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Abstract 9 

Inspired by elastic energy storage and return in tendons of human leg muscle-tendon units 10 

(MTU), exoskeletons often place a spring in parallel with an MTU to assist the MTU. 11 

However, this might perturb the normally efficient MTU mechanics and actually increase 12 

active muscle mechanical work. This study tested the effects of elastic parallel assistance on 13 

MTU mechanics. Participants hopped with and without spring-loaded ankle exoskeletons 14 

that assisted plantar-flexion. An inverse dynamics analysis combined with in vivo ultrasound 15 

imaging of soleus fascicles and surface electromyography was used to determine muscle-16 

tendon mechanics and activations. Whole-body net metabolic power was obtained from 17 

indirect calorimetry.  When hopping with spring-loaded exoskeletons, soleus activation was 18 

reduced (30 - 70%) and so was the magnitude of soleus force (peak force reduced by 30%) 19 

and the average rate of soleus force generation (by 50%). Although forces were lower, 20 

average positive fascicle power remained unchanged owing to increased fascicle excursion 21 

(+ 4-5 mm). Net metabolic power was reduced with exoskeleton assistance (19%). These 22 

findings highlighted that parallel assistance to a muscle with appreciable series elasticity 23 

may have some negative consequences and that the metabolic cost associated with 24 

generating force may be more pronounced than the cost of doing work for these muscles. 25 

 26 

Keywords- Ultrasound, fascicle, tendon, metabolic power, plantar-flexors.  27 

  28 

 29 

 30 
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Introduction 31 

Assistive exoskeletons or wearable robots have the potential to restore locomotor function 32 

in individuals with musculo-skeletal disorders and augment locomotor function for healthy 33 

persons. The desired outcome of wearing an exoskeleton is typically to reduce the demands 34 

placed on the musculo-skeletal system during locomotion (17). This might be with the 35 

intention of (i) lowering the metabolic cost of transport (7, 15, 25, 38); (ii) reducing musculo-36 

skeletal injury risk; and/or (iii) providing mechanical power output that the biological tissues 37 

cannot (3). 38 

One of the main challenges of designing exoskeletons is to minimise their mass but still have 39 

them be capable of powering locomotion. One possible solution for this is to remove 40 

powered actuators and replace them with passive springs that are lightweight but can store 41 

and return energy to help power locomotion (7, 15, 17, 25, 40). This approach takes 42 

advantage of the natural spring-like mechanics of the human leg during locomotion (35). A 43 

simple spring-mass model can be used to replicate the motion of the body centre of mass 44 

during locomotion (5), highlighting the potential for storage and return of energy within 45 

elastic tissues in the legs during stance. In particular, elastic tissues in series with muscles 46 

(e.g. tendons) can be used to store energy from, and return energy to, the centre of mass (2, 47 

9).  48 

Taking inspiration from this biological mechanism, passive exoskeletons using springs in 49 

parallel with the muscles of the legs have been developed (7, 11, 15, 17, 25, 40). Grabowski 50 

and Herr (25) showed that an exoskeleton with springs spanning all three joints (ankle, knee 51 

and hip) of the leg could be used to reduce the metabolic cost of two-legged hopping in 52 

place. These authors demonstrated that when hopping in the exoskeletons, individuals 53 
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reduced their biological (muscular) contribution to leg stiffness to maintain normal overall 54 

stiffness (biological plus exoskeleton) and centre of mass mechanics. Similar effects have 55 

been observed specifically at the ankle joint for humans hopping in ankle-foot orthoses that 56 

were spring-loaded to assist plantar-flexion (11, 15, 17). In these studies, plantar-flexor 57 

electromyographic activity was reduced when hopping with the device. This was shown to 58 

reduce the biological contribution to ankle stiffness (17) and, at certain hopping 59 

frequencies, net metabolic power during hopping (15). 60 

Based on the aforementioned studies of joint and centre of mass level mechanics, one 61 

might conclude that these spring-loaded exoskeletons are successful in achieving their goals 62 

of reducing mechanical and metabolic demands on the musculo-skeletal system. However, 63 

to date nobody has studied the effects of providing parallel assistance to a muscle-tendon 64 

unit (MTU) on the mechanics of the MTU itself. This may be of particular importance for 65 

MTU’s such as those comprising the ankle plantar-flexors that have relatively short, pennate 66 

fascicles in series with a longer, compliant series elastic element (SEE) composed of 67 

aponeurosis and external tendon (21). This morphology allows length changes of the muscle 68 

fascicles to be decoupled from ankle joint rotation because angular excursion at the joint 69 

can be provided by stretch and recoil of the SEE (19, 37). One of the benefits of this 70 

decoupling of muscle length change from joint excursion is that muscle fibres are potentially 71 

able to produce force with minimal changes in length and at relatively slow velocities (37). 72 

