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What are the primary factors governing Tropical Cyclone Potential Intensity (TCPI)

and how does the TCPI vary with the change in CO2 concentration are the two

fundamental questions we investigated here.

In the first part, a strong spatial correlation between the TCPI and the ocean

temperature underneath was used to develop a statistical model to quantify the

TCPI over the remote regions where the TC related observations are difficult to

acquire. The model revealed an overall increase in the TCPI when the atmospheric

CO2 concentration was doubled.

Finally, the study examines the TCPI’s sensitivity on the ocean temperature (at

the spatial scales). Two independent models (HADCM3 from Met Office, UK and

GFDL-CM3 from GFDL, NOAA, USA) on an average reveals an increase in the

TCPI between 8 to 10 m/s per unit increase in the ocean temperature (in oC).

The key finding to emerge from this study is that the increase in the TCPI responds

comparatively weakly to the increasing ocean temperature when CO2 amount is

increased. We call this observation as, “the sensitivity saturation effect”.

According to our findings, the TCPI responds weakly (become less sensitive) to the

ocean temperature on doubling the CO2 concentration. This effect was observed

in all the ocean basins and in both the considered climate models. Though the

TCPI show a rise on increasing the CO2 concentration but, its response to the

SST decreases. This observation leads to a set of next level questions for instance,

will there be a sensitivity saturation effect, analogous to the well-known “Band

Saturation effect”, on increasing the CO2 levels and if it does, will the TCPI’s

sensitivity plateau? If it plateaus, at what cut-off CO2 levels would that happen?

These emerging questions open up a new area of investigation for the climatologists

and the enthusiasts in the related fields.

In this manner, this part of the research provides a framework for the future

exploration of the subject.
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Chapter 1

Introduction and Motivation

1.1 Introduction and Motivation

There are two popular methods used so far to compute TC intensification. First

was proposed by Miller in 1958 (Miller [1958]) and Holland (Holland [1997a]) in

1996. The approach estimates the maximum temperature that can be achieved in

the eye-wall of a tropical cyclone provided the thermodynamic properties of air

near the sea surface are known.

Next step in the technique involves finding the maximum temperature that can

be achieved in the tropical cyclone’s eye by compressional warming of the sinking

air. However, a second method, developed by Emanuel in 1995 (Emanuel [1986])

(Emanuel [1995]) uses energy cycle of a tropical cyclone to estimate the maximum

surface wind speeds that could be achieved. The minimum achievable pressure in

a cyclone is another measure of storm intensity. To compute the parameter we

assume a particular radial profile of azimuthal wind inside the eye of the storm.

This work primarily focuses on sea surface temperature driven imperial strength

that tropical cyclones (TC) possess and how is it they are impacted by humans

since the advent of industrial era.

Climate models mostly continue to predict a decrease in the TC frequency and

an increase in its intensities of stronger storms and the associated rainfall rates

(Mendelsohn et al. [2012]). Sea level rise has been predicted to cause the inunda-

tion of low coastal areas (Walsh et al. [2015]). Increasing per capita income has

1
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Figure 1.1: Figure depicts recognized distribution of TC tracks from 1851 to
2006 (Image courtesy NASA).

shown to cause increased losses due to TC related damage even without introduc-

ing the climate change into the picture. Climate change has shown to increase the

intensity of storms and double the related damage (Mendelsohn et al. [2012]). This

however depends on the model employed for the analysis and the TC regions, for

example, North America, East Asia Carribean and Central America are subjected

to doubled TC related losses (Mendelsohn et al. [January 2012]).

Tropical cyclones (TC) constitute an important component of the climate system

and have an enormous effect on society and economies of tropical countries. Well-

known TCs like, Tracy in Australia, Bhola in Bangladesh, Mitchell and Katrina

in the Caribbean, Mexico, Central America and the US remind us of calamity

influencing life and property throughout the globe. Loss of 81 to 82 billion dollars

is estimated from hurricane Katrina in 2005 (Pielke et al. [2008]). The next hur-

ricanes following similar losses are the triplet, Harvey, Irma and Jose (September

2017).

300,000 people died in a cyclone surge in Bangladesh in 1970. Increasing coastal

population and construction with time ensures intense damage and losses from

cyclones in future (Emanuel [2005a]).

The increase in the likelihood of hurricane intensification with the climate change

has attracted much media attention. Hurricane “Sandy” (2012) had wind field of

more than 100 miles/hr and is known to be one of the largest typhoon on record

so far. A couple of intriguing questions then arising are about the likelihood of
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observing more such storms in future. This study has been prompted by my

natural interest as a climate student. In specific, the subject qualitatively and

quantitatively draws my inclination towards the study of the influence of climate

change on tropical cyclone intensity.

1.1.1 Challenges

Tropical cyclones are one of the most lethal natural phenomena that cause loss of

life and property (Anthes [1982]). It is thus very important to issue an advance

warning to the densely populated regions across the globe to ensure safer future

of civilisation. The Indian subcontinent and the land in its vicinity situated in

the Indian Ocean are heavily populated. This makes the region vulnerable to de-

struction by a natural catastrophe like TC. Thus, it is very important to provide

adequate warning in this region and the regions alike. Regions prone to TC for-

mation are shown in figure(1.1)). In order to produce reliable warnings, it is very

important to understand tropical cyclone genesis, development, and the associ-

ated consequences. It is hypothesised, that climate change will influence tropical

cyclones by increasing their intensity and the frequency of the intense storms.

(Bister and Emanuel [1998], Evans and Watterson [1992]). According to a report

on post-IPCC assessment, cyclone’s Maximum Potential Intensity (MPI) will ei-

ther continue to remain the same or show a moderate surge of about 10% to 20%

(Henderson Sellers [1998]). The report also state that climate change will influ-

ence tropical cyclones by increasing their intensity but decreasing their frequency

of occurrence.

This has resulted in increased attention towards cyclone genesis and warnings.

The link between the climate change and tropical cyclones is of great practical

importance (Henderson Sellers and Holbrook [2000]).

It is interesting to note that storm track forecast is the best predictable aspect

of a TC these days but its intensity prediction is much more challenging. This is

because the cyclone track is governed by larger scale motions in the atmosphere

which have relatively much longer reliable predictability (NHC [2014]). Intensity

forecast, on the other hand, depends upon small scales in the centre of the storm.

It has been particularly difficult to observe early stages of hurricane development

phase because of the region of their origin is far away from land. Even the obser-

vations from satellites are unable to decipher this aspect too well, as of now. The
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US National Hurricane Center and few others are in the process to send aircraft

loaded with modern equipment like radiosonde, microwave temperature profiler,

over the ocean basins early enough to observe beginning stages of vortex formation

in order to have this piece of information (NHC [2014]). However, due to technical

constraints and hazardous nature of these, the success has been rather limited.

1.1.2 Classification

Technically, a whirlwind, rotating storm with horizontal scales of the order of 100

to 1000 Km extending through the troposphere to a depth of about 15 Km is known

as a tropical cyclone (Emanuel [2005b]). Depending upon the 10-minute average

sustained wind speed, tropical cyclones can be classified as a tropical depression,

tropical storm, hurricane, typhoon or a tropical cyclone. The storms, reaching

a maximum speed of about 16 m/s are known as tropical depressions. The ones

attaining a maximum speed in the range of 17 m/s to 32 m/s, are classified as

tropical storms. A storm sustaining a wind speed of 33 m/s or greater is defined as

a hurricane when in the North Atlantic or North Pacific, as a typhoon when in the

Northwest Pacific and a tropical cyclone in the Indian Ocean (Emanuel [2005b]).

1.1.3 Formation

A TC derives its energy from the latent heat liberated during condensation of

water vapour in deep convective clouds. One of the striking difference between a

TC and its extra-tropical counterparts is that TC is more axisymmetric, intense,

and tend to live longer.

When oceans and seas get heated up, primarily by solar energy, moist air begins to

rise. This rising air draws more warm and moist air which strengthens the storm.

The rising air cools and condenses and gives out the latent heat of vaporisation

which energises the storm more and more. TCs occur primarily in the summers

and are shown to be affected by the Sea Surface Temperature (SST), El-Niño,

Madden-Julian Oscillation (MJO)’s and other weather conditions favourable to

its origin. The storms occur further in the east (and less in the West Pacific

Ocean) during El-Niño (Klotzbach [2014]). TCs reaching a maximum wind speed

of 33 m/s or greater have a clear and warm region at the centre, which makes

its detection easier with passive infrared radiometers, called the “eye” which is
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surrounded by the spiral bands of cumulus and cumulonimbus clouds extending

out to 1000 Kms from the centre (Hawkins and Imbembo [1976]).

There are two renowned schools of thought that explain the TC intensification

mechanism. The first theory, CISK, is an acronym for Convective Instability of

the Second Kind. The theory has the convective chimney as their working basis.

The second theory, WISHE expands to, Wind-Induced Surface Heat Exchange.

Similarities, differences, and limitations of both the theories are presented in the

table(1.1)

1.1.3.1 Metrics for Intensity

Several scales have been introduced to rank the tropical cyclones. For instance,

Saffir-Simpson Hurricane Scale, Japan Meteorological Agency’s scale, along with

a few alternate scales like Accumulated Cyclone Energy (ACE), Power Dissipation

Index (PDI), Integrated Kinetic Energy Index, and Hurricane Severity Index (Yu

et al. [2009]). The scales are generally governed by the intensity of the sustained

wind speed. The sustained wind speed as stated by the World Meteorological

Organization (WMO) is defined as the wind speed at a height of 10 m for 10

minutes on an average. This definition is used by most of the weather agencies.

1.2 Effects of Tropical Cyclones on climate

1.2.0.1 Tropical Cyclogenesis

The term Tropical Cyclogenesis encapsulates formation and intensification of TC

in the atmosphere (Climatology and Meteorology [2006]. TC climatology was

formulated by (Gray [1968]) in 1986 and the mechanism was devised in a cyclone-

prone region called, the main development region. Intensive research on the similar

work in connection with TC and synoptic scale environment was carried out in

detail (Camargo et al. [2010]) and (Tory and Frank [2010]).

TCs form over warm tropical ocean basins. Warm air is more capable of hold-

ing water vapour. The tendency to capture waver vapour is given by Clausius-

Clapeyron equation:
1

qs

dqs
dT
≈ 1

es

des
dT

=
L

RvT 2
(1.1)
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where, qs is the saturation specific humidity in kg water vapour per kg moist

air, es represents the saturation water vapour pressure, T the air temperature,

L denotes the latent heat of vapourisation, and Rv defines the gas constant for

water vapour. Then, the first term approximates to the second term (Ambaum,

2010 and Allan, 2011). Latent heat release acts as an energy source for a TC. The

SST should be above 26.5 ◦C to support tropospheric deep convection (Palmen

[1948a]). Also, air temperature over SST up to 10 m altitude should be lesser

than the SST for TC intensification to take place (Arora and Dash [2016], Cione

[2012]). This is because, certain lapse rate is required to force the atmosphere to

be unstable enough for convection. The warm core characteristic of TC is due to

convection (Goldenberg [2008]. Cyclone formation requires six major conditions to

be satisfied that are necessary but not sufficient. The six requirements are briefly

explained in table(1.2): (Gray [1975], Landsea [2006]).

1. Warm ocean temperature, above 26.5 ◦C, extended 60 meters deep inside the

ocean basin

2. Sufficient humidity in the troposphere

3. Unstable atmosphere

4. Sufficient coriolis force to give rise to low pressure in the cyclone’s core

5. Low vertical wind shear

6. Low level disturbances

1.2.1 Warm ocean temperature, above 26.5 ◦C, extended 50

meters deep

This can be understood in terms of the ocean thermal potential (Cal/cm2). This

is defined as the sum of ocean thermal energy above 26◦C or down to a depth of

60 m.

E =

∫ 60m or where T=26◦C

Sfc

ρwCw(T − 26)dz (1.2)
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1.2.2 Sufficient humidity in the troposphere

It has been observed that TC genesis occurs mainly in the regions of seasonally

high tropospheric humidity. High level humidity is more conductive to deep cu-

mulus convection and greater vertical coupling of the troposphere than is in a

dry middle level environment. This is also conductive to high cloud precipitation

efficiency. Over oceans, high middle level vapour content appears to be a strong

enhancer rather than inhibitor of deep convection. TC development is not possible

if seasonal 500 to 700 mb humidity is less than 40%.

Humidity parameter =
R̄H − 40

30
(1.3)

where, the humidity parameter R̄H lies between 40 to 70 %.

Known climatic oscillations like El-Nino Southern oscillations (ENSO) and Mad-

den Julian oscillations (MJO) influence TC activity, its frequency and occurrence

timings (Avila and Pasch [1995]). Warm water is required to fuel TC’s warm core

thus the warm ocean temperatures summed up to 50 meters below the sea surface

is an important factor for TC genesis (Briegel and Frank [1997]). Convection is

ensured by warm ocean temperature but is sustained by warm ocean waters in the

upper levels of the tropical ocean, also known as the thermocline. If SST summed

over a column comes to 26 ◦C isotherm has 30 KJ/cm2 or higher heat amount, the

probability of TC to intensify increases (Goni et al. [2003]). It can also influence

the dynamics of a tropical cyclone by creating convective asymmetries. Vertical

wind shear is a wind gradient or the difference in velocity, speed and direction of

the flowing air close to the surface and the wind above. Vertical wind shear be-

tween surface and tropopause under 10 m/s is supportive of TC evolution (Landsea

[2006]). Stronger vertical wind shear would dissipate the storm by hindering TC

maturation (of Illinois [2006]). According to the technical definition of the wind

shear, difference in wind speeds between 200mb, top of the troposphere (40,000

feet) and 850mb, (5000 feet) above the ground level is considered. Wind shear is

calculated over a circular area, with the TC placed in the center, of about 700 me-

ters in diameter. The reason for considering 850 MB and 200 MB pressure levels

is possibly denser and more reliable cloud track winds at these levels (Nicholls and

Pielke [April 1995]). Wind shear is responsible for distorting cyclone profile but

its influence (if any) on TC intensity is still not well understood. One mechanism

explains the impact of wind shear on cyclone intensity as a drying out behaviour.
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According to this mechanism, wind shear leads to drying of troposphere which

hinders TC maturation. Apart from drying out behavior, wind shear can also

create convective asymmetries (Tang Brian and Emanuel [2010]) which may dissi-

pate energy from the TC that acts as a heat engine. Apart from negative effects of

vertical wind shear on TC development, in limitation, it can enhance formation of

convective cells and hence assist in TC expansion (Paterson et al. [2005], (Zhang

and Tao [2013] ).

1.3 Quantifying Tropical Cyclone Intensity Us-

ing Emanuel’s Approach

Limit calculation for TC intensity: A weak vortex is placed over this neutral

state. The added vortex is a warm core and a cyclone diminishing in intensity with

height. This preliminary vortex satisfies hydrostatic and gradient wind balances.

Consider a fluid flowing from high to a low pressure. Let, it’s specific volume be,

α. The pressure gradient is then given by,

− α∇p (1.4)

If p is a vertical coordinate, we define it in terms of ∇Φ where, Φ is geo-potential

which is integral of gravitational acceleration over altitude. Circular vortex is

equilibrium state if,
∂Φ

∂p
= −α (1.5)

∂φ

∂r
=
(v2
r

+ f ∗ v
)

(1.6)

Here, f is the coriolis parameter which is expressed in terms of angular velocity

of earth’s rotation and the latitude, θ

f ≡ 2 ∗ Ωsin(θ) (1.7)

Also, from ideal gas equation, we approximately have,

α =
Rd ∗ T
p

(1.8)
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Eliminating ∂Φ from Hydrostatic 1.5 and wind gradient 1.6 equations, we obtain

− α∂p
∂r

=
(v2
r

+ f ∗ v
)

(1.9)

Cross-differencing equation, 1.9, and using ideal gas equation, 1.8.(2 ∗ v
r

+ f
)∂v
∂p

=
Rd

p

∂T

∂r
(1.10)

The radiatively inward temperature gradient, ∂T
∂r

is proportional to the upward

lowering of azimuthal wind speed, ∂v
∂p

The weighted mean specific entropy for liquid, vapour and ice content in TC is,

M ∗ s = Md ∗ sd +Mv ∗ sv +Ml ∗ sl (1.11)

Where, M refers to the sample mass, Ms,Ml,&Mv denotes the masses of dry air,

liquid and water vapour, respectively. Now,

s = (1− qt) ∗ sd + qv ∗ sv + ql ∗ sl (1.12)

Where, qt = qv+ql, such that qv refers to specific humidity (Mv/Mair), ql indicates

specific liquid water amount, Ml/Mair and qt is the total specific water amount.

Clausius-Clapeyron equation relates specific entropies of liquid water and water

vapour as :

s∗v − sl =
Lv
T

(1.13)

Where, specific entropy of water vapour s∗v, and latent hear of vaporization, Lv in

equation 1.13 can be associated to the net entropy in equation, 1.12 to give,

s = (1− q(t))sd + ql ∗
(
s∗v −

Lv
T

)
+ qvsv (1.14)

Using definition of specific entropies of gases and liquid water,

sd = cpd ∗ ln(T )−Rd ∗ ln(pd) (1.15)

sv = cpv ∗ ln(T )−Rv ∗ ln(e) (1.16)

sl = cl ln(T ) (1.17)

Where, Rd and Rv represents the universal gas constant divided by the mean
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molecular weight of dry air and the water in respective cases. The heat capacity

of dry air at constant pressure is Cpd and the heat capacity of water at constant

pressure is, Cpv. Cl is the heat capacity of liquid water and sum of partial pressures

of all the gases, dis-including water vapour is Pd. e denotes the partial pressure of

water vapour. Using sd, sv, and sl in equation, 1.14 gives:

s = (Cpd(1− qt) + Clqt) ln(T )−Rd ln(Pd) +
Lvqv
T
− qvRv ln(H) (1.18)

where, H = e
e∗

, and e∗ being the saturation vapour pressure. Equivalent potential

temperature, θB, can be used in place of s. Thus,

s = (Cpd(1− q(t)) + Clqt) ∗ ln(θB) = s+Rd ln(P0) (1.19)

In the case of radiative equilibrium, land surface and the air over it are not in

thermal equilibrium which brings energy for the convective heat transport away

from the surface. Specific volume, α (inverse of density), conserved entropy in a

reversible adiabatic displacement, α = α(p, s). Difference between specific volume

of a parcel and its environment at the same pressure level is,

αp − α '
(∂α
∂s

)
p
∗ (sp − s) (1.20)

Since adiabatic lapse rate is positive, the atmosphere is unstable if its entropy

decreases upwards. A stable atmosphere possesses increasing entropy with height.

A parcel displaced from a layer of higher entropy to lower one will have greater en-

tropy. An important condition for convective instability is that entropy decreases

upwards.

Consider a saturated sample at the same T & P (∴ H = 1⇒ ln(H) = 0⇒ q −→
q∗). In tropics, lapse rate of a parcel is close to the adiabatic lapse rate. About

30% of the incoming solar energy is reflected by clouds, vegetation, oceans and

snow on earth. We can divide turbulent heat transport into (1) sensible and (2)

latent heat. Latent heat flux is given by the evaporation rate of water from the

surface into the air above. In tropics, most of the heat is due to latent flux than

sensible heat or the net long wave radiative flux from the surface. So, we can safely

assume that solar radiation absorbed by the tropical ocean is in equilibrium with

the evaporation related cooling. Evaporation rate from over the ocean surface is

given by,
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Figure 1.2: Mature TC as a Carnot Heat Engine. Source: Divine Winds by
K. Emanuel. Colours, in the figure above, represents entropy distribution where
cooler colours signify low entropy and warm shades shows higher entropy.(Figure

courtesy: Emanuel, 1986)

E ' Cqρ|V |(q∗0 − q) (1.21)

Where, exchange coefficient, Cq, density of air, ρ, wind speed magnitude, |V |,
specific humidity of air, q, saturation specific humidity of air, q∗0, at SST and sea

level pressure defines the evaporation rate over the sea surface. Cq is calibrated at

10m over the surface and it is convenient to quantify all the quantities in equation

(1.3) except q∗0. The difference between the saturated and unsaturated specific

humidity causes disequilibrium in the atmosphere and fuel TC. As seen in the

figure(1.2), energy cycle of a mature TC, it can exist in steady state for several

days considering axi-symmetric steady storm formation. A turbulent boundary

layer where storm air initially runs in is about 1km wide and 100m on depth.

The spiralling air subjected to slight fluctuation in its net entropy is due to ocean

heat flux which increases entropy in the boundary layer. Downdrafts in storm’s

spiral band along with chaotic entrainment at the top of the boundary layer take

place. Both of these processes take place in low entropy air from above layers

of the troposphere. This entrainment of low entropy air stops near the eyewall

convection and high winds from over the surface cause entropy to rise sharply.

Wind energy which dissipates as the cube of average wind speed leads to the rise
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of entropy in the boundary air, the only source for tropical cyclone activity is

the surface heat content. It should be noted that dissipation of kinetic energy

increases the entropy of incoming air while keeping its enthalpy the same. Air

coming in towards the storm centre spirals out to larger radii. Loss of heat from

SST is compensated by export through the outer wall of the storm as shown in

the figure(1.2).

˙sinflow =
2 ∗ π
Ta

∫ r0

re

[Ck|Va|(k∗0 − ka)]ρardr (1.22)

This integral ranging from ra which covers the area of the control volume is the

inner radius towards, r0 which denotes the outer radius. Surface exchange coeffi-

cient, Ck, average wind speed 10m above the land and ρa, the air density at the

altitude along with the specific enthalpy of moist air defines the inflow entropy for

the cyclone.

Specific enthalpy can be written as,

k ≡ [Cpd(1− qt) + Clqt]T + Lvq (1.23)

Where, k∗0 is the enthalpy of air which is saturated at SST and pressure, ka ascribe

to the enthalpy of air at 10m altitude above the surface, which is considered as

reference altitude. Computing outflow energy involves rigorous treatment (Bister

and Emanuel [1998]). Here, we simplify the calculations by safely assuming an

artificial energy sink that removes heat energy which is then added in the bound-

ary layer. Considering the outward energy flow at mean temperature, T0, taking

outflow far away from the centre in the region where kinetic energy diminishes

so that the outflow heat energy is then equal to the total energy. With these

assumptions, the outflow entropy is defined in terms of the outflow temperature

as,

˙soutflow =
2π

T0

∫ r0

re

[Ck|Va|(k∗0 − k0)]ρardr (1.24)

Dissipation of kinetic energy in the boundary layer can be accounted to the dis-

sipation of the kinetic energy of the wind which is an irreversible process. The

boundary layer temperature here is defined by Ta. The irreversible entropy source

originating from wind dissipation in the boundary layer can be integrated over the

considered control volume of the storm as,

˙sdissipation =
2π

Ta

∫ r0

re

[CD|Va|3]ρardr (1.25)
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here, CD refers to the surface drag coefficient state variable, entropy, s, vanishes

in a steady state system. Thus, considering it to be a steady state system, total s

which is the sum of equations 1.24, 1.22 & 1.25 disappear. Thus, ˙sinflow+ ˙soutflow+

˙sdissipation = 0

2 ∗ π
Ta

∫ r0

re

[Ck|Va|(k∗0−ka)]ρardr+
2π

T0

∫ r0

re

[Ck|Va|(k∗0−k0)]ρardr+
2π

Ta

∫ r0

re

[CD|Va|3]ρardr = 0

(1.26)

Thus,
Ck
Ta
|Va|(k∗0) +

Ck
T0
|Va|(k∗0 − ka) +

CD
Ta
|Va|3 = 0 (1.27)

Ck|Va|(k∗0 − ka)
(
T0 − Ta
T0

)
= −CD|Va|3 (1.28)

We also assume that all the three integrations occurs at the radius of maximum

winds where the dissipation rate are close to their maximum values. Thus, at the

radius of maximum winds, the storm speed is,

|Vmax|2 =
Ck
CD

(Ta − T0
T0

)
(k∗0 − ka)|m (1.29)

From equation(1.29), we can make out a few vital points worth consideration in

terms of thermodynamics and dynamics of the storms.

