamics of the system (the committed response of the forest) compared to fast, 140 

anthropogenic forcing, the generic early warning signals do not show much promise and 141 
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indicators based on the physical processes of the Amazon rainforest appear to be the more of 142 

a prospect. Aside from determining uncertainty of the future of the rainforest, we also hope 143 

the methods described in this paper could progress future work towards a more ‘system-144 

specific’ indicator of approaching a tipping point rather than the more generic early warning 145 

signals which have been shown to fail in this instance. 146 

As well as analysing the transient response of the Amazon rainforest by 2100 under 3 147 

emissions scenarios for each ensemble member, we also predict the long term committed 148 

change of the forest, which would not be realised for many decades beyond 2100. To do this, 149 

we present a novel use of the dry-season resilience method described earlier (Good et al., 150 

2011). While Galbraith et al.’s, (2010) analysis suggests that TRIFFID (Cox, 2001), the 151 

DGVM used in HadCM3C and HadCM3LC, is insensitive to a drying climate in regards to 152 

changes in vegetation carbon compared to an increasing temperature, Good et al., (2011) 153 

suggest that both are equally important.  154 

 155 

Materials and methods 156 

HadCM3C-ESE 157 

Our data is obtained from the HadCM3C Earth System Ensemble (HadCM3C-ESE) (Lambert 158 

et al., 2013), using the TRIFFID DGVM (Cox, 2001) to determine the vegetation 159 

distribution. This model configuration differs from the HadCM3LC build used in many 160 

earlier Amazon dieback studies in that it runs with a higher ocean resolution and couples in a 161 

fully interactive (both direct and indirect) sulphate aerosol scheme (Booth et al., 2012).  162 

However, importantly the formulation of the DGVM remains the same between the two. 163 

There are 57 model configurations within the ensemble, each containing a different 164 

combination of perturbed parameters. The parameters are perturbed within boundaries 165 
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suggested either by observational ranges or expert elicitation and grouped according to their 166 

role within the Earth system, whether they are part of the carbon cycle (n=8 parameters) 167 

(Booth et al., 2012), atmosphere (n=32) (Collins et al., 2011), sulphur cycle (n=8) (Lambert 168 

et al., 2013) or ocean (n=15) (Collins et al., 2007). A Latin hypercube sampling method was 169 

used to sample a range of combinations of carbon cycle and atmosphere parameters (Lambert 170 

et al., 2013). There were originally 68 members, however 11 were removed from the 171 

ensemble for failing to simulate reasonable top of the atmosphere (TOA) radiative fluxes 172 

during the spin up (outside the bounds suggested by Collins et al., (2011)). Ensemble 173 

members that failed to simulate the presence of Amazon or boreal forests were also removed 174 

(Lambert et al., 2013). The ensemble is driven by emissions profiles expected to give the 175 

trajectories explained below (much like Meinshausen et al., (2008)). This means that 176 

atmospheric greenhouse gas concentrations are prognostic values and vary due to different 177 

emergent model sensitivities resulting from the underlying perturbed parameters sampled in 178 

these experiments, even under the same emissions scenario. If the direct forcings or 179 

concentrations were applied to the ensemble members, it would prevent the opportunity to 180 

explore global feedbacks in the carbon cycle and thus by using emissions profiles, more 181 

uncertainty is explored. 182 

Previous work comparing the Amazon region observations to those of members of a multi-183 

model ensemble suggests that models are generally too dry and that accounting for this 184 

produces less dieback (Malhi et al., 2009). To determine how well our ensemble simulates 185 

real world climate, we compare the Amazon rainforest temperature and dry-season length of 186 

each member to observations from CRUTEM3 (Brohan et al., 2006) and GPCC (Schneider et 187 

al., 2014). By comparing the average Amazon climate state in the temperature-dry-season 188 

length plane to that of the real-world (Fig. 1a), we find that the observations lie within a 189 

reasonable range of our simulations as the ensemble members have Amazon region 190 
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temperature and dry-season length ranges that encompass the observations (Fig. 1b,c). 191 

HadCM3C-ESE has been run under 3 scenarios, a mitigation scenario RCP 2.6 (van Vuuren 192 

et al., 2006, van Vuuren et al., 2007) , a balanced scenario, SRES A1B (Nakicenovic et al., 193 