This should reduce the required muscle activation and metabolic energy consumption for a 73 

given level of force production (16).  74 

Ultrasound imaging studies of human plantar-flexor MTU mechanics have actually shown 75 

that during the stance phase of walking, running and hopping, muscle fascicles contract 76 
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relatively slowly and length changes are primarily occurring in the SEE (14, 20, 22, 29, 30). 77 

This allows the SEE to store and return energy, minimising the work that must be done by 78 

active muscle that has the primary function of producing force isometrically (or with 79 

minimal length change) to stretch the SEE. Therefore, it seems that, in a healthy individual, 80 

muscle-tendon interaction within MTU’s that have a compliant SEE is well tuned to provide 81 

work output at the joint level with high efficiency (31, 32). 82 

However, assuming that the SEE has a reasonably constant stiffness and that ankle joint 83 

kinematics remain constant, the tuned interaction of muscle and tendon must require a 84 

particular force profile to be applied to the SEE by the muscle. As stated above, assistive 85 

ankle exoskeletons reduce plantar-flexor muscle activation (15, 17) leading to reduced 86 

muscular contributions to joint stiffness (17). Presumably this indicates that the muscles are 87 

producing lesser forces and thus, may not be able to stretch the SEE to the same extent as 88 

when unassisted. Therefore, it could be that providing parallel assistance to a MTU with a 89 

compliant SEE interferes with the MTU’s efficient mechanics. This might mean that there are 90 

some negative effects of providing such assistance as well as the previously stated benefits. 91 

The aim of this study was to test, in vivo, whether providing exoskeletal assistance in 92 

parallel to a MTU with a compliant SEE during a cyclic movement interferes with the 93 

normally efficient muscle-tendon interaction that occurs. It was hypothesised that when 94 

assistance is provided in parallel to the human plantar-flexors, soleus would reduce its 95 

activation and force production levels, resulting in decreased stretch of the SEE and a 96 

compensatory increase in length change of the muscle fascicles. Furthermore, it was 97 

expected that the predicted increase in soleus fascicle length change would increase soleus 98 

fascicle mechanical work despite the decreased load on the muscle. 99 
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Methods 100 

(a) Participants 101 

Seven male participants (mean ± sd, age = 28 ± 7, height = 1.8 ± 0.06 m, mass = 80 ± 10 kg) 102 

gave written informed consent to participate in this study. All participants were in good 103 

health and had no recent history of lower limb musculo-skeletal injury. All procedures were 104 

approved by an institutional review board and complied with the guidelines for research 105 

involving human participants as set out in the Declaration of Helsinki. 106 

(b) Experimental Protocol 107 

Bilateral hopping is a bouncing gait with similar spring-mass mechanics to running but 108 

simpler kinematics. The plantar-flexors undergo a stretch-shortening motion, meaning a 109 

simple spring-loaded ankle exoskeleton can be used to provide parallel assistance to the 110 

plantar-flexors. Therefore, each participant was required to perform bilateral hopping in 111 

place in time with the beat of a metronome operating at 2.5 Hz. This frequency was chosen 112 

because a previous study using the same movement found that this was the frequency 113 

around which metabolic cost was minimised when hopping in spring-loaded exoskeletons 114 

(25). The hopping task was performed for 4 minutes to allow the participants to reach a 115 

metabolic steady state and was completed under 3 experimental conditions: (1) With no 116 

exoskeleton (NE); (2) With bilateral ankle exoskeletons but no spring (NS); (3) With spring-117 

loaded exoskeletons to assist plantar-flexion (S). 118 

(c) The Exoskeletons  119 

The devices have been previously described elsewhere (15) and a sketch of the exoskeletons 120 

used is shown in Figure 1. The exoskeleton consisted of a carbon fibre cuff around the upper 121 
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shank which was connected to a carbon fibre foot section via two aluminium bars which had 122 

a freely rotating joint aligned with the participants’ malleoli. The foot section was 123 

embedded in a training shoe, through the sole and around the heel. An extension spring 124 

could be attached to a bracket on the posterior aspect of the cuff and a bolt on the heel of 125 

the foot segment via a number of metal links. The number of links was adjusted for each 126 

participant such that the resting length of the spring coincided with an ankle angle of 127° 127 

which has been determined as the typical angle at ground contact in hopping (17). This 128 

same approach was used by Ferris et al. (17) for a similar exoskeleton. A compression load 129 

cell (Omegadyne Inc., OH,USA) was placed on the inferior side of the bolt at the heel of the 130 

foot segment and attached to the links in series with the spring. This was used to measure 131 