Fundamentally energy cycle of a TC is analogous to Carnot heat engine. This

inflow entropy from the source, the SST, can be quantified as low entropy and

warm shades show higher entropy.

1. Maximum wind speeds or specific kinetic energy of the winds is directly

proportional to the disequilibrium. This thermal disequilibrium, (k∗0), ap-

pears due to the thermal gradient and also inversely depends on the lower

tropospheric wind speed.

2. Thermodynamic efficiency, given by, Ta−T0
Ta

is multiplied with (k∗0) and this

makes cyclone’s efficiency greater than a Carnot engine. This additional

multiplicative term can be accounted to the use of a part of the dissipated in

the cycle. This recycling of the dissipated energy increases storm’s efficiency

over Carnot engine.

3. Specific kinetic energy of the storm or its wind speeds depend on the ratio of

the exchange coefficients of enthalpy and momentum and not on the variables

themselves.
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Using equation(1.29), we can estimate the value of cyclonic winds, provided values

of other parameters are known. Ta which refers to the temperature close to the

sea surface could get cooler owing to evaporation sea spray and adiabatic cooling.

If we use equation(1.29) to determine maximum value of tropical cyclone intensity

then we can take Ta as SST. Passage of TC over the sea surface decreases the SST

by about 5 K. If we know the vertical profile of the atmosphere of the TC, its

convenient to determine the outflow temperature, T0. ∵ TC move inertial gravity

waves, caused owing to effect of buoyancy on a fluid parcel which then oscillate to

the interface between the two fluids and hence act as sub-critical vortices. Sub-

criticality of TC ensures that isentropic surfaces blend in well with the storm’s

unperturbed rings i.e. the air grows up to the region with temperature equal to the

unperturbed environmental air of the TC lower stratosphere that has isothermal

atmosphere. If these air parcels reaches up to the lower stratosphere layer, then

we can assume the outflow temperature to be a constant value equal to that of

the stratospheric layer. Finding Ck and CD is difficult especially in wind speeds

greater than 20 m/s due to froth and spray over the ocean surface.

For this situation of ocean, we do not have a suitable enthalpy and momentum

theory. Thus, it poses a challenge to forecast the behaviour. Here, we consider the

coefficients to be equal in strong winds. Difference of (k∗0 − ka), can be found out

with the knowledge of surface pressure and humidity at the surface of maximum

winds. Employing the definition of specific enthalpy 1.23, we can have,

(k∗0 − ka) ' Lv(q
∗
0 − qa) (1.30)

Here, air temperature is taken as equal to the SST. Specific humidity is the ratio

of water vapour mass to that of the air. Thus,

q =
mv

md +mv

=
ρv

ρd + ρv
= ε

e

p− (1− ε)e
(1.31)

Where, total air pressure is defined as, p; density of water vapour as, ρ, the density

of dry air as, ρdS, the partial pressure of water vapour as , e, and molecular weight

of water per unit molecular weight of dry air as, ε. In atmosphere, e << p. Thus,

(k∗0 − ka) ' Lv ∗
[

(e∗0 − ea) ∗ ε
p

]
(1.32)
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Introducing, relative humidity, H as, e/e∗,

(k∗0 − ka) '
εLve

∗(1−Ha)

p
(1.33)

Substituting value of (k∗0 − ka) from 1.33 in 1.29, we get,

|Vmax|2 =
Ck
CD

(Ta − T0
T0

)εLve∗(1−Ha)

p
|m (1.34)

Thus, by knowing the value of parameters on the right-hand side, we can compute

a very useful expression for the maximum cyclonic winds and hence the cyclone

intensity.

Both the methods give similar results. Here, the theory of the later approach is

explained. As can be observed in the figure (1.3), spiralling in towards the storm

centre acquires heat from the underlying ocean basin. This heat shows up as an

increase in humidity instead of rising in air temperature. Evaporating water takes

in ocean’s heat which resides in the water vapour content of air and does not

show as rising in air temperature and is hence known as latent heat. Once the

air reaches the eyewall of the storm, it turns upwards and owing to inertia keep

rising upwards to about 15 to 18 km of height, and then flow outwards from the

cyclonic structure. The total increase in heat content on this leg1, figure(1.4), can

be seen as a total rise in water vapour amount in the atmosphere and the decrease

in pressure; this effect is called “heat input by isothermal expansion”. Not all of

the heat input into an engine turn to work. So, in our system, a TC, not all the

added heat work out to cause wind gusts.The system (TC) is considered analogous

to the thermodynamic engine and the fraction of useful heat is the efficiency of

this system.

ε =
Ts − T0
Ts

=
∆T

Ts
(1.35)

Where, Ts denotes temperature of the source that here is ocean temperature, SST,

in Kelvin. T0 represents the temperature at which heat is exported from the system

in Kelvin. The taller a cyclone is lower is the temperature at the top of the storm,

higher is the temperature gradient, ∆T and hence, more is the thermodynamic

efficiency. In order to compute, T0, we need to know how much heat the eye-wall

possess and the vertical profile of the air in the environment of the storm. We can

then find out how high air can rise in the eye-wall and using this information, we
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can find the magnitude of T0. Using SST as the source temperature, Ts, a typical

hurricane possess efficiency of approximately 1
3
. For each square meter of ocean

surface area, the ate of energy fed into a storm system is given by, a parameter

defined as generation rate, G.

G = εCkρvs(k
∗
0 − ka) (1.36)

In equation, 1.36, parameter Ck denotes enthalpy transfer coefficient, vs is the

surface wind speed, k0 defines enthalpy of the ocean surface, ka again is the en-

thalpy but of the atmosphere in the vicinity of the storm. Close to the radius of

maximum winds, vs, is large. Once the storm has reached steady state, so that no

intensification or change in it occur, most of the energy is consumed by friction

between the winds and sea surface. Dissipation of this energy per unit square

metre of sea surface is given by,

D = CDρv
3
s (1.37)

Dissipation rate as exhibited in equation 1.37, show that the rate depends on upon

the cube of maximum wind speed, drag coefficient, CD, and ocean density, ρ.

Now, since frictional dissipation, D, depends heavily on vs, which is maximum

near the radius of maximum winds just like energy generation rate, G; we can

equate D to G at the radius of maximum winds.

CDρv
3
s = εCkρvs(k

∗
0 − ka) (1.38)

v2s =
Ck
CD

ε(k∗0 − ka)|m (1.39)

Equation 1.39 gives cyclonic wind gusts in terms of enthalpy exchange ratio, ef-

ficiency and atmospheric-ocean enthalpy. Ratio Ck

CD
express exchange of enthalpy

and momentum between air and water. Thus, we need to know the fraction of

oceanic heat exchange per unit momentum exchange, Ck

CD
. Also, the speed does not

depend on the internal structure of the storm. Since, we do not have observational

values of the ratio, Ck

CD
, it was assumed to be unity in the code used. Though, this

assumption about the stated ratio is contradicted by several studies e.g. (Smith

et al. [2014]) show that, ratio Ck/CD less than 0.75 can cause cyclone formation

it was not allowed following the theory. The physical explanation of such result
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was given to be the regime shift of the structure of turbulence in the boundary

layer where Ck values are high. The mechanism was explained using spectral anal-

ysis which showed that as the boundary layer approaches neutral stratification,

smaller-scale eddies dominantly contributes to the turbulent transport of humidity

and sensible heat Thus, Ck, values increase in the process.

This traditional thermodynamic approach to determine cyclone intensity provides

a good beginning to our understanding of cyclones’ strength. However, further de-

tailed cyclone physics is required to determine PDI values closer to the observed

ones. Present cyclone intensity model predicts cyclone intensity values which can

be understood in terms of Vmax and Pmin. Cyclonic wind speed as given by Equa-

tion(1.39), shows the direct dependence of cyclone’s intensification on its thermo-

dynamic efficiency, which in turn depends on the ocean-atmospheric temperature

gradient rather than ocean temperature merely. Further findings in this study un-

ambiguously reveal that it’s not the high sea surface temperature that influences

cyclone strength but the difference between ocean and atmospheric temperature.

Figure 1.3: Hurricane Structure. Source: COMET Program (COMET [2011])

1.3.1 Thesis Aims and Outline

The main objective of this thesis is to understand changes in TC activity under

climate change scenario. A thorough investigation into the nature of TC activ-

ity, focusing on Tropical Cyclone Intensity (TCI) under present and the climate

change (2XCO2) situation is conducted. An important part of the research is to

quantify cyclones’ sensitivity to global warming.
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Figure 1.4: Hurricane Structure. Source: The COMET program (COMET
[2011])

As the developed techniques like power dissipation index (PDI), to quantify TC

intensity lack closeness to the observed values, an in-depth study is done to quan-

tify the gap between theoretical values and the observed ones. The average value

of the gap found in different ocean basins is then deducted from the model output

under doubled CO2 layout. So that we can compute and compare TCI under

increased CO2 situation which is closer to the observed value/s.

TCI deduced from theoretical cyclone PDI model (Bister and Emanuel [1998] with

input from Met office Hadley center’s global climate model (GCM) is evaluated

for further analysis. Most of the climate change impact assessments account for

climate change uncertainty by using scenario based approach.

Research questions investigated in this thesis are as follows:

1. How does tropical cyclone intensity respond to climate change? Is the re-

sponse same in all the ocean basins?

2. How is tropical cyclone strength distributed over different ocean basins across

the globe? Is this distribution homogeneous or it varies spatially with dif-

ferent ocean basins possessing storms of different strength.

3. Can we develop a simple statistical model to determine the distribution of

tropical cyclone intensity?

4. How has tropical cyclone intensity changed over time?
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5. What all natural processes are there that influence tropical cyclone intensity

in different ocean basins? Which natural phenomenon is there that impacts

tropical cyclone intensity in all the ocean basins?

6. How good is sea surface temperature in determining tropical cyclone inten-

sity?

7. Amongst the various parameters responsible for tropical cyclone intensifica-

tion, SST, SLP, atmospheric temperature, wind shear and moisture content,

which input parameter has the strongest impact on cyclone intensification?
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CISK WISHE

Expansion Convective Instability of Wind Induced Surface
Second Kind Heat Exchange

Assumpations Demands initial Initial instability is not
instability (like frontal low, needed. Evaporation from
tropical wave) ocean, enhanced by

winds cause instability
Working Once a surface area Once a low-pressure
mechanism of low pressure is region is in place,

established, air convergence at the
rises and in turn, surface is enhanced,
makes atmosphere resulting in
surrounding the faster wind
disturbance more unstable. and
As instability increases, more evaporation.
air rises faster causing
thunderstorms and
deep clouds.

Feedback The end result is Like in CISK, a
mechanism a positive feedback positive feedback is

whereby clouds and established whereby TC
thunderstorms continue to continue to strengthen
develop as long as as long as the ocean
ocean temperature temperature is
is sufficiently warm. warm enough.

Difference Pre-existing Surface wind
convection is the is the driving
driving mechanism mechanism

Similarities 1) End result 2) Heat
is a positive release from
mechanism. ocean aids TC

air circulation.

Working

mechanism
(Pictorial
representation)

Table 1.1: Assumptions, working mechanism, similarities, and differences of
CISK and WISHE theories.(Image source - Comet programme: http://comet.

ucar.edu/)

http://comet.ucar.edu/)
http://comet.ucar.edu/)


Introduction and Motivation 21

Parameter Favorable condition Genesis Role
Warm ocean temperature or Large (≥ 26.5◦C) Maintains surface energy to
Ocean energy parameter, assist large sea to air energy
E transfer assist large sea to air

energy transfer
Tropospheric humidity: Large (> 40%) Allows for deep cumulus
Humidity parameter R̄H between convection and high rainfall
500 to 700 mb efficiency
Unstable atmosphere: Moist stability Large Permits cumulus
parameter, dθe

dp
gradient convection

from surface to 500 mb > 15◦C
Sufficient Coriolis force Helps sustain pressure
or f Large gradient & sustaining of BL

(latitude BL winds against
> 5◦) frictional dissipation

Low vertical wind shear Vertical Induce condensation warming
Parameter, 1

Sz+3
wind to be concentrated over

where 1
SZ

is in units of shear moving disturbance,

(m/sec)( − 1) 750 mb < 10m/s inhibiting ventilation energy
Low level disturbance: Large Allows low level mass
defined by vorticity parameter > 40% moisture, & momentum
at 950 mb in of normal convergence
10−6(sec)−1

Table 1.2: Summary of the primary TC genesis parameters



Chapter 2

Methodology and Data Used

Global Climate Models, GCMs, are sophisticated tool to under-

stand our changing climate which when combined with advanced sta-

tistical methods to nurture our understanding of the intriguing natural

phenomena.

2.1 Model Output

The research question investigated in the thesis use wide range of methods; sta-

tistical, spectral and numerical, and a collection of data sets which are introduced

here in this chapter. This section presents a brief summary of the tools used;

Global Climate Model (GCM) and Perturbed Physics Ensemble (PPE), statistical

analysis methods like Partial Least Square Regression (PLSR), wavelet transform

and least square regression method. An in depth explanation of specific methods

applied under various scenarios is given in each chapter as needed.

Section 2.1.1 of this chapter describes the reanalysis data, as well as observed

variables employed in this work. Ways to analyse our hypothesis or carry out a

research is stated in the methodology section.

22
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Figure 2.1: Processes and interactions involved in the global climate system
( Courtesey Treut et al. [2007])

2.1.1 Global Climate Model (GCM) an Introduction and

Model Physics

Global Climate models (GCMs) are numerical models representing physical pro-

cesses in our atmosphere-ocean-cryosphere and land surfaces. These models can

be put to use to simulate the response of increased green house gas concentration.

These are widely applied for weather forecasting, understanding the climate, and

projecting climate change. All the GCMs fragment the fluid dynamics equations

to simpler forms that are easy to solve.

These climate models can be categorized into three types. Simple radiation heat

transfer model, radiative convective models with more complexity included and

finally the coupled atmosphere ocean sea ice global climate models which lie at

top of the hierarchy of GCMs in terms of complexity Coupled models discretize

and solve the full equations for mass and energy transfer along with the equations

quantifying radiant exchanges.

In order to enhance our understanding of the earth system including atmosphere,

land, ocean and cryosphere (snow, ice, permafrost) quantitatively, computer mod-

els are employed. These climate models try to mathematically replicate the com-

ponents of earth system and their interactions. Various physical, chemical, and

biological processes happening in our atmosphere, (Figure 2.1), are computed on
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a grid. Despite the availability of supercomputers, it is still a computational chal-

lenge to simulate the grid scale good enough to resolve clouds, along with their

subsequent rainfall, small ocean eddies, and other small scale processes involved

in boundary layer & ocean-atmospheric exchange phenomena.

Parametrization provides a method to show these small scale phenomena on model

grid. The computer models, weather forecasting models, used to simulate atmo-

sphere are known as Atmospheric General Circulation Models (AGCM) just like

the models that simulate ocean circulations and are termed as Ocean General Cir-

culation Models (OGCM). Both types of models are used separately when ocean

surface and sea ice amount is fed into AGCM and surface temperature, ocean

salinity along with wind speeds are used as input to the OGCM Harvey et al.

[1997]. However, owing to large heat capacity of ocean basins, which can strongly

influence atmosphere via oceanic heat transfer, both models are coupled and are

called AOGCM.

2.1.2 GCMs and Tropical Cyclones

Spatial scale involved in Tropical Cyclones (TC) formation and their activity is

much finer than our present day GCMs. Convection and interaction between large

and small scale vortices in storms pose a challenge to even finer GCM resolution, 12

to 30 Km Harvey et al. [1997]. GCMs consider many different physical phenomena

and few of which are much smaller than the spatial scales of GCMs. To solve this

problem, parametrization comes in handy.

2.1.3 Perturbed Physics Ensembles (PPE) and Multi Model

Ensembles (MME) Explained

Perturbed physics ensemble is a collection of model runs from different model

variants produced by varying the values of parameters in a given climate model

configuration.

PPE is generated by changing the values of parameters involved in a climate

model, thus creating a different version of that model. Parameterization values

involved in GCMs, that account for the relationship between the large scale and
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small scale processes may not be precisely known and can have a range of ac-

ceptable values. This type of uncertaininty source is called parameter error. By

changing these variables with a range of plausible values creates different versions

and may lead to different climate projections for each variation. Ideally, full range

of variability of each model variable would be explored to generate a certain type

of climate projections. Spread of results thus obtained are then examined Collins

et al. [2011] Multi Model Ensemble (MME) is an alternative approach to weigh

uncertaininty in the model output apart form using PPE. The technique employ

different climate models that include different structures. In order to understand

probability distribution of future climate change, results from PPE and MME are

combined. PPE can be beneficial over MME; for instance, in case of the ocean,

when inadequate amount of information makes it challenging to predict probabil-

ity of future variations in marine sector, unlike in case of atmospheric and land

surfaces. Beneficial insights about the future maritime climate can be obtained

from the PPE and to a lesser extent MME.

2.2 Observational Data

2.2.1 IBTrACS Data

International Best Track Archive for Climate Stewardship abbreviated as, IB-

TrACS, supply global TC best track data in terms of cyclone distribution, fre-

quency, and intensity. 1

2.2.1.1 Advantages and Limitations of IBTrACS Dataset

Most importantly, this data archive combines global TC data at a central location.

The required data can be extracted in one single file or multiple files as needed.

IBTrACS repository is considered to be the most exhaustive global set of historical

TCs data available and it includes data from 12 different agencies and historical

databases. However, there are a few weaknesses of the archive. Firstly, multiple

sources providing TC data could be conflicting. Secondly, North Indian Ocean

data is limited and goes back to 1990 only. Finally, operational procedures and

1The data set is available in netCDF, ASCII and Shapefile formats.
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observational systems update and vary over time which may lead to a significant

discrepancy [Knapp R et al., 2010].

2.3 HadISST Dataset

The version 1.1 of Hadley Centre’s global sea ice and sea surface temperature data

used here constitutes global SST and sea ice field. The dataset has monthly time

resolution starting from 1871 until present.

2.3.0.1 Data Assimilation Technique, HadISST

HadISST applies reduced space optimal interpolation to SSTs from the marine

databank, primarily ship tracks and ICOADS (International Comprehensive Ocean-

Atmosphere Data Set) through 1981 and a combination of in-situ and calibrated

data acquired from satellites since 1982. SST data between 1871 and 1971 is fine

tuned by utilizing “Bucket Correction”. Grid boxes of the archived datasets which

were fractionally covered with sea ice, were employed to use the statistical relation-

ship between the sea ice and SST to fill in the missing gaps. If a gird box is covered

by sea ice by over 90%, a constant value of -1.8 ◦C is considered for the region.

The dataset is mainly appointed to be used as boundary conditions for atmo-

spheric models2. Spatial resolution of the dataset is 1◦ X 1◦ and constitutes ocean

only data. Input data is obtained from Met office marine data bank, ICOADS,

GTS, and AVHRR SSTs. The archive is maintained by the Computational and

Informational Systems laboratory, CISL, at the National Centre for Atmospheric

Research, NCAR, is sponsored by national science foundation, NSF. and the orig-

inal data are available from the RDA in dataset number, ds277.3.(Solomon and

Newman [2012],Deser et al. [2010],Rayner et al. [2003])

2.3.0.2 Strengths and Weaknesses of HadISST Dataset

The spatially exhaustive global dataset, however, possess few limitations valuable

to be employed as a boundary condition for forecasting AMIP runs. Limitations

of HadISST includes an absence of varying SST measurement methods after 1941,

2The data is available in netCDF and ASCII formats
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which are not accounted for. Polar regions, especially Southern Ocean SST data

is exiguous. SST in high northern latitudes also depends upon the sea ice analysis

which has its own limitations. Thirdly, non-robust SST appearances have been

noted; for instance, SST trends over the 20th century in the equatorial Pacific

Ocean are miss interpreted owing to the interpolation methods applied Solomon

et al. [2011] and/or due to ENSO variance Solomon and Newman [2012]. Schmidt

et al. [2012]

2.3.0.3 Climate Model Intercomparison Project version-5 (CMIP5)

Dataset

The TCPI was computed for the historical runs (which includes all natural and

historical forcings). These are simulations of recent past between 1850 to 2005.

Forcings included in the simulations were consistent with the observations. These

forcings are atmospheric composition, due to human and volcanic activity, so-

lar forcings, natural and anthropogenic aerosols and the land use change. The

retrieved data set, GFDL-CM3, falls under the auspices of the Climate Model In-

tercomparison Project version-5 (CMIP5). This model is designed to serve as the

physical component of ESM (discussed next) (Leo J. et al. [2011])

Advantages

1. 1. CM3 dataset shows notable improvements over its predecessors (CM2.1

and earlier) by including a modified SST bias pattern and reduced biases in

the Arctic sea ice cover.

2. 2. Improved simulations in tropical land precipitation relative to previous

GFDL models. ((Leo J. et al. [2011])

Disadvantages

1. Ocean interior simulations in CM3 is generally warmer than its predecessors

which adversely impacts the interior bias (Griffies et al. [2011])
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2.3.1 Atmospheric Reanalysis Dataset

Reanalysis involves a methodological approach to produce data sets for climate

recording and research purposes. The methodology involved here is that the data

sets are created by inputting observational data, “fixed” (6 to 12 hours collection

for atmospheric datasets) into models which assimilate all the inputted observed

data over the period of analysis. Since this approach is unvarying, it gives dy-

namically uniform approximation of the climate state at each time step. The only

varying component of this framework, observations as input, is un-escapable since

these raw values are obtained from radiosonde, satellite, buoy, aircraft, and ship

reports but are not limited to these. About 7 to 9 million observations are ab-

sorbed at each time step in the reanalysis. These products have been used vastly

and found helpful in research and climate monitoring. However, misleading trends

and unreal variability can be produced owing to fluctuating observational blend-

ing. The dataset should not be considered same as real or treated as observational

data Schreck [2013].

Advantages and Disadvantages of Reanalysis Datasets Reanalysis dataset

involves the availability of global statistics. Importantly, it contains time and

space resolution over three or more decades. There are over 100’s of variables that

are accessible for analysis and a better understanding of our climate. Reanaly-

sis aims to continuously improve resolution and biases. The approach includes

millions of observations into a consistent data assimilation methodology to en-

able rigorous analysis of a number of climate processes. Such assimilation would

be almost unpractical for an individual to perform. Prominently, the data set is

generally straightforward to extract from repositories. On the other hand, figures

in reanalysis owing to varying blend of observations and biases in observations

and models can lead to artificial changes and trends in the output values. Since

reanalysis results heavily depend on the observation, constraint in the assimilated

observational digits, spatially and temporally can then influence the confidence in

reanalysis output.