2000) and a business as usual scenario, RCP 8.5 (Riahi et al., 2007), as detailed by Booth et 194 

al., (2013). By using this ensemble and these scenarios, we are able to explore the uncertainty 195 

in the future of the forest associated with climate and parameter (which in turn determine 196 

forest resiliency) unknowns. General comparisons between each scenario’s model outputs, 197 

such as global mean temperature, have been shown elsewhere (Booth et al., 2013). Each of 198 

the scenarios share a common historical driving dataset from 1860-1950 based on SRES data, 199 

after which parallel SRES and RCP historical simulations were run. These form the basis 200 

from which A1B (from 1990) and the 2 RCPs (from 2005) were extended from. Further 201 

details about the experimental setup are described by Booth et al., (2013). 202 

HadCM3C-ESE was originally created to explore the spread of results capable under 203 

HadCM3C dynamics, rather than to determine the effects of individual parameters on 204 

changes in vegetation. For this, single parameters would have to be perturbed whilst keeping 205 

others constant. However we explored the relationship between the transient responses and 206 

land surface parameters perturbed in the ensemble, noting that the full effect of each 207 

parameter is difficult to determine. A selection of the parameters concerned with the carbon 208 

cycle (Booth et al., 2012) are shown in Table 1 with a short description and the ranges they 209 

are sampled from. Parameters from the other groups (detailed previously) are less influential 210 

on forest resiliency and are not included in Table 1. Note that some perturbed parameter 211 

values are assigned to each plant functional type (PFT) in the ensemble, however Table 1 212 

only shows the ranges for the broadleaf fraction PFT (which we use to measure forest cover). 213 

Ranges of the other PFTs have been detailed by Booth et al., (2012). 214 

 215 
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Estimating the committed forest response: modified dry-season resilience method 216 

The basis of our analysis is to determine climate conditions that sustain forest and to explore 217 

the long term committed response of the forest (Jones et al., 2009), to projected climate 218 

changes. Forest is considered sustainable if it exists at equilibrium (once transient dynamics 219 

have been resolved) for a given climate. Our method is based on that of Good et al., (2011).  220 

The method of Good et al. as tested on the standard version of the lower resolution 221 

HadCM3CL (Good et al., 2011) and HadGEM2-ES (Good et al., 2013), aims to quantify 222 

climate drivers that affect sustainable forest. It does this by using annual mean temperature 223 

and annual dry-season length (DSL, the number of months in a year that monthly 224 

precipitation is below 100mm) from land grid points in the tropics (20°S-20°N), as well as 225 

global atmospheric CO2 concentration as climate drivers that affect sustainability. 226 

There is a large range of dry-season lengths found in the ensemble (Fig. 2), both when using the mean 227 

forest climate from each ensemble member (Fig. 2a) and the individual grid points from all ensemble 228 

members (Fig. 2b). Furthermore these DSL values are highly correlated with their corresponding 229 

MCWD values (Malhi et al., 2009) (r=0.898 for the 1860-1950 state and r=0.963 for the 2080-230 

2100 state when using the ensemble forest mean values, Fig. 2a), suggesting that using the 231 

number of months the forest is under water stress, rather than the amount it is stressed by, in 232 

our calculations is a simple replacement. 233 

To determine climate conditions that are suitable for sustainable forest, equilibrium broadleaf 234 

tree fraction (BL) is plotted in the temperature-dry-season length plane for a given model 235 

configuration (see Fig. 3a for an example using our method). The points are coloured 236 

depending on whether there is forest (green, BL > 0.4), an intermediate amount of forest 237 

(blue, 0.05 < BL < 0.4) or no forest (red, BL < 0.05). We have also circled points contained 238 

within a region we define as the Amazon rainforest (40°-70°W, 15°S-5°N) as the climate 239 
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changes in these points are what we are most interested in. Fig. 3a shows two distinct regions: 240 

one where climate promotes sustainable forest growth and a region which does not contain 241 

forest. The boundary between the two regions is approximately linear, so is quantified with a 242 

linear fit of the form shown in Eqn. (1). 243 

DSR = DSL + T + CO2 + c        (1) 244 

DSR (in units of months) is dry-season resilience, a measure of the resiliency of a grid point 245 

to changes in climate. Visually, DSR refers to the distance away from the boundary between 246 

forest and no forest a grid point is with DSR=0 on the boundary itself, suggesting points on 247 

the boundary have no resilience to climate change (an increase in temperature or dry-season 248 

length; Fig. 3a). DSL and T refer to the dry-season length and temperature of a given grid 249 

point respectively whereas CO2 is the global mean value of atmospheric CO2. The 250 

coefficients  and , the temperature sensitivity and CO2 fertilisation coefficient respectively, 251 

are to be determined along with the constant c. With this formulation, we are able to make 252 

statements such as ‘if DSL were to increase by a month, then temperature would have to 253 

decrease by  for the grid point to have the same resilience’. The parameters ,  and c in 254 