the forces in the spring. The stiffness of the spring in tension was 5 kNm-1 and its moment 132 

arm about the joints was 0.135 m. This gave a rotational stiffness of 1.59 Nm/° (91 Nm·rad-1) 133 

which is approximately 40% of ankle stiffness during unassisted hopping at preferred 134 

frequency (17). 135 

(d) External Kinematics and Kinetics 136 

An eight camera motion analysis system (Vicon, Oxford, UK) was used to capture the three-137 

dimensional positions of 22 reflective markers attached to the pelvis and right leg. Raw 138 

marker positions were filtered using a second order low-pass butterworth filter with a cut-139 

off of 10 Hz. A static standing trial was captured and the positions of markers on segment 140 

end points were used to calibrate a four segment (pelvis, thigh, shank and foot) model for 141 

each subject using established inertial parameters (12). Clusters of three or four markers on 142 

rigid plates were attached to the pelvis, thigh and shank segments to track segment motion 143 

during hopping. For the foot, a cluster of three markers was attached directly to the shoe. 144 
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Joint angles for the hip knee and ankle were computed in three dimensions as the 145 

orientation of the distal segment with reference to the proximal segment. 146 

Three-dimensional (3D) ground reaction forces applied to the left and right legs were 147 

computed during vertical hopping using a split belt instrumented treadmill (Bertec, OH, 148 

USA) with the belts turned off. Participants hopped such that each foot was on a separate 149 

half of the treadmill and thus, the two 3D force vectors could be attributed separately to the 150 

left and right legs. Raw analogue force platform signals were filtered using a low-pass 151 

Butterworth digital filter with the cut-off set to 35 Hz. Inverse dynamic analyses (41) were 152 

then used to compute net joint moments at the hip, knee and ankle. Kinematics and kinetics 153 

were calculated for the right leg only and it was assumed that the left leg behaved 154 

symmetrically. Inverse dynamics procedures were performed with Visual 3D software (C-155 

motion Inc., Germantown, MD, USA). For the S condition, the contribution of the 156 

exoskeleton to the net ankle joint moment had to be determined. The force in the spring 157 

was computed from the load cell output voltage (from its factory calibration data) and 158 

multiplied by the moment arm of the spring about the ankle joint. This gave the plantar-159 

flexion moment provided by the exoskeleton and this was subtracted from the total ankle 160 

moment to give the moment provided by biological tissues. 161 

(e) Determination of Soleus Muscle Parameters 162 

Soleus (SO) muscle fascicle length during hopping was measured from B-mode ultrasound 163 

images (27) (Figure 1). A linear ultrasound transducer (LV7.5/60/96Z, Telemed, Lithuania) 164 

operating at 8.0 MHz was placed over the mid-belly of the SO and aligned so that SO 165 

fascicles could be visualised from deep to superficial aponeuroses (Figure 1). The reliability 166 

and accuracy of ultrasound measurements of fascicle length are reported elsewhere (1, 18, 167 
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36). Images were sampled at 50 Hz and a pulse from the ultrasound system that was high (3-168 

5 V) during recording and low (0 V) before and after was used to trigger collection of all 169 

other data synchronously. To obtain fascicle length from each image, a custom MATLABTM 170 

(The Mathworks Inc., Natick, MA) program was used to digitize the points of attachment of 171 

a fascicle on the superficial and deep aponeuroses and the length was calculated as the 172 

distance between these two points. Pennation angle was defined as the angle between the 173 

digitized fascicle and the deep aponeurosis (Figure 1). The instantaneous length of the 174 

whole SO MTU was calculated from ankle joint flexion-extension angle using the equations 175 

of Hawkins and Hull (26). To obtain a value for the length of the SEE, the length of the 176 

fascicle was multiplied by the cosine of pennation angle and subtracted from the MTU 177 

length (Fukunaga et al., 1997; Figure 1). Initial fascicle length (Li) was taken as the length of 178 

the fascicle at landing. Following landing, fascicles lengthened then shortened. Fascicle 179 

lengthening (ΔLFAS
+) was calculated relative to Li by subtracting Li from the peak length 180 

during stance. Fascicle shortening (ΔLFAS
-) was calculated as the length at take-off minus the 181 

peak length during stance. Overall length change (ΔL) was the sum of the absolute values of 182 

ΔLFAS
+ and ΔLFAS

-. 183 

(f) Soleus Muscle Kinetics 184 

Procedures for determining soleus kinetic data were similar to those employed by Farris and 185 

Sawicki (14) previously for the gastrocnemius. Direct measurement of muscle force was not 186 

possible and so it was estimated from inverse dynamics and SO muscle parameters. Forces 187 

transmitted by the Achilles tendon (AT) to the calcaneus were calculated as the biologically 188 

generated ankle moment divided by the moment arm of the AT about the ankle joint (14, 189 