2.4 Tropical Cyclone Scales

TC scales are defined based on the basis of its wind speed, size and intensity. The

well known cyclone indices introduced so far are as follows:
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1. Saffir-Simpson’s Scales Williams [2007]

2. Accumulated Cyclone Energy (ACE) Saunders and Lea [2007]

3. Power Dissipation Index (PDI) Emanuel [2005c]

4. Track Integrated Kinetic Energy (TIKE) Misra [2013]

5. Integrated Kinetic Energy (IKE) Mark D and Timothy A [2007]

One of the well known TC classification done according to its wind speed is known

as Saffir-Simnpson’s scale. The index measure storm’s maximum sustained wind

speed, for at least 10 mins, above 10m of height from the sea surface. The major

limitation of this measure of the storm are,

1. No consideration of storm’s wind field

2. Absence of cyclone’s capacity to cause coastal flooding

These limitations were taken into account to develop a new TC classification of

scales. Based on the experience of the cyclone, Sandy reaching category 3 hurri-

cane and which weakened to category 1 storm just before making landfall. This

category classification based on Saffir-Simpson’s scale lead many to underestimate

its catastrophic capability. But when the storm made a landfall, it made record

breading storm surge over Jersey bank and then into New York harbor, thereby

inundating low lying areas. Lack of information about Sandy’s size and energy

caused a lot of destruction and the storm proved to be far more fierce than 2005’s

TC “Katrina“. A new index was then introduced by scientists at Florida State

University. This new scale takes into account cyclone’s intensity, duration and

size. This new ranking method is called, Track Integrated Kinetic Energy (TIKE)

and is an extension to already known metric, storm’s Integrated Kinetic Energy

(IKE), which was defined in 2007. TIKE would help to add up to ACE and PDI,

both of which represents exhaust energy of a storm.TIKE can be beneficial for

warming duration storm surge risk at the time when sea levels are high and coastal

population is rising It could help scientists to inspect storm size which might be

connected to warming sea and air temperature. IKE index considers the life time

of a cyclone over all the well known storms of the season and hence provide a

measure to compare each storm in terms of its size, energy, wave, wind strength,

relative to other storms of the season. TCs has the capacity to churn ocean water



Methodology and Data Used 30

during its movement over the ocean surface via waves and storm surge. Thus, it

is vital to understand how storm winds affect structures in its course of motion

and the index, IKE, includes that feature as well. It has been noticed that dam-

age from coastal flooding far exceeds the damage due to strong winds. Hence,

indices focusing on cyclone’s intensity (PDI) part may not well alarm people for a

catastrophic events Misra et al. [2013] PDI Power dissipation index is defined as

the sum of cubes of maximum one minute sustained cyclonic wind speeds at six

hourly intervals at all the time when a storm is at least tropical storm strength.

The thermodynamic imbalance between the atmosphere and underlying tropical

seas provide energy to cyclones for their intensification. More is the thermo-

dynamic disequilibrium between tropical oceans and overlying atmosphere, more

energy is fed into a cyclonic system. The stated imbalance act as a source and

any factor example a colder land surface, colder SST, surface drag, frictional dis-

sipation, would act as a sink for the cyclonic heat engine. Thus, TCs speed limit

can be defined thermodynamically. Once we know the rate and the efficiency with

which this reservoir can convert heat to wind energy, TCs speed bounds can be

determined. This depend upon the contrast between the atmosphere and ocean

temperatures. Interaction of tropical cyclones with their atmospheric and oceanic

environment limits the intensity of most storms just below the theoretical value.

Still, the limit could be useful for estimating the most intense storm/s falling over

an area over a reasonably long period of time.

1. Reanalysis Data

Reanalysis data is a comprehensive record of how weather and climate are

changing over time. State of a system in reanalysis is estimated by combining

observations and numerical model. This reanalysis project used state of art

analysis system to perform data assimilation using data since 1948. The

data has a global coverage (88.54N - 88.54S, 0E - 358.13 E).

Monthly mean NCEP/NCAR reanalysis dataset is used as input to deter-

mine tropical cyclone strength using an algorithm based on a thermodynamic

model for cyclone intensity. The algorithm (Bister and Emanuel [1998]) takes

SST, SLP, atmospheric temperature, and mixing ratio as input variables and

yield maximum achievable cyclone winds (Vmax) & theoretically minimum

TC pressure (Pmin) attainable. Unlike SST (COBE-NOAA [2015],NOAA

[2014],Smith et al. [2007]) and SLP (Kalnay [1996]) which are considered at

surface level, atmospheric temperature and mixing ratio (Reanalysis [2014])
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are considered in the vertical atmosphere. Atmospheric sounding is available

for 17 pressure levels including the surface level up to lower stratosphere. 17

pressure levels considered are, 1000, 925, 850, 700, 600, 500, 400, 300, 200,

150, 100, 70, 50, 30, 20, & 10 mb. Data for the mixing ratio, on the other

hand, range up to a lesser extent, up to 300 mb, which lies in the lower

tropopause. SLP, atmospheric sounding, and mixing ratio datasets, used

in developing statistical model, are considered from 1948 onwards. SST is

expressed in ◦C, SLP in mb, atmospheric temperature in ◦C and the mixing

ratio in g/kg. The value of mixing ratio ranges between 0 g/Kg in cold con-

tinents to 20 g/Kg in warm tropical areas (Levine [1995]). It’s worth noting

here that mixing ratio is also referred to as specific humidity in the reanalysis

product used here. Three climatological SSTs (COBE-NOAA [2015],NOAA

[2014],Smith et al. [2007]) used here were available at 2.5 degree x 2.5 de-

gree global grids (144x73), ranging from 0.5 ◦E to 359.5 ◦E, 89.5◦N to 89.5◦S.

The first set of SST data, ERSST.V 3b, is the NOAA’s extended reconstruc-

tion made using most recently available comprehensive ocean-atmospheric

dataset (COADS) and improved statistical methods that allow stable re-

constructions using sparse data. ERSST.V 3b is an improved extended

reconstruction over the second version. The second set of SST dataset

used, SST − COBE, is a monthly mean of global dataset created in June,

2011 at ESRL/PSD using the grid data from JRA. Third SST dataset em-

ployed is NOAA’s second version optimum interpolation SST, SST−OI.V 2.

SST − OI.V 2 is an in-situ and satellite SST combined analysis for climate

(R.W. et al. [2001]).

2. Model Data

In order to explore influence of projected change of SST on cyclone intensity

with enhanced levels of green house gases, we make use of climate model

ensembles as derived from the third version of Hadley Centre climate model,

HadCM3. Considered climate model ensembles taken from perturbed physics

ensemble, are retrieved from HadCM3 Collins et al. [2011].

HadCM3 simulations used here are done on the 1.25X1.25-degree grid. This

enables better heat transport simulation. HadCM3, version 3 of the sim-

ulations is used here and is better than the previous one. The 3 primary

improvements are as follows:
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(a) The new version does not require flux adjustments to prevent large

climate drifts.

(b) The improved atmosphere and ocean components.

(c) The newer version does not have spin up procedure.

2.5 Methods Applied

The standard statistical methods used in our investigation were as follows:

1. Pearson’s Correlation coefficient and Bootstrap Methods

2. Regression Analysis

3. Partial Least Square Regression

4. Ensemble Empirical Mode Decomposition (EEMD)

5. Wavelet Transform

6. Bilinear Interpolation

2.5.1 Pearson’s Correlation coefficient and Bootstrap Meth-

ods

Correlation Coefficient Correlation is an indicator of whether or how strongly

pairs of variables relate to each other. +1 denotes a perfect association. 0 indicates

no correlation and -1 shows that the variables are anti-correlated.

The correlation coefficients are essentially useful in the early stages of bivariate

analysis (Trauth [2010]). A correlation coefficient is sensitive to outliers and thus

should be used cautiously. The Pearson’s moment Correlation Coefficient is one

of the most popular correlation coefficient method used to estimate a population’s

correlation from a sample of data. For N number of pairs of X, Y data sets, having

a univariate standard deviation of Sx and Sy respectively, the Pearson’s moment

Correlation Coefficient is given as,

RXY =

∑N
i=1(Xi −X)((Yi − Y ))

(N − 1)SXSY
(2.1)
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where the numerator represents the correlated sum of products of the which on

dividing with (N-1) yields the sample covariance. The covariance is widely used

measure in bivariate statistics. The Pearson’s moment Correlation Coefficient can

be tested for statistical significance by determining the probability of an R-value

of a random sample from the population with a zero correlation coefficient. Using

t-statistic, the significance can be computed as follows:

t = R

√
N − 2

1−R2
(2.2)

If thus computed t-value comes out to be higher than the critical t, with N-

2 degrees of freedom and at α=0.05, the correlation coefficient could then be

considered significant at the level α.

Apart from this, we have also used the bootstrap method to determine the signif-

icance of the correlation coefficient computed. The bootstrap method repeatedly

resamples the sample data set of N data points by choosing an arbitrary set of

sub-samples with replacement.

Bootstrap Analysis Bootstrap method uses here re-samples the data one thou-

sand times, then computes the correlation coefficient and the regression coeffi-

cients for each new subsample. The re-sampling scheme selects an arbitrary set of

sub-samples with replacement. Statistics of the obtained sub-samples administer

improved knowledge about the characteristics of the population.

2.5.2 Regression Analysis

Linear Regression Classical linear regression method used here describes linear

relationship and trend between Vm, SST, SAT3, with time. A trend in cyclone

intensity (m/s) is plotted here. Here, time (independent variable) is on the abscissa

and tropical cyclone intensity (dependent variable) is on the ordinate axis. The

regression technique aims to minimize the deviation in the dependent variable i.e.

∆Vm = minimum. Trend of Vm is then predicted by the best fit line given by,

Y = b0 + b1X (2.3)

3SAT Here, we define difference between ocean and mean atmospheric temperature, (SST -
mean(AT)), as SAT
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Where, b0 and b1 are the regression coefficients. b0 denotes the intercept with

y-axis and b1 represents the slope. Applying the least square criterion, sum of the

deviation is minimized using,

i=n∑
i=1

(∆yi)
2 =

i=n∑
i=1

(yi − (b0 + b1xi))
2 (2.4)

In order to gain a better projection of the regression coefficients, we use the boot-

strap method with 1000 samples. We notice that the statistic, standard deviation,

of the regression line is small in the cases shown here. Regions with higher stan-

dard deviation, like Southeast Pacific Ocean, are not shown here since they signify

not so good estimate of the fit. Small standard deviation (≤ 1) imply that we have

a good estimate of the fit. Analysis of tropical cyclone intensity and its connec-

tion with various parameters studied here using Pearson’s correlation coefficient

is tested using the bootstrap method with one thousand re-samples taken. Only

the reliable values are stated in the text.

2.5.3 Partial Least Square Regression

Partial least square regression is a combination of multiple linear regression and

principle component analysis. The method aims to predict or analyze dependent

predictors or variables. This is achieved by a set of input variables which are used

to obtain a set of orthogonal factors called, latent variables which have the best

predictive power. The method is particularly useful when we have a large set of

independent variables.

Partial least square regression was interpreted in statistical framework in 1997 by

Phatak and De-Jong as,

Y = IK (2.5)

where I denotes the observations described by K dependent variables.

X = IJ (2.6)

where, X represents the number predictors collected on these I observations.
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2.5.3.1 Goals of partial least square regression

The aim of this method is to predict Y from X and to express the common features

between the two. When Y is a vector and X is full rank i.e the number of predictors

equals the number of observations made, multiple linear regression. However,

there are cases when we do not have enough observations to match the number

of variables in X. In such cases, X is likely to be a singular matrix and regression

approach fails because of multi-collinearity. Various methods are used to encounter

this type of problem. One method reduces the number of variables example by

using stepwise approach. Another method known as PCS decompose X into its

principal components (which are basically the eigenvectors of X as regressors on

Y) using singular value decomposition method as follows:

X = S∆V ′ (2.7)

where,

S ′S = V ′V = I (2.8)

Here, S and V are the matrices of the left and right singular vectors with ∆ repre-

senting a diagonal matrix having the singular values at the diagonal. According to

their respective singular values, the singular vectors are ordered. Singular values,

however, corresponds to the square root of the variance of X explained by each

singular vector.

Columns of the singular vectors, S are used to predict Y using standard regression

approach. A standard regression approach can be applied at this stage because

orthogonality removes the problem of multi-collinearity but still, we need to choose

the number of the optimum subset of predictors or variables. This could be done

by retaining first few components that could explain X better. However, there is

an issue with this approach and the issue is that those first few optimum subset of

predictors explains X well and it doesn’t guarantee that they appreciably explain

Y as well.

Partial least square regression solves this problem by decomposing both X and Y

together to find components of X that are also relevant to Y. The method deter-

mines a set of components called “Latent vectors”, which are found by considering

the covariance between X and Y and thereby generalizing principal component
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analysis. Regression method is used next to predict Y using the decomposition of

X.

2.5.3.2 Simultaneous decomposition of predictors and dependent vari-

ables

Partial least square regression decompose X and Y as a common set of orthogonal

factors (scores) and loadings (need not be orthogonal). Predictor set X is decom-

posed as, X = TP ′, with T ′T = I such that I is the identity matrix. Analogous

to PCA, T is called as score matrix and P as loading matrix. Similarly, Y is de-

composed as, Ỹ = TBC ′, where B is the diagonal matrix with regression weights

at the diagonal, C is the weight matrix of the predicted variable, Ỹ . Columns of

matrix T represents the latent vectors.

2.5.4 Ensemble Empirical Mode Decomposition (EEMD)

Hilbert-Huang Transform De-trending and determining the intrinsic oscillations

encapsulated in a complex signal like the weather or climate time series is a chal-

lenging task. For this purpose a method known as, Empirical Mode Decomposition

(EMD) was developed Huang et al. [1998]. EMD forms the fundamental part of

Hilbet Huang Transform. The method is similar to the wavelet and fourier trans-

form in terms of decomposing the original signal into its constituent components.

These components are nearly orthogonal in nature and are called as intrinsic mode

function. Unlike the Fourier Transform method, EMD does not assume a priori

based analysis and is, therefore, a suitable tool for detecting the multiple periodic

components in an underlying time series. This decomposition method is based on

a basic assumption that any data consist of a finite number of intrinsic modes.

These intrinsic modes are basically the components of oscillations and are known

as, IMF, Intrinsic Mode Function. The signal is decomposed in time domain and

thus the IMFs possess the same length as that of the original signal while pre-

serving the varying frequency. This quality makes this method essentially useful

to analyze real life non-stationary and non-linear signal, for example, real world

signal which includes multiple causes occurring in different domains. IMFs satisfy

the following two main criteria:
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1. While considering the entire dataset, the number of extrema and the number

of zero crossings should be the same or at most differ by 1.

2. The local mean value of an envelope defined by a local maxima and minima

is locally 0 i.e. the envelopes are symmetric about 0.

Hilbert Spectral Analysis

This method examines each IMFs instantaneous frequency as a function of time

to give a frequency-time distribution of signal amplitude. This is done to identify

the localized characteristics of the signal and this technique was later named as

Ensemble Empirical Mode Decomposition. Thus, EEMD reduces the original sig-

nal into it’s finite number of orthogonal components of intrinsic modes to which

Hilbert spectral analysis is applied. IMF has a simple oscillatory mode with vary-

ing amplitude and frequency about the time axis, unlike a harmonic function. The

method used to extract IMF is called shifting. First, all the local extrema in the

signal are determined. All the local maxima and minima thus found are connected

by a cubic spline fit as the upper and lower envelopes respectively. These upper

and lower envelopes cover all the data points. The mean of the two envelopes, m1,

is then subtracted from the signal to get the first component, h1.

y(t)−m1 = h1 (2.9)

In this type of shifting, the new crest represents the local maxima and the troughs,

the local minima. In the second round of shifting, h1 would be considered as the

original over which the two envelopes are generated. Mean of the two envelopes,

m11 is subtracted from h1 to get the component, h11. Thus,

h1 −m11 = h11 (2.10)

Consider this shifting process “ith” times. Then,

h1(i−1) −m1i = h1i (2.11)

where, h1i, is labeled as the first IMF component,

c1 = h1i (2.12)
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The number of time the shifting process takes place is decided by the stoppage

criterion. Stoppage Criterion: There are four standard stoppage criteria to

decide the number of shifting processes.

1. Standard Deviation: Similar to the Cauchy’s convergence test, and defin-

ing the total difference as, SD

SDi = ΣT
t=0

∣∣∣hi−1(t)− hi(t)
h2i−1(t)

∣∣∣ (2.13)

The shifting process terminates when the SDi comes out to be smaller than

the SDi−1, (from the previous step)

2. S-Number Criterion: S is a predetermined trial number which decides

the number of shifting steps taken until the number of zero crossings and

the extrema are equal or at most differ by 1.

3. Threshold Method This method fix two threshold values so that the mean

fluctuations are globally small.

4. Energy Different Tracking: This method assumes that the original signal

is a composition of the original signal and is a composition of the orthogonal

signals, and calculate the energy based on this hypothesis.

The first IMF, incorporates the shortest oscillations of the signal. This first IMF is

then subtracted from the original signal to obtain the residue, Y (t)− IMF1 = r1.

The residue, r1 constitutes the longer oscillations and is treated as the new base

data set for the next shifting process. This cycle goes on until we obtain a trend,

a line or a curve without the waves, i.e. when the function (residue) becomes

monotonic and no more IMFs can be clipped out of it.

2.5.5 Bilinear Interpolation

This method interpolates in both, X and Y, directions and is an extension of the 1-

D linear interpolation technique over a 2D grid and Z in case of 3D. This method

could be considered as one of the simplest interpolation technique and possess

advantages as well as disadvantages. Bilinear interpolation is a distance weighted

averaging resampling method. The method estimates a new value based on the
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4-nearest distance-weighted averages 2.14. Briefly, the equation can be given as

follows:

Z = B0 +B1X +B2Y +B3XY (2.14)

where, B0, B1, B2 and B3 coefficients are computed using four equations corre-

sponding to the reference points. (http://web.pdx.edu/~jduh/courses/geog493f09/

Students/W6_Bilinear%20Interpolation.pdf)

Bilinear interpolation method uses a distance-weighted average of 4 nearest neigh-

boring cells. Thus there are 4 coefficients (B0, .. B3). The method does not

demand a regular square grid. Z represents the interpolated value in 3D. By

convention, we could replace it with Y in case the of 2D.

http://web.pdx.edu/~jduh/courses/geog493f09/Students/W6_Bilinear%20Interpolation.pdf
http://web.pdx.edu/~jduh/courses/geog493f09/Students/W6_Bilinear%20Interpolation.pdf


Chapter 3

Simple Methods for Estimating

Tropical Cyclone Intensities

3.1 Introduction

The theoretical upper bound on a tropical cyclone intensity is termed as its Po-

tential Intensity (PI) (Emanuel [1995, 2005a]). The Potential Intensity (PI) can

be calculated using Sea Surface Temperature (SST), Sea Level Pressure (SLP),

Atmospheric vertical profile of temperature, and Mixing Ratio (Emanuel [2007],

Bister and Emanuel [2002]). The algorithm is based on the evaporation-wind

feedback mechanism, the Wind-Induced Surface Heat Exchange (WISHE). It is a

positive feedback mechanism between the atmosphere and ocean. According to

this mechanism, a stronger ocean to atmosphere heat flux results in a stronger

atmospheric circulation, which in turn causes a strong heat flux. Evaporation is

primarily determined by the magnitude of the surface winds. Thus the mechanism

involves bulk aerodynamic enthalpy transfer. The method does not use latent heat

release as the driving mechanism for vortex amplification but used it as an aspect

of the axisymmetric model where the latent heat is implicit. The mechanism also

showed that CAPE is not necessary for storm intensification.(1.1)

The Power Dissipation Index (PDI) estimates the theoretical upper limit of TC

intensity and depend upon PI (Emanuel [2005a]). Technically, a cube of the max-

imum wind speeds sustained for a period of one minute when summed gives us

the PDI. This sum is considered at an intervals of six hours. The index quantifies

the destructive potential of the storms.

40
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3.1.1 Modeling TC Intensification

There are three major techniques developed to explore the subject of TC inten-

sification. All approaches have their relative merits for the intended applications

and their potential areas of improvements. A few of these merits and demerits are

presented below.

First Technique: Potential Intensity

Most of the published work on the subject examines the TC potential intensity

based on atmospheric thermodynamics and equations governing atmospheric flows

(Emanuel [1986, 1995, 1988], Simpson et al. [1997]).

Strengths: (1) The method presents the idea that under ideal conditions (and

under the assumptions made) TC intensifies using the self-induced heat transfer

from the ocean. The idea has been supported by several studies (Emanuel [1986]).

Heat fluxes maintain the TC against dissipation against friction.

(2) It introduces the Carnot cycle analogy for the first time to simplify the TC

model from the thermodynamic point of view (Emanuel [1986],Emanuel [1988]).

Weakness: Boundary layer physics and the dynamics of the eye have not been

accounted for in the study. Lateral mixing of heat, momentum and water could

have potential consequences for the structure and dynamics of the eye.

Second Technique: Numerical Models

Another approach to determining cyclone intensity is based on time-dependent

numerical modeling technique (Rotunno [1987]). This method considers a weak

TC seeded into a known environment. The model is then integrated in time until

the cyclone’s maximum intensity is accomplished (Rotunno [1987], Persing and

Montgomery [2005]).

Strengths: (1) This method extends the first approach to computing Tropical

Cyclone Intensity (TCI) for axisymmetric storms and presented more accurate
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results than the first Technique by generating storms weaker by 10% than those

generated by the first method which is more comparable to the observational data.

Weakness: This technique is subjected to errors associated with numerical dis-

cretization and parametrization (Rotunno [1987])

Third Technique: Empirical

The third technique uses observational data to statistically find cyclone intensity

and is a function of observed ocean-atmospheric variables like SST (DeMaria and

Kaplan [1994], Zeng et al. [2007], Whitney and Hobgood [1997]).

This is because it is well-known that a higher Sea Surface Temperature (SST) is

assumed to offer a supportive environment for TC formation and intensification

but, it is equally true that vertical thermodynamic profile of the atmosphere also

contributes towards TC genesis and intensification (Emanuel [2007], Bister and

Emanuel [2002], Shen et al. [2000], Holland [1997b]).

Strengths: (1)The empirical relation developed by the third approach provides a

simple and easy to use the method to determine the maximum potential intensity

close to the tropopause, and to determine the outflow temperature, both of which

are assumed to be a function of SST. The model was developed for the North

Atlantic Ocean (DeMaria and Kaplan [1994]).

Weakness: (1) Climatological SSTs used to develop the model, instead of daily

or weekly data, to compute the intensity of TCs. This was done to simplify the

model. So, the model may not be good enough for estimating TCI at high tem-

poral resolution, weekly or monthly. Also, the climatology was averaged over 31

years between 1962 through 1992, which dis-includes the intense storm data which

occurred after 1992.

The present work thus follows the steps of the first and third method stated

above. We are interested to know what physical variables are most important in

determining the theoretical peak wind speed in TCs using Emanuel’s PI approach

(Emanuel [1986, 1988]).
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A previous study using 45 years statistical regressions has shown that SST has a

dominating influence in high hurricane seasons, independent of all other known

factors, and that sea warming explained 61±34% (mean±StandardDeviation) of

the anomalous Atlantic hurricane activity at 95% confidence level in 1995 (Saun-

ders [1997]). On investigating 1995 hurricane season in the North Atlantic Ocean

using regression analysis on about 45 years of TC activity data exhibited SST to

be the statistically dominant factor in driving TCs. The 1995 hurricane season

under investigation had a demarcated activity of twice the 50 years average num-

ber of storms (Saunders [1997]).

Using SST climatology and the TC’s maximum potential intensity data for a

period of 31 years (1962-1992), an empirical relationship between the two is con-

structed. This empirical model is tested against Emanuel’s theoretical model and

also with observation based dataset. A good agreement between the model and

the observational data was found when the tropopause temperature is assumed to

be a function of SST. It is found that only 20% of the Atlantic Hurricanes reached

80% of the maximum possible TC potential intensity and, on an average only up

to 55%.