Eqn. (1) are dependent on the parameters perturbed within the ensemble and as such there is 255 

uncertainty associated with them, which we will later decompose. 256 

Good et al. originally estimated these parameters on equilibrium runs, where the vegetation 257 

has settled to equilibrium under a constant climate. The parameters are calculated through the 258 

use of an algorithm that minimises the number of grid points that are on the wrong side of the 259 

boundary.  260 

To fit the parameters for this ensemble, we adapt the above method.  Equilibrium vegetation 261 

simulations were not available, due to computational expense associated with the large 262 

ensemble size (this would involve carrying out 57 additional full GCM experiments for each 263 
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of the 3 future scenarios explored in this study).  Using the fact that the 3 scenarios used the 264 

same historical simulation from 1860-1950, as well the climate staying relatively stable 265 

during this time, we treat this as a ‘quasi-equilibrium’ early industrial state to begin our 266 

analysis from. For each land grid point in the tropics (20°N-20°S) within each configuration, 267 

we calculate the average temperature, dry-season length and the average broadleaf (BL) 268 

fraction over these 90 years. We also extract the 1860-1950 mean global CO2 (ppm) value for 269 

each ensemble member.  270 

Our modification of the original DSR method is to use a logistic regression fit to estimate the 271 

parameters in equation 1, focusing around the transition from forest to no forest by using only 272 

grid points with temperature, T > 10°C and 4 < DSL < 10 and fitting the line to where 273 

BL=0.025, the midpoint of the blue, intermediate values of forest in Fig. 3a. This standardised 274 

method of computing  and c is much more efficient than using the original method to 275 

determine them for all 57 ensemble members. 276 

An important caveat here is that by using equilibrium runs in their analysis, Good et al., 277 

(2011) were able to infer the value of , the CO2 fertilisation coefficient (equal to 0.0043) 278 

from the lower resolution, standard configuration, HadCM3LC by running a parallel model 279 

with double the atmospheric CO2 concentration. We use their value in our analysis as we do 280 

not have the simulations required to estimate this fertilisation coefficient for each individual 281 

configuration. These extra runs would have allowed us to have two values for atmospheric 282 

CO2 from which we would be able to infer the fertilisation coefficient through the use of our 283 

logistic regression fit each time. Instead we are making the simplification that the CO2 284 

fertilisation effect does not vary between simulations, although it is important to note that the 285 

true value of  in each instance is dependent on the parameters perturbed for each 286 

configuration. We note that only the fertilisation coefficient  is kept constant across all 287 



13 
 

configurations and that the fertilisation effect itself will differ depending on the global 288 

atmospheric CO2 concentration. 289 

We have however run 10 ensemble members to equilibrium by holding climate forcings 290 

constant at their 2100 level, whilst allowing climate and the forest to respond since they lag 291 

the forcings (Fig. 4). This subset was chosen as it represents a range of parameter 292 

configurations, namely a spread in TOPT (Table 1). We use these runs to test the validity of the 293 

linear regression described above, finding that temperature becomes a limiting factor in forest 294 

sustainability. However we note that for the range of temperature observed up to 2100, the 295 

linear regression appears to be valid.    296 

After determining the temperature sensitivity  and constant c for each configuration, Eqn. 297 

(1) allows a prediction of whether broadleaf forest is sustainable or not at each location for 298 

each year based on its dry-season resilience (DSR) value (Eqn. (1)), given the prevailing 299 

climate.  First we calculate the number of points in the Amazon region that are below the 300 

DSR=0 line in our quasi-equilibrium (1860-1950) state in each of our configurations. We 301 

then calculate the number of points that are below the line using the 2080-2100 average from 302 

each simulation. In effect, we are using DSR as a method of extrapolation to estimate the 303 

state of the committed Amazon rainforest without running a corresponding equilibrium run 304 

for each ensemble member. A prediction on the post-2100 equilibrium state of a grid point is 305 

based on the equilibrium state of a grid point with similar climate in the quasi-equilibrium 306 

state.  Due to the CO2 fertilisation effect, increases in atmospheric CO2 cause the boundary 307 

line (DSR=0) to move upwards. Consequently moderately increased temperatures and dry-308 

season lengths can sustain forest under the higher atmospheric CO2 values. An example of 309 

these changes over the 21st century is shown in Fig. 3b. We use the 20 year averages to 310 

eliminate year-to-year variability. The difference between the 1860-1950 and 2080-2100 311 
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values gives us our prediction of committed change. The combined result of the 312 

configurations from each emissions scenario gives us a measure of uncertainty of the future 313 