30). This moment arm was calculated as the first derivative of SO MTU length with respect 190 
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to ankle angle (6, 32). To reduce this force solely to that contributed by SO it was multiplied 191 

by the relative physiological cross-sectional area (PCSA) of SO within the plantar flexors 192 

(0.54 from ref. (23)). Next, SO force was divided by the cosine of SO pennation angle to 193 

calculate the force generated along the line of the fascicle (FSO). The average rate of SO 194 

force production ( SO) was calculated by differentiating SO force with respect to time, 195 

integrating the period when the derivative was positive during a hop, and dividing the 196 

integral by the time taken for an entire hop. This value was calculated for multiple hops (8-197 

10) and averaged.  198 

The velocities of the SO fascicles, MTU and SEE were calculated as the first derivative of 199 

their lengths with respect to time. The power output of the fascicles, SEE and MTU were 200 

then calculated as the product of their respective forces and velocities. Positive work done 201 

by fascicles, SEE and SO was estimated by integration of positive portions of each 202 

component’s power curve. Periods of positive power during each trial were integrated by 203 

the trapezium method and summed, then divided by the number of hops taken in that trial 204 

to calculate average positive work done per hop. These values were divided by hop cycle 205 

time to convert to average positive powers for fascicle (  ), SEE (  ) and MTU (  ). 206 

These average positive powers were considered indicative of the fascicle and tendon 207 

interaction. For example, the overall MTU output would be most efficient if   was zero 208 

(i.e. the fascicle is always isometric) and all of   was supplied by   (i.e. from recoil of 209 

the SEE). 210 

(g) Electromyography 211 



11 | P a g e  
 

Surface electromyography (EMG) was used to record muscle activity from Medial 212 

Gastrocnemius (MG), Lateral Gastrocnemius (LG), Soleus (SO) and Tibialis Anterior (TA). All 213 

four channels were recorded using wired electrodes (Biometrics Ltd, UK) that were carefully 214 

placed over muscle bellies after the skin surface was prepared by light abrasion and cleaned 215 

with an alcohol swab. D.C. offsets were removed from raw signals which were then band-216 

pass filtered (20-300 Hz). The data were then smoothed by calculating the root-mean-217 

squared (RMS) value of the signals over a rolling window of 20 ms. The RMS of each 218 

muscle’s signal was also calculated over the period of ground contact and the aerial phase 219 

of each hop as a metric of total activity over these two phases of the hop. Processed EMG 220 

signals for each muscle were normalised to the average of the local (within each hop) 221 

maxima of the signal recorded in that muscle in the NS condition. 222 

(h) Metabolic Power 223 

Rates of oxygen consumption and carbon dioxide production during hopping trials were 224 

recorded using a portable metabolic system (Oxycon Mobile, Viasys Healthcare, CA, USA). 225 

Prior to hopping, measurements were made during five minutes of quiet standing and 226 

values from the last two minutes were averaged and used to calculate rates of metabolic 227 

energy consumption whilst standing. For the hopping trials, data from the last two of the 228 

four minutes were averaged for the calculation of metabolic rate. Visual inspection of rates 229 

of oxygen consumption with time (averaged over 30 s intervals) confirmed that participants 230 

were at steady-state during this period and the respiratory exchange ratio was never 231 

greater than one. Rates of oxygen consumption and carbon dioxide production were 232 

converted to metabolic powers using standard equations detailed by Brockway (8). Net 233 

metabolic powers during hopping were calculated by subtracting metabolic power during 234 
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standing from metabolic power during hopping and these values were normalized to 235 

individual body mass (W·kg-1). Metabolic data were presented as the normalised net value, 236 

unless otherwise stated. 237 

(i) Statistical Analyses 238 

All time-series data for individual participants were reduced to the mean of at least 10 hops 239 

for each experimental condition. Unless otherwise stated, the values presented in this paper 240 

are the mean ± standard error for the whole participant group. To test for statistical 241 

differences in dependent variables between conditions a one-way ANOVA with repeated 242 

measures was employed using SPSS software (IBM, USA). The independent variable for the 243 

ANOVA was spring condition (3 levels – NE, NS, S). F-ratios for main effects were considered 244 

significant for P < 0.05. If a significant main effect was found, paired t-tests were used to 245 

make pair-wise comparisons between spring conditions. 246 

Results 247 

Hop heights and duty factors (proportion of a hop cycle spent in contact with the ground) 248 

were not significantly different between conditions (Table 1) indicating that the overall 249 

mechanical demand of the hopping task on the lower-limbs limbs was not different between 250 

conditions (15). RMS EMG for SO during the aerial phase (SORMSaerial) and ground contact 251 