A considerable interannual variability in the potential intensity data was also found

(DeMaria and Kaplan [1994]). Following the similar approach, another empirical

relationship between SST and the TC maximum potential intensity was developed

from a 31 years sample (1963-1993). This model was compared to an established

empirical relation and also with the theoretical results. In the North Pacific, only

11% of the storms were found to reach 80% of the estimated intensity while 19%

were found to reach in the North Atlantic Ocean. It was found that during the

westerly phase of Quasi-Biennial Oscillation (QBO), a higher percentage of storms

reaches their theoretically maximum potential intensity (Whitney and Hobgood

[1997]). Similarly, another empirical model developed to compute maximum po-

tential intensity using SST between 1981 to 2003 dataset computed slightly higher

TC potential intensity as compared to the findings in earlier studies. The rela-

tionship developed was suitable for the Atlantic Ocean only and also included the

effect of thermodynamic efficiency in its later stages. Thus, the maximum poten-

tial intensity was better approximated than did previously (DeMaria and Kaplan

[1994]) when compared to the observations (Zeng et al. [2007]).
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Motivated by the demands to comprehend TC potential strength in a simple and

easy way for the hazard planning and management, we explore a simplified sta-

tistical relationship between TC intensity and physical variables (primarily SST)

influencing it. Another motivation for this study is to gain better understanding of

the linear and non-linear factors influencing Tropical Cyclone Potential Intensity.

Detailed background on the topic along with the associated literature review fol-

lows next in the section(3.2). We try to answer these questions using data and

methodology stated in section(3.3). Turning towards the results and discussions

which are presented in section (3.4), various figures to assess the hypothesis are

presented.

3.2 Theoretical Background: A steady state an-

alytical TC model

Considering a highly idealized axisymmetric, steady-state TC, a model was devel-

oped (Emanuel [1986]) based on two primary assumptions. First, the flow above

a well-mixed surface boundary layer is inviscid and secondly, it is thermodynam-

ically reversible. These assumptions assured the safe usage of hydrostatic and

gradient wind balance.

CD represents the surface drag coefficient which quantifies the resistance of an

object in a fluid environment. According to Emanuel (1995)’s theory (Emanuel

[1995]), a TC can maintain it’s kinetic energy if the energy supplied by oceanic

heat sources is at a rate exceeding dissipation. Thus for a mature TC, Ce/Cd

ranges as, 1.2 < Ce/Cd < 1.5. At extreme winds, greater than 50 m/s, the drag

coefficient found in most models cause kinetic energy to be destroyed. If Cd is set

to 0, no system scale intensification occurs Michael et al. [2010].

The density ρ of surface air fluctuates by 15% approximately and the drag coeffi-

cient CD increases with cyclone’s wind speeds by a factor of 2. However, the Drag

Coefficient settle around wind speeds of 30 ms−1 (Powell et al. [2003]).

Simplified form of TC intensity, referred to as Power Dissipation Index (PDI), in

terms of Vmax is given by,
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PDI =

∫ τ

0

V 3
maxdt (3.1)

The index (PDI) represents total frictional dissipation of kinetic energy in the TC

boundary layer. Over the lifetime of a storm.

Here, Vmax represents the maximum sustained wind speeds at 10 metres above

the surface. TC’s PI is a better indicator of the threat of the storm than the

frequency or intensity alone (Emanuel [2005d]). Vmax, the PI associated with TCs

is quantitatively represented as,

Vmax =

√
ε
Ck
CD

(k∗ − kB)|M (3.2)

Where, “M” represents the quantities at the radius of maximum winds.

Simplicity of the equation(3.1) and its relevance to defining destructiveness in

association with a tropical cyclone, we have made use of this index instead of

traditional indices, which demand a range of input parameters.

It is well-known that SST plays a vital role in cyclone genesis and intensification

(Miller [1958], Palmen [1948b]). However, SST on its own is insufficient to deter-

mine TC intensification. For instance, Atlantic storm, “Earl” in 1992, attained

a maximum speed of 28 ms−1 at SST of about 27 ◦C while, Atlantic hurricane

Bonnie, during the same season, gained maximum speed of 49 ms−1 with ocean

temperature of about 25 ◦C (DeMaria and Kaplan [1994]).

An empirical relationship between ocean temperature and TC’s maximum sus-

tained wind speeds during a period of time ranging between 1962 and 1992 was

developed (DeMaria and Kaplan [1994]). The designed empirical model to deter-

mine TC wind speeds were found to be an exponential function,

Vmax = C0 + C1 expC2(T−30 ◦C) (3.3)

Where, maximum attained TC winds, Vmax, is in ms−1 and C0 (= 28.2 ms−1), C1

(= 55.8 ms−1), & C2 (= 0.18 ◦C) are the constant values. This model signifies SST

as an upper bound on TC’s intensity. However, other environmental factors con-

tributing to it determine the actual intensity of a TC. We extend this idea further
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to determine a simple model to quantify TC intensity as a function of difference be-

tween the ocean temperature and the lowest level atmospheric temperature (AT1),

(SST- AT1)), which in turn depends on SST and thereby concluding a relationship

to computing TC intensity directly from SST itself. This is one of the primary

aims of this Chapter.

Total power dissipation in a TC is proportional to the cube of wind speed (Emanuel

[1998]). Integrating the power dissipation over the surface area affected by a storm

over its lifetime, τ , gives the potential intensity,

PI = 2π

∫ τ

0

∫ ro

0

CDρV
3dτdr (3.4)

where, CD represents the surface drag coefficient, ρ denotes the surface air den-

sity, V is the magnitude of the surface winds. The limit on the integration on

the storm’s radius ranges from storm’s centre, referred as ‘0’ in the limit, to the

outermost spiralling band at ro (meters).

3.3 Data and Methods Used

3.3.1 Methodology

In this work, observational reconstructions were used to explore the connection

between ocean temperature and maximum surface wind speed, Vmax, have been

utilized. Thus quantified Vmax, is then applied to compute TC’s Power Dissipation

Index (PDI), an index to quantify upper limit on cyclone’s destructive potential

(Bister and Emanuel [1998], Emanuel [2007], Bister and Emanuel [2002], Holland

[1997b], Emanuel [2000]). A schematic representation of the method to obtain

VmaxNw is shown in figure (3.1). The figure(3.1) can be briefly stated as follows.

Vmax = f(4T ),

4T = f(SST,AT1)

Where, 4T refers to the difference between the SST and the low level atmospheric

temperature (AT1). 4T correlates fairly well with SST. Thus, simplifying the two

functions above,

⇒ Vmax = f(SST)
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Determining Vm from regional (Gridded) SST

Find SAT using SST 
SST

SAT

Find Vm using SAT
SAT

Vm

Vm = f (SST)

Figure 3.1: Methodology to compute spatial distribution (gridded) of VmaxNw
from SST (gridded).

Local SST has a tendency to influence the atmospheric sounding above and effect

the PI of a Cyclone, (Emanuel [2007], Shen et al. [2000], Holland [1997b]). The first

part of this work make use of observation derived reanalysis datasets, to construct

a simple statistical model to determine (tropical and) local maximum sustained

wind speeds, Vmax, from (tropical and) regional SSTs. Temperature anomalies of

the troposphere also depend on variation in tropical SST (Sobel et al. [2002]).

This simple model is applied to SST data sets (Smith et al. [2007], COBE-NOAA

[2015], NOAA [2014]) ranging from 1880 (Smith et al. [2007], NOAA [2014]), &

1891 (COBE-NOAA [2015]) onwards which enables the model suitable for com-

puting cyclone’s strength spatially during the pre-satellite era.

The second part of this work focus on exploring the spatiotemporal variation of

Vmax derived using the relation built-in the first part.

3.3.1.1 Similarity and Differences between COBE and ERSST.V3b

Similarity:Both the data set has one data source in common, i.e. ICOADS (In-

ternational Comprehensive Ocean-Atmosphere Data Set)

Differences:

1. Data in case of COBE has been accumulated from ships, buoys and reports

while the missing data in case of ERSST.V3b has been filled in using statis-

tical methods.
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2. ERSST.V3b uses advanced bias correction algorithms as compared to COBE

where the later uses primitive methods as in Folland and Parker [1995].

3. ERSST.V3b is used as input for the merged land-ocean surface temperature

product.

Figure 3.2: Tropical distribution of monthly mean SST. The SST values are
averaged between 1982 (January) through 2013 (December). Tropical distribu-

tion of SST is obtained from ERSST.V 3b dataset(Smith et al. [2007])

Considering these three data sets (Smith et al. [2007], COBE-NOAA [2015], NOAA

[2014]) during the same time, the departures of the SST.COBE and OISST.V2

from the SST.V3b averaged over the same period of time (January, 1982 to De-

cember, 2013), are shown in figure(3.3) and figure(3.4). On an average, SST.V3b

illustrates warmer ocean phase as compared to the COBE dataset and compara-

ble values to that of the OISST.V2 dataset, with greater differences in the ocean

temperature in the North Atlantic Ocean and the West Pacific Ocean.

3.3.1.2 Computation of sustained wind speeds

Spatial linear correlation between Vmax and ocean-atmospheric temperature con-

trast, 4T , is computed using Pearson’s moment correlation method. Similarly,

the relation between 4T and SST is tested. The significance of both the corre-

lations is tested using the Bootstrap method, a method of random sampling with

replacement (Efron and Tibshirani [1993]).
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Figure 3.3: Departure of SST.COBE data set from SST.V3b. On an aver-
age, SST.V3b shows lower temperature than the SST.COBE data with a few

exceptions in the North Atlantic and the West Pacific.

3.3.2 Data Used

1. Reanalysis Data: Reanalysis data set is a comprehensive record of weather

and climate dataset. It incorporates observations and numerical weather

model outputs to estimate the state of the system. Such datasets cover the

entire globe from the earth’s surface to well above the stratosphere.

A monthly mean SST, sea level pressure, mixing ratio, and atmospheric

temperature reanalysis datasets provided by the National Centers for En-

vironmental Prediction (NCEP)/National Center for Atmospheric Research

(NCAR) is used as input to determine tropical cyclone strength using an

algorithm based on the thermodynamic model for cyclone intensity. Un-

like SST Smith et al. [2007], COBE-NOAA [2015], NOAA [2014] and SLP

(Kalnay [1996]) which are considered at surface level, atmospheric temper-

ature and mixing ratio (Reanalysis [2014]) are considered in the vertical

atmosphere. Atmospheric soundings are available up to the lower strato-

sphere for 16 pressure levels (plus the surface). SST is expressed in ◦C, SLP

in mb, atmospheric temperature in ◦C and the mixing ratio in g/kg. The

value of mixing ratio ranges between 0 g/Kg in cold continents to 20 g/Kg

for the warm tropical areas (Levine [1995]).

Sustained wind speeds, Vmax, are derived using reanalysis datasets, monthly
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Figure 3.4: Departure of OISST.V2 data set from SST.V3b. On an average,
SST.V3b and SST data sets presents similar values, with a few exceptions in

the North Atlantic and the West Pacific.

mean atmospheric temperature, sea level pressure, SST, and specific hu-

midity as input to the algorithm available at ftp://texmex.mit.edu/pub/

emanuel/TCMAX/.

The reanalysis dataset is consistent over the spatial and temporal domains

which are the major advantage.

However, observational constraints at a few locations, over a period of time

leads to the reanalysis reliability issues which is a big disadvantage of using

this kind of dataset and thus should be considered with caution.

TCPI as computed from the full calculation and that from the ocean temperature

only has been shown in the figure (3.7). The upper panel of the figure presents the

Vmax and the spatial distribution of the VmaxNw has been illustrated on the right.

VmaxNw represents the TCPI metric. The metric was modeled statistically in this

chapter, eq (3.5).

Higher values of the VmaxNw as compared to the VmaxNw in a few regions can

be seen in the figure (3.2) and it also comes out clearly in the difference plot

(figure 3.5). However, this figure portrays appreciable spatial similarity in the two

models in the tropics. The similar comparative graphs can be seen for the other

two SST data sets, SST.COBE and OISST.V2, in the figure (A.8) and figure (A.4)

respectively.

ftp://texmex.mit.edu/pub/emanuel/TCMAX/
ftp://texmex.mit.edu/pub/emanuel/TCMAX/
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Figure 3.5: Spatial distribution of the difference between the peak winds
speeds as derived from thermodynamical model and that obtained from the

linear statistical model developed here. (Using SST.V3b)

Figure 3.6: Tropical distribution of SST from COBE dataset (COBE-NOAA
[2015])

3.3.3 Tropical Distribution of SST From Three Different

Datasets

Distributions of SST using three datasets considered is shown in the Figures(3.2,

A.2, & 3.6). It can be seen that the three datasets show similar temperature pat-

terns in the tropical ocean. Correlation of these SST datasets with corresponding

4T and with Vmax is high for all the SST datasets. However, the third version

SST dataset (3.2) shows the best significant correlation and is thus used for further

analysis.
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3.4 Results and Discussion

3.4.1 Development of a linear Vmax Model and its validation

against an established model

Based on the assumptions that Vmax and SST (all SST values in the tropics) are

correlated, at least to a first order approximation, we have performed a linear

regression (r2 = 0.9534) for the averaged datasets described in Section(3.3.1.2).

Subsequently, the model is applied for climatological averaged values and also a

time series analysis was performed in Section (A.2).

Here, we denote our modeled Vmax as, VmaxNw.

VmaxNw = 6.3 ∗ SST − 102 (3.5)

A strong liner scatter was observed for SST values ≥ 16.5 C. Below this, the scatter

was disoriented and hence the relation. Thus, we suggest not using this model for

SST values lower than that.

Reliable NCEP reanalysis dataset provided by NOAA/PSD (Smith et al. [2007])

used to determine sustained speeds, Vmax, from 1947 onwards by employing ther-

modynamic model to compute Vmax as described in (Bister and Emanuel [1998])

shows appreciable spatial linear correlation with ocean-atmospheric temperature

contrast, 4T (r2 = 0.95). Local ocean-atmospheric temperature contrast is in

turn significantly correlated to local SST (r2 = 0.98). Owing to these strong

correlations, linear regression model developed between SST & 4T , is as follows:

4T = 0.79 ∗ SST + 36 (3.6)

VmaxNw as obtained from our statistical model Equation(3.5) also shows a signif-

icantly high correlation with that of Vmax obtained from Emanuel’s model (r2 =

0.9534).

How good is our TCI model for tropical region? The assumptions behind

our approach to formulating a simplistic approach to computing Vmax only from
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cyclone-prone SST value and regions are two-fold: (a) TC’s Vmax values and sea-

air temperature contrast (4T ) are correlated, and (b) SST and air temperature

(AT) values are approximately related and, thus, are sea-air temperature contrast

and SST. On the first assumption, the time-evolution of Vmax and 4T have been

shown to be identical in their directions (not amplitude) during phases of intense

storms [cf., Zhu and Zhang [2006]], due to enhanced vertical transport. (An off-line

analyses also showed significant spatial linear correlation with sea-air temperature

contrast.). Secondly, mean AT, calculated employing the mean value theorem, cf.,

Equation A18 in Davis et al. [1985], has been subsequently shown to be related

to surface temperature (Ts) in a linear way. Various researchers have used this

formulation where the form of the equation remains the same but the coefficients

vary depending on the area of their study. For example, AT = 55.8 + 0.77Ts is

reported in [Bevis et al. [1992], also see Figure(A.1) therein] for their study area.

We have not used these values but made the assumption that 4T and SST are

correlated with a scatter permissible for our purposes and developed a linear re-

lationship between SST and Vmax, whose reliability is tested further using two

independent inputs. The SST Vs 4T relation used here is shown in the equa-

tion(3.6).

In order to validate these modeled TC wind speed, both against an established

method (Bister and Emanuel [1998]) and across different SST inputs, we calcu-

late both Vmax and VmaxNw, for each of the three SST data as inputs. Results

using COBE [COBE-NOAA [2015], NOAA [2014], Smith [2008]] are shown in Fig-

ure(A.5), and using ERSST.V3b and OISST.V2 are shown in Figure(A.5) and

Figure(A.6), respectively. We acknowledge that this simplistic linear model can

be improved, by including more parameters to reduce the scatter, however, as

we show here, this model works well for Vmax in the tropics, especially for the

higher values. In addition, our goal is to be able to use and provide other simple

users with an easy-to-use model based on parameters that are readily available

and in a timely manner. Figure(3.7) provides a visual comparison of Vmax from

two different outputs, from Emanuel’s model and from our simplistic model, using

SST.COBE as input.

The structural resemblance between Figure(3.7, A.5) (row 1) and Figure(A.5) (row

2) implies that VmaxNw is capable of capturing most of the Vmax structures in the

tropics, which is encouraging given our simplistic approach. However, on an aver-

age, our model shows somewhat higher Vmax values of 2.89 ms−1 mean difference
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as seen in Figure(A.5) (row 4). These ‘higher differences’ are relatively evenly

distributed to a smaller magnitude throughout the tropics, and distinctly off the

coasts of Angola, Namibia, Senegal and Peru to higher magnitudes. These higher

values are seen on the histogram in Figure(A.5) (row 4) as 0.45% points beyond

“Mean± 4xStdDev”.Supplementary figures show analyses as in Figure(A.5), but

using ERSST.V3b (Figure(3.7) and OISST.V2 (Figure(A.6), as SST inputs. For

Emanuel’s model, additional data for other required parameters have been used.

The results of Figure(3.7) and Figure(A.6) are consistent with observations from

Figure(A.5), with a slight change of statistical parameters, and hence are excluded

from re-discussion for brevity.

In order to remove the bias of 2.89 ms−1, we take off the value from the equation,

(3.5), the final model equation becomes,

VmaxNw = 6.3 ∗ SST − 99.11 (3.7)

The peak wind speed, Vmax (figure (3.7), panel 1), derived from full calculations

using reanalysis data sets are comparable to the simplistic wind speed, VmaxNw.

Vmax which is derived using atmospheric temperature, sea level pressure, specific

humidity possess the highest values near the equator. However, this area lacks the

required Coriolis force and thus the wind speed beyond this region is considered.

On an average, the tropical region in the northern hemisphere possesses higher

wind speed than that in the southern hemisphere. Wind speed in the Southeast

Pacific, close to the North America in the Northeast Pacific, and around the coast

of Africa in Southeast Atlantic are negligibly small (figure (3.7), panel 1a).

The bias and an offset in the mean seen in the figure (3.7), can be attributed to

the regions where the simple model fails. A possible reason for which has been

provided in the section(3.7). The same explanation has been provided in support

of the mean bias noticeable in the table (3.1)

High correlations between SST and Vmax simulations for the three datasets (as

mentioned later in this section) correspond to a linear relation between the two

variables, thus simplifying the calculation of PDI, at least to a first order ap-

proximation. As shown in Table(3.1), the results of this simplistic approach are

overly consistent with a more elaborate approach that, however, requires a range

of inputs. It is also important to mention here that this approach is valid only



Simple Methods for Estimating Tropical Cyclone Intensities 55

Average Tropical V
max

 (m/s), 01Jan1948 to 01Nov2014, ERSST.V3b SST and other Data, Emanuel Model

 

 

50 100 150 200 250 300 350

−20

0

20

0 10 20 30 40 50 60 70 80 90
Average Tropical V

max
 (m/s), 01Jan1948 to 01Nov2014, ERSST.V3b SST, Our Model(this Work)

 

 

50 100 150 200 250 300 350

−20

0

20

10 20 30 40 50 60 70 80 90
Average Tropical V

max
 (m/s) Difference, 01Jan1948 to 01Nov2014, ERSST.V3b SST, Our Model − Emanuel’s

 

 

50 100 150 200 250 300 350

−20

0

20

−10 −5 0 5 10 15 20 25 30 35

Figure 3.7: Comparison of cyclone wind speed Vmax obtained from Emanuel’s
model and our simplistic empirical approach with only SST as input. Row-
1: Vmax employing Emanuel’s model with reanalysis datasets as inputs: SLP,
specific humidity and atmospheric temperature profile and ERSST.V3B (SST);
Row-2: VmaxNw employing our approach (Equation 3) with ERSST.V3b (SST);
Row-3: Spatial distribution of VmaxNw minus Vmax to visually identify areas of
disagreement, considering Vmax as a benchmark (reference), Row-4: Probability
density function (PDF) of ‘δ Vmax = VmaxNw - Vmax’. Statistical parameters
(number of Vmax matches, minimum, maximum, mean, standard deviation, root
mean square difference), a Gaussian fit, X N(mean, Std Dev) and number of
grids beyond “ Mean ± 4xStd Deviation”, henceforth called ‘extreme grids’, are

also annotated on the PDF.
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for time-integrated low-spatial resolution datasets (e.g., monthly mean averages at

1◦X1◦ latitude-longitude grids) and for SST conditions suitable for TC genesis. By

no means, however, does it imply that this relationship between SST and Vmax will

hold globally for all SST values and in short time-scales. (For example, on a daily

scale and in daytime low wind speed conditions with reduced mechanical mixing,

warming will be higher.) Put differently, on short time scales and high spatial

resolutions, SST only cannot predict instantaneous 10 m maximum wind-speeds.

The minor dissimilarities across outputs of various SST inputs, e.g., OISST.V2

and SST.COBE can be further attributed to minor variation in the distribution of

SST across the datasets. The discrepancy between the considered SST products

can be attributed to the difference in the statistical reconstructions used to find

SST values in the regions where data was not available. A second reason could be

in association with the techniques applied in collecting various SST datasets, for

instance, going from the “Bucket method” to the “Hull method”. In the Bucket

approach, SST is considered to be the water temperature of buckets of water

taken from oceans. In the “hulls of ships” method, SST is measured using sensors

placed on the hull of a ship. The data products use both in situ and satellite data

to obtain SST covering all the ocean basins on earth. (Note that, the cause of

differences in SST is not the focus of this study; readers are referred to Reynolds

et al. [2002],NOAA [2014],Smith et al. [2007],COBE-NOAA [2015],Martin et al.

[2012],Dash et al. [2012] for more information on blended analysis SST fields.)

We have also studied the effect of differences between various SST analysis fields

on the model output (figures not shown for brevity). For example, 4T and SST

as obtained from Martin et al. [2012] and SST.COBE, respectively, show signifi-

cant correlation (r2 = 0.98) and so do 4T and Vmax (r2 = 0.93). These strong

connections are then verified using the bootstrapping method Efron and Tibshi-

rani [1993]. Modeled TC wind speeds, VmaxNw, is appreciably connected with a

linear correlation of r2 = 0.90 to the storm winds as computed from reanalysis

datasets (figures not shown). Another set of SST values (OISST.V2) employed to

compute VmaxNw also give high correlation with Vmax (r2 = 0.89). These results

thus validate our statistical model and add more confidence to it.

The above mentioned high correlations are reconfirmed by values of p in our anal-

ysis, where, p is a matrix of p − values to test the hypothesis of no correlation.

The p − values tested here are for the correlation between COBE-SST and Vmax
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derived using it along with the other input variables. Element of the matrix on

ith row and jth column is denoted as, p(i,j).

Each p − value represents the probability of getting a correlation as large as the

observed value by random chance when the true correlation is zero. If p(i,j) is

small, say less than 0.05, then the correlation is significant. In our case, the p-

value was found to be zero. This was further tested at α = 0.05 for (n-2) degrees

of freedom using an alternative t-test statistic to determine the significance. Ac-

cording to this test, we can reject the null hypothesis that there is no correlation

if the t-calculated is larger than the t-critical. We found the following values:

1. tcalculated = 485.4131

2. tcritical = 1.6449

Since, tcritical < tcalculated, we can reject the null hypothesis as mentioned above and

can infer that the correlation is significant. Since reliable atmospheric temperature

profiles before the satellite-era at remote regions are unavailable, we make use of

a relationship between PDI and SST which can be used to determine TC power in

remote regions. It is known that maximum TC wind speed is better correlated with

ocean-atmosphere temperature difference than with SST. That is, though warmer

SSTs contribute towards a highly supportive environment for TC strengthening, its

formation and intensification are strongly influenced by the contrast between ocean

temperature and the vertical thermodynamic profile of the atmosphere above it.