behaviour of the Amazon rainforest and its committed response to 21st century climate 314 

change. 315 

 316 

Results 317 

Transient responses 318 

Time series of the transient responses of the Amazon rainforest up to 2100 in HadCM3C-ESE 319 

are shown in Fig. 5a. These responses are calculated as the proportional change in the number 320 

of Amazon region (40°-70°W, 15°S-5°N) grid points that exhibit forest (i.e. BL > 0.4) 321 

between 2000 and 2100.  322 

Unlike the standard configuration of HadCM3LC (Cox et al., 2000), the majority of the 323 

simulations show little change by the end of the 21st century (Fig. 5a). However there are 324 

simulations which show dieback at similar levels to that of the forest in the standard model 325 

and even greater. This suggests that the land surface configuration used in previously 326 

published Hadley Centre studies lies in the upper end of the range of projected dieback given 327 

the parametric uncertainties, and most model configurations suggest smaller magnitude 328 

changes. However, it is still within the envelope of uncertainty provided by this ensemble.  329 

When partitioning the transient responses by scenario (Fig. 5b), there is an increasing 330 

uncertainty in the forest state at 2100 with increasing strength of emission scenarios. Under 331 

the RCP 2.6 mitigation scenario, we see that the mean transient response is no change to the 332 

forest cover with a few simulations showing dieback, giving a negatively skewed distribution. 333 

For A1B simulations, while the mean response still suggests no change, it is clear there is 334 
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more of a tendency for forest loss to be exhibited than occurs under mitigation. Under RCP 335 

8.5, the mean response decreases slightly to a loss of around 5%. The uncertainty however is 336 

a lot greater. As well as having more members which show loss and dieback, there are also 337 

more simulations that have forest growth than the other two scenarios. 338 

The simulation with the largest dieback that occurs in RCP 2.6 shows signs of forest loss by 339 

2040 and does so in all three scenarios. For the forest to dieback so soon in the century 340 

suggests that in some cases, the configuration of perturbed parameters can cause forests that 341 

are already very near the threshold of dieback under present day conditions rather than 342 

emissions causing this. 343 

While linking regional climate changes to specific physical parameters is not possible in this 344 

ensemble, it is more feasible to identify land-surface parameters affecting forest resilience. 345 

When determining if any of the perturbed land-surface parameters were linked to forest loss, 346 

we found the strongest relationships (Fig. 6) were found between forest change and TOPT (the 347 

optimum temperature for photosynthesis) and minLAI (a competition parameter specifying 348 

the minimum leaf area index a plant functional type needs before it begins to compete for 349 

space). If temperatures get much higher than TOPT then there will be a decline in 350 

photosynthesis. We are looking at the spread of the forest in our analysis and thus if minLAI 351 

is too high then the forest will not compete for space and so will dieback and the space will 352 

be taken over by other plant functional types. Using results from RCP 8.5, which have the 353 

largest spread of transient responses, analysis on the combination of TOPT and minLAI on 354 

forest change (Fig. 6) shows low values of TOPT and high minLAI for broadleaf preconditions 355 

dieback (consistent with the physiological roles played by these parameters). Members with a 356 

TOPT of greater than 32°C show no extreme dieback (although less extreme loss is still 357 

observed, Fig. 6a). Likewise, members with a minLAI less than 2.5 show no extreme dieback 358 

(Fig. 6b), whereas members with stronger dieback have a TOPT less than 32°C and a minLAI 359 
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greater than 2.5 (Fig. 6a,b). However other factors such as changes in climate that would 360 

stress the forest, as well as the values of other parameters not explored, will determine if 361 

dieback does occur. Although there are less members which show dieback under the A1B 362 

scenario, the boundaries for TOPT and minLAI seem consistent (Fig. 6c,d). This further 363 

strengthens the argument that although other factors such as climate change, which is not as 364 

strong in the A1B scenarios, drive dieback, low TOPT combined with high minLAI is 365 

potentially a precondition. The values of  minLAI and TOPT in the standard configuration (Cox 366 

et al., 2000) (3 and 32°C respectively) are near the thresholds that precondition dieback (Fig. 367 

6). This could explain, at least partially, why dieback is observed in the standard model, but 368 

not in the majority of the ensemble. 369 

 370 

Committed response predictions 371 

To compare the transient responses (those in Fig. 5) to our predictions of the committed 372 

responses (calculated using our modified DSR method), we present the results in the form of 373 

cumulative density functions (CDFs, Fig. 7). 374 

In all three scenarios, our prediction of committed change suggests there is more uncertainty 375 

in the eventual outcome of the forest with a higher chance of further forest loss than is 376 

realised by 2100 (the transient response). For example under RCP 2.6, the mitigation 377 

scenario, there is fairly robust response of ‘No change’ (forest remains within 5% of its 378 

original size) by 2100 (Fig. 7a). However over 40% of models predict a committed ‘Loss’ 379 