(SORMSground), peak FSO and SO were all significantly (P <0.01) less for the S condition than for 252 

NS and NE conditions (Table 1, Figure 2 a,b,c). These reductions occurred concurrently with 253 

a significant increase in both SO fascicle total excursion (lengthening + shortening) and 254 

fascicle shortening for S compared to NS (P = 0.01) and NE (P = 0.048) during the stance 255 

phase (Table 1, Figure 3a).  There was no difference in length changes (relative to 0% hop 256 
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time) of the SEE or MTU between conditions (Figure 3 b,c). However, both the MTU and the 257 

SEE were at significantly (P < 0.00) shorter lengths on average throughout the hop cycle in 258 

the S condition (Table 1). This was associated with the ankle joint being more plantar-flexed 259 

on average over a hop cycle for S (Table 1). A full description of joint kinematics and kinetics 260 

has been previously published (15). 261 

Fascicle length change increased and FSO decreased in S (Figure 3a, 2b). This trade-off meant 262 

that   was unchanged between conditions (Figure 4). However, both   and   263 

were significantly less for S than for NS and NE (Figure 4). The net result of these findings 264 

was that the ratio of   to  went down in S, indicating that a smaller proportion of 265 

  was being provided by the return of elastic energy from the SEE. Whole body net 266 

metabolic power was significantly less for S than NS (-19%, P = 0.010) and NE (-13%, P = 267 

0.016). 268 

Discussion 269 

This study aimed to assess, in vivo, the effects on muscle-tendon mechanics of providing 270 

parallel assistance to a MTU that has a compliant SEE. As predicted, soleus fascicle length 271 

change increased when assistance was provided although, this did not lead to an increase in 272 

 . This was due to reductions in soleus activity and the resulting force production as 273 

discussed below. It should be noted that more common locomotor tasks (i.e. walking and 274 

running) utilise more complex kinematics than hopping and thus, care should be taken in 275 

extrapolating these findings to such tasks. However, plantar-flexor stretch-shortening cycles 276 

are important in walking and running and therefore, it is relevant to these tasks to study the 277 

effects of a parallel spring on soleus stretch-shortening mechanics in a simpler motion.  278 
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(a) Muscle activation and force production 279 

Based on previous studies using similar devices, the first hypothesis was that soleus 280 

activation levels would be reduced when exoskeleton assistance was provided. As can be 281 

seen from Figure 2a and Table 1, this hypothesis was supported because there were 282 

reductions in SORMSaerial (60-70%) and SORMSground (≈30%). Most notably, reductions occurred 283 

late in the aerial phase and early in stance (Figure 2a). These timings of reductions in SO 284 

activation agree well with data from hopping in a similar device (17). 285 

Also as predicted, there was a concurrent reduction in FSO during the stance phase when 286 

hopping with assistance compared to both other conditions (Figure 2b, Table 1). In fact, the 287 

onset of force production during stance was later and the peak FSO was less (≈30%) when 288 

hopping with assistance. The later onset of force production may have been facilitated by 289 

the lesser pre-activation of SO at the end of the aerial phase and lower activation in early 290 

stance (Figure 2a). It seems that parallel assistance in the form of a spring-loaded ankle 291 

exoskeleton was able to effectively reduce the activation and loading of SO during hopping.  292 

 One potential benefit of reduced force and activation is that the metabolic costs associated 293 

with producing muscular force could be reduced. These costs have been considered to 294 

account for ≈50% of the metabolic cost of transport in humans (24). Biewener (4) proposed 295 

that two factors influence the energy cost of producing muscular force in mammalian 296 

locomotion: (1) the magnitude of force generated per unit time and (2) the rate of force 297 

development and frequency of activation. As indicated by Figure 2b, the magnitude of FSO 298 

was always less when assistance was provided. Hop cycle time was constant and thus the 299 

magnitude of force per unit time was less for hopping with assistance. Furthermore, Figure 300 

2c shows that SO was significantly less (≈50%) when the spring-loaded exoskeletons were 301 
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being used. Because the frequency of the cyclic hopping task was controlled, the frequency 302 

of SO activation should not have changed.  Overall, the metabolic cost of producing force in 303 

SO should have been reduced when assistance was provided. Consistent with this, whole 304 

body net metabolic power was significantly reduced with assistance (Figure 4). However, 305 

studies of whole-body mechanics have suggested that the cost of force production accounts 306 

for ≈50% of net metabolic costs (24) and so there may be other factors to consider at the 307 

muscular level. 308 

(b) Muscle-tendon mechanics and energetics 309 

In addition to muscle force, mechanical work done by muscle has been cited as the other 310 

major factor in determining metabolic energy consumption during gait (10, 13, 24). The 311 

mechanical work done by muscle is determined by the length change of contractile 312 

elements and the force they produce during this length change. It was predicted that 313 

reduced force production by SO would result in a smaller stretch of the SEE and that this 314 

would have to be compensated for by increased length changes of muscle fascicles, 315 

resulting in greater average fascicle rate of work (  ). 316 

The changes in the length of the SEE were not different when assistance was added (Table 1, 317 