However, this result suggests that when vertical moisture content and SLP are not

available, SST values alone can be used by simply employing the linear regression

model suggested here to approximate TC wind speeds, VmaxNw, and hence the

intensity of a cyclone, reflected by the PDI.

The spatial departure of the TCPI as computed from full calculations and that

from VmaxNw is shown in the figure(3.5). On an average, VmaxNw matches the Vmax

values in the tropics with a few exceptions. VmaxNw shows higher values around

the coast of South America in the Southeast Pacific (not a very cyclone-prone

region), in the Northeast Pacific around the coast of North America and to the

South of Africa in the South Atlantic Ocean, not a very cyclone prone zone either.

These exceptions, however, indicate model (VmaxNw) failure. A probable cause of

such a failure has been explained in the section(3.7)
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SST.COBE Input
Vmax (ms−1) Emanuel imple-

mentation Vmax

Our Model
VmaxNw

VmaxNw − Vmax
(Validation by
comparison)

Minimum 0.24 0.70 -14.36
Maximum 94.90 92.24 38.87
Mean 66.60 69.07 2.89
Standard Devia-
tion

16.51 16.86 5.35

RMS Difference -NA -NA 6.08
ERSST.V3b input

Minimum 0.24 5.64 -9.84
Maximum 92.81 91.87 35.96
Mean 65.99 68.79 2.98
Standard Devia-
tion

16.80 16.98 5.09

RMS Difference -NA -NA 5.90
OISST.V2 input

Minimum 0.76 0.14 -14.18
Maximum 99.08 93.72 39.61
Mean 66.35 70.08 4.13
Standard Devia-
tion

16.45 16.93 5.40

RMS Difference -NA -NA 6.80

Table 3.1: Summary and intercomparison of tropical cyclone wind speed ob-
tained from Emanuel’s model and our approach with only SST as input. Com-
parisons are performed for three different SST inputs: SST.COBE, ERSST.V3b
and OISST.V2. Other parameters (SLP, specific humidity, atmospheric tem-
perature profile) required for implementing Emanuel’s model are from NCEP

reanalysis datasets.

3.5 Spatial Distribution of SST

It is observed in Figure(3.2) that higher sea surface temperatures responsible for

tropical cyclone intensification are prevalently present along the equator and pri-

marily accumulated in the Northern Hemisphere. In general, the Northern Hemi-

sphere is warmer than the Southern Hemisphere, mostly due to more landmass

and less ocean surface in the north and the fact that sea-water heats up relatively

slowly Kang and Seager [2012].

Owing to a wider area occupied by the Pacific Ocean and warmer SSTs in the

Pacific, in comparison to other oceans, a higher amount of heat energy is available
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to an evolving TC. However, vertical atmospheric sounding also contributes to cy-

clogenesis (Section 4.1). SST and theoretically maximum sustained winds speeds,

Vmax, show roughly similar structures (cf., Figure(3.2) and Figure(A.4(a)) ).

3.6 Model Verification: ACE vs VmaxNw

The Accumulated Cyclone Energy (ACE) index is used here to validate the devel-

oped model, VmaxNw. VmaxNw primarily quantifies TC PI and by definition does

not take into account the duration of the individual TC event. The ACE index

however includes TC intensity and its duration. It describes the destructive power

and the activity of the individual TC over a TC season. By definition, the square

of by definition, square of the sustained maximum TC wind speed (in knots) every

six hours when scaled by a factor of 10000 leads to ACE 3.6.

ACE = 10−4ΣV 2
max (3.8)

While VmaxNw is a theoretical parameter which presents plausibility of TCI in a

given environment, ACE, on the other hand, is an observed parameter.

Both, ACE and VmaxNw quantify TC destructive potential and hence the associated

intensity. None of the two indices takes storm dimension into account. Thus, both

share the properties marginally and can be used for validation of one over the

another.

Here, the VmaxNw time series has been obtained by spatially averaging the VmaxNw

values, averaged over the North Indian Ocean, North Atlantic Ocean, Northwest

Pacific, South Indian Ocean and the Southwest Pacific Ocean. Both the ACE and

the VmaxNw are monthly values, spanning a period of 45 years, between 1970 to

2014.

Since the ACE index was not independently available over the South Indian Ocean

and the Southwest Pacific Ocean, but over the Southern Hemisphere, we used the

mean of the VmaxNw time series over Southwest Pacific Ocean and South Indian

Ocean to represent the VmaxNw time series over the Southern Hemisphere. It is

worth mentioning here that the aerial span of each of the ocean basin considered
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Figure 3.8: Standardized variation of ACE and V 2
maxNw between 1970 through

2017 (X-axis). The overall correlation between the ACE and V 2
maxNw can be

seen in the table, 3.2. The two signals vary comparatively closely in the North
Atlantic, North Indian Ocean and the Southern Hemisphere.

by VmaxNw may be different from that of ACE which could lead to significant

difference in their magnitude. Also, ACE takes into account the duration of a

seasonal storm, unlike VmaxNw. This is another caveat that comes into the picture

while verifying VmaxNw relative to ACE (figure(3.8) & table(3.2)).

Since ACE is proportional to the square of the wind speeds associated with TCs,

we used square of VmaxNw for the comparison purposes. Here, we used Pearson’s

Moment Correlation Coefficient as a means of comparison and hence verification

of VmaxNw against the ACE index. Despite the caveats involved, a reasonable

correlation between the monthly ACE index and V 2
maxNw was observed in the con-

sidered ocean basins, except in the North Indian Ocean.

In a nutshell, a fair correlation between the observation based ACE and theoretical
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Ocean Basin r: ACE & V 2
maxNw r: ACE & V 2

max r: V 2
maxNw & V 2

max

North Atlantic 0.34 0.51 0.65
Northwest Pacific -0.13 -0.09 0.83

Southern Hemisphere 0.10 -0.02 0.66
North Indian Ocean 0.33 0.23 0.55

Table 3.2: Pearson’s moment correlation coefficients (r) between the observed
index, ACE, Vmax

2 and VmaxNw
2. ACE, which is traditionally documented in

units of Knots2 has been changed to (ms−1)2 by taking its product with the
factor of 0.5442 to match the units of VmaxNw

2 and Vmax
2. The indices are

considered over the North Indian Ocean, North Atlantic, Northwest Pacific and
Southern Hemisphere. The reasonable correlation between the observed and the
theoretical parameters proliferate our confidence in the usability of the model.
The table compares the correlation coefficients of the observed seasonal ACE

data with the V 2
maxNw and Vmax

2

VmaxNw in the North Indian Ocean and the North Atlantic attributes towards the

strength of employing the index developed here for research purposes vastly and

operational usability marginally.

Low acceptance in the Southern hemisphere could be attributed to the lack of good

quality data in the basin and the inhomogeneous nature of the ocean temperature

in the basin which is a subject of further research.

3.7 Model Limitation and Possible Explanation

The figure (3.7) reveals that the simple model fails to quantify TCPI around the

coast of North and South America, and a region surrounding the coast of Africa

in the Southeast Pacific. A possible cause of such a failure has been discussed

in this section. Convection is an important mechanism to drive the primary cir-

culation and the secondary circulation in a tropical cyclone (TC). Convection is

initiated using symmetric thermal perturbation at a vertical height of about 2 Kms

(Wissmeier and Smith [2011]). Thus, considering the lowest layer of atmospheric

temperature profiles, we attempt to determine the heat transfer from the ocean

floor towards the atmosphere above it. Convective cooling occurs at the sea sur-

face by a collective movement of particles via the evaporation by which TCs gain

energy thereby causing the lowering of the sea surface temperature underneath.

This convective cooling, also known as the Newton’s law of cooling, is given as,
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DQ

DT
= hA(Tsurf − Tenv) = hA∆T (t) (3.9)

where, Q is the thermal energy in Joules, h is the convective heat transfer coef-

ficient (W/m2K), A is the heat transferring area and T is the temperature of

the object (SST), Tenv is the environmental temperature (K). Now, ∆T (t) ≡
(T (SST )− T (AT1)), where, T (AT1) denotes the atmospheric temperature at the

lowest level. Considering similar areas and similar values of the h which does not

vary widely over the SST with similar characteristics, we can restate the equa-

tion to a certain degree of approximation as (Cf :Bergman et al. [2011]), defining,

hc = (h ∗ A) we get,

Q′ = (Ts − Tenv)/(1/hc) = (Ts − Tenv)/Rc (3.10)

Where, hc, represents the convection coefficient and Rc is the unit convective

resistance.

Now, referring to the regions in the figure (3.9) showing abrupt mismatch with

the VmaxNw values in figure (3.7) as,

1. West Coast of North America

2. African coast close to the Gulf of Guinea

3. South American Coast

4. The Arabian Sea in the North Indian Ocean

5. Off the coast of Namibia

Please note that an equal number of grid boxes are used over the considered regions

for the computation as shown in the figure(3.9).

As can be noticed from the table(3.3), comparatively, higher atmospheric tem-

perature above would suppress the evaporation from the ocean and hence the

convection which fuels the TCs. Since this aspect is missing in our model, which

is based on SST only, it gives higher Vmax values.
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Figure 3.9: Spatial distribution of the difference of SST and AT at lowest layer
of the atmosphere. Considered regions, where the model fails are indicated with

an outline.

Regions Q′ ∗Rc [◦C]

1 -0.3
2 -0.56
3 -2.3
4 -0.2
5 -1.2

Table 3.3: Convective heat rate at the 5 regions where the VmaxNw failed

3.8 Summary and Conclusions

The study aimed to understand dependency of TC intensification on the environ-

mental factors like ocean temperature, ocean-atmospheric heat exchange, relative

humidity and the sea level pressure. It was identified that ocean-atmospheric en-

ergy exchange and predominantly, the ocean temperature acts as the governing

factor.

According to the simple linear model developed based on significant correlations

between the SST and TC intensity, it is possible to determine TC intensity primar-

ily using only SST values, with somewhat sub-optimal but acceptable performance,

when other data (SLP, atmospheric mixing profile, and atmospheric profile) are

missing. In this chapter, we explored this possibility using a simplistic approach,

where the results indicate that they match another evolved model to the first
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degree of approximation for climatologically averaged datasets. This gains impor-

tance in light of the fact that it is challenging to obtain parameters like mixing

ratio and other atmospheric temperature profile variables at remote, less accessi-

ble locations or for retrospective studies during the pre-satellite era. In our future

work, we will first extend the method to reduce the scatter using other parameters

and then test its performance on different categories of tropical cyclones using

available data for known major cyclones.

Interestingly, the correlation between oceanic-atmospheric temperature differences

and simulated surface wind speeds is stronger for major cyclones (belonging to cat-

egory 3 or more). That is, stronger storms follow the linear relationship obtained

through this model better than weaker storms. One possible explanation of this

could be the role of WISHE (Wind Induced Surface Heat Exchange) in deciding

the weaker or stronger storms (in terms of Vmax) and hence their relation with the

oceanic-atmospheric temperature difference.

Model analysis shows that high surface wind speeds responsible for stronger TCs

are located in relatively lower up to approximately 20◦ latitudes in both the hemi-

spheres. Also, the Northern Hemisphere warms more and usually experiences

higher cyclone winds than the Southern Hemisphere. Surface wind speeds and

minimum pressure associated with TCs are significantly anti-correlated (expected)

when averaged over the tropics. This anti-correlation holds appreciably in all the

considered ocean basins.

In a futuristic prediction by a climate model, both tropical SST and a storm’s sur-

face wind speeds increase. The computed difference between the two Vmax values

(with and without when using a doubled CO2 scenario) in the Indian Ocean and

West Pacific and the North Atlantic Ocean indicate a rise in PDI when doubling

CO2 in our environment.

The following is a summary of the key observations:

(a) Correlation between the ocean temperature and Vmax is stronger for intense,

high category storms, (b) Northern Hemisphere shows comparatively stronger

storms than the Southern Hemisphere owing to a higher ocean warming, (c) Mini-

mum pressure and maximum wind speeds are anti-correlated in all the ocean basins

(Please refer to the figures in the supplementary chapter) (d) North Atlantic and

Pacific Oceans are prone to stronger storms, (e)
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The following are the major limitations of this work:

(a) This work employed the WISHE model approach which is also debated in some

research results Montgomery et al. [2009]. Thus, we suggest a further investigation

using a model closer to the non-axisymmetric spin-up state of an ideal tropical

cyclone, and (b) The developed model is based on SST alone which has an ad-

vantage while studying tropical cyclone intensity at locations where all the needed

atmospheric profiles are missing and SST is available. But, any error in SST will

be propagated to the estimated wind speeds as there is no mechanism to prevent

error propagation in such an overly simplistic approach.



Chapter 4

Saturation of Tropical Cyclone

Strength under a doubled CO2

scenario

We begin by analysing the sensitivity of the tropical cyclone strength

to change in SST. Change in tropical SST alone by 1 ◦C yields an in-

crease in the peak winds associated with tropical cyclones by about

10 ms−1. (The tropical region considered here does not include 5 ◦

North and South of the equator due to absence of an appreciable Cori-

olis acceleration to induce vortical motions in tropical cyclones). The

change in the theoretical peak wind speeds associated with tropical cy-

clones responds weakly to the increasing CO2 levels. On doubling CO2

amount, change in peak cyclone wind speed show less response to the

increased SST value. This effect appears in tropics and in all the ocean

basin considered. This result was verified using two independent data

sets. Increasing CO2 levels were found to induce stronger cyclones,

however, their response to SST weakens. We term this as, “Sensitivity

Saturation Effect”. The effect can be understood as a response of the

change in TCI to the change in SST on increasing CO2 levels.

66
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4.1 Introduction

TCs are a prominent element of the climate system and plays a key role in driv-

ing various climatic phenomena. Most of the studies related to TC activity have

mainly focused on TC frequency Landsea et al. [1996], Chan et al. [1996] and

their track forecasting which is primarily determined by atmospheric flows, while

tropical cyclone intensity has received significant attention comparatively recently.

With the rise in ocean heat content and documented SST, during the second half

of the twentieth century, Levitus [2000], various research work attempt to appre-

hend what caused the rising SST on TC frequency and intensity Strazzo et al.

[2015]. Influence of climate change on the frequency of TC system is still vague

with a few studies proposing lowering of TC frequency in North Atlantic basin

Zhao et al. [2009].

A study explored the sensitivity of TC’s intensity and precipitation rate to various

climate models in warming scenario and also under different convection parametriza-

tion scheme. Temperature and relative humidity data taken from CMIP2+ CMs

showed an overall rise in the wind speed by 6%, incrase in the pressure drop by

14%, and the precipitation rate by 18% Knutson and Tuleya [2003].

Another study anallysed the IPCC B1 scenario along the path of the ”low end”

radiative forcing. The study reported change in the intensity of TCs with the

warming world. Following a high end, A1F1, scenario, lead to even faster rate of

change of TCI Knutson and Tuleya [2005].

A simulation of Atlantic hurricane frequency under 21st centruy warming condi-

tions showed a drop in the landfalling hurricanes by 30%. The study also found

that as a respons to the increase in the green house gas warming, reduced the TC

formation basinwide by 18% Knutson et al. [2008].

U.S. hurricane damage, quantified in terms of it’s wind speed only (not included

TC rainfall or surge), for IPCC A1B scenario was studied. IPCC’s A1 storyline

talks about future world of rapid economic growth, global population that peaks

in the mid century and then declines due to rapid new and more efficient tech-

nologies. A1B emission scenario represents a balanced energy across sources. The

study found that 3 out of 4 climate models used, predicted an increasing damage
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with time Emanuel [2011].

Both, the IPCC-AR5 and 21st century forecasts report, reports that TC frequency

would either decrease or remain constant, while, there is a likely increase in the

potential intensity and the associated precipitation rates Jens Hesselbjerg and

Krishna Kumar [2013]. According to the future projections, the climate change

impacts TC activity heterogeneously. Projections based on downscaling and model

resolution of the same while adding confidence in the predictions does not quantify

specific characteristics of the changes.

A few studies focusing TC intensity has shown an overall rise in the number of

intense hurricanes Emanuel [2013]. Merely SST is not a perfect metric for de-

termining TC’s thermodynamics but, tropical cyclone potential intensity depends

on the degree of the thermodynamic disequilibrium between upper ocean and

the atmospheric profile above Emanuel [1995]. While a later study documented

that with change in SST by 1 ◦C, increase TC’s maximum wind speed by 4 ms−1

Emanuel [2013]. The present study extends this work and seeks to understand how

the variation in SST affects TC strengthening. Then, we try to understand the

impact of the unit increase in SST on the TCPI under present-day and doubled

CO2 scenario.

Warmer seas cause stronger TCs (Merrill [1987]) while SST alone is insufficient to

decide TC intensity Emanuel [2005d]. The non-linear empirical relation between

categorised TCs and SSTs have been proposed previously DeMaria and Kaplan

[1994]. A Strong positive connection between SST and TCs with intensities in

the upper quantities in the climatological TC intensity distribution was also doc-

umented Elsner et al. [2008]. The connection between the two was shown to be

stronger when SSTs are greater than 26 ◦C.

TC power dissipation index, defined as the cube of TC peak wind speeds inte-

grated over their lifetime, has been shown to be appreciably correlated to SSTs

(Emanuel [2005d]). Continuing this work further, a framework of spatial tessella-

tion (introduced by Elsner et al. [2012a]) of equal area hexagons was employed.

The framework of spatial tessellation of equal area hexagons in medium resolution

GCMs, namely FSU/COAPS GCM and GFDL-HiRAM, showed negligible sensi-

tivity of TC intensity towards observed SSTs which is contrary to what was shown

in earlier studies. Failure of GCMs to model TCs with peak wind speed over 50
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ms−1 possibly confines their competence to determine intense TCs with such a

precision. Also, inadequacy of GCMs to distinguish inner core thermodynamics

of TCs hinder modeled TCs from acting as an idealized heat engines Elsner et al.

[2012b].

TC track points and gridded SST values were together superimposed on one an-

other by regressing SSTs over TC intensity. Regressing SSTs exceeding 25 ◦C

(August-October), when averaged over each hexagons onto TCs’ maximum inten-

sity magnitudes gives the sensitivity of later on former. While these studies depend

upon observations show a connection between SST and TCPI. Modeling studies

carried out recently show similar results. Various Global Climate Models (GCMs)

and downscaled simulations for 21st century predict increasing TC intensity under

various climate change scenarios Emanuel [2013], Knutson et al. [2013], Villarini

and Vecchi [2013]. However, present GCMs have too coarse resolution to resolve

TC intensity well Chen et al. [2007]. Previous results are subjected to conditions

and are warned to be used with caution Strazzo et al. [2015].

Ocean temperature inarguably plays an important role in TC intensification. Mod-

els and theories predict an increase in ocean temperature in the warming world.

Thus, it is of much scientific interest to see how this rising SST impacts TC intensi-

fication which is important for adaptation and mitigation planning. There are two

primary aims of this study. First is to quantify the extent to which various nat-

ural factors (SST, SLP, atmospheric temperature profile, and relative humidity)

contributes towards intensification of TC peak wind speed. The second aim is to

quantitatively investigate how the TCPI varies as a response to a unit increase in

the SST under present-day and doubled CO2 scenario. Thus, we compare TCPI’s

sensitivity towards the ocean temperature under present-day and doubled CO2

scenario.

The first part of the study, we considered SST, SLP, relative humidity, and at-

mospheric temperature data from perturbed physics ensembles as derived from

HadCM3 and GFDL model runs. we chose the ensembles which were closest to

the results obtained from reanalysis data (refer to, (Figure4.1)) (averaged over a

course of 67 years, as in Chapter 3).

In order to explore the impact of SST on TC strength, we considered perturbed

physics ensembles as derived from HadCM3 model runs and then from GFDL

simulations. Despite the importance of SST in TC intensification, there remains



Saturation of Tropical Cyclone Strength under a doubled CO2 scenario 70

a paucity of analysis explaining the link under climate change scenario. Thus,

technically, the study first tries to find the most significant natural variable that

influences TCPI. For this purpose, we used the method of partial least square

regression to find out the dominant variables affecting TCPI. The method is also

useful to quantify the regression model because of its ability to robustly handle

descriptor variables Herve [2003].

Remaining work proceed as follows: Section(4.2) Describes data sets and Methods

used, and Sections(4.3 & 4.4) discusses Results and Conclusions.

4.2 Data and Methods Used

4.2.1 Data Used

4.2.1.1 UKMO’s HadCM3

To assess changes in the TCPI sensitivity as a response to fluctuations in SST

when CO2 concentration is at present day levels and when it’s doubled in the en-

vironment, we employed a suite of coupled ocean-atmospheric models. A demand

for better computation of uncertainties in climate forecast estimates gave rise to

the perturbed physics technique (Moore et al. [2001]). In this approach, we con-

sider a single model structure and perturb the magnitudes of uncertain variables,

in an allowed range. The range is decided with the help of people involved in

parametrization development and by rigorous inspection of the modeling litera-

ture. The simulations based on the UK met office model (HadCM3) are referred

to as, Qump1, Qump2 and so on are abbreviated here as, q1, q2 respectively.

The Hadley Centre Climate Model, version 3 (HadCM3) runs in the present day

CO2 level and then with doubled CO2 level runs to obtain SST, sea level pressure,

relative humidity, and atmospheric profile in the two case scenarios. We use Per-

turbed Physics Ensembles (PPE) by estimating the mean response of 53 different

model versions with changes in their physical parameters involved in the model.

There are two primary reasons for exploiting the PPE technique here. First, the

method efficiently samples mean climate states in relatively broad bounds (Collins

et al. [2010]). Secondly, a wide range of climate forcings and feedbacks are effi-

ciently handled under increased levels of green house gases (like CO2).
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Experimental runs with single models can then be developed in “ensemble mode”,

depending upon the availability of computation power and time.

Considering a changed climate situation of doubled CO2, SST thus obtained from

the model runs are plugged into an algorithm to quantify tropical cyclone strength,

measured in terms of its peak wind speeds.

Before employing the model derived ensembles, we selected seven members which

most closely follows the pattern of the re-analysis outputs (Figure4.1). The figure

presents distribution of SST as obtained from reanalysis Smith [2008] and from

model outputs Collins et al. [2010]. First sub-image at top left reflects SST spread

obtained from reanalysis products while other sub-images shows the spread in SST

as obtained from HadCM3 runs.

Despite some variation in the magnitude and spread in the model derived products,

model results are quite similar to those of reanalysis products, especially in tropics

which is where we need it (Figure 4.1).

All of the 16 ensemble members (derived from the perturbation method) were

experimented upon and agreed with the findings presented in this work.

But here, we limit ourself to presenting seven members only which qualitatively

and quantitatively agree strongly with the reanalysis datasets shown in the Fig-

ure(4.1) and as indicated in the table(4.1).

The model derived ensemble members chosen show high correlation with the re-

analysis dataset, especially in tropics. This gave us the confidence to choose the

data sets, specifically for the tropical region. The correlation coefficients between

the model and reanalysis datasets are given in table (4.1)

Technically, TCPI is a measure of thermodynamically derived maximum wind

speeds and is thus written as, Vmax at several places in the equations and the text

here. Please note that both can be used interchangeably.