(>5% decrease) or ‘Dieback’ (>25% decrease) (Fig. 7d). Similar results are observed for the 380 

other two scenarios (A1B; Fig 7b,e, and RCP 8.5; Fig. 7c,f). However the least amount of 381 

models predicting large committed forest loss are found under the mitigation scenario. 382 
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In both the transient and predicted committed responses of the forest, stronger emissions 383 

scenarios (increased CO2 emissions for example), lead to an increasing uncertainty in the 384 

resulting forest change with more of a tendency towards forest loss. However like the 385 

transient response, there are also more RCP 8.5 ensemble members where  forest ‘Growth’ 386 

(>5% increase) is predicted as a committed response when compared to the other scenarios 387 

the other scenarios. This suggests more spread and thus more uncertainty in future outcome 388 

of the forest under stronger emissions scenarios. This uncertainty is also noted by the gradient 389 

of the CDFs as steeper gradients suggest less uncertainty. 390 

 391 

Decomposing uncertainty 392 

To begin to determine causes in the spread of committed responses predicted, we decompose 393 

the uncertainty into that associated with climate change, and that associated with forest 394 

resiliency (the coefficient , the temperature sensitivity, and c in Eqn. (1), previously 395 

calculated individually for each of the 57 configurations). This analysis is carried out on the 396 

RCP 8.5 scenario runs as out of the three scenarios, these had the largest predicted committed 397 

spread (Fig. 7). 398 

Decomposing the uncertainty is achieved by keeping one set of parameters (either climate 399 

change or forest resiliency parameters), constant whilst allowing the other to vary and 400 

repeating the analysis used to predict the committed response. The uncertainty associated 401 

with the climate change component is explored by fixing the values of temperature sensitivity 402 

 and constant c in Eqn. (1) for each model to the ensemble mean values. This holds the 403 

forest resiliency constant. Fig. 8a shows the average forest resiliency (red DSR=0 line). As 404 

the climate is still allowed to change, movement of the grid points over the 21st century as 405 

well as movement of the DSR=0 due to increasing atmospheric CO2 will occur. Similarly, 406 
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uncertainty associated with forest resiliency is explored by fixing the climate at each location 407 

in each model to the ensemble mean (Fig. 8b shows the average climate change for an 408 

example grid point – see red line). 409 

Compared to our overall prediction uncertainty (Fig. 9a – solid line), we find that our 410 

uncertainty in climate change, under the RCP 8.5 emissions scenario is similar (Fig. 9a – 411 

dashed line). This suggests the largest proportion of overall uncertainty is explained by 412 

uncertainties in the climate, compared to uncertainty in forest resiliency (Fig. 9a – dotted 413 

line), which has less of a spread of results (but still shows some uncertainty). 414 

We further constrain our uncertainty in climate change by using real world observations of 415 

temperature from the CRUTEM3 dataset (Brohan et al., 2006) and dry-season length from 416 

the GPCC precipitation dataset (Schneider et al., 2014) to use as starting positions for each 417 

grid point. Due to observational constraints, rather than using 1860-1950 as our quasi-418 

equilibrium state, we instead use a 1950-1980 average. Using real world observations 419 

eliminates the uncertainty associated with the starting position of each grid point in the 420 

temperature-DSL plane. Then the equivalent of the 2080-2100 mean state of a grid point is 421 

achieved by adding the climate change in the model between 1860-1950 and 2080-2100 onto 422 

the real world observations (Fig. 8c). Using these real world observations, we decompose the 423 

uncertainty again as we have described above. By doing this, we are able to compare how our 424 

uncertainty in forest resiliency compares to our uncertainty in future climate change, 425 

eliminating uncertainty in what we already know about recent past climate. 426 

When initialising our analysis using the real world observations as the starting climate (Fig. 427 