Figure 3b). Initially this seems improbable given the elastic nature of the SEE and the noted 318 

reductions in FSO. However, the fact that the average length of the SEE and the whole MTU 319 

were both significantly reduced when assistance was used (Table 1) may provide a clue.  320 

Tendons typically exhibit a non-linear ‘toe region’ in their force-elongation relationship at 321 

shorter lengths (2). This region has been specifically observed for the SEE of the human 322 

plantar-flexors (34). In this region the SEE will lengthen more for a given increase in force 323 

than in the stiffer linear region that exists at longer lengths. Without individual force-length 324 
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plots for each of the study participants it is hard to conclusively say when their SEE was and 325 

was not in the toe region. However, this would help to explain why, despite the smaller 326 

increase in force observed in the S condition, the SEE undergoes similar changes in length to 327 

NE and NS but at shorter absolute lengths. It could even be that in the S condition the SEE 328 

was shorter than its slack length early in stance. Again, without individual force-length data 329 

this is hard to confirm but, in the S condition SO was contributing no force early (and very 330 

late) in stance. At these times, the entire plantar-flexion moment was due to forces in the 331 

spring of the exoskeleton (Figure 2b). This was despite small amounts of SO activation and 332 

could be explained by a slack SEE.  333 

With the SEE being at shorter lengths with assistance, one might have expected the fascicles 334 

to have to have compensated and operated at longer lengths and over greater excursions. 335 

However, the ankle kinematics changed with the addition of the spring and the ankle joint 336 

was significantly more plantar-flexed on average (Table 1). This resulted in a shorter average 337 

length of the whole MTU and SEE, but there was no change in average fascicle length (Table 338 

1).  That said, there were differences in fascicle length changes for S compared to NE and 339 

NS. 340 

As expected, the total excursion of SO fascicles was increased by 4-5 mm (≈ 2-3 mm of 341 

increased lengthening and shortening) compared to the unassisted conditions (Figure 3, 342 

Table 1). This was as hypothesised but, contrary to predictions, the increased excursion did 343 

not lead to any significant changes in   (Figure 4). This is because the work done by a 344 

fascicle is dependent upon its length change and its force production during that length 345 

change. In the present study, although with assistance there was increased fascicle 346 

shortening (shortening results in positive work) there was also a concurrent reduction in 347 
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force production. The result of this trade-off was no change in  . Thus, the hypothesis 348 

that parallel assistance would have some negative impact on metabolic cost by increasing 349 

fascicle work was not supported. This also meant that a reduction in overall net metabolic 350 

cost was achieved without altering work done by the SO muscle. Thus, the metabolic costs 351 

associated with doing work may not be as important as those associated with producing 352 

force for SO during bouncing gaits. 353 

Whilst   was not increased by assistance, the ratio of   to   was altered.   354 

accounted for 74-78% of  without assistance and only 63% with assistance (Figure 4). 355 

This should not increase metabolic cost but it may affect the apparent efficiency of SO 356 

mechanical work. Apparent efficiency is high for MTU’s when most of the positive work is 357 

provided by energy returned from stretch of the tendon and minimal work is done by active 358 

muscle (38). By reducing the energy stored and returned in the SEE, apparent efficiency of 359  may have been reduced in the assisted condition. 360 

(c) Contributions from other muscles 361 

Several of the central discussion points of this paper have attempted to relate SO mechanics 362 

to whole body net metabolic power. Clearly there are other muscles driving this cost, both 363 

at the ankle and at other joints. Based on PCSA, SO is the largest of the plantar-flexors 364 

accounting for ≈54% of the summed PCSA of this muscle group (23). SO was chosen because 365 

of this and it was anticipated that it would make the largest contribution to ankle plantar-366 

flexion moments. However, it should be noted that a significant portion of plantar-flexor 367 

force and work may come from the gastrocnemius and this may influence metabolic energy 368 

consumption. However, the fact that MG and LG activations during ground contact did not 369 
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change with assistance may indicate that much of the change in ankle mechanics is due to 370 

the change in soleus activation. 371 

On a similar theme, hopping was chosen partly because the overall power production of the 372 

task can be controlled, and the ankle joint is the primary power source, making it ideal for 373 

studying muscle-tendon mechanics and energetics of the plantar-flexors. As such, we note 374 