The modeled dataset is bi-linearly interpolated to yield SST and other variables

on 1X1 grid. These downscaled temperature values are then increased by a unit

magnitude before using as an input to the algorithm to quantify TC peak wind

speed, while keeping other input parameters unchanged. Results obtained from

the simulations runs with original SST values (no addition or deduction) are then



Saturation of Tropical Cyclone Strength under a doubled CO2 scenario 72

Figure 4.1: Graph shows comparison of SST spread as obtained from reanal-
ysis (panel (a)) and that obtained from model runs ((b)-(h)).

,

Variables Coefficient (r) Coeff of Determination(r2)

(SSTq0,SSTRe) 0.9583 0.9183
(SSTq1,SSTRe) 0.9637 0.9287
(SSTq2,SSTRe) 0.9609 0.9233
(SSTq3,SSTRe) 0.9595 0.9206
(SSTq4,SSTRe) 0.9598 0.9212
(SSTq5,SSTRe) 0.9558 0.9136
(SSTq6,SSTRe) 0.9571 0.9160
(SSTq7,SSTRe) 0.9590 0.9197

Table 4.1: Pearson moment correlation coefficients (r) and coefficient of deter-
mination (r2) between SST from reanalysis and HadCM3’s ensemble members.
The Higher correlation coefficient between the reanalysis and the model param-

eters increase our confidence considering the later for our analysis.
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subtracted from those Vmax values with increased SST. The difference of the two

Vmax values describes the change in TC peak wind speed and hence the associated

intensity that would occur when ocean temperature has risen by 1 ◦C. Difference

between the peak wind speeds, ∆V , is obtained as explained by equations(4.2, 4.3,

& 4.4). SST reanalysis product is retrieved from NOAA’s extended reconstruc-

tion of SST (ERSST.V3b), Version 3b Smith [2008]. The resolution was further

increased to 1X1 ◦ by applying bilinear interpolation.

Apart from SST, we have considered Sea Level Pressure (SLP), atmospheric tem-

perature and relative humidity. Atmospheric temperature and relative humidity

are acquired in the vertical levels of the atmosphere. From model simulations, at-

mospheric sounding is available for 16 pressure levels up to the lower stratosphere.

The thermodynamic model used here to derive TC potential in terms of its peak

wind speed and minimum pressure require specific humidity or mixing ratio as one

of the input parameters.

Mixing ratio dataset is not directly obtained from the model output. Thus, we

converted the relative humidity to mixing ratio using an algorithm Brunner [2001]

which defines the mixing ratio of H2O per kg of dry air at a particular temperature

and pressure. Mixing ratio is computed using the following expression:

MR =
mW

mD

=
Mw

MD

∗
RH

100
∗ es

p− RH

100
∗ es
∗ 1000 (4.1)

Where,

mW = Mass of water vapor

mD = Mass of dry air

MW = Molecular weight of water

MW = Molecular weight of dry air

RH = Relative humidity

es = Saturation pressure (hPa) of water vapor

p = Ambient pressure (hPa)

4.2.1.2 GFDL’s ESM-CM3

We used data from the most recent world climate research programme, Climate

Model Intercomparison Project, CMIP5 (Taylor et al. [2012]). The data set (AT,
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SLP, SST, & MR) were part of the earth system model’s close carbon cycle project

which aimed to study the impact of the climate change on our ecosystem and also

the impact of the human activities on our ecosystem. Coupled Physical model

(version 3), CM3, was used for the stated simulations. CM3 was developed us-

ing CM2.1 (Delworth et al. [2006]) as the starting point. The model aimed to

answer the indirect role of aerosols on clouds, chemical interactions and the role

of stratospheric chemistry thence ozone. The data set were taken from under the

present-day and doubled CO2 scenarios.

4.2.2 Methodology

Using a variety of statistical and mathematical tools, the “sensitivity” of TC in-

tensification to various natural processes, SST in particular, was analysed. Each

method has its own advantages and drawbacks. This work uses advanced quanti-

tative regression method, Partial Least Square Regression (PLSR), braided with

simple sensitivity analysis for a linear increase in SST. PLSR method is adopted in

order to get insight into roles various natural phenomena play while strengthening

TCs. The method is especially useful for solving this type of riddle since it doesn’t

rely on distribution type, collinearity and is also independent of observations, un-

like other regression methods. Also, PLSR maintains the predictive nature of the

model.

4.2.2.1 Partial Least Square Regression (PLSR)

PLSR method is essentially useful in the cases where there exist factors which pos-

sess correlation between themselves and the simple least square method fails or is

unreliable. PLSR technique in such a case leads to stable and highly predictive

models even when there exist a correlation between the variables. The method

primarily relies on a linear transition from a set of estimators (Xs) to a new set

of variables called latent variables in a new space. This is achieved by a small

number of orthogonal factors. These orthogonal factors are mutually indepen-

dent estimators. This is where this method varies from the principal component

analysis which mainly depends on the latent variables formed on the basis of high-

est correlation with the dependent variable (Y). PLSR thus contains the smallest

number of factors. On increasing the number of factors, PLSR converges to the
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classical multiple linear regression methods. PLSR technique basically employs

principal components of both, X and Y datasets. The main idea is to establish

a regression model between the principal scores (Xs & Ys) of the independent

matrix, X, and the dependent matrix, Y, and not between the original matrices

themselves. Independent matrix is decomposed into its principal component score

matrix (Xs) and a corresponding loading matrix, P in addition to an error matrix,

E. (figure4.2)

The climate variables corresponding to the independent variable, Xs are SST, SLP,

MR, and AT while the dependent vector, Ys corresponds to Vmax.

Similarly, the dependent matrix is decomposed into a score matrix, Ys, along with

an error matrix, F. These two equations (figure4.2) of X and Y are said to possess

an outer relationship. The focus of the PLSR method is to then minimise the

norm of F while keeping the correlation between X and Y by the inner relation,

Ys = B*Xs.(figure4.2)

While setting up a PLSR model, a major decision is to determine the number of

optimal principal components which we estimated by plotting the mean square

error corresponding to each component and choosing the number of components

corresponding to the minimum error value. For our case, we obtained 4 as the

optimal number of components. For this purpose, another recommended method

is of cross-validation of the model of varying number of components.

The model most commonly utilizes either NIPALS (Nonlinear Iterative Partial

Least Squares) or SVD (Singular Value Decomposition) algorithm to perform it-

erations in processing the PLSR regression. Out of the two, SVD is faster but,

we have used NIPALS to compute the loadings (P, Q) and the scores (T, U). A

reason for choosing NIPALS is attributed to its tendency to precisely estimate the

latent variables.

PLSR and sensitivity analysis were performed using statistical package available

in Mathworks, 2015a. The required but unavailable sub-routines were also written

in the same version of Mathworks. The first step in the procedure was to normalise

the data sets. The data were normalized to have a zero mean and unit variance.

This was done to remove bias by variables having (1) Numerically large values

and, (2) large variance.
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Figure 4.2: The figure illustrates PLSR method. X and Y are decomposed
into their principal components (Xs and Ys) and loading matrices (P,Q) along
with their corresponding error matrices (E,F). The correlation and hence the
inner relationship between the scores (Xs & Ys) is stated as, “inner-relationship”

(Y s = B ∗Xs) in the figure.

Using this method we obtained input variables which were arranged in descending

order of their contribution towards cyclone intensification. From this order, we

pick up the first input variable which controls TC intensity the most. To test the

impact of the chosen variable (SST) on TCPI, first we used its original value and

then the value raised by a unit degree, as done in the sensitivity analyses. Then,

we subtracted the TCPI value as obtained with the original SST value from the

TCPI value as obtained from the increased SST value. This difference between

the two TCPI values thus obtained represents the “sensitivity” of TCPI towards

a unit increase in SST. Following similar method, we computed the difference be-

tween the TCPIs for a case with doubled CO2 amount.

4.2.2.2 Sensitivity Analysis

The first step taken towards the sensitivity analysis is graphically explained in

figure (4.3). The model is used as an input to determine tropical cyclone strength

using an algorithm based on a thermodynamic model for cyclone intensity. The

algorithm (Bister and Emanuel [1998]) takes SST, SLP, atmospheric temperature,
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and mixing ratio as input variables and yield maximum achievable cyclone winds

(TCPI) & theoretically minimum TC pressure (Pmin) attainable.

VmaxSST
= f(SST ) (4.2)

VmaxSST+1
= f(SST + 1) (4.3)

∆V = VmaxSST+1
− VmaxSST

(4.4)

Unlike SST and SLP which are considered at surface level, atmospheric temper-

ature and mixing ratio are considered in the vertical atmosphere. Atmospheric

sounding is available for 16 pressure levels up to the lower stratosphere. 16 pres-

sure levels considered are, 1000, 925, 850, 700, 600, 500, 400, 300, 200, 150, 100,

70, 50, 30, 20, & 10 mb.

Mixing ratio dataset is not directly obtained from the model output and we con-

verted the relative humidity dataset to mixing ratio using an algorithm Brunner

[2001] which defines the mixing ratio in grammes of H2O per kg of dry air.

Before analysing the “sensitivity” of tropical cyclone strength to its most influen-

tial factors, we need to first find it and Partial Least Square Regression (PLSR)

method is thus used here. The method regresses Vmax on the four input factors,

SST, Sea Level Pressure (SLP), the Mixing ratio (lowest level), and Atmospheric

temperature (AT) (at lowest level).

4.3 Results and Discussions

4.3.1 Analysis Using Partial Least Square Regression

First, the impact of various input parameters on the cyclone intensification was

examined using the method of partial least square regression.

This regression method employs partial least square components or latent factors

and returns the predictor and response loadings along with the beta factor which
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Coefficient (β) βSST βSLP βMR βAT

Reanalysis 6.333 0.3350 0.0055 0.3990
Model (Q 1)1XCO2 10.5 0.34 0.00 -2.26
Model (Q 1)2XCO2 10.53 0.19 0.001 -2.63

Table 4.2: PLSR coefficients (β) corresponding to SST, SLP, mixing ratio
(lowest level), and AT (lowest level) from reanalysis and model (HadCM3)

datasets

determines the regression coefficients. Regression coefficients obtained from re-

analysis dataset are as follows: 6.33, 0.335, 0.0055, and 0.399. Here, the first term

denotes the regression coefficient corresponds to SST, the second term shows the

regression coefficient of SLP, third to the lowest level of the MR, and fourth is

associated with the lowest level of the atmospheric temperature profile. This show

that SST, and AT vectors contributes most in quantifying the dependent vector

and thus the tropical cyclone strength. The units corresponding to the regression

coefficients are as follows. The coefficient, 6.33 corresponds to ◦C/(ms−1), 0.335

adhere to hPa/(ms−1), 0.0055 to (ms−1)−1 and 0.399 comply with ◦C/(ms−1).

While SST corresponds to the highest contribution towards Vmax, the significance

of the results is tested using t-test. Fitting Vmax values using partial least square

regression method gives us new Vmax values which are tested relative to the Vmax

obtained from thermodynamic model Bister and Emanuel [1998]. The two sample

t-test used here confirms at 5% significance level that the two independent dataset

comes from the same distribution with equal means.

This study fundamentally explains long term behavior (climatology) and hence

the response of the tropical cyclone strength to varying SST. different tropical

cyclone prone ocean basins responds differently to the changing SST magnitude

locally and globally. Rising SST under doubled CO2 scenario as obtained from

GCM outputs indicate that this increase can be attributed to the increase in green

house gases such as, CO2.

The variable with the highest PLSR coefficient is accounted to pose the highest

influence on the TCPI. PLSR coefficient for both, model and reanalysis datasets,

are documented in table (4.2).

Last two rows of the table refer to the PLSR coefficients of the input variables,
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Figure 4.3: A Schematic representation of the methodology to compute ∆V .

SST, SLP, MR and AT (MR, AT at lowest level, close to the ocean surface), re-

spectively derived from HadCM3 model under present and doubled CO2 scenario.

The first row presents the PLSR coefficients associated with reanalysis derived

SST, SLP, MR and AT. Both, model and reanalysis datasets used for develop-

ing the regression model uses tropical datasets at 1X1 degree grid. As can be

seen from the table (4.2), coefficient associated to SST is higher than that cor-

responding to other variables. AT influence Vmax negatively and goes well with

the wind-induced surface heat exchange, WISHE, the model concept of the en-

thalpy exchange between the ocean and AT above, where low AT would enforce

the evaporation needed for the intensification. Lower values corresponding to SLP

and MR show their feeble contribution towards TCPI intensification.

Here, variables with the highest PLSR coefficient is accounted to pose the largest

influence on the potential intensity or on the TCPI. PLSR coefficients for both,

model and reanalysis datasets, are documented in the table(4.2). First, two rows

of the table refer to the PLSR coefficients of the input variables, SST, SLP, MR

& AT respectively, derived from HadCM3 model under present and doubled CO2

scenarios respectively. The third row of the table (4.2) show the coefficients in the

same order as stated earlier where we employed the reanalysis dataset.

As can be seen from the table(4.2), PLSR coefficients corresponding to the SST

is significantly higher than that others. Higher AT (at the lowest level, close to

SST) influence TCPI negatively and goes well with the WISHE model’s concept

of enthalpy exchange between the SST and AT, where, low AT would enforce the

evaporation and hence the potential intensity.
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PMCC coef (r) SST SLP MR AT

Reanalysis 6.333 0.3350 0.0055 0.3990
1XCO2 (r) 0.98 0.49 -0.75 -0.095
1XCO2 (r2) 0.96 0.24 -0.56 -0.009

Table 4.3: Pearson’s Moment Correlation Coefficients between TCPI and SST,
SLP, MR, & AT derived from model data (GFDL) under present day and dou-

bled CO2 scenario
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Figure 4.4: A Schematic representation of the methodology to compute ∆V
under present and doubled CO2 concentration.

Also, TCPI show higher correlation (Pearson moment correlation coefficient, PMCC)

with the SST, as shown in table(4.3). SLP and MR on the other hand show feeble

and negative correlation with TCPI. Tropical SST, SLP, AT and MR used here

are a model (GFDL) based, under present day CO2 level.

4.3.2 Analysis Using Histograms

The previous analysis showed us that the peak wind speeds are highly dependent

on the ocean temperature. Directed by this result, we define the change in the

peak wind speed, as a result of a unit increase in the ocean temperature, given by,

∆V = Vmax(SST + 1)− Vmax(SST ) (4.5)
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Figure 4.5: Under present day CO2 scenario, change in maximum wind speed,
Vmax, on increased SST by 1 ◦C averaged over tropics is highest between the
range of 8.5ms−1 to 10.6 ms−1, which is significantly high (at 5% significance

level).

4.3.2.1 Histogram of sensitivity to Vmax in the Tropical Ocean Basin

A histogram of change in the tropical wind speeds, ∆V , at each grid point is

graphed in Figure(4.5). A graphical display of gridded change in TC strength

on increasing SST by a unit degree in tropics in form of histogram is shown in

Figure(4.5). This bar plot of ∆V distribution is organised in intervals or bins.The

intervals having a unit of peak wind speed (ms−1) on the X-axis and the number

of grid points, along Y-axis, possessing the associated Vmax values are represented.

This histogram representation provides important information about the nature

of Vmax data like, the dispersion, the central tendency, and in general shape of the

distribution. Here, central tendency is measured in terms of mean and median

and dispersion of the data in terms of range and standard deviation. ∆V values

averaged over tropics possess quantile values at 0.25, 0.5, & 0.75 to be 9.2 ms−1,

10 ms−1 and 11.1 ms−1.

Here, the tropical region does not include 5 ◦C north and south of equator since

the region does not support TC formation owing to lack of Coriolis force that

causes vortex turning associated with a cyclone. Less than 25% of the increased

Vmax values are less than 9.2 ms−1 in magnitude, (1/4)th are between 9.2 and 10

ms−1. Next 25% values are between 10 and 11 ms−1. Remaining (1/4)th are above

11 ms−1. Change in Vmax on increasing SST by 1 ◦C is a unimodal distribution

and is positively skewed (Skewness = 0.21 ms−1), i.e. on an average, there is an
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increase in TC wind speeds by about 10 ms−1, in tropics. T-test performed on

the distribution at 5% significance level shows that this positive change in TC

wind speed is significant. Unambiguously, Vmax is highly sensitive to the change

in tropical SST. The distribution has kurtosis (Kurtosis = 6.2) slightly more than

twice that of a Gaussian distribution with kurtosis of 3 units. That is, most of the

grid points ( 4300) show increase in Vmax in tropics between 8.5 and 10.6 ms−1

Figure(4.5). The histogram graph thus indicates substantial contribution of unit

change in SST on TC strengthening. Hence, in tropics, varying SST consecutively

influences cyclone intensity.

4.3.2.2 Histogram of sensitivity to Vmax in the North Indian Ocean

In Figure(4.6), we can see that change in peak wind speeds on increasing SST by

1 ◦C is positive. We can see a negative skewness in the changed Vmax distribution

(skewness = -0.94) over the North Indian Ocean. None of the ∆V grid values shows

decrease in Vmax on increasing SST. The distribution possesses a kurtosis (Kurtosis

= 7.3) greater than 3 and is thus more peaked than a Gaussian distribution. 75%,

50% and 25% quantile values of ∆V are, 9.97 ms−1, 8.9 ms−1, and 8.6 ms−1

respectively. Thus, lower than a quarter of the data points are smaller than 8.6

ms−1, 25% of the values are between 8.6 and 8.9 ms−1. Last quarter of values is

greater than 10 ms−1. These findings show that in North Indian Ocean, in general,

there is a net increase in ∆V values by about 9 ms−1 when averaged over North

Indian Ocean as a response to increasing in SST by 1 ◦C

4.3.2.3 Histogram of sensitivity to Vmax in the South Indian Ocean

Histogram of ∆V in South Indian Ocean is close to consistent with change in

maximum wind speed on increasing SST by 1 ◦C. The graph stretches the range

from 0 to 14 (ms−1) while it peaks between 10.7 ms−1 to 11.2 ms−1 i.e. most of

the grid points show increase in the peak wind speed by 11 ms−1 on an average

Figure(4.10).
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Figure 4.6: Histogram of ∆V as response to 1 ◦C rise in SST. Y-axis de-
notes the number of grid points possessing ∆V demarcated on abscissa. On an
average, increase in Vmax as response to increase in SST by 1 ◦C is 9 (ms−1).

Figure 4.7: Histogram representing ∆V in Northwest Pacific Ocean as a result
to 1 ◦C rise in SST. Ordinate denotes the number of grid points possessing ∆V
demarcated on X-axis. In Northwest Pacific, all the ∆V values are above 7
(ms−1) with expected increase in ∆V on increasing SST by 1 ◦C to be 8.4

(ms−1).

4.3.2.4 Histogram of sensitivity to Vmax in the Northwest Pacific Ocean

Bar plot of ∆V in Northwest Pacific basin is positively skewed (skewness = 1.6).

In Northwest Pacific, the average increase in Vmax on increasing SST is about 8.5

ms−1. Most of the grid points in Northwest Pacific demarcate a positive change

in peak cyclone wind speed by about 8.25 ms−1 Figure(4.7).
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Figure 4.8: In Northeast Pacific, distribution of ∆V in Northeast Pacific
Ocean is far from Gaussian and it also appears that it is a bimodal distribution.
Bimodal characteristic in the distribution is indicative of two merged distribu-
tions. The two distributions could be due to overlapping of two ocean basins
prone to tropical cyclone formation giving rise to two distributions of ∆V , one
corresponding to each basin. Vmax increase by 8.4 (ms−1) in Northeast Pacific

Ocean as response to 1 ◦C upswing in SST.

Figure 4.9: Histogram of ∆V in North Atlantic Ocean as a response to 1 ◦C
rise in SST. Y-axis denotes the number of grid points possessing ∆V demarcated
on X-axis. In North Atlantic Ocean, all the ∆V values are above 9 (ms−1). This

distribution is very close to Gaussian with kurtosis of 3.1.
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Ocean Basin Median Skewness Kurtosis Q 0.25 Q 0.50 Q 0.75
Tropics 10 0.21 6.2 9.2 10 11

NIO 8.9 -0.94 7.3 8.6 8.9 10
NWPac 8.4 1.6 6.5 8.1 8.4 8.8
NEPc 9.9 0.71 2.8 9 9.9 11.5
NAtl 9.3 0.79 3.1 8.9 9.3 10.3
SIO 11 -0.1 1.9 9.8 11 12.2

SDrwn 10 1.1 3.4 9.5 10 11
SWPac 9.8 0.2 1.6 8.4 9.8 11.4

Table 4.4: Statistics of change in tropical cyclone

4.3.2.5 Histogram of sensitivity to Vmax in the Northeast Pacific Ocean

and North Atlantic Ocean

Results from the histogram of rest of all the considered TC prone ocean basins is

shown in the table(4.4). Since median is not sensitive to outliers, we analyze results

in table(4.4) and table(4.5) by comparing median values stated. Under doubled

CO2 scenario, ∆V declines in all the ocean basins including tropics. Tropical ∆V

decrease by 0.9 ms−1. 1.4 ms−1 reduction is observed in North Indian Ocean,

1.1 ms−1 decline in Northwest Pacific, 1.6 ms−1 in Northeast Pacific, 1.2 ms−1 in

South Indian Ocean, 1.5 close to Darwin and Jakarta and 1.2 ms−1 decrease in

Southwest Pacific.

The highest downturn in the “sensitivity” of TCI to SST is observed in Northeast

Pacific and least over tropics. However, the skewness of ∆V becomes more posi-

tive on increasing CO2 concentration and thus more grid points have higher ∆V

values but spread more. This reduction in ∆V as a response to a unit increase

in SST could be explained by the observed increase in atmospheric temperature

profile on increasing CO2 concentration. Increased atmospheric temperature could

suppress the amount of heat exchanged between ocean and atmosphere via evapo-

ration from the ocean surface. It’s identified that increasing SST would still induce

higher evaporation which leads to convection over the sea surface and eventually

leading to convective thunder clouds (provided right conditions for cyclogenesis

like low vertical wind shear occurs). However, increase in atmospheric tempera-

ture substantially can suppress the evaporation content over the seabed meaning

thereby decreased sensitivity to increased ocean temperature. The results from

this analysis are comparable to the PLSR results which indicated the dominant

role of high SST underneath and relatively lower AT above.
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Figure 4.10: Histogram of ∆V in South Indian Ocean as a response to 1 ◦C
rise in SST. Y-axis denotes the number of grid points possessing ∆V demarcated
on the abscissa. In South Indian Ocean, increase in ∆V ranges between 0 to 14
(ms−1). This distribution show even arrangement of ∆V values across the bins
(X-axis values) between 0 to 13 (ms−1). Average increase in ∆V over South

Indian Ocean is 11 ms−1.