9b – solid line) we again find that our uncertainties associated with climate change are still 428 

large (Fig. 9b – dashed line). Indeed, fixing the starting climate has a rather small effect on 429 

the range of projections in this ensemble. However proportionally there is more spread in 430 
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forest outcome while exploring the uncertainty in forest resilience (Fig. 9b – dotted line) than 431 

previously (Fig. 9a). This suggests that forest resiliency is important to understand as well as 432 

future climate change. 433 

 434 

Discussion 435 

HadCM3C-ESE responses 436 

We explore the future forest response to uncertainties in both land vegetation processes and 437 

physical climate feedbacks. These suggest a range of transient forest responses consistent 438 

with uncertainties in current climate model parameters. This shows that the result of ~60% 439 

dieback from the standard HadCM3LC model (Cox et al., 2000) is not the most typical result 440 

for this model structure. While these ensemble members explore the interactions between 441 

these land processes and climate feedback uncertainties, running a sufficiently large ensemble 442 

to determine the impact of each individual parameter has proved too computationally 443 

expensive to date. However there is a suggestion that two land surface parameters, minLAI 444 

and TOPT, are related to the potential for large forest loss (Fig. 6),which due to their values in 445 

the standard configuration could partially explain the dieback observed in the standard model 446 

(Cox et al., 2000), although we note that other parameters and climate changes are also 447 

important. 448 

Perturbing parameters describing the physics and vegetation processes of the model generally 449 

leads to forests that are more resilient to future climate change over the next century than in 450 

the standard version. However large changes can still occur, especially under strong 451 

emissions scenarios where more loss or dieback is observed. In certain cases, slower 452 

increases in temperature and dry-season length under large CO2 increases could lead to forest 453 
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growth (Fig, 7f, green shading). However in one member, a combination of perturbed 454 

parameters cause forest resiliency that is low enough for differences in emissions scenarios to 455 

be irrelevant for forest loss that shows considerable commitment to forest loss even by 2040. 456 

The spread in results we find compared to the standard configuration highlights the 457 

importance of fully exploring both parameter and future emission scenario uncertainty, as 458 

well as trying to reduce it. 459 

In our framework, dieback is caused by increased temperatures and dry-season lengths 460 

caused by the increased atmospheric CO2 which overwhelm the CO2 fertilisation effect. 461 

Visually, the movement of the individual grid points in the Amazon region towards the 462 

boundary between conditions promoting sustainable forest and that unsuitable for forest is 463 

faster than the movement of the boundary line itself (Fig. 3) in these cases. The increases in 464 

CO2 compared to the consequent increases in temperature and dry-season length could be 465 

considered as a balance of expansion and risk of collapse and is important to consider when 466 

planning mitigation strategy. 467 

When decomposing the uncertainty in our framework, the climate change component appears 468 

to be more important than forest resiliency. However both contribute to the total uncertainty.  469 

This is more evident when we use observations as starting climate (comparing Fig. 9a to 9b), 470 

which reduces uncertainty on where each grid point begins in our framework. It is worth 471 

noting that we are assuming that the differences in 1950-1980 and 1860-1950 climates are 472 

small relative to future changes, and that the forest stability has not markedly changed as a 473 

result. A caveat here, is that we use the CO2 fertilisation coefficient  quantified from the 474 

standard HadCM3LC model by Good et al., (2011). We are, therefore, only exploring the 475 

non-CO2 fertilisation component of forest resiliency, and subsequently expect this framework 476 
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to underestimate the importance of the total forest resilience uncertainty, where the impact on 477 

CO2 fertilisation (via changes to parameter  would also be accounted for. 478 

 479 

DSR framework and validity of results 480 

Our modified use of Good et al.’s DSR framework allows us to make predictions of 481 

committed change of the forest based on the emissions scenarios up to 2100. We note here 482 

that these predictions of committed change are ‘lower bounds’, meaning that more loss is 483 

likely to occur than we predict. Our assumption of the regression model we fit being linear 484 

breaks down at higher temperatures since this becomes a limiting factor in forest 485 

sustainability when we run a subset of the ensemble members to equilibrium (Fig. 4). The 486 

threshold for when this change in temperature sensitivity ( begins to become significant is 487 

dependent on the optimum temperature (TOPT) for photosynthesis in the model configuration 488 

(one of the major uncertainties in future tropical forest response (Booth et al., 2012, 489 

Matthews et al., 2007)). Nevertheless, the technique presented here represents a 490 

computationally efficient method of estimating the lower bound to simulated forest loss on 491 

the basis of the historical and future GCM climate and forest coverage. Future work could 492 

involve adding a non-linear temperature term into Eqn. (1) whilst exploring higher 493 

temperatures in true 2100 equilibrium runs. 494 

The DSR framework provides a simple metric that can quantify why different models show 495 

markedly different responses. Given the uncertainty in current DVGM estimates, the DSR 496 

framework gives insight into moisture and temperature constraints and thus could be applied 497 

to other models, providing a simple comparison of some of the processes between them. 498 