that hop heights and duty factors were not significantly different between experimental 375 

conditions (Table 1). This combined with the controlled hopping frequency indicated that 376 

the total external power requirements of the hopping task were consistent across 377 

conditions. Although the ankle dominates overall power output of the task (≈60% at 2.5 Hz), 378 

the muscles acting at the knee (37%) and hip (3%) also contribute to mechanical power 379 

output and because of their lesser series compliance may do so less efficiently (39). This 380 

would not affect the changes in metabolic cost observed between conditions if knee and hip 381 

contributions were constant across conditions. However, there was a reduction in the 382 

contribution at the knee from 37% to 29% in the assisted condition. This probably 383 

contributed to some of the observed reduction in metabolic cost. The reduction in average 384 

positive power at the knee (-0.2 W·kg-1) was much less than at the ankle (-1.0 W·kg-1). If a 385 

typical muscle efficiency of 0.25 were assumed for the muscles acting at the knee (39), this 386 

reduction would account for 0.8 W·kg-1 of the 1.5 W·kg-1 reduction in whole-body net 387 

metabolic power that was observed (Figure 4). Despite some metabolic reduction coming 388 

from reduced knee mechanical power, a significant portion (~0.7 W·kg-1) of the total 389 

reduction in metabolic power can still be attributed to reductions in mechanical power 390 

output at the ankle joint, most of which is due to reductions in force, but not work, of the 391 

soleus muscle fascicles. 392 
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 (d) Force sharing considerations 393 

The force sharing between SO, MG and LG was determined purely on their relative PCSA’s. 394 

This approach assumes that their relative activations (relative to their own maximum) are 395 

similar and fluctuate similarly. Maximums were not tested but, if different muscles’ relative 396 

activation were different within an experimental condition, it would have introduced a 397 

systematic error that would not change the main results of this study. Of greater concern 398 

with the current study design is whether or not their relative activations remained similar 399 

when assistance was added. From Table 1 it can be seen that SO activation during stance 400 

was reduced with assistance but MG and LG’s was not. This would imply that relative 401 

activation changed for SO but not for LG and MG. However, because of the direction of this 402 

change (i.e. soleus is at a lower percentage of its maximum activation in the S condition), 403 

the current result would only be strengthened because accounting for this change would 404 

further reduce FSO. 405 

Further to force sharing among plantar-flexors, it must be considered that the net joint 406 

moment includes an antagonistic contribution from TA that was ignored. This would only 407 

cause a systematic underestimate of FSO if TA activation were constant across conditions. 408 

Unfortunately, this was not the case as introducing the spring increased TA activation (Table 409 

1). However, this increase was small for the stance phase, which is when the key dependant 410 

variables were evaluated, and TA was minimally active. The small increase in stance phase 411 

activity in TA would not explain the large reductions in FSO that were observed. A detailed 412 

discussion of why TA’s activation increased in the S condition has been previously published 413 

(15).  414 

(e) Exoskeletons and injury Prevention 415 
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Aside from reducing metabolic energy consumption, exoskeletons could be used to reduce 416 

musculo-skeletal injury risk by unloading musculoskeletal structures. For example, chronic 417 

joint or tendon conditions might be due to high volumes of repetitive loading such as 418 

experienced during prolonged walking and running on a daily basis. Alternatively, acute 419 

injuries may occur due to instances of excessive loading of tissues. Intuitively, one might 420 

consider the reduced loading observed here to indicate a reduction in risk level for such 421 

injuries. This may be true for certain stress-related injuries but, muscular injuries have been 422 

more closely linked to excessive muscle strain (33). It was shown here that unloading SO 423 

actually increased fascicle lengthening by 2-3 mm (Figure 3a) and fascicles reached a 424 

maximum length of 43 mm. Average fascicle lengths during hopping were 38-40 mm and 425 

this is similar to resting SO fascicle lengths previously reported (28). Taking 38 mm as a 426 

resting length, the exoskeleton increased fascicle strain by 5-8% to a maximum of 8%. This is 427 

still well below the 25% strain that has been reported as a damaging strain level (33). 428 

Furthermore, the fact that individuals adjusted their ankle kinematics to reduce MTU 429 

lengths for S, may have been a strategy to reduce passive muscle stretch early in stance and 430 

help prevent muscle damage. The MTU was up to 19 mm longer without assistance. Had the 431 

fascicle been required to provide that lengthening, it would have reached damaging strain 432 

levels. This highlights the point that reducing musculoskeletal loading may not lead to 433 

reduced muscle strain, especially when significant series elastic tissues are present. 434 