Figure 4.11: Histogram of ∆V in Southwest Pacific Ocean as a response
to 1 ◦C rise in SST. Y-axis denotes the number of grid points possessing ∆V
demarcated on X-axis. Typical increase in ∆V over Southwest Pacific Ocean is

9.8 (ms−1).
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Ocean Basin Mean Median Skewness Kurtosis Q 0.25 Q 0.50 Q 0.75
Tropics 9.5 9.1 0.9 5.3 8.3 9.1 10.3

NIO 7.7 7.5 -0.65 6.3 7.2 7.5 8.3
NWPac 7.4 7.3 1.2 4.9 7.0 7.3 7.4
NEPc 8.9 8.3 0.9 2.7 7.6 8.3 10
NAtl 8.3 8.1 0.5 3.5 7.8 8.1 8.8
SIO 10.1 9.8 0.3 1.8 8.5 9.8 11.7

SDrwn 9.1 8.5 1.6 5.1 8.2 8.5 9.4
SWPac 9.1 8.6 0.4 1.9 7.4 8.6 10.6

Table 4.5: Statistics of change in tropical cyclone for doubled CO2 scenario

Ocean Basins ∆V 1XCO2 ∆V 2XCO2

Tropics 10.0868 9.8839
North Indian Ocean 9.2398 8.6577
Northwest Pacific 8.8903 9.2568
Northeast Pacific 10.5793 10.0660
North Atlantic 9.7598 9.3820
South Indian Ocean 11.1751 11.0543
Southwest Pacific 10.1314 10.2110
Darwin 10.4194 10.0581

Table 4.6: The decrease in sensitivity of TC strength towards SST with in-
creased CO2 concentration. On an average, we can notice highest effect in North
Indian Ocean and least in South Indian Ocean. North and Southwest Pacific
add an exception to this, while the exception is quite small in the southern part

of the West Pacific Ocean. Data used, HadCM3, UK Met Office

Ocean Basins ∆V 1XCO2 ∆V 2XCO2

North Indian Ocean 9.56 6.6
Northwest Pacific 9.44 6.70
Northeast Pacific 10.04 6.94
North Atlantic 10.77 6.97
South Indian Ocean 9.44 6.4
Southwest Pacific 8.41 5.9

Table 4.7: Table compares ∆V in six tropical oceans (averaged over equal
areas), under present and doubled CO2 concentrations. Lower values of ∆V
represents the lower sensitivity of change in ∆V to a unit increase in SST. All
the tropical ocean basins stated in the table above, North Indian Ocean, North-
west Pacific, North Atlantic Ocean, Northeast Pacific, South Indian Ocean, and
Southwest Pacific, illustrates the reduced sensitivity of ∆V (towards SST) on

doubling CO2 concentration. Data used, CMIP5, GFDL
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In order to test the significance of the values stated in table(4.7) and (4.6), we

performed 2-tailed test (since we were unsure if the value is expected to be on the

higher or lower end). As a null hypothesis, the values as given in the tables(4.7)

and (4.6) were considered and an alternate hypothesis around it was constructed.

For the given mean (µ), the sample size, n, standard deviation, s, of the sample

(X), the test statistic employed is given as,

t =
(X̄ − µ)

s/
√
n

(4.6)

A significance level of 5% was considered for all the tests. The p-value, denoting

the probability of observing a test statistic as extreme as the observed value under

the null hypothesis, was then computed. Here, the small p-value cast doubt on the

validity of the null hypothesis. The p-value obtained in each of the ocean basins

were close to 1, higher than 0.90 at a 5% significance level. Thus, the values given

in the tables (4.7) and (4.6) are significant at 5% significance level.

4.3.3 Sensitivity Analysis

The lower values of ∆V in the table(4.12) represents lower sensitivity of change

in TCPI to a unit increase in SST. All the tropical ocean basins stated in the

table show reduced “sensitivity” of ∆V towards SST on doubling CO2 amount.

The table compares ∆V in six different tropical ocean (averaged over equal areas)

under 1X and 2X CO2 levels.

The impact of increasing MR, which according to PLSR coefficients looks feebly

connected to TCPI, has also been studied (but not shown here), using both,GFDL

and HadCM3 dataset.

Scatter plots in figure (4.12), illustrate variation of TCPI Vs SST in the first panel,

between TCPI Vs MR in the second panel, TCPI Vs SLP in the third panel, and

TCPI Vs AT in the fourth panel of the figure (4.12). The figure displays the better

relationship between V max and SST as compared to other variables. The figure

also supports significantly strong correlation obtained between TCPI and SST as

shown in table (4.8)

As can be seen from the tables, (4.10)(4.9), ∆V reduces on increasing SLP and

AT in all the ocean basins, except SIO where ∆V rather show slight increase.



Saturation of Tropical Cyclone Strength under a doubled CO2 scenario 89

Variables correlated Correlation Coefficient (r) Coefficient of Determination (r2)

(TCPI, SST) 0.9746 0.96
(TCPI, SLP) -0.7504 -0.56
(TCPI, MR) -0.095 -0.009
(TCPI, AT) -0.4940 0.24

Table 4.8: The table presents the Pearson’s moment correlation coefficient
(r) and the coefficient of determination (r2) between TCPI and the four input
variables (SST, SLP, MR, and AT, from reanalysis dataset). TCPI in the table
above shows best connection with SST as compared with other three variables.
This link can be visualised in the scatter plots between the same set of variables
shown in the figure (4.12), which agrees with the values displayed in this table.

Tropical Ocean ∆V = VmaxAT+1
− VmaxAT

∆V = VmaxAT+1
− VmaxAT

Basin (CMIP5 Dataset) 1XCO2 2XCO2

NIO -4.64 -4.4
NWPC -4.41 -4.3
NATL -4.55 -4.4
NEPC -5.29 -5.04

SIO -5.17 -5.2
SWPC -5.13 -5.12

Table 4.9: The table above illustrates the sensitivity of ∆V towards an in-
crease in AT in tropics under present and doubled levels of CO2. Where NIO
refers to the North Indian Ocean, NWPC stands for Northwest PacifiC, NATL
corresponds to North Atlantic Ocean, NEPC can be expanded as Northeast Pa-
cific Ocean, SIO indicate South Indian Ocean, and SWPC represents Southwest

Pacific Ocean

Tropical Ocean ∆V = VmaxAT+1
− VmaxAT

∆V = VmaxAT+1
− VmaxAT

Basin (GFDL Dataset) 1XCO2 2XCO2

NIO -0.27 -0.25
NWPC -0.25 -0.24
NATL -0.27 -0.26
NEPC -0.29 -0.29

SIO -0.23 -0.24
SWPC -0.32 -0.32

Table 4.10: The table above illustrates the sensitivity of ∆V towards an in-
crease in SLP in tropical ocean basins under present and doubled levels of CO2.
Where, NIO refers to the North Indian Ocean, NWPC stands for Northwest
PacifiC, NATL corresponds to North Atlantic Ocean, NEPC can be expanded
as Northeast Pacific Ocean, SIO indicate South Indian Ocean, and SWPC rep-

resents Southwest Pacific Ocean
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Figure 4.12: The figure illustrates scatter plots between TCPI and four input
variables, SST, MR, SLP, and AT. The figure indicates a better connection

between TCPI and SST (panel 1) as compared to other variables.

However, the response of ∆V to a unit increase in MR and SST shows rise in

all the ocean basins, including SIO. However, change in SST gives rise to the

maximum departures in the wind speeds both under present day and doubled

CO2 concentrations.

The results from sensitivity tests (table(4.12), table(4.10), table(4.9) table(4.11) )

performed on each of the input (SST, SLP, and AT), shows that sensitivity of ∆V

is highest towards SST and this sensitivity reduces in all the ocean basins when

the CO2 concentration is doubled.

4.3.4 Detailed Explanation of the Tables from Sensitivity

Analysis section:

Interdependence between the TCPI and the four input variables, SST, SLP, MR

and AT are individually quantified using Pearson’s moment correlation coefficient

and is shown in the table(4.8). The best connection can be seen with the ocean

temperature (r = 0.98). The two datasets used here covers tropical ocean and

the gridded data points are used to determine the correlation. The coefficient of

determination between TCPI and SST is significant and substantial (r2 = 0.96)
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Model Ensemble ∆V = VmaxSST+1
− VmaxSST

∆V = VmaxSST+1
− VmaxSST

(HadCM3 Dataset) 1XCO2 2XCO2

Q0 9.97 9.92
Q1 10.25 10.25
Q2 9.94 9.23
Q3 10.1 9.44
Q4 10.11 10.06
Q5 9.99 9.998
Q6 10.1 9.96
Q7 10.25 10.2

Table 4.11: Table above compares ∆V obtained from using perturbed model
runs under present-day and doubled CO2 amount. The ∆V values presented in
this table are averaged over tropics. Individual oceans are also considered and
are shown in other e.g. tables (4.12) which agree with the sensitivity saturation

effect shown in the table above.

Tropical Ocean ∆V = VmaxSST+1
− VmaxSST

∆V = VmaxSST+1
− VmaxSST

Basin (GFDL Dataset) 1XCO2 2XCO2

NIO 9.56 6.6
NWPC 9.44 6.7
NATL 10.77 6.97
NEPC 10.04 6.94

SIO 9.44 6.4
SWPC 8.41 5.9

Table 4.12: CMIP5 Dataset: Table above illustrates the sensitivity of ∆V
towards an increase in SST in tropical ocean basins under present and doubled
levels of CO2. Where, NIO refers to the North Indian Ocean, NWPC stands
for Northwest PacifiC, NATL corresponds to North Atlantic Ocean, NEPC can
be expanded as Northeast Pacific Ocean, SIO indicate South Indian Ocean, and

SWPC represents Southwest Pacific Ocen

(table(4.8)). This high correlation seen here motivates us to look for the sensitivity

of TCPI towards SST.

The sensitivity of change in TCPI towards an increase in AT at present day and

doubled CO2 levels can be seen in the table (4.9) (HadCM3) and table(4.10)

(GFDL). An increase in AT by a unit degree in present day and doubled CO2

state shows interesting patterns in all the ocean basins. The change in TCPI with

1 degree Celsius increase in the atmospheric temperature is negative in all the

ocean basins and under the present day and doubled CO2 conditions. This indi-

cates the damping effect of the high AT above the ocean surface. This damping
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effect could be explained by the decrease in the evaporation rate with the in-

creased temperature above an ocean basin. Interestingly, through the damping is

apparent in all the ocean basis, it reduces on increasing CO2 concentration, which

increased the ocean temperature underneath, thereby leading to correspondingly

higher evaporation rate and atmospheric instability, promoting higher TCPI.

Table (4.6 and 4.12) illustrates how sensitive is the TCPI towards a unit increase

in the SST in the tropical ocean basins (NIO, NWPC, NATL, NEPC, SIO and

SWPC) under present and doubled CO2 scenario. Table (4.6) uses the HadCM3

data for the analysis while HadCM3 data for the analysis while the table (4.12)

uses data from GFDL. The sensitivity of the change in TCPI towards ocean tem-

perature is highest in the North Atlantic when GFDL is used table (4.12) but

not so when HadCM3 is used table (4.6). Interestingly, the tables indicate dif-

ferent levels of sensitivity towards the ocean temperature under the present day

and doubled CO2 scenarios. Ocean temperature as derived from HadCM3 leads

to comparatively higher values.

Tables(4.7 and 4.6) show that the ∆V values as obtained from HadCM3 (4.6)

are comparatively higher than those from GFDL (4.7). A possible explanation of

the observation comes from differences in the response of the two models towards

increasing CO2 concentration. On comparing SST values as obtained from GFDL

and HadCM3, it was found that the HadCM3 SST values are higher and doubling

of CO2 amount in the HadCM3 gives comparatively higher rise in SST than those

obtained from GFDL and thus the Vmax values correspondingly the ∆V values.

This indicate that HadCM3 responds with higher SST gradient and is thus more

sensitive to the doubling of CO2 concentration than that of GFDL.

4.4 Conclusions

The study has identified the sensitivity of ∆V to a unit increase in SST. The

sensitivity however decreases on increasing CO2 concentration in a climate system.

The mechanism could be understood as follows. Increased CO2 concentration in-

creases atmospheric temperature substantially which suppresses the evaporation

and thus the amount of latent heat liberated. This reduction in the heat liber-

ation in turn reduce the amount of the input energy for a TC. This can also be
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understood in terms of decreased atmospheric instability due to increase in the

atmospheric temperature above.

One of the most important findings to emerge from this work is that the “sen-

sitivity” of tropical cyclone strength to ocean warming could eventually saturate

with the rise in CO2 concentration. All the considered ocean basins show a sig-

nificant increase in the tropical cyclone intensity as response to 1 ◦C increase in

the ocean temperature. Tropical cyclone intensity in the different ocean basins

responds differently to the varied CO2 levels and to the changed SST values.

The research has also shown that each ocean is unique in terms of its sensitivity

towards cyclone intensification as a result of increasing SST. SST, atmospheric

temperature, and ocean-atmospheric temperature contrast (SAT) are the factors

that have pronounced impact on cyclone intensification. The most obvious finding

to emerge from this study is that influence of atmospheric mixing ratio is small

on tropical cyclone intensification. Increasing SLP and atmospheric temperature

have negative effect on tropical cyclone intensification.

From this research, another important questions arises. Considering that the

decrease in the “sensitivity” of ∆V towards SST goes on, with increasing CO2

amount, then is it expected that the sensitivity would saturate, and wouldn’t

change further? If it does saturate, at what critical value of CO2 would this

occur?

Is this situation any similar to the band saturation effect and does it too follow

the logarithmic relationship between the CO2 concentration and ∆V ?

4.5 Weakness and Limitations

This work is one of its kind to find saturation in “sensitivity” of tropical cy-

clone strength towards SST as a result of increasing CO2. However, this work

only looked at doubled CO2 scenarios and did not attempt to study cases with

a further increase in CO2 concentrations. Thus, extensive experimentation with

different levels of CO2 is suggested to avoid any circumstantial findings.
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Secondly, datasets from only two models (HadCM3 and GFDL) are used here

which differs from each other. Thus, we suggest considering data from more mod-

els to increase confidence in the results.

Moreover, Emanuel’s methodology used here to compute TCPI is only an approx-

imation.

Finally, the data from GFDL and HadCM3 models used here may have errors.



Chapter 5

Summary, Conclusions and

Recommendations

5.1 Introduction

This chapter presents the summary of the research work undertaken, the conclu-

sions drawn and the recommendations made as an outgrowth of this work.

This study investigated the impact of our changing climate on the TC intensity.

This research has sought to understand the spatial and temporal behaviour of

the TC intensity under present day and changed climatic scenario. The scientific

literature is inconclusive on several vital questions within the diversified discourse.

One of question reflects on the impact of the varying CO2 concentration on TC’s

tendency to intensify.

The study also attempts to understand the TC intensity’s sensitivity towards the

basic underlying parameters like ocean temperature, atmospheric temperature,

humidity content and the sea level pressure. This part of the study leads us to

an unanticipated finding which has never been documented before which we term

as the possible sensitivity saturation effect analogous to the well-known “Band

Saturation effect”. This part of the work would be of high interest to climatologists

and could have an impact on our present understanding of the intensifying storms

in the warming world, forced by the available literature till date.

There are two sections corresponding to the two main questions investigated in

the thesis.

95
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The first section of the research presents the one to one connection and importance

of the ocean temperature on the TC potential intensity. Making use of this inter-

esting finding, we attempted to develop a simple statistical model to express the

spatial distribution of the TC potential intensity. The statistics of TC strength

on doubling CO2 concentration was looked at using this model.

The second part of the research sets out to quantitatively understand how does

the dependence of TC strength on the ocean temperature changes on changing the

CO2 concentration.

We summarise and discuss results of each of these two sections next followed by the

conclusions, limitations of the work along with the recommendations for further

investigation and experimentation to explore the questions the work has posed or

to undertake the limitations of the work (be it in terms of data availability or

otherwise).

What this research doesn’t do is to develop a new thermodynamic TC potential

intensity model or theoretically modify one. Nor does it improve the existing

ones but make use of a well-established theoretical model to study TC potential

intensity under different climatic conditions.

5.2 The Questions

The main objective of this dissertation has been to investigate the response of

TC potential intensity to the warming world. This question was motivated by

a need to apprehend behaviour of the TC potential intensity in general and its

dependence (both spatial) on the natural variations and the desire to anticipate

its future as a response to our warming world.

The pathway to answer the primary questions generated a number of secondary

questions which were also investigated. A few of which are as follows.

1. What is the role of sea surface temperature in tropical cyclone intensification.

How can we use this connection to estimate TC potential intensity?

2. How can the warming oceans influence TC potential intensity?

3. What is the impact of 2XCO2 on TC potential intensity?
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4. How sensitive is the TC potential intensity to the underlying factors?

5. How important is the role of ocean warming in the TC intensification on

spatial scales?

5.3 The Answers

I have proposed answers to these questions, based on a detailed analysis of the

observations, theoretical and numerical models, advanced statistical methods ca-

pable of handling non-linear and non-stationary data.

1. Chapter 3

Spatially and temporally, the TC potential intensity shows the highest re-

sponse towards the ocean temperature and towards atmospheric temperature

to some extent.

Using three reanalysis datasets, we found that over the TC prone region,

SST in general and ocean-atmospheric temperature contrast, in particular,

contributes to the maximum TC potential intensity. This finding could be

understood in terms of the enthalpy exchange process between the ocean

surface and the atmospheric profile over it, in view of the TC’s secondary

circulation behaving as a natural Carnot heat engine. A higher ocean tem-

perature acting as a strong TC source may directly affect the TC potential

intensity by increasing it. Based on this view, a simple linear model was de-

veloped. Considering significantly high correlation coefficients between the

developed model and the theoretical model, we were enabled to compute

the TC potential intensity mainly by employing the SST values with some-

what sub-optimal but acceptable performance during the situation when

other datasets (SLP, AT and atmospheric humidity profiles) are not avail-

able. Outputs of the model in the various ocean basins closely coincide with

the evolved model (to the first degree of approximation) and the observa-

tions (ACE index) to a fair extent. The TC potential intensity seems to vary

inhomogeneously throughout the tropics i.e. it varies by a different amount

in the different ocean basin.
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The simulated model shows that the amount of variation in the TC potential

intensity in the North Atlantic and the Northeast Pacific Ocean is compar-

atively less than that in the North Indian Ocean and the Northwest Pacific

when CO2 concentration is doubled.

The spatial spread of the simulated TC potential intensity, show patterns

similar to the ENSO’s warm pool and cold tongue patterns which are an

indicative of a possible connection between ENSO and the TC potential

intensity. (Shown over the temporal scales in the chapter not included in

the thesis)

The Northern Hemisphere shows more warming and more associated TC

potential intensity in the warming world. The surface wind speeds show high

anti-correlation with the minimum pressure values over the tropics. This

anti-correlation has been observed in all the ocean basins to an appreciable

extent (supplementary figs).

In a prediction using a climate model, both tropical ocean temperature and

the TC potential intensity shows an inhomogeneous increase. The calculated

difference between the TC potential intensity under the present-day and

doubled CO2 cases show a dramatic rise in the TC potential intensity in the

North Indian Ocean, the Northwest Pacific, and the North Atlantic Ocean.

The TC potential intensity illustrates a strong dependence on the underlying

ocean temperature spatially and thus would be considered as one of the

primary drivers of the TC intensification tropically.

Chapter 4

The chapter examines the TCPI’s sensitivity to the ocean temperature. Two

independent models reveal an average increase in the TC potential intensity

between 8 to 10 m/s per unit increase in the ocean temperature (in oC).

The key finding to emerge from this study is that the increase in the TC

potential intensity responds comparatively weakly to the ocean temperature

on increasing CO2 amount.

On doubling the CO2 concentration change in the TC potential intensity

shows a weakened response to the increased SST values. This effect is ob-

served in all the ocean basins considered in the study. Though the TC po-

tential intensity shows an overall rise on increasing the CO2 concentration

but, its response to the SST decreases. We termed this observed behaviour

as the sensitivity saturation effect which we define as the reduction in the
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TCPI’s sensitivity towards the change in the SST on increasing CO2 con-

centration. This observation leads to a next level question of whether there

will be a sensitivity saturation effect, analogous to the well-known “Band

Saturation effect”, as a response to the increasing CO2 levels and if it does,

at what cut-off CO2 levels. This emerging question opens up a new area of

investigation for the climatologists.

In this way, this research provides a framework for the future exploration

of the subject. The study also depicts unique characteristics of the ocean

sensitivity towards the local ocean temperature variations. Increasing SLP

and AT show an overall negative impact on the TC potential intensity.

5.4 Limitations & Prospective Suggestions

Chapter 3: Handicapped by the HadCM3’s performance around the land areas

in the ocean, the future projections of the TC potential intensity near the areas

surrounding the land is doubtful for the same reason. A more reliable model is

suggested to take the analysis to next level.

This study used WISHE model approach which is debated in some documented

researches. So, we suggest a next level investigation by employing a model closer

to the non-axi symmetric spin-up state of an ideal TC.

The simple statistical model developed here is based on the SST alone and thus

offers an opportunity to study the TCs over the remote places where other param-

eters are unavailable. But, at the same time, errors in the SST will be propagated

to the estimated TC potential intensity as there is no mechanism to prevent the

error from propagating into such an overly simplistic approach. A highly reliable

SST data set with the removed bias could assist in overcoming this shortcoming

to some extent.

Chapter 4: The fifth chapter looked at the present and doubled CO2 scenarios

only with the two well-established climate models, both of which supports our

findings. It would be worth experimenting with the different levels of CO2 and

test for the sensitivity saturation effect.
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We also suggest an in-depth study to explain the observed response of TC strength

towards an increase in SST under the considered CO2 concentrations from the

point of view of the thermodynamics of TC intensification.

5.5 Contributions

1. Chapter 3: The study offers several significant contributions. The primary

contribution of this study has been to substantiate the vital role of the ocean

temperature on the TC potential intensity. The study demonstrates one to

one connection between the SST and TC potential intensity on the spatial

scales (1X1 degree grid). This not only contributes to the existing knowl-

edge of such a connection but also take this knowledge further and apply

it to compute the TC potential intensity using a simple regression equation

using SST alone. This promotes our understanding of how the TC potential

intensity would vary at remote locations where, SLP, MR, and AT profiles

are unavailable.

In view of the satisfactory performance of the TC potential intensity model

developed here (VmaxNw) and its good correlation with the ACE in all the

considered ocean basins, VmaxNw can be used in place of the ACE index to

some extent.

Thus, this work offers several practical applications.

This study confirms the findings of (Saunders [1997],Miller [1958], Palmen

[1948b]) which found a strong connection between the TC potential intensity

and the local ocean temperature.

Another important contribution of this study is that it gives confidence to

the previously existing theory which found an increase in the TC potential

intensity in the warming world (Walsh et al. [2015]).

2. Chapter 4: This study has several important contributions.

Firstly, it confirms the findings of (Strazzo et al. [2015]) which indicated

towards the spatial sensitivity of the TC potential intensity on the local SST.

Secondly, this is the first time that the reduction in the TCPI’s sensitivity

towards the ocean temperature has been reported under the climate change



Appendices 101

(doubled CO2) scenario. This characteristic of the TC potential intensity

has been confirmed using two well-established climate models.

Most importantly, this study invokes an idea of the “Sensitivity Saturation

Effect” (a term coined by the author) according to which we propose that

the response of the TC potential intensity to the ocean temperature could

saturate on increasing CO2 concentration.



Appendix A

Supplimentary Figures, Tables

and Explanations

A.1 Chapter 3

A.1.1 Dependence of Vmax on SST and AT

The Storm strength is quantified as the maximum wind speed in the storm. This

speed is considered at 10 metre height for an average of one to ten minutes. Vmax

is primarily determined by considering the TC as a Carnot heat engine, mainly

it’s secondary circulation. A TC has two circulations primary and secondary. The

primary circulation includes the rotational part of the flow and is purely circular in

nature. This is the circulation element which is responsible for the majority of the

damage associated with the TCs. The secondary part of the circulation involves

the overturning (in-up-out-down).This part of the circulation flow is slower than

the primary part but governs the energetics of the storm Emanuel [2006]. The flow

is in the radial and vertical directions. The primary energy source for this type of

cycle is the evaporation of water from the sea surface. The sea surface act as both,

the source (evaporation) and as a sink (friction) of TC’s energy. This leads to the

theoretical upper limit on the attainable storm’s wind speed Emanuel [2006]. This

upper bound is called, the Maximum potential intensity (Vmax). Vmax depends on

the Convective Available Potential Energy (CAPE) of the evaporated and lifted

air parcel and the energy of the environmental boundary layer air parcel. CAPE

is the measure of the atmospheric instability which is associated with the severe

102
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weather systems, for instance, TCs. Put simply, CAPE represents the energy a

parcel of air would attain if raised to a vertical atmospheric level. The link between

the Vmax and CAPE is as followsBister and Emanuel [2002]:

Vmax =

√(Ts
T0

)Ck
CD

(
CAPES − CAPEb

)
(A.1)

In the equation, A.1, CAPES, represents the CAPE of an air parcel lifted from

saturation at the sea level. CAPEb is the CAPE at the boundary layer air, at the

radius of maximum winds. CAPE is given as follows:

CAPE =

∫ LND

LFC

g
Θ(z)−Θ(z)

Θ(z)
dz (A.2)

where, Θ represents the virtual temperature which entertains the use of the dry-

air equation of state for the moist air except that T is replaced by Θ. Now,

Θ ∼ (1 + 0.61rv)T where, rv represents the mixing ratio. On taking ratio of the

two virtual temperatures, at a particular level, this factor, (1 + 0.61rv), vanishes

and we are left with the temperature term only.