Furthermore, the DSR framework could allow the relative contributions of temperature and 499 

DSL changes to forest loss to be calculated. 500 
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The inertia of the forest response found by Jones et al., (2009) in the standard HadCM3LC 501 

configuration may not be realistic. Whilst the response time of the forest to natural drought in 502 

the real world (such as in 2005) appears to be within months (Phillips et al., 2009), longer 503 

term responses to less extreme but more sustained decreases in precipitation or increases in 504 

temperature are yet to be determined. Drought experiments (Costa et al., 2010) have shown a 505 

slower decrease in tree mortality. This highlights the importance of improving DVGMs such 506 

that they are able to create the short term responses to extreme drought, as well as the longer 507 

term responses to slow increases in temperature and water stress, allowing us to reduce our 508 

uncertainty in both the forest’s transient and committed responses. 509 

 510 

Implications of results 511 

Our analysis compliments the work of  Sitch et al., (2008), Huntingford et al., (2013) and 512 

Poulter et al., (2010). Sitch et al. (2008) explore uncertainties associated with a number of 513 

DGVMs, when used with different emissions scenarios, whereas Huntingford et al. (2013) 514 

explore the uncertainty associated with components of the climate response from a multi-515 

model ensemble which are then used to drive a common DGVM (based on 516 

MOSES/TRIFFID). Huntingford et al., (2013) also compare their results with the spread of 517 

responses arising from parameter uncertainty in the land surface within a fully coupled GCM 518 

(HadCM3C) that sampled uncertainties only in the vegetation component (Booth et al., 519 

2012). While Huntingford et al., (2013)’s work suggests the forest will respond responsibly 520 

well over the 21st century due to the CO2 fertilization effect, Brienen et al., (2015) suggest 521 

that models showing more forest loss are more plausible. This suggests that there are still 522 

open questions about the Amazon resilience to future climate changes. 523 



23 
 

Here we present results from new simulations (Booth et al., 2013) that explore uncertainties 524 

in both the land surface/vegetation response and the physical climate simultaneously.  This 525 

provides the first GCM ensemble where uncertainties in both physical climate and land 526 

processes interact within a common experimental framework. Furthermore our approach to 527 

determining uncertainty is very different from both of the previous works using our novel 528 

dry-season resilience method. This allows us also to begin to determine where the 529 

uncertainties lie. Poulter et al., (2010) perturb parameters within the LPJmL DVGM more 530 

extensively, and combine this with 8 different GCMs. Here we provide some uncertainty 531 

associated with the TRIFFID DVGM, within a fully coupled framework where forest changes 532 

both locally and globally feedback on the climate response, further exploring uncertainty.  533 

In conclusion, we have highlighted the uncertainty in the Amazon rainforest’s future due to 534 

uncertainties in climate change and land based processes (in an experiment that explores a 535 

broad range of vegetation and climate responses) and thus the importance of reducing these to 536 

better determine the forest’s outcome. Our predictions of committed rainforest change show 537 

that even under the most intense mitigation, the forest may not be sustainable, despite 538 

appearing to be at the end of the 21st century, suggesting that planning beyond 2100 is 539 

essential. 540 
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Table 660 

Parameter Range (for broadleaf 

FPT) 

Description 

f0 0.72-0.95 Maximum ratio of internal to 

external CO2 concentration – 

related to stomatal resistance 

minLAI 1-4 Minimum Leaf Area Index 

(green leaf area per unit 

ground) needed before a PFT 

competes for space 

NLO 0.018-0.1 kgN/kgC Top leaf nitrogen concentration 

Q10 1.5-3.5 Temperature dependence on 

soil respiration 

TOPT 27-37 (°C) Optimum temperature for 

photosynthesis 

Θ𝐶𝑅𝐼𝑇 0.01-0.99 Critical value of volumetric 

soil moisture, below which soil 

moistures limits plant 

photosynthesis and surface 

evaporation 

Table 1: Ranges and descriptions of perturbed parameters in the carbon cycle component of 661 

HadCM3C-ESE, as detailed by Booth et al., (2012) 662 
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Figures 663 

 664 

Figure 1 A comparison of the starting temperatures and dry-season lengths (DSLs) for members of 665 