(f) Conclusions 435 

This study tested the effects of providing passive exoskeletal assistance to the human ankle 436 

joint on soleus MTU mechanics and whole body net metabolic power during bilateral 437 

hopping. The passive elastic assistance reduced net metabolic power. It also reduced soleus 438 
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force production (and rate of force) but, increased soleus fascicle excursion. This trade-off 439 

maintained fascicle average positive mechanical power output despite the reduction in 440 

force. These results highlighted that the metabolic cost of producing force may be more 441 

important than cost of work for MTU’s with compliant SEE’s and short fascicles, during cyclic 442 

contractions.   443 
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Figure Captions 546 

Figure 1. (a) A sketch of the spring-loaded ankle exoskeleton design. LC  is the load cell and 547 

US the ultrasound transducer which was held in position with elastic bandaging. (b) A 548 

sample ultrasound image with a schematic of the transducer placement (inset). The 549 

transducer surface is at the top edge of the image. A soleus fascicle is highlighted (dashed 550 

line) and pennation angle is marked (ϕ). 551 

Figure 2. (a) Group mean normalised and smoothed soleus (SO) EMG signals and (b) SO 552 

force, for the NE, NS and S conditions. The grey curve in (b) represents the force in the 553 

spring of the exoskeleton for the S condition (Sspring) The shaded areas indicate the aerial 554 

phases. The start of the aerial phase for S, NS and NE are indicated by each of the 555 

progressively darker shades of grey, respectively. (c) Shows the group mean (± sem) average 556 

rate of force production by SO for NE (dots), NS (hatched) and S (solid black). Data in a and b 557 

are plotted over 101 points, normalised to time over an entire hop. 558 

Figure 3. Group mean length changes of the soleus (a) fascicle, (b) SEE, and (c) MTU. The 559 

shaded areas indicate the aerial phases. The start of the aerial phase for S, NS and NE are 560 

indicated by each of the progressively darker shades of grey, respectively. All length changes 561 

were relative to the length at the beginning of ground contact. Data are normalised to 101 562 

points over a hop cycle. 563 

Figure 4. Group mean (± sem) average positive powers for soleus (SO) fascicles (FAS) and 564 

series elastic element (SEE) are shown individually and stacked (left vertical axis). The entire 565 

stacked bars indicate total MTU average positive power and the percentage contribution of 566 

the SEE is noted. Hatched bars are the group mean (± sem) whole body net metabolic 567 
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powers for NE, NS and S (right vertical axis). *indicates significant differences in   and 568 

† indicates significant differences in whole body net metabolic power. 569 
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Table 1. Group mean (± sem) MTU metrics  

 NE NS S 
H (mm) 20 ± 8 13 ± 6 15 ± 9 
Duty factor 0.72 ± 0.07 0.75 ± 0.06 0.69 ± 0.07 
L�SEE (mm) 254 ± 9* 246 ± 8* 237 ± 7 
L�FAS (mm) 39 ± 3 41 ± 4 38 ± 4 
L�MTU (mm) 291 ± 8* 285 ± 8* 273 ± 6 
ΔLFAS

+(mm) 2 ± 1 4 ± 1 4 ± 1 
ΔLFAS

-(mm) 3 ± 1* 3 ± 1* 5 ± 1 
ΔLTOT (mm) 5 ± 1* 7 ± 1* 9 ± 1 

Peak FSO (N) 1623 ± 187* 1667 ± 119* 1166 ± 194 

ank (°) 114 ± 1* 113 ± 2* 128 ± 2 
TArms ground 1.07 ± 0.18* 1.00 ± 0.00* 1.42 ± 0.13 

TArms aerial 1.07 ± 0.20* 1.00 ± 0.00* 2.84 ± 0.67 

SOrms ground 1.00 ± 0.06* 1.00 ± 0.00* 0.73 ± 0.06 

SOrms aerial 0.72 ± 0.10* 1.00 ± 0.00* 0.29 ± 0.10

MGrms ground 1.05 ± 0.04 1.00 ± 0.00 1.05 ± 0.06

MGrms aerial 1.02 ± 0.08* 1.00 ± 0.00* 0.40 ± 0.08

LGrms ground 1.09 ± 0.02 1.00 ± 0.00 0.95 ± 0.20

LGrms aerial 1.22 ± 0.20* 1.00 ± 0.00* 0.49 ± 0.20
 

H – Hop height. L�SEE, L�FAS, L�MTU- average lengths of 
the SEE, fascicle & MTU.   ΔLFAS

+, ΔLFAS
-, ΔLTOT - 

lengthening & shortening of fascicle during ground 

contact. ank – mean ankle angle during ground contact. 

rmsground and rmsaerial are the root mean square EMG 
values from the stance and aerial phases for each 
muscle. *denotes statistically significant (P<0.05) 
difference from the S condition.  
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