Determining CAPE∗S and CAPEB using the definition of CAPE and equation(A.2).

Assuming the adiabatic moist lapse rate to be, γm, where, γm = dT/dz. For a

parcel lifted from the sea surface to an environmental sounding say at (e.g.Ps =

650mb), the associated CAPE would be,

CAPE∗s =
((Tp,ps − Te,ps)

Te,ps

)
gdz (A.3)

CAPE∗b =
((Tb,pb − Te,pb)

Te,pb

)
gdz (A.4)

Given the lapse rate, γ′ = dT/dz, Tp,ps = (SST−γ′dzs) (for the negative lapse rate,

typical of tropics) and Te,ps ≈ AT (zs). In the boundary layer region then, Te,pb =

AT (zb) while, Tb,pb = (SST − γ′dzb). Substituting these expressions in equation,

A.3 and A.4, and taking difference of the two CAPES,(CAPEs − CAPE∗b ) ,we

get,
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CAPEs−CAPE∗b =
((SST − γ′dzs)− AT (zs))

AT (zs)
dzs−

(SST − γ′dzb)− AT (zb))

AT (zb)
dzb

)
g

(A.5)

From A.5, we can infer that the difference of the convective potential energy at the

boundary layer and that in the atmosphere, rising from a saturated state depends

on the atmospheric temperature at the level and at the sea surface temperature

level from which the parcel rose at the first place. i.e.

CAPEs − CAPE∗b = f(AT (z), SST ) (A.6)

Now, Vmax is a function of CAPEs − CAPE∗b (Equation(A.1)) which in turn

depend upon the SST and AT thence the Vmax.

V 2
max ∝ CAPEs − CAPE∗b = f(AT (z), SST ) (A.7)

This (Equation A.7) is in line with our results which represents the dependence of

Vmax on the SST and the atmospheric temperature. A Positive CAPE is essential

for convection and thence storm formation. For this to be true,( From Equation

A.5), SST should be high while AT should be relatively low to cause positive

buoyancy and hence the positive CAPE.

A.1.2 Computing VmaxNw using SST

As stated in section(3.3.1), the TCPI, VmaxNw, was computed using SST, which

was chosen as a result of a strong correlation of the TCPI with the 4T , where,

4T = f(SST, AT1).

Computation of 4T involved a couple of sensitivity experiments before deciding

the optimal method. SST is the dominant factor to approximate the TCPI to a

good extent, in most cases.

During the initial experimentation, 4T was taken as (SST - mean(AT)), where

mean(AT) was the statistical mean of the atmospheric temperature in a column.

4T values over all the considered ocean basins were very high owing to the nega-

tive mean(AT) values. But, we know that mean of AT computed without taking

the varying density into account is impractical.
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It can be found in the literature (Bevis et al. [1992]) that the mean(AT) values

can be approximated using SST. Thus, SAT was calculated as the difference be-

tween SST and mean(AT), where AT can be defined in terms of SST using an

equation. The coefficients, however, vary from one region to another. If our atmo-

sphere were isothermal, then the mean temperature would be constant, equal to

the surface temperature. However, the atmospheric temperature shows a negative

gradient up to the tropopause, the mean column temperature would be given by

the temperature of the atmosphere weighted by the pressure of the water vapour.

Thence, mean(AT) would depend on the surface temperature (SST in our case).

Dependency of the mean atmospheric temperature on the surface (at surface tem-

perature, Ts) would then be, mean(AT)= 55.8 + 0.77Ts over the New York area

(Davis et al. [1985]). For more details on the equation, please refer to, (Bevis et al.

[1992]),(Davis et al. [1985]).

Finally,the lowest atmospheric temperature was used to compute SAT (=SST -

AT1) and again a good correlation with the TCPI was found. So, it was decided

to use this method which finally lead us to the relationship, VmaxNw = f(SST),

(Eq. 3.5).

A.1.3 Application of Linear Model Outputs to HadCM3

Model

We examined changes in SST and hence VmaxNw and PDI projected from the third

version of the Hadley Centre Climate Model, HadCM3, where coupled oceanic-

atmospheric model outputs were considered in the present day and for a doubled

CO2 scenario. We further applied the resulting ensemble outputs generated by

perturbed physics outcomes from the HadCM3 climate model to our statistical

model of determining TC winds. This was done to investigate the change in max-

imum sustained winds and hence cyclone strength when CO2 levels are doubled

in our atmosphere.

It should be noted that the climate model outputs used here are inefficient at

resolving the details of tropical cyclone intensity. Both reanalysis and model pro-

jections of cyclone wind speeds are found to be highly correlated to SAT, which

is, in turn, are strongly linked to SST. Modeled VmaxNw derived from SST again

show a high correlation between the reanalysis and HadCM3 model outputs for the
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present day CO2 level. Using estimated values of SST from the climate model out-

puts employing both present day and doubled CO2 cases in our statistical model

(Equation(3.5)), we computed VmaxNw for the two cases mentioned before. The

difference in the wind speeds obtained with enhanced CO2 levels show a significant

increase in maximum sustained winds as shown in Figure(A.1), and hence cyclone

strength. This can be interpreted as stronger storms in the warming world with

higher levels of CO2. The increase in maximum sustained wind speeds is heteroge-

neous in both hemispheres with the higher increase in the Northern Hemisphere.

The Northeast Pacific shows the highest rise in storm winds Collins et al. [2010].

The North Atlantic Ocean comes next in the list of regions. The Indian Ocean

followed by the West Pacific region show little influence due to increased levels of

CO2. This trend is reversed in the Southern Hemisphere with the West Pacific and

the Indian Oceans representing regions most prone to destruction by TCs while

the South Atlantic and the South East Pacific Ocean basins show the smallest

increase in storm wind speeds. To summarise, it is some sort of dipole effect, with

regions in the North showing highest increase reflecting the lowest increase in the

South.

In a futuristic scenario of doubled CO2, both SST and Vmax increases. The oceans

more prone to such intensification are the North Indian and the West Pacific

basins, and (f) Tropical cyclone intensity is highly dependent on ocean tempera-

ture. SST can be considered as one of the main driving forces for tropical cyclone

intensification. Hence, when other parameters are unavailable, we can use SST

to simulate tropical cyclone intensity to a reasonable extent for global tropical

oceans as has also been demonstrated by previous case studies [cf. Montgomery

et al. [2009]].

Using Eq.(3.5) we temporally determine proxy index for Vmax, VmaxNw, and then

computed the same parameter from temporal reanalysis outputs. The linear link

between the two-time series comes out to be only 0.86 in the tropical Atlantic

Ocean and is about 0.74 in tropical parts of West Pacific Ocean. Thus, we can not

efficiently employ spatially derived Vmax model to determine the parameter varying

temporally. This could be accounted to the non-stationary behaviour of maximum

sustained winds. However, as we showed earlier, the spatially derived proxy in-

dex (Vmax), averaged over time, successfully determine maximum sustained wind

speeds in tropics and the cyclone prone ocean basins.



Supplimentary Figures, Tables and Explanations 107

Figure A.1: Change in tropical cyclone wind speeds, Vmax, on doubling CO2

scenario

Observed imbalance in theoretically maximum sustained wind speeds, Vmax and

VmaxNw, can be the narrated by a comparable spreading of SST and mean atmo-

spheric temperature, SAT. Also, higher Vmax in the West Pacific and the Indian

Ocean are similar to SATmax distribution.

It should be noted that TCs rarely occur within 5 ◦ North and South of equator

due to negligibly small value of planetary angular momentum (Henderson [1998]).

However, TC wind speed, Vmax, as derived using ref(Bister and Emanuel [1998],Bis-

ter and Emanuel [2002]) (Figure(A.8)) does show high values due to absence of

this concept in the model.

Figure A.2: Tropical spread of SST, from SST −OI dataset(NOAA [2014])
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Figure A.3: Comparison of the Cyclone wind speed, Vmax and VmaxNew as,
obtained from reanalysis datasets; ERSST-V3b (SST), SLP, Specic Humidity
& Atmospheric temperature profile. The Modeled tropical cyclone wind speed,
VmaxNew, w.r.t. ERSST-V3b (SST), as input to Eq(3.5). Peak wind speed
distribution as derived from an algorithm based on thermodynamics and that

obtained from our simple linear model match well in tropics.

Figure A.4: Cyclone wind speed, Vmax, obtained from reanalysis datasets;
OI.SST (SST) (NOAA [2014]), SLP, Specific Humidity & Atmospheric temper-
ature profile. Modeled cyclone wind speed, VmaxNew, as obtained from OI.SST

(SST) dataset(NOAA [2014])

Also, due to errors in SST obtained from HadCM3, Figure(A.7) close to land

regions, we notice remarkable hype in V maxNw close to land areas during doubled

CO2 case (refer to figure(A.1) ). The observed results in those troubled regions are

however not supported in this work due to issue with the data quality Connolley

[June, 2005].
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Figure A.5: Comparison of cyclone wind speed Vmax obtained from Emanuel’s
model and our simplistic empirical approach with only SST as input. Row-1:
Vmax employing Emanuel’s model with reanalysis datasets as inputs: SLP, spe-
cific humidity and atmospheric temperature profile and COBE SST; Row-2:
VmaxNew employing our approach (Equation 3) with COBE SST; Row-3: Spa-
tial distribution of VmaxNew minus Vmax to visually identify areas of disagree-
ment, considering Vmax as a benchmark (reference), Row-4: Probability density
function (PDF) of ‘δ Vmax = VmaxNew - Vmax’. Statistical parameters (number
of Vmax matches, minimum, maximum, mean, standard deviation, root mean
square difference), a Gaussian fit, X N(mean, Std Dev) and number of grids
beyond “ Mean ± 4*Std Deviation”, henceforth called ‘extreme grids’, are also

annotated on the PDF.

A.1.4 Understanding the role of Sustained Wind Speed

through Enthalpy

This result showing an indirect association between SST and sustained wind speed

can be explained by considering the contribution of enthalpy exchange between
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Figure A.6: Comparison of cyclone wind speed Vmax obtained from Emanuel’s
model and our simplistic empirical approach with only SST as input. Row-
1: Vmax employing Emanuel’s model with reanalysis datasets as inputs: SLP,
specific humidity and atmospheric temperature profile and OISST.V2 (SST);
Row-2: VmaxNew employing our approach (Equation 3) with OISST.V2 (SST);
Row-3: Spatial distribution of VmaxNew minus Vmax to visually identify areas of
disagreement, considering Vmax as a benchmark (reference), Row-4: Probability
density function (PDF) of ‘δ Vmax = VmaxNew - Vmax’. Statistical parameters
(number of Vmax matches, minimum, maximum, mean, standard deviation,
root mean square difference), a Gaussian fit, X N(mean, Std Dev) and number
of grids beyond “ Mean ± 4xStd Deviation”, henceforth called ‘extreme grids’,

are also annotated on the PDF.

the ocean and the air above during cyclone genesis. A tropical cyclone draws

heat energy from the warm ocean water and uses it to evolve and move across the

underlying surface against friction. Thus, a TC system can be regarded as a heat

engine. At equilibrium, the input energy is equal to the energy going out of the

system or is used in mechanical motion against the surface friction. Considering

a cyclone system to be an ideal thermodynamic heat engine, the Carnot engine,



Supplimentary Figures, Tables and Explanations 111

Figure A.7: SST errors in HadCM3 as when compared with ERA-15 (annual
mean), Courtsey: Connolley [June, 2005]

Figure A.8: Cyclone wind speed, Vmax, obtained from reanalysis datasets;
COBE (SST), SLP, Specific Humidity & Atmospheric temperature profile
(COBE-NOAA [2015]) and the Modeled tropical cyclone wind speed, VmaxNew,
w.r.t. COBE (SST) (COBE-NOAA [2015]), as input to Eq.(3.5). Peak wind
speed distribution as derived from algorithm based on thermodynamics and that

obtained from our simple linear model matches well.

at equilibrium cf.Emanuel [1986],

Win = Wout (A.8)

The Energy per unit area going out of the system due to frictional dissipation,

associated to surface drag coefficient (Cd) and rotational wind speed (u), produces

losses given by,
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Wout = Cdρu
3 (A.9)

Where, ρ denotes the density of near surface air in kg/m3. Owing to friction,

energy loss per unit area, per unit time, Energy dissipated is given as,

Wout = Cdρv
3 (A.10)

where, the density of air near the surface is in Kg/m3, wind speeds close to the

ground, v, in m/s. Assuming that behaviour of cyclogenesis is similar to that of a

heat engine with efficiency, ε, and total heat input per unit time and surface area,

Qin. The energy produced in the system per unit surface area is given by,

Win = εQin (A.11)

Also, the assumption of cyclone formation being similar to that of a Carnot heat

engine efficiency Emanuel [1986] as a function of SST and the outflow temperature,

is given by,

ε =
Ts − T0
Ts

(A.12)

Specific enthalpy (k), enthalpy (energy) per unit mass, which is combination of

sensible heat (Cp ∗ T ) and the associated latent heat, (Lv ∗ q),is given by,

k = CpT + Lvq (A.13)

here, water vapour concentration is q, Lv denotes the latent heat of vapourization,

T as the air temperature above and, Cp as the heat capacity of air. Two sources of

heat input into the storm system are, evaporation from the sea surface and secondly

the recycled heat from frictional dissipation, where former is the dominant source

of heat input into the cyclone system during its formation. Evaporation rate,

rate of heat input into the system from the ocean can be given by using bulk

aerodynamic formula (M. T. and Emanuel [2012]),

Qin,ss = Ck ∗ ρ ∗ v ∗∆k (A.14)
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where, ∆k is the difference of enthalpy from the sea surface and the air above it

and Ck represents enthalpy exchange coefficient. Thus, higher contrast between

the two will increase the evaporation rate sourcing tropical cyclone. This goes well

with our results stated above.

Another source fueling a cyclone is the internal sensible heat activated by the

frictional dissipation which is equal to the dissipated heat, Wout. It appears within

a TC system and recycles back into the spinning system. Thus, it can be equated

to Wout as follows:

Qin,diss = Cdρv
3 (A.15)

Making used of these relations, rate of total energy generated per unit surface area

is then given by,

Win = εQin =
Ts − T0
Ts

(Ckρv∆k + Cdρv
3) (A.16)

Where, Ts and T0 refers to temperature at surface of ocean and the atmosphere

above it, respectively.

The Equation(A.16) provides a good thermodynamic approximation of the be-

haviour of SST and Atmospheric Temperature profile during TC genesis in rela-

tion to changes in enthalpy (∆k), though deriving this equation involves various

assumptions and hence has its own limitations.

A.1.5 Potential of SST Alone in Describing TC Potential

Energy

To test this, we ran two controlled experiments. In the first one, only SST varied

while keeping AT, MR and SLP constant. In the second one, both SST and AT

varied while keeping the other two variables constant (MR, SLP = Const.). Both

of these experiments were run for 1X and 2X CO2 scenarios. The first experiment

with varying SST and AT is shown in Fig 1a and Fig 2a below. The case while

changing SST alone is shown in Fig 1b and Fig 2b. As can be seen from the

figures, PI between 7 to 25 N and S latitudes, discarding the regions between

7 degrees N and S of the equator where Coriolis force is negligible, the spatial

distribution in both the cases is not very different. The PI for the case when AT
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is also considered shows little spread towards higher latitudes than for the case

when SST alone is considered. Considering AT into the picture suppresses the

PI, mainly in the northern hemisphere, from flourishing towards higher latitudes.

Thus, VmaxNew for the 2XCO2 scenario, derived using SST alone, gives a good

first approximation in most of the tropics.

Figure A.9: Control experiment with changing only SST values and keeping
other variables constant (Fig 1b, Fig 2b) and the case when both, SST and
AT varies while keeping rest of the input variables unchanged (Figure (A.9(a)),

Figure (A.9) 2a ) for both, 1X, 2XCO2 scenarios

A.2 Model application on temporal resolution

In order to analyze if this simplistic approach holds adequately in the temporal

domain, a time series analysis is performed using wavelet spectrum and standard

time series plots. The conclusion that is drawn on a spatial domain that this

approach holds is also verified for longer time series, implying that the simplistic

approach may be used as a fallback for TC studies when reliable atmospheric

temperature profiles before the satellite-era, at remote regions, are unavailable for

evolved models. As a first step, we have used wavelet analyses on our output using

ERSST.V3.b, individually for all the basins that provided us with the frequency

of the VmaxNw signals and their associated time periods. The major known trends

were found to be identified from this simplistic approach, which is encouraging.

Whereas the outputs of wavelet spectrum analysis show the frequency vs. time

pattern of VmaxNw , it does not provide a clear picture of the temporal behaviour.

Therefore, as a second step, time series variation of VmaxNw is shown for the

corresponding basins.
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A.2.1 Patterns in the VmaxNw

Making use of VmaxNw to understand these variations in the TC structure over

a long period of one and a half century could be of interest to climate scientists

especially in detecting their cause and effect relationship and its variation with

the changing climate Continuous wavelet power spectra for VmaxNw in different

basins are plotted here for further analyses. The black contours on Figures (A.10)

through (A.14) represent the 5% significance level against the red noise and the

cone of influence demarcates the region where edge effects come to into effect.

A.2.1.1 North Indian Ocean

Figure(A.10) plots the power spectrum in the North Indian Ocean that shows high

power in 6 year band during 1877 and a 5-year cycle in 1901. The two elongated

bands (contoured in black) range between 2− 6 years. After these two bands, we

can observe a lull period and then a cycle between 3-4 years during 1943, followed

by a similar significant cycle around 1984 and again during 1988. All these bands

show highest power around 5 and 3 years that may be associated with the El-

Niño-Southern Oscillation (ENSO) in the Northwest Pacific and dormant Indian

Ocean Dipole cycle, respectively.

A.2.1.2 South West Pacific Ocean

The continuous wavelet transform of VmaxNw in the Southwest Pacific is shown

in Figure(A.11). Cyclic patterns in the wavelet power are clearly observed in

the VmaxNw series. A significant peak in the 2-9 years cycle is apparent around

1954. This cycle of 9 years may coincide with the Pacific Decadal Oscillations

(PDO) which spans 8-12 years period. About 4 years cycle is also seen around

1972. Another significant cycle possesses a period of 3-7 years during 1910. These

oscillations may coincide with the ENSO cycle of 3-7 years (needs further investi-

gation).

A.2.1.3 North Atlantic Ocean

The continuous wavelet power spectrum in the North Atlantic is illustrated in

Figure(A.12). A significant peak in the 5 years band around 1934 is apparent. The
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wavelet spectrum also shows high power with the periodicity of 2-3 years which

is widespread and show significant but intermittent occurrences at a difference of

about 8-10 years.

A.2.1.4 Northwest Pacific

The Figure(A.13) presents the continuous wavelet power spectrum of VmaxNw in

the Northwest Pacific which shows a significant cycle of 8 years around 1950 and

may be related to the Pacific Decadal Oscillations (PDO) that show up around

1916. Cycles of 2-3 years are widespread during the considered period of 161 years

from 1854 to 2014.

A.2.1.5 Southern Indian Ocean

The Figure (A.14) exhibits the continuous wavelet power spectrum of VmaxNw in

the South Indian Ocean. The figure suggests the occurrence of very few cycles.

Most of the power of the signal appears to be concentrated at longer duration

cycles (at the bottom of the cone), which, however, are not discussed here and

detailed analysis is suggested for this region. The most dominant cycle is of 3

years which occurs around 1991, 1971 and 1891.

A.2.2 Time series trends

A.2.2.1 North Indian Ocean

The North Indian Ocean looks like an active region accommodating various intense

tropical storms since early 1990, Figure (A.15). Although there was a compara-

tively dormant period during 1895 to 1990, a dramatic rise is observed then after.

A.2.2.2 South West Pacific

Simulated TC wind speed VmaxNw reveals a steep increase since 1910 until 2014 in

the Southwest Pacific, Figure (A.16). A period of 161 years between 1854 to 2014

shows steady fluctuations between 67 to 70 m/s wind speed.
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A.2.2.3 North Atlantic Ocean

The North Atlantic ocean seems to drift from moderately active to a dramatically

active TC region, in terms of the associated destructive potential, Figure (A.17).

The year 2005 and 2010 marked years of severe tropical storms, prior to 1910,

which was a period of low cyclone activity.

A.2.2.4 North West Pacific

Graph of VmaxNw in the Northwest Pacific, Figure (A.18), shows that there has

been an interesting long-term cyclone of rise and fall between 1854 to 1980 and

thereafter, the TC strengthened sharply. Least active year in terms of TC strength

was, 1919.

A.2.2.5 South Indian Ocean

Trends in VmaxNw in the South Indian Ocean, Figure(A.19), show a lull period

between 1854 to 1940 followed by a year of a sharp rise and then fall. VmaxNw

since 1970 onwards illustrates a sharp rise from 59 m/s to 63 m/s.

Figure A.10: Wavelet power spectrum of VmaxNew in the North Indian Ocean
highlighting temporal patterns of occurrence of maximum wind speeds.
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Figure A.11: Wavelet power spectrum of VmaxNew in the South West Pacific
Ocean highlighting temporal patterns of occurrence of maximum wind speeds.

Figure A.12: Wavelet power spectrum of VmaxNew in the North Atlantic
Ocean highlighting temporal patterns of occurrence of maximum wind speeds.

A.3 Supplementary Figures from time series anal-

ysis
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Figure A.13: Wavelet power spectrum of VmaxNew in the North West Pacific
Ocean highlighting temporal patterns of occurrence of maximum wind speeds.

Figure A.14: Same as in Figure (A.13) but for the Southern Indian Ocean.
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Figure A.15: Time series of Simulated TC wind speed VmaxNew in the North
Indian Ocean

Figure A.16: Same as in Figure (A.15) but for the Southern West Pacific.
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Figure A.17: Time series of simulated TC wind speed VmaxNew in the North
Atlantic Ocean

Figure A.18: Time series of simulated TC wind speed VmaxNew in the North
West Pacific Ocean
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Figure A.19: Time series of simulated TC wind speed VmaxNew in the South
Indian Ocean
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Figure A.20: EEMD of the AT in the North Indian Ocean.
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Figure A.21: EEMD of the AT in the North West Pacific Ocean.
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Figure A.22: EEMD of the AT in the North Atlantic Ocean.
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Figure A.23: EEMD of the AT in the South Indian Ocean.
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Figure A.24: EEMD of the AT in the South West Pacific Ocean.
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Figure A.25: EEMD of the MR in the North Indian Ocean.
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Figure A.26: EEMD of the MR in the North West Pacific Ocean.
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Figure A.27: EEMD of the MR in the North Atlantic Ocean.
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Figure A.28: EEMD of the MR in the South Indian Ocean.
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Figure A.29: EEMD of the MR in the South West Pacific Ocean.
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