HadCM3C-ESE and the observed climate using the mean Amazon rainforest states. a) The position of 666 

the starting state for the average Amazon rainforest for each ensemble member (black circles) shown 667 

alongside the observed average Amazon rainforest state (red square). Cumulative probability 668 

distributions (the proportion of models showing at least the value on the x-axis) are shown for both (b) 669 

temperature and (c) DSL for the ensembles with the observed climate shown by dotted lines in each 670 

case.  671 

 672 

 673 
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 674 

Figure 2 A comparison of dry-season length (DSL) and maximum cumulative water deficit (MCWD) 675 

in the HadCM3C-ESE under the A1B scenario. (a) Ensemble member forest region means and (b) all 676 

forest grid point across all ensemble members’ DSL values are plotted against their MCWD values for 677 

the 1860-1950 mean state (black) and the 2080-2100 mean state (red). In (a), ensemble members’ 678 

states are connected by a dark grey line. The light grey background shows the envelope of possible 679 

values for DSL and MCWD. 680 
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 681 

Figure 3 Estimating dry-season resilience (DSR) for a typical ensemble member. (a) The 682 

historical (1860-1950) mean temperature and dry-season length (DSL) is observed for all 683 

tropical grid boxes (20°S -20°N) which are then plotted in the temperature-DSL plane. The 684 

colour of each grid boxes’ point is green for ‘Forest’ (BL > 0.4), blue for ‘Intermediate’ (0.4 685 

< BL < 0.05) or red for ‘No Forest’ (BL < 0.05). The DSR=0 line (as described in main text) 686 

is shown by a black line. Circled points are those contained with the region 40°-70°W, 15°S-687 

5°N (the Amazon region) and the black square is the mean state of the Amazon forest (green 688 

circled points). (b) Future changes in atmospheric CO2, temperature and DSL move both the 689 

DSR=0 line and the position of the points (represented here by the mean Amazon forest state, 690 

black square) which are tracked in 20 year averages over the 21st century. 691 

 692 
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 693 

Figure 4 The effect of the parameter TOPT on the DSR=0 line for the 10 equilibrium runs. Plots are 694 

ordered in increasing value of TOPT. Hollow points are data from the transient historical (1860-1950) 695 

and filled points are from the equilibrium run. The DSR=0 line is shown when fitted only with the 696 

transient data (grey) and with all the data (black). 697 

 698 

 699 

 700 

 701 

 702 
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 703 

Figure 5 Transient changes in number of grid boxes containing Amazon forest (BL fraction 704 

> 0.4 within the region 40°-70°W, 15°S-5°N) in HadCM3C-ESE compared to historical 705 

(1860-1950) Amazon forest coverage. (a) Time series of this transient changes for each 706 

individual member of HadCM3C-ESE. (b) Box and whisker plots for each scenario showing 707 

the median, inter-quartile range and minimum and maximum values (ignoring outliers, black 708 

circles). 709 

 710 
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 711 

Figure 6 The effect of perturbing parameters on transient forest change by 2100. Proportional forest 712 

change observed in ensemble members under scenarios (a,b) RCP 8.5 and (c,d) A1B scenarios are 713 

plotted against the (a,c) TOPT and (b,d) minLAI values of each member. The colours of points show the 714 

value of the parameter not plotted. 715 

 716 
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 717 

Figure 7 Summary CDFs of the Amazon rainforest fractional changes in grid boxes deemed 718 

forest for ensemble members of HadCM3C-ESE. Transient responses observed by 2100 for 719 

scenarios (a) RCP 2.6, (b) A1B and (c) RCP 8.5 are shown above predicted committed 720 

responses using the DSR method for (d) RCP 2.6, (e) A1B and (f) RCP 8.5. Coloured regions 721 

show proportion of models which show changes we class as ‘Dieback’ (red, < -25%), ‘Loss’ 722 

(orange, >-25%,<-5%), ‘No Change’ (white, >-5%, <5%) and ‘Growth’ (green, >5%). 723 

 724 

 725 

 726 
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 727 

Figure 8 Graphical representations of how (a) forest resiliency, (b) climate and (c) climate 728 

(including observations) are constrained. In all cases black lines represent values from 729 

individual ensemble members, red lines represent the values used when the variable is 730 

constrained and grey lines represent how the other variable is constrained. Points shown in 731 

the background are from (a,b) a typical ensemble member or (c) observations. The same point 732 

(in the Amazon region) is used when demonstrating constraining climate and climate 733 

(including observations).  734 

 735 

 736 

 737 
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 739 

Figure 9 CDFs showing predicted committed Amazon forest change for the RCP 8.5 740 

scenario. Committed change is predicted using (a) the 1860-1950 modelled state (temperature 741 

and dry-season lengths; as in Fig. 7f) and (b) real world observations (see main text). 742 

Committed change is also predicted whilst keeping resilience parameters constant (dashed 743 

lines) and climate change constant (dotted lines). Constraining one variable allows the 744 

uncertainty in the other to be explored (as described in text).  745 


